

1 TITLE

2

3 Distinct execution modes of a biochemical necroptosis model explain cell type-specific responses
4 and variability to cell-death cues

5

6 AUTHORS

7

8 Geena V. Ildefonso¹, Marie Oliver-Metzig^{2,3}, Alexander Hoffmann^{2,3}, Leonard A. Harris^{4,5,6,*},
9 Carlos F. Lopez^{7,8,9,*}

10

11 ¹Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville,
12 TN, USA

13 ²Department of Microbiology, Immunology and Molecular Genetics, University of California,
14 Los Angeles, CA, USA

15 ³Institute for Quantitative and Computational Biosciences, University of California, Los
16 Angeles, CA, USA

17 ⁴Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA

18 ⁵Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas,
19 Fayetteville, AR, USA

20 ⁶Cancer Biology Program, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for
21 Medical Sciences, Little Rock, AR, USA

22 ⁷Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA

23 ⁸Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA

24 ⁹Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN,
25 USA

26

27 Correspondence addressed to:

28 * harrisl@uark.edu, c.lopez@vanderbilt.edu

29

30 ABSTRACT

31

32 Necroptosis is a form of regulated cell death that has been associated with degenerative disorders,
33 autoimmune processes, inflammatory diseases, and cancer. To better understand the biochemical
34 mechanisms of necroptosis cell death regulation, we constructed a detailed biochemical model of
35 tumor necrosis factor (TNF)-induced necroptosis based on known molecular interactions.
36 Intracellular protein levels, used as model inputs, were quantified using label-free mass
37 spectrometry, and the model was calibrated using Bayesian parameter inference to experimental
38 protein time course data from a well-established necroptosis-executing cell line. The calibrated
39 model accurately reproduced the dynamics of phosphorylated mixed lineage kinase domain-like
40 protein (pMLKL), an established necroptosis reporter. A dynamical systems analysis identified
41 four distinct modes of necroptosis signal execution, which can be distinguished based on rate
42 constant values and the roles of the deubiquitinating enzymes A20 and CYLD in the regulation of
43 RIP1 ubiquitination. In one case, A20 and CYLD both contribute to RIP1 deubiquitination, in
44 another RIP1 deubiquitination is driven exclusively by CYLD, and in two modes either A20 or
45 CYLD acts as the driver with the other enzyme, counterintuitively, inhibiting necroptosis. We also
46 performed sensitivity analyses of initial protein concentrations and rate constants and identified
47 potential targets for modulating necroptosis sensitivity among the biochemical events involved in
48 RIP1 ubiquitination regulation and the decision between complex II degradation and necrosome
49 formation. We conclude by associating numerous contrasting and, in some cases, counterintuitive
50 experimental results reported in the literature with one or more of the model-predicted modes of
51 necroptosis execution. Overall, we demonstrate that a consensus pathway model of TNF-induced
52 necroptosis can provide insights into unresolved controversies regarding the molecular
53 mechanisms driving necroptosis execution for various cell types and experimental conditions.

54

55 INTRODUCTION

56

57 Apoptosis is widely recognized as the primary form of programmed cell death, characterized by a
58 concerted dismantling of the cell into apoptotic bodies that can be easily processed by the immune
59 system.¹ Conversely, necroptosis is an alternative form of programmed cell death in which the cell
60 membrane is ruptured, leading to immune response activation.^{2,3} Various human diseases,
61 including neurodegenerative disorders and cancer, have been associated with necroptosis.⁴
62 Induction of necroptosis is also currently being explored as an alternative anticancer therapy, since
63 apoptosis resistance is a hallmark of cancer.⁵⁻⁷ Although many of the primary molecular species
64 involved in necroptosis have been identified,⁸ including receptor interacting protein kinase-1
65 (RIP1), RIP3, and mixed lineage kinase domain-like protein (MLKL), efforts to target necroptosis
66 dysregulation or leverage it therapeutically are hindered by the lack of a detailed, mechanistic
67 understanding of the biochemical pathways driving necroptosis execution.⁴

68

69 Prior studies⁹⁻¹⁶ of necroptosis identified multiple mechanisms of ubiquitination regulation,
70 including K63, K48, and M1 chains, which lead to phosphorylation of RIP1 and RIP3,
71 phosphorylation and activation of cell death marker MLKL,⁹ and plasma membrane
72 permeabilization resulting in cell death.⁸ The K63-specific deubiquitinase CYLD¹⁷
73 (cylindromatosis lysine 63 deubiquitinase) and the ubiquitin-editing enzyme A20¹⁵ (tumor
74 necrosis factor, alpha-induced protein 3) are both known to mediate deubiquitination of RIP1,
75 which precedes RIP1 phosphorylation, by cleaving K63 ubiquitin chains and facilitating the

76 formation of complex II.¹⁰⁻¹⁶ Therefore, both enzymes are generally considered drivers of
77 necroptosis.¹⁸ However, CYLD- and A20-driven deubiquitination of RIP1 have been variously
78 reported as pro- and anti-necroptotic in different cell types: some studies have shown that CYLD
79 drives RIP1 deubiquitination,^{12,17,19,20} while others have implicated A20²¹⁻²³ or reported equal
80 contributions from both enzymes.²⁴⁻²⁶ These varying reports have led to unresolved controversies
81 within the field regarding the specific molecular mechanisms of complex II formation and
82 subsequent necroptotic cell death.⁴ For example, Vanlangenakker et al.²⁶ showed that repression
83 of CYLD in L929 cells, a murine fibrosarcoma cell line, protects from tumor necrosis factor
84 (TNF)-induced necroptosis but, unexpectedly, A20 repression increases sensitivity to necroptosis.
85 A recent time-resolved analysis of necroptosis rates and network components revealed an
86 incoherent feedforward loop through which NF- κ B and A20 counteract pro-necroptotic signaling
87 in L929 cells,²⁷ but it remains unclear how general or cell context-dependent this regulatory control
88 of necroptosis is.
89

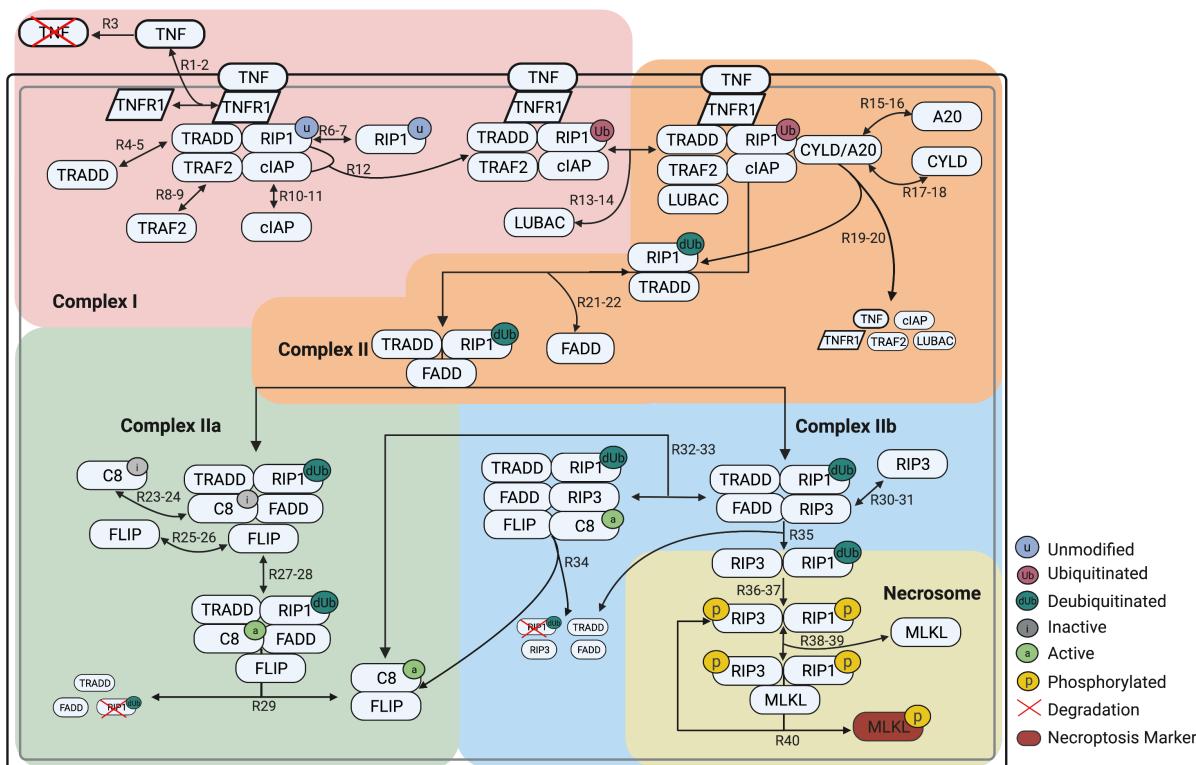
90 Here, we present, to our knowledge, the first detailed biochemical model of TNF-induced
91 necroptosis. The model is derived from published literature and incorporates known biology
92 obtained from decades' worth of experimental studies (Table 1). We calibrate the model to
93 experimental phosphorylated MLKL (pMLKL) time course data from TNF-treated mouse
94 fibrosarcoma cells at multiple TNF doses. We then perform a dynamical systems analysis that
95 identifies four modes of necroptosis signal execution. In one case, A20 and CYLD contribute
96 approximately equally to RIP1 deubiquitination, such that both must be knocked out to delay
97 necroptosis induction (knocking out one has no effect, since the signal can be rerouted through the
98 other). In another, RIP1 deubiquitination is driven exclusively by CYLD, with A20 being
99 effectively inactive. In the other two modes, either A20 or CYLD acts as the driver of RIP1
100 deubiquitination, with the other enzyme, counterintuitively, acting to inhibit necroptosis
101 (consistent with the observation by Vanlangenakker et al.²⁶). We also perform sensitivity analyses
102 to identify proteins and kinetic parameters that can be targeted within each mode to modulate
103 pMLKL dynamics and time-to-death (TTD) by necroptosis. We find that, for two modes, proteins
104 and rate constants centered around RIP1 ubiquitination regulation in complex I have the most
105 significant effect on necroptosis execution. For the other two, potential targets include factors
106 involved in the balance between complex II degradation and necrosome formation. Overall, our
107 results show that a consensus pathway model of TNF-induced necroptosis can explain numerous
108 experimentally observed behaviors, including conflicting and counterintuitive results from
109 multiple studies involving different cell types. Following a detailed description of our proposed
110 model, we present results of the parameter calibration, dynamical systems analysis, *in silico*
111 knockout experiments, and sensitivity analyses. We conclude with a discussion of the broader
112 implications of our results, including important insights into the molecular mechanisms of
113 necroptosis execution and the potential for using the model to identify novel pro- and anti-
114 necroptosis therapeutic targets.
115

116 RESULTS

117 118 **A biochemical model of TNF-induced necroptosis describes the formation of key signaling** 119 **complexes along the path to cell death**

