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ABSTRACT

The Protein Kinase Ontology (ProKinO) is an integrated knowledge graph that conceptualizes
the complex relationships connecting protein kinase sequence, structure, function, and disease
in a human and machine-readable format. Here we extend the scope of ProKinO as a discovery
tool by including new classes and relationships capturing information on kinase ligand binding
sites, expression patterns, and functional features, and demonstrate its application in
uncovering new knowledge regarding understudied members of the protein kinase family.
Specifically, through graph mining and aggregate SPARQL queries, we identify the p21-
activated protein kinase 5 (PAK5) as one of the most frequently mutated dark kinase in human
cancers with abnormal expression in multiple cancers, including an unappreciated role in acute
myeloid leukemia. We identify recurrent oncogenic mutations in the PAK5 activation loop
predicted to alter substrate binding and phosphorylation and identify common ligand/drug
binding residues in PAK family kinases, highlighting the potential application of ProKinO in drug
discovery. The updated ontology browser and a web component, ProtVista, which allows
interactive mining of kinase sequence annotations in 3D structures and Alphafold models,
provide a valuable resource for the signaling community. The updated ProKinO database is

accessible at http://prokino.uga.edu/browser/.
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INTRODUCTION

The protein kinase gene family with nearly 535 human members (collectively called the human
kinome) is one of the biomedically important gene families with direct associations with many
human diseases such as cancer, diabetes, Alzheimer’s, Parkinson’s, and inflammatory
disorders. They make up one-third of target discovery research in the pharmaceutical industry,
with over 50 FDA-approved drugs developed since 2001 (1,2). However, despite decades of
research on the protein kinase family, our current knowledge of the kinome is skewed towards a
subset of well-studied kinases with nearly one third of the kinome largely understudied. These
understudied kinases, collectively referred to as the “dark” kinome by the Knowledge
Management Center (KMC) (3) within the Illuminating the Druggable Genome (IDG) consortium,
constitute both active kinases and inactive pseudokinases, which lack one or more of the active
site residues, but perform important scaffolding and regulatory roles in signaling pathways (4-7)
and are druggable (8). Incomplete knowledge of the structure, function, and regulation of these
understudied kinases and pseudokinases presents a major bottleneck for drug discovery efforts.
While multiple initiatives are beginning to generate essential tools and resources to characterize
dark kinases, integrative mining of these datasets is necessary to develop new testable
hypotheses on dark kinase functions.
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Figure 1. The ProKinO architecture and work-flow. Left panel shows a subset of curated data sources
used in ontology population. The middle panel shows a schematic of the ontology schema with classes
(boxes) and relationships (lines) connecting the classes. The right panel shows applications for ontology

browsing and navigation.

Integrative mining of protein kinases data, however, is a challenge because of the diverse and

disparate nature of protein kinase data sources and formats. Information on the structural and
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functional aspects of dark kinases, for example, is scattered in the literature posing unique
challenges for researchers interested in formulating routine queries such as “disease mutations
mapping to conserved structural and functional regions of the kinome” or “post-translational
modifications (PTMs) in the activation loop of dark kinases.” Formulating such aggregate
gueries requires researchers to go through the often time-consuming and error-prone process of
collating information from various data sources through customized computer programs, which
results in duplication of efforts across laboratories, and does not scale well with the growing
complexity and diversity of protein kinase data. For these reasons, the IDG consortium has
developed a unified resource, Pharos, for collating diverse forms of information on druggable
proteins, including protein kinases (3,9,10). A focused dark kinase knowledgebase has also
been developed to make experimental data available on dark kinases to the broader research
community (11,12). While these unified resources provide a wider range of valuable information
on druggable proteins, they offer limited data analytics capabilities in terms of mining sequence
and structural data, and do not conceptualize the detailed structural and functional knowledge of
protein kinases in ways protein kinase researchers use and understand. Thus, to accelerate the
biochemical characterization of understudied dark kinases, a semantically meaningful and
mineable representation of the kinase knowledge base is needed (Figure 1).

