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Abstract

In intimate ecological interactions, the interdependency of species may result in correlated demographic
histories. For species of conservation concern, understanding the long-term dynamics of such interactions
may shed light on the drivers of population decline. Here we address the demographic history of the
monarch butterfly, Danaus plexippus, and its dominant host plant, the common milkweed Asclepias
syriaca, using broad-scale sampling and genomic inference. Because genetic resources for milkweed have
lagged behind those for monarchs, we first release a chromosome-level genome assembly and annotation
for common milkweed. Next, we show that despite its enormous geographic range across eastern North
America, A. syriaca is best characterized as a single, roughly panmictic population. Using Approximate
Bayesian Computation via Random Forests (ABC-RF), a machine learning method for reconstructing
demographic histories, we show that both monarchs and milkweed experienced concurrent range
expansion during the most recent recession of North American glaciers ~12,000 years ago. Our data
identify an expansion of milkweed during the large-scale clearing of eastern forests (~200 years ago) but
was inconclusive as to expansion or contraction of the monarch butterfly population during this time.
Finally, our results indicate that neither species experienced a population contraction over the past 75
years. Thus, the well-documented decline of monarch abundance over the past 40 years is not visible in
our genomic dataset, reflecting a possible mismatch of the overwintering census population to effective
population size in this species.

Introduction

Despite the critical importance of understanding past population dynamics, especially for species of
conservation concern, inferring demographic histories can be extremely challenging. Novel genomic
methodologies based on sampling extant individuals and interpretation of genomic patterns of diversity
have recently provided insight into the demographic histories of species ranging from protists to humans
(Schwabl et al. 2021; Lepers et al. 2021). Over the past 25 years, conservationists have become
increasingly alarmed by the decline of the monarch butterfly’s overwintering population (Thogmartin et
al. 2017; Pleasants et al. 2017; Lincoln P. Brower et al. 2012). Despite significant academic and public
energy focused on understanding and reversing this, the exact cause of this decline is still a matter of
debate. Multiple factors have been proposed to underlie the monarch’s decline, including a decrease in the
abundance of the monarch's food source (primarily a single species of milkweed — common milkweed),
reduced abundance or quality of nectar plants, climate change, and destruction of their overwintering site
(Haan and Landis 2019; Boyle, Dalgleish, and Puzey 2019; Inamine et al. 2016; Zylstra et al. 2021) .
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Here we address correlated demographic changes of monarchs and milkweeds over three hypothesized
critical events during the Holocene. Placing this recent decline in a historical context will help us begin to
address fundamental questions about the relationship between milkweed, monarchs, and humans. For
instance, did colonizing Europeans inadvertently increase the size of the monarch population by
massively expanding milkweed habitat through deforestation and ploughing of prairies? Does the recent
decline of the overwintering census population follow from an artificial high? Or, does it represent a
decline to levels lower than those seen before European colonization? And finally, are monarch and
milkweed population demographics matched, perhaps indicating that milkweed is the limiting resource
for monarch butterfly populations? Providing insight into these questions has remained intractable to date.
However, recent advances in population genetic approaches and machine learning now allow us
unprecedented ability to reconstruct demographic histories of populations. To reconstruct the
demographic histories of monarchs and milkweed, here we use Approximate Bayesian Computation with
Random Forests (ABC-RF) (Pudlo et al. 2016). This approach has recently been employed by a number
of population genetic studies on a diverse array of organisms, including humans (Estoup et al. 2018),
insects (Lombaert et al., n.d.), plants (Nevado et al. 2020), chordates (Smith et al. 2018), and pathogens
(Schwabl et al. 2021), and it has been used to reconstruct biological invasions and other demographic
events happening within the past few decades or centuries (van Boheemen et al. 2017; Vallejo-Marin et
al. 2021; Fraimout et al. 2017).

Accordingly, we use the ABC-RF approach to test how the last glacial retreat, the ploughing-up of the
prairie and deforestation, and finally expansion of industrial agriculture impacted monarch and milkweed
populations. Specifically, we addressed the following questions: (1) Have A4. syriaca and D. plexippus
populations expanded in prior millennia (12-5 kya), potentially due to the retreat of the glaciers after the
last glacial maximum? (2) Have A. syriaca and D. plexippus populations expanded in the past centuries
(1751-1899), potentially due to the conversion of native forests and prairies to agriculture land, as suggest
by, e.g., Brower (1995) (L. P. Brower 1995)? (3) Have A. syriaca and D. plexippus populations
experienced a bottleneck along with the industrialization of agriculture within past decades (1945-2015),
potentially due to the increased use of herbicide in crop fields as described by, e.g., Pleasants (Pleasants
and Oberhauser 2013, 2017)?

To facilitate answering these questions, we assembled a new genome for 4. syriaca. Previously existing
genomic resources are limited to low coverage assemblies and transcriptomes. Next, we sampled and
conducted genomic analyses for 231 milkweed isolates from across the entire native range. Finally, using
this data set, we test a series of explicit hypotheses using ABC-RF to ask how these climate and
anthropogenic events have impacted population change of these iconic species. We conducted these
analyses in parallel on milkweed and monarchs, using previously published whole-genome sequencing
data from (Zhan et al. 2014) for the latter. As such, our analysis addresses whether the demographic
histories of this intimate species interaction are matched or independent.
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FIGURE 1: A: Our sampling scheme
covers most of the North American range
of A. syriaca. Circles represent sites
sampled for the Broad Range data sets,
while squares represent sites sampled for
the Core Range data sets. Sites are colored
according to the rough geographic zones to
which we assigned them for the purposes
of calculating Fst. We assigned the Core
Range site in [llinois to the southeastern
population instead of the southwestern
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in the Supporting Information for all K-
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C: PCA demonstrates weak geographic
signal among some subsets of SNPs. Shown here are the first two principal components axes of allele
frequencies, with each point representing an individual milkweed from the Broad Range GBS data set.
Points are colored according to origin using the same color scheme as in Fig. 1A. The inset shows the
eigenvalues for each principal component; these decline quite slowly, indicating that each individual PC
axis explains relatively little of the variation in genotype. PC plots for additional axes, and for other data
sets, show similarly weak levels of geographic signal, and are given in the Supporting Information.
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Results
Genome Assembly

Using PacBio and Hi-C libraries, we assembled a chromosome-level genome of 317 Mbp for 4. syriaca,
mostly assembled into 11 large chromosome-length molecules. A total of 42,111 genes were predicted,
capturing 93% of the BUSCO set. Further details of this assembly are provided in the Supporting
Information.

SNP Calling
We gathered four different population genetic data sets for D. plexippus and A. syriaca:

For common milkweed:

(1) Broad Range WGR: We used a skimming Whole Genome Resequencing (WGR) approach at low
coverage to identify approximately 900 SNPs from 48 plants collected from across the North American
range of this species.

(2) Broad Range GBS: We used a Genotyping by Sequencing (GBS) approach to sequence and call
approximately 900 SNPs from 96 plants collected from across the North American range of this species.