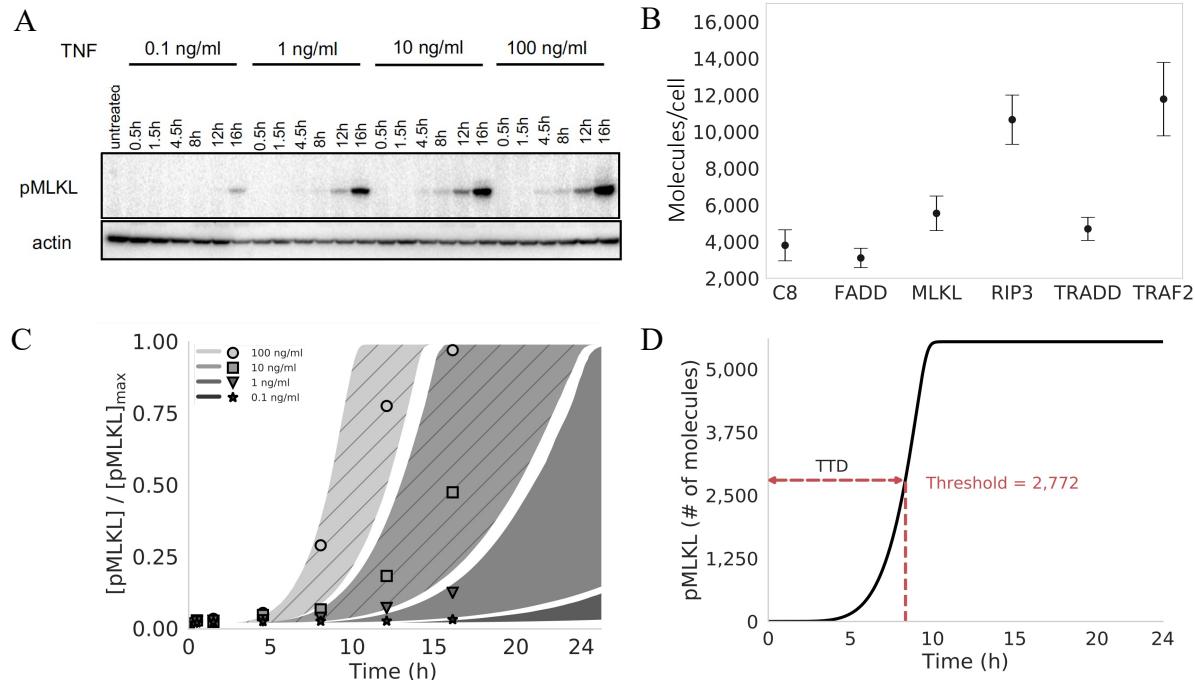
120

121 The death receptor ligand TNF,²⁸ an extensively studied inducer of necroptosis and well-known
122 master regulator of inflammation, has been at the forefront of numerous fundamental discoveries
123 concerning the interplay between cell death and survival pathways.²⁶ Here, we propose a detailed,
124 mechanistic model of TNF-induced necroptosis based on an extensive review of the literature
125 (Table 1, with references). The model comprises 14 proteins interacting via 40 reactions (all mass
126 action) to produce 37 biochemical species, including complex I, complex II, and the necrosome
127 (Fig. 1), three key macromolecular complexes along the path from cell-death cue to necroptosis
128 execution. Below, we describe in detail the steps involved in the formation of each complex,
129 beginning with TNF binding to TNF receptor 1 (TNFR1) and ending at phosphorylation of the
130 necroptosis cell death reporter MLKL. A model schematic is provided as a visual aid (Fig. 1), with
131 reactions, including association, dissociation, phosphorylation, ubiquitination, deubiquitination,


Table 1: Key proteins involved in necroptosis.

Protein	Role in necroptosis	References
A20	Ubiquitin-editing enzyme responsible for deubiquitinating RIP1 in complex I	21,22
Caspase-8	Heterodimerizes with cFLIPL (long isoform), leading to cleavage and inactivation of RIP1 and RIP3 in complex II	38,97
cFLIPL	Heterodimerizes with caspase-8, leading to cleavage and inactivation of RIP1 and RIP3 in complex II	39,98
cIAP1/2	Catalyzes, via its RING domains, the activating K63-linked polyubiquitination of RIP1	26,69
CYLD	Deubiquitinates RIP1 in either complex I or within the RIP1-RIP3 necrosome	12,17
FADD	TNFR1-interacting scaffold protein in complex II	18,99,100
LUBAC	TNFR1-interacting protein recruited by cIAP1/2 in complex I that promotes RIP1 ubiquitination	26,70
MLKL	Recruited to the necrosome by RIP1, where it is phosphorylated, leading to cell death by membrane rupture	44,101,102
RIP1	A multifunctional adaptor protein in the necrosome that recruits and activates RIP3 and MLKL	26,103,104
RIP3	Recruited to the necrosome by binding to and cross-phosphorylating RIP1	101,105,106
TNF	Pleiotropic pro-inflammatory cytokine that activates necroptosis in the absence of caspase activity	107
TNFR1	TNF receptor superfamily member death receptor that recruits RIP1 to complex I	30,108
TRADD	TNFR1-interacting protein in complexes I and II that serves as a docking adaptor for the binding of RIP1 to TRAF2	32,108
TRAF2	TNFR1-interacting protein that recruits cIAP1/2 to complex I, promoting K63-linked RIP1 ubiquitination	109,110

132 and degradation, denoted as “ R_N ,” where N is the reaction number. Note that protein synthesis is
133 omitted from the model because all experiments were performed in the presence of cycloheximide
134 (see Materials and Methods), commonly used to sensitize cells to TNF.²⁹


135
136 Signaling through the necroptosis pathway is initiated when the cytokine TNF binds to the
137 extracellular domain of TNFR1 (R_{1-2}), which protects TNF from degradation (R_3) and activates
138 the receptor by causing a conformational change in its intracellular domain.^{26,30,31} The adaptor

139 protein TRADD (TNFR1-associated death domain) is then recruited to the intracellular domain of
 140 TNFR1 (R_{4-5}) to facilitate binding of RIP1 (unmodified; R_{6-7}) and TRAF2 (TNFR-associated factor
 141 2; R_{8-9}).³²⁻³⁴ TRAF2 recruits and binds cIAP1/2 (cellular inhibitor of apoptosis proteins 1 and 2;
 142 R_{10-11}), which add non-degradative polyubiquitin chains to RIP1 (R_{12}).⁹ Ubiquitinated RIP1
 143 recruits other necessary components to the complex, including LUBAC (linear ubiquitin chain
 144 assembly complex; R_{13-14}). We refer to the supramolecular structure, which is anchored to the cell
 145 membrane and composed of TNF, TNFR1, TRADD, ubiquitinated RIP1, TRAF2, cIAP1/2, and
 146 LUBAC, as complex I^{29,35} (Fig. 1, *pink*). Biologically, complex I is known to drive multiple
 147 pathways in addition to necroptosis, including apoptosis and the inflammatory NF- κ B pathway.³⁶

Figure 1: Schematic of the necroptosis execution model. The diagram is color coded to highlight the processes involved in formation of complex I, complex II, complex IIa, complex IIb, and the necrosome. Arrows are labeled with 'R_N' or 'R_{N-M}', where N and M correspond to reaction indices in the model. In many cases (but not all; see text), 'R_{N-M}' denotes a set of reversible reactions, with N the index of the forward direction and M the index of the reverse. Note that unmodified (u) and deubiquitinated (dUb) RIP1 are considered distinct states and are involved in different reactions. Created with BioRender.com.

148 Formation of complex I is followed by deubiquitination of RIP1 by the enzymes A20^{15,21} and
 149 CYLD,^{12,17,19,20} which competitively bind to RIP1 in its ubiquitinated state (R_{15-18}), causing
 150 cleavage, deubiquitination, and release in association with TRADD and the dissolution of complex
 151 I (R_{19-20}). The RIP1:TRADD heterodimer then recruits FADD (Fas-associated protein with death
 152 domain; R_{21-22}), initiating the formation of complex II, also known as the cytosolic death-inducing
 153 signaling complex (Fig. 1, *orange*). Complex II can then be modified via two competing paths,
 154 one anti-necroptotic and one pro-necroptotic. The anti-necroptotic path involves FADD, via its
 155 death effector domain, mediating the recruitment of inactive Caspase 8 (C8i; R_{23-24}),³⁷ which
 156

Figure 2: Proteomics, parameter calibration, and time-to-death. (A) Western blots for phosphorylated MLKL (pMLKL) at multiple time points in L929 (murine fibrosarcoma) cells under 0.1–100 ng/ml TNF stimulation. Actin, used as a loading control, is also shown for comparison. (B) Mass spectrometry data from untreated L929 cells for multiple proteins involved in necroptosis execution. Points represent the median of three replicates (used as input to the computational model); error bars span the interquartile range. (C) Simulated pMLKL time courses (plotted as 95% probability envelopes) for 0.1–100 ng/ml TNF stimulation (same concentrations as in A) based on 10,628 parameter sets obtained using Bayesian parameter estimation. The model was calibrated to the 100 and 10 ng/ml TNF data only (shaded regions with diagonal lines); time courses for the lowest TNF concentrations (shaded regions with no diagonal lines) amount to a simple model validation. Points correspond to the Western blot data in A, quantified via densitometry. Points and shaded regions are colored the same, based on TNF dose. (D) Illustration of the time-to-death (TTD) metric used to quantify cell death *in silico*. A hard threshold of 2,772 molecules (half the median MLKL level in B) was chosen to signify cell death (see Materials and Methods). MLKL: mixed lineage kinase domain-like protein; TNF: tumor necrosis factor.

157 subsequently binds FLIP (cellular FADD-like IL-1 β -converting enzyme-inhibitory protein; R_{25-26}), resulting in the complex commonly referred to as complex IIa (Fig. 1, *green*).^{26,37} FLIP then
 158 oligomerizes with C8i to produce active Caspase-8 (C8a; R_{27-28}),^{38,39} which cleaves RIP1 for
 159 truncation (i.e., degradation), resulting in dissolution of the complex and release of the active
 160 C8a:FLIP heterodimer^{40,41} (R_{29}) that directly inhibits necroptosis (R_{32-34} ; see below).
 161

162 The pro-necroptotic path involves formation of complex IIb (Fig. 1, *blue*), which occurs when
 163 deubiquitinated RIP1 in complex II recruits RIP3 (receptor-interacting protein kinase 3; R_{30-31}),
 164 blocking C8i recruitment (R_{23-24}). The C8a:FLIP heterodimer can then be recruited to complex IIb
 165 (R_{32-33}), which cleaves RIP1 for truncation, leading to dissolution of the complex (R_{34}).
 166 Alternatively, RIP3 and deubiquitinated RIP1 can dissociate from complex IIb as a heterodimer
 167 (R_{35}).²⁶ Cross-phosphorylation of RIP3 (R_{36}) and then RIP1 (R_{37}), followed by recruitment of
 168 MLKL (R_{38-39}),^{42,43} results in the necroptosis signaling complex, known as the necrosome (Fig. 1,
 169 *yellow*).²⁶ Phosphorylation of MLKL⁴⁴ in the necrosome by phosphorylated RIP1 and RIP3 is
 170 followed by release of pMLKL from the phosphorylated RIP1:RIP3 heterodimer (R_{40}), which is
 171 again free to bind MLKL. We assume dephosphorylation and degradation of the phosphorylated
 172

173 RIP1:RIP3 heterodimer is negligible, consistent with experimental reports.⁴⁵ Translocation of
174 pMLKL to the cell membrane⁴⁶ then causes rapid plasma membrane rupture and inflammatory
175 response due to the release of DAMPs (damage-associated molecular patterns) and cytokines,⁴⁷
176 ultimately resulting in cell death.

177

178 **Western blots and mass spectrometry enable Bayesian parameter estimation of the 179 necroptosis model**

180

181 To explore the dynamics of our computational necroptosis model, we first calibrated it to
182 experimental protein time course data using a Bayesian parameter estimation approach.⁴⁸ Briefly,
183 we used L929 cells, a murine fibrosarcoma cell line that is a well-established model system for
184 studying necroptosis.²⁶ Cells were treated with 100, 10, 1, and 0.1 ng/ml of TNF over 16 hours
185 and pMLKL levels were estimated at multiple time points via Western blot using densitometry
186 (Fig. 2A). To quantify initial protein abundances, used as inputs to the model, we used label-free
187 mass spectrometry in untreated L929 cells for proteins C8, FADD, MLKL, RIP3, TRADD, and
188 TRAF2 (Fig. 2B). All other initial protein levels (other than TNF, which depends on applied dose)
189 were set to values based on biologically plausible assumptions (Supplementary Table S1).
190 Parameter estimation was then performed using PyDREAM⁴⁸ (Fig. 2C), a multi-chain Monte Carlo
191 sampling tool, with a multi-objective cost function that included data from the two highest TNF
192 doses (100 and 10 ng/ml; Supplementary Fig. S1). In all, an ensemble of 10,628 parameter sets
193 was obtained (Supplementary Fig. S2), all of which reproduce the experimental data reasonably
194 well⁴⁹ (see Materials and Methods for additional details). Model simulations at the two lowest TNF
195 doses (1 and 0.1 ng/ml; Fig. 2C) showed good correspondence to experimental data, providing a
196 simple validation of the model fits.