To semantically represent protein kinase data in ways protein kinase researchers use and
understand, we previously reported the development of a focused protein kinase ontology,
ProKinO (13-15), which integrates and conceptualizes diverse forms of protein kinase data in
computer- and human-readable format (Figure 2). The ontology is instantiated with curated
data from internal and external sources and enables aggregate queries linking diverse forms of
data in one place. ProKinO enables the generation of new knowledge regarding kinases and
pathways altered in various cancer types, and new testable hypotheses regarding the structural
and functional impact of disease mutations (13,15-20,21 ,22-32). For example, through iterative
ProKinO queries and follow-up experimental studies, we identified oncogenic mutations
associated with abnormal protein kinase activation and drug sensitivity (13,16,19,21,33-35). We
have also employed federated queries linking ProKinO with other widely used ontologies and
resources such as the Protein Ontology (PRO), neXtProt, Reactome, and the Mouse Genome
Informatics (MGI) to prioritize understudied dark kinases for functional studies and generate

testable hypotheses regarding post-translational modification and cancer mutations (36).
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Figure 2. Subset of the updated ProKinO schema with new classes and relationships. The full schema

can be accessed at http://prokino.uga.edu/. New classes are colored in green and pre-existing classes

are colored in yellow. Red arrows indicate new relationships introduced to connect the new classes.

While our preliminary studies have demonstrated the utility of ProKinO in hypothesis generation
and knowledge discovery, to fully realize the impact of ProKinO in drug discovery and dark
kinome mining, the ontology, and the associated analytics tools need to be further developed to
expand its scope and usability. For example, mutations at specific functional regions of the
protein kinase domain, such as the gatekeeper and activation segments, are known to impact
drug binding efficacies (37,38). Likewise, kinase mRNA expression profiles strongly correlate
with drug response (39-42). Thus, integrative mining of disease mutations with drug sensitivity
profiles and expression patterns can provide new hypotheses/data for the development and
administration of combinatorial drugs where multiple mutated kinases in distinct pathways can
be targeted for drug repurposing (43,44), as demonstrated by the repurposing of Gleevec for

targeting c-kit kinase in Gastrointestinal tumors (45).

Furthermore, the recent generation of structural models of various dark kinases using AlphaFold
(46) provides a new framework for generating new hypotheses by interactive mining and
visualization of sequence annotations in the context of 3D models. However, the lack of

interactive visualization tools to overlay sequence and functional annotations in 3D structural
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models presents a bottleneck in the effective use of AlphaFold models for function prediction.
To address this and other challenges described above related to dark kinase mining and
annotation, we have expanded ProKinO by including kinase expression data, as well as a
variety of data related to ligand-motif interaction, and ligand response prediction (47). We
demonstrate the application of these new tools in knowledge discovery by identifying mutational
hotspots in the understudied p21 activated protein kinase 5. We provide several example
SPARQL queries for ontology mining and hypotheses generation. We have also significantly
revamped the ProKinO browser and included new visualization tools for interactive mining of
sequence annotations in the context of experimentally determined 3D structures and AlphaFold
models. The updated ontology and browser provide a valuable resource for mining, visualizing

and annotating the dark kinome and pseudokinome.

MATERIALS AND METHODS

Data Sources

The ProKinO ontology includes data obtained from our own sources and from various external
sources. For several years, the external sources included KinBase, UniProt, COSMIC,
Reactome, and PDB. We described and published the process of designing and building the
ontology, retrieving the relevant data, and populating it with a vast amount of kinase-related
data in (15,16). Here, we describe the recent enhancements and additions to ProKinO, focusing
on using the evolutionary and functional context of well-studied kinases to annotate and
generate testable hypotheses on understudied dark kinasesIn a separate, significant project, we
have identified and classified nearly 30,000 pseudokinases spanning over 1,300 organisms
(48). The schematic representation of the classification of kinases into groups, families and
subfamilies was already in place (49,50). Consequently, the addition of the pseudokinases and
their classification was relatively simple. However, it significantly enhanced ProKinO as a
comprehensive knowledge graph representing kinase-related data.

