

1 **Genomic and phenotypic comparisons reveal distinct variants of *Wolbachia***
2 **strain wAlbB**

3 Julien Martinez^{a#}, Perran A. Ross^b, Xinyue Gu^b, Thomas H. Ant^a, Shivan M. Murdoch^a,
4 Lily Tong^a, Ana da Silva Filipe^a, Ary A. Hoffmann^b, Steven P. Sinkins^{a#}

5

6 ^aMRC-University of Glasgow Centre for Virus Research, Glasgow, UK

7 ^bPest and Environmental Adaptation Research Group, Bio21 Institute, the University of
8 Melbourne, Parkville, VIC, Australia

9 [#] Address correspondence to Julien Martinez, julien.martinez@glasgow.ac.uk. Co-
10 corresponding author: Steven P. Sinkins, steven.sinkins@glasgow.ac.uk.

11

12 J.M. and P.A.R. contributed equally to this work. Author order was determined based on
13 higher relative contribution of J.M. to experimental planning.

14

15 **Running title:** Characterization of *Wolbachia* strain wAlbB variants

16

17 **Abstract word count:** 198

18

19 **Main text word count:** 5,805

20 **Abstract**

21 The intracellular bacterium *Wolbachia* inhibits virus replication and is being harnessed
22 around the world to fight mosquito-borne diseases through releases of mosquitoes
23 carrying the symbiont. *Wolbachia* strains vary in their ability to invade mosquito
24 populations and suppress viruses in part due to differences in their density within the
25 insect and associated fitness costs. Using whole-genome sequencing, we demonstrate
26 the existence of two variants in wAlbB, a *Wolbachia* strain being released in natural
27 populations of *Aedes aegypti* mosquitoes. The two variants display striking differences in
28 genome architecture and gene content. Differences in the presence/absence of 49 genes
29 between variants include genes located in prophage regions and others potentially
30 involved in controlling the symbiont's density. Importantly, we show that these genetic
31 differences correlate with variation in wAlbB density and its tolerance to heat stress,
32 suggesting that different wAlbB variants may be better suited for field deployment
33 depending on local environmental conditions. Finally, we found that the wAlbB genome
34 remained stable following its introduction in a Malaysian mosquito population. Our results
35 highlight the need for further genomic and phenotypic characterization of *Wolbachia*
36 strains in order to inform ongoing *Wolbachia*-based programmes and improve the
37 selection of optimal strains in future field interventions.

38 **Importance**

39 Dengue is a viral disease transmitted by *Aedes* mosquitoes that threatens around half of
40 the world population. Recent advances in dengue control involve the introduction of
41 *Wolbachia* bacterial symbionts with antiviral properties into mosquito populations which
42 can lead to dramatic decreases in the incidence of the disease. In light of these

43 promising results, there is a crucial need to better understand the factors affecting the
44 success of such strategies, in particular the choice of *Wolbachia* strain for field releases
45 and the potential for evolutionary changes. Here we characterized two variants of a
46 *Wolbachia* strain used for dengue control that differ at the genomic level and in their
47 ability to replicate within the mosquito. We also found no evidence for the evolution of
48 the symbiont within the two years following its deployment in Malaysia. Our results have
49 implications for current and future *Wolbachia*-based health interventions.

50

51 **Introduction**

52 *Aedes aegypti* mosquitoes are the primary vectors of dengue, a neglected viral disease
53 ranked by WHO among the top ten global health threats, with 50–100 million clinically
54 apparent cases and half a million hospitalizations for severe disease every year (1).
55 Current control methods based on insecticide fogging for mosquito suppression have
56 failed to halt the continued expansion in range and incidence of dengue, and rising levels
57 of insecticide resistance mean that there is a pressing need for innovative approaches.
58 *Wolbachia* are maternally inherited symbiotic bacteria found in many insect species, but
59 not naturally in *Ae. aegypti* (Ross et al. 2020); however following lab transfer into this
60 species some *Wolbachia* strains can efficiently block dengue transmission (3–6), by
61 causing perturbations in various cellular pathways including lipid transport (7).

62 *Wolbachia* strains wMel from *Drosophila melanogaster* and wAlbB from *Aedes albopictus*
63 have both been shown to spread to and remain at a high frequency in *Ae. aegypti*
64 populations following releases of *Ae. aegypti* at a comparatively modest scale and

65 duration without needing continuous re-introduction (8–11). These strains have a self-
66 spreading capability using a form of reproductive manipulation known as cytoplasmic
67 incompatibility (CI), whereby the progeny of *Wolbachia*-carrying males and *Wolbachia*-
68 free females die, while the reverse cross is fertile, giving an advantage to *Wolbachia*-
69 carrying females. Both strains have been shown to efficiently reduce dengue transmission,
70 providing a safe, sustainable, cost-effective and eco-friendly biocontrol tool that holds
71 great promise for reducing the global burden of dengue (8, 11–14).

72 Since releases of *Ae. aegypti* carrying *wAlbB* (6) were carried out in Malaysia in sites
73 around Kuala Lumpur that were previously hot-spots for dengue transmission, dengue
74 has been substantially decreased (8). When larvae develop under high temperature
75 regimes with diurnal peaks around 37°C, *wAlbB* is more stable than *wMel*, maintaining a
76 higher density, high maternal transmission and efficient dengue transmission blocking (6,
77 15–18). The fitness cost of *wAlbB* in *Ae. aegypti* is higher than *wMel* in lab assays, mainly
78 due to slightly reduced adult longevity (6) and reduced fertility and fecundity of adult
79 females produced from quiescent eggs (19). *Wolbachia* fitness costs negatively affect
80 population dynamics, raising the threshold frequency that must be exceeded for CI-
81 mediated spread to occur (20–22) and for *Wolbachia* to remain at stable high frequency
82 after introduction, as occurred with *wAlbB* at a number of sites in Malaysia (8). Several
83 independent transinfections of *wAlbB* from *Ae. albopictus* have been generated in *Ae.*
84 *aegypti* through microinjection (6, 23, 24) and two of these have been released in natural
85 populations (8, 25). While the transinfections originate from different geographic locations,
86 it is unclear if there are genetic or phenotypic differences between them.

87 The effectiveness of *Wolbachia* interventions against dengue could be compromised in
88 the longer term by evolutionary changes in the *Wolbachia* or mosquito genome (26). Virus
89 transmission blocking could be reduced over time if mosquito-*Wolbachia* co-evolution
90 results in lower *Wolbachia* density overall, or more restricted tissue distribution to the
91 ovaries and testes. The wAlbB-associated reduced hatch rate of stored *Ae. aegypti* eggs
92 could also be ameliorated by natural selection (27); if this selection acts specifically at the
93 egg stage and does not impact the dengue transmission-blocking phenotype, it would be
94 advantageous overall for implementation of the strategy. No obvious phenotypic changes
95 have been observed in wAlbB to date in field populations of *Ae. aegypti* (18) but longer-
96 term monitoring is required.

97 The primary aim of this study was to sequence the genome of the wAlbB strain released
98 in Malaysia. This is useful for several reasons: to be able to ascertain whether this wAlbB
99 has any unique genomic features relative to previously published wAlbB genomes; to be
100 able to track genomic evolution that may occur in the field, that could potentially
101 compromise the effectiveness of the dengue intervention; and to allow for the creation of
102 molecular assays to allow this variant to be distinguished from the naturally occurring
103 wAlbB present in *Ae. albopictus*, which will be useful in *Wolbachia* frequency monitoring,
104 since both species are present in the intervention sites. Other aims were to compare the
105 impact of different wAlbB infections on *Wolbachia* density, egg quiescence and responses
106 to heat.

107

108

109

110 **Results**

111 **Comparative genomics of wAlbB genomes**

112 We compared three publicly available wAlbB circular genomes (Texas, Florida and
113 Hainan) with a new draft assembly that we generated from an Indonesian wAlbB infection
114 previously transferred into *Ae. aegypti* (6) (Figure 1A). The Indonesian wAlbB assembly
115 was 1.45 Mb in size, >99% of which was made of 9 contigs (Table 1). This is slightly
116 shorter than finished wAlbB genomes (1.48 Mb), however, similar numbers of single-copy
117 conserved orthologues were found between wAlbB genomes suggesting the wAlbB-II
118 assembly is nearly complete (Table 1). In light of the genomic differences described
119 below, we will refer to wAlbB-I and wAlbB-II to designate the reference variant from Texas
120 and the Indonesian variant respectively.

121 The Indonesian wAlbB-II variant clusters with the three other available wAlbB genomes
122 into a monophyletic clade within *Wolbachia* supergroup B (Figure 1B). However, despite
123 the strong phylogenetic relatedness, wAlbB-II displays striking differences in genome
124 synteny when compared to wAlbB-I and the wAlbB-I-like genomes originating from Florida
125 and China (Figure 1A). There are three incomplete WO prophage regions in the wAlbB-II
126 genome, indicating ancient WO phage infections. The structural and non-structural
127 modules (head, tail, baseplate, replication and eukaryotic modules) are split between the
128 different regions, suggesting no active phage replication (Figure 2). Moreover, essential
129 genes of the phage head, tail and baseplate are missing indicating that the production of
130 phage particles is impaired (Table 2). Core phage genes are present in single copies
131 except for the recombinase and phospholipase D which are both present in two copies
132 with high sequence divergence, suggesting that the wAlbB genome may have been

133 colonized in the past by more than one WO phage (Table 2). The other *wAlbB* genomes
134 also carry prophage regions with sequence similarities to those of *wAlbB-II* but these have
135 rearranged into five different regions (Figure 1A). Two pairs of the cytoplasmic
136 incompatibility-inducing genes *cifA* and *cifB* are located within *wAlbB-II*'s prophage
137 regions and are identical to the other *wAlbB* genomes. The two gene pairs are related to
138 type III *cif* homologues for one pair and type IV for the other pair as defined in previous
139 studies (28, 29).