(3) Core Range GBS: We used a GBS approach to sequence and call approximately 900 SNPs from 87
plants, primarily collected in the eastern portion of this species’ range. This data set also includes a
number of individuals collected from eastern Europe, where 4. syriaca is an invasive species.

We analyzed the two different GBS datasets separately as they were produced in different labs and had
different sequencing coverages.

For monarch butterflies, we used:

4) the whole genome sequences published by Zhan et al. (2014). From these we called approximately
11,700 Single Nucleotide Polymorphisms (SNPs) from 28 butterflies collected across the North American
migratory range of this species.

We present the results from both species as parallel analyses. Sequencing localities for each milkweed
data set are shown in Figure 1A, and more detailed results of the SNP calling process are provided in the
Supporting Information.

Broad range Broad range Core range GBS
GBS data set  WGR data set data set
Post-glacial Expansion Expansion Expansion Expansion

expansion (5-12 kya)------- Present (0.94) Present (0.99) Present (0.98)  Present (0.95)

Expansion with Pre-industrial _____ Expansion Expansion
agriculture (1751-1899 AD) Present (0.87) Present (0.99)
Bottleneck with industrial Bottleneck Bottleneck
agriculture (1945-2015 AD) Absent (0.90)  Absent (0.80)

Figure 2: Support for each of our hypothesized demographic events in our three milkweed and one
monarch data sets. The Random Forest consensus on whether each event is present in the population
history of that species is given, along with the estimated posterior probability of each in
parentheses. Posterior probabilities below 0.80 were considered “inconclusive”; posterior
probabilities for all demographic events are given in Table S2.
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Population Genetic Analysis

All three of our milkweed data sets showed little genetic structure across their ranges. Global Fsr ranged
from -0.002 (Broad Range WGR data set) to 0.039 (Core Range GBS data set), indicating a low amount
of geographically sorted population structure. Fsr values between pairs of populations were similarly low,
with the exception that the invasive European population was more distinct from the North American
populations, with pairwise Fsr values around 0.08. We further interrogated this genetic structure using
two approaches.

In the first approach, we used STRUCTURE to assign each individual ancestry to 2 or more
subpopulations. It is important to note that STRUCTURE cannot be used to evaluate the fit of a single
panmictic population as the optimal number of genetic clusters is determined based on the change in the
log-likelihood between k-values [see (Janes et al. 2017)]. Regardless of the number of subpopulations
chosen a priori, for every subpopulation, STRUCTURE assigned all individuals roughly the same degree
of ancestry in that subpopulation, regardless of their geographic location (visualized in Figure 1B for the
Broad Range GBS data set). This was true across all three data sets; the one major exception was that in
the Core Range GBS data set, the invasive European population was quite distinct from the North
American populations. STRUCTURE results for all three data sets are provided in the Supporting
Information.

Secondly, to circumvent the inability of STRUCTURE to evaluate k=1, we took a less-
parameterized approach by performing a Principal Components Analysis (PCA) on the allele frequencies
of the SNPs in each data set. This approach identifies groups of covarying SNPs. We found a slight
degree of geographic signal in several of the most important PC axes. For instance, in the Broad Range
GBS data set (visualized in Figure 1C), PC1 largely separates several northwestern individuals from the
remainder of the data set, possibly indicating introgression from A. speciosa, which is known to hybridize
with A. syriaca in the northwestern part of the 4. syriaca range. PC2 shows a slight amount of geographic
signal, with western populations tending toward positive values and eastern populations tending toward
negative values, but individuals from all four regions are well mixed in principal component space,
indicating that this geographic signal is quite weak.

All three datasets support the conclusion that, in North America, A. syriaca is a single large
metapopulation with little geographic structure. Our results parallel the findings of Zhan et al. (2014) that
monarch butterflies, even between the eastern and western migratory populations, also lack geographic
population genetic structure in North America. Additional information on each data set is given in the
Supporting Information.

Demographic modelling

We next used all four data sets (3 milkweed and 1 monarch) to estimate the recent demographic history of
the two species. We used an Approximate Bayesian Computation (ABC) modelling approach, using a
Random Forest (RF) algorithm for model selection.

Briefly, ABC modelling in population genetics uses simulated data sets to estimate posterior probabilities
of past demographic events (Sisson, Fan, and Beaumont 2018), and the Random Forest approach
described by Pudlo et al. (2016) (Raynal et al. 2019; Pudlo et al. 2016) which implements a machine
learning algorithm to conduct the model selection. The ABC-RF approach allowed us to estimate
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posterior probabilities of each of the three events having occurred, separately for each data set. Additional
details of these analyses may be found in the Supporting Information.

We found substantial consistency in the model predictions both across our three milkweed data
sets and when comparing monarch and milkweed population histories. All three milkweed data sets show
a post-glacial expansion with >0.9 posterior probability; indeed, this precisely matches the same strong
prediction for monarchs (Figure 2).

In milkweed, we found evidence for a centuries-scale expansion alongside agriculture in the 18"
and 19" centuries. The Core Range GBS and Broad Range WGR data sets showed strong support for the
presence of such a population expansion (0.99 and 0.87 posterior probabilities, respectively). The Broad
Range GBS data set was inconclusive (posterior probability of 0.61 that such an expansion did not exist).
We consider the Broad Range GBS dataset as inconclusive as it did not have enough evidence to shift the
posterior probability far from the prior probability of 0.50. The monarch data were also inconclusive on
the presence of an expansion during this period (0.68 posterior probability in favor of an expansion).

The absence of a recent bottleneck alongside the industrialization of agriculture was weakly
supported in the monarch data set (0.80) and in the Core Range GBS milkweed data set (0.90), but the
other two milkweed data sets were inconclusive, with no support for either the presence or the absence of
a recent bottleneck (Figure 2).

Discussion

Understanding the impact of the Anthropocene on the natural world is of fundamental importance for
conservation efforts. Until recently, elucidating patterns of population change in the recent past has been
very difficult. In this study we employ an ABC-RF approach to study the near-term demographic history
of monarchs and milkweeds. This approach was chosen in part because it has proven useful in other
systems in elucidating very recent demographic events, within decades or centuries (Vallejo-Marin et al.
2021; Fraimout et al. 2017). In addition, this approach requires fewer simulated datasets to train the
classifier than are necessary for traditional ABC, and it is much more robust to choices of summary
statistics (Pudlo et al. 2016; Csilléry, Frangois, and Blum 2012).

We tested for changes in effective population size of the monarch butterfly and its primary food
source, common milkweed, during three events: the most recent retreat of the glaciers, European
settlement, and industrial agriculture. Previously, using PSMC (Pairwise Sequentially Markovian
Coalescent) model, a method capable of testing for ancient events but less fit for resolving recent events,
researchers demonstrated a population expansion of monarch butterflies after the last glaciation (Zhan et
al. 2014). Using ABC-RF, we likewise detect this monarch expansion and also observe an expansion of
common milkweed post-glaciation. The low levels of population structure in common milkweed likely
occur because the modern range of 4. syriaca is a result of rapid (i.e., in the last 5-12 kya) invasion of
central and eastern North America after the retreat of the glaciers. In this scenario, the rapid expansion
combined with 4. syriaca being an obligate outcrosser with long-distance dispersal ability, has prevented
the formation of extensive population structure.