The definition and nomenclature of several kinome-wide conserved motifs were standardized
based on several previously published studies which describe the kinase structural features
such as subdomains (49), regulatory spine/shell (31), and catalytic spine (51). A subset of

redundant or family-specific motifs were removed to prevent confusion.
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Ligand interactions. The Kinase-Ligand Interaction Fingerprints and Structures (KLIFS) (5) is a
kinase-ligand interaction database. The KLIFS stores detailed drug-protein kinase interaction
information derived from diverse (>2900) structures of catalytic domains of human and mouse
protein kinases deposited in the Protein Data Bank to provide insights into the structural
determinants of kinase-ligand binding and selectivity at the motif and residue level. In addition,
KLIFS provides an Application Programming Interface (API) for programmatic access of data
related to chemicals and structural chemogenomics (5) (52). However, it lacks information
regarding kinase pathways or diseases which prevents the user from investigating the effect of
drug-mutant protein binding on downstream pathways or diseases. KLIFS annotations, which
report PDB residue positions, were converted to UniProt residue numbering using PDBrenum
(53), then converted to prototypic Protein Kinase A (PKA) numbering using Multiply Aligned
Profiles for Global Alignment of Protein Sequences (MAPGAPS) (54). Entries that could not be

mapped or did not map to the kinase domain were filtered out.

Ligand responses. We included the data relevant to drug sensitivity in kinases in this step. In
particular, we retrieved the fitted dose and response data of kinase-relevant ligands from GDSC
(55). Kinase-relevant ligands are defined based on our previous study (56), which collected 143
small-molecule protein kinase inhibitors from GDSC based on four drug-target databases:
DrugBank (57), Therapeutic Target Database (58), Pharos (3), and LINCS Data Portal (59).
GDSC provides the half-maximal inhibitory concentration values (ICso) of these 143 ligands in

988 cancer cell lines.

Ligand activities. Ligand activities were retrieved from Pharos, a flagship resource (3) of the
National Institutes of Health (NIH) llluminating the Druggable Genome (IDG) program that
includes data on small molecules, including the approved drug data and bioassay data. Based
on the protein classification (60), the drug targets in Pharos include kinases, ion channels, and
G-protein coupled receptors (GPCRSs), and others. In this phase of the project, we decided to
include the data relevant to ligand binding in kinases. Pharos integrates drug-target

relationships from several resources, such as ChEMBL (61) and DrugCentral (62).

Expression data. An important part of our recent additions was kinase expression data.
Genomic expression data (protein, RNA), as well as the transcription factors and epigenomic
associations are among many facets of the data included in Pharos. Furthermore, GDSC
repository contains gene expression data (Affymetrix Human Genome U219 Array), as well.
Additionally, COSMIC’s Cell Lines Project includes a significant amount of gene expression

data, including kinase expression.


https://doi.org/10.1101/2022.02.25.482021
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.25.482021; this version posted March 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Dark kinases. Dark kinases were labelled based on the information from Dark Kinase
Knowledgebase (11).

Protein kinase knowledge graph: schema and data organization

The ProKinO ontology consists of classes, sub-classes, class types, relationships, relationship
types, and constraints of protein kinase and related data (Figure 2). The hierarchy connects all
classes to the root, which is ProKinOEntity. Moreover, the schema defines types and constraints
for the relationships. With such explicit and constrained schema, composing queries is more
intuitive than conventional relational databases. In particular, to enable integrative mining of
dark kinase expression data in the context of kinase sequence and structural features, we have
introduced three new classes in ProKinO, the Ligand class (including its name, source, and
chemical structure) and the following three related classes: (1) Ligandinteraction, placed
between the Ligand and (already existing) Motif classes to capture kinase-ligand binding and
selectivity at the motif and residue level, (2) LigandActivity, placed between the Ligand and
(already existing) Protein classes to represent kinases targeted by ligands (and drugs), and (3)
LigandResponse, located between the Ligand and (already existing) Sample classes and
representing ligand (and drug) sensitivity in kinases. To capture kinase expression, we added
the GeneExpression relationship linking the Protein and Sample classes. The outline of the
recently added classes and their relationships in ProKinO is illustrated as a UML class diagram,

shown in Figure 2.

