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Abstract 

In intimate ecological interactions, the interdependency of species may result in correlated demographic 
histories. For species of conservation concern, understanding the long-term dynamics of such interactions 
may shed light on the drivers of population decline. Here we address the demographic history of the 
monarch butterfly, Danaus plexippus, and its dominant host plant, the common milkweed Asclepias 
syriaca, using broad-scale sampling and genomic inference. Because genetic resources for milkweed have 
lagged behind those for monarchs, we first release a chromosome-level genome assembly and annotation 
for common milkweed. Next, we show that despite its enormous geographic range across eastern North 
America, A. syriaca is best characterized as a single, roughly panmictic population. Using Approximate 
Bayesian Computation via Random Forests (ABC-RF), a machine learning method for reconstructing 
demographic histories, we show that both monarchs and milkweed experienced concurrent range 
expansion during the most recent recession of North American glaciers ~12,000 years ago. Our data 
identify an expansion of milkweed during the large-scale clearing of eastern forests (~200 years ago) but 
was inconclusive as to expansion or contraction of the monarch butterfly population during this time. 
Finally, our results indicate that neither species experienced a population contraction over the past 75 
years. Thus, the well-documented decline of monarch abundance over the past 40 years is not visible in 
our genomic dataset, reflecting a possible mismatch of the overwintering census population to effective 
population size in this species.  

Introduction 

Despite the critical importance of understanding past population dynamics, especially for species of 
conservation concern, inferring demographic histories can be extremely challenging. Novel genomic 
methodologies based on sampling extant individuals and interpretation of genomic patterns of diversity 
have recently provided insight into the demographic histories of species ranging from protists to humans 
(Schwabl et al. 2021; Lepers et al. 2021). Over the past 25 years, conservationists have become 
increasingly alarmed by the decline of the monarch butterfly’s overwintering population (Thogmartin et 
al. 2017; Pleasants et al. 2017; Lincoln P. Brower et al. 2012). Despite significant academic and public 
energy focused on understanding and reversing this, the exact cause of this decline is still a matter of 
debate. Multiple factors have been proposed to underlie the monarch’s decline, including a decrease in the 
abundance of the monarch's food source (primarily a single species of milkweed – common milkweed), 
reduced abundance or quality of nectar plants, climate change, and destruction of their overwintering site 
(Haan and Landis 2019; Boyle, Dalgleish, and Puzey 2019; Inamine et al. 2016; Zylstra et al. 2021) .  
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Here we address correlated demographic changes of monarchs and milkweeds over three hypothesized 
critical events during the Holocene. Placing this recent decline in a historical context will help us begin to 
address fundamental questions about the relationship between milkweed, monarchs, and humans. For 
instance, did colonizing Europeans inadvertently increase the size of the monarch population by 
massively expanding milkweed habitat through deforestation and ploughing of prairies?  Does the recent 
decline of the overwintering census population follow from an artificial high? Or, does it represent a 
decline to levels lower than those seen before European colonization? And finally, are monarch and 
milkweed population demographics matched, perhaps indicating that milkweed is the limiting resource 
for monarch butterfly populations? Providing insight into these questions has remained intractable to date. 
However, recent advances in population genetic approaches and machine learning now allow us 
unprecedented ability to reconstruct demographic histories of populations. To reconstruct the 
demographic histories of monarchs and milkweed, here we use Approximate Bayesian Computation with 
Random Forests (ABC-RF) (Pudlo et al. 2016). This approach has recently been employed by a number 
of population genetic studies on a diverse array of organisms, including humans (Estoup et al. 2018), 
insects (Lombaert et al., n.d.), plants (Nevado et al. 2020), chordates (Smith et al. 2018), and pathogens 
(Schwabl et al. 2021), and it has been used to reconstruct biological invasions and other demographic 
events happening within the past few decades or centuries (van Boheemen et al. 2017; Vallejo-Marín et 
al. 2021; Fraimout et al. 2017). 

Accordingly, we use the ABC-RF approach to test how the last glacial retreat, the ploughing-up of the 
prairie and deforestation, and finally expansion of industrial agriculture impacted monarch and milkweed 
populations. Specifically, we addressed the following questions: (1) Have A. syriaca and D. plexippus 
populations expanded in prior millennia (12-5 kya), potentially due to the retreat of the glaciers after the 
last glacial maximum? (2) Have A. syriaca and D. plexippus populations expanded in the past centuries 
(1751-1899), potentially due to the conversion of native forests and prairies to agriculture land, as suggest 
by, e.g., Brower (1995) (L. P. Brower 1995)? (3) Have A. syriaca and D. plexippus populations 
experienced a bottleneck along with the industrialization of agriculture within past decades (1945-2015), 
potentially due to the increased use of herbicide in crop fields as described by, e.g., Pleasants (Pleasants 
and Oberhauser 2013, 2017)?   

To facilitate answering these questions, we assembled a new genome for A. syriaca. Previously existing 
genomic resources are limited to low coverage assemblies and transcriptomes. Next, we sampled and 
conducted genomic analyses for 231 milkweed isolates from across the entire native range. Finally, using 
this data set, we test a series of explicit hypotheses using ABC-RF to ask how these climate and 
anthropogenic events have impacted population change of these iconic species. We conducted these 
analyses in parallel on milkweed and monarchs, using previously published whole-genome sequencing 
data from (Zhan et al. 2014) for the latter. As such, our analysis addresses whether the  demographic 
histories of this intimate species interaction are matched or independent.  
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FIGURE 1: A: Our sampling scheme 
covers most of the North American range 
of A. syriaca. Circles represent sites 
sampled for the Broad Range data sets, 
while squares represent sites sampled for 
the Core Range data sets. Sites are colored 
according to the rough geographic zones to 
which we assigned them for the purposes 
of calculating Fst. We assigned the Core 
Range site in Illinois to the southeastern 
population instead of the southwestern 
population, since otherwise we would have 
only one locality representing a population 
in that data set. The gray region is an 
approximation of the range of A. 
syriaca based on specimen records in GBIF 
(“GBIF” 2021). 

B: STRUCTURE found no evidence of 
population structure among our milkweed 
specimens. The thin vertical bars represent 
individual milkweeds, and the four 
geographic zones are separated by thin 
white bars. Each bar is colored according 
to the cluster(s) to which it belongs. We 
present the results for the simplest analysis, 
in which STRUCTURE assumes K=2 
clusters, and the analysis chosen by the 
Evanno method as optimal, K=11 (Evanno, 
Regnaut, and Goudet 2005).  These results 
show strong genetic homogeneity across 
milkweed’s range. These data are from the 
Broad Range GBS data set; our other data 
sets produced similar results and are shown 
in the Supporting Information for all K-
values from 2-20. 

C: PCA demonstrates weak geographic 
signal among some subsets of SNPs. Shown here are the first two principal components axes of allele 
frequencies, with each point representing an individual milkweed from the Broad Range GBS data set. 
Points are colored according to origin using the same color scheme as in Fig. 1A. The inset shows the 
eigenvalues for each principal component; these decline quite slowly, indicating that each individual PC 
axis explains relatively little of the variation in genotype. PC plots for additional axes, and for other data 
sets, show similarly weak levels of geographic signal, and are given in the Supporting Information. 
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Results 

Genome Assembly 

Using PacBio and Hi-C libraries, we assembled a chromosome-level genome of 317 Mbp for A. syriaca, 
mostly assembled into 11 large chromosome-length molecules. A total of 42,111 genes were predicted, 
capturing 93% of the BUSCO set. Further details of this assembly are provided in the Supporting 
Information. 

SNP Calling 

We gathered four different population genetic data sets for D. plexippus and A. syriaca: 

For common milkweed: 
(1) Broad Range WGR: We used a skimming Whole Genome Resequencing (WGR) approach at low 
coverage to identify approximately 900 SNPs from 48 plants collected from across the North American 
range of this species. 

(2) Broad Range GBS:  We used a Genotyping by Sequencing (GBS) approach to sequence and call 
approximately 900 SNPs from 96 plants collected from across the North American range of this species. 

 (3) Core Range GBS: We used a GBS approach to sequence and call approximately 900 SNPs from 87 
plants, primarily collected in the eastern portion of this species’ range. This data set also includes a 
number of individuals collected from eastern Europe, where A. syriaca is an invasive species. 

We analyzed the two different GBS datasets separately as they were produced in different labs and had 
different sequencing coverages.  

For monarch butterflies, we used: 

4) the whole genome sequences published by Zhan et al. (2014). From these we called approximately 
11,700 Single Nucleotide Polymorphisms (SNPs) from 28 butterflies collected across the North American 
migratory range of this species. 

We present the results from both species as parallel analyses. Sequencing localities for each milkweed 
data set are shown in Figure 1A, and more detailed results of the SNP calling process are provided in the 
Supporting Information. 

	
Figure 2: Support for each of our hypothesized demographic events in our three milkweed and one 
monarch data sets. The Random Forest consensus on whether each event is present in the population 
history of that species is given, along with the estimated posterior probability of each in 
parentheses. Posterior probabilities below 0.80 were considered “inconclusive”; posterior 
probabilities for all demographic events are given in Table S2.  