140 In addition to chromosomal rearrangements, we found noticeable differences in gene
141 content between the *wAlbB-I*-like and *wAlbB-II* genomes (Figure 1C, Table S1), with ~70%
142 of the differences involving repeat elements (transposases, group II introns reverse-
143 transcriptase and related pseudogenes). Excluding repeat elements, *wAlbB-II* harbours
144 23 genes that are absent from or pseudogenized in the three other genomes, while on the
145 other hand, *wAlbB-I*, -FL2016 and -HN2016 share 26 genes not found or pseudogenized
146 in the *wAlbB-II* draft assembly. Some of this variation is located within and around
147 prophage regions, where *wAlbB-II* and the other *wAlbB* genomes have lost different core
148 and accessory phage genes (Figure 2, Table 2, Table S1). For instance, one of the *wAlbB*-
149 II phage eukaryotic modules lacks two copies of a putative transcriptional regulator and
150 one copy of a DNA repair protein which are homologues of genes in an eight-gene locus
151 known as Octomom thought to influence *Wolbachia* proliferation in *wMel*-like strains (30–
152 32) (Figure 2A). Interestingly, *wAlbB-II* also carries two syntenic proteins
153 (WP_019236968.1 and WP_019236969.1) with homologies to arthropod protein
154 translocase subunit secA genes that are absent in other *wAlbB* genomes (Table S1) but
155 present in other *Wolbachia* strains. The two genes are of unusual length for *Wolbachia*

156 genes. They branch with a few other *Wolbachia* homologues within arthropod lineages
157 with no closely-related bacterial homologues indicating two independent horizontal
158 transfers from arthropods to *Wolbachia* in the case of WP_019236968.1 and at least one
159 such event for WP_019236969.1 (Figures S2). Finally, several genes differed between
160 *wAlbB* variants due to pseudogenization by the insertion of a transposon. For example, a
161 homologue of the *Wolbachia* surface protein *wspB*, is pseudogenized in the three *wAlbB*-
162 I-like genomes while a full-length version of the gene is present in *wAlbB*-II.

163 It is possible that some of the genes predicted to be absent in *wAlbB*-II might in fact be
164 present but were not assembled. For instance, one of *wAlbB*-II contigs showed a 2x
165 sequencing depth compared with the rest of the assembly and is identical to a large region
166 that is duplicated in the other *wAlbB* genomes (asterisks in Figure 1A, Table S1). Similarly,
167 another three-gene duplication in *wAlbB*-I genomes also displayed a 2x sequencing depth
168 in *wAlbB*-II (Table S1). Thus, we counted the extra copies of genes in these two large
169 duplications as present in *wAlbB*-II. Nevertheless, we confirmed that all other genes
170 missing in *wAlbB*-II (excluding transposable elements) were either present but annotated
171 as pseudogenes or that no *wAlbB*-II Illumina reads mapped to the corresponding genes
172 in the other genomes (Table S1, Figure S1).

173 Numerous single nucleotide polymorphisms (SNPs) and small indels between the *wAlbB*
174 genomes were identified (Table 3, Table S2). In reciprocal comparisons, there were more
175 polymorphisms when *wAlbB*-II was used as the reference genome for SNP calling. This
176 is likely because the *wAlbB*-II assembly is incomplete, which may generate false-positives
177 within misassembled repeat sequences. This is supported by the fact that five SNPs were
178 detected in transposable elements when mapping *wAlbB*-II reads on its own assembly.

179 Moreover, the five SNPs were all polymorphic upon visual inspection of the mapped reads.

180 Nevertheless, *wAlbB-II* showed the smallest number of SNPs against *wAlbB-I*, while it

181 was more divergent from *wAlbB-FL2016* and *wAlbB-HN2016*. This is inconsistent with the

182 pattern of gene presence/absence observed above. However, a large proportion of SNPs

183 against *wAlbB-FL2016* and *wAlbB-HN2016* displayed an atypical distribution with a few

184 loci accumulating the majority of the SNPs. As noted in Ross et al. (2021), this could be

185 due to possible DNA contamination in these two assemblies. Around 60% of the SNPs

186 between *wAlbB-II* and *wAlbB-I* are non-synonymous, of which some are located within

187 ankyrin repeat domain-containing genes as well as genes potentially involved in

188 transcription and RNA processing (e.g. sigma factor *RpoD* (34), transcription elongation

189 factor *NusA* (35), RNA polymerase subunit alpha and beta, ribonucleases E and D (36)),

190 protein synthesis (e.g. ribosomal proteins, translational GTPase *TypA* (37)), cell wall

191 synthesis and remodelling (e.g. N-acetylmuramoyl-L-alanine amidase, D-alanyl-D-alanine

192 carboxypeptidase, M23 family peptidase, UDP-N-acetylmuramate dehydrogenase (38,

193 39)) and stress response (e.g. heat shock proteins: ATP-dependent *Clp* endopeptidase

194 (40), *DegQ* endoprotease (41)).

195

196 ***wAlbB Wolbachia* variants display background-dependent differences in density**

197 To determine potential effects of *wAlbB* variation on phenotype, we generated *Ae. aegypti*

198 populations with different *Wolbachia* infection types (*wAlbB-I*, *wAlbB-II* or uninfected) and

199 backgrounds (Australian (Au) or Malaysian (My)) through reciprocal backcrossing (33).

200 *Wolbachia* density was influenced by *wAlbB* variant in both sexes (Table S3), with *wAlbB-*

201 I individuals having higher *Wolbachia* densities than wAlbB-II individuals (Figure 3A and
202 B). We found no clear effect of nuclear background for either sex, but there was a
203 significant interaction between nuclear background and wAlbB variant in males (Table
204 S3). In the Australian background, wAlbB-I had a higher density than wAlbB-II (GLM:
205 females: $F_{1,76} = 13.792$, $P < 0.001$, males: $F_{1,73} = 27.401$, $P < 0.001$) but there were no
206 significant differences between variants in the Malaysian background (females: $F_{1,76} =$
207 0.982, $P = 0.325$, males: $F_{1,76} = 2.225$, $P = 0.140$).

208 To test the stability of wAlbB variants at high temperatures, we measured *Wolbachia*
209 densities in adults after eggs were exposed to cyclical heat stress (29-39°C) or held at
210 26°C for one week. *Wolbachia* density was influenced by wAlbB variant and temperature
211 treatment, with significant interactions between wAlbB variant and nuclear background as
212 well as *Wolbachia* variant and temperature (Table S4). When the wAlbB-I and wAlbB-II
213 variants were tested separately, we found no effect of temperature or nuclear background
214 in either sex (all $P > 0.141$) for wAlbB-I, indicating that this infection is stable under heat
215 stress (Figure 3C and D). In contrast, wAlbB-II density was lower in the heat stress
216 treatment (Females: $F_{1,56} = 51.940$, $P < 0.001$, Males: $F_{1,56} = 61.814$, $P < 0.001$) and in
217 the Malaysian background (Females: $F_{1,56} = 12.831$, $P = 0.001$, Males: $F_{1,56} = 4.549$, $P =$
218 0.037). Across both sexes and backgrounds, median wAlbB-II density under cyclical heat
219 stress decreased by 80.4%, compared to 8.1% for wAlbB-I and 98.7% for wMel.

220

221

222 **Quiescent egg viability depends on mosquito nuclear background and wAlbB**
223 **infection**

224 Stored eggs from populations with different combinations of wAlbB infection type (wAlbB-
225 I, wAlbB-II or uninfected), mitochondrial haplotype (Au or My) and background (Au or My)
226 were hatched every three weeks to determine quiescent egg viability. wAlbB infection
227 greatly reduced quiescent egg viability in all four combinations of background and
228 mitochondrial haplotype (Figure 4). By week 16, hatch proportions for wAlbB-infected
229 populations approached zero while hatch proportions for uninfected populations exceeded
230 40%. In uninfected populations, we found significant effects of egg storage duration and
231 nuclear background on egg hatch proportions (Table S5). Eggs with an Australian
232 background had higher hatch proportions (median 0.823) than eggs with a Malaysian
233 background (median 0.503) by the end of the experiment. In wAlbB-infected populations,
234 we found significant effects of egg storage duration, squared egg storage duration, nuclear
235 background and replicate population (Table S5). Although populations carrying wAlbB-II
236 had higher overall hatch proportions than wAlbB-I populations in both backgrounds
237 (Figure 4), effects of wAlbB variant were not significant (Table S5). We had low power to
238 detect wAlbB variant effects in this analysis due to nesting replicate population within
239 wAlbB variant.

240

241 **A multiplex PCR reaction for diagnostics of wAlbB variants**

242 Given the genomic differences observed between the wAlbB genomes, we developed a
243 PCR reaction allowing the distinction between the wAlbB-I and -II variants in *Ae. aegypti*

244 and *Ae. albopictus*. From our gene content analysis, we selected an AAA-family ATPase
245 protein and the phage tail formation protein I as markers to distinguish the two wAlbB
246 variants. Primers for these markers were designed and pooled with primers amplifying the
247 18S mosquito control gene into a multiplex PCR reaction. wAlbB-I in the Aa23 *albopictus*
248 cell line and wAlbB-II in our *Ae. aegypti* mosquito lab line displayed the expected band
249 profiles and were clearly distinguishable on the agarose gel (Figure 5). Moreover, the
250 wAlbB infecting a Malaysian line of *Ae. albopictus* mosquitoes (JF) displayed identical
251 bands to wAlbB-I variant.

252

253 **No evidence for evolution of wAlbB-II genome following field release**

254 Using the wAlbB-II assembly as a reference, we mapped the sequencing data generated
255 from a wAlbB-infected *Ae. aegypti* colony wAlbB-MC (Mentari Court site) that was isolated
256 from the field two years following field releases of wAlbB-II in Malaysia (18). All genome
257 positions of the reference assembly were covered by read data from wAlbB-MC with no
258 drastic drop in sequencing depth suggesting that no gene was lost since field releases
259 (Figure S1A). Thirteen SNPs were detected, however, all were located within transposable
260 elements (Table 3 and Table S2). Similar to wAlbB-II sequencing data, visual inspection
261 of the wAlbB-MC mapped reads revealed that all SNPs were highly polymorphic indicating
262 that they are likely false-positives caused by the use of an incomplete reference genome.
263 Therefore, we conclude that there is little evidence for genomic changes that may have
264 occurred following the introduction of wAlbB-II in the field.

265

266 **Discussion**

267 Here we uncovered major genomic differences between closely-related *wAlbB*-strain
268 *Wolbachia* and showed these differences correlate with variation in symbiont density.
269 *wAlbB* diversity has commonly been investigated using a limited number of markers such
270 as the *wsp* gene and Multi-Locus Sequence Typing (MLST) genes with little to no variation
271 observed between isolates from different locations (42–44). Whole-genome sequencing
272 provides a higher resolution and has revealed significant genomic differences between
273 closely-related *Wolbachia* strains (45–47). Using this method, we demonstrated the
274 existence of at least two types of *wAlbB* variants that differ in genome synteny and gene
275 content. The reference *wAlbB*-I variant originating from Texas and the *wAlbB* isolates from
276 Florida and China share a similar genome architecture and gene content while the
277 Indonesian *wAlbB*-II variant is strikingly different. Further sampling of *wAlbB* genomic
278 diversity will provide new insights into the evolution of this symbiont lineage and may help
279 unravel the colonization history of its native host, *Ae. albopictus*, across continents (48).