ProKinO Population

The ProKinO knowledge graph is automatically populated from several external and our local
data sources at regular intervals, as originally described (15), ProKinO schema and the
associated knowledge graph population software are routinely updated to incorporate additional
sources of data such as pseudokinase and “dark” kinase classification and incorporating
information on ligand interactions, ligand responses, ligand activities, kinase expression and
associated object and datatype properties. We have been using the Protégé ontology editor for
the schema creation and its subsequent modifications. The organization of the schema after

these madifications is available at https://prokino.uga.edu/about.

The population software has been coded in Java and uses the Jena Framework. The population
process is performed in several steps to add instances, their properties, and a combination of
reading the prepared data from CSV, RDF, XML, and other file formats and accessing many

remote data sources using their provided API (for example, Reactome’s REST API). Entity
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interconnections across data retrieved from different data sources are accomplished using
UniProt identifiers, kinase names, and other accession identifiers. We modified the population
software to create instances and properties for the newly added classes and relationships.

More specifically, using the KLIFS API, we retrieved the relevant kinases, ligands, and residue-
level interaction data. The data was retrieved and then processed by custom Perl scripts.
ProKinO ontology schema was modified, and ligands were included as new data, while
interaction data (motifs) were either reconciled with the motifs already present in ProKinO or

added as new, if not already there.

Similarly, the ligand response data was retrieved from GDSC and then processed by custom
Perl scripts to create suitable CSV files. Additional ligands were included as new data, while the
response data and the relevant samples were either reconciled with the samples already

present in ProKinO or added as new, if not already there.

In order to populate the data on ligand activities, we retrieved from Pharos kinase-relevant
ligands, as well as their binding data on targeted kinases, for example, IC50 values. This data
was retrieved and then processed by custom Perl scripts to produce the necessary CSV files.
Additional ligands, not included in the KLIFS dataset, were included as new data. All kinases
targeted by ligands were already present in ProKinO, so they were reused in this step.

Data on kinase expression was first retrieved from Pharos, COSMIC, and GDSC. As before, the
relevant kinases were already present in the ProKinO knowledge graph. The expression data
was stored as individuals in the Expression class. Some of the relevant data about samples
were already present in ProKinO, as we already had a significant amount of sample data from

COSMIC. Additional samples were included as new data.

We reviewed and updated all the motifs already present in ProKinO. Furthermore, we updated

the motif naming in cases where there were differences with the standard motif names.

Finally, we assembled an up-to-date list of dark kinases (11) and added a Boolean datatype
property, isDarkKinase, to identify them among all other kinases in the ProKinO knowledge

graph.
RESULTS

The expanded ontology and its knowledge graph provide a wealth of data unifying the
information available on both well studied (light) kinases and understudied (dark) kinases that

serve as a unified resource for mining the kinome. The current version of ProKinO (version 64),
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includes 842 classes, 31 object and 67 data properties, and over 7.3M individuals (knowledge
graph nodes). ProKinO contains information on 153 dark kinases. 137 dark kinases have
information on structural motifs, 148 have disease mutations mapped to the kinase domain, 45
dark kinases have pathway information, and 26 are associated with specific reactions, as
defined in Reactome.

Users can navigate the ontology using the ontology browser by searching for a specific kinase
of interest or by performing aggregate SPARQL queries linking multiple forms of data. Nearly 34
pre-written queries linking different data types can be executed using the ProKinO browser

(http://prokino.uga.edu/queries). A user can also download the ontology or browse data based

on organisms, functional domains, diseases or kinase domain evolutionary hierarchy. Below, we
focus on the application of complex SPARQL queries and the ProtVista visualization tools for

the illumination of understudied dark kinases.

A) B)

Query 27: Show 10 Dark Kinases with Most Mutations Query 33: In Which Cancer Subtypes is PAKS's Expression Abnormal
Linked to Cancer and Normalized for their Sequence Length
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Figure 3. SPARQL query results A) Output of Query 27 requesting top 10 dark kinases with most
mutations in cancer. B) Output of Query 33 listing samples with abnormal PAK5 expression. The query

also lists histology, cancer subtypes, regulation and Z-score.