We provide population genetic evidence that common milkweed increased in prevalence during the
18th and 19th centuries. The most obvious cause for this is the clearing of forests and prairies to make
way for agricultural land, a disturbance-rich environment in which A. syriaca thrives (at least, until the
advent of herbicides). The increase observed in our data has previously been suspected, and there are two
major hypotheses for how this increase affected monarch butterflies. The first hypothesis posits that A4.
syriaca has always been the most important host plant for monarchs, even before A. syriaca's population
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boom. As A. syriaca increased in abundance in a newly-disturbed landscape, monarchs increased in
abundance alongside them. Thus, according to this hypothesis, the current size (and possible geographic
extent) of the monarch migration was greater in the 18th-20th centuries than in the 17th century and prior
(Brower 1995; a more radical form of this hypothesis suggests that the migratory behavior itself was
absent before the 18th century, Vane-Wright 1993) (L. P. Brower 1995; Vane-Wright 1993). However,
although 4. syriaca has increased in abundance due to disturbance, it is likely that other species of
milkweeds, less tolerant of anthropogenic changes, have declined in abundance over the same period. The
second hypothesis suggests that monarch transitioned from a wider array of host plant species to become
more reliant on common milkweed over this period of increase in common milkweed populations. If this
occurred, then the newly-increased population sizes of 4. syriaca did not represent a net increase in food
resources for monarchs, and so we would not expect the monarch abundances in the 18th-20th centuries
to be higher (or lower) than previously (Brower 1995).

How should biologists and conservationists react to this new data that shows common milkweed
increased with agriculture? This depends largely on which hypothesis about the monarch response to this
increase is correct. If the 20th century population size of the monarch was anthropogenically inflated due
to elevated common milkweed abundance, this puts contemporary declines in a less worrisome light, as
they may simply represent returns to pre-modern population sizes. Monarch population sizes and
migratory behavior have presumably been sustainable for centuries before the clearing of the forests and
prairies of Eastern North America. However, if monarchs responded to increased common milkweed
abundance by shifting their diets without increasing the total population, then contemporary declines may
well have put the monarchs at their lowest population size since the retreat of the glaciers.

Unfortunately, the whole-genome-sequencing data set used here was not sensitive enough to detect
whether or not there had been an increase in monarch populations alongside those of milkweed in the
18th and 19th centuries. Answering this question using population genetics will probably require
improvements in our current techniques for demographic modelling and/or denser sequencing of D.
plexippus individuals than is currently available. However, there are other potential data sets that could
shine light on this question. As a start, population genomic analyses for other important milkweed species
could reveal whether or not they declined during the period of common milkweed's increase: lack of such
declines would suggest that the expansion of 4. syriaca in particular could only have increased the
monarch population. Brower (1995) suggests sampling cardenolide profiles from museum specimens of
monarchs captured in the 19th and 20th centuries. These profiles can indicate the host plants those
individuals used as larvae, and thus show whether or not monarchs experienced a shift in their host
species as humans cleared forests and prairies. Shifts to more diversity in milkweed hosts might also be
detectable in more recent specimens collected on the East Coast of North America, as farming has
become less prevalent in this region over past decades: the presence or absence of such shifts would be
evidence that the opposite had happened when this same region of the country was being deforested in the
18th and 19th centuries.

Finally, even if such tests demonstrate that the current declines in monarch butterfly populations are
simply a return to historically-sustainable population sizes, we emphasize that this is not necessarily an
argument against current efforts to support monarch butterfly populations. Regardless of how many
monarchs were in North America in 1600, the current monarch population brings delight to people across
North America and serves as a key conservation species which serves as an introduction to many non-
scientists to the importance of invertebrate conservation, pollination biology, migratory behavior, and
more. Having fewer of these charismatic insects present would be a loss to humankind regardless of how
many of them were present a few centuries ago.
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Abbreviated Methods
Additional details of all the methods described below are given in the Supporting Information.
Genome assembly

Genomic DNA was prepared from one individual of Asclepias syriaca collected from Austria
(46.66,14.47) and sequenced using PacBio CLR technology on six SMRT cells. Illumina sequence was
generated from genomic DNA on one lane of Hi-Seq 2 x 150 bp. Hi-C libraries were prepared using the
Proximo Hi-C kit for plants (Phase Genomics) and sequenced on one lane of Illumina NexSeq500 2 x 150
bp. The genome was assembled from these data, haplotigs purged, and scaffolding performed as
described in the Supporting Information.

SNP calling

Two sets of GBS libraries and one set of WGR libraries were prepared as described in the
Supporting Information. SNPs from the GBS dataset were identified using Stacks 2.2 (Catchen et al.
2013; Rochette, Rivera-Colon, and Catchen 2019). SNPs from the WGR data set were called using the
Genome Analysis Toolkit (GATK) pipeline (McKenna et al. 2010; DePristo et al. 2011). We also used
the GATK pipeline to call SNPs from the sequence data provided in Zhan et al. (2014) for a number of
North American monarchs (Zhan et al. 2014).

Population genetic analysis

We assigned each individual milkweed to one of 5 broad geographic populations based on its
location, as shown in Figure 1A. We used the hierfstat package (Goudet 2005) in R to calculate Fsr for
each data set. To examine clustering and admixture within the 4. syriaca populations, we used
STRUCTURE 2.3.4 (Pritchard, Stephens, and Donnelly 2000), using and an admixture model. Finally,
we used the ade4 package (Daniel Chessel Anne B. Dufour Jean Thioulouse 2004) in R to perform a PCA
on the allele frequencies for each of the milkweed data sets.

Demographic modelling

To investigate the recent demographic history of 4. syriaca, we used an Approximate Bayesian
Computation (ABC) modelling approach for model selection. We used the Random Forest approach
described by Pudlo et al. (Pudlo et al. 2016), which implements a machine learning algorithm to do model
selection. As our observed data, we used separately each of the four monarch or milkweed data sets
produced above. Guided by the results of our STRUCTURE analysis, we treated A. syriaca as a single
population. We simulated data sets using DIYABC 2.1.0 (Cornuet et al. 2014) to test the three hypotheses
visualized in Figure 2.

We then constructed a random forest of 1000 decision trees, each of which provided a prediction
of which demographic model produced a given set of summary statistics. We then fed our observed data
set into this random forest in order to estimate the best model and approximate its posterior probability.