280 Importantly, there are differences in symbiont density between the *wAlbB*-I and *wAlbB*-II
281 variants. Although only one isolate representative of each variant was characterised here,
282 these results suggest that variant-specific genetic determinants may be driving some of
283 the differences in density. It is possible, but less likely, that differences in mitochondrial
284 haplotypes contributed to some of the variation in symbiont density since mitotypes were
285 not cross-factored with the *wAlbB* variants. The reference isolates for *wAlbB*-I and II
286 variants differed in the presence/absence of 49 genes (excluding transposable elements)
287 and on ~200 SNPs, 60% of which were non-synonymous. How much of this variation
288 contributes to differences in symbiont density remains to be investigated, and further

289 phenotypic characterisation of new variants will help shorten the list of candidate genes
290 since there is currently no transformation system in *Wolbachia* for functional validation.
291 Interestingly, some of the genomic differences are located within prophage regions. It has
292 been hypothesised that WO phage replication lowers *Wolbachia* density (49); however,
293 we only found incomplete prophage regions, suggesting that active phage mobilisation is
294 unlikely to occur in wAlbB. Alternatively, variation in the expression of phage accessory
295 genes could be responsible for differences in density. Indeed, wAlbB-I carries additional
296 copies of a DNA repair protein *radC* and a putative transcriptional regulator in its phage
297 eukaryotic module. Homologues of these genes in wMel-like strains, WD0507 and
298 WD0508, are part of a 20 kb region called Octomom. Octomom is to date the only genetic
299 determinant shown to influence *Wolbachia* proliferation in a copy-number dependent
300 manner (30). Both complete loss of the region and amplification have been associated
301 with symbiont over-proliferation, which in turn has negative effects on host lifespan (31,
302 32).

303 Density variation could also stem from the way wAlbB variants interact with the host.
304 *Wolbachia* genomes commonly harbour an array of ankyrin domain-containing genes
305 which are predicted to be involved in protein-protein interactions as well as secretion
306 systems that may allow the export of bacterial effectors into the host cell cytoplasm (50,
307 51). Several ankyrin domain-containing genes are among the candidate genes that differ
308 between wAlbB variants. Additionally, wAlbB-II harbours two syntenic proteins showing
309 homologies to arthropod protein translocase subunit SecA genes. Homologues were
310 previously found in other *Wolbachia* strains (52) and their phylogenetic distribution points
311 towards an acquisition through horizontal transfer from a eukaryotic host. SecA proteins

312 are involved in the transport of bacterial and ER-exported proteins (53), suggesting that
313 the wAlbB variants may differ in the way they interact with the host cell. Interestingly,
314 wAlbB variants also differed in a homologue of the *Wolbachia* surface protein *wspB*. *wspB*
315 is pseudogenized in wAlbB-I and this variant maintains higher densities under a high
316 temperature cycle compared to wAlbB-II that carry a full-length version of the gene. This
317 is consistent with two recent studies showing that, among variants of the *Wolbachia* strain
318 wMel, pseudogenization of the *wspB* gene is associated with variation in symbiont density
319 and maternal transmission and that the magnitude of this effect can vary with both
320 temperature and host background (54, 55). Finally, wAlbB variants differed in a number
321 of house-keeping genes involved in essential functions such as DNA replication, RNA
322 processing, translation or cell wall biogenesis that may contribute to the variation in
323 symbiont density, and in heat shock response genes that could potentially control their
324 different degrees of tolerance of heat stress.

325 The phenotypic differences detected impact on the relative ability of these variants to
326 spread through *Ae. aegypti* populations, and their efficacy for dengue control
327 programmes. The declining hatch rates over time of dried quiescent eggs is an important
328 component of the fitness costs of wAlbB in this host (19). In areas where a high proportion
329 of larval sites are temporary and experience intermittent inundation, dry eggs are often in
330 quiescence for extended periods, and thus the fitness cost of wAlbB will be higher relative
331 to *Wolbachia*-free wildtype counterparts than when larvae develop in permanent breeding
332 sites such as water storage tanks. This factor will increase the threshold population
333 frequency that must be exceeded for *Wolbachia* to spread / remain stable in the
334 population. The higher, background-dependent negative impact of the wAlbB-I on

335 quiescent egg hatch rates means that this variant will be predicted under some
336 backgrounds / ecological conditions to spread less efficiently than wAlbB-II. Conversely
337 the apparent slightly higher tolerance of wAlbB-I for very high temperature egg storage
338 may also impact on relative spread dynamics, since maintenance of higher density of
339 wAlbB-I may ultimately impact maternal transmission rates and virus inhibition. In the
340 hottest climates in which *Ae. aegypti* occurs, wAlbB-I may prove to be a better option for
341 dengue control than wAlbB-II. However, more data is needed under a variety of conditions
342 and over multiple generations and life stages to test the relative impacts of temperature in
343 more detail.

344 Previously, we found negligible changes in the wAlbB-I genome following transfer from its
345 native host *Ae. albopictus* to *Ae. aegypti* (33) suggesting that there is little selective
346 pressure to adapt to this new host, at least in laboratory conditions. This is in line with little
347 genomic changes observed following artificial transfers of multiple *Wolbachia* strains
348 between *Drosophila* species (56). Here we found no evidence of wAlbB-II genome
349 evolution after its introduction in a field population of *Ae. aegypti*, which supports our
350 earlier results showing stable density and antiviral effects using the same field-caught
351 mosquito colony (18). It is also in line with the observed wMel genome stability following
352 the introduction of *Wolbachia*-infected *Ae. aegypti* mosquitoes in Australia (57, 58). wMel
353 and wMelPop-CLA infections in *Ae. aegypti* also show few long-term phenotypic changes
354 following transinfection (10, 59).

355

356

357 **Methods**

358 ***Wolbachia* purification**

359 In order to generate Illumina sequencing data for both the reference *w*AlbB-II genome and
360 its field-caught counterpart *w*AlbB-MC, *Wolbachia* was purified from whole mosquitoes.
361 *w*AlbB-MC-infected mosquitoes were used after three generations spent in the lab since
362 field collection in Mentari Court. For each genome, around 400 mosquitoes were collected
363 into a 50 ml Falcon tube and snapped at -20°C for 10 min. Mosquitoes were then surface-
364 sterilized for 3 min in 50% bleach, followed by 3 min in 70% ethanol and rinsed 3 times
365 with sterile water. Mosquitoes were then manually homogenized with 3 mm glass beads
366 in 40 ml of Schneider's media by shaking and further homogenized with a tissue-lyzer
367 after transferring the homogenate into 2 ml tubes with 1 mm beads. Homogenates were
368 centrifuged at 2,000 g for 2 min to remove tissue debris and the supernatant was
369 sequentially filtered through 5, 2.7 and 1.5 µm sterile filters. The filtrate was aliquoted in
370 Eppendorf tubes and centrifuged at 18,500 g for 15 min to pellet bacteria. The supernatant
371 was discarded, Schneider's media added and the previous centrifugation step repeated
372 once. The bacterial pellet was resuspended in Schneider's media and treated with DNase
373 I at 37°C for 30 min to remove host DNA. Following digestion, samples were centrifuged
374 at 18,500 g, the supernatant discarded and the DNase inactivated at 75°C for 10 min.
375 Finally, bacterial pellets were pooled into one tube and DNA extracted with the Gentra
376 Puregene tissue kit (Qiagen) with resuspension of the DNA pellet in 100 µl of nuclease-
377 free water.

378 For long-read sequencing of the *wAlbB-II* genome, the same protocol was followed except
379 that *Wolbachia* was purified from 150 freshly laid mosquito eggs. In order to increase the
380 amount of starting DNA needed for Nanopore library construction, the DNA was amplified
381 directly from the bacterial pellet before the DNA extraction step using the REPLI-G Midi
382 kit (Qiagen).

383

384 **Whole-genome sequencing and genome assembly**

385 For both *wAlbB-II* and *wAlbB-MC*, DNA libraries were prepared using the Kapa LTP
386 Library Preparation Kit (KAPA Biosystems, Roche7961880001) and sequenced on the
387 Illumina MiSeq platform with the MiSeq Reagent Kit v3 to generate 2x150 bp reads. Raw
388 reads were demultiplexed using bcl2fastq and adapters were trimmed with Trimmomatic
389 v0.38.0 (60). To generate long reads for *wAlbB-II*, 1 µg of whole-genome amplified gDNA
390 was sheared into ~8 kb fragments followed by purification and size-selection using
391 AMPure XP beads (Beckman Coulter). Oxford Nanopore Technology (ONT) sequencing
392 library preparation was then carried out with the Ligation Sequencing Kit (SQK-LSK109)
393 and the library loaded on a MinION Flow Cell and sequenced for 72 hours using a GridION
394 (ONT) controlled by MinKNOW software v20.06.9. Base-calling and demultiplexing were
395 performed within MinKNOW using Guppy v4.0.11. ONT adapters were removed with
396 Porechop v0.2.4 (61). Host reads were filtered out by mapping the Illumina and Nanopore
397 reads against the *Ae. aegypti* reference assembly (Genbank accession:
398 GCF_002204515.2) using Bowtie2 v2.4.2 (62) and Minimap2 v2.23 (63) respectively.
399 Unmapped reads were then assembled using the Unicycler hybrid assembly pipeline (64).

400 Contigs were visualized and blasted against several *Wolbachia* genomes in Bandage (65)
401 and non-*Wolbachia* sequences were discarded from the assembly.

402

403 **Comparative genomics**

404 The wAlbB-II assembly was compared to three other wAlbB isolates for which genome
405 sequences are publicly available – the reference isolate (wAlbB-I), which is derived from
406 *Ae. albopictus* mosquitoes caught in Houston, Texas, USA in 1986 and has subsequently
407 been maintained in the *Ae. albopictus* Aa23 cell line (66, 67); an isolate from *Ae.*
408 *albopictus* caught in St. Augustine, Florida, USA in 2016 (wAlbB-FL2016); and an isolate
409 from *Ae. albopictus* caught in Haikou, Hainan, China in 2016 (wAlbB-HN2016). wAlbB
410 genomes were all reannotated using Prokka v1.14.6 (68) prior to the gene content
411 analysis. Roary v3.13.0 (69) was then used to determine the core and accessory genomes
412 with a 95% identity threshold. The Roary output was manually curated to fix issues with
413 pseudogenes in the accessory genomes by visualizing the genome annotations in the
414 Artemis genome browser v16.0.0 (70). Large indels were confirmed by visual inspection
415 of sequencing depth after mapping the wAlbB-II and wAlbB-I (SRA accession:
416 SRR7623731) Illumina reads onto the different wAlbB genomes with Bowtie2 (Figure S1).
417 Tblastn searches were run to locate WO phage genes, including the homologues of the
418 Octomom and *cif* genes within the genomes using representative sequences. Prophage
419 regions and their eukaryotic modules were then manually re-annotated by following the
420 most recent guidelines (71). Whole-genome and prophage regions synteny were
421 visualized using the R package genoPlotR (72). The maximum likelihood phylogenetic

422 tree was inferred with RaxML v7.7.6 (73) using a core gene alignment of several
423 Supergroup A and B *Wolbachia* genomes generated by Roary.