Mutation and expression of understudied PAK5 in human cancers: One possible way to

prioritize dark kinases for functional studies is to ask the question, “which dark kinases are most
mutated in human diseases, such as cancers?”. Typically answering this question would require
collating and post-processing data from multiple resources such as COSMIC, Pharos, and the
dark kinase knowledgebase. However, with the updated Protein Kinase Ontology, these
guestions can be quickly answered using SPARQL. In particular, having the isDarkKinase
property within the Protein class and the RDF triples connecting Mutation, Sample and

Sequence classes, one can formulate aggregate queries requesting all dark kinases mutated in
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cancer samples. To avoid biases introduced by the length of protein/gene sequences (longer
proteins tend to have more mutations), the query can be modified to normalize mutation counts
by sequence length. Executing this modified query (query 27, available at
http://prokino.uga.edu/queries) displays the rank-ordered list of dark kinases based on

mutational density. The top ten dark kinases with the highest mutational dentistry are shown in
Figure 3A. Notably, the p21 activated kinase 5 (PAKS5) is at the top of the list with a mutational
density of 1.88, followed by CRK7 (0.995), TSSK1 (0.978), PKACG (0.977), PSKH2 (0.948),
CK1A2 (0.946), ERK4 (0.9318), DCLK3 (0.876), PKCT (0.866) and ALPHAK2 (0.832). Having
identified PAK5 as the most frequently mutated dark kinase in cancers, one can further query
the ontology to explore the role of this kinase in various cancers. With the addition of the new
GeneExpression class in ProKinO and the RDF triples connecting gene expression to the
Sample and Protein classes (GeneExpression:InSample: Sample; GeneExpression:hasProtein:
Protein), one can formulate queries requesting for PAK5 expression in different samples. Rank
ordering the samples based on PAKS5 expression (Query 33) reveals cancer types such as
adenocarcinoma (Zscore: 4701.5) and hepatocellular carcinoma (Zscore: 2038.2) that have
previously been associated with abnormal PAK5 expression (63-66). However, the role of PAK5
in other cancer types such as acute myeloid leukemia (Zscore: 136.4) is relatively understudied
(67). The identification of new cancer sub-types with dark kinase expression and regulation

further exemplifies the use of ProKinO in knowledge discovery.

Mutational hotspots in the activation loop of PAK5: Because ProKinO encodes a wealth of

information on the structural and regulatory properties of kinases, it can be used to generate
mechanistic predictions on cancer mutation impact. We demonstrate this for the PAK kinases by
asking the question “where are PAK5 mutations located in the protein kinase domain?” Using
the RDF triples connecting the Mutation, Motif and Sequence classes (Mutation: LocatedIn:
Motif; Mutation:InSequence: Sequence), one can formulate a query (Query 28) listing mutations
in different structural regions/motifs of the PAK5 kinase domain. Examination of the query
results reveals that the C-terminal substrate binding lobe (C-lobe) is more frequently mutated
(318 mutations) relative to the N-terminal ATP binding lobe (N-lobe: 170 mutations) (Figure
4A). Within the C-lobe, nearly 78 mutations map to the activation loop, which is known to play a
critical role in substrate recognition and activation in a diverse array of kinases (68-70). Despite
the prevalence of activation loop mutations in PAK5, there is currently no information on how
these mutations impact PAKS’s structure and function. Nonetheless, based on the evolutionary

relationships captured in ProKinO (based on the alignment of human kinases to the prototypic
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protein kinase A), one can formulate queries mapping mutations to specific aligned positions in
the shared protein kinase domain. A query listing WT type and mutant type residues in the
activation loop of PAK5 and the equivalent aligned residue positions in PKA (query 29) provides
additional context for activation loop mutations in PAK5. For example, two distinct mutations
map to residue S602 in the activation loop of PAKS that structurally corresponds to a
phosphorylatable residue, T197, in PKA (71). Having this contextual information provides a
testable hypothesis that S602 mutations in PAKS5 impact kinase phosphorylation and regulation.
Likewise, WT residue P604"AK® is mutated in four distinct cancer samples and this position is
equivalent to PKA residue P202, which configures the activation loop for substrate recognition
(72). Thus, mutation of this critical residue is expected to impact substrate binding and
activation loop phosphorylation in PAK5. Additional insights into these mutations can also be
obtained my visualizing these residues in the context of the PAK5 AlphaFold models using the

ProtVista viewer described below.

