

1 **The role of liver fat in cardiometabolic diseases is highlighted by genome-wide association**
2 **study of MRI-derived measures of body composition**

3 Dennis van der Meer, Ph.D.^{1,2*}, Tiril P. Gurholt, Ph.D.¹ Ida E. Sønderby, Ph.D.^{1,3,4}, Alexey A.
4 Shadrin, Ph.D.¹, Guy Hindley, M.D.^{1,5} Zillur Rahman, Ph.D.¹, Ann-Marie G. de Lange, Ph.D.^{1,6,7},
5 Oleksandr Frei, Ph.D.^{1,8}, Olof D. Leinhard, Ph.D.^{9,10,11}, Jennifer Linge, M.Sc.^{9,10}, Rozalyn Simon,
6 Ph.D.^{10,11}, Lars T. Westlye, Ph.D.^{1,4,12}, Sigrun Halvorsen M.D. Ph.D.¹³, Anders M. Dale, Ph.D.¹⁴,
7 Tom H. Karlsen M.D. Ph.D.^{15,16}, Tobias Kaufmann, Ph.D.^{1,17} & Ole A. Andreassen, M.D. Ph.D.^{1,4}

8 ¹*Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo
9 University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway*

10 ²*School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht
11 University, The Netherlands*

12 ³*Department of Medical Genetics, Oslo University Hospital, Oslo, Norway*

13 ⁴*K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo*

14 ⁵*Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King's College London, United Kingdom*

15 ⁶*LREN, Centre for Research in Neurosciences, Dept. of Clinical Neurosciences, Lausanne University Hospital
16 (CHUV) and University of Lausanne, Lausanne, Switzerland*

17 ⁷*Dept. of Psychiatry, University of Oxford, Oxford, UK*

18 ⁸*Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway*

19 ⁹*AMRA Medical, Linköping, Sweden*

20 ¹⁰*Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping
21 University, Linköping, Sweden*

22 ¹¹*Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden*

23 ¹²*Department of Psychology, University of Oslo, Oslo, Norway*

24 ¹³*Department of Cardiology, Oslo University Hospital Ullevål, and University of Oslo, Oslo, Norway*

25 ¹⁴*Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA 92037, USA*

26 ¹⁵*Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo
27 University Hospital Rikshospitalet, Oslo, Norway.*

28 ¹⁶*Research Institute for Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo
29 University Hospital Rikshospitalet and University of Oslo, Oslo, Norway.*

30 ¹⁷*Department of Psychiatry and Psychotherapy, University of Tübingen, Germany*

31 * Corresponding author. E-mail: d.v.d.meer@medisin.uio.no

32 **Conflicts of interest**

33 OAA has received speaker's honorarium from Lundbeck and is a consultant to HealthLytix. JL,
34 and ODL are employed by and stockholders in AMRA Medical, and RS was previously employed
35 by AMRA medical. THK received consultancy fees from Intercept and Engitix and speaker fees
36 from Novartis, Gilead and AlfaSigma. AMD is a Founder of and holds equity in CorTechs Labs,
37 Inc, and serves on its Scientific Advisory Board. He is a member of the Scientific Advisory Board
38 of Human Longevity, Inc. and receives funding through research agreements with General Electric
39 Healthcare and Medtronic, Inc. The terms of these arrangements have been reviewed and approved
40 by UCSD in accordance with its conflict of interest policies. All other authors report no potential
41 conflicts of interest.

43 **Financial support**

44 The authors were funded by the Research Council of Norway (276082, 213837, 223273,
45 204966/F20, 229129, 249795/F20, 225989, 248778, 249795, 298646, 300767), the South-Eastern
46 Norway Regional Health Authority (2013-123, 2014-097, 2015-073, 2016-064, 2017-004, 2017-
47 112, 2019-101, 2020-060 (IES), 2022-080), Stiftelsen Kristian Gerhard Jebsen (SKGJ-MED-021),
48 The European Research Council (ERC) under the European Union's Horizon 2020 research and
49 innovation programme (ERC Starting Grant, Grant agreement No. 802998), ERA-Net Cofund
50 through the ERA PerMed project 'IMPLEMENT', and National Institutes of Health
51 (R01MH100351, R01GM104400). This project has received funding from the European Union's
52 Horizon 2020 Research and Innovation Programme under Grant agreement No 847776847776
53 (CoMorMent).

54 **Author contributions**

55 D.v.d.M., T.G., I.E.S. and O.A.A. conceived the study; D.v.d.M., T.G. and T.K. pre-processed the
56 data. D.v.d.M. performed all analyses, with conceptual input from O.A.A.; All authors contributed
57 to interpretation of results; D.v.d.M. drafted the manuscript and all authors contributed to and
58 approved the final manuscript.

59 **Abstract**

60 **Background & Aims:** Obesity and associated morbidities, metabolic associated liver disease
61 (MAFLD) included, constitute some of the largest public health threats worldwide. Body
62 composition and related risk factors are known to be heritable and identification of their genetic
63 determinants may aid in the development of better prevention and treatment strategies. Recently,
64 large-scale whole-body MRI data has become available, providing more specific measures of body
65 composition than anthropometrics such as body mass index. Here, we aimed to elucidate the
66 genetic architecture of body composition, by conducting the first genome-wide association study
67 (GWAS) of these MRI-derived measures.

68 **Methods:** We ran both univariate and multivariate GWAS on fourteen MRI-derived
69 measurements of adipose and muscle tissue distribution, derived from scans from 34,036 White
70 European UK Biobank participants (mean age of 64.5 years, 51.5% female).