197

198 **A dynamical systems analysis identifies four distinct necroptosis execution modes differing 199 by mechanism of RIP1 ubiquitination regulation**

200

201 We performed a dynamical systems analysis to explore the possibility that distinct “modes of
202 necroptosis execution” exist within the parameter set ensemble obtained from Bayesian parameter
203 estimation. The rationale is that while different parameterizations of the model achieve cell death
204 at approximately equal times, they may arrive there via significantly different sequences of
205 molecular events. We utilized a computational tool⁵⁰ that identifies subnetworks of reactions that
206 dominate the production or consumption of a target species, pMLKL in this case, at user-specified
207 times along a time course. Each subnetwork is given an integer label and each time point is
208 associated with a subnetwork. Thus, a continuous concentration time course is “digitized” into a
209 sequence of integers, which we refer to as a “dynamical signature.” This transformation enables
210 simple comparisons between time courses obtained with different parameter sets using standard
211 dissimilarity metrics, such as the longest common subsequence.⁵¹ Applying this approach to all
212 10,628 parameter sets obtained from Bayesian parameter estimation of our necroptosis model and
213 clustering the resulting dynamical signatures using a spectral clustering algorithm,⁵² we obtained
214 four distinct clusters, or modes of necroptosis execution (Fig. 3A and Supplementary Fig. S3; see
215 Materials and Methods for additional details).

216

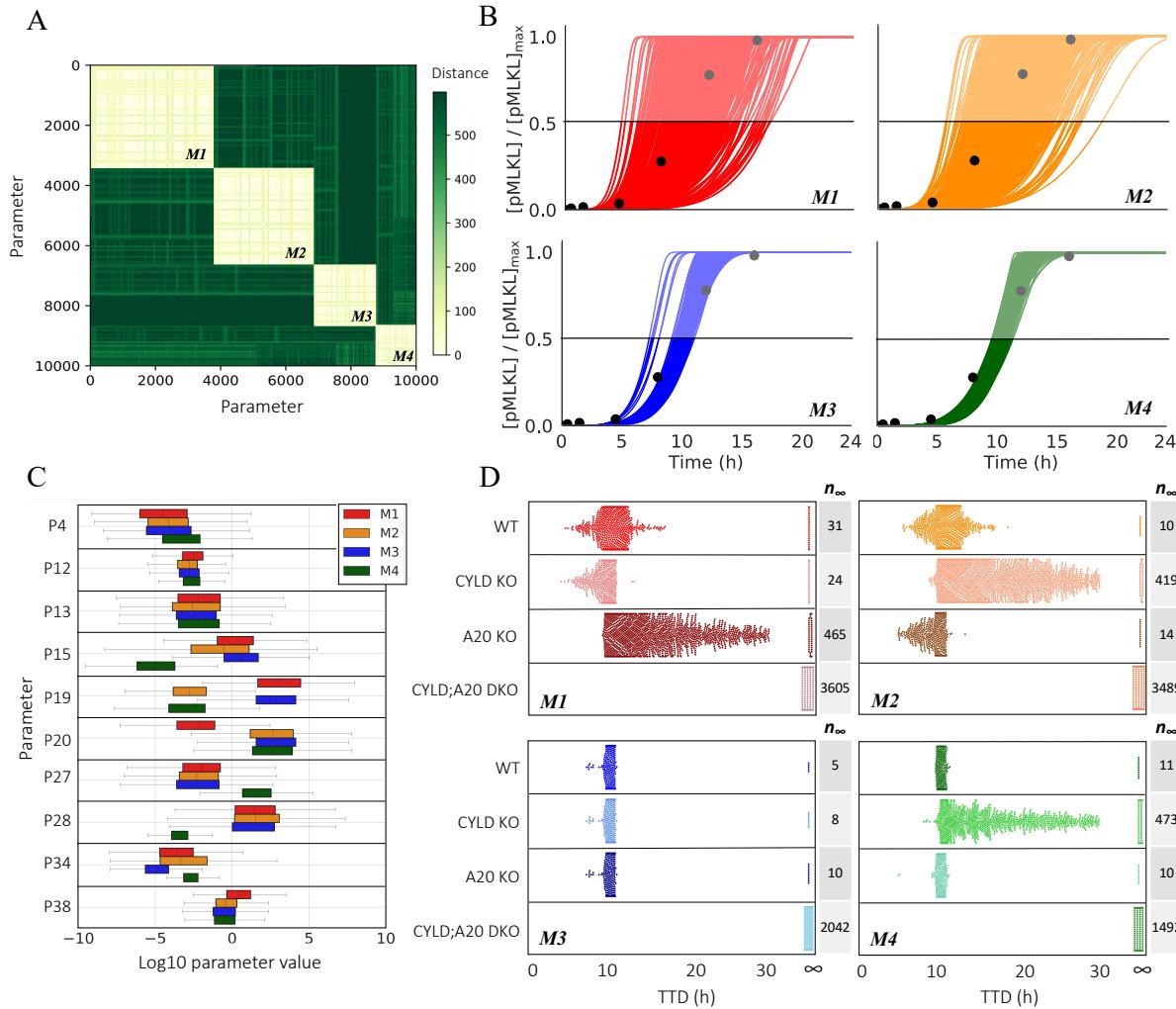

217 Interestingly, two of the execution modes exhibit significantly more variability in pMLKL
218 temporal dynamics and TTD (defined in Fig. 2D) across their associated parameter sets than the

Table 2: Roles of A20 and CYLD in RIP1 deubiquitination and necroptosis execution in the four signal execution modes. \downarrow : decrease; \uparrow : increase; \Leftrightarrow : no change; TTD: time-to-death.

Mode 1	<ul style="list-style-type: none"> • A20 \downarrow TTD \uparrow • CYLD \downarrow TTD \downarrow 	<ul style="list-style-type: none"> • A20 deubiquitinates RIP1 • CYLD (counterintuitively) inhibits necroptosis
Mode 2	<ul style="list-style-type: none"> • CYLD \downarrow TTD \uparrow • A20 \downarrow TTD \downarrow 	<ul style="list-style-type: none"> • CYLD deubiquitinates RIP1 • A20 (counterintuitively) inhibits necroptosis
Mode 3	<ul style="list-style-type: none"> • CYLD \downarrow TTD \uparrow • A20 \downarrow TTD \Leftrightarrow 	<ul style="list-style-type: none"> • CYLD deubiquitinates RIP1 • A20 has no significant role in necroptosis execution
Mode 4	<ul style="list-style-type: none"> • A20 \downarrow TTD \Leftrightarrow • CYLD \downarrow TTD \Leftrightarrow • A20 \downarrow CYLD \downarrow TTD \uparrow 	<ul style="list-style-type: none"> • Both A20 and CYLD can drive RIP1 deubiquitination • If one is knocked out, the signal can reroute through the other • Double KO prevents cell death (true for all modes)

other two (Fig. 3B). This suggests the modes harbor fundamental differences in rate constant values that lead to differential robustness to parameter variations. To explore this further, we compared the distributions of rate constants across modes and identified eight (out of 40) with significant differences (>7.5 -fold) between the largest and smallest mean (Fig. 3C; additional distributions are shown in Supplementary Fig. S5). We also consider distributions for two rate constants (P12 and P13; parameter indices correspond to reaction indices in Fig. 1) with much smaller differences across means (~ 3 -fold in both cases) but for which the model exhibits high sensitivity (discussed in the next subsection). In all, these 10 rate constants correspond to reactions spanning the model topology, starting with the association of TRADD to complex I (P4), which has a somewhat increased rate in mode 4. Further downstream, the rate constant for ubiquitination of RIP1 by cIAP (P12) is slightly larger in mode 1 than in the other modes. Small differences are also seen for the binding rate of LUBAC to complex I (P13). The rate constant for binding of A20 to ubiquitinated RIP1 (P15) is significantly smaller in mode 4 than in the other modes and somewhat smaller in mode 2 relative to modes 1 and 3. Deubiquitination of RIP1 by A20 (P19) is significantly reduced in modes 2 and 4, while, interestingly, the rate constant for RIP1 deubiquitination by CYLD (P20) in mode 1 is reduced by almost the same amount relative to the other modes. For activation/deactivation of C8 in complex IIa, which is a critical step in the pathway for determining whether the cell will progress to necroptosis, mode 4 has both a significantly larger activation (P27) and significantly smaller deactivation (P28) rate constant. The rate constant for subsequent RIP1 degradation by the active C8a:FLIP heterodimer to complex IIb (P34), which inhibits necroptosis, is somewhat smaller in mode 3 and larger in mode 4 relative to the other modes. Finally, the binding rate constant for MLKL to the phosphorylated RIP1:RIP3 heterodimer (P38), the final step in the formation of the necrosome, is somewhat increased in mode 1. These results clearly illustrate that significant differences exist in the values of rate constants across the modes of execution, despite the similarities in pMLKL temporal dynamics.

CYLD and A20 are known regulators of RIP1 deubiquitination^{10–16} but have been reported as both drivers and inhibitors of necroptosis in different cell types.^{12,17,19,20,24–26} To investigate the roles of CYLD and A20 in our necroptosis model, we performed *in silico* CYLD and A20 knockout (KO) experiments and compared TTD distributions to the unperturbed, i.e., “wild-type” (WT), case (Fig. 3D). Unsurprisingly, in all cases CYLD/A20 double KO (DKO) prevents cell death (TTD = ∞). However, for single CYLD KO and A20 KO, we see highly variable responses across the four modes of execution. For mode 1, we see that knocking out A20 leads to a general increase in TTD

Figure 3: Four modes of necroptosis execution exhibit variability in temporal dynamics and differ in rate constant values and responses to CYLD and A20 knockouts. (A) Clustering analysis of simulated time courses (100 ng/ml TNF) from 10,628 parameter sets reveals four distinct modes of execution ($M1, \dots, M4$). Dissimilarity (“distance”) between dynamical signatures (digitized time courses) was quantified using the longest common subsequence (see Materials and Methods). (B) Simulated time courses (100 ng/ml TNF) of the necroptosis marker, phosphorylated MLKL (pMLKL), show significantly more variability in time-to-death (TTD; defined as the time at which pMLKL reaches its half-maximal value) in modes 1 and 2. Time courses for all parameter sets associated with each mode are shown. Experimental Western blot data (black circles; quantified from Fig. 2A) are included to illustrate the model fit for each mode. (C) Variations in the values of 10 rate constants (PN , where N corresponds to the associated reaction index in Fig. 1) distinguish the four modes of execution. Note that $P12$ and $P13$ are included because of the high sensitivity of the model to variations in their values (discussed in the next subsection). (D) Knockouts of CYLD and A20 (100 ng/ml TNF) differentially affect TTD, relative to wild type (WT), across the four modes of execution (each dot corresponds to a parameter set). Note that CYLD;A20 double knockout inhibits cell death in all cases (TTD = ∞). The number of parameter sets that do not result in cell death (n_∞) are included for all modes under all conditions. KO: knockout; DKO: double knockout.

252 (i.e., decrease in necroptosis sensitivity) across the parameter sets, consistent with A20 acting as a
 253 regulator of RIP1 ubiquitination and driver of necroptosis.^{15,21} Conversely, CYLD KO results in a
 254 general reduction in TTD (i.e., increase in sensitivity), indicating that CYLD in mode 1
 255 counterintuitively operates as an inhibitor of necroptosis. We see the opposite trends in mode 2:
 256 A20 KO reduces TTD, while CYLD KO leads to a general increase in TTD across the parameter

257 sets. This result is consistent with observations by Vanlangenakker et al.²⁶ that A20 depletion can
258 sensitize cells to death by necroptosis. In mode 3, we see that single KOs of A20 and CYLD have
259 no effect on TTD. Since DKO prevents cell death in all cases, this reveals that A20 and CYLD
260 both drive RIP1 deubiquitination and, hence, when one enzyme is knocked out signal flow diverts
261 through the other. Finally, in mode 4, CYLD KO leads to a general increase in TTD, like mode 2;
262 however, A20 KO has no effect, as in mode 3. In all, the results of *in silico* KO experiments reveal
263 distinct differences in the roles of A20 and CYLD in RIP1 ubiquitination regulation among the
264 four model-predicted modes of necroptosis execution (summarized in Table 2).