	

Post-glacial  
expansion (5-12 kya)

Bottleneck with industrial
agriculture (1945-2015 AD)

agriculture (1751-1899 AD)
Expansion with pre-industrial

Expansion 
Present (0.94)

Inconclusive

Inconclusive

Broad range 
GBS data set

Expansion 
Present (0.99)

Expansion 
Present (0.87)

Inconclusive

Broad range 
WGR data set

Expansion 
Present (0.98)

Expansion 
Present (0.99)

Bottleneck 
Absent (0.90)

Core range GBS 
data set

Expansion 
Present (0.95)

Inconclusive

Bottleneck 
Absent (0.80)

Monarch

Tim
e

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481796doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481796
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Population Genetic Analysis 

All three of our milkweed data sets showed little genetic structure across their ranges. Global FST ranged 
from -0.002 (Broad Range WGR data set) to 0.039 (Core Range GBS data set), indicating a low amount 
of geographically sorted population structure. FST values between pairs of populations were similarly low, 
with the exception that the invasive European population was more distinct from the North American 
populations, with pairwise FST values around 0.08. We further interrogated this genetic structure using 
two approaches.  

 In the first approach, we used STRUCTURE to assign each individual ancestry to 2 or more 
subpopulations.  It is important to note that STRUCTURE cannot be used to evaluate the fit of a single 
panmictic population as the optimal number of genetic clusters is determined based on the change in the 
log-likelihood between k-values [see (Janes et al. 2017)]. Regardless of the number of subpopulations 
chosen a priori, for every subpopulation, STRUCTURE assigned all individuals roughly the same degree 
of ancestry in that subpopulation, regardless of their geographic location (visualized in Figure 1B for the 
Broad Range GBS data set). This was true across all three data sets; the one major exception was that in 
the Core Range GBS data set, the invasive European population was quite distinct from the North 
American populations. STRUCTURE results for all three data sets are provided in the Supporting 
Information. 

 Secondly, to circumvent the inability of STRUCTURE to evaluate k=1,  we took a less-
parameterized approach by performing a Principal Components Analysis (PCA) on the allele frequencies 
of the SNPs in each data set. This approach identifies groups of covarying SNPs. We found a slight 
degree of geographic signal in several of the most important PC axes. For instance, in the Broad Range 
GBS data set (visualized in Figure 1C), PC1 largely separates several northwestern individuals from the 
remainder of the data set, possibly indicating introgression from A. speciosa, which is known to hybridize 
with A. syriaca in the northwestern part of the A. syriaca range. PC2 shows a slight amount of geographic 
signal, with western populations tending toward positive values and eastern populations tending toward 
negative values, but individuals from all four regions are well mixed in principal component space, 
indicating that this geographic signal is quite weak. 

 All three datasets support the conclusion that, in North America, A. syriaca is a single large 
metapopulation with little geographic structure. Our results parallel the findings of Zhan et al. (2014) that 
monarch butterflies, even between the eastern and western migratory populations, also lack geographic 
population genetic structure in North America. Additional information on each data set is given in the 
Supporting Information. 

 

Demographic modelling 

We next used all four data sets (3 milkweed and 1 monarch) to estimate the recent demographic history of 
the two species. We used an Approximate Bayesian Computation (ABC) modelling approach, using a 
Random Forest (RF) algorithm for model selection.  

Briefly, ABC modelling in population genetics uses simulated data sets to estimate posterior probabilities 
of past demographic events (Sisson, Fan, and Beaumont 2018), and the Random Forest approach 
described by Pudlo et al. (2016) (Raynal et al. 2019; Pudlo et al. 2016) which implements a machine 
learning algorithm to conduct the model selection. The ABC-RF approach allowed us to estimate 
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posterior probabilities of each of the three events having occurred, separately for each data set. Additional 
details of these analyses may be found in the Supporting Information. 

We found substantial consistency in the model predictions both across our three milkweed data 
sets and when comparing monarch and milkweed population histories. All three milkweed data sets show 
a post-glacial expansion with >0.9 posterior probability; indeed, this precisely matches the same strong 
prediction for monarchs (Figure 2). 

In milkweed, we found evidence for a centuries-scale expansion alongside agriculture in the 18th 
and 19th centuries. The Core Range GBS and Broad Range WGR data sets showed strong support for the 
presence of such a population expansion (0.99 and 0.87 posterior probabilities, respectively). The Broad 
Range GBS data set was inconclusive (posterior probability of 0.61 that such an expansion did not exist). 
We consider the Broad Range GBS dataset as inconclusive as it did not have enough evidence to shift the 
posterior probability far from the prior probability of 0.50. The monarch data were also inconclusive on 
the presence of an expansion during this period (0.68 posterior probability in favor of an expansion). 

 The absence of a recent bottleneck alongside the industrialization of agriculture was weakly 
supported in the monarch data set (0.80) and in the Core Range GBS milkweed data set (0.90), but the 
other two milkweed data sets were inconclusive, with no support for either the presence or the absence of 
a recent bottleneck (Figure 2). 

Discussion 

Understanding the impact of the Anthropocene on the natural world is of fundamental importance for 
conservation efforts. Until recently, elucidating patterns of population change in the recent past has been 
very difficult. In this study we employ an ABC-RF approach to study the near-term demographic history 
of monarchs and milkweeds. This approach was chosen in part because it has proven useful in other 
systems in elucidating very recent demographic events, within decades or centuries (Vallejo-Marín et al. 
2021; Fraimout et al. 2017). In addition, this approach requires fewer simulated datasets to train the 
classifier than are necessary for traditional ABC, and it is much more robust to choices of summary 
statistics (Pudlo et al. 2016; Csilléry, François, and Blum 2012). 

We tested for changes in effective population size of the monarch butterfly and its primary food 
source, common milkweed, during three events: the most recent retreat of the glaciers, European 
settlement, and industrial agriculture. Previously, using PSMC (Pairwise Sequentially Markovian 
Coalescent) model, a method capable of testing for ancient events but less fit for resolving recent events, 
researchers demonstrated a population expansion of monarch butterflies after the last glaciation (Zhan et 
al. 2014).  Using ABC-RF, we likewise detect this monarch expansion and also observe an expansion of 
common milkweed post-glaciation. The low levels of population structure in common milkweed likely 
occur because the modern range of A. syriaca is a result of rapid (i.e., in the last 5-12 kya) invasion of 
central and eastern North America after the retreat of the glaciers. In this scenario, the rapid expansion 
combined with A. syriaca being an obligate outcrosser with long-distance dispersal ability, has prevented 
the formation of extensive population structure. 

We provide population genetic evidence that common milkweed increased in prevalence during the 
18th and 19th centuries. The most obvious cause for this is the clearing of forests and prairies to make 
way for agricultural land, a disturbance-rich environment in which A. syriaca thrives (at least, until the 
advent of herbicides). The increase observed in our data has previously been suspected, and there are two 
major hypotheses for how this increase affected monarch butterflies. The first hypothesis posits that A. 
syriaca has always been the most important host plant for monarchs, even before A. syriaca's population 
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boom. As A. syriaca increased in abundance in a newly-disturbed landscape, monarchs increased in 
abundance alongside them. Thus, according to this hypothesis, the current size (and possible geographic 
extent) of the monarch migration was greater in the 18th-20th centuries than in the 17th century and prior 
(Brower 1995; a more radical form of this hypothesis suggests that the migratory behavior itself was 
absent before the 18th century, Vane-Wright 1993) (L. P. Brower 1995; Vane-Wright 1993). However, 
although A. syriaca has increased in abundance due to disturbance, it is likely that other species of 
milkweeds, less tolerant of anthropogenic changes, have declined in abundance over the same period. The 
second hypothesis suggests that monarch transitioned from a wider array of host plant species to become 
more reliant on common milkweed over this period of increase in common milkweed populations. If this 
occurred, then the newly-increased population sizes of A. syriaca did not represent a net increase in food 
resources for monarchs, and so we would not expect the monarch abundances in the 18th-20th centuries 
to be higher (or lower) than previously (Brower 1995). 

How should biologists and conservationists react to this new data that shows common milkweed 
increased with agriculture? This depends largely on which hypothesis about the monarch response to this 
increase is correct. If the 20th century population size of the monarch was anthropogenically inflated due 
to elevated common milkweed abundance, this puts contemporary declines in a less worrisome light, as 
they may simply represent returns to pre-modern population sizes. Monarch population sizes and 
migratory behavior have presumably been sustainable for centuries before the clearing of the forests and 
prairies of Eastern North America. However, if monarchs responded to increased common milkweed 
abundance by shifting their diets without increasing the total population, then contemporary declines may 
well have put the monarchs at their lowest population size since the retreat of the glaciers.  