71 **Results:** Through multivariate analysis, we discovered 108 loci with distributed effects across the
72 body composition measures and 256 significant genes primarily involved in immune system
73 functioning. Liver fat stood out, with a highly discoverable and oligogenic architecture and the
74 strongest genetic associations. Comparison with 21 common cardiometabolic traits revealed both
75 shared and specific genetic influences, with higher mean heritability for the MRI measures ($h^2=.25$
76 vs. $.16$, $p=1.4\times 10^{-6}$). We found substantial genetic correlations between the body composition
77 measures and a range of cardiometabolic diseases, with the strongest correlation between liver fat
78 and type 2 diabetes ($r_g=.48$, $p=1.6\times 10^{-22}$).

79 **Conclusions:** These findings show that MRI-derived body composition measures complement
80 conventional body anthropometrics and other biomarkers of cardiometabolic health, highlighting

81 the central role of liver fat, and improving our knowledge of the genetic architecture of body
82 composition and related diseases.

83 **Keywords:** genome-wide association study; body composition; liver fat; whole-body MRI

84 **Introduction**

85 Obesity and associated cardiometabolic diseases are currently considered one of the largest global
86 public health concerns^{1,2}. Over one-third of the United States adult population qualifies for a
87 diagnosis of metabolic syndrome³ characterized by excessive visceral adiposity, insulin
88 resistance, hypertension, low high-density lipoprotein cholesterol, and hypertriglyceridemia.^{4,5}
89 Metabolic syndrome substantially increases the risk of coronary artery disease, type 2 diabetes,
90 cancer, and metabolic associated fatty liver disease (MAFLD, previously described as non-
91 alcoholic fatty liver disease⁶).⁷⁻¹¹ Body composition is also associated with brain structure and
92 brain disorders.^{12,13} An improved understanding of the genetic and biological determinants of body
93 composition is needed to provide insights into the complex interplay between metabolic factors,
94 prevent and treat multiple highly prevalent conditions, and improve public health outcomes.^{2,10}

95 Body composition is partly determined by a complex constellation of interacting metabolic
96 processes and inter-organ cross-talk that may become dysregulated and lead to metabolic
97 syndrome.¹⁴ In susceptible individuals, excessive energy intake, stored as visceral adipose tissue,
98 combined with insulin resistance, leads to heightened lipolysis and release of free fatty acids.¹⁵
99 Increased free fatty acid flux to the liver results in hypertriglyceridemia, which in turn contributes
100 to dyslipidemia and atherosclerosis. Lipolysis in visceral adipose tissue further promotes insulin
101 resistance and gluconeogenesis and increases pro-inflammatory reactions that exacerbate
102 endothelial dysfunction and hypertension.¹⁵ This is reflected in heightened levels of pro-
103 inflammatory markers among individuals with metabolic syndrome.¹⁶ Muscle mass is also a
104 determinant of cardiometabolic health,¹⁷ as skeletal muscle constitutes the largest insulin-sensitive
105 tissue in the body and is the primary site for insulin-stimulated glucose utilization.¹⁸ Still, the

106 nature and extent of overlap between these different determinants of cardiometabolic functioning
107 remain unclear.

108 Measures of localized adipose tissue, liver fat and regional muscle volume can now be
109 accurately extracted from whole-body MRI scans.¹⁹⁻²² MRI-based body tissue quantification
110 offers more sensitive proxies of cardiometabolic health than body anthropometrics such as waist
111 circumference and body mass index (BMI)²³, which also lack a direct connection to
112 pathophysiology.^{5,24} Measures of regional adipose tissue, most accurately and comprehensively
113 identified through MRI,^{25,26} show independent associations with cardiometabolic diseases and
114 improve risk prediction beyond body anthropometrics.²⁷⁻²⁹

115 In addition to social and physical environmental factors,³⁰ genetically determined individual
116 differences play a significant role in regulating body composition.³¹⁻³³ Cardiometabolic risk
117 factors have both unique and shared genetic correlates.³⁴ Much less is known about the genetics of
118 specific MRI-derived body composition measures.³⁵ We aimed to map the unique and shared
119 genetic architectures across the MRI-derived body composition to provide a holistic understanding
120 of the interplay between different tissue types and their role in metabolic syndrome and
121 cardiometabolic health.

122 **Results**

123 We conducted GWASs of fourteen MRI-derived muscle and adipose tissue distribution measures
124 and investigated the genetic link to conventional cardiometabolic risk factors. We included six
125 measures of adipose tissue distribution: abdominal subcutaneous adipose tissue, visceral adipose
126 tissue, abdominal fat ratio, anterior and posterior thigh muscle fat infiltration, and liver protein
127 density fat fraction. Additionally, we investigated three measures related to thigh muscle tissue,
128 namely anterior and posterior thigh muscle volume and weight-to-muscle ratio. We further

129 analyzed visceral and abdominal adipose tissue, and anterior and posterior muscle volume, divided
130 by standing height in meters squared, and total thigh muscle volume z-score (sex-, height-, weight-
131 and BMI-invariant).³⁶ See Table 1 for an overview of these measures, and the Methods section for
132 protocols and definitions. Given a total of fourteen individual measures, we set the univariate
133 GWAS significance threshold at $\alpha=5*10^{-8}/14=3.6*10^{-9}$. Our sample for the main analyses
134 consisted of 34,036 White European participants of the UK Biobank (UKB), with a mean age of
135 64.5 years (standard deviation (SD) 7.4 years), 51.5% female. We pre-residualized all measures
136 for age, sex, test center, and the first twenty genetic principal components to control for population
137 stratification.