265

266 **Ubiquitination of RIP1 by cIAP in complex I and binding of LUBAC to complex I are global 267 modulators of necroptosis sensitivity across execution modes**

268

269 Targeting necroptosis by small molecule modulators has emerged as a promising approach for
270 both cancer therapy and treatment of inflammatory diseases.⁵³ It is of interest, therefore, to
271 determine if modulating factors exist that are common across all modes of execution, which could
272 represent novel therapeutic targets. Towards this end, we performed sensitivity analyses based on
273 “representative” parameter sets for each mode (automatically generated by our dynamical systems
274 analysis tool;⁵⁰ see Materials and Methods for details) over the 14 non-zero initial protein
275 concentrations (Fig. 4A) and 40 rate constants (Fig. 5A, Supplementary Fig. S4). Initial protein
276 concentrations were varied \pm 20% around a reference set of concentrations (Supplementary Table
277 S1) used for parameter estimation; rate constant values were varied \pm 20% around the
278 representative parameter set for each mode. We then validated the results of these analyses (i.e.,
279 to confirm they are not specific to the representative parameter set) by performing, for all
280 parameter sets associated with each mode, *in silico* knockdowns (KDs) by 70% and 10-fold
281 overexpressions (OEs) for the initial concentrations^{54,55} (Fig. 4B) and by varying the rate constants
282 values \pm 10-fold (Fig. 5B).

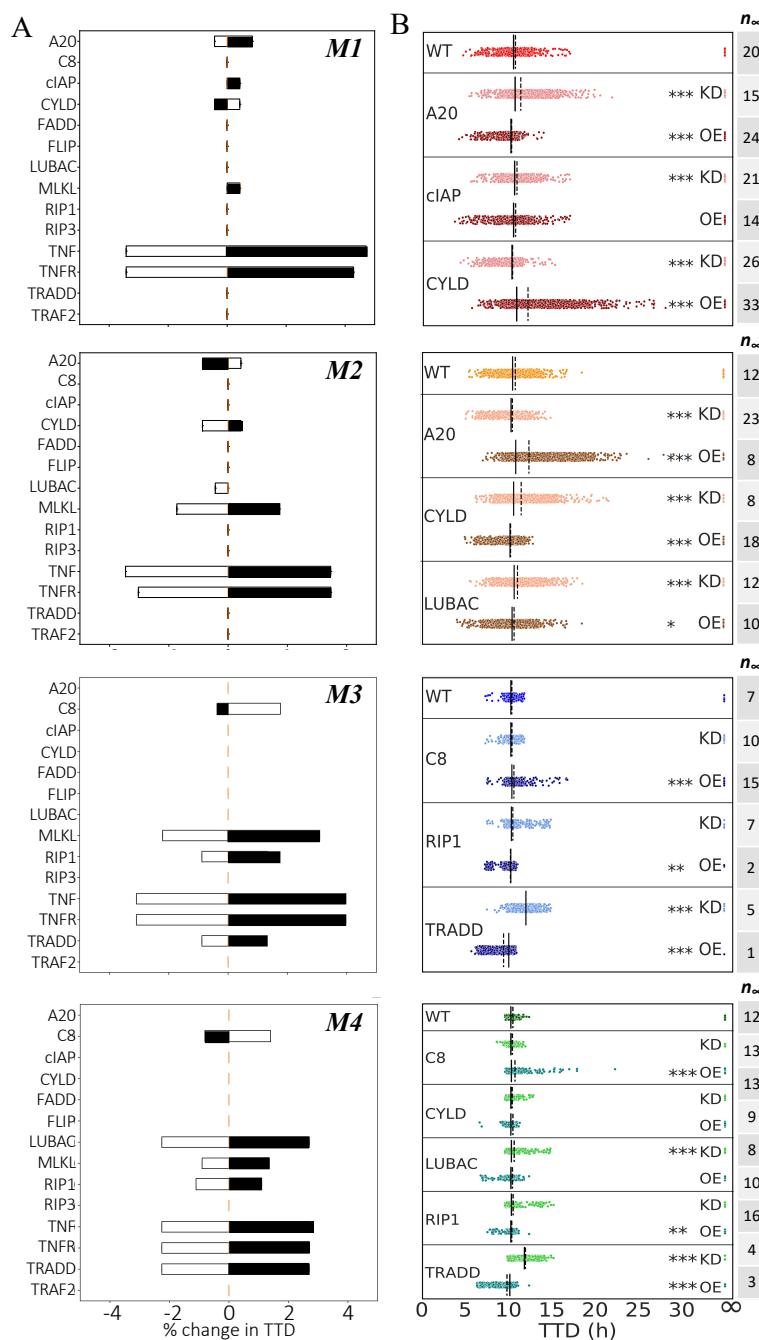
283

284 Across the four modes of execution, we see three common protein modulators of necroptosis
285 sensitivity: TNF, TNFR, and MLKL (Fig. 4). These are not unexpected (and, hence, not novel
286 targets), since these proteins are well-known master regulators of TNF-induced necroptosis.^{56,57}
287 More interestingly, for the rate constants, we see three common modulators across the four modes
288 (Fig. 5 and Supplementary Fig. S5) corresponding to the association of TNF to TNFR (P1),
289 ubiquitination of RIP1 by cIAP in complex I (P12), and association of LUBAC (P13) to complex
290 I (see Fig. 1, *pink*). The former is not unexpected, given that TNF is the death-inducing stimulus
291 driving necroptosis. However, the latter two are not intuitively obvious and, hence, are potential
292 global targets predicted by our model. Specifically, for all four modes, we see that increasing the
293 values of these two rate constants (P12 and P13) leads to a significant decrease in TTD (i.e.,
294 increased sensitivity to necroptosis), and vice versa. Note that the analyses based on the
295 representative parameter set (Fig. 5A) show only that TTD decreases when these two rate constant
296 values are increased. However, by repeating the analyses over all parameter sets associated with
297 each mode (Fig. 5B), we confirm that TTD also increases (i.e., sensitivity to necroptosis decreases)
298 when the rate constant values are decreased.

299

300 **Sensitivities to initial protein levels and rate constant values reveal execution mode- 301 dependent targets for modulating time-to-death**

302


303 We have shown that the four modes of necroptosis execution (Fig. 3A) exhibit differences in
304 variability in TTD (Fig. 3B), rate parameter values (Fig. 3C), and responses to A20 and CYLD
305 KOs (Fig. 3D). This suggests that, in addition to the global modulators identified above (TNF,
306 TNFR, MLKL, P1, P12, P13; Figs. 4 and 5), each mode also has a unique set of factors that drive
307 response. For mode 1, these include proteins, i.e., A20, cIAP, and CYLD (Fig. 4–*top row*), and
308 rate constants (P10, P11, P15–P19; Fig. 5–*top row* and Supplementary Fig. S5) associated with
309 RIP1 ubiquitination regulation in complex I (see Fig. 1, *orange*). The sensitivities to A20 and
310 CYLD are consistent with the results from *in silico* KO experiments (Fig. 3D). Intuitively, we can
311 understand these sensitivities as due to competitive binding between A20 and CYLD to complex
312 I coupled with differences in the rate constants for RIP1 deubiquitination by A20 (P19) and CYLD
313 (P20; see Fig. 3C). In other words, increasing the amount of A20 leads to increased amounts of
314 A20-bound complex I (and vice versa). Since the rate constant for RIP1 deubiquitination in mode
315 1 by A20 is much larger than for CYLD (Fig. 3C), this results in a significant decrease in TTD
316 (i.e., increase in sensitivity to necroptosis). Conversely, increasing the amount of CYLD leads to
317 more CYLD-bound complex I (and vice versa). Since CYLD is less efficient at deubiquitinating
318 RIP1, this results in a much lower overall rate of RIP1 deubiquitination and a significant increase
319 in TTD (decrease in sensitivity to necroptosis). Sensitivities to rate constants associated with these
320 processes (P10, P11, P15–P19) can be explained similarly.

321
322 As in mode 1, potential targets in mode 2 include proteins, i.e., A20, CYLD, and LUBAC (Fig.
323 4A, *second row*), and rate constants (P15–P20; Fig. 5–*second row* and Supplementary Fig. S5)
324 associated with RIP1 ubiquitination regulation. The sensitivities to A20 and CYLD, however, are
325 reversed in their effects on TTD as compared to mode 1, i.e., increasing A20 increases TTD, while
326 increasing CYLD decreases TTD. Again, these results are consistent with *in silico* KO experiments
327 (Fig. 3D) and can be understood in terms of competitive binding between A20 and CYLD to
328 complex I and differences in rate constants for RIP1 deubiquitination by A20 and CYLD (Fig.
329 3C). Also note that TTD in modes 1 and 2 are sensitive to the rate constant for TNF degradation
330 (P3; Fig. 5–*top and second rows*), which is not unexpected since TNF is the stimulus driving
331 necroptosis.

332
333 For mode 3, potential targets are associated with formation of the necrosome from complex IIb,
334 which immediately precedes necroptosis execution (see Fig. 1, *blue*). Specifically, we see
335 sensitivities to proteins C8, RIP1, and TRADD (Fig. 4–*third row*), the latter two of which are key
336 components of complex II, and rate constants (P2–P6; Fig. 5–*third row* and Supplementary Fig.
337 S5) for reactions upstream of complex II that include the association of RIP1 and TRADD to
338 complex I. Intuitively, the comparatively small value of the rate constant in mode 3 for degradation
339 of C8a:FLIP-bound complex IIb (P34; see Fig. 3C) is what ultimately drives these sensitivities.
340 Modifying rates of reactions that contribute to complex II formation and/or the rate of binding of
341 C8i to complex II, alters the balance between the rates of necrosome formation and degradation of
342 complex IIb that prevents necroptosis, thus affecting TTD. Also note, in contrast to modes 1 and
343 2, the lack of sensitivity in mode 3 to variations in the initial concentrations of A20 and CYLD.
344 This is because, in this mode, A20 and CYLD are effectively indistinguishable enzymes, i.e., rate
345 constants for binding and unbinding from complex I (P15–P18) and RIP1 deubiquitination (P19
346 and P20) are virtually identical for both (Fig. 3C and Supplementary Fig. S5). Thus, varying the
347 concentration of one is effectively equivalent to varying the concentration of the other by the same
348 amount.

349

350 In mode 4, we see the same
 351 sensitivities as in mode 3 to
 352 varying concentrations of C8,
 353 RIP1, and TRADD (Fig. 4—
 354 *bottom row*) and the rate
 355 constant for association of
 356 TRADD to complex I (P4; Fig.
 357 5—*bottom row* and
 358 Supplementary Fig. S5). These
 359 sensitivities can be understood in
 360 the same way as in mode 3, in
 361 terms of the balance between
 362 necrosome formation and
 363 complex IIb degradation.
 364 However, we see an additional
 365 sensitivity in mode 4 to the initial
 366 concentration of LUBAC (Fig.
 367 4—*bottom row*). Interestingly, for
 368 the representative parameter set,
 369 this is evident for both increases
 370 and decreases in LUBAC
 371 concentration (Fig. 4A—*bottom*
 372 *row*), but when all parameter sets
 373 are considered is only
 374 statistically significant for the
 375 KD experiments (Fig. 5A—*bottom*
 376 *row*). Note also that the
 377 representative parameter set
 378 shows a sensitivity to the
 379 dissociation rate of LUBAC
 380 from complex I (P14; Fig. 5A—
 381 *bottom row*) but the effect is not
 382 statistically significant when all
 383 parameter sets are considered
 384 (Fig. 5B—*bottom row*).
 385 Furthermore, despite the results
 386 of *in silico* KO experiments that
 387 show RIP1 deubiquitination in
 388 mode 4 is driven exclusively by
 389 CYLD (Fig. 3D), we do not see
 390 a sensitivity in TTD to variations
 391 in CYLD concentration, even for
 392 a 70% KD (Fig. 4—*bottom row*).
 393 We can explain both this result
 394 and the one-way sensitivity to

