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Abstract

Background & Aims: Obesity and associated morbidities, metabolic associated liver disease
(MAFLD) included, constitute some of the largest public health threats worldwide. Body
composition and related risk factors are known to be heritable and identification of their genetic
determinants may aid in the development of better prevention and treatment strategies. Recently,
large-scale whole-body MRI data has become available, providing more specific measures of body
composition than anthropometrics such as body mass index. Here, we aimed to elucidate the
genetic architecture of body composition, by conducting the first genome-wide association study

(GWAS) of these MRI-derived measures.

Methods: We ran both univariate and multivariate GWAS on fourteen MRI-derived
measurements of adipose and muscle tissue distribution, derived from scans from 34,036 White

European UK Biobank participants (mean age of 64.5 years, 51.5% female).

Results: Through multivariate analysis, we discovered 108 loci with distributed effects across the
body composition measures and 256 significant genes primarily involved in immune system
functioning. Liver fat stood out, with a highly discoverable and oligogenic architecture and the
strongest genetic associations. Comparison with 21 common cardiometabolic traits revealed both
shared and specific genetic influences, with higher mean heritability for the MRI measures (h>=.25
vs. .16, p=1.4x10°). We found substantial genetic correlations between the body composition

measures and a range of cardiometabolic diseases, with the strongest correlation between liver fat

and type 2 diabetes (r;=.48, p=1.6x1022).

Conclusions: These findings show that MRI-derived body composition measures complement

conventional body anthropometrics and other biomarkers of cardiometabolic health, highlighting
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81  the central role of liver fat, and improving our knowledge of the genetic architecture of body

82  composition and related diseases.

83  Keywords: genome-wide association study; body composition; liver fat; whole-body MRI
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84  Introduction

85  Obesity and associated cardiometabolic diseases are currently considered one of the largest global
86  public health concerns!?. Over one-third of the United States adult population qualifies for a
87  diagnosis of metabolic syndrome,® characterized by excessive visceral adiposity, insulin
88  resistance, hypertension, low high-density lipoprotein cholesterol, and hypertriglyceridemia.*>
89  Metabolic syndrome substantially increases the risk of coronary artery disease, type 2 diabetes,
90 cancer, and metabolic associated fatty liver disease (MAFLD, previously described as non-
91  alcoholic fatty liver disease®).”!! Body composition is also associated with brain structure and
92  brain disorders.!?!* An improved understanding of the genetic and biological determinants of body
93  composition is needed to provide insights into the complex interplay between metabolic factors,

94  prevent and treat multiple highly prevalent conditions, and improve public health outcomes.>!°

95 Body composition is partly determined by a complex constellation of interacting metabolic
96  processes and inter-organ cross-talk that may become dysregulated and lead to metabolic
97  syndrome.'* In susceptible individuals, excessive energy intake, stored as visceral adipose tissue,
98  combined with insulin resistance, leads to heightened lipolysis and release of free fatty acids.!®
99  Increased free fatty acid flux to the liver results in hypertriglyceridemia, which in turn contributes
100  to dyslipidemia and atherosclerosis. Lipolysis in visceral adipose tissue further promotes insulin
101  resistance and gluconeogenesis and increases pro-inflammatory reactions that exacerbate
102 endothelial dysfunction and hypertension.!> This is reflected in heightened levels of pro-
103 inflammatory markers among individuals with metabolic syndrome.!® Muscle mass is also a
104  determinant of cardiometabolic health,!” as skeletal muscle constitutes the largest insulin-sensitive

105  tissue in the body and is the primary site for insulin-stimulated glucose utilization.!® Still, the
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106  nature and extent of overlap between these different determinants of cardiometabolic functioning

107  remain unclear.