138 *Table 1. MRI-derived measures of body composition included in this study, together with the*
139 *available sample size and number of loci discovered through univariate GWAS.*

Measure	Abbreviation	N	# loci
Abdominal subcutaneous adipose tissue	ASAT	33979	1
Visceral adipose tissue	VAT	33989	2
Anterior thigh muscle volume	ATMV	33415	7
Posterior thigh muscle volume	PTMV	33459	10
Anterior thigh muscle fat infiltration (%)	ATMFI	33347	19
Posterior thigh muscle fat infiltration (%)	PTMFI	33392	25
Weight-muscle-ratio	WMR	33406	1
Abdominal fat ratio	AFR	33375	1
Liver proton density fat fraction (%)	LPDFF	33674	8
VAT/height ²	VATi	33007	2
ASAT/height ²	ASATi	32998	1
ATMV/height ²	ATMVi	32442	5
PTMV/height ²	PTMVi	32483	0
Total thigh muscle volume z-score	TTMVz	32401	5

140

141 *Univariate GWAS*

142 Univariate GWASs on the individual measures revealed a total of 87 loci, including 54 unique,
143 surpassing the study-wide significance threshold of $3.6*10^{-9}$. Two loci stood out with highly

144 significant p-values, on chromosome 19 (lead rs58542926, $p=8.8\times10^{-113}$) and chromosome 22
145 (lead rs738409, $p=4.6\times10^{-166}$), both identified in the GWAS on liver fat. Using converging
146 positional, eQTL, and chromatin interaction information (see Methods), we mapped these loci to
147 genes previously coupled to MAFLD (rs738409: *PNPLA3*, *SAMM50*, *PARVB*)³⁷ as well as
148 inflammatory processes and cancer (rs58542926: *CD99*).³⁸ The Supplementary Information (SI)
149 contains Manhattan plots and overviews of all loci discovered together with mapped genes.

150 Additionally, we assessed the generalization of the discovered loci in a hold-out set of 5,081
151 non-White European UKB participants with identical processing steps. Of the 84 lead SNPs
152 available in this set, 82 had effects in the same direction as the main analyses (97.6%, sign-test
153 $p<1\times10^{-16}$). Thus, our results suggest a cross-ethnicity generalization of these genetic associations
154 with MRI-derived measures of body composition, despite the known high variability of body
155 anthropometrics across ethnicities.^{5,24}

156 In total, we identified eight study-wide significant loci for liver fat, validating those found in a
157 previous smaller GWAS.³⁵ Gene-based analysis through Multi-marker Analysis of GenoMic
158 Annotation (MAGMA) identified 35 genome-wide significant genes, including the three primary
159 MAFLD genes (*TM6SF2* $p=7.2\times10^{-16}$, *PNPLA3* $p=1.0\times10^{-14}$, and *TMC4-MBOAT7* $p=2.1\times10^{-8}$),^{39–}
160 ⁴² further confirming the strong biological validity of this liver fat measure and its connection to
161 MAFLD. Functional annotation of the set of 35 genes revealed differential expression in the liver,
162 pancreas, and subcortical brain regions and significant enrichment among Gene Ontology (GO)
163 biological processes specifically related to lipid homeostasis and metabolic processes. The SI
164 further contains results of gene set enrichment analyses for each individual measure.

165 Next, we estimated the polygenicity and effect size variance ('discoverability') by fitting a
166 Gaussian mixture model of null and non-null effects to the GWAS summary statistics using

167 MiXeR.^{43,44} The results are summarized in Figure 1a, depicting the estimated proportion of genetic
 168 variance explained by discovered SNPs for each measure as a function of sample size. This
 169 illustrates that body MRI measures generally show genetic architectures similar to e.g. brain MRI
 170 measures, characterized by high polygenicity.^{45,46} However, the notable exception is liver fat, with
 171 substantially lower polygenicity and higher discoverability than the other measures, in line with
 172 the relatively few highly significant associations we identified through the GWAS.

173 Figure 1b visualizes the phenotypic and genetic correlations between each pair of measures,
 174 confirming a strong structure and a subdivision between adipose- and muscle-related measures.
 175 SNP-based heritability ranged from 19% to 34% (all $p < 1 \times 10^{-16}$); see the diagonal of Figure 1b.
 176