424 The SNP analysis was conducted using the Snippy pipeline v4.6.0 (Seeman, Torsten.
425 Snippy: fast bacterial variant calling from NGS reads; 2020
426 <https://github.com/tseemann/snippy>). Illumina reads were mapped onto the different
427 *wAlbB* reference genomes and SNPs were called with minimum mapping quality of 20, 10
428 reads minimum coverage and 0.9 minimum proportion for variant evidence. From the
429 alignment BAM files, sequencing depth was calculated using Samtools depth v1.13 and
430 visually inspected in R and Artemis to identify large indels and duplicated regions.

431

432 **Origin of *wAlbB* variants and mosquitoes used in phenotypic assays**

433 The *wAlbB*-I variant used in phenotypic comparisons originates from *Ae. aegypti*
434 mosquitoes that were transinfected in 2005 (24) with the same *wAlbB* infection as the
435 reference isolate found in the Aa23 *Ae. albopictus* cell line. *wAlbB*-I was then transinfected
436 into an *Ae. aegypti* line with an Australian mitochondrial haplotype (33). The *wAlbB*-I
437 genome is almost identical to the *wAlbB* reference genome differing by only four Single
438 Nucleotide Variants (33), suggesting that few genetic changes have occurred since
439 *wAlbB*-I was first transferred to *Ae. aegypti* over 15 years ago (24). In 2015, the *wAlbB*-II
440 variant from the *Ae. albopictus* strain UJU (origin Sulawesi, Indonesia) was transferred
441 into an *Ae. aegypti* line with a Malaysian mitochondrial haplotype through microinjection
442 (6). The donor *Ae. albopictus* UJU embryos carried a triple *Wolbachia* infection,

443 comprising *wAlbA*, *wMel* and *wAlbB-II*, but incomplete maternal transmission of the triple
444 infection in *Ae. aegypti* allowed for isolation of a single-infection *wAlbB-II* line.

445 *wAlbB-I* and *wAlbB-II* populations were backcrossed regularly to natively uninfected
446 populations from Australia and Malaysia respectively to control for genetic background.
447 Uninfected populations were created through antibiotic treatment and the different
448 combinations of nuclear background (Australian or Malaysian), mitochondrial haplotype
449 (Australian or Malaysian) and *Wolbachia* infection status (*wAlbB-I*, *wAlbB-II* or uninfected)
450 were generated through reciprocal backcrosses as explained in Ross et al. (2021). Two
451 replicate populations of each combination were created and maintained separately. Both
452 of these were included in *Wolbachia* density and quiescent egg viability measurements,
453 while a single replicate population was tested for *Wolbachia* density under heat stress.

454

455 ***Wolbachia* detection and density**

456 qPCR assays were used to confirm the presence or absence of *Wolbachia* infection and
457 measure relative density. Genomic DNA was extracted using 250 µL of 5% Chelex 100
458 Resin (Bio-Rad laboratories, Hercules CA) and 3 µL of Proteinase K (20 mg/mL) (Roche
459 Diagnostics Australia Pty. Ltd., Castle Hill New South Wales, Australia). Tubes were
460 incubated for 30 minutes at 65°C then 10 minutes at 90°C. *Wolbachia* density was
461 quantified with qPCR via the Roche LightCycler 480. Two primer sets were used to amplify
462 markers specific to mosquitoes (forward primer mRpS6_F [5'-
463 AGTTGAACGTATCGTTCCCGCTAC-3'] and reverse primer mRpS6_R [5'-
464 GAAGTGACGCAGCTTGTGGTCGTCC-3']), and *wAlbB* (*wAlbB_F* [5'-

465 CCTTACCTCCTGCACAACAA-3'] and wAlbB_R [5'-GGATTGTCCAGTGGCCTTA-3']).
466 For mosquitoes carrying the wMel infection, *Wolbachia* density was determined using w1
467 primers (w1_F [5'-AAAATCTTGTGAAGAGGTGATCTGC-3'] and w1_R [5'-
468 GCACTGGGATGACAGGAAAAGG-3'], Lee et al. (2012)). Relative *Wolbachia* densities
469 were determined by subtracting the Cp value of the *Wolbachia*-specific marker from the
470 Cp value of the mosquito-specific marker. Differences in Cp were averaged across 2-3
471 consistent replicate runs, then transformed by 2^n .

472

473 **Quiescent egg viability**

474 We measured quiescent egg viability in *Ae. aegypti* populations with different
475 combinations of wAlbB infection type (wAlbB-I, wAlbB-II or uninfected), mitochondrial
476 haplotype (Au or My) and background (Au or My). Six cups filled with larval rearing water
477 and lined with sandpaper strips were placed inside cages of blood fed females from each
478 population. Eggs were collected five days after blood feeding, partially dried, then placed
479 in a sealed chamber with an open container of saturated potassium chloride (KCl) solution
480 to maintain a constant humidity of ~84%. When eggs were 1, 4, 7, 10, 13 and 16 weeks
481 old, small sections of each sandpaper strip were removed and submerged in water with a
482 few grains of yeast to hatch. Four to six replicate batches of eggs were hatched per
483 replicate population at each time point, with 40-125 eggs per batch. Hatch proportions
484 were determined by dividing the number of hatched eggs (with a clearly detached egg
485 cap) by the total number of eggs per female.

486

487 ***Wolbachia* density following heat stress**

488 We measured *Wolbachia* density in adults after being exposed to cyclical heat stress
489 during the egg stage. Eggs were collected from *Wolbachia*-infected populations (one
490 replicate population each from wAlbB-I Au/Au, wAlbB-I Au/My, wAlbB-II My/Au, wAlbB-II
491 My/My and wMel). Four days after collection, batches of 40-60 eggs were tipped into 0.2
492 mL PCR tubes (12 replicate tubes per population) and exposed to cyclical temperatures
493 of 29-39°C for 7 d in Biometra TProfessional TRIO 48 thermocyclers (Biometra, Göttingen,
494 Germany) according to Ross et al. (2019). Eggs of the same age from each population
495 were kept at 26°C. Eggs held at 29-39°C and 26°C were hatched synchronously and
496 larvae were reared at a controlled density (100 larvae per tray of 500 mL water). Pupae
497 were sexed and 15 males and 15 females per population and temperature treatment were
498 stored in absolute ethanol within 24 hr of emergence for *Wolbachia* density measurements
499 (see *Wolbachia* detection and density).

500

501 **Statistical analysis of density and phenotypic traits**

502 Experimental data were analyzed using SPSS Statistics version 24.0 for Windows (SPSS
503 Inc, Chicago, IL). Quiescent egg viability and *Wolbachia* density data were analyzed with
504 general linear (mixed effect) models (GLMs). Replicate populations were pooled for
505 analysis when effects of replicate population exceeded a P-value of 0.1 in prior analyses.
506 Data for each sex were analyzed separately. For *Wolbachia* density, untransformed data
507 (i.e. differences in Cp between *Wolbachia* and mosquito markers, before 2^n
508 transformation) were used for analyses. We ran additional GLMs on *Wolbachia* density in

509 each nuclear background separately due to significant interactions between background
510 and wAlbB variant. For comparisons of *Wolbachia* density at different temperatures, we
511 included temperature treatment (26 or 26-39°C) as a factor. We were unable to perform
512 direct comparisons between wMel and wAlbB strains due to using different markers for
513 each strain; we therefore excluded wMel from the overall analysis. We ran separate GLMs
514 for each wAlbB variant due to significant two-way interactions. For quiescent egg viability,
515 hatch proportions differed substantially between wAlbB-infected and uninfected
516 populations. We therefore ran separate GLMs for wAlbB-infected and uninfected
517 populations, with egg storage duration included as an additional factor for this trait.
518 Replicate population (nested within *Wolbachia* infection status) was included as a random
519 factor due to significant effects of replicate population for this trait. Squared egg storage
520 duration was also included as a factor in the GLM due to the non-linear relationship
521 between egg hatch proportion and storage duration in these populations.

522

523

524 **Multiplex PCR reaction**

525 DNA was extracted from a pool of five female mosquitoes by crushing tissues in 200 µL
526 of STE buffer. Each sample was then treated with 2 µL of Proteinase K (20 mg/mL) at
527 65°C for 30 min followed by a 10 min incubation step at 95°C. Tissue debris were removed
528 by centrifugation for 2 min at 1,000 g and the supernatant was diluted 1/5 in water before
529 PCR. Primer pairs specific of each wAlbB variant were designed to amplify a target gene
530 present in one variant and absent in the other one. Primers were designed on an AAA-
531 family ATPase protein (DEJ70_04410; forward: 5'-ATGTCTGTTCTGCGTCTG-3';

532 reverse: 5'-ATCGTCTTATCCAGCCCAG-3'; 303 bp product) for wAlbB-I and on the
533 phage tail formation protein I for wAlbB-II (WP_015587732.1; forward: 5'-
534 AGAAATACTGCGCTGGGTAA-3'; reverse: 5'-GGATTGCTACATCTAGGCGA-3'; 497 bp
535 product). As a DNA extraction control, primers were also designed to amplify the mosquito
536 18S gene (forward: 5'-CCCAGCTGCTATTACCTTGA -3'; reverse: 5'-
537 TAAGCAGAAGTCAACCACGA-3'; 752 bp product). The three primer pairs were pooled
538 in a multiplex PCR reaction using the Q5 High-Fidelity DNA Polymerase (New England
539 Biolabs) in a 25 µL final volume as follows: 5 µL of buffer, 0.5 of 10 mM dNTPs, 1.25 µL
540 of each 10 µM primer, 0.25 µL of DNA polymerase, 9.75 µL of water and 2 µL of DNA
541 template. The PCR cycle used was: 98°C for 30s, 35 cycles of 10s denaturation at 98°C
542 – 30s of annealing at 64°C – 1 min extension at 72°C, 2 min final extension at 72°C. PCR
543 product were ran on a 1% agarose gel electrophoresis.

544

545 **Data availability**

546 The wAlbB-II draft genome and raw sequencing data have been deposited at the NCBI
547 GenBank database under the BioProject accession PRJNA800254 (assembly:
548 JAKLOR000000000; Illumina reads: SRR17831854-SRR17832810; Oxford Nanopore
549 reads: SRR17832811).

550

551 **Acknowledgments**

552 The study was supported by Wellcome Trust (202888, 108508) to SPS and by the National
553 Health and Medical Research Council (1132412, 1118640 [<https://www.nhmrc.gov.au>]) to

554 AAH, LT and ASF were funded by the MRC (MC_UU_12018/12). The funders had no role
555 in study design, data collection and analysis, decision to publish, or preparation of the
556 manuscript.