Unfortunately, the whole-genome-sequencing data set used here was not sensitive enough to detect 
whether or not there had been an increase in monarch populations alongside those of milkweed in the 
18th and 19th centuries. Answering this question using population genetics will probably require 
improvements in our current techniques for demographic modelling and/or denser sequencing of D. 
plexippus individuals than is currently available. However, there are other potential data sets that could 
shine light on this question. As a start, population genomic analyses for other important milkweed species 
could reveal whether or not they declined during the period of common milkweed's increase: lack of such 
declines would suggest that the expansion of A. syriaca in particular could only have increased the 
monarch population. Brower (1995) suggests sampling cardenolide profiles from museum specimens of 
monarchs captured in the 19th and 20th centuries. These profiles can indicate the host plants those 
individuals used as larvae, and thus show whether or not monarchs experienced a shift in their host 
species as humans cleared forests and prairies. Shifts to more diversity in milkweed hosts might also be 
detectable in more recent specimens collected on the East Coast of North America, as farming has 
become less prevalent in this region over past decades: the presence or absence of such shifts would be 
evidence that the opposite had happened when this same region of the country was being deforested in the 
18th and 19th centuries. 

Finally, even if such tests demonstrate that the current declines in monarch butterfly populations are 
simply a return to historically-sustainable population sizes, we emphasize that this is not necessarily an 
argument against current efforts to support monarch butterfly populations. Regardless of how many 
monarchs were in North America in 1600, the current monarch population brings delight to people across 
North America and serves as a key conservation species which serves as an introduction to many non-
scientists to the importance of invertebrate conservation, pollination biology, migratory behavior, and 
more. Having fewer of these charismatic insects present would be a loss to humankind regardless of how 
many of them were present a few centuries ago. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481796doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481796
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abbreviated Methods 

Additional details of all the methods described below are given in the Supporting Information. 

Genome assembly 

 Genomic DNA was prepared from one individual of Asclepias syriaca collected from Austria 
(46.66,14.47) and sequenced using PacBio CLR technology on six SMRT cells. Illumina sequence was 
generated from genomic DNA on one lane of Hi-Seq 2 x 150 bp. Hi-C libraries were prepared using the 
Proximo Hi-C kit for plants (Phase Genomics) and sequenced on one lane of Illumina NexSeq500 2 x 150 
bp. The genome was assembled from these data, haplotigs purged, and scaffolding performed as 
described in the Supporting Information. 

SNP calling 

 Two sets of GBS libraries and one set of WGR libraries were prepared as described in the 
Supporting Information. SNPs from the GBS dataset were identified using Stacks 2.2 (Catchen et al. 
2013; Rochette, Rivera-Colón, and Catchen 2019). SNPs from the WGR data set were called using the 
Genome Analysis Toolkit (GATK) pipeline (McKenna et al. 2010; DePristo et al. 2011). We also used 
the GATK pipeline to call SNPs from the sequence data provided in Zhan et al. (2014) for a number of 
North American monarchs (Zhan et al. 2014).  

Population genetic analysis 

 We assigned each individual milkweed to one of 5 broad geographic populations based on its 
location, as shown in Figure 1A. We used the hierfstat package  (Goudet 2005) in R to calculate FST for 
each data set. To examine clustering and admixture within the A. syriaca populations, we used 
STRUCTURE 2.3.4 (Pritchard, Stephens, and Donnelly 2000), using and an admixture model. Finally, 
we used the ade4 package (Daniel Chessel Anne B. Dufour Jean Thioulouse 2004) in R to perform a PCA 
on the allele frequencies for each of the milkweed data sets.  

Demographic modelling 

 To investigate the recent demographic history of A. syriaca, we used an Approximate Bayesian 
Computation (ABC) modelling approach for model selection. We used the Random Forest approach 
described by Pudlo et al. (Pudlo et al. 2016), which implements a machine learning algorithm to do model 
selection. As our observed data, we used separately each of the four monarch or milkweed data sets 
produced above. Guided by the results of our STRUCTURE analysis, we treated A. syriaca as a single 
population. We simulated data sets using DIYABC 2.1.0 (Cornuet et al. 2014) to test the three hypotheses 
visualized in Figure 2. 

 We then constructed a random forest of 1000 decision trees, each of which provided a prediction 
of which demographic model produced a given set of summary statistics. We then fed our observed data 
set into this random forest in order to estimate the best model and approximate its posterior probability.  

Data Availability 

Data and scripts will be made publicly available on Dryad and Genbank upon acceptance (Genbank 
Project ID: PRJNA787127).  

Contributions: This project was conceived of by JB, GJ, AA, and JP. The assembly and annotation of 
the milkweed genome was performed by SS, AP, JZ, GJ, and HX. Collection of milkweed samples, DNA 
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extractions, and DNA library preparation was done by AR, HD, HX, and AT. Design of ABC portion of 
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Supporting	Information	

MATERIALS	AND	METHODS	

Milkweed	Husbandry	

	 Common	milkweed	(Asclepias	syriaca)	seeds	were	sterilized	in	3%	sodium	
hypochlorite	containing	0.05%	Tween	20	for	10	min	and	rinsed	with	sterile	water	for	5	
times.	After	being	scarified	and	cold-stratified	at	4	°C	on	moist	filter	paper	for	2	weeks,	the	
seeds	were	germinated	in	a	dark	warm	chamber	at	28	°C	for	4-5	days.	The	seedlings	were	
planted	into	potting	soil	(60%	lamberts,	20%	perlite	and	20%	turface)	(9-cm	square	pots)	
and	grown	completely	randomized	in	a	growth	chamber	under	a	16:8	h	day:	night	cycle	at	
23	°C	with	a	60%	relative	humidity.	Older	plants	were	moved	to	a	greenhouse	with	natural	
sunlight.	

Genome	assembly	

Genome	sequencing	and	assembly	of	A.	syriaca:		

	 Genomic	DNA	was	prepared	from	one	individual	of	Asclepias	syriaca	and	sequenced	
using	PacBio	CLR	technology	on	six	SMRT	cells.	Illumina	sequence	was	generated	from	
genomic	DNA	on	one	lane	of	Hi-Seq	2	x	150	bp.	Kmer	analysis	was	performed	using	this	
Illumina	sequence,	Jellyfish(Marçais	and	Kingsford	2011),	and	Genomescope(Vurture	et	al.	
2017).	Hi-C	libraries	were	prepared	using	the	Proximo	Hi-C	kit	for	plants	(Phase	Genomics)	
and	sequenced	on	one	lane	of	Illumina		2	x	150	bp.	A.	syriaca	PacBio	sequence	was	
assembled	using	Falcon	v	2017.11.02-16.04	and	falcon-kit	1.3.0(Chin	et	al.	2016)	and	the	
configuration	file	(fc_run.cfg)	(Chin	et	al.	2016).	The	assembly	was	corrected	using	the	
Illumina	sequence	and	Pilon	v1.23.	Redundancy	was	removed	using	Purge	Hapolotigs	
(Roach,	Schmidt,	and	Borneman	2018).	Hi-C	was	used	to	scaffold	the	contigs	using	3D-DNA	
v	180419	(Dudchenko	et	al.	2017) and	gaps	were	filled	with	LR_gapcloser	(G.-C.	Xu	et	al.	
2019)	and	corrected	PacBio	reads.	

Genome	annotation	of	A.	syriaca:	
	 For	repeat	identification	and	masking,	LTR_retriever	(Ou	and	Jiang	2018)	was	used	
with	outputs	from	LTRharvest	(Ellinghaus,	Kurtz,	and	Willhoeft	2008)	and	LTR_FINDER	(Z.	
Xu	and	Wang	2007)	to	identify	long	terminal	repeat	retrotransposons	(LTRs).	The	LTR	
library	was	then	used	to	hard	mask	the	genome,	and	RepeatModeler	version:	open-1.0.11	
(Smit,	AFA,	Hubley,	R	&	Green,	P.,	n.d.)	was	used	to	identify	additional	repetitive	elements	
in	the	remaining	unmasked	segments	of	the	genome.	Protein-coding	sequences	were	
excluded	using	blastx	v2.7.1+	(Ellinghaus,	Kurtz,	and	Willhoeft	2008;	Altschul	et	al.	1990)	
results	in	conjunction	with	the	ProtExcluder.pl	script	from	the	ProtExcluder	v1.2	package	
(Campbell	et	al.	2014).	The	libraries	from	RepeatModeler	and	LTR_retriever	were	then	
combined	and	used	with	RepeatMasker	version:	open-4.0.7	(Smit,	AFA,	Hubley,	R	&	Green,	
P.,	n.d.)	to	produce	the	final	masked	version	of	the	genome.	
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	 Libraries	with	an	insert	size	of	350	bp		were	prepared	from	leaf	RNA	and	sequenced	
on	one	lane	of	2	x	100	bp	Illumina	Hi-Seq.	RNA-seq	reads	were	mapped	to	the	genome	with	
HISAT2	v2.2.0	(Kim,	Langmead,	and	Salzberg	2015).	Portcullis	v	1.1.2	(Mapleson	et	al.	2018)	
and	Mikado	v	1.2.2	(Venturini	et	al.	2018)	were	used	to	process	and	filter	the	resulting	bam	
files.	Augustus	v	3.2.0	(Stanke	et	al.	2008)	and	Snap	v	2006-07-28	(Korf	2004)	were	trained	
and	implemented	through	the	Maker	v	2.31.10	pipeline	(Cantarel	et	al.	2008),	with	proteins	
from	Swiss-Prot	(Boutet	et	al.	2007)	and	processed	RNA-seq	added	as	evidence.	Gene	models	
were	filtered	with	the	following	criteria:	1)	at	least	one	match	found	in	the	Trembl	database	
(4-17-19)	(Boutet	et	al.	2007)	with	an	E-value	less	than	1e-20,	2)	InterProScan	matches	to	
repeats	 were	 removed,	 3)	 genes	 with	 an	 AED	 score	 of	 1	 and	 no	 InterPro	 domain	 were	
removed,	 and	 4)	 single-exon	 genes	 with	 no	 InterPro	 domain	 were	 removed.	 Functional	
annotation	and	classification	were	performed	using	BLASTx	v2.7.1+	(Altschul	et	al.	1990)	
and	InterProScan	v5.36-75.0	(Jones	et	al.	2014).	Both	genome	and	annotation	completeness	
were	assessed	by	BUSCO	v3.1.0	(Waterhouse	et	al.	2017)	using	the	embryophyta	lineage.	
	