A) Query 28: Count Unique Cancer-Linked B) Query 29: List WT and Mutant Type (Missense) Residues in the Activation Loop of PAKS.
Mutations in Different Structural
Locations of the PAKS Kinase.

Wild Type Position Mutant Type PKA Position Disease Primary Site Subsite

Motif Cancer mutations
588 c 186 carcinoma large_intestine NS
C-lobe 319 G 588 H 186 malignant_melanoma skin NS
F 589 v 187 malignant_melancma NS NS
N-lobe 171 F 589 5 187 carcinoma liver NS
. . E 596 Q 193 carcinoma breast NS
activation loop 78
E 596 ] 193 carcinoma breast NS
Subdomaln Xl 6? E 596 K 193 malignant_melanoma skin NS
N
subdomain Vill 64
v 604 199 malignant_melanoma skin NS
subdomain | 62 ) )
v 604 F 199 carcinoma kidney NS
R v 604 F 19 carcinoma lung NS
subdomain 1l a4
v 804 199 malignant_melanoma skin scalp
alphaC 43
subdomain Vla 38
N
alphak 36

Figure 4. A) Output of Query 28 listing the number of unique cancer-linked mutations at various structural
locations of PAKS kinase. B) Output of Query 29 listing unique point mutations in the activation loop of
PAKS5 kinase. The query also lists the equivalent PKA position, disease type, primary site of the tissue
sample, and subtype of the tissue sample. Entries containing only one mutation per position were filtered
from the original query.
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Insights into PAKS ligand binding sites: With the conceptualization of new information related to

kinase ligands, their mode of action and interaction with specific motifs in the kinase domain,
new aggregate queries linking mutated kinases to drug sensitivity profiles, mode of action, and
ligand binding sites can be performed using the updated ProKinO. For example, queries such
as “list proteins and drugs or ligands interacting with the protein's gatekeeper residue (GK.45)”
(query 31) and “list ligands targeting the Epidermal Growth Factor Receptor (EGFR) kinase and
their mode of action” (query 34) can be rapidly performed using the updated ProKinO ontology.
We demonstrate the application of these new additions in the context of PAK5 by asking the
question “what are the drugs targeting PAK family (PAK1-6) kinases?” Query 30 answers this
guestion using the RDF triples connecting the Ligand, Motif and Protein classes (list triples)
(Figure 5). Examination of the query results indicates multiple drugs targeting PAK family
kinases, including STAUROSPORINE and N2-[(1R-2S)-2-AMINOCYCLOHEXYL] that bind to
structurally equivalent residues/motifs in the ligand binding pocket of PAK4 and PAKS5,
respectively. The ligand binding sites, and associated interactions can also be visualized using
the Protvista viewer described below. Additional queries linking dark kinases to drug
sensitivities, structural motifs, and pathways are listed on the ProKinO website at

https://prokino.uga.edu/queries.

Query 30: List Motifs Interacting with Ligands in the PAK Family Kinases (PAK1-6) Along with Equivalent PKA Positions.

Protein = Ligand Name = Motif = Position = PKA Position

PAK4 STAUROSPORINE 13 327 50
PAKS N2-[{1R,25)-2-AMINOCYCLOHEX 1.3 455 50
PAK4 STAUROSPORINE gld 328 51
PAKS N2-[(1R.25)-2-AMINOCYCLOHEX... gld 456 51
PAK4 STAUROSPORINE gl5 329 52
PAKS N2-[(1R.25)-2-AMINOCYCLOHEX.. gl5 457 52
PAK4 STAUROSPORINE hinge 47 397 123
PAKS N2-[(1R.25)-2-AMINOCYCLOHEX... hinge 47 525 123
PAK4 STAUROSPORINE hinge 48 398 124
PAKS N2-[(1R.25)-2-AMINOCYCLOHEX.. hinge.48 526 124
PAK4 STAUROSPORINE linker.51 401 127
PAKS N2-[(1R.25)-2-AMINOCYCLOHEX linker.51 529 127

Figure 5. Output of Query 30 listing ligands interactions with each PAK family member (PAK1-6). It also
includes motif names and positions of full sequence and PKA positioning. The output of Query 30 was
rearranged to highlight the homology of PAK4 and PAK5 motif/ligand interactions.
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Figure 6. Protvista viewer A) AlphaFold model of PAKS5 kinase is shown in the structure viewer (top
panel) and the sequence viewer with annotations are shown in the bottom panel. B-C) Zoomed in view of

structural interactions associated with S602 and P607 in PAKS5 activation loop.