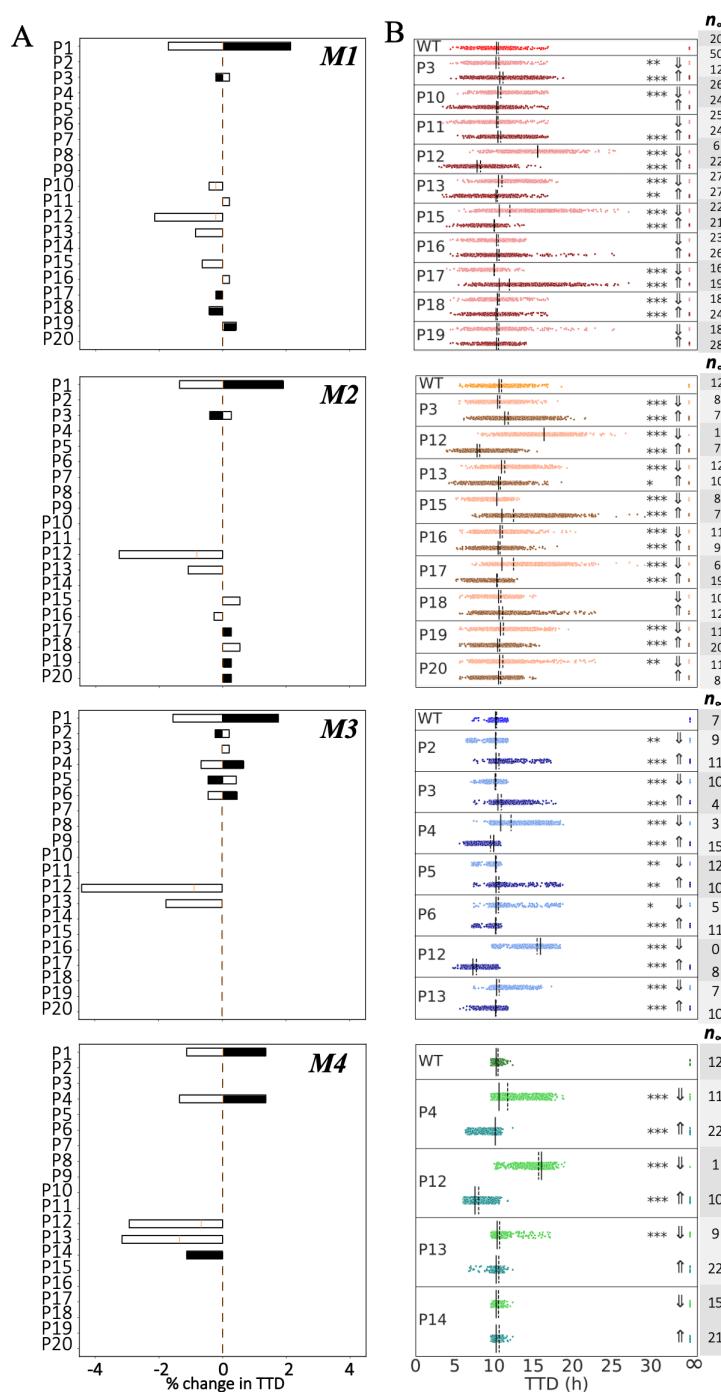


Figure 4: Sensitivity analyses and model-predicted protein targets for each mode of execution. (A) Changes in TTD for “representative” parameter sets of each mode. Black shaded regions signify decreases in initial protein concentrations; white shaded regions signify increases. (B) Knockdown (KD; 70%) and overexpression (OE; 10-fold) of potential targets identified in A for all parameter sets for each mode. The number of parameter sets that do not result in cell death (n_∞) are included. Solid black lines = medians, dashed black lines = means; * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ (Mood's median test).

395 variations in LUBAC as due to a
 396 severely dysfunctional A20 in mode
 397 4, evident in exceedingly small rate
 398 constants for A20 binding to
 399 complex I (P15) and subsequent
 400 RIP1 deubiquitination (P19),
 401 coupled with a comparatively large
 402 rate constant for C8 activation (P27)
 403 and small rate constant for C8
 404 inactivation (P28; Fig. 3C).
 405 Essentially, A20 does not compete
 406 with CYLD for binding to complex
 407 I ($P15 \ll P16$), and since CYLD is
 408 in great excess relative to complex I
 409 (Supplementary Fig. S6A), varying
 410 CYLD concentration has little to no
 411 effect on TTD except for very large
 412 reductions, such as a KO (Fig. 3D)
 413 and Supplementary Fig. S6B).
 414 Moreover, the exceedingly fast rate
 415 of C8 activation ($P28/P27 \ll 1$)
 416 leads to a rapid accumulation of
 417 active C8a:FLIP heterodimer,
 418 which inhibits necroptosis by
 419 binding and degrading complex IIb.
 420 This essentially sets a “speed limit”
 421 on the rate of pMLKL production,
 422 i.e., any increase in complex I
 423 concentration due to an increase in
 424 the concentration of LUBAC,
 425 which would be expected to
 426 decrease TTD because of the large
 427 excess of CYLD, is counteracted by
 428 the increased concentration of
 429 C8a:FLIP. However, decreasing
 430 complex I concentration by
 431 knocking down LUBAC would still
 432 be expected to increase TTD, as
 433 confirmed by our results.

435 DISCUSSION

436 A recent review of TNF-induced
 437 necroptosis⁵⁶ described signaling
 438 along the RIP1-RIP3-MLKL axis in
 439 terms of at least three major

Figure 5: Sensitivity analyses and model-predicted rate constant targets for each mode of execution. (A) Changes in TTD for “representative” parameter sets of each mode. Black shaded regions signify decreases in rate constant values; white shaded regions signify increases. (B) Decreases (\Downarrow ; 10-fold) and increases (\Uparrow ; 10-fold) of potential targets identified in A for all parameter sets for each mode. The number of parameter sets that do not result in cell death (n_{∞}) are included. Solid black lines = medians, dashed black lines = means; * p < 0.05, ** p < 0.01, *** p < 0.001 (Mood's median test).

441 compartmentalization events: TNFR internalization in complex I, multiprotein assembly of
442 complexes IIa and IIb, and necrosome formation leading to translocation of pMLKL to the
443 membrane. Importantly, the authors emphasized that cues and regulation mechanisms underlying
444 these compartmentalization events are poorly understood and proposed that a network of
445 modulators surrounds the necroptotic signaling core,^{58–60} tuned in a context-, cell type-, and
446 species-dependent manner. The results presented here are entirely consistent with this view, i.e., a
447 detailed kinetic model comprising core and complementary necroptotic signaling proteins and
448 associated rate constants (Table 1 and Fig. 1), calibrated to experimental data (Fig. 2A–C), can
449 produce cell-death dynamics via distinct execution modes (Fig. 3A,B), distinguished by variations
450 in rate constants (Fig. 3C) and the roles of A20 and CYLD in RIP1 ubiquitination regulation (Table
451 2 and Fig. 3D). Moreover, model sensitivity analyses based on TTD (Fig. 2D) revealed global and
452 mode-specific modulators of necroptosis sensitivity for each mode (Figs. 4 and 5). Global
453 modulators include known effectors, such as TNF, TNFR, MLKL, and rate constants associated
454 with these proteins, as well as two unexpected modulators: the rate constant for RIP1
455 ubiquitination by cIAP in complex I (P12) and the binding rate constant for LUBAC to complex I
456 (P13). Mode-specific modulators include, for modes 1 and 2, proteins and rate constants involved
457 in RIP1 ubiquitination regulation (A20, cIAP, CYLD, LUBAC, P10, P11, P15–P20) and, for
458 modes 3 and 4, factors regulating the balance between complex IIb degradation and necrosome
459 formation (C8, LUBAC, RIP1, TRADD, P2–P6, P14, P27, P28).

460
461 In addition, numerous published experimental studies have shown that RIP1 deubiquitination in
462 complex I is driven by A20, CYLD, or both, depending on cell type. For example, Wertz et al.²²
463 showed that A20 can deubiquitinate RIP1 in human embryonic kidney (HEK) cells and mouse
464 embryonic fibroblasts (MEFs). In contrast, Feoktistova et al.⁶¹ reported that deletion of A20 in
465 human T lymphocyte (HTL) cells has no effect on necroptosis sensitivity. Moreover, Moquin et
466 al.¹² reported that RIP1 deubiquitination in MEFs is mediated by CYLD, but proposed it occurs in
467 the necrosome rather than complex I, since KD of CYLD had no effect on RIP1 deubiquitination.
468 Vanlangenakker et al.²⁶ showed in mouse fibrosarcoma (MFS) cells that RIP1 can be
469 deubiquitinated by both A20 and CYLD but, while inhibition of CYLD protects cells from
470 necroptosis, inhibiting A20, counterintuitively, increases sensitivity to necroptosis. They also
471 observed no effect on necroptosis after KD of TRADD. Hitomi et al.¹⁰ showed that increased
472 CYLD expression reduces necroptosis in HTL cells. Similarly, Liu et al.⁶² showed in hippocampal
473 neurons (HCNs) that KD of CYLD blocks necroptosis and Wright et al.²⁰ showed that CYLD
474 deubiquitinates RIP1 in human cervical adenocarcinoma (HCAC) cells.

475
476 To reconcile these contrasting reports, we have associated with each experimental study one or
477 more modes of necroptosis execution identified via our model analysis (Table 3). Specifically, the
478 report by Wertz et al.²² that A20 deubiquitinates RIP1 in HEK cells and MEFs implies that
479 knocking down A20 would lead to an increase in TTD, i.e., a decrease in sensitivity to necroptosis,
480 which is consistent with mode 1 (Fig. 3D). Conversely, the reports by Hitomi et al.¹⁰, Liu et al.⁶²,
481 and Wright et al.²⁰ all suggest that knocking down CYLD would increase TTD, which could be
482 explained by either modes 2 or 4 (Fig. 3D). The report by Vanlangenakker et al.²⁶ also suggests
483 that knocking down CYLD would increase TTD but, importantly, includes additional data that
484 excludes mode 4 as a possibility, i.e., KD of A20, counterintuitively, increases sensitivity to
485 necroptosis and TRADD KD has no effect, which are only consistent with mode 2 (Fig. 3D and
486 Fig. 4—second and bottom rows). The observation by Feoktistova et al.⁶¹ that deletion of A20 has

487 no effect on necroptosis sensitivity in HCAC cells is intriguing because it is consistent with both
488 modes 3 and 4 (Fig. 3D) and they used the same cell line (HeLa) as Wright et al.²⁰, who's
489 observations are consistent with modes 2 and 4 (as mentioned above). This could indicate that
490 HCAC cells (or HeLa cells, specifically) operate via mode 4, since both studies are consistent with
491 this mode, or that the cells in these experiments are operating via different modes of necroptosis
492 execution due to differences in context, i.e., genetic or epigenetic variations between samples or
493 differences in experimental conditions between laboratories. Finally, the report by Moquin et al.¹²
494 is particularly interesting because their observation that CYLD binds to complex I but RIP1
495 ubiquitination is not affected in CYLD-deficient MEFs led them to conclude that RIP1
496 ubiquitination is regulated by CYLD in the necosome, rather than complex I. However, our
497 analysis shows these observations are consistent with mode 4, in which TTD increases for CYLD
498 KO (Fig. 3D) but there is no effect on TTD for CYLD KD < 90% (Fig. 4B–bottom row and
499 Supplementary Fig. 6B). Thus, the results of our *in silico* analyses, based on different
500 parameterizations of a consensus model of necroptosis, can explain a variety of incommensurate
501 and counterintuitive experimental observations in the literature and provide an alternate
502 explanation for a result that is seemingly inconsistent with prior studies.
503

504 Since evading apoptosis is a hallmark of cancer,^{5–7} inducing necroptosis is currently being
505 explored as a potential anticancer treatment.^{36,53,63} Moreover, inhibiting necroptosis is crucial for
506 treating a variety of inflammatory diseases, including cardiovascular, liver, and neurodegenerative
507 diseases.^{4,13} Thus, improving our understanding of the molecular pathways that drive necroptosis
508 is critical for identifying novel therapeutic targets against these deadly diseases. The detailed
509 kinetic model of TNF-induced necroptosis proposed in this work represents the first successful
510 attempt to describe contrasting, and sometimes counterintuitive, context-, cell type-, and species-
511 dependent responses to cell-death cues using a consensus set of biochemical interactions deduced
512 from decades of experimental work. This is a significant contribution that advances our knowledge
513 of necroptosis and also provides a foundation for future *in silico*-guided drug discovery efforts.
514 For example, the model can be expanded to include additional proteins and small molecules known
515 to play a role in necroptosis^{64,65} (e.g., ADAM17, CHIP, TAK1, nerostatins), additional
516 necroptosis-associated receptors⁹ (e.g., TNFR2, CD95, Toll-like receptors) and ligands^{66–68} (e.g.,
517 LPS, FasL, TRAIL), both forms of cIAP⁶⁹ (i.e., cIAP1 and cIAP2), assembly of the LUBAC trimer
518 complex,⁷⁰ different RIP1 ubiquitin chains⁵⁶ (i.e., M1, K48, K63), and additional biochemical
519 events involved in the activation of C8⁷¹ (e.g., binding of pro-C8 to FADD, followed by
520 oligomerization and cleavage) and formation of the necosome⁷² (e.g., RIP3 phosphorylation by
521 CK1 family kinases). The model can also be extended to include downstream events involved in
522 MLKL-mediated permeabilization of the plasma membrane^{73,74} (e.g., Golgi-, microtubule-, and
523 actin-dependent mechanisms), crosstalk with pro-survival^{1,27} (e.g., NF-κB) and other programmed
524 cell death⁷⁵ (e.g., apoptosis) pathways, and connections to the immune system³⁶ (e.g., antigen-
525 induced proliferation of T cells). Altogether, the model presented in this study is a significant step
526 towards the construction of a comprehensive computational model of the interconnected pathways
527 controlling cell fate decisions, which could lead to the development of novel therapies against
528 inflammatory diseases and cancer by enabling identification of molecular targets that shift the
529 balance of fates towards either evasion or promotion of necroptosis.