Data Availability

Data and scripts will be made publicly available on Dryad and Genbank upon acceptance (Genbank
Project ID: PRINA787127).
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Supporting Information
MATERIALS AND METHODS

Milkweed Husbandry

Common milkweed (Asclepias syriaca) seeds were sterilized in 3% sodium
hypochlorite containing 0.05% Tween 20 for 10 min and rinsed with sterile water for 5
times. After being scarified and cold-stratified at 4 °C on moist filter paper for 2 weeks, the
seeds were germinated in a dark warm chamber at 28 °C for 4-5 days. The seedlings were
planted into potting soil (60% lamberts, 20% perlite and 20% turface) (9-cm square pots)
and grown completely randomized in a growth chamber under a 16:8 h day: night cycle at
23 °C with a 60% relative humidity. Older plants were moved to a greenhouse with natural
sunlight.

Genome assembly
Genome sequencing and assembly of A. syriaca:

Genomic DNA was prepared from one individual of Asclepias syriaca and sequenced
using PacBio CLR technology on six SMRT cells. [llumina sequence was generated from
genomic DNA on one lane of Hi-Seq 2 x 150 bp. Kmer analysis was performed using this
[llumina sequence, Jellyfish(Marc¢ais and Kingsford 2011), and Genomescope(Vurture et al.
2017). Hi-C libraries were prepared using the Proximo Hi-C kit for plants (Phase Genomics)
and sequenced on one lane of [llumina 2 x 150 bp. A. syriaca PacBio sequence was
assembled using Falcon v 2017.11.02-16.04 and falcon-kit 1.3.0(Chin et al. 2016) and the
configuration file (fc_run.cfg) (Chin et al. 2016). The assembly was corrected using the
[llumina sequence and Pilon v1.23. Redundancy was removed using Purge Hapolotigs
(Roach, Schmidt, and Borneman 2018). Hi-C was used to scaffold the contigs using 3D-DNA
v 180419 (Dudchenko et al. 2017) and gaps were filled with LR_gapcloser (G.-C. Xu et al.
2019) and corrected PacBio reads.

Genome annotation of A. syriaca:

For repeat identification and masking, LTR_retriever (Ou and Jiang 2018) was used
with outputs from LTRharvest (Ellinghaus, Kurtz, and Willhoeft 2008) and LTR_FINDER (Z.
Xu and Wang 2007) to identify long terminal repeat retrotransposons (LTRs). The LTR
library was then used to hard mask the genome, and RepeatModeler version: open-1.0.11
(Smit, AFA, Hubley, R & Green, P., n.d.) was used to identify additional repetitive elements
in the remaining unmasked segments of the genome. Protein-coding sequences were
excluded using blastx v2.7.1+ (Ellinghaus, Kurtz, and Willhoeft 2008; Altschul et al. 1990)
results in conjunction with the ProtExcluder.pl script from the ProtExcluder v1.2 package
(Campbell et al. 2014). The libraries from RepeatModeler and LTR retriever were then
combined and used with RepeatMasker version: open-4.0.7 (Smit, AFA, Hubley, R & Green,
P., n.d.) to produce the final masked version of the genome.
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Libraries with an insert size of 350 bp were prepared from leaf RNA and sequenced
on one lane of 2 x 100 bp Illumina Hi-Seq. RNA-seq reads were mapped to the genome with
HISAT2 v2.2.0 (Kim, Langmead, and Salzberg 2015). Portcullis v 1.1.2 (Mapleson et al. 2018)
and Mikado v 1.2.2 (Venturini et al. 2018) were used to process and filter the resulting bam
files. Augustus v 3.2.0 (Stanke et al. 2008) and Snap v 2006-07-28 (Korf 2004) were trained
and implemented through the Maker v 2.31.10 pipeline (Cantarel et al. 2008), with proteins
from Swiss-Prot (Boutet et al. 2007) and processed RNA-seq added as evidence. Gene models
were filtered with the following criteria: 1) at least one match found in the Trembl database
(4-17-19) (Boutet et al. 2007) with an E-value less than 1le-20, 2) InterProScan matches to
repeats were removed, 3) genes with an AED score of 1 and no InterPro domain were
removed, and 4) single-exon genes with no InterPro domain were removed. Functional
annotation and classification were performed using BLASTx v2.7.1+ (Altschul et al. 1990)
and InterProScan v5.36-75.0 (Jones et al. 2014). Both genome and annotation completeness
were assessed by BUSCO v3.1.0 (Waterhouse et al. 2017) using the embryophyta lineage.

SNP Calling
Genotyping by sequencing (GBS) of the A. syriaca Core Range data set.

A total of 283 common milkweed plants collected from different places around US and
Europe were germinated and cultivated in our greenhouse. Fresh collected tissue was flash
frozen in liquid nitrogen. The DNA was extracted from the leaf of individuals using a CTAB
(cetyltrimethyl ammonium bromide)-based extraction protocol (adapted from (Fulton,
Chunwongse, and Tanksley 1995) . The DNA was quantified using a CFX384 C1000 Real-
Time thermal cycler (BioRad, Hercules, CA) and normalized to 30-100 ng/ul using a GBFit
Arise Pipetting System (Pacgen Inc., Irvine, CA). Quality checks were performed by agarose
gel observation of 300 ng of undigested and Hindlll digested DNA per sample. Genotyping
was performed following the GBS protocol (Elshire et al. 2011), using ApeKI as the
restriction enzyme. The libraries were sequenced on a HiSeq 2500 system (Illumina Inc.,
USA) with the single-end mode and read length of 101 bp.

Genotyping by sequencing (GBS) of the A. syriaca Broad Range data set.

DNA was extracted from flash-frozen leaf samples using the Qiagen DNeasy Plant
extraction kit. 100ng of sample DNA was used for GBS library preparation using the ApeKI
restriction enzyme, as above. 95 samples and a water control (blank) were pooled per
multiplex and sequenced using 100bp single-end mode on the HiSeq 2500 at the University
of Rochester Medical Center.

Whole Genome Resequencing (WGR) of the A. syriaca Broad Range data set.

DNA was extracted from A. syriaca using Qiagen DNeasy kit and sequenced using Illumina
HiSeq 2x150.

SNP calling of the A. syriaca Core and Broad Range GBS data sets
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Genotyping By Sequencing reads were demultiplexed using Stacks 2.2 (Rochette,
Rivera-Colén, and Catchen 2019; Catchen et al. 2013). Reads from each individual where
then mapped against the A. syriaca genome using Bowtie2 2.3.2 (Langmead and Salzberg
2012), using end-to-end alignment and the “--very-sensitive” alignment settings. Reads
with a mapping quality lower than 5 were discarded using samtools 1.5 (Li et al. 2009). We
then used Stacks in combination with custom scripts to call SNPs and to filter low-quality
individuals and loci from our data set. The scripts will be deposited upon acceptance to
Dryad. Briefly, several individuals in our data set had been identified as possible A. speciosa
or A. syriaca x A. speciosa hybrids. Since A. syriaca and A. speciosa can be difficult to
distinguish when they are not in flower, we did an initial clustering of our data using the
find.clusters function implemented in adegenet 2.1.1 (Jombart 2008; Jombart and Ahmed
2011) in R 3.5.2 (R Core Team 2018). This identified several more putative A. speciosa
individuals, which were removed.