108 Measures of localized adipose tissue, liver fat and regional muscle volume can now be
109  accurately extracted from whole-body MRI scans.!®?? MRI-based body tissue quantification
110  offers more sensitive proxies of cardiometabolic health than body anthropometrics such as waist
111 circumference and body mass index (BMI)?, which also lack a direct connection to

5,24

112 pathophysiology.”** Measures of regional adipose tissue, most accurately and comprehensively

113 identified through MRI,*-¢ show independent associations with cardiometabolic diseases and

114  improve risk prediction beyond body anthropometrics.?’ >

115 In addition to social and physical environmental factors,*® genetically determined individual
116  differences play a significant role in regulating body composition.’!3* Cardiometabolic risk
117  factors have both unique and shared genetic correlates.* Much less is known about the genetics of
118  specific MRI-derived body composition measures.’®> We aimed to map the unique and shared
119  genetic architectures across the MRI-derived body composition to provide a holistic understanding
120  of the interplay between different tissue types and their role in metabolic syndrome and

121 cardiometabolic health.
122 Results

123 We conducted GWASs of fourteen MRI-derived muscle and adipose tissue distribution measures
124 and investigated the genetic link to conventional cardiometabolic risk factors. We included six
125  measures of adipose tissue distribution: abdominal subcutaneous adipose tissue, visceral adipose
126  tissue, abdominal fat ratio, anterior and posterior thigh muscle fat infiltration, and liver protein
127  density fat fraction. Additionally, we investigated three measures related to thigh muscle tissue,

128  namely anterior and posterior thigh muscle volume and weight-to-muscle ratio. We further
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analyzed visceral and abdominal adipose tissue, and anterior and posterior muscle volume, divided
by standing height in meters squared, and total thigh muscle volume z-score (sex-, height-, weight-
and BMI-invariant).*¢ See Table 1 for an overview of these measures, and the Methods section for
protocols and definitions. Given a total of fourteen individual measures, we set the univariate

GWAS significance threshold at a=5%10%/14=3.6*10°. Our sample for the main analyses

consisted of 34,036 White European participants of the UK Biobank (UKB), with a mean age of
64.5 years (standard deviation (SD) 7.4 years), 51.5% female. We pre-residualized all measures
for age, sex, test center, and the first twenty genetic principal components to control for population
stratification.
Table 1. MRI-derived measures of body composition included in this study, together with the
available sample size and number of loci discovered through univariate GWAS.
Measure Abbreviation N # loci
Abdominal subcutaneous adipose tissue ASAT 33979 1
Visceral adipose tissue VAT 33989 2
Anterior thigh muscle volume ATMV 33415 7
Posterior thigh muscle volume PTMV 33459 10
Anterior thigh muscle fat infiltration (%) ATMFI 33347 19
Posterior thigh muscle fat infiltration (%) PTMFI 33392 25
Weight-muscle-ratio WMR 33406 1
Abdominal fat ratio AFR 33375 1
Liver proton density fat fraction (%) LPDFF 33674 8
VAT/height? VATi 33007 2
ASAT/height? ASATI 32998 1
ATMV/height? ATMVi 32442 5
PTMV/height? PTMVi 32483 0
Total thigh muscle volume z-score TTMVz 32401 5

Univariate GWAS
Univariate GWASs on the individual measures revealed a total of 87 loci, including 54 unique,

surpassing the study-wide significance threshold of 3.6%10°. Two loci stood out with highly
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144 significant p-values, on chromosome 19 (lead rs58542926, p=8.8x10!1%) and chromosome 22
145  (lead rs738409, p=4.6x10"'%), both identified in the GWAS on liver fat. Using converging
146  positional, eQTL, and chromatin interaction information (see Methods), we mapped these loci to
147  genes previously coupled to MAFLD (rs738409: PNPLA3, SAMMS50, PARVB)*" as well as
148  inflammatory processes and cancer (rs58542926: CD99).*® The Supplementary Information (SI)
149  contains Manhattan plots and overviews of all loci discovered together with mapped genes.