Table 3. Multiple experimental studies of necroptosis in the literature can be associated with different model-predicted modes of execution. In the seconds column, the specific cell line used (if applicable) is included in parentheses. HCAC: human cervical adenocarcinoma; HCN: hippocampal neuron; HEK: human embryonic kidney; HTL: human T lymphocyte; MEF: mouse embryonic fibroblast; MFS: mouse fibrosarcoma. \downarrow : decrease; \uparrow : increase; \leftrightarrow : no change.

Reference	Cell type	Quote(s) from article	Interpretation	Possible execution mode(s)
Feoktistova et al. (2020)	HCAC (HeLa)	“[T]he deletion of A20 in HeLa or HaCaT cells had no effect on the TNF-mediated cell death sensitivity”	A20 \downarrow TTD \leftrightarrow	M3, M4
Hitomi et al. (2008)	HTL (Jurkat)	“[I]nhibition of CYLD expression in Jurkat cells also attenuated necroptosis”	CYLD \downarrow TTD \uparrow	M2, M4
Liu et al. (2014)	HCN (HT-22)	“RIP1 and its deubiquitinase CYLD are required for TNF-induced necrosis of HT-22 cells”	CYLD \downarrow TTD \uparrow	M2, M4
Moquin et al. (2013)	MEF	“CYLD regulates RIP1 ubiquitination in the TNF α -induced necosome, but not in the TNFR-1 signaling complex” “Although CYLD was recruited to TNFR-1 in a ligand-dependent manner, RIP1 ubiquitination was not affected in CYLD $^{-/-}$ MEFs”	CYLD \downarrow TTD \uparrow	M4 (M2 excluded; see text)
Vanlangenakker et al. (2011)	MFS (L929)	“[W]e and others previously showed that CYLD repression protects L929 cells from TNF-induced necroptosis” “[W]e were surprised to find that A20 depletion had an opposite effect and greatly sensitized the cells to death” “[W]e found that TRADD depletion in L929 cells did not affect TNF-induced necroptosis”	CYLD \downarrow TTD \uparrow A20 \downarrow TTD \downarrow TRADD \downarrow TTD \leftrightarrow	M2
Wertz et al. (2004)	HEK (HEK293T)	“Co-transfection of wild-type A20 de-ubiquitinates RIP in HEK293T cells.”	A20 \downarrow TTD \uparrow	M1
Wertz et al. (2004)	MEF	“However, in the absence of A20, RIP1 will neither be de-ubiquitinated nor targeted for proteasomal degradation. Indeed, RIP recruited to activated TNFR1 remained hyperubiquitinated and was stabilized in A20 $^{-/-}$ MEFs”	A20 \downarrow TTD \uparrow	M1
Wright et al. (2007)	HCAC (HeLa)	“RIP1 ubiquitination [was] inhibited by wild-type (Wt) CYLD but not a catalytically inactive CYLD mutant (Mut)”	CYLD \downarrow TTD \uparrow	M2, M4

530

531 MATERIALS AND METHODS

532

533 Cell culture and reagents

534

535 L929 cells (NCTC clone 929, L cell, L-929, derivative of Strain L) were purchased from the
536 American Type Culture Collection (ATCC) and cultured in Dulbecco's Modified Eagle Medium
537 (DMEM; Corning) supplemented with 10% fetal bovine serum (FBS; Omega Scientific), 1% L-
538 Glutamine, and 1% penicillin/streptomycin (Thermo Fisher Scientific) at 5% CO₂ and 37°C.
539 Mouse recombinant TNF was purchased from R&D (Cat# 410-MT-10).

540

541 **Immunoblotting**

542

543 L929 cells ($2-3 \times 10^6$) were grown in 10-cm dishes for 24 h followed by treatment with TNF (0.1, 544 1, 10, or 100 ng/ml) for 16h. Dead cells were removed by washing with ice cold phosphate- 545 buffered saline (PBS). Remaining adherent cells were lysed using radioimmunoprecipitation assay 546 (RIPA) buffer with 1% Triton X-100, protease, and phosphatase inhibitors. Samples were 547 normalized for total protein concentration (Bradford assay, Bio-Rad), denatured in 3× sodium 548 dodecyl sulfate (SDS) sample buffer (5 minutes at 95°C) and subjected to gel electrophoresis (4– 549 15% Criterion™ TGX™ Precast Midi Protein Gel, Bio-Rad) and immunoblotting (polyvinylidene 550 difluoride Transfer Membrane, Thermo Fisher Scientific). Membranes were blocked in 5% bovine 551 serum albumin (BSA)/tris buffered saline with Tween® 20 (TBS-T) and incubated with the 552 following antibodies: pMLKL (1:1000, Abcam, Cat# ab196436), actin (1:3000, Santa Cruz, Cat# 553 sc-1615), anti-rabbit (1:5000, Santa Cruz, Cat# sc-2004), anti-goat (1:3000, Santa Cruz, Cat# sc- 554 2354). Signal was developed using chemiluminescent substrate (SuperSignal West Pico Plus, 555 Thermo Fisher Scientific) and visualized with ChemiCoc MP imaging system (Bio-Rad).

556

557 **Determining initial protein concentrations**

558

559 Expression levels for six proteins (caspase-8, FADD, unmodified MLKL, RIP3, TRADD, and 560 TRAF2) were measured in L929 cells using absolute protein quantitation mass spectrometry. As 561 a negative control, cells were collected in three replicate 6-well plates and cell lysates were 562 gathered, prepped for protein precipitation, pellet, and digestion in the Vanderbilt Mass 563 Spectrometry Research Center (MSRC) Proteomics Core Laboratory. For the other eight proteins 564 in the model, initial concentrations were estimated from measurements reported in the literature 565 and the human protein atlas.^{76–78} Concentrations were converted to units of molecules/cell 566 assuming an L929 cell diameter of 15 μ m.⁷⁹

567

568 **Bayesian parameter calibration**

569

570 We estimated parameter values using PyDREAM,⁴⁸ a Python implementation of the DiffeRential 571 Evolution Adaptive Metropolis (DREAM) method.⁸⁰ We utilized pMLKL Western blot data at the 572 two highest TNF doses (100 and 10 ng/ml) and defined a multi-objective cost function,

573

$$574 \quad Cost(\Theta) = \sum_t \sum_d \frac{1}{2\sigma^2(t,d)} [x_m(t,d) - x_e(t,d)]^2 \quad (1)$$

575

576 where Θ is the parameter set, $x_m(t,d)$ and $x_e(t,d)$ are model-predicted and experimentally measured 577 pMLKL concentrations, respectively, at time t and TNF dose d , and $\sigma(t) = 0.1 \cdot x_e(t,d)$ (following 578 previous studies^{49,81,82}). Parameter sampling was performed using five Monte Carlo chains, each 579 run for 50,000 iterations, the first 25,000 of which were considered burn-in and discarded, resulting 580 in 125,000 parameter sets. Out of these, we extracted an ensemble of 10,628 unique parameter 581 sets. Convergence was achieved for all chains (Supplementary Fig. S1), assessed using the 582 Gelman-Rubin test.^{83,84} Starting positions for all PyDREAM chains were determined using particle 583 swarm optimization⁸⁵ (PSO): we performed 100 PSO runs, of 500 iterations each, saved the 584 parameter sets from the last iteration of each run, and selected the five with the lowest cost function 585 values (Eq. 1). Also, for all parameters, we set prior distributions in PyDREAM to log-normal

586 distributions, $LN(\mu = \log_{10}(\sum_{i=1}^5 p_i/5), \sigma^2 = 4)$, where p_i is the value of the parameter from the
587 i -th PSO run. Starting rate constant values for the PSO runs were set to physically plausible
588 values:^{86,87} association=10⁻⁶ min⁻¹, dissociation=10⁻³ min⁻¹, ubiquitination/phosphorylation=1 min⁻¹,
589 and degradation=1 min⁻¹ (see Supplementary Table S2). In all cases, simulations were performed
590 by numerical integration of ordinary differential equations (ODEs) using LSODA,⁸⁸ as
591 implemented in the Python package SciPy.⁸⁹

592

593 Identifying modes of signal execution in a parameter set ensemble

594

595 Modes of signal execution were identified using PyDyNo, a Python-based software package for
596 dynamical systems analysis of biochemical models with uncertain parameters.⁵⁰ PyDyNo takes as
597 input a model object (PySB⁹⁰ or SBML^{91,92} formats), an input file with parameter sets, and a target
598 species (pMLKL, in our case). ODE simulations are run^{88,89} for all parameter sets and “digitized”
599 into a sequence of integers, termed a “dynamical signature,” based on “dominant” subnetworks of
600 reactions identified at each time point. Basically, the algorithm identifies, at every time point, the
601 subnetwork of reactions that contribute most to either the production or consumption (depending
602 on user preference; production, in our case) of the target species and assigns to each identified
603 subnetwork an integer index. Each time point is thus associated with an integer index and the entire
604 simulated time course with a sequence of integers, i.e., the dynamical signature. We refer the reader
605 to the original work⁵⁰ for further details on how PyDyNo identifies dominant subnetworks from
606 ODE simulations of biochemical models. We repeated this procedure for all 10,628 unique
607 parameter sets obtained from PyDREAM, with all simulations run at the highest TNF dose (100
608 ng/ml) for 16h simulated time, in line with experimental data (Fig. 2A). Dynamical signatures
609 were clustered using a spectral clustering method⁹³ with the longest common subsequence⁵¹ (LCS)
610 as the distance metric. The optimal number of clusters, i.e., modes of execution, was determined
611 using a silhouette score⁹⁴ for cluster sizes between 2 and 20 (Supplementary Fig. S3). For each
612 mode, a “representative” dynamical signature was defined as the one with the minimal sum of
613 distances to all other signatures⁹⁵ (i.e., the medoid).

614

615 Sensitivity analyses for initial protein concentrations and rate constants

616

617 We used a sensitivity analysis tool⁹⁶ available in PySB⁹⁰ to quantify changes in TTD, defined as
618 the time at which pMLKL reaches a pre-defined threshold (Fig. 2D), due to changes in both initial
619 protein concentrations and rate constants. Briefly, the sensitivity analysis tool varies pairs of
620 protein concentrations or rate constants over a range of values relative to a reference set (in this
621 case, [-20%, ..., -2%, 0%, 2%, ..., 20%]) and calculates the resulting changes in TTD. For each
622 protein or rate constant, a “single-parameter sensitivity multiset⁹⁶” is then obtained, which
623 summarizes the range of changes in TTD due to the changes in protein or rate constant values and
624 can be visualized as a boxplot (Figs. 4A and 5A). Reference rate constants are those associated
625 with the representative dynamical signatures obtained for each mode from PyDyNo (see previous
626 subsection). For protein concentration sensitivities, reference concentrations are those obtained
627 from mass spectrometry (Fig. 2B) and the literature or human protein atlas⁷⁶⁻⁷⁸ (Supplementary
628 Table S1) and all simulations were performed using the reference rate constant values. Note that
629 we defined a hard threshold of 2,772 pMLKL molecules to define TTD, which is half the amount
630 measured by mass spectrometry (Fig. 2B). We chose this, rather than, e.g., the half-maximal
631 amount of pMLKL, to prevent any bias (i.e., changes in the threshold) when varying the initial

632 amount of MLKL. This choice is consistent with experimental evidence that plasma membrane
633 damage accumulates until a threshold is reached, triggering cell death.⁷⁴ Results of the sensitivity
634 analyses above, which used reference rate constant values, were then validated by performing,
635 over the full set of rate constant values for each mode, *in silico* KD (70%) and OE (10-fold)
636 experiments for protein concentrations and \pm 10-fold variations for the rate constants (Figs. 4B
637 and 5B). This was critical for identifying results that were specific only to the reference parameter
638 set and, hence, could be discounted from our analyses.