SNP	Calling	

Genotyping	by	sequencing	(GBS)	of	the	A.	syriaca	Core	Range	data	set.	

A	total	of	283	common	milkweed	plants	collected	from	different	places	around	US	and	
Europe	were	germinated	and	cultivated	in	our	greenhouse.	Fresh	collected	tissue	was	flash	
frozen	in	liquid	nitrogen.	The	DNA	was	extracted	from	the	leaf	of	individuals	using	a	CTAB	
(cetyltrimethyl	ammonium	bromide)-based	extraction	protocol	(adapted	from	(Fulton,	
Chunwongse,	and	Tanksley	1995)	.	The	DNA	was	quantified	using	a	CFX384	C1000	Real-
Time	thermal	cycler	(BioRad,	Hercules,	CA)	and	normalized	to	30–100 ng/ul	using	a	GBFit	
Arise	Pipetting	System	(Pacgen	Inc.,	Irvine,	CA).	Quality	checks	were	performed	by	agarose	
gel	observation	of	300 ng	of	undigested	and	HindIII	digested	DNA	per	sample.	Genotyping	
was	performed	following	the	GBS	protocol	(Elshire	et	al.	2011),	using	ApeKI	as	the	
restriction	enzyme.	The	libraries	were	sequenced	on	a	HiSeq	2500	system	(Illumina	Inc.,	
USA)	with	the	single-end	mode	and	read	length	of	101 bp.	

Genotyping	by	sequencing	(GBS)	of	the	A.	syriaca	Broad	Range	data	set.	

DNA	was	extracted	from	flash-frozen	leaf	samples	using	the	Qiagen	DNeasy	Plant	
extraction	kit.		100ng	of	sample	DNA	was	used	for	GBS	library	preparation	using	the	ApeKI	
restriction	enzyme,	as	above.	95	samples	and	a	water	control	(blank)	were	pooled	per	
multiplex	and	sequenced	using	100bp	single-end	mode	on	the	HiSeq	2500	at	the	University	
of	Rochester	Medical	Center.		

Whole	Genome	Resequencing	(WGR)	of	the	A.	syriaca	Broad	Range	data	set.		

DNA	was	extracted	from	A.	syriaca	using	Qiagen	DNeasy	kit	and	sequenced	using	Illumina	
HiSeq	2x150.		

SNP	calling	of	the	A.	syriaca	Core	and	Broad	Range	GBS	data	sets	
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	 Genotyping	By	Sequencing	reads	were	demultiplexed	using	Stacks	2.2	(Rochette,	
Rivera-Colón,	and	Catchen	2019;	Catchen	et	al.	2013).	Reads	from	each	individual	where	
then	mapped	against	the	A.	syriaca	genome	using	Bowtie2	2.3.2	(Langmead	and	Salzberg	
2012),	using	end-to-end	alignment	and	the	“--very-sensitive”	alignment	settings.	Reads	
with	a	mapping	quality	lower	than	5	were	discarded	using	samtools	1.5	(Li	et	al.	2009).	We	
then	used	Stacks	in	combination	with	custom	scripts	to	call	SNPs	and	to	filter	low-quality	
individuals	and	loci	from	our	data	set.	The	scripts	will	be	deposited	upon	acceptance	to	
Dryad.	Briefly,	several	individuals	in	our	data	set	had	been	identified	as	possible	A.	speciosa	
or	A.	syriaca	x	A.	speciosa	hybrids.	Since	A.	syriaca	and	A.	speciosa	can	be	difficult	to	
distinguish	when	they	are	not	in	flower,	we	did	an	initial	clustering	of	our	data	using	the	
find.clusters	function	implemented	in	adegenet	2.1.1	(Jombart	2008;	Jombart	and	Ahmed	
2011)	in	R	3.5.2	(R	Core	Team	2018).	This	identified	several	more	putative	A.	speciosa	
individuals,	which	were	removed.	

	 Since	A.	syriaca	can	reproduce	asexually,	we	also	screened	our	data	set	for	clones;	
i.e.,	different	ramets	of	the	same	genet.	To	do	so,	we	considered	all	pairs	of	individuals,	
calculating	what	percentage	of	their	homozygous	loci	had	identical	SNP	calls.	Across	all	
pairs	of	individuals,	this	distribution	was	bimodal.	The	vast	majority	of	pairs	were	normally	
distributed	around	a	sequence	identity	of	0.936,	with	a	small	number	of	comparisons	
clearly	outside	of	this	distribution,	clustered	around	1.00.	Accordingly,	we	considered	all	
pairs	of	individuals	with	a	sequence	identity	greater	than	0.993	to	be	clones.	Where	clones	
were	found	at	the	same	site,	we	randomly	selected	a	single	exemplar,	discarding	all	its	
clones	from	the	data	set.	A	few	pairs	of	clones	were	found	in	different	sites;	in	this	case	we	
discarded	both	members	of	the	pair.	

	 Combining	the	Broad	Range	and	Core	Range	GBS	Data	Sets	in	subsequent	analyses	
produced	strong	batch	effects	between	the	two	data	sets	(see	below),	likely	because	they	
were	sequenced	on	different	machines,	at	different	times,	to	different	read	depths.	We	
therefore	performed	the	following	analyses	separately	for	the	two	data	sets.	

	 After	discarding	A.	speciosa,	clones,	and	individuals	for	which	relatively	few	loci	(i.e.,	
less	than	80%	of	the	total	number	of	loci)	had	been	sequenced,	we	then	randomly	
downsampled	the	Core	Range	data	set	to	include	a	maximum	of	5	individuals	per	site,	to	
homogenize	sampling	effort	across	the	sites.	Finally,	we	used	Stacks	to	filter	SNPs	across	
these	individuals,	including	SNPs	with	observed	heterozygosity	less	than	or	equal	to	0.6	
and	present	in	at	least	80%	of	individuals.	Where	multiple	SNPs	were	found	at	the	same	
GBS	locus,	we	randomly	excluded	all	but	one.	To	reduce	linkage	disequilibrium,	we	filtered	
SNPs	so	that	each	was	at	least	50	kb	from	its	nearest	neighbor.	

	 We	also	used	this	data	set,	after	excluding	invasive	individuals	collected	from	
Europe	using	vcftools	0.1.15	(Danecek	et	al.	2011),	for	demographic	modelling.	This	data	
set	was	converted	to	DIYABC	format	using	vcf2diyabc.py	(“DIYABC”	2015).	

SNP	Calling	of	the	A.	syriaca	Broad	Range	WGR	data	set	

	 We	called	SNPs	using	the	Genome	Analysis	Toolkit	(GATK)	pipeline	(McKenna	et	al.	
2010;	DePristo	et	al.	2011;	Van	der	Auwera	et	al.	2013).	Reads	from	each	individual	were	
mapped	against	the	A.	syriaca	genome	using	Bowtie2	2.3.2,	with	an	expected	range	of	inter-
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mate-pair	distances	of	100-2000	and	the	“--very-sensitive-local”	alignment	settings.	
Indicies	of	the	genome	were	first	built	using	both	bowtie2	and	samtools,	and	a	sequence	
dictionary	created	using	Picard	2.18.15	from	the	Genome	Analysis	Toolkit	(Van	der	Auwera	
et	al.	2013;	McKenna	et	al.	2010;	DePristo	et	al.	2011).	