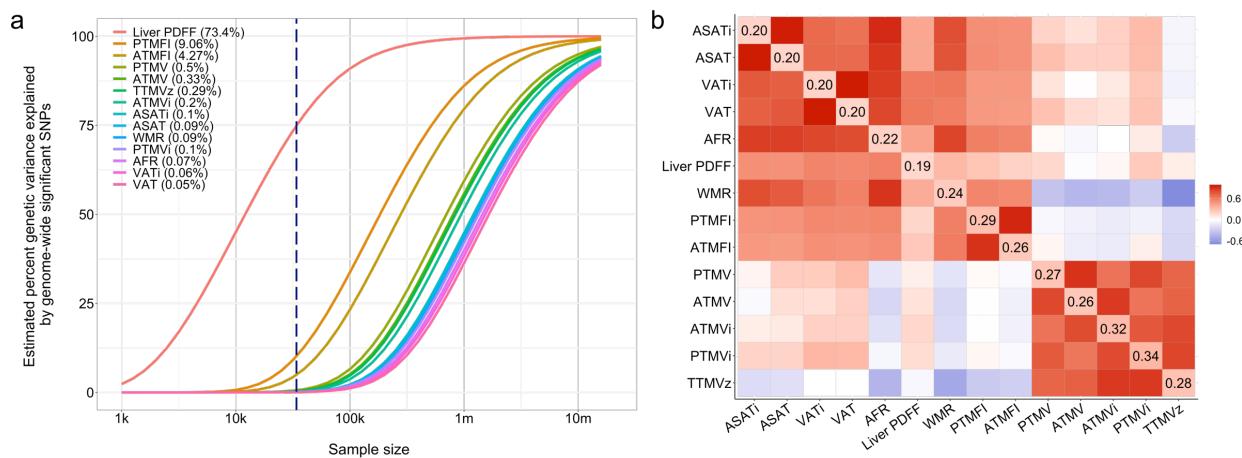


Figure 1. Comparison of the genetic architecture of individual body composition measures. a) The relation between genetic variance explained by genome-wide significant hits (y-axis) and sample size (x-axis) for each measure (solid colored lines). The vertical dashed blue line marks the current sample size, with the corresponding percent genetic variance explained indicated between brackets in the legend. **b)** Correlation between the measures, with phenotypic correlation shown in bottom triangle and genetic correlation in the upper triangle, and heritability on the diagonal. Abbreviations: ASAT=abdominal subcutaneous adipose tissue, VAT=visceral adipose tissue, AFR= abdominal fat ratio, WMR=weight-muscle-ratio, ATMV=anterior thigh muscle volume, PTMV=Posterior thigh muscle volume, ATMF=anterior thigh muscle fat infiltration, PTMFI=posterior thigh muscle fat infiltration, Liver PDFF=liver proton density fat fraction, TTMVz=total thigh muscle volume z-score, i=index, referring to a measure divided by standing height².

177 *Multivariate GWAS*

178 Gene variants are likely to have distributed effects across these measures, as they are correlated
179 components of the same biological system. We therefore also jointly analyzed all measures
180 through the Multivariate Omnibus Statistical Test (MOSTest),⁴⁷ which increases statistical power
181 in a scenario of shared genetic signal across the univariate measures.⁴⁷⁻⁴⁹ After applying a rank-
182 based inverse normal transformation, we performed MOSTest on the residualized measures,
183 yielding a multivariate association with 9.1 million SNPs included.

184 MOSTest revealed 108 significant independent loci across all MRI-derived measures (see
185 Figure 2a and SI). Figure 2b visualizes the significance of the association between the individual

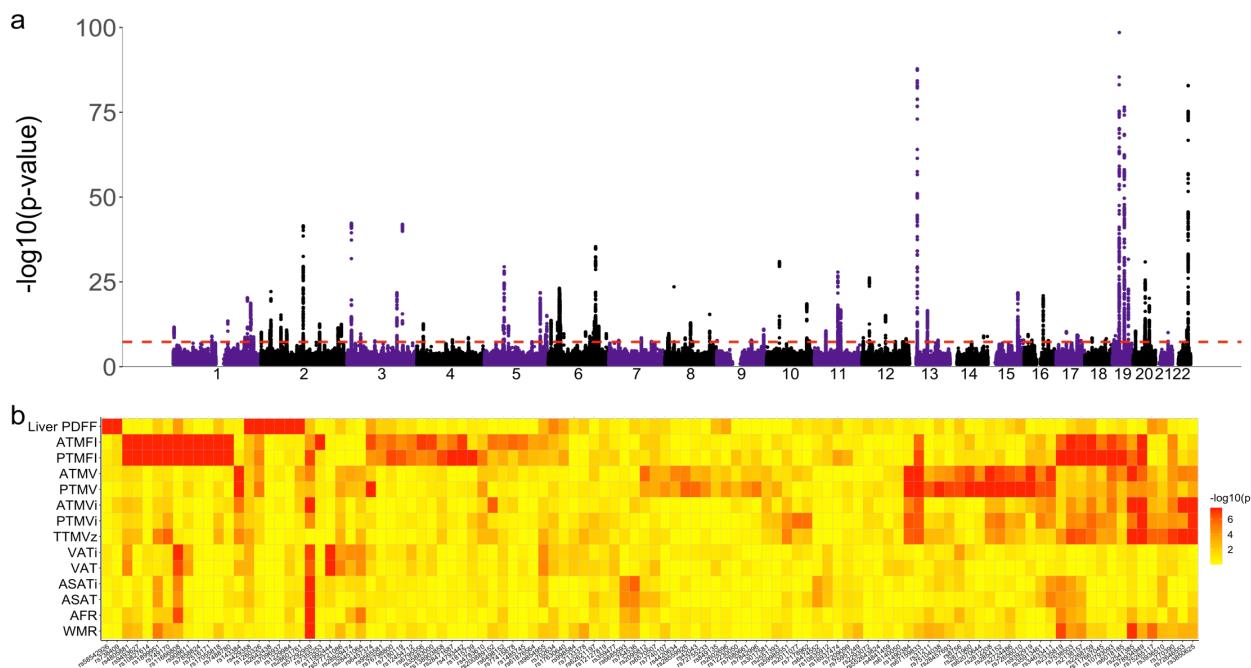


Figure 2. Multivariate locus discovery **a)** Manhattan plot of the multivariate GWAS on all MRI-derived body composition measures, with the observed $-\log_{10}(p)$ of each SNP shown on the y-axis. The x-axis shows the relative genomic location, grouped by chromosome, and the red dashed line indicates the whole-genome significance threshold of 5×10^{-8} . The y-axis is clipped at $-\log_{10}(p) = 75$. **b)** Heatmap showing $-\log_{10}(p)$ of the association between the lead variants of MOSTest-identified independent loci (x-axis) and each of the individual MRI measures (y-axis). The values are capped at 7.5 ($p = 5 \times 10^{-8}$).

186 measures and each of the 108 loci, illustrating the presence of many shared but also specific genetic
187 variants.

188 MAGMA identified 256 significant genes after multiple comparison correction ($\alpha=.05/18,203$),
189 with highly significant differential expression in the liver, pancreas, heart, muscle, and several
190 other tissues (Figure 3). Coupling the significant genes to the Reactome database⁵⁰ indicated most
191 prominent associations with the adaptive immune system and cytokine signaling ($p<1*10^{-16}$), see
192 Supplementary Data and Supplementary Figure 2 for an overview.