Since A. syriaca can reproduce asexually, we also screened our data set for clones;
i.e., different ramets of the same genet. To do so, we considered all pairs of individuals,
calculating what percentage of their homozygous loci had identical SNP calls. Across all
pairs of individuals, this distribution was bimodal. The vast majority of pairs were normally
distributed around a sequence identity of 0.936, with a small number of comparisons
clearly outside of this distribution, clustered around 1.00. Accordingly, we considered all
pairs of individuals with a sequence identity greater than 0.993 to be clones. Where clones
were found at the same site, we randomly selected a single exemplar, discarding all its
clones from the data set. A few pairs of clones were found in different sites; in this case we
discarded both members of the pair.

Combining the Broad Range and Core Range GBS Data Sets in subsequent analyses
produced strong batch effects between the two data sets (see below), likely because they
were sequenced on different machines, at different times, to different read depths. We
therefore performed the following analyses separately for the two data sets.

After discarding A. speciosa, clones, and individuals for which relatively few loci (i.e.,
less than 80% of the total number of loci) had been sequenced, we then randomly
downsampled the Core Range data set to include a maximum of 5 individuals per site, to
homogenize sampling effort across the sites. Finally, we used Stacks to filter SNPs across
these individuals, including SNPs with observed heterozygosity less than or equal to 0.6
and present in at least 80% of individuals. Where multiple SNPs were found at the same
GBS locus, we randomly excluded all but one. To reduce linkage disequilibrium, we filtered
SNPs so that each was at least 50 kb from its nearest neighbor.

We also used this data set, after excluding invasive individuals collected from
Europe using vcftools 0.1.15 (Danecek et al. 2011), for demographic modelling. This data
set was converted to DIYABC format using vcf2diyabc.py (“DIYABC” 2015).

SNP Calling of the A. syriaca Broad Range WGR data set

We called SNPs using the Genome Analysis Toolkit (GATK) pipeline (McKenna et al.
2010; DePristo et al. 2011; Van der Auwera et al. 2013). Reads from each individual were
mapped against the A. syriaca genome using Bowtie2 2.3.2, with an expected range of inter-
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mate-pair distances of 100-2000 and the “--very-sensitive-local” alignment settings.
Indicies of the genome were first built using both bowtie2 and samtools, and a sequence
dictionary created using Picard 2.18.15 from the Genome Analysis Toolkit (Van der Auwera
et al. 2013; McKenna et al. 2010; DePristo et al. 2011).

We further used Picard to fix mate pair information, mark and remove duplicate
reads, and replace read group names; we then used samtools to index the alignments for
each resequenced individual. We then called polymorphisms for each individual with the
HaplotypeCaller tool, then combined the outputs from each scaffold using
GenomicsDBImport. We then used GenotypeGVCFs to do joint genotyping on all individuals
simultaneously. Indels were removed with the SelectVariants tool, and the remaining SNPs
were filtered using the VariantFiltration tool, discarding SNPs for which any of the
following were true: quality by depth (QD) less than 2; phred-scaled p-value of Fisher’s
Exact Test for strand bias (FS) greater than 60; root mean square of the mapping quality
(MQ) less than 35; mapping quality rank sum test (MQRankSum) less than -12.5; read
position rank sum test (ReadPosRankSum) less than -8. We also filtered out loci with
greater than 5% missing data or a minimum read depth of less than 5, as well as removing
individual genotypes with a minimum quality 5 or less. Finally, SNPs were thinned to be 50
kb apart or more, so as to match the amount of thinning done for the GBS data set.

SNP Calling of the D. plexippus WGR data set

We used the whole genome sequencing data of Zhan et al. (2014) to gather genomic data
from 29 monarch butterflies collected in North America (which individual specimens we
used are given in Supplementary File SA; we chose migratory individuals from the
continental United States and Mexico, excluding non-migratory individuals from South
Florida) (Zhan et al. 2014). We called SNPs using the pipeline described above, aligning
reads from each individual to the D. plexippus genome of Zhan et al. (2011), GenBank
accession GCA_000235995.2 (Zhan et al. 2011) . SNPs were filtered using the same criteria
as for the A. syriaca WGR data, except that SNPs were thinned to be 10 Mb apart or more in
order to produce a similar number of SNPs to those found in the A. syriaca data sets.

Population Genetic Analysis
Fsr analysis and basic population genetic statistics

Using all three A. syriaca data sets, and the D. plexippus data set, we estimated
several population genetic statistics in R, using the adegenet and hierfstat packages
(Goudet 2005; Paradis et al. 2017). We assigned each individual to one of five broad
geographic populations based on its location. Population assignments are shown in Figure
1A. We tested whether this arrangement captured significant genetic structuring using an
AMOVA test, using the pegas method (Paradis 2010) as implemented in poppr 2.8.2
(Kamvar, Tabima, and Griinwald 2014) with 10,000 permutations.

STRUCTURE analysis

To examine clustering and admixture within the A. syriaca populations, we used
STRUCTURE 2.3.4 (Pritchard, Stephens, and Donnelly 2000). We analyzed all three data
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sets using an admixture model within STRUCTURE and all possible values for the number
of clusters (k) between 1 and 20; running 10 replicates for k value. We chose the best
number of clusters using the Evanno method (Evanno, Regnaut, and Goudet 2005) as
implemented in Structure Harvester 0.6.94 (Earl and vonHoldt 2012). We also used
Structure Harvester to convert STRUCTURE output files for use with CLUMPP 1.1.2
(Jakobsson and Rosenberg 2007). We used CLUMPP to assign consistent cluster identities
across our multiple replicates for each k value above 1, using the LargeKGreedy algorithm
with 1000 random input orders and the G’ matrix similarity statistic.

PCA analysis

To complement our STRUCTURE analysis, we also performed a PCA analysis to
examine geographic distribution of genetic structure in a less parameterized way using the
ade4 (Daniel Chessel Anne B. Dufour Jean Thioulouse 2004; Dray and Dufour 2007) and
adegenet (Jombart 2008; Jombart and Ahmed 2011) packages in R. We first scaled each
genotype using the scaleGen() function, replacing missing data with the mean allele
frequency for that SNP, and then performed a Principle Components Analysis on these
scaled allele frequencies.

Demographic modelling

To investigate the recent demographic history of monarchs and common milkweed,
we used an Approximate Bayesian Computation (ABC) modelling approach, using a
Random Forest (RF) algorithm for model selection and parameter estimation. Briefly, ABC
modelling uses simulated data sets to estimate posterior probabilities when the likelihoods
of observed data given specific models are difficult to calculate (Sisson, Fan, and Beaumont
2018; Beaumont, Zhang, and Balding 2002). Genetic data sets are simulated under a
number of different demographic models, and the simulated data sets closest to the
observed data are used to estimate the posterior probabilities of individual models and
distributions of parameters of interest. We used the Random Forest approach described by
Pudlo et al. and Raynal et al., which implements a machine learning algorithm to do model
selection and parameter estimation (Raynal et al. 2019; Pudlo et al. 2016). The RF
approach improves upon traditional ABC modelling in that ABC-RF is insensitive to the
choice of summary statistics, and less computationally expensive as well.