150 Additionally, we assessed the generalization of the discovered loci in a hold-out set of 5,081
151 non-White European UKB participants with identical processing steps. Of the 84 lead SNPs
152  available in this set, 82 had effects in the same direction as the main analyses (97.6%, sign-test
153 p<1x10%). Thus, our results suggest a cross-ethnicity generalization of these genetic associations
154  with MRI-derived measures of body composition, despite the known high variability of body
155  anthropometrics across ethnicities.>**

156 In total, we identified eight study-wide significant loci for liver fat, validating those found in a
157  previous smaller GWAS.? Gene-based analysis through Multi-marker Analysis of GenoMic
158  Annotation (MAGMA) identified 35 genome-wide significant genes, including the three primary
159  MAFLD genes (TM6SE2 p=7.2*%10"1%, PNPLA3 p=1.0*10"'*, and TMC4-MBOAT7 p=2.1*10%),%-
160  *? further confirming the strong biological validity of this liver fat measure and its connection to
161  MAFLD. Functional annotation of the set of 35 genes revealed differential expression in the liver,
162  pancreas, and subcortical brain regions and significant enrichment among Gene Ontology (GO)
163  biological processes specifically related to lipid homeostasis and metabolic processes. The SI

164  further contains results of gene set enrichment analyses for each individual measure.

165 Next, we estimated the polygenicity and effect size variance (‘discoverability’) by fitting a

166  Gaussian mixture model of null and non-null effects to the GWAS summary statistics using
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167  MiXeR.**** The results are summarized in Figure 1a, depicting the estimated proportion of genetic
168  variance explained by discovered SNPs for each measure as a function of sample size. This
169  illustrates that body MRI measures generally show genetic architectures similar to e.g. brain MRI
170  measures, characterized by high polygenicity.***¢ However, the notable exception is liver fat, with
171  substantially lower polygenicity and higher discoverability than the other measures, in line with

172 the relatively few highly significant associations we identified through the GWAS.

173 Figure 1b visualizes the phenotypic and genetic correlations between each pair of measures,
174  confirming a strong structure and a subdivision between adipose- and muscle-related measures.
175  SNP-based heritability ranged from 19% to 34% (all p<1x107!6); see the diagonal of Figure 1b.
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Figure 1. Comparison of the genetic architecture of individual body composition measures. a)
The relation between genetic variance explained by genome-wide significant hits (y-axis) and
sample size (x-axis) for each measure (solid colored lines). The vertical dashed blue line marks
the current sample size, with the corresponding percent genetic variance explained indicated
between brackets in the legend. b) Correlation between the measures, with phenotypic correlation
shown in bottom triangle and genetic correlation in the upper triangle, and heritability on the
diagonal. Abbreviations: ASAT=abdominal subcutaneous adipose tissue, VAT=visceral adipose
tissue, AFR= abdominal fat ratio, WMR=weight-muscle-ratio, ATMV=anterior thigh muscle
volume, PTMV=Posterior thigh muscle volume, ATMFI=anterior thigh muscle fat infiltration,
PTMFI=posterior thigh muscle fat infiltration, Liver PDFF=liver proton density fat fraction,
TTMVz=total thigh muscle volume z-score, i=index, referring to a measure divided by standing

height’.
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Multivariate GWAS

Gene variants are likely to have distributed effects across these measures, as they are correlated
components of the same biological system. We therefore also jointly analyzed all measures
through the Multivariate Omnibus Statistical Test (MOSTest),*” which increases statistical power
in a scenario of shared genetic signal across the univariate measures.*’*° After applying a rank-
based inverse normal transformation, we performed MOSTest on the residualized measures,

yielding a multivariate association with 9.1 million SNPs included.