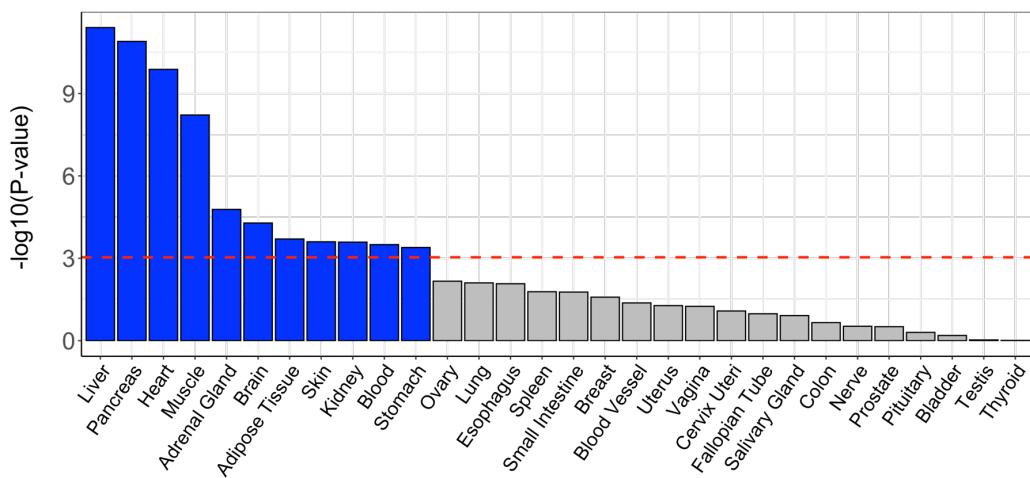


Figure 3. Tissue-specific differential expression of the set of significant genes identified through the multivariate GWAS on MRI-derived measures of body composition. The red-dotted line indicates the multiple comparisons-corrected significance threshold.

193
194 *Comparison of genetic architecture with cardiometabolic risk factors*
195 We additionally analyzed a set of 21 measures of anthropometric and cardiometabolic factors (e.g.,
196 BMI, triglycerides, cholesterol, blood pressure; see Table 2), which were available for up to
197 412,316 White European UKB participants. Through multivariate GWAS on this separate set of
198 measures in the full UKB sample, we found 1134 genome-wide significant loci with $\alpha=5\times10^{-8}$ (list
199 provided in SI). Of the 108 loci identified through the primary multivariate analysis of MRI-

200 derived body composition measures, 94 (87%) were significant in this secondary analysis in a
 201 larger sample. This indicates that these sets of measures overall are influenced by the same network
 202 of biological processes.

203 The heritability of the MRI-derived measures (mean $h^2=.25$) was significantly higher than the
 204 body anthropometrics and other biomarkers (mean $h^2=.16$), $p=1.4\times 10^{-6}$. As shown in Figure 4,
 205 these measures generally showed higher genetic correlations with the MRI-derived measures of
 206 adipose tissue than the muscle-related measures. Further, BMI, hip/waist circumference, and
 207 waist-to-hip-ratio were genetically correlated with nearly all body MRI measures.

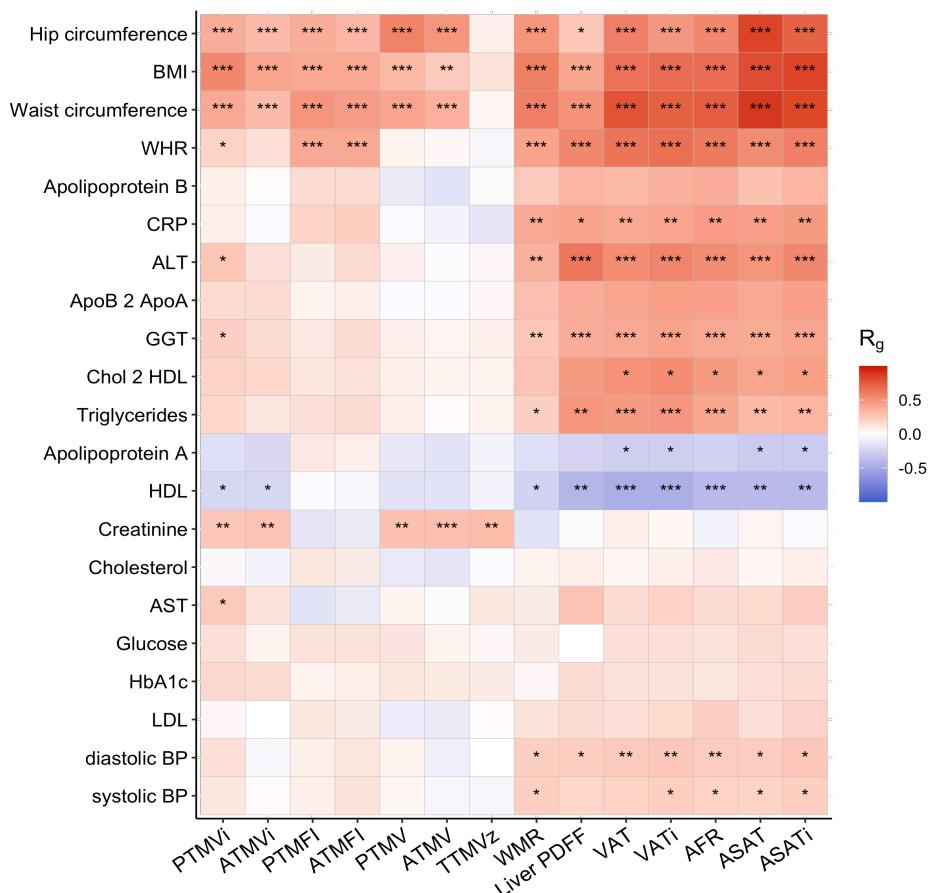


Figure 4. Genetic correlations of the MRI-derived body composition measures with standard anthropometrics and cardiometabolic measures. Abbreviations: BMI=body mass index, WHR=waist-hip ratio, CRP=C-reactive protein, ALT=alanine aminotransferase, GGT=gamma-glutamyl transferase, HDL=high-density lipoproteins, AST=aspartate aminotransferase, HbA1c=glycated hemoglobin, LDL=low-density lipoproteins, BP=blood pressure.