									 We	further	used	Picard	to	fix	mate	pair	information,	mark	and	remove	duplicate	
reads,	and	replace	read	group	names;	we	then	used	samtools	to	index	the	alignments	for	
each	resequenced	individual.	We	then	called	polymorphisms	for	each	individual	with	the	
HaplotypeCaller	tool,	then	combined	the	outputs	from	each	scaffold	using	
GenomicsDBImport.	We	then	used	GenotypeGVCFs	to	do	joint	genotyping	on	all	individuals	
simultaneously.	Indels	were	removed	with	the	SelectVariants	tool,	and	the	remaining	SNPs	
were	filtered	using	the	VariantFiltration	tool,	discarding	SNPs	for	which	any	of	the	
following	were	true:	quality	by	depth	(QD)	less	than	2;	phred-scaled	p-value	of	Fisher’s	
Exact	Test	for	strand	bias	(FS)	greater	than	60;	root	mean	square	of	the	mapping	quality	
(MQ)	less	than	35;	mapping	quality	rank	sum	test	(MQRankSum)	less	than	-12.5;	read	
position	rank	sum	test	(ReadPosRankSum)	less	than	-8.	We	also	filtered	out	loci	with	
greater	than	5%	missing	data	or	a	minimum	read	depth	of	less	than	5,	as	well	as	removing	
individual	genotypes	with	a	minimum	quality	5	or	less.	Finally,	SNPs	were	thinned	to	be	50	
kb	apart	or	more,	so	as	to	match	the	amount	of	thinning	done	for	the	GBS	data	set.		

SNP	Calling	of	the	D.	plexippus	WGR	data	set	

We	used	the	whole	genome	sequencing	data	of	Zhan	et	al.	(2014)	to	gather	genomic	data	
from	29	monarch	butterflies	collected	in	North	America	(which	individual	specimens	we	
used	are	given	in	Supplementary	File	SA;	we	chose	migratory	individuals	from	the	
continental	United	States	and	Mexico,	excluding	non-migratory	individuals	from	South	
Florida)	(Zhan	et	al.	2014).	We	called	SNPs	using	the	pipeline	described	above,	aligning	
reads	from	each	individual	to	the	D.	plexippus	genome	of	Zhan	et	al.	(2011),	GenBank	
accession	GCA_000235995.2	(Zhan	et	al.	2011)	.	SNPs	were	filtered	using	the	same	criteria	
as	for	the	A.	syriaca	WGR	data,	except	that	SNPs	were	thinned	to	be	10	Mb	apart	or	more	in	
order	to	produce	a	similar	number	of	SNPs	to	those	found	in	the	A.	syriaca	data	sets.	

Population	Genetic	Analysis	

FST	analysis	and	basic	population	genetic	statistics	

	 Using	all	three	A.	syriaca	data	sets,	and	the	D.	plexippus	data	set,	we	estimated	
several	population	genetic	statistics	in	R,	using	the	adegenet	and	hierfstat	packages	
(Goudet	2005;	Paradis	et	al.	2017).	We	assigned	each	individual	to	one	of	five	broad	
geographic	populations	based	on	its	location.	Population	assignments	are	shown	in	Figure	
1A.	We	tested	whether	this	arrangement	captured	significant	genetic	structuring	using	an	
AMOVA	test,	using	the	pegas	method	(Paradis	2010)	as	implemented	in	poppr	2.8.2	
(Kamvar,	Tabima,	and	Grünwald	2014)	with	10,000	permutations.	

STRUCTURE	analysis	

	 To	examine	clustering	and	admixture	within	the	A.	syriaca	populations,	we	used	
STRUCTURE	2.3.4	(Pritchard,	Stephens,	and	Donnelly	2000).	We	analyzed	all	three	data	
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sets	using	an	admixture	model	within	STRUCTURE	and	all	possible	values	for	the	number	
of	clusters	(k)	between	1	and	20;	running	10	replicates	for	k	value.	We	chose	the	best	
number	of	clusters	using	the	Evanno	method	(Evanno,	Regnaut,	and	Goudet	2005)	as	
implemented	in	Structure	Harvester	0.6.94	(Earl	and	vonHoldt	2012).	We	also	used	
Structure	Harvester	to	convert	STRUCTURE	output	files	for	use	with	CLUMPP	1.1.2		
(Jakobsson	and	Rosenberg	2007).	We	used	CLUMPP	to	assign	consistent	cluster	identities	
across	our	multiple	replicates	for	each	k	value	above	1,	using	the	LargeKGreedy	algorithm	
with	1000	random	input	orders	and	the	G’	matrix	similarity	statistic.	

PCA	analysis	

	 To	complement	our	STRUCTURE	analysis,	we	also	performed	a	PCA	analysis	to	
examine	geographic	distribution	of	genetic	structure	in	a	less	parameterized	way	using	the	
ade4	(Daniel	Chessel	Anne	B.	Dufour	Jean	Thioulouse	2004;	Dray	and	Dufour	2007)	and	
adegenet	(Jombart	2008;	Jombart	and	Ahmed	2011)	packages	in	R.	We	first	scaled	each	
genotype	using	the	scaleGen()	function,	replacing	missing	data	with	the	mean	allele	
frequency	for	that	SNP,	and	then	performed	a	Principle	Components	Analysis	on	these	
scaled	allele	frequencies.	

Demographic	modelling	

	 To	investigate	the	recent	demographic	history	of	monarchs	and	common	milkweed,	
we	used	an	Approximate	Bayesian	Computation	(ABC)	modelling	approach,	using	a	
Random	Forest	(RF)	algorithm	for	model	selection	and	parameter	estimation.	Briefly,	ABC	
modelling	uses	simulated	data	sets	to	estimate	posterior	probabilities	when	the	likelihoods	
of	observed	data	given	specific	models	are	difficult	to	calculate	(Sisson,	Fan,	and	Beaumont	
2018;	Beaumont,	Zhang,	and	Balding	2002).	Genetic	data	sets	are	simulated	under	a	
number	of	different	demographic	models,	and	the	simulated	data	sets	closest	to	the	
observed	data	are	used	to	estimate	the	posterior	probabilities	of	individual	models	and	
distributions	of	parameters	of	interest.	We	used	the	Random	Forest	approach	described	by	
Pudlo	et	al.	and	Raynal	et	al.,	which	implements	a	machine	learning	algorithm	to	do	model	
selection	and	parameter	estimation	(Raynal	et	al.	2019;	Pudlo	et	al.	2016).	The	RF	
approach	improves	upon	traditional	ABC	modelling	in	that	ABC-RF	is	insensitive	to	the	
choice	of	summary	statistics,	and	less	computationally	expensive	as	well.	

	 As	our	observed	data,	we	used	the	four	monarch	and	milkweed	data	sets	described	
above.	Guided	by	the	results	of	our	STRUCTURE	analysis,	we	treated	A.	syriaca	as	a	single	
population.	We	simulated	data	sets	using	DIYABC	2.1.0	(Cornuet	et	al.	2014)	to	test	the	
following	hypotheses:	

1. Have	A.	syriaca	populations	experienced	a	bottleneck	within	past	decades,	
potentially	due	to	the	increased	use	of	herbicide	in	crop	fields	as	described	by,	e.g.,	
Pleasants	(2017)?	

2. Have	A.	syriaca	populations	expanded	in	the	past	centuries,	potentially	due	to	the	
conversion	of	native	forests	and	prairies	to	agriculture	land,	as	suggest	by,	e.g.,	
Brower	(1995)?	

3. Have	A.	syriaca	populations	expanded	in	prior	millenia,	potentially	due	to	the	retreat	
of	the	glaciers	after	the	last	glacial	maximum	(CITE)?	
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Considering	every	possible	combination	of	the	three	hypotheses	produced	8	demographic	
scenarios.	We	used	DIYABC	to	simulate	80,000	data	sets	across	all	8	demographic	
scenarios.	For	each	scenario,	population	sizes	were	selected	from	uninformative	prior	
distributions	(see	Table	Da	for	details),	while	event	times	were	chosen	from	uniform	
distributions.	We	chose	event	times	to	correspond	to	1945-2015	for	the	recent	bottleneck,	
1751-1899	for	the	recent	expansion,	and	5-12	thousand	years	ago	for	the	ancient	
expansion.	A.	syriaca	plants	flower	in	their	second	growing	season	(Bhowmik	and	Bandeen	
1976),	so	we	assumed	a	2	year	generation	time	for	this	species.	D.	plexippus	has	4-5	
generations	per	year,	so	we	assumed	a	0.2-0.25	year	generation	time	for	that	species,	
which	produces	the	values	shown	in	Table	Db.	We	outputted	all	4	summary	statistics	
calculated	by	DIYABC,	which	would	be	used	for	ABC-RF	model	selection,	alongside	the	
linear	discriminant	axes	that	were	the	combinations	of	those	summary	statistics	that	best	
distinguished	the	demographic	models.	

	 Following	Pudlo	et	al.	(2016),	and	using	the	abcrf	package	in	R,	we	performed	a	
number	of	validations	of	our	ABC-RF	approach:	We	first	tested	the	compatibility	of	our	
models	with	our	observed	data	by	projecting	our	observed	data,	along	with	the	
simulations,	along	the	linear	discriminant	(LD)	axes	that	best	distinguished	the	8	models	
given	the	set	of	4	summary	statistics	(Pudlo	et	al.	2016;	Raynal	et	al.	2019).	We	then	
constructed	a	random	forest	of	1000	decision	trees,	each	of	which	provided	a	prediction	of	
which	demographic	model	produced	a	given	set	of	summary	statistics.	To	test	whether	we	
had	produced	a	sufficient	number	of	simulations,	we	compared	the	prior	error	rate	of	this	
random	forest	to	that	of	a	second	random	forest	constructed	using	only	80%	of	the	80,000	
simulations.	Finally,	to	test	whether	1000	decision	trees	was	a	sufficient	number,	we	
calculated	the	prior	error	rate	using	forests	of	different	size,	from	40-1000.	