MOSTest revealed 108 significant independent loci across all MRI-derived measures (see

Figure 2a and SI). Figure 2b visualizes the significance of the association between the individual

a 100

-log10(p-value)

b

Liver PDFF [ [ [ []]
G
PTMFI | | |
PV I N "
PTMV
ATMVi | | [ | | | -log10(p)
PTMVi [ | ] |
TTMVz | 4
2

L

Figure 2. Multivariate locus discovery a) Manhattan plot of the multivariate GWAS on all MRI-
derived body composition measures, with the observed -logl0(p) of each SNP shown on the y-axis.
The x-axis shows the relative genomic location, grouped by chromosome, and the red dashed line
indicates the whole-genome significance threshold of 5x107%. The y-axis is clipped at -log10(p)=75.
b) Heatmap showing -logl0(p) of the association between the lead variants of MOSTest-identified
independent loci (x-axis) and each of the individual MRI measures (y-axis). The values are capped
at 7.5 (p=5x103).

10


https://doi.org/10.1101/2022.02.24.481887
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.24.481887; this version posted February 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

186  measures and each of the 108 loci, illustrating the presence of many shared but also specific genetic

187  variants.

188 MAGMA identified 256 significant genes after multiple comparison correction (a=.05/18,203),
189  with highly significant differential expression in the liver, pancreas, heart, muscle, and several
190  other tissues (Figure 3). Coupling the significant genes to the Reactome database™ indicated most
191  prominent associations with the adaptive immune system and cytokine signaling (p<1*10719), see

192 Supplementary Data and Supplementary Figure 2 for an overview.

(o>}

-log10(P-value)

w

Figure 3. Tissue-specific differential expression of the set of significant genes identified through the multivariate
GWAS on MRI-derived measures of body composition. The red-dotted line indicates the multiple comparisons-
corrected significance threshold.

193

194 Comparison of genetic architecture with cardiometabolic risk factors

195  We additionally analyzed a set of 21 measures of anthropometric and cardiometabolic factors (e.g.,
196  BMI, triglycerides, cholesterol, blood pressure; see Table 2), which were available for up to
197 412,316 White European UKB participants. Through multivariate GWAS on this separate set of
198  measures in the full UKB sample, we found 1134 genome-wide significant loci with a=5x10% (list

199  provided in SI). Of the 108 loci identified through the primary multivariate analysis of MRI-

11


https://doi.org/10.1101/2022.02.24.481887
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.24.481887; this version posted February 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

200  derived body composition measures, 94 (87%) were significant in this secondary analysis in a
201  larger sample. This indicates that these sets of measures overall are influenced by the same network

202  of biological processes.

203 The heritability of the MRI-derived measures (mean h?=.25) was significantly higher than the
204  body anthropometrics and other biomarkers (mean h?=.16), p=1.4x10%. As shown in Figure 4,
205  these measures generally showed higher genetic correlations with the MRI-derived measures of
206  adipose tissue than the muscle-related measures. Further, BMI, hip/waist circumference, and

207  waist-to-hip-ratio were genetically correlated with nearly all body MRI measures.
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Figure 4. Genetic correlations of the MRI-derived body composition measures with standard
anthropometrics and cardiometabolic measures. Abbreviations: BMI=body mass index,
WHR=waist-hip ratio, CRP=C-reactive protein, ALT=alanine aminotransferase, GGT=
gamma-glutamyl transferase, HDL=high-density lipoproteins, AST=aspartate aminotransferase,
HbAlc=glycated hemoglobin, LDL=Ilow-density lipoproteins, BP=blood pressure.
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208  Genetic correlation with cardiovascular, metabolic and mental disorders

209  Next, we analyzed the genetic overlap of the MRI-derived measures with medical conditions
210  previously linked to cardiometabolic health, selecting recent GWAS with adequate power.’! 7 As
211  shown in Figure 5a, the strongest association across all measures was found for liver fat, with a
212 genetic correlation of 0.48 (p=1.6x10"22) with type 2 diabetes. Coronary artery disease was found
213 to have highly significant positive genetic correlations with visceral and subcutaneous adipose
214  tissue. Overall, we found weak negative genetic correlations with muscle tissue measures and
215  stronger positive genetic correlations with adipose tissue measures, with two exceptions; anorexia
216  nervosa showed the opposite direction of correlation compared to the other conditions, and there
217  was no discernible pattern for schizophrenia. Genetic correlations with the anthropometric and
218  metabolic measures are provided in Figure 5b for comparison, indicating that the adipose tissue
219  measures are as strong as or stronger correlated with these conditions than the conventional body