208 *Genetic correlation with cardiovascular, metabolic and mental disorders*

209 Next, we analyzed the genetic overlap of the MRI-derived measures with medical conditions
210 previously linked to cardiometabolic health, selecting recent GWAS with adequate power.⁵¹⁻⁵⁷ As
211 shown in Figure 5a, the strongest association across all measures was found for liver fat, with a
212 genetic correlation of 0.48 (p=1.6x10⁻²²) with type 2 diabetes. Coronary artery disease was found
213 to have highly significant positive genetic correlations with visceral and subcutaneous adipose
214 tissue. Overall, we found weak negative genetic correlations with muscle tissue measures and
215 stronger positive genetic correlations with adipose tissue measures, with two exceptions; anorexia
216 nervosa showed the opposite direction of correlation compared to the other conditions, and there
217 was no discernible pattern for schizophrenia. Genetic correlations with the anthropometric and
218 metabolic measures are provided in Figure 5b for comparison, indicating that the adipose tissue
219 measures are as strong as or stronger correlated with these conditions than the conventional body
220 anthropometrics.

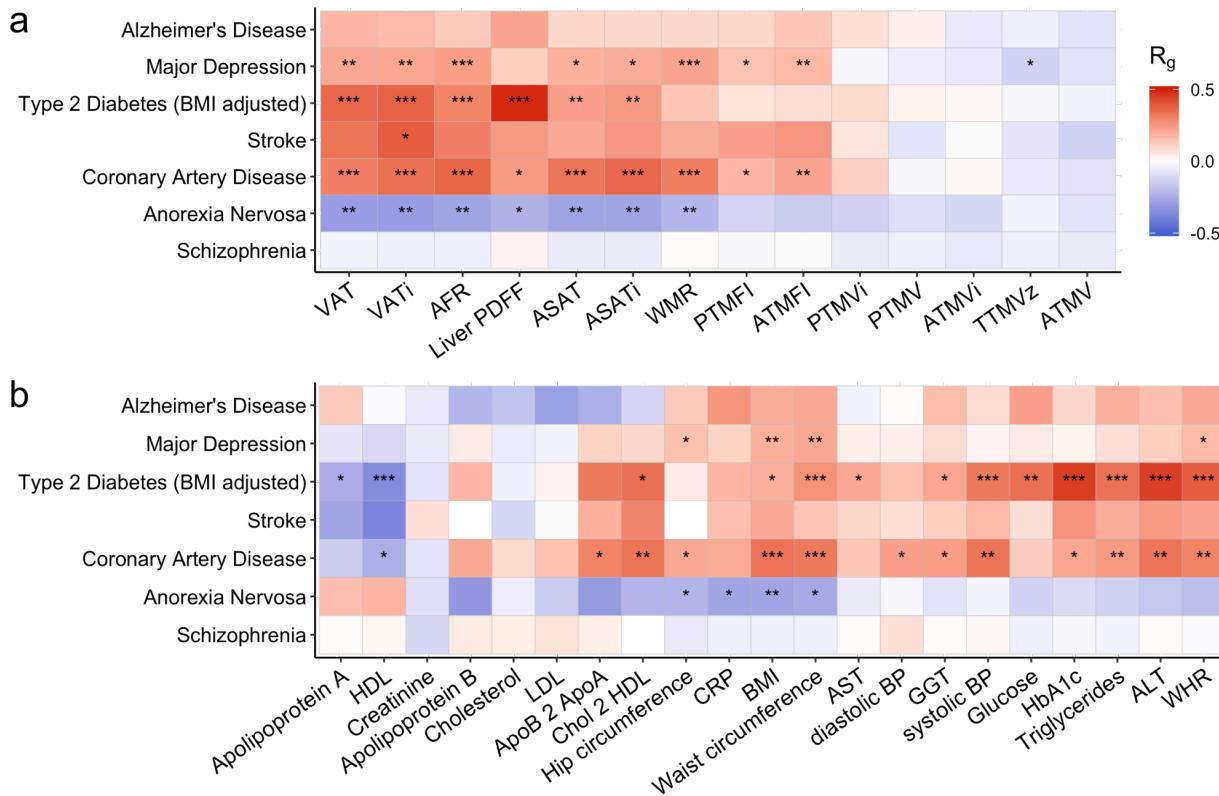


Figure 5. Genetic correlations of **a)** MRI-derived body composition measures, and **b)** anthropometric and metabolic measures (x-axis) with conditions linked to poor cardiometabolic health (y-axis). *** $p=5x10^{-9}$, ** $p=5x10^{-6}$, * $p=5x10^{-4}$.

222 Discussion

223 Here, we reported results from a comprehensive, large-scale GWAS of MRI-derived measures of
224 body composition. Joint analyses of measures of regional adipose and muscle tissue distributions
225 revealed extensive genetic overlap and led to the identification of a large number of shared genetic
226 risk loci across traits. We further showed genetic overlap with body anthropometrics and
227 cardiometabolic measures as well as medical conditions linked to cardiometabolic health. Our
228 findings illustrate how MRI-derived measures can be leveraged to improve our understanding of
229 the biology underlying the metabolic system, identifying liver fat as a particularly promising
230 measure, highlighting the integral role of steatosis and MAFLD in cardiometabolic health.