557

558 **References**

- 559 1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM,
560 Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint
561 GRW, Simmons CP, Scott TW, Farrar JJ, Hay SI. 2013. The global distribution
562 and burden of dengue. *Nature* 496:504–507.
- 563 2. Ross PA, Callahan AG, Yang Q, Jasper M, Arif MA, Afizah AN, Nazni WA,
564 Hoffmann AA. 2020. An elusive endosymbiont: Does Wolbachia occur naturally in
565 *Aedes aegypti*? *Ecol Evol* 10:1581–1591.
- 566 3. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha
567 BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw
568 EA, van den Hurk AF, Ryan PA, O'Neill SL. 2009. A Wolbachia symbiont in *Aedes*
569 *aegypti* limits infection with dengue, Chikungunya, and Plasmodium. *Cell*
570 139:1268–78.
- 571 4. Bian G, Xu Y, Lu P, Xie Y, Xi Z. 2010. The Endosymbiotic Bacterium Wolbachia
572 Induces Resistance to Dengue Virus in *Aedes aegypti*. *PLOS Pathog* 6:e1000833.
- 573 5. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman
574 CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL,
575 Hoffmann AA. 2011. The wMel Wolbachia strain blocks dengue and invades

576 caged *Aedes aegypti* populations. *Nature* 476:450–3.

577 6. Ant TH, Herd CS, Geoghegan V, Hoffmann AA, Sinkins SP. 2018. The Wolbachia
578 strain wAu provides highly efficient virus transmission blocking in *Aedes aegypti*.
579 *PLOS Pathog* 14:e1006815.

580 7. Geoghegan V, Stainton K, Rainey SM, Ant TH, Dowle AA, Larson T, Hester S,
581 Charles PD, Thomas B, Sinkins SP. 2017. Perturbed cholesterol and vesicular
582 trafficking associated with dengue blocking in Wolbachia-infected *Aedes aegypti*
583 cells. *Nat Commun* 8.

584 8. Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini M V, Golding N,
585 Kamarul GMR, Arif MAK, Thohir H, NurSyamimi H, ZatilAqmar MZ, NurRuqqayah
586 M, NorSyazwani A, Faiz A, Irfan F-RRMN, Rubaaini S, Nuradila N, Nizam NMN,
587 Irwan SM, Endersby-Harshman NM, White VL, Ant TH, Herd CS, Hasnor AH,
588 AbuBakar R, Hapsah DM, Khadijah K, Kamilan D, Lee SC, Paid YM, Fadzilah K,
589 Topek O, Gill BS, Lee HL, Sinkins SP. 2019. Establishment of Wolbachia Strain
590 wAlB in Malaysian Populations of *Aedes aegypti* for Dengue Control. *Curr*
591 *Biol*2019/11/21. 29:4241-4248.e5.

592 9. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi
593 F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG,
594 Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O'Neill SL.
595 2011. Successful establishment of Wolbachia in *Aedes* populations to suppress
596 dengue transmission. *Nature* 476:454–7.

597 10. Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, Phillips BL, Billington K, Axford

598 JK, Montgomery B, Turley AP, O'Neill SL. 2014. Stability of the wMel Wolbachia
599 Infection following Invasion into *Aedes aegypti* Populations. *PLoS Negl Trop Dis*
600 8:e3115.

601 11. Tantowijoyo W, Andari B, Arguni E, Budiwati N, Nurhayati I, Fitriana I, Ernesia I,
602 Daniwijaya EW, Supriyati E, Yusdiana DH, Victorius M, Wardana DS, Ardiansyah
603 H, Ahmad RA, Ryan PA, Simmons CP, Hoffmann AA, Rancès E, Turley AP,
604 Johnson P, Utarini A, O'Neill SL. 2020. Stable establishment of wMel Wolbachia
605 in *Aedes aegypti* populations in Yogyakarta, Indonesia. *PLoS Negl Trop Dis*
606 14:e0008157.

607 12. Pinto SB, Riback TIS, Sylvestre G, Costa G, Peixoto J, Dias FBS, Tanamas SK,
608 Simmons CP, Dufault SM, Ryan PA, O'Neill SL, Muzzi FC, Cutcher S,
609 Montgomery J, Green BR, Smithyman R, Eppinghaus A, Saraceni V, Durovni B,
610 Anders KL, Moreira LA. 2021. Effectiveness of Wolbachia-infected mosquito
611 deployments in reducing the incidence of dengue and other *Aedes*-borne
612 diseases in Niterói, Brazil: A quasi-experimental study. *PLoS Negl Trop Dis*
613 15:e0009556.

614 13. Utarini A, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E, Ansari MR, Supriyati
615 E, Wardana DS, Meitika Y, Ernesia I, Nurhayati I, Prabowo E, Andari B, Green
616 BR, Hodgson L, Cutcher Z, Rancès E, Ryan PA, O'Neill SL, Dufault SM, Tanamas
617 SK, Jewell NP, Anders KL, Simmons CP. 2021. Efficacy of Wolbachia-Infected
618 Mosquito Deployments for the Control of Dengue. *N Engl J Med* 384:2177–2186.

619 14. Gesto JSM, Ribeiro GS, Rocha MN, Dias FBS, Peixoto J, Carvalho FD, Pereira

620 TN, Moreira LA. 2021. Reduced competence to arboviruses following the
621 sustainable invasion of Wolbachia into native *Aedes aegypti* from Southeastern
622 Brazil. *Sci Rep* 11:10039.

623 15. Ulrich JN, Beier JC, Devine GJ, Hugo LE. 2016. Heat Sensitivity of wMel
624 Wolbachia during *Aedes aegypti* Development. *PLoS Negl Trop Dis* 10:e0004873.

625 16. Mancini MV, Ant TH, Herd CS, Martinez J, Murdoch SM, Gingell DD, Mararo E,
626 Johnson PCD, Sinkins SP. 2021. High Temperature Cycles Result in Maternal
627 Transmission and Dengue Infection Differences Between Wolbachia Strains in
628 *Aedes aegypti*. *MBio* 12:1–13.

629 17. Ross PA, Wiwatanaratanaabutr I, Axford JK, White VL, Endersby-Harshman NM,
630 Hoffmann AA. 2017. Wolbachia Infections in *Aedes aegypti* Differ Markedly in
631 Their Response to Cyclical Heat Stress. *PLoS Pathog* 13:1–17.

632 18. Ahmad NA, Mancini MV, Ant TH, Martinez J, Kamarul GMR, Nazni WA, Hoffmann
633 AA, Sinkins SP. 2021. Wolbachia strain wAlbB maintains high density and dengue
634 inhibition following introduction into a field population of *Aedes aegypti*. *Philos
635 Trans R Soc Lond B Biol Sci* 376:20190809.

636 19. Lau MJ, Ross PA, Hoffmann AA. 2021. Infertility and fecundity loss of wolbachia-
637 infected *aedes aegypti* hatched from quiescent eggs is expected to alter invasion
638 dynamics. *PLoS Negl Trop Dis* 15:1–16.

639 20. Hancock PA, Sinkins SP, Godfray HCJ. 2011. Population Dynamic Models of the
640 Spread of Wolbachia. *Am Nat* 177:323–333.

641 21. Hancock PA, Ritchie SA, Koenraadt CJM, Scott TW, Hoffmann AA, Godfray HCJ.

642 2019. Predicting the spatial dynamics of Wolbachia infections in *Aedes aegypti*
643 arbovirus vector populations in heterogeneous landscapes. *J Appl Ecol* 56:1674–
644 1686.

645 22. Turelli M, Barton NH. 2017. Deploying dengue-suppressing Wolbachia : Robust
646 models predict slow but effective spatial spread in *Aedes aegypti*. *Theor Popul
647 Biol*2017/04/12. 115:45–60.

648 23. Ruang-areerate T, Kittayapong P. 2006. Wolbachia transinfection in *Aedes
649 aegypti*: A potential gene driver of dengue vectors. *Proc Natl Acad Sci
650* 103:12534–12539.

651 24. Xi Z, Khoo CCH, Dobson SL. 2005. Wolbachia establishment and invasion in an
652 *Aedes aegypti* laboratory population. *Science (80-)* 310:326–328.

653 25. Mains JW, Kelly PH, Dobson KL, Petrie WD, Dobson SL. 2019. Localized Control
654 of *Aedes aegypti* (Diptera: Culicidae) in Miami, FL, via Inundative Releases of
655 Wolbachia-Infected Male Mosquitoes. *J Med Entomol* 56:1296–1303.

656 26. Bull JJ, Turelli M. 2013. Wolbachia versus dengue: Evolutionary forecasts. *Evol
657 Med Public Heal* 2013:197–201.

658 27. Ritchie SA, Townsend M, Paton CJ, Callahan AG, Hoffmann AA. 2015.
659 Application of wMelPop Wolbachia Strain to Crash Local Populations of *Aedes
660 aegypti*. *PLoS Negl Trop Dis* 9:e0003930.

661 28. Martinez J, Klasson L, Welch JJ, Jiggins FM. 2020. Life and death of selfish
662 genes: comparative genomics reveals the dynamic evolution of cytoplasmic
663 incompatibility. *Mol Biol Evol* <https://doi.org/10.1093/molbev/msaa209>.

664 29. Lepage DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JI, Shropshire JD,
665 Layton EM, Funkhouser-Jones LJ, Beckmann JF, Bordenstein SR. 2017.
666 Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic
667 incompatibility. *Nature* 9:243–247.

668 30. Chrostek E, Marialva MSP, Esteves SS, Weinert LA, Martinez J, Jiggins FM,
669 Teixeira L. 2013. Wolbachia Variants Induce Differential Protection to Viruses in
670 *Drosophila melanogaster*: A Phenotypic and Phylogenomic Analysis. *PLoS Genet*
671 9:e1003896.

672 31. Chrostek E, Teixeira L. 2015. Mutualism Breakdown by Amplification of
673 Wolbachia Genes. *PLOS Biol* 13:e1002065.

674 32. Duarte EH, Carvalho A, López-Madrigal S, Costa J, Teixeira L. 2021. Forward
675 genetics in Wolbachia: Regulation of Wolbachia proliferation by the amplification
676 and deletion of an addictive genomic island *PLoS Genetics*.

677 33. Ross PA, Gu X, Robinson KL, Yang Q, Cottingham E, Zhang Y, Yeap HL, Xu X,
678 Endersby-Harshman NM, Hoffmann AA. 2021. A w AlbB Wolbachia
679 Transinfection Displays Stable Phenotypic Effects across Divergent *Aedes*
680 *aegypti* Mosquito Backgrounds. *Appl Environ Microbiol* 87:e01264-21.

681 34. Paget MS. 2015. Bacterial Sigma Factors and Anti-Sigma Factors: Structure,
682 Function and Distribution. *Biomolecules* 5:1245–1265.

683 35. Qayyum MZ, Dey D, Sen R. 2016. Transcription Elongation Factor NusA Is a
684 General Antagonist of Rho-dependent Termination in *Escherichia coli*. *J Biol*
685 *Chem* 2016/02/12. 291:8090–8108.