220  anthropometrics.
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Figure 5. Genetic correlations of a) MRI-derived body composition measures, and b)
anthropometric and metabolic measures (x-axis) with conditions linked to poor
cardiometabolic health (yv-axis). ***p=5x10"°, **p=>5x105, *p=5x10".
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222  Discussion

223 Here, we reported results from a comprehensive, large-scale GWAS of MRI-derived measures of
224 body composition. Joint analyses of measures of regional adipose and muscle tissue distributions
225  revealed extensive genetic overlap and led to the identification of a large number of shared genetic
226  risk loci across traits. We further showed genetic overlap with body anthropometrics and
227  cardiometabolic measures as well as medical conditions linked to cardiometabolic health. Our
228  findings illustrate how MRI-derived measures can be leveraged to improve our understanding of
229  the biology underlying the metabolic system, identifying liver fat as a particularly promising

230  measure, highlighting the integral role of steatosis and MAFLD in cardiometabolic health.

231 The genetic correlations of body composition measures with common medical conditions
232 underlined that they may complement conventional measures to better understand cardiometabolic
233 health. Liver fat showed a stronger genetic correlation with type 2 diabetes than conventional
234 measures. The amount of liver fat and its genetic determinants may thus play a central role in type
235 2 diabetes development, and at a minimum robustly positions MAFLD onto the map of relevant
236  comorbidities of type 2 diabetes alongside cardiovascular disease, kidney disease and diabetic
237  retinopathy. Further, we found significant positive genetic correlations between coronary artery
238  disease and visceral and subcutaneous adipose tissue, adding genetic evidence to the well-

239  established relation between this disease, obesity, and body fat distribution.’®

240 Liver fat also stood out from the other measures with regard to its genetic architecture. While
241  all traits investigated were substantially heritable, the genetic discoverability of liver fat was much
242 higher, with an oligogenic architecture as opposed to the polygenic architectures of the remaining
243 traits and other complex biomedical measures.*> This was reflected in the GWAS yield, with a few

244 highly significant loci coupled to lipid homeostasis explaining the majority of genetic variance for
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245  this measure. These loci should be scrutinized for the biological link between liver fat and
246  cardiometabolic conditions,”® and may potentially point to fundamental processes that become
247  dysregulated in these diseases. Indeed, all components of metabolic syndrome correlate with liver
248  fat content.®® Evaluation of MAFLD risk has been recommended for any individual with metabolic
249  syndrome and related morbidities (e.g. type 2 diabetes),!!*? and the large effects of these liver fat-
250 associated loci even may suggest potential as features for individual risk stratification in
251  MAFLD.%? These findings also attest to the accuracy and clinical relevance of MRI-derived
252  measures of liver fat, and support the notion that MAFLD should be considered an integral

253 component of obesity and metabolic syndrome and a key non-communicable disease.!!

254 Another key finding was that the highest number of significant loci were found for muscle fat
255  infiltration in the anterior and posterior thighs, two measures not previously genetically studied.
256  Fatty infiltration of skeletal muscle reduces the muscle mass and strength,> and has been
257  implicated in aging and frailty.®* It has also been coupled to metabolic syndrome® and
258  cardiovascular mortality.%® Recent literature focused on liver disease and its progression have also
259  highlighted the importance of muscle health.®” Muscle fat infiltration has been linked to higher
260  comorbidity within MAFLD and decreased muscle fat infiltration has been correlated with

261  improvement in steatohepatitis.®?