231 The genetic correlations of body composition measures with common medical conditions
232 underlined that they may complement conventional measures to better understand cardiometabolic
233 health. Liver fat showed a stronger genetic correlation with type 2 diabetes than conventional
234 measures. The amount of liver fat and its genetic determinants may thus play a central role in type
235 2 diabetes development, and at a minimum robustly positions MAFLD onto the map of relevant
236 comorbidities of type 2 diabetes alongside cardiovascular disease, kidney disease and diabetic
237 retinopathy. Further, we found significant positive genetic correlations between coronary artery
238 disease and visceral and subcutaneous adipose tissue, adding genetic evidence to the well-
239 established relation between this disease, obesity, and body fat distribution.⁵⁸

240 Liver fat also stood out from the other measures with regard to its genetic architecture. While
241 all traits investigated were substantially heritable, the genetic discoverability of liver fat was much
242 higher, with an oligogenic architecture as opposed to the polygenic architectures of the remaining
243 traits and other complex biomedical measures.⁴⁵ This was reflected in the GWAS yield, with a few
244 highly significant loci coupled to lipid homeostasis explaining the majority of genetic variance for

245 this measure. These loci should be scrutinized for the biological link between liver fat and
246 cardiometabolic conditions,⁵⁹ and may potentially point to fundamental processes that become
247 dysregulated in these diseases. Indeed, all components of metabolic syndrome correlate with liver
248 fat content.⁶⁰ Evaluation of MAFLD risk has been recommended for any individual with metabolic
249 syndrome and related morbidities (e.g. type 2 diabetes),^{11,60} and the large effects of these liver fat-
250 associated loci even may suggest potential as features for individual risk stratification in
251 MAFLD.^{61,62} These findings also attest to the accuracy and clinical relevance of MRI-derived
252 measures of liver fat, and support the notion that MAFLD should be considered an integral
253 component of obesity and metabolic syndrome and a key non-communicable disease.¹¹

254 Another key finding was that the highest number of significant loci were found for muscle fat
255 infiltration in the anterior and posterior thighs, two measures not previously genetically studied.
256 Fatty infiltration of skeletal muscle reduces the muscle mass and strength,⁶³ and has been
257 implicated in aging and frailty.⁶⁴ It has also been coupled to metabolic syndrome⁶⁵ and
258 cardiovascular mortality.⁶⁶ Recent literature focused on liver disease and its progression have also
259 highlighted the importance of muscle health.⁶⁷ Muscle fat infiltration has been linked to higher
260 comorbidity within MAFLD and decreased muscle fat infiltration has been correlated with
261 improvement in steatohepatitis.^{68,69} Our findings suggest a strong genetic component to these
262 associations, indicated by the large degree of shared genetic architecture with related diseases.
263 Interestingly, fat accumulation in the muscle arises through specific pathways, including the
264 intramyocellular accumulation of lipid,⁶³ which is associated with insulin insensitivity and
265 inflammation.⁷⁰

266 The genetic correlations between the MRI-derived body composition measures indicate partly
267 overlapping biological processes with some unique genetic determinants. The correlation structure

268 further suggests that adipose tissue distribution is genetically largely independent from muscle
269 tissue. However, it should be noted that global correlations underestimate overlap when a mixture
270 of genetic effects in the same and opposing directions cancels each other out.⁴⁶ Indeed, adipose
271 and muscle tissue are known to have complex regulatory cross-talk, both releasing metabolism-
272 regulating molecules to maintain a balanced weight-to-muscle ratio.⁷¹ The increased yield from
273 the multivariate GWAS analysis, nearly doubling the number of unique loci discovered, is in line
274 with the hypothesis of strong biological interplay and shared molecular mechanisms. The
275 multivariate GWAS allowed for identifying loci that have distributed effects across the included
276 body composition measures. These may help to explain the complexity of metabolic syndrome
277 and the frequent comorbidity between diseases associated with body composition. Our findings
278 that a substantial portion of the genetic determinants of these measures are related to the immune
279 system fit with a large body of literature indicating that adipose tissue is an active metabolic and
280 endocrine organ that secretes a host of pro- and anti-inflammatory factors, and with the
281 characterization of obesity as a state of chronic low-grade inflammation.⁷² Thus, the current
282 genetic findings can form the basis for functional follow-up studies to determine the molecular
283 mechanisms involved in the complex relations between lipids and the immune system.

284 There was high genetic overlap between the sets of MRI-derived measures of body composition
285 and the conventional measures of body anthropometrics and cardiometabolic health, indicating
286 that they tag similar biological processes. The body anthropometrics were correlated with both
287 muscle and adipose tissue, indicating little specificity, in line with the long-standing recognized
288 limitations of these global measures that they fail to distinguish between specific body types that
289 differ widely in risk for disease.⁷³

290 Strengths of this study are the large number of whole-body MRI scans and the use of state-of-
291 the-art, precise body composition measures, including multiple measures not previously
292 investigated. With this, we were able to replicate loci reported earlier in smaller samples and with
293 different measurement protocols.³⁵ We further combined the study of individual measures with a
294 multivariate approach to genetic discovery, allowing for greater GWAS hit yield and insight into
295 the overall architecture of these complementary indicators of body composition and associated
296 diseases. The findings allow for numerous follow-up investigations; further studies are needed to
297 clarify the causal directions between the measures, and the role of putative moderators such as
298 sex,⁷⁴ age, and ethnicity.⁷⁵

299 To conclude, the high prevalence of cardiometabolic diseases, combined with substantial
300 morbidity and mortality, indicates a strong need for new therapeutic targets. While these diseases
301 are often comorbid, they are treated separately, with this polypharmacy bringing along increased
302 risk of adverse drug reactions.⁴ Genetic data is less subjected to reverse causation and confounding
303 than environmental factors. Knowledge about shared and specific genetic determinants is therefore
304 central to develop effective strategies that optimally treat the individual. We showed that accurate
305 MRI-derived measures of liver and regional adipose and muscle tissue characteristics have strong
306 genetic components, with shared influences that can be leveraged to boost discovery. As such,
307 these findings have the potential to significantly enhance our understanding of body composition
308 and related diseases, provide drug targets for MAFLD and related traits, and contribute to
309 combatting a significant, increasing threat to public health.