639

640 **Data and computer code availability**

641

642 All Western blot data, mass spectrometry data, and Python code used in this study, including the
643 PySB encoding of the Necroptosis Execution Reaction Model (NERMv1.0), are available at
644 <https://github.com/LoLab-VU/NERM.git>.

645

646 **Acknowledgments**

647

648 This work is dedicated to the memory of our friend and colleague Melaine N. Sebastian. We thank
649 Sam Beik, Sarah Maddox Groves, Corey Hayford, Michael Irvin, Alex Lubbock, Tolu
650 Omokehinde, Oscar Ortega, James Pino, and Vito Quaranta for useful discussions regarding this
651 work and Hayes McDonald of the Vanderbilt MSRC Proteomics Core Laboratory for help in
652 obtaining the mass spectrometry data. G.V.I. also thanks Beth Bowman, Don Brunson, Roger
653 Chalkley, Christina Keeton, Linda Sealy, and Patricia Mueller of Vanderbilt University, and
654 Michael Aldarando-Jeffries, Arlene Olivierre, and Natalia Toro of the University of Central
655 Florida for continued support.

656

657 **Declaration of interests**

658

659 The authors declare no conflicts of interest.

660

661 **Author contributions**

662

663 Conceptualization (AH, CFL, GVI)

664 Methodology (CFL, GVI, LAH)

665 Resources (AH, CFL)

666 Software (CFL, GVI)

667 Formal Analysis (CFL, GVI, LAH)

668 Investigation (AH, CFL, GVI, LAH, MOM)

669 Writing – Original Draft (CFL, GVI, LAH)

670 Writing – Review and Editing (AH, CFL, GVI, LAH, MOM)

671 Visualization (CFL, GVI, LAH)

672 Project Administration (AH, CFL, LAH)

673 Funding Acquisition (AH, CFL, GVI)

674

675 REFERENCES

676

677 1 Vanden Berghe T, Kaiser WJ, Bertrand MJM, Vandenabeele P. Molecular crosstalk
678 between apoptosis, necroptosis, and survival signaling. *Mol Cell Oncol* 2015; **2**: e975093.

679 2 Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N *et al.* Chemical inhibitor of
680 nonapoptotic cell death with therapeutic potential for ischemic brain injury. *Nat Chem
681 Biol* 2005; **1**: 112–119.

682 3 Aldridge BB, Saez-Rodriguez J, Muhlich JL, Sorger PK, Lauffenburger DA. Fuzzy logic
683 analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. *PLoS
684 Comput Biol* 2009; **5**: e1000340.

685 4 Vanlangenakker N, Vanden Berghe T, Vandenabeele P. Many stimuli pull the necrotic
686 trigger, an overview. *Cell Death Differ* 2012; **19**: 75–86.

687 5 Hanahan D, Weinberg RA. The hallmarks of cancer. *Cell* 2000; **100**: 57–70.

688 6 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell* 2011; **144**:
689 646–74.

690 7 Hanahan D. Hallmarks of cancer: new dimensions. *Cancer Discov* 2022; **12**: 31–46.

691 8 Chan K, Saltelli A, Tarantola S. Sensitivity analysis of model output: Variance-based
692 methods make the difference. In: *Winter Simulation Conference Proceedings*. 1997, pp
693 261–268.

694 9 Zhou W, Yuan J. Necroptosis in health and diseases. *Semin Cell Dev Biol* 2014; **35**: 14–
695 23.

696 10 Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ *et al.* Identification of a
697 molecular signaling network that regulates a cellular necrotic cell death pathway. *Cell*
698 2008; **135**: 1311–1323.

699 11 Vanlangenakker N, Vanden Berghe T, Bogaert P, Laukens B, Zobel K, Deshayes K *et al.*
700 cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-
701 dependent reactive oxygen species production. *Cell Death Differ* 2011; **18**: 656–665.

702 12 Moquin DM, McQuade T, Chan FK-MM. CYLD deubiquitinates RIP1 in the TNF α -
703 induced necosome to facilitate kinase activation and programmed necrosis. *PLoS One*
704 2013; **8**: e76841.

705 13 Choi ME, Price DR, Ryter SW, Choi AMK. Necroptosis: A crucial pathogenic mediator
706 of human disease. *JCI Insight* 2019; **4**: e128834.

707 14 Wartz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S *et al.* De-ubiquitination
708 and ubiquitin ligase domains of A20 downregulate NF- κ B signalling. *Nature* 2004; **430**:
709 694–699.

710 15 Sun SC. A20 restricts inflammation via ubiquitin binding. *Nat Immunol* 2020; **21**: 362–
711 364.

712 16 Lork M, Verhelst K, Beyaert R. CYLD, A20 and OTULIN deubiquitinases in NF- κ B
713 signaling and cell death: So similar, yet so different. *Cell Death Differ* 2017; **24**: 1172–
714 1183.

715 17 Simonson SJS, Wu ZH, Miyamoto S. CYLD: A DUB with many talents. *Dev Cell* 2007;
716 **13**: 601–603.

717 18 Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of
718 necroptosis: an ordered cellular explosion. *Nat Rev Mol Cell Biol* 2010; **11**: 700–714.

719 19 Kovalenko A, Chable-Bessia C, Cantarella G, Israël A, Wallach D, Courtois G. The
720 tumour suppressor CYLD negatively regulates NF- κ B signalling by deubiquitination.

721 15 *Nature* 2003; **424**: 801–805.

722 20 Wright A, Reiley WW, Chang M, Jin W, Lee AJ, Zhang M *et al.* Regulation of early wave
723 of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. *Dev Cell*
724 2007; **13**: 705–716.

725 21 Gurung P, Man SM, Kanneganti T-D. A20 is a regulator of necroptosis. *Nat Immunol*
726 2015; **16**: 596–597.

727 22 Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S *et al.* De-ubiquitination
728 and ubiquitin ligase domains of A20 downregulate NF- κ B signalling. *Nature* 2004; **430**:
729 694–699.

730 23 Lu TT, Onizawa M, Hammer GE, Turer EE, Yin Q, Damko E *et al.* Dimerization and
731 ubiquitin mediated recruitment of A20, a complex deubiquitinating enzyme. *Immunity*
732 2013; **38**: 896–905.

733 24 Dondelinger Y, Darding M, Bertrand MJM, Walczak H. Poly-ubiquitination in TNFR1-
734 mediated necroptosis. *Cell Mol Life Sci* 2016; **73**: 2165–2176.

735 25 Draber P, Kupka S, Reichert M, Draberova H, Lafont E, de Miguel D *et al.* LUBAC-
736 recruited CYLD and A20 regulate gene activation and cell death by exerting opposing
737 effects on linear ubiquitin in signaling complexes. *Cell Rep* 2015; **13**: 2258–2272.

738 26 Vanlangenakker N, Bertrand MJM, Bogaert P, Vandenabeele P, Vanden Berghe T. TNF-
739 induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II
740 members. *Cell Death Dis* 2011; **2**: e230.

741 27 Metzig MO, Tang Y, Mitchell S, Taylor B, Foreman R, Wollman R *et al.* An incoherent
742 feedforward loop interprets NF κ B/RelA dynamics to determine TNF-induced necroptosis
743 decisions. *Mol Syst Biol* 2020; **16**: e9677.

744 28 Li M, Beg AA. Induction of necrotic-like cell death by tumor necrosis factor alpha and
745 caspase inhibitors: novel mechanism for killing virus-infected cells. *J Virol* 2000; **74**:
746 7470–7477.

747 29 Wallach D. Preparations of lymphotoxin induce resistance to their own cytotoxic effect. *J
748 Immunol* 1984; **132**: 2464–2469.

749 30 Wajant H, Siegmund D. TNFR1 and TNFR2 in the control of the life and death balance of
750 macrophages. *Front Cell Dev Biol* 2019; **7**: 91.

751 31 Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF- α -
752 induced apoptosis by NF- κ B. *Science (80-)* 1996; **274**: 787–789.

753 32 Pobezinskaya YL, Liu Z. The role of TRADD in death receptor signaling. *Cell Cycle*
754 2012; **11**: 871–876.

755 33 Zheng L, Bidere N, Staudt D, Cubre A, Orenstein J, Chan FK *et al.* Competitive control of
756 independent programs of tumor necrosis factor receptor-induced cell death by TRADD
757 and RIP1. *Mol Cell Biol* 2006; **26**: 3505–3513.

758 34 Liu X, Shi F, Li Y, Yu X, Peng S, Li W *et al.* Post-translational modifications as key
759 regulators of TNF-induced necroptosis. *Cell Death Dis* 2016; **7**: e2293.

760 35 Etemadi N, Chopin M, Anderton H, Tanzer MC, Rickard JA, Abeysekera W *et al.* TRAF2
761 regulates TNF and NF- κ B signalling to suppress apoptosis and skin inflammation
762 independently of sphingosine kinase. *Elife* 2015; **4**: e10592.

763 36 Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K *et al.* The role of necroptosis in cancer
764 biology and therapy. *Mol Cancer* 2019; **18**: 100.

765 37 Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential
766 signaling complexes. *Cell* 2003; **114**: 181–190.

767 38 Micheau O, Thome M, Schneider P, Holler N, Tschopp J, Nicholson DW *et al.* The long
768 form of FLIP Is an activator of caspase-8 at the Fas death-inducing signaling complex. *J
769 Biol Chem* 2002; **277**: 45162–45171.

770 39 Tsuchiya Y, Nakabayashi O, Nakano H. FLIP the switch: regulation of apoptosis and
771 necroptosis by cFLIP. *Int J Mol Sci* 2015; **16**: 30321–30341.

772 40 McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. *Cold
773 Spring Harb Perspect Biol* 2013; **5**: a008656.

774 41 Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M *et al.* CIAPs
775 block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death
776 complex differentially regulated by cFLIP isoforms. *Mol Cell* 2011; **43**: 449–463.

777 42 Moriwaki K, Chan FK-M. RIP3: a molecular switch for necrosis and inflammation. *Genes
778 Dev* 2013; **27**: 1640–1649.

779 43 Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell
780 death and survival. *Cell* 2009; **138**: 229–232.

781 44 Sun L, Wang H, Wang Z, He S, Chen S, Liao D *et al.* Mixed lineage kinase domain-like
782 protein mediates necrosis signaling downstream of RIP3 kinase. *Cell* 2012; **148**: 213–227.

783 45 Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M *et al.* Phosphorylation-
784 driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-
785 induced inflammation. *Cell* 2009; **137**: 1112–1123.

786 46 Ronan T, Qi Z, Naegle KM, Jain AK, Murty MN, Flynn PJ *et al.* Avoiding common
787 pitfalls when clustering biological data. *Sci Signal* 2016; **9**: re6.

788 47 Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. *Nature* 2015;
789 **517**: 311–320.

790 48 Shockley EM, Vrugt JA, Lopez CF, Valencia A. PyDREAM: high-dimensional parameter
791 inference for biological models in python. *Bioinformatics* 2018; **34**: 695–697.

792 49 Eydgahi H, Chen WW, Muhlich JL, Vitkup D, Tsitsiklis JN, Sorger PK. Properties of cell
793 death models calibrated and compared using Bayesian approaches. *Mol Syst Biol* 2013; **9**:
794 644.

795 50 Ortega OO, Wilson BA, Pino JC, Irvin MW, Ildefonso GV, Garbett SP *et al.* Probability-
796 based mechanisms in biological networks with parameter uncertainty. *bioRxiv* 2021.
797 doi:10.1101/2021.01.26.428266.

798 51 Studer M, Ritschard G. What matters in differences between life trajectories: a
799 comparative review of sequence dissimilarity measures. *J R Stat Soc Ser A Stat Soc* 2016;
800 **179**: 481–511.