As our observed data, we used the four monarch and milkweed data sets described
above. Guided by the results of our STRUCTURE analysis, we treated A. syriaca as a single
population. We simulated data sets using DIYABC 2.1.0 (Cornuet et al. 2014) to test the
following hypotheses:

1. Have A. syriaca populations experienced a bottleneck within past decades,
potentially due to the increased use of herbicide in crop fields as described by, e.g.,
Pleasants (2017)?

2. Have A. syriaca populations expanded in the past centuries, potentially due to the
conversion of native forests and prairies to agriculture land, as suggest by, e.g.,
Brower (1995)?

3. Have A. syriaca populations expanded in prior millenia, potentially due to the retreat
of the glaciers after the last glacial maximum (CITE)?
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Considering every possible combination of the three hypotheses produced 8 demographic
scenarios. We used DIYABC to simulate 80,000 data sets across all 8 demographic
scenarios. For each scenario, population sizes were selected from uninformative prior
distributions (see Table Da for details), while event times were chosen from uniform
distributions. We chose event times to correspond to 1945-2015 for the recent bottleneck,
1751-1899 for the recent expansion, and 5-12 thousand years ago for the ancient
expansion. A. syriaca plants flower in their second growing season (Bhowmik and Bandeen
1976), so we assumed a 2 year generation time for this species. D. plexippus has 4-5
generations per year, so we assumed a 0.2-0.25 year generation time for that species,
which produces the values shown in Table Db. We outputted all 4 summary statistics
calculated by DIYABC, which would be used for ABC-RF model selection, alongside the
linear discriminant axes that were the combinations of those summary statistics that best
distinguished the demographic models.

Following Pudlo et al. (2016), and using the abcrf package in R, we performed a
number of validations of our ABC-RF approach: We first tested the compatibility of our
models with our observed data by projecting our observed data, along with the
simulations, along the linear discriminant (LD) axes that best distinguished the 8 models
given the set of 4 summary statistics (Pudlo et al. 2016; Raynal et al. 2019). We then
constructed a random forest of 1000 decision trees, each of which provided a prediction of
which demographic model produced a given set of summary statistics. To test whether we
had produced a sufficient number of simulations, we compared the prior error rate of this
random forest to that of a second random forest constructed using only 80% of the 80,000
simulations. Finally, to test whether 1000 decision trees was a sufficient number, we
calculated the prior error rate using forests of different size, from 40-1000.

We then fed our observed data set into this random forest in order to estimate the
best model and approximate its posterior probability. Because the posterior probability of
any single model was low, we produced separate random forests to approximate posterior
probabilities for each of the three hypotheses listed above, i.e., by grouping together all
models that had a recent bottleneck vs all models that did not, etc.

We then used the approach of Raynal et al. (2019), employing the ABC-RF approach
to estimate parameter values (Raynal et al. 2019). We first used DIYABC to simulate 10,000
data sets for the single best demographic scenario. We then used this simulation set to
estimate posterior medians and quantiles of a number of demographic parameters using
ABC-RF.

RESULTS
Genome assembly

Genome sequencing and assembly of A. syriaca:
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PacBio sequencing resulted in over 300X coverage of the expected genome size of
420 Mb[1] . The sequence was assembled into 748 contigs with a total length of 362 Mbp
and an N50 of 1.9 Mbp. Kmer analysis supports this genome size. After haplotig removal,
approximately 91% of the sequence was scaffolded into 11 sequences representing
pseudomolecules. The final assembly has a length of 317 Mbp and captures 96.8% of the
BUSCO set.

Genome annotation of A. syriaca:

Approximately 57% of the genome consists of repetitive sequences. A total of
42,111 genes were predicted with an average length of 2,578 bp. Approximately 93% of the
BUSCO protein set was identified in the annotation. Putative functions were assigned to
99% of the gene set.

SNP Calling

Collection sites and sample sizes for each data set are shown in Figure 2. The
number of individuals and loci, and the amount of missing data for each SNP data set is
shown in Table 1.

Figure SI1: Sample scheme for the Broad Range milkweed data sets
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Filled circles show collection localities for the Broad Range GBS data set; the number inside
the circle shows the number of samples from each site included in this data set. Sites with a
black border around the circle indicate that one individual from that location was used in
the Broad Range WGR data set. Hollow circles indicate that one individual from that locality
was used for the Broad Range WGR data set only. Sites are colored according to the
population to which they were assigned: Green = Northwest, Purple = Southwest, Teal =
Southeast, Red = Northeast.

Figure SI2: Sampling scheme for the Core Range milkweed data set
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Squares show collection localities; the number inside the square shows the number of
samples from each site included in the population genetic data set. Squares in the Atlantic
ocean represent European collection sites. Sites are colored according to the population to
which they were assigned: Green = Northeast, Blue = Southeast, Red = Europe.

Figure SI3: STRUCTURE results for the Core Range GBS data set
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On the left are the results for K=2 (top) to K=10 (bottom); on the right are the results for
K=11 to K=20. The thin vertical bars represent individual milkweeds, and the three
populations (left-to-right northeast, southeast, and European) are separated by thin white
bars. Each bar is colored according to the cluster(s) to which it belongs. The optimal model
was, K=5, which shows a distinct cluster in Europe, and all US milkweeds largely belonging

to the same cluster.

Figure SI4: STRUCTURE results for the Broad Range GBS data set
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On the left are the results for K=2 (top) to K=10 (bottom); on the right are the results for
K=11 to K=20. The thin vertical bars represent individual milkweeds, and the four
populations (left-to-right northwest, southwest, northeast, and southeast) are separated by
thin white bars. Each bar is colored according to the cluster(s) to which it belongs.
Regardless of K-value, the ancestry of milkweeds in this data set is nearly homogenous
across the range.

Figure SI5: STRUCTURE results for the Broad Range WGR data set
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On the left are the results for K=2 (top) to K=10 (bottom); on the right are the results for
K=11 to K=20. The thin vertical bars represent individual milkweeds, and the four
populations (left-to-right northwest, southwest, northeast, and southeast) are separated by
thin white bars. Each bar is colored according to the cluster(s) to which it belongs.
Regardless of K-value, the ancestry of milkweeds in this data set is nearly homogenous
across the range.

Figure SI5.5: STRUCTURE-produced likelihoods of our data sets under different K-
values
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Likelihoods of our data (y-axis) under each K-value scenario (x-axis) are shown here. In all
three data sets, there is no strong improvement in likelihood from increasing K-values past
K=1. The K-value shown in red is the one chosen by the Evanno method; however, as we
discuss in the text, the Evanno method is unable to select K=1, which we consider to best
capture the data due to other lines of evidence.

Table 1.1: Population genetics of A. syriaca and D. plexippus.