	 We	then	fed	our	observed	data	set	into	this	random	forest	in	order	to	estimate	the	
best	model	and	approximate	its	posterior	probability.	Because	the	posterior	probability	of	
any	single	model	was	low,	we	produced	separate	random	forests	to	approximate	posterior	
probabilities	for	each	of	the	three	hypotheses	listed	above,	i.e.,	by	grouping	together	all	
models	that	had	a	recent	bottleneck	vs	all	models	that	did	not,	etc.	

	 We	then	used	the	approach	of	Raynal	et	al.	(2019),	employing	the	ABC-RF	approach	
to	estimate	parameter	values	(Raynal	et	al.	2019).	We	first	used	DIYABC	to	simulate	10,000	
data	sets	for	the	single	best	demographic	scenario.	We	then	used	this	simulation	set	to	
estimate	posterior	medians	and	quantiles	of	a	number	of	demographic	parameters	using	
ABC-RF.			

	

RESULTS		

Genome	assembly	

Genome	sequencing	and	assembly	of	A.	syriaca:		
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	 PacBio	sequencing	resulted	in	over	300X	coverage	of	the	expected	genome	size	of	
420	Mb[1]	.	The	sequence	was	assembled	into	748	contigs	with	a	total	length	of	362	Mbp	
and	an	N50	of	1.9	Mbp.	Kmer	analysis	supports	this	genome	size.	After	haplotig	removal,	
approximately	91%	of	the	sequence	was	scaffolded	into	11	sequences	representing	
pseudomolecules.	The	final	assembly	has	a	length	of	317	Mbp	and	captures	96.8%	of	the	
BUSCO	set.	
		
Genome	annotation	of	A.	syriaca:	
	 Approximately	57%	of	the	genome	consists	of	repetitive	sequences.	A	total	of	
42,111	genes	were	predicted	with	an	average	length	of	2,578	bp.	Approximately	93%	of	the	
BUSCO	protein	set	was	identified	in	the	annotation.	Putative	functions	were	assigned	to	
99%	of	the	gene	set.	

SNP	Calling	

									 Collection	sites	and	sample	sizes	for	each	data	set	are	shown	in	Figure	2.	The	
number	of	individuals	and	loci,	and	the	amount	of	missing	data	for	each	SNP	data	set	is	
shown	in	Table	1.	

Figure	SI1:	Sample	scheme	for	the	Broad	Range	milkweed	data	sets	
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Filled	circles	show	collection	localities	for	the	Broad	Range	GBS	data	set;	the	number	inside	
the	circle	shows	the	number	of	samples	from	each	site	included	in	this	data	set.	Sites	with	a	
black	border	around	the	circle	indicate	that	one	individual	from	that	location	was	used	in	
the	Broad	Range	WGR	data	set.	Hollow	circles	indicate	that	one	individual	from	that	locality	
was	used	for	the	Broad	Range	WGR	data	set	only.	Sites	are	colored	according	to	the	
population	to	which	they	were	assigned:	Green	=	Northwest,	Purple	=	Southwest,	Teal	=	
Southeast,	Red	=	Northeast.	

Figure	SI2:	Sampling	scheme	for	the	Core	Range	milkweed	data	set	

	

Squares	show	collection	localities;	the	number	inside	the	square	shows	the	number	of	
samples	from	each	site	included	in	the	population	genetic	data	set.	Squares	in	the	Atlantic	
ocean	represent	European	collection	sites.	Sites	are	colored	according	to	the	population	to	
which	they	were	assigned:	Green	=	Northeast,	Blue	=	Southeast,	Red	=	Europe.	

Figure	SI3:	STRUCTURE	results	for	the	Core	Range	GBS	data	set	
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On	the	left	are	the	results	for	K=2	(top)	to	K=10	(bottom);	on	the	right	are	the	results	for	
K=11	to	K=20.	The	thin	vertical	bars	represent	individual	milkweeds,	and	the	three	
populations	(left-to-right	northeast,	southeast,	and	European)	are	separated	by	thin	white	
bars.	Each	bar	is	colored	according	to	the	cluster(s)	to	which	it	belongs.	The	optimal	model	
was,	K=5,	which	shows	a	distinct	cluster	in	Europe,	and	all	US	milkweeds	largely	belonging	
to	the	same	cluster.	

Figure	SI4:	STRUCTURE	results	for	the	Broad	Range	GBS	data	set	
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On	the	left	are	the	results	for	K=2	(top)	to	K=10	(bottom);	on	the	right	are	the	results	for	
K=11	to	K=20.	The	thin	vertical	bars	represent	individual	milkweeds,	and	the	four	
populations	(left-to-right	northwest,	southwest,	northeast,	and	southeast)	are	separated	by	
thin	white	bars.	Each	bar	is	colored	according	to	the	cluster(s)	to	which	it	belongs.	
Regardless	of	K-value,	the	ancestry	of	milkweeds	in	this	data	set	is	nearly	homogenous	
across	the	range.	

Figure	SI5:	STRUCTURE	results	for	the	Broad	Range	WGR	data	set	
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On	the	left	are	the	results	for	K=2	(top)	to	K=10	(bottom);	on	the	right	are	the	results	for	
K=11	to	K=20.	The	thin	vertical	bars	represent	individual	milkweeds,	and	the	four	
populations	(left-to-right	northwest,	southwest,	northeast,	and	southeast)	are	separated	by	
thin	white	bars.	Each	bar	is	colored	according	to	the	cluster(s)	to	which	it	belongs.	
Regardless	of	K-value,	the	ancestry	of	milkweeds	in	this	data	set	is	nearly	homogenous	
across	the	range.	

Figure	SI5.5:	STRUCTURE-produced	likelihoods	of	our	data	sets	under	different	K-
values	
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Likelihoods	of	our	data	(y-axis)	under	each	K-value	scenario	(x-axis)	are	shown	here.	In	all	
three	data	sets,	there	is	no	strong	improvement	in	likelihood	from	increasing	K-values	past	
K=1.	The	K-value	shown	in	red	is	the	one	chosen	by	the	Evanno	method;	however,	as	we	
discuss	in	the	text,	the	Evanno	method	is	unable	to	select	K=1,	which	we	consider	to	best	
capture	the	data	due	to	other	lines	of	evidence.		

	

Table	1.1:	Population	genetics	of	A.	syriaca	and	D.	plexippus.	

	

Data	Set	 SNPs	 Missing	
data	

Population	 n	 Ho	 He	 FIS	 FST	

Broad	
Range	GBS	

891	 5.2%	 Total	 96	 0.074	 0.087	 0.147	 0.008(
1)	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481796doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481796
http://creativecommons.org/licenses/by-nc-nd/4.0/


		Northwest	 25	 0.076	 0.089	 0.107	 		

		Southwest	 21	 0.077	 0.087	 0.085	 		

		Northeast	 25	 0.071	 0.085	 0.120	 		

		Southeast	 25	 0.073	 0.087	 0.103	 		

Broad	
Range	
WGR	

885	 3.4%	 Total	 48	 0.039	 0.050	 0.222	 -
0.002(
2)	

		Northwest	 6	 0.044	 0.053	 0.102	 	

		Southwest	 16	 0.041	 0.059	 0.242	 	

		Northeast	 10	 0.035	 0.045	 0.144	 	

		Southeast	 16	 0.036	 0.044	 0.132	 	

Core	Range	
GBS	

926	 4.3%	 Total	 87	 0.076	 0.088	 0.134	 0.039(
1)	

		Northeast	 47	 0.081	 0.080	 0.083	 		

		Southeast	 32	 0.085	 0.092	 0.063	 		

		Europe	 8	 0.062	 0.080	 0.176	 		

Monarch		 11,703	 3.6%	 Total	 28	 0.109	 0.124	 0.125	 n/a	

1:		

1:	AMOVA,	p	<	1*10-4	

2:	AMOVA,	p	=	0.47	
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n:	Sample	size.	Ho:	Observed	heterozygosity.	He:	Expected	heterozygosity.	FIS:	Proportion	of	
genetic	variation	in	the	population	found	in	an	individual.	FST:	Proportion	of	total	genetic	
variance	partitioned	among	populations.		

Table	1.2:	Population	structure	of	A.	syriaca.	