801 52 Rokach L, Maimon O. Clustering methods. In: Maimon O, Rokach L (eds). *Data Mining
802 and Knowledge Discovery Handbook*. Springer-Verlag, 2005, pp 321–349.

803 53 Wu Y, Dong G, Sheng C. Targeting necroptosis in anticancer therapy: mechanisms and
804 modulators. *Acta Pharm Sin B* 2020; **10**: 1601–1618.

805 54 Taxman DJ, Livingstone LR, Zhang J, Conti BJ, Iocca HA, Williams KL *et al.* Criteria for
806 effective design, construction, and gene knockdown by shRNA vectors. *BMC Biotechnol
807* 2006; **6**: 7.

808 55 Moriya H. Quantitative nature of overexpression experiments. *Mol Biol Cell* 2015; **26**:
809 3932.

810 56 Samson AL, Garnish SE, Hildebrand JM, Murphy JM. Location, location, location: A
811 compartmentalized view of TNF-induced necroptotic signaling. *Sci Signal* 2021; **14**: 6178.

812 57 Vercammen D, Vandenabeele P, Beyaert R, Declercq W, Fiers W. Tumour necrosis

813 factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. *Cytokine* 1997; **9**:
814 801–808.

815 58 Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang J-G, Alvarez-Diaz S *et al.* The
816 pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. *Immunity*
817 2013; **39**: 443–453.

818 59 Najafov A, Mookhtiar AK, Luu HS, Ordureau A, Pan H, Amin PP *et al.* TAM kinases
819 promote necroptosis by regulating oligomerization of MLKL. *Mol Cell* 2019; **75**: 457–
820 468.e4.

821 60 Sai K, Parsons C, House JS, Kathariou S, Ninomiya-Tsuji J. Necroptosis mediators
822 RIPK3 and MLKL suppress intracellular Listeria replication independently of host cell
823 killing. *J Cell Biol* 2019; **218**: 1994–2005.

824 61 Feoktistova M, Makarov R, Brenji S, Schneider AT, Hooiveld GJ, Luedde T *et al.* A20
825 promotes ripoptosome formation and TNF-induced apoptosis via cIAPs regulation and
826 NIK stabilization in keratinocytes. *Cells* 2020; **9**: 351.

827 62 Liu S, Wang X, Li Y, Xu L, Yu X, Ge L *et al.* Necroptosis mediates TNF-induced toxicity
828 of hippocampal neurons. *Biomed Res Int* 2014; **2014**: 290182.

829 63 Meng M-B, Wang H-H, Cui Y-L, Wu Z-Q, Shi Y-Y, Zaorsky NG *et al.* Necroptosis in
830 tumorigenesis, activation of anti-tumor immunity, and cancer therapy. *Oncotarget* 2016;
831 **7**: 57391–57413.

832 64 Chen J, Kos R, Garssen J, Redegeld F. Molecular insights into the mechanism of
833 necroptosis: the necrosome as a potential therapeutic target. *Cells* 2019; **8**: 1486.

834 65 Bolik J, Krause F, Stevanovic M, Gandraß M, Thomsen I, Schacht SS *et al.* Inhibition of
835 ADAM17 impairs endothelial cell necroptosis and blocks metastasis. *J Exp Med* 2021;
836 **219**: 219.

837 66 Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune
838 system. *Immunity* 2009; **30**: 180–192.

839 67 Kearney CJ, Cullen SP, Tynan GA, Henry CM, Clancy D, Lavelle EC *et al.* Necroptosis
840 suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine
841 production. *Cell Death Differ* 2015; **22**: 1313–1327.

842 68 Füllsack S, Rosenthal A, Wajant H, Siegmund D. Redundant and receptor-specific
843 activities of TRADD, RIPK1 and FADD in death receptor signaling. *Cell Death Dis* 2019;
844 **10**: 122.

845 69 McComb S, Cheung HH, Korneluk RG, Wang S, Krishnan L, Sad S. cIAP1 and cIAP2
846 limit macrophage necroptosis by inhibiting Rip1 and Rip3 activation. *Cell Death Differ*
847 2012; **19**: 1791–1801.

848 70 Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E *et al.*
849 Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1
850 signaling complex and is required for TNF-mediated gene induction. *Mol Cell* 2009; **36**:
851 831–844.

852 71 Donepudi M, Sweeney A Mac, Briand C, Grüter MG. Insights into the regulatory
853 mechanism for caspase-8 activation. *Mol Cell* 2003; **11**: 543–549.

854 72 Hanna-Addams S, Liu S, Liu H, Chen S, Wang Z. CK1 α , CK1 δ , and CK1 ϵ are necosome
855 components which phosphorylate serine 227 of human RIPK3 to activate necroptosis.
856 *Proc Natl Acad Sci* 2020; **117**: 1962–1970.

857 73 Wang H, Sun L, Su L, Rizo J, Liu L, Wang L-F *et al.* Mixed lineage kinase domain-like
858 protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. *Mol*

859 74 *Cell* 2014; **54**: 133–146.

860 74 Samson AL, Zhang Y, Geoghegan ND, Gavin XJ, Davies KA, Mlodzianoski MJ *et al.*
861 MLKL trafficking and accumulation at the plasma membrane control the kinetics and
862 threshold for necroptosis. *Nat Commun* 2020; **11**: 3151.

863 75 Ouyang L, Shi Z, Zhao S, Wang F-T, Zhou T-T, Liu B *et al.* Programmed cell death
864 pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. *Cell*
865 *Prolif* 2012; **45**: 487–498.

866 76 Hua F, Cornejo MG, Cardone MH, Stokes CL, Lauffenburger DA. Effects of Bcl-2 levels
867 on Fas signaling-induced caspase-3 activation: Molecular genetic tests of computational
868 model predictions. *J Immunol* 2005; **175**: 985–995.

869 77 Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A *et al.*
870 Tissue-based map of the human proteome. *Science* (80-) 2015; **347**: 1260419.

871 78 Uhlén M, Björling E, Agaton C, Szigyarto CAK, Amini B, Andersen E *et al.* A human
872 protein atlas for normal and cancer tissues based on antibody proteomics. *Mol Cell*
873 *Proteomics* 2005; **4**: 1920–1932.

874 79 Milo R, Jorgensen P, Moran U, Weber G, Springer M. BioNumbers—the database of key
875 numbers in molecular and cell biology. *Nucleic Acids Res* 2009; **38**: D750–D753.

876 80 Vrugt JA, Ter Braak CJF. DREAM(D): An adaptive Markov Chain Monte Carlo
877 simulation algorithm to solve discrete, noncontinuous, and combinatorial posterior
878 parameter estimation problems. *Hydrol Earth Syst Sci* 2011; **15**: 3701–3713.

879 81 Kochen MA, Lopez CF. A probabilistic approach to explore signal execution mechanisms
880 with limited experimental data. *Front Genet* 2020; **11**: 686.

881 82 Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK. Non-genetic origins of cell-to-
882 cell variability in TRAIL-induced apoptosis. *Nature* 2009; **459**: 428–432.

883 83 Vrugt JA. Markov chain Monte Carlo simulation using the DREAM software package:
884 Theory, concepts, and MATLAB implementation. *Environ Model Softw* 2016; **75**: 273–
885 316.

886 84 Csete ME, Doyle JC. Reverse engineering of biological complexity. *Science* (80- .). 2002;
887 **295**: 1664–1669.

888 85 Marini F, Walczak B. Particle swarm optimization (PSO). A tutorial. *Chemom Intell Lab*
889 *Syst* 2015; **149**: 153–165.

890 86 Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK. Physicochemical modelling of
891 cell signalling pathways. *Nat Cell Biol* 2006; **8**: 1195–1203.

892 87 Lawson MJ, Petzold L, Hellander A. Accuracy of the Michaelis–Menten approximation
893 when analysing effects of molecular noise. *J R Soc Interface* 2015; **12**: 20150054.

894 88 Petzold L. Automatic selection of methods for solving stiff and nonstiff systems of
895 ordinary differential equations. *SIAM J Sci Stat Comput* 1983; **4**: 136–148.

896 89 Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D *et al.* SciPy
897 1.0: fundamental algorithms for scientific computing in Python. *Nat Methods* 2020; **17**:
898 261–272.

899 90 Lopez CF, Muhlich JL, Bachman JA, Sorger PK. Programming biological models in
900 Python using PySB. *Mol Syst Biol* 2013; **9**: 646.

901 91 Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H *et al.* The systems
902 biology markup language (SBML): a medium for representation and exchange of
903 biochemical network models. *Bioinformatics* 2003; **19**: 524–531.

904 92 Keating SM, Waltemath D, König M, Zhang F, Dräger A, Chaouiya C *et al.* SBML Level

905 3: an extensible format for the exchange and reuse of biological models. *Mol Syst Biol*
906 2020; **16**: e9110.

907 93 Von Luxburg U. A tutorial on spectral clustering. *Stat Comput* 2007; **17**: 395–
908 416.

909 94 Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation of cluster
910 analysis. *J Comput Appl Math* 1987; **20**: 53–65.

911 95 Gabadinho A, Ritschard G, Müller NS, Studer M. Analyzing and Visualizing State
912 Sequences in R with TraMineR. *J Stat Softw* 2011; **40**: 1–37.

913 96 Harris LA, Nobile MS, Pino JC, Lubbock ALR, Besozzi D, Mauri G *et al.* GPU-powered
914 model analysis with PySB/cupSODA. *Bioinformatics* 2017; **33**: 3492–3494.

915 97 Feltham R, Vince JE, Lawlor KE. Caspase-8: not so silently deadly. *Clin Transl Immunol*
916 2017; **6**: e124.

917 98 Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C *et al.* Catalytic
918 activity of the caspase-8–FLIP_L complex inhibits RIPK3-dependent necrosis. *Nature*
919 2011; **471**: 363–367.

920 99 Hsu H, Shu H-B, Pan M-G, Goeddel D V. TRADD–TRAF2 and TRADD–FADD
921 interactions define two distinct TNF Receptor 1 signal transduction pathways. *Cell* 1996;
922 **84**: 299–308.

923 100 Lawrence CP, Chow SC. FADD deficiency sensitises Jurkat T cells to TNF- α -dependent
924 necrosis during activation-induced cell death. *FEBS Lett* 2005; **579**: 6465–6472.

925 101 Wegner KW, Saleh D, Degterev A. Complex pathologic roles of RIPK1 and RIPK3:
926 moving beyond necroptosis. *Trends Pharmacol Sci* 2017; **38**: 202–225.

927 102 Grootjans S, Vanden Berghe T, Vandenabeele P. Initiation and execution mechanisms of
928 necroptosis: an overview. *Cell Death Differ* 2017; **24**: 1184–1195.

929 103 O'Donnell MA, Ting AT. RIP1 comes back to life as a cell death regulator in TNFR1
930 signaling. *FEBS J* 2011; **278**: 877–887.

931 104 Vandenabeele P, Declercq W, Van Herreweghe F, Berghe T Vanden. The role of the
932 kinases RIP1 and RIP3 in TNF-induced necrosis. *Sci Signal* 2010; **3**: re4.

933 105 Feng S, Yang Y, Mei Y, Ma L, Zhu D, Hoti N *et al.* Cleavage of RIP3 inactivates its
934 caspase-independent apoptosis pathway by removal of kinase domain. *Cell Signal* 2007;
935 **19**: 2056–2067.

936 106 He S, Wang L, Miao L, Wang T, Du F, Zhao L *et al.* Receptor interacting protein kinase-3
937 determines cellular necrotic response to TNF- α . *Cell* 2009; **137**: 1100–1111.

938 107 Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced
939 serum factor that causes necrosis of tumors. *Proc Natl Acad Sci U S A* 1975; **72**: 3666–
940 3670.

941 108 Hsu H, Huang J, Shu HB, Baichwal V, Goeddel D V. TNF-dependent recruitment of the
942 protein kinase RIP to the TNF receptor-1 signaling complex. *Immunity* 1996; **4**: 387–396.

943 109 Wang CY, Mayo MW, Korneluk RG, Goeddel D V, Baldwin AS. NF- κ B
944 antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress
945 caspase-8 activation. *Science* 1998; **281**: 1680–1683.

946 110 Hsu H, Shu HB, Pan MG, Goeddel D V. TRADD–TRAF2 and TRADD–FADD
947 interactions define two distinct TNF Receptor 1 signal transduction pathways. *Cell* 1996;
948 **84**: 299–308.

949