Visualization tools for dark kinase annotation and mining

ProtVista viewer: To provide structural context for cancer mutations and to enable interactive

mining of dark kinase sequence annotations in the context of 3D structures and predicted
models from AlphaFold (46,73), we developed and incorporated a modified version of the
ProtVista viewer in ProKinO. The viewer can be deployed for any protein kinase of interest by
navigating to the Structure tab in the protein summary page and selecting either a PDB
structure or AlphaFold model of interest. A snapshot of the ProtVista viewer displaying the
AlphaFold model of PAKS5 kinase is shown in Figure 6. The ProtVista viewer uses an enhanced
version of the Mol* viewer and the PDB web component (developed by the PDBe team) to
provide two-way interactive navigation between 3D structure (Figure 6A, top panel) and

annotation viewer (Figure 6A, bottom panel).
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The annotation viewer consists of multiple tracks populated dynamically based on data from
ProKinO and external sources such as UniProt. In addition, prediction confidence scores for
AlphaFold models are displayed in the annotation viewer along with additional annotations such
as conserved sequence motifs, subdomains, and structural motifs involved in kinase regulation.
The annotation viewer also shows other annotations from external sources such as ligand
binding sites and predicted functional sites. Users can hover over the residues on the 3D
structure viewer to view the equivalent information on the annotation viewer and vice versa. For
example, selecting the “activation loop” in the annotation viewer highlights the corresponding
structural region in the AlphaFold model of PAKS (Figure 6A). Likewise, the selection of
residues in the activation loop (S602 and P607) in the structure viewer highlights the
annotations associated with these and interacting residues in the sequence viewer. Such
interactive mining is expected to accelerate the functional characterization of dark kinases and
provide new insights into disease mutations. For example, visualizing the interactions
associated with S602 in the activation loop of PAKS5 (Figure 6B) indicates a hydrogen bonding
interaction with R567, which is part of the conserved HRD motif (sequence annotation).
Because the HRD-Arg is known to play a role in kinase regulation by stabilizing activation loop
conformation (68), it provides additional context for predicting the impact of S602 altering
mutations in PAK5. Likewise, examining the structural and sequence context of P604
interacting residues provides new insights into how alteration of this residue might impact
substrate binding and kinase regulation. Together, these examples, highlight the value added by

the ProtVista viewer in the visualization and annotation of mutations in dark kinases.

CONCLUSION AND FUTURE DIRECTIONS

In this work, we present an updated version of the protein kinase ontology for mining and
annotating dark kinases. ProKinO was developed following FAIR (Findable, Accessible,
Interoperable, and Reusable) principles and serves as an integrated knowledge graph for
relating and conceptualizing diverse forms of disparate data related to protein kinase sequence,
structure, function, regulation, and disease (cancer). We present a new ontology browser for
navigating these data and demonstrate the application of aggregate SPARQL queries in
uncovering new testable hypotheses regarding understudied members. We also provide several
pre-written SPARQL queries that be used to rapidly retrieve a wealth of information related to
protein kinase mutations, pathways, expression, and ligand binding sites. However, writing new

gueries requires prior knowledge of the ontology schema and the SPARQL query language,
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which most bench biologists may not have. To alleviate this challenge, we are currently building
a graphical SPARQL query interface, which will intuitively enable query formulation through the
navigation of the knowledge graph schema. We are also exploring the application of ProKinO
for machine learning-based knowledge discovery and hypotheses generation.

DATA AVAILABILITY
The protein kinase ontology (ProKinO)’s latest OWL file, along with previous versions, is publicly available
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