Data	Set	 Pairwise	comparison	 Pairwise	FST	
(GBS)	

Pairwise	FST	
(WGR)	

Broad	
Range	

Northwest	vs	Southwest	 0.009	 -0.021	

Northwest	vs	Northeast	 0.019	 0.004	

Northwest	vs	Southeast	 0.017	 -0.000	

Southwest	vs	Southeast	 0.009	 0.002	

Southwest	vs	Northeast	 0.011	 0.008	

Northeast	vs	Southeast	 0.002	 -0.000	

Core	Range	 Northeast	vs	Southeast	 0.009	 	

Northeast	vs	Europe	 0.082	 	

Southeast	vs	Europe	 0.081	 	

	
GBS:	Data	from	Genotyping	By	Sequencing	approach.	WGR:	Data	from	Whole	Genome	
Resequencing	approach.	

Population	Genetic	Analysis	

FST	analysis	and	basic	population	genetic	statistics	

	 Population	genetic	statistics	for	each	of	the	populations	are	shown	in	Tables	1.1	and	
1.2.	The	genetic	differentiation	of	the	subpopulations	was	low,	but	statistically	significant	
for	the	GBS	data	sets	(FST	=	0.008	for	Broad	Range;	0.052	for	Core	Range;	AMOVA	p	<	1*10-4	
for	both).	For	the	Broad	Range	WGR	data	set,	genetic	differentiation	was	even	lower,	and	
not	significant	(Fst	=	-0.002,	or	effectively	zero,	AMOVA	p	=	0.47),	possibly	due	to	the	
smaller	number	of	individuals	in	each	population.	In	the	Core	Range	GBS	data	set,	the	
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greatest	pairwise	FST	was	between	the	invasive	European	population	and	native	
populations;	pairwise	FST	was	lower	between	the	northeast	and	southeast	populations	by	a	
factor	of	10.	In	the	Broad	Range	GBS	data	set,	the	greatest	pairwise	FST	was	between	the	
Northwest	population	and	the	two	eastern	populations,	although	even	this	was	relatively	
low,	at	0.02.	Within	each	dataset,	heterozygosity	was	relatively	constant	among	
populations,	with	the	exception	that	both	observed	and	expected	heterozygosity	were	
lower	in	Europe	than	in	the	other	populations	in	the	Core	Range	data	set,	showing	reduced	
genetic	diversity	in	the	invasive	range	of	A.	syriaca.	The	A.	syriaca	specimen	chosen	for	
genome	sequencing	was	an	invasive,	European	milkweed,	on	the	logic	that	the	invasion	
process	had	likely	led	to	more	inbreeding	than	is	usual	in	other	A.	syriaca	populations,	and	
the	reduced	heterozygosity	of	this	population	suggests	that	this	was	indeed	the	case.	The	
reduced	heterozygosity	is	beneficial	for	genome	assembly.		

STRUCTURE	analysis	

									 Applying	the	Evanno	method	to	our	STRUCTURE	results	resulted	in	an	optimal	
number	of	k	=	5	(Figure	C)	for	the	Core	Range	Data	Set.	Examination	of	the	STRUCTURE	
results	shows	a	very	similar	pattern	for	all	values	between	k	=	2	and	k	=	5:	a	single	cluster	
dominates	all	individuals	from	North	America,	and	a	second	cluster	is	found	in	a	number	of	
invasive	A.	syriaca	collected	from	Europe	(Figure	SI3).	Other	clusters,	when	present,	
account	for	very	little	of	the	ancestry	of	any	A.	syriaca	specimens.	For	the	Broad	Range	data	
sets,	the	Evanno	method	selected	k	=	11	for	the	GBS	data	set	and	k	=	2	for	the	WGR	data	set.	
However,	the	Evanno	method	is	unable	to	consider	k	=	1	as	the	best	cluster,	since	it	uses	
changes	in	the	likelihood	of	the	data	between	k	=	x	and	k	=	x-1.	Visualizing	the	cluster	
results	showed	patterns	in	which	each	genetic	cluster	was	found	in	every	individual	to	a	
similar	extent,	which	suggests	that	there	is	minimal	geographic	structuring	within	the	
Broad	Range	data	set.		

PCA	analysis	

Figure	SI6:	PCA	plots	for	the	Core	Range	GBS	data	set	
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PCA	plots	of	the	first	six	PC	axes	(left:	PC1	on	the	x-axis,	PC2	on	the	y-axis;	middle:	PC3	and	
PC4;	right:	PC5	and	PC6).	Points	are	colored	according	to	their	population:	green	is	
northeast,	blue	is	southeast,	red	is	Europe.	Eigenvalues	are	show	in	the	inset.	

Figure	SI7:	PCA	plots	for	the	Broad	Range	GBS	data	set	

   	

PCA	plots	of	the	first	six	PC	axes	(left:	PC1	on	the	x-axis,	PC2	on	the	y-axis;	middle:	PC3	and	
PC4;	right:	PC5	and	PC6).	Points	are	colored	according	to	their	population:	green	is	
northwest,	purple	is	southwest,	red	is	northeast,	and	teal	is	southeast.	Eigenvalues	are	
show	in	the	inset.	

Figure	SI8:	PCA	plots	for	the	Broad	Range	WGR	data	set	

  	

PCA	plots	of	the	first	six	PC	axes	(left:	PC1	on	the	x-axis,	PC2	on	the	y-axis;	middle:	PC3	and	
PC4;	right:	PC5	and	PC6).	Points	are	colored	according	to	their	population:	green	is	
northwest,	purple	is	southwest,	red	is	northeast,	and	teal	is	southeast.	Eigenvalues	are	
show	in	the	inset.	

	 For	all	three	data	sets,	none	of	the	first	six	PC	axes	clearly	separate	any	population	
from	any	other(s);	although	some	PC	axes	show	some	degree	of	geographic	structure,	there	
is	always	a	considerable	degree	of	overlap	between	the	PC	values	of	the	various	
populations.	
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	 For	the	Core	Range	GBS	data	set	(Figure	SI6),	PC1	distinguishes	several	individuals	
from	the	European	population	from	the	North	American	population,	while	PC2,	and	to	a	
lesser	extent	PC3,	show	a	limited	degree	of	separation	between	northern	and	southern	
populations.	

	 For	the	Wide	Range	GBS	data	set	(Figure	SI7),	PC1	largely	separates	several	
northwestern	individuals	from	the	remainder	of	the	data	set,	possibly	indicating	
introgression	from	A.	speciosa,	which	is	known	to	hybridize	with	A.	syriaca	in	the	
northwestern	part	of	the	A.	syriaca	range,	and	PC2	and	PC3	somewhat	distinguish	western	
and	eastern	populations,	but	the	other	PC	axes	show	very	little	geographic	patterning.	

	 For	the	Wide	Range	WGR	data	set	(Figure	SI8),	PC1	and	PC2	separate	a	single	
individual	each	from	the	remainder	of	the	individuals	in	the	data	set.	Little	geographic	
signal	is	visible	in	the	remaining	PC	axes.	

	 The	insets	show	the	eigenvalues	for	each	principal	component;	these	decline	quite	
slowly,	indicating	that	each	individual	PC	axis	explains	relatively	little	of	the	variation	in	
genotype.	The	exception	is	PC1	of	the	Broad	Range	WGR	data	set,	which	distinguishes	one	
southwestern	individual	from	the	remaining	milkweeds,	perhaps	also	representing	
introgression	from	another	species.	

Demographic	Modelling	

									 Projecting	our	observed	data	onto	the	LDA	axes	of	our	simulated	data	indicated	that	
our	set	of	demographic	models	were	realistic,	as	the	observed	data	fell	within	or	near	the	
cloud	of	simulated	data	points	along	all	LDA	axes	(Figure	SI9).		

Figure	SI9:	Our	simulations	captured	the	characteristics	of	our	observed	data	set.	
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LDA	plots	for	Asclepias	syriaca	data	sets	(upper	left:	Broad	Range	GBS;	upper	right:	Broad	Range	WGR;	lower	
left:	Core	Range	WGR),	and	for	D.	plexippus	(lower	right).	Small	points	represent	simulated	data	sets,	colored	
according	to	the	demographic	model	used	to	simulate	them.	The	large	red	point	represents	our	observed	data	
set.	

Per	Pudlo	et	al.	(2016),	we	also	confirmed	that	we	produced	enough	simulations,	as	the	
prior	error	rate	decreased	only	slightly	by	the	addition	of	the	last	20%	of	simulations	(table	
SI3	below).	In	fact,	we	found	a	few	cases	in	which	error	rates	went	up	slightly	after	adding	
the	final	20%	of	the	data	(by	0.3%	or	less),	indicating	that	we	are	in	the	regime	in	which	
changes	in	error	rate	are	determined	by	random	fluctuations,	and	confirming	that	adding	
more	simulations	will	not	further	improve	the	accuracy	of	this	method.	

Table	SI3:	10,000	simulations	per	demographic	scenario	was	sufficient.	