Data Set SNPs Missing | Population | n Ho He Fis Fst
data

Broad 891 5.2% Total 96 0.074 [0.087 |[0.147 |[0.008(

Range GBS 1)



https://doi.org/10.1101/2022.02.25.481796
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.25.481796; this version posted February 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Northwest | 25 0.076 |[0.089 |0.107

Southwest |21 0.077 |0.087 |0.085

Northeast |25 0.071 |0.085 |0.120

Southeast |25 0.073 |[0.087 |0.103

Broad 885 3.4% Total 48 0.039 |0.050 |0.222 |-
Range 0.002(
WGR 2)

Northwest | 6 0.044 |0.053 ]0.102

Southwest | 16 0.041 |0.059 |0.242

Northeast |10 0.035 |10.045 ]0.144

Southeast |16 0.036 |0.044 ]0.132

Core Range | 926 4.3% Total 87 |0.076 [0.088 |0.134 |0.039(
GBS 1)

Northeast |47 0.081 |[0.080 |0.083

Southeast |32 0.085 |0.092 |0.063

Europe 8 0.062 |[0.080 |0.176

Monarch 11,703 | 3.6% Total 28 0.109 [0.124 |0.125 |n/a

1: AMOVA, p < 1*¥10-
2: AMOVA, p = 0.47
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n: Sample size. Ho: Observed heterozygosity. He: Expected heterozygosity. Fis: Proportion of
genetic variation in the population found in an individual. Fst: Proportion of total genetic
variance partitioned among populations.

Table 1.2: Population structure of A. syriaca.

Data Set Pairwise comparison Pairwise Fst Pairwise Fst
(GBS) (WGR)
Broad Northwest vs Southwest 0.009 -0.021
Range
Northwest vs Northeast 0.019 0.004
Northwest vs Southeast 0.017 -0.000
Southwest vs Southeast 0.009 0.002
Southwest vs Northeast 0.011 0.008
Northeast vs Southeast 0.002 -0.000
Core Range | Northeast vs Southeast 0.009
Northeast vs Europe 0.082
Southeast vs Europe 0.081

GBS: Data from Genotyping By Sequencing approach. WGR: Data from Whole Genome
Resequencing approach.

Population Genetic Analysis

Fsr analysis and basic population genetic statistics

Population genetic statistics for each of the populations are shown in Tables 1.1 and
1.2. The genetic differentiation of the subpopulations was low, but statistically significant
for the GBS data sets (Fst = 0.008 for Broad Range; 0.052 for Core Range; AMOVA p < 1*10-4
for both). For the Broad Range WGR data set, genetic differentiation was even lower, and
not significant (Fst = -0.002, or effectively zero, AMOVA p = 0.47), possibly due to the
smaller number of individuals in each population. In the Core Range GBS data set, the
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greatest pairwise Fst was between the invasive European population and native
populations; pairwise Fst was lower between the northeast and southeast populations by a
factor of 10. In the Broad Range GBS data set, the greatest pairwise Fst was between the
Northwest population and the two eastern populations, although even this was relatively
low, at 0.02. Within each dataset, heterozygosity was relatively constant among
populations, with the exception that both observed and expected heterozygosity were
lower in Europe than in the other populations in the Core Range data set, showing reduced
genetic diversity in the invasive range of A. syriaca. The A. syriaca specimen chosen for
genome sequencing was an invasive, European milkweed, on the logic that the invasion
process had likely led to more inbreeding than is usual in other A. syriaca populations, and
the reduced heterozygosity of this population suggests that this was indeed the case. The
reduced heterozygosity is beneficial for genome assembly.

STRUCTURE analysis

Applying the Evanno method to our STRUCTURE results resulted in an optimal
number of k = 5 (Figure C) for the Core Range Data Set. Examination of the STRUCTURE
results shows a very similar pattern for all values between k = 2 and k = 5: a single cluster
dominates all individuals from North America, and a second cluster is found in a number of
invasive A. syriaca collected from Europe (Figure SI3). Other clusters, when present,
account for very little of the ancestry of any A. syriaca specimens. For the Broad Range data
sets, the Evanno method selected k = 11 for the GBS data set and k = 2 for the WGR data set.
However, the Evanno method is unable to consider k = 1 as the best cluster, since it uses
changes in the likelihood of the data between k = x and k = x-1. Visualizing the cluster
results showed patterns in which each genetic cluster was found in every individual to a
similar extent, which suggests that there is minimal geographic structuring within the
Broad Range data set.

PCA analysis
Figure SI6: PCA plots for the Core Range GBS data set
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PCA plots of the first six PC axes (left: PC1 on the x-axis, PC2 on the y-axis; middle: PC3 and
PC4; right: PC5 and PC6). Points are colored according to their population: green is
northeast, blue is southeast, red is Europe. Eigenvalues are show in the inset.

Figure SI7: PCA plots for the Broad Range GBS data set
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PCA plots of the first six PC axes (left: PC1 on the x-axis, PC2 on the y-axis; middle: PC3 and
PC4; right: PC5 and PC6). Points are colored according to their population: green is
northwest, purple is southwest, red is northeast, and teal is southeast. Eigenvalues are
show in the inset.

Figure SI8: PCA plots for the Broad Range WGR data set
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PCA plots of the first six PC axes (left: PC1 on the x-axis, PC2 on the y-axis; middle: PC3 and
PC4; right: PC5 and PC6). Points are colored according to their population: green is
northwest, purple is southwest, red is northeast, and teal is southeast. Eigenvalues are
show in the inset.

For all three data sets, none of the first six PC axes clearly separate any population
from any other(s); although some PC axes show some degree of geographic structure, there
is always a considerable degree of overlap between the PC values of the various
populations.
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For the Core Range GBS data set (Figure SI6), PC1 distinguishes several individuals
from the European population from the North American population, while PC2, and to a
lesser extent PC3, show a limited degree of separation between northern and southern
populations.

For the Wide Range GBS data set (Figure SI7), PC1 largely separates several
northwestern individuals from the remainder of the data set, possibly indicating
introgression from A. speciosa, which is known to hybridize with A. syriaca in the
northwestern part of the A. syriaca range, and PC2 and PC3 somewhat distinguish western
and eastern populations, but the other PC axes show very little geographic patterning.

For the Wide Range WGR data set (Figure SI8), PC1 and PC2 separate a single
individual each from the remainder of the individuals in the data set. Little geographic
signal is visible in the remaining PC axes.

The insets show the eigenvalues for each principal component; these decline quite
slowly, indicating that each individual PC axis explains relatively little of the variation in
genotype. The exception is PC1 of the Broad Range WGR data set, which distinguishes one
southwestern individual from the remaining milkweeds, perhaps also representing
introgression from another species.

Demographic Modelling

Projecting our observed data onto the LDA axes of our simulated data indicated that
our set of demographic models were realistic, as the observed data fell within or near the
cloud of simulated data points along all LDA axes (Figure SI9).