686 36. Bechhofer DH, Deutscher MP. 2019. Bacterial ribonucleases and their roles in
687 RNA metabolism. *Crit Rev Biochem Mol Biol* 54:242–300.

688 37. Gibbs MR, Fredrick K. 2018. Roles of elusive translational GTPases come to light
689 and inform on the process of ribosome biogenesis in bacteria. *Mol*
690 *Microbiol* 2017/12/29. 107:445–454.

691 38. Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. 2019. Cell
692 Wall Hydrolases in Bacteria: Insight on the Diversity of Cell Wall Amidases,
693 Glycosidases and Peptidases Toward Peptidoglycan. *Front Microbiol*.

694 39. Benson TE, Filman DJ, Walsh CT, Hogle JM. 1995. An enzyme-substrate
695 complex involved in bacterial cell wall biosynthesis. *Nat Struct Biol* 2:644–653.

696 40. Thorup CM, Hanne I, Francis M, Kirsten J, M. WJ, Lone B. 2007. Contribution of
697 Conserved ATP-Dependent Proteases of *Campylobacter jejuni* to Stress
698 Tolerance and Virulence. *Appl Environ Microbiol* 73:7803–7813.

699 41. Clausen T, Southan C, Ehrmann M. 2002. The HtrA Family of Proteases:
700 Implications for Protein Composition and Cell Fate. *Mol Cell* 10:443–455.

701 42. Zhou W, Rousset F, O'Neill S. 1998. Phylogeny and PCR-based classification of
702 *Wolbachia* strains using *wsp* gene sequences. *Proc R Soc B-Biological Sci*
703 265:509–515.

704 43. Armbruster P, Damsky WEJ, Giordano R, Birungi J, Munstermann LE, Conn JE.
705 2003. Infection of New- and Old-World *Aedes albopictus* (Diptera: Culicidae) by
706 the intracellular parasite *Wolbachia*: implications for host mitochondrial DNA
707 evolution. *J Med Entomol* 40:356–360.

708 44. Hu Y, Xi Z, Liu X, Wang J, Guo Y, Ren D, Wu H, Wang X, Chen B, Liu Q. 2020.
709 Identification and molecular characterization of Wolbachia strains in natural
710 populations of *Aedes albopictus* in China. *Parasit Vectors* 13:28.

711 45. Richardson MF, Weinert LA, Welch JJ, Linheiro RS, Magwire MM, Jiggins FM,
712 Bergman CM. 2012. Population genomics of the Wolbachia endosymbiont in
713 *Drosophila melanogaster*. *PLoS Genet* 8:e1003129.

714 46. Turelli M, Cooper BS, Richardson KM, Chiu JC, Conner WR, Hoffmann AA, Turelli
715 M, Cooper BS, Richardson KM, Ginsberg PS, Peckenpaugh B. 2018. Rapid
716 Global Spread of wRi-like Wolbachia across Multiple *Drosophila* Report Rapid
717 Global Spread of wRi-like Wolbachia across Multiple *Drosophila*. *Curr Biol*
718 28:963–971.

719 47. Wolfe TM, Bruzzese DJ, Klasson L, Correto E, Lečić S, Stauffer C, Feder JL,
720 Schuler H. 2021. Comparative genome sequencing reveals insights into the
721 dynamics of Wolbachia in native and invasive cherry fruit flies. *Mol Ecol* 30:6259–
722 6272.

723 48. Goubert C, Minard G, Vieira C, Boulesteix M. 2016. Population genetics of the
724 Asian tiger mosquito *Aedes albopictus*, an invasive vector of human diseases.
725 *Heredity* 117:125–134.

726 49. Bordenstein SR, Bordenstein SR. 2011. Temperature affects the tripartite
727 interactions between bacteriophage WO, Wolbachia, and cytoplasmic
728 incompatibility. *PLoS One* 6.

729 50. Siozios S, Ioannidis P, Klasson L, Andersson SGE, Braig HR, Bourtzis K. 2013.

730 The diversity and evolution of Wolbachia ankyrin repeat domain genes. PLoS One
731 8:e55390.

732 51. Lindsey ARI. 2020. Sensing , Signaling , and Secretion : A Review and Analysis of
733 Systems for Regulating Host Interaction in Wolbachia. *Genes (Basel)* 11:813.

734 52. Duplouy A, Iturbe-Ormaetxe I, Beatson SA, Szubert JM, Brownlie JC, McMeniman
735 CJ, McGraw EA, Hurst GDD, Charlat S, O'Neill SL, Woolfit M. 2013. Draft
736 genome sequence of the male-killing Wolbachia strain wBol1 reveals recent
737 horizontal gene transfers from diverse sources. *BMC Genomics* 14.

738 53. du Plessis DJF, Nouwen N, Driessen AJM. 2011. The Sec translocase. *Biochim
739 Biophys Acta - Biomembr* 1808:851–865.

740 54. Hague MTJ, Shropshire JD, Caldwell CN, Statz JP, Stanek KA, Conner WR,
741 Cooper BS. 2021. Temperature effects on cellular host-microbe interactions
742 explain continent-wide endosymbiont prevalence. *Curr Biol* 32:1–11.

743 55. Gu X, Ross PA, Rodriguez-Andres J, Robinson KL, Yang Q, Lau M-J, Hoffmann
744 AA. 2022. A wMel Wolbachia variant in *Aedes aegypti* from field-collected
745 *Drosophila melanogaster* with increased phenotypic stability under heat stress.
746 bioRxiv 2022.01.02.474744.

747 56. Baião GC, Janice J, Galinou M, Klasson L. 2021. Comparative genomics reveals
748 factors associated with phenotypic expression of Wolbachia . *Genome Biol Evol*
749 13:1–20.

750 57. Dainty KR, Hawkey J, Judd LM, Pacidônio EC, Duyvestyn JM, Gonçalves DS, Lin
751 SY, O'donnell TB, O'neill SL, Simmons CP, Holt KE, Flores HA. 2021. Wmel

752 wolbachia genome remains stable after 7 years in australian aedes aegypti field
753 populations. *Microb Genomics* 7:000641.

754 58. Huang B, Yang Q, Hoffmann AA, Ritchie SA, van den Hurk AF, Warrilow D. 2020.
755 Wolbachia Genome Stability and mtDNA Variants in Aedes aegypti Field
756 Populations Eight Years after Release. *iScience* 23:101572.

757 59. Ross PA, Axford JK, Callahan AG, Richardson KM, Hoffmann AA. 2020.
758 Persistent deleterious effects of a deleterious Wolbachia infection. *PLoS Negl*
759 Trop Dis

760 60. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina
761 sequence data. *Bioinformatics* 30:2114–2120.

762 61. Wick R. 2017. PorechopGitHub repository. GitHub.

763 62. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat*
764 Methods

765 63. Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences.
766 *Bioinformatics* 34:3094–3100.

767 64. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: Resolving bacterial
768 genome assemblies from short and long sequencing reads. *PLOS Comput Biol*
769 13:e1005595.

770 65. Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization
771 of de novo genome assemblies. *Bioinformatics* 31:3350–3352.

772 66. Sinha A, Li Z, Sun L, Carlow CKS, Cordaux R. 2019. Complete Genome

773 Sequence of the Wolbachia wAlbB Endosymbiont of *Aedes albopictus*. *Genome*
774 *Biol Evol* 11:706–720.

775 67. Sinkins SP, Braig HR, O'Neill SL. 1995. Wolbachia superinfections and the
776 expression of cytoplasmic incompatibility. *Proc R Soc B Biol Sci* 261:325–330.

777 68. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*
778 30:2068–2069.

779 69. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M,
780 Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan
781 genome analysis. *Bioinformatics* 31:3691–3693.

782 70. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. 2012. Artemis: an
783 integrated platform for visualization and analysis of high-throughput sequence-
784 based experimental data. *Bioinformatics* 28:464—469.

785 71. Bordenstein SR, Bordenstein SR. 2021. The Most Widespread Phage in Animals:
786 Genomics and Taxonomic Classification of Phage WO. *bioRxiv*
787 2021.11.04.467296.

788 72. Guy L, Roat Kultima J, Andersson SGE. 2010. genoPlotR: comparative gene and
789 genome visualization in R. *Bioinformatics* 26:2334–2335.

790 73. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-
791 analysis of large phylogenies. *Bioinformatics* 30:1312–1313.

792 74. Lee SF, White VL, Weeks AR, Hoffmann AA, Endersby NM. 2012. High-
793 throughput PCR assays to monitor Wolbachia infection in the dengue mosquito

794 (Aedes aegypti) and *Drosophila simulans*. *Appl Environ Microbiol* 78:4740–4743.

795 75. Ross PA, Ritchie SA, Axford JK, Hoffmann AA. 2019. Loss of cytoplasmic
796 incompatibility in Wolbachia-infected *Aedes aegypti* under field conditions. *PLoS
797 Negl Trop Dis* 13:e0007357.

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813 **Tables**

814 **Table 1. Genome features of sequenced wAlbB genomes**

	wAlbB-II	wAlbB-I	wAlbB-FL2016	wAlbB-HN2016
Genbank accession	JAKLOR0000000000	CP031221.1	CP041923.1	CP041924.1
Geographical origin	Indonesia	Texas	Florida	Hainan
Assembly size (bp)	1,450,135	1,484,007	1,482,279	1,483,853
Contigs (>1000 bp)	16 (9)	1	1	1
GC content (%)	34.3	34.4	34.4	34.4
gene	1,365	1,434	1,426	1,428
CDS	1,324	1,393	1,385	1,387
rRNA	3	3	3	3
tRNA	34	34	34	34
BUSCO complete ^a	328	328	326	328
BUSCO fragment ^a	9	9	11	9
BUSCO missing ^a	95	95	95	95

815 ^aThe BUSCO analysis was run against the alphaproteobacteria_odb10 database.

816

817

818

819

820

821

822

823 **Table 2. Presence/absence of WO phage core genes in prophage regions.** Gene is
 824 either present (+) or absent (-). Differences between variants are highlighted in grey. *one
 825 copy of the phospholipase D is located outside prophage regions.