	 Prior	Error	Rates	

Data	set:	 A.	syriaca	(W&M	
GBS)	

A.	syriaca	(W&M	
WGR)	

A.	syriaca	
(Cornell)	

D.	plexippus	

Simulations	
used	

80%	 100%	 80%	 100%	 80%	 100%	 80%	 100%	

Identifying	
demographic	
model	

74.04
%	

74.05
%	

75.18
%	

75.32
%	

74.62%	 74.59
%	

69.22
%	

69.32
%	
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Identifying	
presence/abs
ence	of	recent	
bottleneck	

38.92
%	

38.84
%	

39.56
%	

39.76
%	

38.72%	 38.75
%	

31.50
%	

31.55
%	

Identifying	
presence/abs
ence	of	recent	
expansion	

38.05
%	

38.17
%	

38.59
%	

38.33
%	

38.42%	 38.39
%	

34.27
%	

34.36
%	

Identifying	
presence/abs
ence	of	
ancient	
expansion	

28.22
%	

28.08
%	

28.65
%	

28.95
%	

28.59%	 28.41
%	

29.82
%	

29.78
%	

	

Finally,	we	followed	the	recommendation	of	Pudlo	et	al.	(2016)	for	determining	whether	
we	had	used	enough	decision	trees	in	our	Random	Forest	algorithm.	To	do	this,	we	
repeated	the	RF	algorithm	several	times	using	fewer	trees,	recalculating	the	prior	error	
rate	each	time.		If	the	error	rate	stays	nearly	flat	as	we	approach	the	maximum	number	of	
trees,	this	means	that	we	used	an	appropriate	number	of	trees,	which	was	indeed	the	case	
for	all	three	data	sets	(Figure	SI10).	

Figure	SI10:	1000	trees	in	the	Random	Forest	was	a	sufficient	number.	
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									 The	single	best	model	for	milkweeds	differed	slightly	among	our	three	datasets.	For	
the	Broad	Range	GBS	data	set,	the	single	best	model	included	both	ancient	and	century-
scale	expansions,	but	no	recent	bottleneck;	however,	this	model	had	a	posterior	probability	
of	only	0.15.	For	the	Broad	Range	WGR	data	set,	the	single	best	model	was	the	one	that	
included	both	the	two	expansions,	but	also	the	bottleneck	(0.28).	For	the	Core	Range	data	
set,	the	single	best	model	was	the	same	as	for	the	Broad	Range	GBS	data	set,	but	with	
higher	posterior	probability	(0.85),	including	recent	expansion	and	ancient	expansion,	but	
no	recent	bottleneck.	For	the	monarch	data	set,	the	single	best	model	includes	a	recent	and	
ancient	expansion,	but	no	recent	bottleneck	(0.67	posterior	probability),	the	same	model	
chosen	in	both	A.	syriaca	GBS	data	sets.	Due	to	the	fairly	high	prior	error	rates	when	
estimating	individual	models,	we	focus	our	attention	on	estimating	the	presence	or	absence	
of	each	demographic	event	separately;	these	results	are	described	in	the	main	text.		

									 Model	parameters	estimated	with	the	ABC-RF	approach	were	nearly	identical	to	
their	prior	distributions,	suggesting	that	our	dataset	does	not	have	sufficient	resolution	for	
parameter	estimation.	

Table	2:	Model	selection	by	ABC-RF	

		 D.	plexippus	 A.	syriaca	(Cornell	
dataset)	

A.	syriaca	(W&M	
GBS	dataset)	

A.	syriaca	(W&M	
WGR	dataset)	

		 RF	
result	

Posterior	
Probabili
ty	

RF	
result	

Posterior	
Probabili
ty	

RF	
result	

Posteri
or	
Probab
ility	

RF	result	 Posteri
or	
Probab
ility	
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Overall	
model	

4	(see	
Fig.	Z)	

0.67	 4	(see	
Fig.	Z)	

0.85	 4	(see	
Fig.	Z)	

0.15	 1	(see	
Fig.	Z)	

0.28	

Recent	
bottlene
ck	
(1945-
2015	
AD)	

Absent	 0.80	 Absent	 0.90	 Absent	 0.46	 Present	 0.56	

Recent	
expansi
on	
(1751-
1899	
AD)	

Presen
t	

0.68	 Presen
t	

0.99	 Absent	 0.61	 Present	 0.87	

Ancient	
expansi
on	(5-12	
kya)	

Presen
t	

0.95	 Presen
t	

0.98	 Presen
t	

0.94	 Present	 0.99	

	Figure	3	(ABC	models.	Summary	of	results)	
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Supplementary	File	SA	

We	used	the	following	D.	plexippus	libraries	from	Zhan	et	al.	(2014):		

NCBI	Library	 	 Collection	locality	

SRR1548504	 	 MA,	USA	
SRR1548506	 	 MA,	USA	
SRR1548571	 	 MA,	USA	
SRR1548575	 	 MA,	USA	
SRR1548576	 	 MA,	USA	
SRR1548577	 	 MA,	USA	
SRR1548578	 	 MA,	USA	
SRR1548572	 	 NJ,	USA	
SRR1548573	 	 NJ,	USA	
SRR1548574	 	 NJ,	USA	
SRR1551995	 	 CA,	USA	
SRR1552224	 	 CA,	USA	
SRR1552225	 	 CA,	USA	
SRR1552204	 	 Mexico	
SRR1552205	 	 Mexico	
SRR1552206	 	 Mexico	
SRR1552207	 	 Mexico	
SRR1552208	 	 Mexico	
SRR1552209	 	 Mexico	
SRR1549524	 	 North	FL,	USA	
SRR1549525	 	 North	FL,	USA	
SRR1549526	 	 North	FL,	USA	
SRR1552001	 	 North	FL,	USA	
SRR1552222	 	 North	FL,	USA	
SRR1552223	 	 North	FL,	USA	
SRR1549527	 	 TX,	USA	
SRR1549528	 	 TX,	USA	
SRR1549529	 	 TX,	USA	
SRR1980588	 	 TX,	USA	
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Supplementary	File	2:	Identifying	Batch	Effects	

									 We	identified	SNPs	from	the	combined	Cornell	and	W&M	datasets	using	the	same	
stacks	pipeline	described	in	the	main	text.	This	resulted	in	872	SNP	markers	from	181	A.	
syriaca	individuals.	These	markers	were	then	used	in	a	STRUCTURE	analysis	identical	to	
that	described	in	the	main	text,	with	the	exception	that	we	only	analyzed	possible	numbers	
of	clusters	between	K	=	2	and	K	=	10.	

									 STRUCTURE	results	were	processed	and	visualized	using	the	same	pipeline	
described	in	the	main	text.	The	results	are	shown	below	in	Figure	S2.1.	

									 For	many	values	of	K,	the	differences	between	the	STRUCTURE	results	for	the	
Cornell	data	set	and	the	W&M	data	set	were	subtle:	for	instance,	for	K	=	2,	Cornell	
individuals	had	approximately	25-35%	ancestry	from	Cluster	1,	while	W&M	individuals	
had	around	35-35%	ancestry	the	same	cluster	(Figure	S2.1).	We	therefore	also	used	a	
second	clustering	method	implemented	in	the	adegenet	2.1.2	package	(Jombart	2008,	
Jombart	and	Ahmed	2011)	in	R,	which	uses	a	K-means	approach	to	assign	individuals	to	
one	of	K	clusters,	with	the	appropriate	K	chosen	based	on	the	Bayesian	Information	
Criterion.	

									 Runs	with	K	=	2	and	K	=	3	produced	the	two	lowest	BICs,	which	were	nearly	equal.	
Both	runs	produced	similar	results,	with	the	cluster	assignments	almost	exactly	mirroring	
membership	in	the	Cornell	or	W&M	datasets	(Table	S2.1).	The	difference	between	the	two	
is	that	at	K	=	3,	some	European	individuals	from	the	Cornell	data	set	were	split	off	from	the	
remainder	of	the	Cornell	individuals	(results	which	were	also	seen	in	the	STRUCTURE	
results	(Figure	S2.1).	

Table	S2.1:	Adegenet	assigns	individuals	from	different	data	sets	to	different	clusters	

Cluster	Assignment	 W&M	individuals	 Cornell	individuals	

K	=	2,	cluster	1	 90	 1	

K	=	2,	cluster	2	 4	 86	

		 		 		

K	=	3,	cluster	1	 5	 82	
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K	=	3,	cluster	2	 0	 5	

K	=	3,	cluster	3	 89	 0	

	

	Figure	2.1:	Batch	effects	appear	when	attempting	to	combine	Cornell	and	W&M	data	
sets.	

	

The	thin	vertical	bars	represent	individual	milkweeds,	divided	into	seven	blocks,	from	left	to	right:	Cornell	
Northeast,	Cornell	Southeast,	Cornell	Europe,	W&M	Northeast,	W&M	Southeast,	W&M	Northwest,	W&M	
Southwest.	Each	bar	is	colored	according	to	the	cluster(s)	to	which	it	belongs.	The	top	graph	shows	the	
results	when	Structure	assumes	2	clusters,	then	3	clusters,	etc,	with	the	bottommost	graph	showing	k=10	
clusters.	Several	of	the	European	individuals	form	a	distinct	cluster	for	all	values	of	k.	Note	the	differences	in	
which	clusters	are	common	in	North	American	milkweeds	in	the	Cornell	data	set	vs	the	W&M	data	set.	
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