Our findings suggest a strong genetic component to these
262  associations, indicated by the large degree of shared genetic architecture with related diseases.
263  Interestingly, fat accumulation in the muscle arises through specific pathways, including the

264  intramyocellular accumulation of lipid,%* which is associated with insulin insensitivity and
y p y

265  inflammation.”®

266 The genetic correlations between the MRI-derived body composition measures indicate partly

267  overlapping biological processes with some unique genetic determinants. The correlation structure
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268  further suggests that adipose tissue distribution is genetically largely independent from muscle
269  tissue. However, it should be noted that global correlations underestimate overlap when a mixture
270  of genetic effects in the same and opposing directions cancels each other out.*® Indeed, adipose
271  and muscle tissue are known to have complex regulatory cross-talk, both releasing metabolism-
272 regulating molecules to maintain a balanced weight-to-muscle ratio.”! The increased yield from
273 the multivariate GWAS analysis, nearly doubling the number of unique loci discovered, is in line
274  with the hypothesis of strong biological interplay and shared molecular mechanisms. The
275  multivariate GWAS allowed for identifying loci that have distributed effects across the included
276  body composition measures. These may help to explain the complexity of metabolic syndrome
277  and the frequent comorbidity between diseases associated with body composition. Our findings
278  that a substantial portion of the genetic determinants of these measures are related to the immune
279  system fit with a large body of literature indicating that adipose tissue is an active metabolic and
280  endocrine organ that secretes a host of pro- and anti-inflammatory factors, and with the
281  characterization of obesity as a state of chronic low-grade inflammation.”? Thus, the current
282  genetic findings can form the basis for functional follow-up studies to determine the molecular

283  mechanisms involved in the complex relations between lipids and the immune system.

284 There was high genetic overlap between the sets of MRI-derived measures of body composition
285  and the conventional measures of body anthropometrics and cardiometabolic health, indicating
286  that they tag similar biological processes. The body anthropometrics were correlated with both
287  muscle and adipose tissue, indicating little specificity, in line with the long-standing recognized
288  limitations of these global measures that they fail to distinguish between specific body types that

289  differ widely in risk for disease.”?
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290 Strengths of this study are the large number of whole-body MRI scans and the use of state-of-
291  the-art, precise body composition measures, including multiple measures not previously
292  investigated. With this, we were able to replicate loci reported earlier in smaller samples and with
293  different measurement protocols.>> We further combined the study of individual measures with a
294  multivariate approach to genetic discovery, allowing for greater GWAS hit yield and insight into
295  the overall architecture of these complementary indicators of body composition and associated
296  diseases. The findings allow for numerous follow-up investigations; further studies are needed to
297  clarify the causal directions between the measures, and the role of putative moderators such as

298  sex,’* age, and ethnicity.”

299 To conclude, the high prevalence of cardiometabolic diseases, combined with substantial
300 morbidity and mortality, indicates a strong need for new therapeutic targets. While these diseases
301 are often comorbid, they are treated separately, with this polypharmacy bringing along increased
302  risk of adverse drug reactions.* Genetic data is less subjected to reverse causation and confounding
303  than environmental factors. Knowledge about shared and specific genetic determinants is therefore
304  central to develop effective strategies that optimally treat the individual. We showed that accurate
305 MRI-derived measures of liver and regional adipose and muscle tissue characteristics have strong
306  genetic components, with shared influences that can be leveraged to boost discovery. As such,
307  these findings have the potential to significantly enhance our understanding of body composition
308 and related diseases, provide drug targets for MAFLD and related traits, and contribute to

309  combatting a significant, increasing threat to public health.
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518  Methods

519  Participants

520 We made use of data from participants of the UKB population cohort, obtained from the data
521  repository under accession number 27412. The composition, set-up, and data gathering protocols
522  of the UKB have been extensively described elsewhere’. For the primary analyses, we selected
523  White Europeans that had undergone the body MRI protocol, with available genetic and complete
524 covariate data (N=34,036, mean age 64.5 years (SD=7.4), 51.5 % female). For the replication
525  analyses, we made use of data from non-White Europeans (N=5081, mean age 63.0 years
526  (SD=7.7), 52.9 % female).