Module	Gene annotation (locus tag in <i>w</i> AlbB-I)	<i>w</i> AlbB-I (Texas, Florida, Hainan)	<i>w</i> AlbB-II
Head	Ankyrin repeat protein (DEJ70_04885)	+	+
	Terminase large subunit (DEJ70_04880)	+	+
	Putative terminase small subunit (DEJ70_04890)	+	+
	gpW	-	-
	Portal	-	-
	Minor capsid C	-	-
	Head decoration protein D	-	-
Connector / baseplate	Major capsid E (DEJ70_06645)	+	+
	gpFII (DEJ70_06650)	+	+
	minor tail protein Z	-	-
	Collar	-	-
	gpV	-	-
	PAAR	-	-
	gpW	-	+
Tail	gpJ	-	+
	gpl	-	+
	Tail sheath (DEJ70_05870-DEJ70_05880)	+	+
	Tail tube (DEJ70_05865)	+	+
	gpG/GT (DEJ70_05855 / unannotated downstream ORF)	+	+
	Tape measure (DEJ70_05850)	+	+
	gpU (DEJ70_05845)	+	+
Tail fiber	gpX (DEJ70_05840)	+	+
	Late control D (DEJ70_05835)	+	+
	Baseplate Wedge 3 tail Fiber Network	-	-
	Receptor-binding protein (DEJ70_05895-DEJ70_05900)	+	-
	Tail fiber assembly chaperone (DEJ70_05890)	+	-
	Receptor-binding protein or tail fiber (DEJ70_05885)	+	+
	Tail fiber assembly chaperone	-	-
Recombinase	Recombinase (DEJ70_04945)	+	++
Replication and repair	Holliday junction resolvase (DEJ70_04895)	+	+
	AAA family ATPase (DEJ70_04910)	+	+
	AAA family ATPase (DEJ70_04920)	+	+
	RNA_polymerase_sigma_factor (DEJ70_04905)	+	+
	DNA primase (DEJ70_04925)	+	+
Putative lysis	patatin-like phospholipase (DEJ70_06735)	+	+
	phospholipase D (DEJ70_06740, DEJ70_06035)	++*	++*

826

827

828 **Table 3. Summary of the SNP analysis.**

	Genome used as reference for SNP calling			
Illumina reads	wAlbB-II	wAlbB-I	wAlbB-FL2016	wAlbB-HN2016
wAlbB-II	5	177	793^a	318^a
wAlbB-MC	13	195	801^a	343^a
wAlbB-I	201	0	930^a	361^a

829 ^aA high proportion of the SNPs against wAlbB-FL2016 and -HN2016 show an unusual
830 distribution and may be sequencing errors in the reference genome (Table S2).