Figure SI9: Our simulations captured the characteristics of our observed data set.
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LDA plots for Asclepias syriaca data sets (upper left: Broad Range GBS; upper right: Broad Range WGR; lower
left: Core Range WGR), and for D. plexippus (lower right). Small points represent simulated data sets, colored
according to the demographic model used to simulate them. The large red point represents our observed data
set.

Per Pudlo et al. (2016), we also confirmed that we produced enough simulations, as the
prior error rate decreased only slightly by the addition of the last 20% of simulations (table
SI3 below). In fact, we found a few cases in which error rates went up slightly after adding
the final 20% of the data (by 0.3% or less), indicating that we are in the regime in which
changes in error rate are determined by random fluctuations, and confirming that adding
more simulations will not further improve the accuracy of this method.

Table SI3: 10,000 simulations per demographic scenario was sufficient.

Prior Error Rates

Data set: A. syriaca (W&M | A. syriaca (W&M | A. syriaca D. plexippus
GBS) WGR) (Cornell)

Simulations 80% 100% | 80% 100% |[80% 100% | 80% 100%
used

Identifying 74.04 | 74.05 |75.18 |7532 |[74.62% |74.59 |69.22 |69.32
demographic | % % % % % % %
model
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Identifying 38.92 38.84 [39.56 |39.76 |38.72% |38.75 |31.50 |31.55
presence/abs | % % % % % % %
ence of recent

bottleneck

Identifying 38.05 |38.17 |38.59 |[38.33 38.42% | 38.39 |[34.27 |34.36
presence/abs | % % % % % % %
ence of recent

expansion

Identifying 28.22 28.08 |[28.65 |2895 |[28.59%|28.41 |[29.82 |29.78
presence/abs | % % % % % % %
ence of

ancient

expansion

Finally, we followed the recommendation of Pudlo et al. (2016) for determining whether

we had used enough decision trees in our Random Forest algorithm. To do this, we

repeated the RF algorithm several times using fewer trees, recalculating the prior error

rate each time. If the error rate stays nearly flat as we approach the maximum number of

trees, this means that we used an appropriate number of trees, which was indeed the case

for all three data sets (Figure SI10).

Figure SI10: 1000 trees in the Random Forest was a sufficient number.
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The single best model for milkweeds differed slightly among our three datasets. For
the Broad Range GBS data set, the single best model included both ancient and century-
scale expansions, but no recent bottleneck; however, this model had a posterior probability
of only 0.15. For the Broad Range WGR data set, the single best model was the one that
included both the two expansions, but also the bottleneck (0.28). For the Core Range data
set, the single best model was the same as for the Broad Range GBS data set, but with
higher posterior probability (0.85), including recent expansion and ancient expansion, but
no recent bottleneck. For the monarch data set, the single best model includes a recent and
ancient expansion, but no recent bottleneck (0.67 posterior probability), the same model
chosen in both A. syriaca GBS data sets. Due to the fairly high prior error rates when
estimating individual models, we focus our attention on estimating the presence or absence
of each demographic event separately; these results are described in the main text.

Model parameters estimated with the ABC-RF approach were nearly identical to
their prior distributions, suggesting that our dataset does not have sufficient resolution for
parameter estimation.

Table 2: Model selection by ABC-RF

D. plexippus A. syriaca (Cornell | A. syriaca (W&M | A. syriaca (W&M
dataset) GBS dataset) WGR dataset)
RF Posterior | RF Posterior | RF Posteri | RF result | Posteri
result | Probabili | result [ Probabili | result |or or
ty ty Probab Probab
ility ility
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Supplementary File SA
We used the following D. plexippus libraries from Zhan et al. (2014):

NCBI Library Collection locality

SRR1548504 MA, USA
SRR1548506 MA, USA
SRR1548571 MA, USA
SRR1548575 MA, USA
SRR1548576 MA, USA
SRR1548577 MA, USA
SRR1548578 MA, USA
SRR1548572 NJ, USA
SRR1548573 NJ, USA
SRR1548574 NJ, USA
SRR1551995 CA, USA
SRR1552224 CA, USA
SRR1552225 CA, USA
SRR1552204 Mexico
SRR1552205 Mexico
SRR1552206 Mexico
SRR1552207 Mexico
SRR1552208 Mexico
SRR1552209 Mexico
SRR1549524 North FL, USA
SRR1549525 North FL, USA
SRR1549526 North FL, USA
SRR1552001 North FL, USA
SRR1552222 North FL, USA
SRR1552223 North FL, USA
SRR1549527 TX, USA
SRR1549528 TX, USA
SRR1549529 TX, USA
SRR1980588 TX, USA
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Supplementary File 2: Identifying Batch Effects

We identified SNPs from the combined Cornell and W&M datasets using the same
stacks pipeline described in the main text. This resulted in 872 SNP markers from 181 A.
syriaca individuals. These markers were then used in a STRUCTURE analysis identical to
that described in the main text, with the exception that we only analyzed possible numbers
of clusters between K= 2 and K = 10.

STRUCTURE results were processed and visualized using the same pipeline
described in the main text. The results are shown below in Figure S2.1.

For many values of K, the differences between the STRUCTURE results for the
Cornell data set and the W&M data set were subtle: for instance, for K = 2, Cornell
individuals had approximately 25-35% ancestry from Cluster 1, while W&M individuals
had around 35-35% ancestry the same cluster (Figure S2.1). We therefore also used a
second clustering method implemented in the adegenet 2.1.2 package (Jombart 2008,
Jombart and Ahmed 2011) in R, which uses a K-means approach to assign individuals to
one of K clusters, with the appropriate K chosen based on the Bayesian Information
Criterion.

Runs with K = 2 and K = 3 produced the two lowest BICs, which were nearly equal.
Both runs produced similar results, with the cluster assignments almost exactly mirroring
membership in the Cornell or W&M datasets (Table S2.1). The difference between the two
is that at K = 3, some European individuals from the Cornell data set were split off from the
remainder of the Cornell individuals (results which were also seen in the STRUCTURE
results (Figure S2.1).

Table S2.1: Adegenet assigns individuals from different data sets to different clusters

Cluster Assignment W&M individuals Cornell individuals
K=2,cluster 1 90 1

K =2, cluster 2 4 86

K =3, cluster 1 5 82
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K =3, cluster 2 0 5

K =3, cluster 3 89 0

Figure 2.1: Batch effects appear when attempting to combine Cornell and W&M data
sets.
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The thin vertical bars represent individual milkweeds, divided into seven blocks, from left to right: Cornell
Northeast, Cornell Southeast, Cornell Europe, W&M Northeast, W&M Southeast, W&M Northwest, W&M
Southwest. Each bar is colored according to the cluster(s) to which it belongs. The top graph shows the
results when Structure assumes 2 clusters, then 3 clusters, etc, with the bottommost graph showing k=10
clusters. Several of the European individuals form a distinct cluster for all values of k. Note the differences in
which clusters are common in North American milkweeds in the Cornell data set vs the W&M data set.
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