527

528  Data collection and pre-processing

529 Body and liver MRI scans were collected from three scanning sites throughout the United
530  Kingdom, all with identical scanners and protocols. They were acquired on 1.5T Siemens
531 MAGNETOM Aera scanners using a body dual-echo Dixon Vibe protocol and a single-slice multi-
532 echo gradient Dixon acquisition, respectively. The UKB core neuroimaging team has published
533  extensive information on the applied scanning protocols and procedures, which we refer to for
534 more details.”” We acquired the data as processed by AMRA (Linkoping, Sweden;
535  https://www.amramedical.com), subsequently released by UKB. We bridged with UKB project
536  accession #6569 to obtain early access to this data, which was then obtained from the UKB data
537  repositories and stored locally at the secure computing cluster of the University of Oslo.

538 The AMRA body MRI processing included intensity inhomogeneity correction, non-rigid
539  registration of atlases to acquired image volumes, quantification of fat and muscle composition

540  using a voting scheme, and visual inspection for segmentation accuracy and manual adjustment.’®
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541  The liver MRI data were processed using a magnitude-based chemical shift technique with a 6-
542  peak lipid model and then registered to the body MRI data and corrected for liver T2* to obtain a
543  Tl-weighted measure of liver proton density fat fraction (PDFF). AMRA implements manual
544  quality control of the image/segmentation quality.

545

546  Measurement protocols and definitions

547  We extracted a selection of body composition measures (Table 1; see also UKB online
548  documentation (http://biobank.ctsu.ox.ac.uk/showcase/)). Specifically, we extracted the following
549  measures of adipose tissue: visceral adipose tissue (VAT), defined as the adipose tissue within the
550  abdominal cavity, and abdominal subcutaneous adipose tissue (ASAT), defined as the adipose
551  tissue between the top of the femoral head and the top of T9. We also extracted measures of muscle
552 fat infiltration (MFI) derived from the anterior and posterior thighs, averaged over both legs, and
553 liver proton density fat fraction (PDFF). As measures of muscle tissue, we included anterior and
554  posterior thigh fat-free muscle volume (ATMV and PTMV), and total thigh muscle volume,
555  encompassing the gluteus, iliacus, adductors, hamstrings, quadriceps femoris, and sartorius,
556  normalized to a z-score (TTMVz) that corrects for BMI, age, sex and height.>® We extracted two
557  ratios from the UKB repository, namely weight-to-muscle ratio (WMR), defined as weight/ TTMV,
558  and abdominal fat ratio (AFR), which is (VAT+ASAT)/(VAT+ASAT+TTMYV). Additionally, for
559 VAT, ASAT, ATMV, and PTMV, we computed index measures by dividing these measures by
560  the squared standing height in meters (e.g., ASATi is ASAT/height?). This is done since weight,
561 adipose tissue, and lean tissue compartments scale to approximate height squared.

562 We subsequently regressed out age, sex, scanner site, and the first twenty genetic principal

563 components from each measure. Following this, we applied rank-based inverse normal
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564  transformation” to the residuals of each measure, leading to normally distributed measures as
565  input for the GWAS.

566 For the secondary analyses, comparing the set of MRI-derived measures of body composition
567  to measures of cardiometabolic health, we included 21 measures available in the UKB as listed in
568  Table 2.

569 Table 2. Measures of cardiometabolic health used in the secondary analyses, together with

570  abbreviations and available sample sizes.

Measure Abbreviation N
Cholesterol 389832
High-density lipoproteins HDL 356802
Low-density lipoproteins LDL 389115
Triglycerides 389524
Apolipoprotein A 354829
Apolipoprotein B 387945
Cholesterol to HDL 356734
ApoB to ApoA 353056
C-Reactive Protein CRP 388993
Glucose 356558
Glycated hemoglobin HbAlc 389728
Alanine aminotransferase ALT 389701
Aspartate aminotransferase AST 388406
Gamma-glutamyl transferase GGT 389634
Creatinine 389637
Body mass index BMI 407558
Waist circumference 408179
Hip circumference 408134
Waist-to-hip ratio WHR 408096
Diastolic blood pressure DBP 36591
Systolic blood pressure SBP 36591