831

832

833

834

835

836

837

838

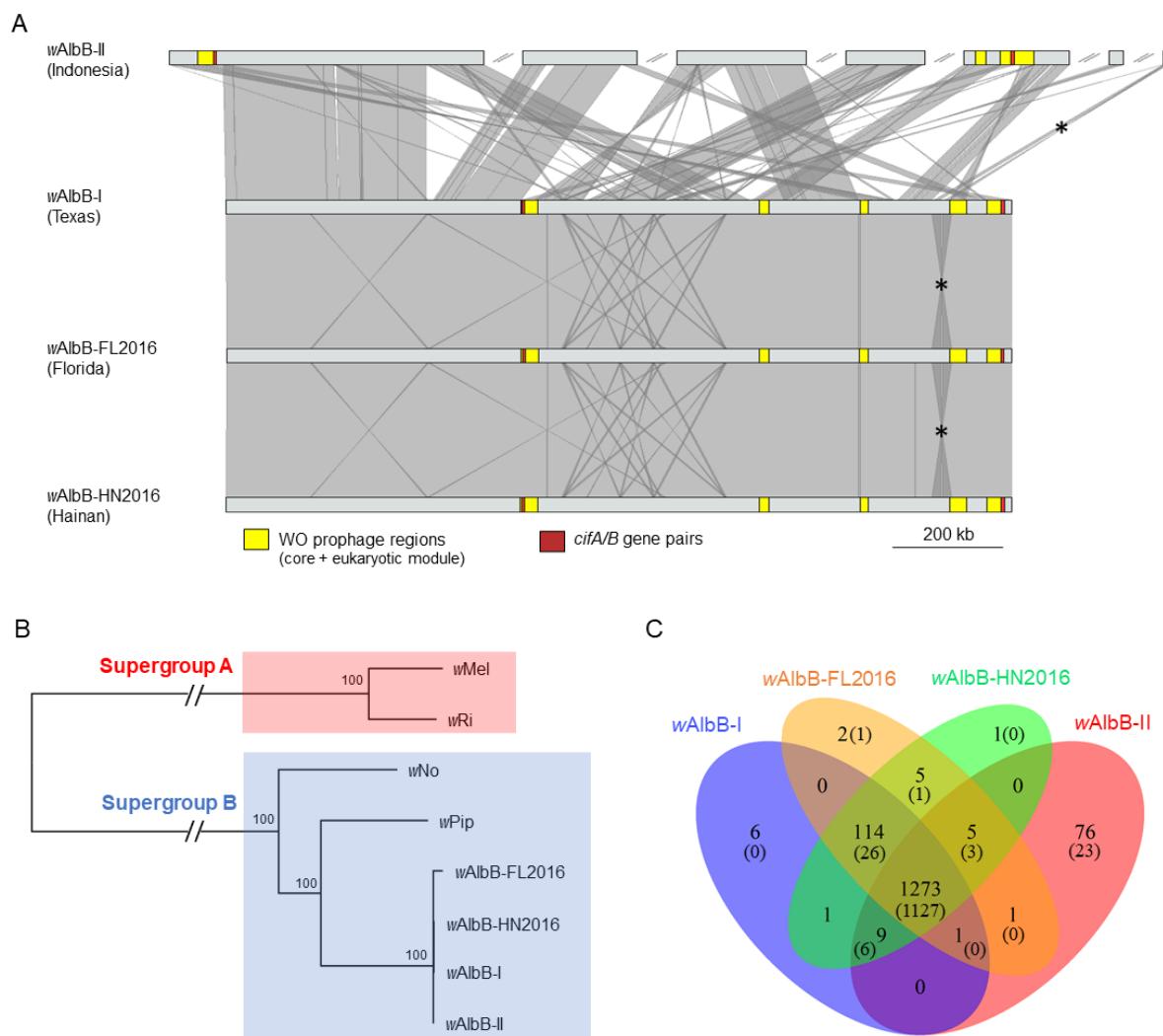
839

840

841

842

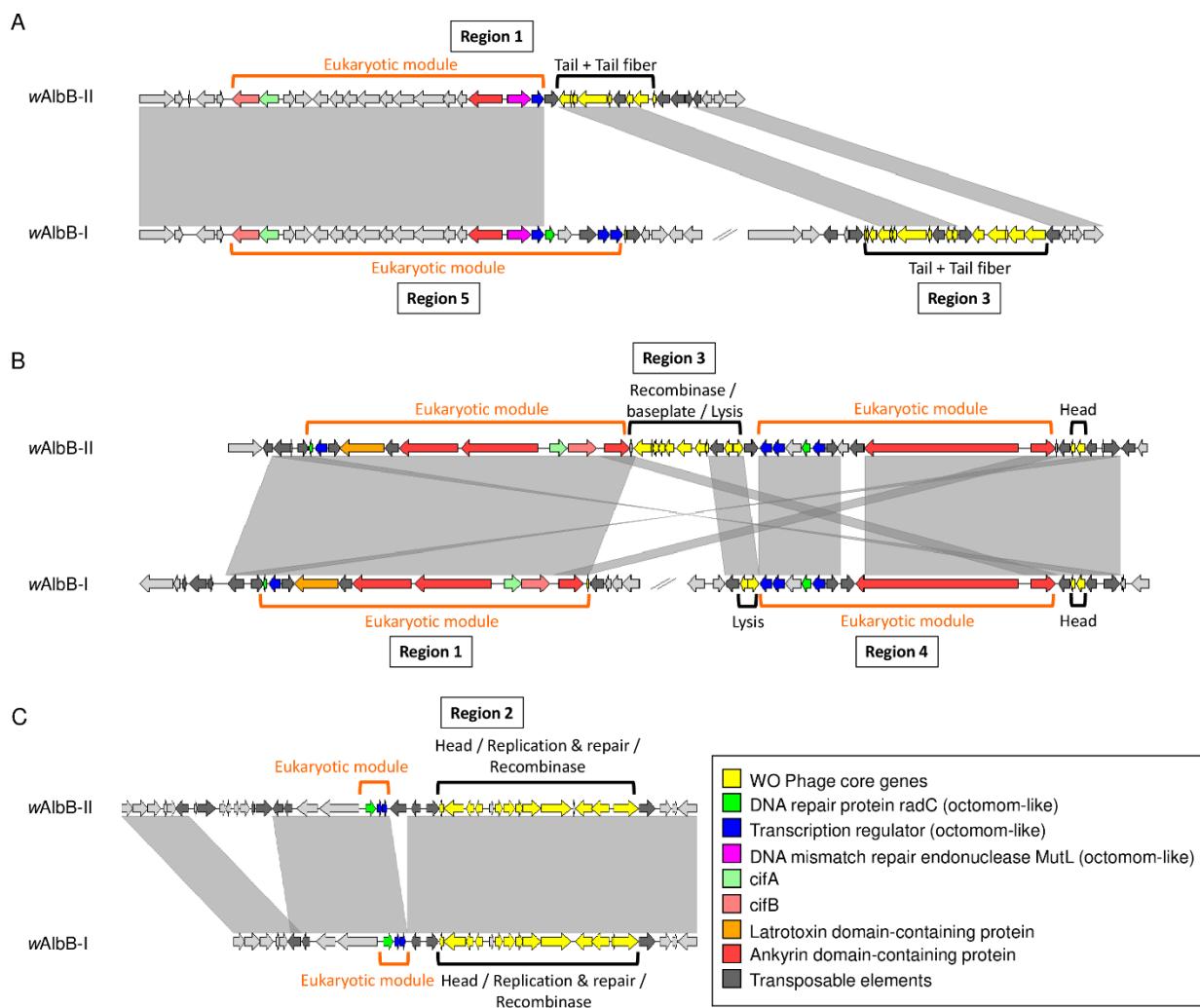
843


844

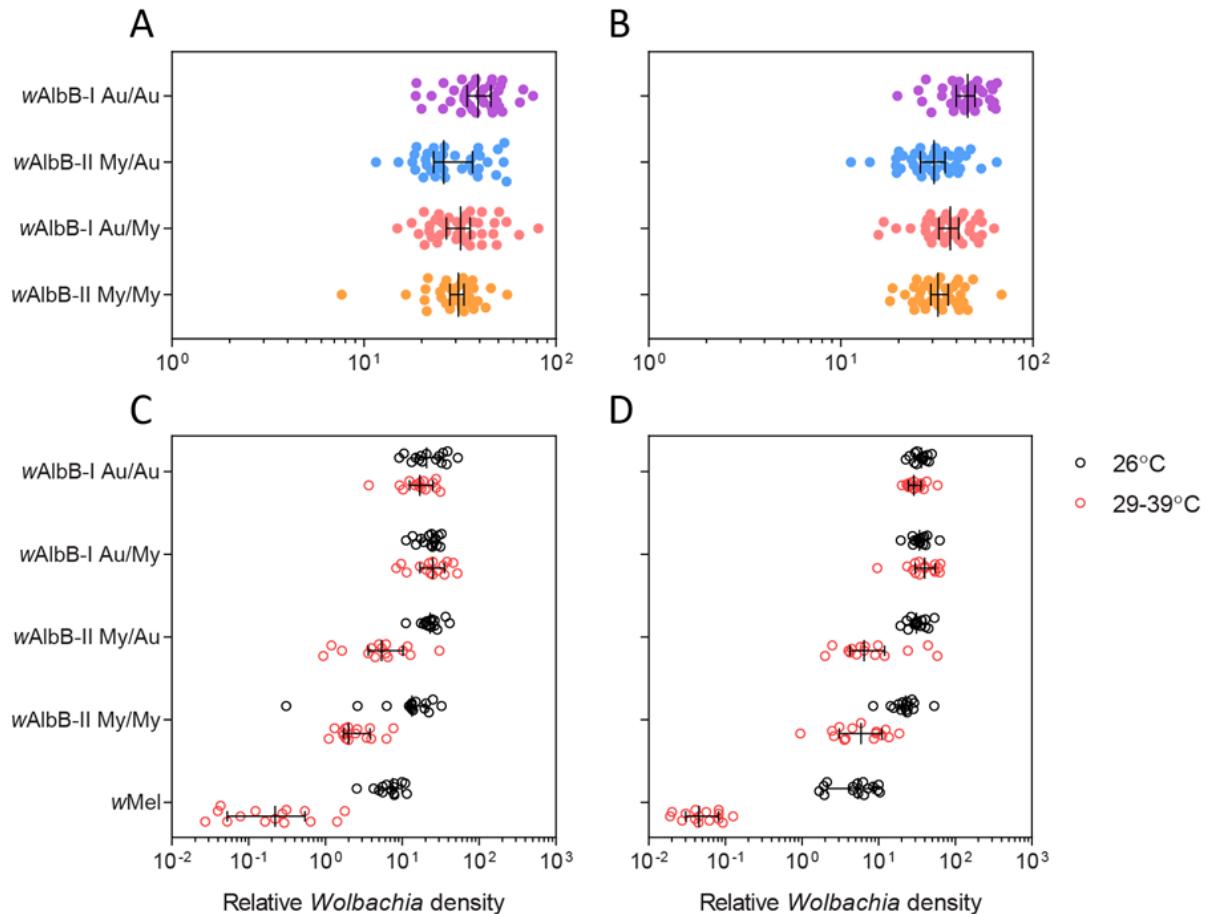
845

846

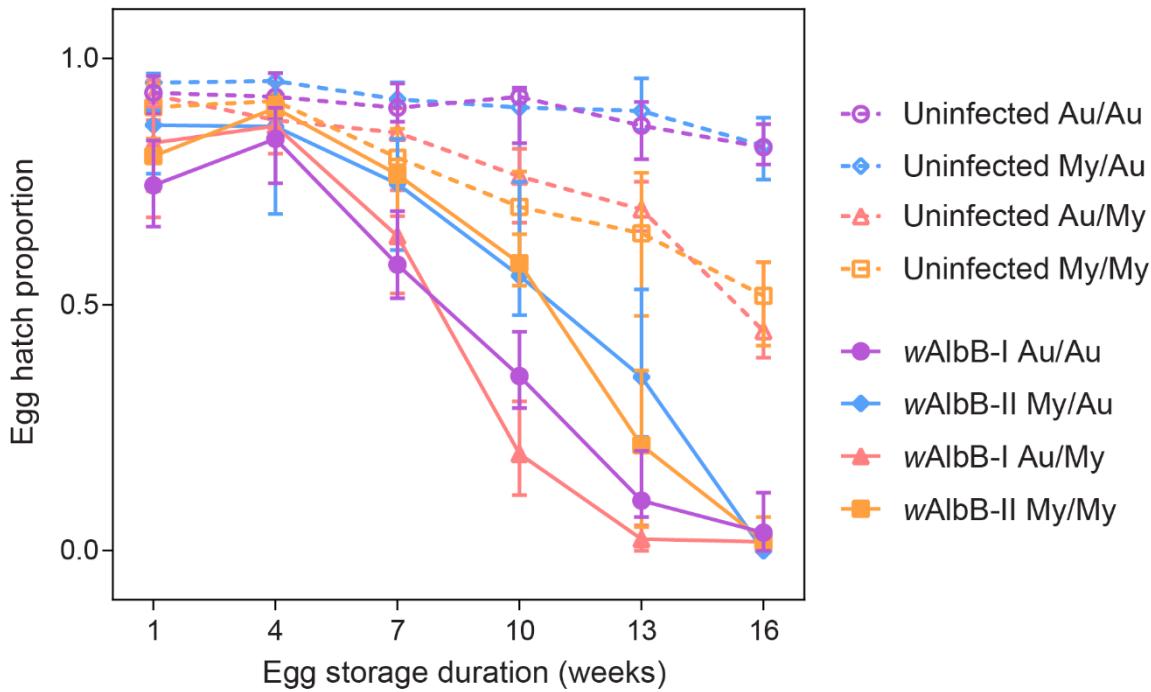
847


848 **Figures**

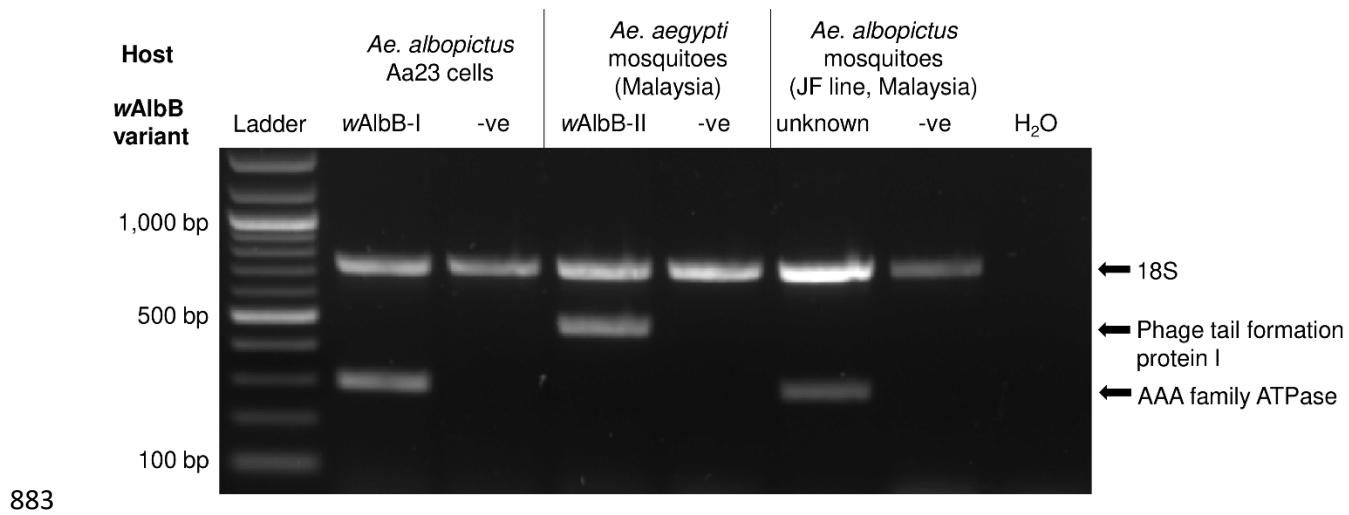
849
850 **Figure 1. Comparative analysis and phylogeny of wAlbB genomes. (A)** genome-wide
851 synteny. Grey areas between genomes indicate similarities based on a megablastn
852 comparison. * indicates a seven-gene region that is duplicated in wAlbB-I, -FL2016 and -
853 HN2016. Blast hits and contigs < 3,000 bp were excluded from the figure and some
854 contigs were reoriented to improve visualization. (B) Maximum likelihood phylogeny using
855 a concatenated alignment of 614 orthologous genes. Node labels are bootstrap supports
856 calculated from 1,000 replications. (C) Venn diagram showing numbers of orthologs


857 shared between wAlbB genomes (numbers in parentheses exclude transposable
858 elements).

859


860

861 **Figure 2. Synteny of WO prophage regions between wAlbB-I and wAlbB-II**
862 **genomes.** Grey areas indicate similarities based on megablastn comparisons. Blast hits
863 < 2,000 bp were excluded from the figure to improve visualization. Panels depict
864 prophage region 1 (A), region 2 (B) and region 3 (C) in the wAlbB-II assembly.


865

866 **Figure 3. Differences in density between wAlbB variants.** Female (A) and male (B)
867 *Wolbachia* density in reciprocally-backcrossed *Aedes aegypti* populations. Populations
868 have different combinations of *Wolbachia* infection type/mitochondrial haplotype (wAlbB-
869 I and Au or wAlbB-II and My) and nuclear background (Au or My). Data from two replicate
870 populations were pooled for visualization. *Wolbachia* density in (C) females and (D) males
871 following exposure to cyclical heat stress during the egg stage. Eggs were exposed to
872 cyclical temperatures of 29-39°C for 7 d (red circles) or held at 26°C (black circles). Each
873 point represents the relative density for an individual averaged across 2-3 technical
874 replicates. Medians and 95% confidence intervals are shown in black lines. Data for
875 wAlbB-I and wMel have also been included from (33).

876

877 **Figure 4. Quiescent egg viability of reciprocally-backcrossed *Aedes aegypti***
878 **populations.** Populations have different combinations of *Wolbachia* infection type
879 (wAlbB-I, wAlbB-II or uninfected), mitochondrial haplotype (Au or My) and nuclear
880 background (Au or My). Data from two replicate populations were pooled for visualization.
881 Symbols show median egg hatch proportions while error bars show 95% confidence
882 intervals. Data for Au/Au and Au/My populations have also been included from (33).

897 **Supplemental Material**

898

899 **Figure S1. Sequencing depth plots.** Mean sequencing depth per 500 bp window of
900 Illumina reads mapped onto (A) *wAlbB-II*, (B) *wAlbB-I*, (C) *wAlbB-FL2016* and (D)
901 *wAlbB-HN2016* gemomes.

902

903 **Figure S2. Maximum likelihood phylogenies of horizontally-transferred**
904 **translocase subunit SecA genes.** (A) WP_019236968.1 and (B) WP_019236969.1
905 amino acids were aligned with their homologues and conserved sites (Gblocks) were
906 used to build the phylogenies with PhyML. Node labels are bootstrap supports
907 calculated from 100 replications.

908

909 **Table S1. List of genes being absent in at least one *wAlbB* genome.**

910 **Table S2. List of SNPs between *wAlbB* genomes.**

911 **Table S3. Statistical analysis of differences in density between *wAlbB* variants.**

912 **Table S4. Statistical analysis of *wAlbB* variant densities under heat stress.**

913 **Table S5. Statistical of quiescent egg viability.**

914