571
572 GWAS procedure
573  We made use of the UKB v3 imputed data, which has undergone extensive quality control

574  procedures as described by the UKB genetics team.®® After converting the BGEN format to PLINK
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575  binary format, we additionally carried out standard quality check procedures, including filtering
576  outindividuals with more than 10% missingness, SNPs with more than 5% missingness, and SNPs
577  failing the Hardy-Weinberg equilibrium test at p=1*10. We further set a minor allele frequency
578  threshold of 0.005, leaving 9,061,022 SNPs.

579 We carried out GWAS through the freely available MOSTest software

580  (https://github.com/precimed/mostest). Details about the procedure and its extensive validation

581  have been described previously.*” GWAS on each of the pre-residualized and normalized measures
582  were carried out using the standard additive model of linear association between genotype vector,
583 g, and phenotype vector, y. Independent significant SNPs and genomic loci were identified in
584  accordance with the PGC locus definition, as also used in FUMA SNP2GENE.}! First, we selected
585 a subset of SNPs that passed genome-wide significance threshold 5x10%, and used PLINK to
586  perform a clumping procedure at LD r2=0.6 to identify the list of independent significant SNPs.
587  Second, we clumped the list of independent significant SNPs at LD r2=0.1 threshold to identify
588  lead SNPs. Third, we queried the reference panel for all candidate SNPs in LD r2 of 0.1 or higher
589  with any lead SNPs. Further, for each lead SNP, its corresponding genomic loci were defined as a
590  contiguous region of the lead SNPs' chromosome, containing all candidate SNPs in r2=0.1 or
591  higher LD with the lead SNP. Finally, adjacent genomic loci were merged if separated by less than
592 250 KB. Allele LD correlations were computed from EUR population of the 1000 genomes Phase
593 3 data. We made use of the Functional Mapping and Annotation of GWAS (FUMA) online

594  platform (https://fuma.ctglab.nl/) to map significant SNPs from the MOSTest analyses to genes.

595

596  MiXeR analysis

32


https://doi.org/10.1101/2022.02.24.481887
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.24.481887; this version posted February 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

597  We applied a causal mixture model*** to estimate the percentage of variance explained by
598  genome-wide significant SNPs as a function of sample size. For each SNP, i, MiXeR models its
599  additive genetic effect of allele substitution, §;, as a point-normal mixture, 8; = (1 — 7;)N(0,0) +
600 m;N(O, al?), where m; represents the proportion of non-null SNPs (“polygenicity’) and ag
601  represents the variance of effect sizes of non-null SNPs ("discoverability"). Then, for each SNP, j,
602  MiXeR incorporates LD information and allele frequencies for 9,997,231 SNPs extracted from
603 1000 Genomes Phase3 data to estimate the expected probability distribution of the signed test
604  statistic, z; =6;+¢€ =NY; \/Eri iBi + €, where N is the sample size, H; indicates
605  heterozygosity of i-th SNP, r;; indicates an allelic correlation between i-th and j-th SNPs, and €; ~
606  N(0,02) is the residual variance. Further, the three parameters, m;, al%, 02, are fitted by direct
607  maximization of the likelihood function. Fitting the univariate MiXeR model does not depend on
608  the sign of z;, allowing us to calculate |z;| from MOSTest p-values. Finally, given the estimated
609  parameters of the model, the power curve S(N) is then calculated from the posterior distribution
610 p(&|z;, V).

611

612  Gene-set analyses

613  We carried out gene-based analyses using MAGMA v1.08 with default settings, which entails the
614  application of a SNP-wide mean model and the use of the 1000 Genomes Phase 3 EUR reference
615  panel. Gene-set analyses were done in a similar manner, restricting the sets under investigation to

616  those that are part of the Gene Ontology biological processes subset (n=7522), as listed in the

617  Molecular Signatures Database (MsigdB; ¢5.bp.v7.1).
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