310 **References**

- 311 1. Heymsfield, S. B. & Wadden, T. A. Mechanisms, pathophysiology, and management of
312 obesity. *N. Engl. J. Med.* **376**, 254–266 (2017).
- 313 2. Ralston, J. & Nugent, R. Toward a broader response to cardiometabolic disease. *Nat. Med.*
314 **25**, 1644–1646 (2019).
- 315 3. Aguilar, M., Bhuket, T., Torres, S., Liu, B. & Wong, R. J. Prevalence of the metabolic
316 syndrome in the United States, 2003-2012. *Jama* **313**, 1973–1974 (2015).
- 317 4. Mendrick, D. L. *et al.* Metabolic syndrome and associated diseases: from the bench to the
318 clinic. *Toxicol. Sci.* **162**, 36–42 (2018).
- 319 5. Eckel, R. H., Alberti, K. G. M. M., Grundy, S. M. & Zimmet, P. Z. The metabolic
320 syndrome. *Lancet* **375**, 181–183 (2010).
- 321 6. Eslam, M., Ratziu, V. & George, J. Yet more evidence that MAFLD is more than a name
322 change. *J. Hepatol.* **74**, 977–979 (2021).
- 323 7. Grundy, S. M. Metabolic syndrome pandemic. *Arterioscler. Thromb. Vasc. Biol.* **28**, 629–
324 636 (2008).
- 325 8. Isomaa, B. O. *et al.* Cardiovascular morbidity and mortality associated with the metabolic
326 syndrome. *Diabetes Care* **24**, 683–689 (2001).
- 327 9. Esposito, K., Chiodini, P., Colao, A., Lenzi, A. & Giugliano, D. Metabolic syndrome and
328 risk of cancer: a systematic review and meta-analysis. *Diabetes Care* **35**, 2402–2411
329 (2012).
- 330 10. Diehl, A. M., Farpour-Lambert, N. J., Zhao, L. & Tilg, H. Why we need to curb the
331 emerging worldwide epidemic of nonalcoholic fatty liver disease. *Nat. Metab.* **1**, 1027–
332 1029 (2019).
- 333 11. Karlsen, T. H. *et al.* The EASL-Lancet Liver Commission: protecting the next generation

334 of Europeans against liver disease complications and premature mortality. *Lancet*
335 (*London, England*) **399**, 61–116 (2022).

336 12. Gurholt, T. P. *et al.* Population-based body–brain mapping links brain morphology with
337 anthropometrics and body composition. *Transl. Psychiatry* **11**, 1–12 (2021).

338 13. Firth, J. *et al.* The Lancet Psychiatry Commission: a blueprint for protecting physical
339 health in people with mental illness. *The Lancet Psychiatry* **6**, 675–712 (2019).

340 14. Priest, C. & Tontonoz, P. Inter-organ cross-talk in metabolic syndrome. *Nat. Metab.* **1**,
341 1177–1188 (2019).

342 15. Samson, S. L. & Garber, A. J. Metabolic syndrome. *Endocrinol. Metab. Clin.* **43**, 1–23
343 (2014).

344 16. Rosmond, R. Role of stress in the pathogenesis of the metabolic syndrome.
345 *Psychoneuroendocrinology* **30**, 1–10 (2005).

346 17. Atlantis, E., Martin, S. A., Haren, M. T., Taylor, A. W. & Wittert, G. A. Inverse
347 associations between muscle mass, strength, and the metabolic syndrome. *Metabolism* **58**,
348 1013–1022 (2009).

349 18. Stump, C. S., Henriksen, E. J., Wei, Y. & Sowers, J. R. The metabolic syndrome: role of
350 skeletal muscle metabolism. *Ann. Med.* **38**, 389–402 (2006).

351 19. Leinhard, O. D. *et al.* Quantitative abdominal fat estimation using MRI. in *2008 19th*
352 *International Conference on Pattern Recognition* 1–4 (IEEE, 2008).

353 20. Karlsson, A. *et al.* Automatic and quantitative assessment of regional muscle volume by
354 multi-atlas segmentation using whole-body water–fat MRI. *J. Magn. Reson. Imaging* **41**,
355 1558–1569 (2015).

356 21. Borga, M. *et al.* Advanced body composition assessment: from body mass index to body

357 composition profiling. *J. Investig. Med.* **66**, 1–9 (2018).

358 22. Borga, M. *et al.* Validation of a fast method for quantification of intra-abdominal and
359 subcutaneous adipose tissue for large-scale human studies. *NMR Biomed.* **28**, 1747–1753
360 (2015).

361 23. Beck, E., Esser, N., Paquot, N. & Scheen, A. J. Metabolically obese normal-weight
362 individuals and metabolically healthy, but obese, subjects. *Rev. Med. Suisse* **5**, 1644–1646
363 (2009).

364 24. Alberti, K. G. M. M. *et al.* Harmonizing the metabolic syndrome: a joint interim statement
365 of the international diabetes federation task force on epidemiology and prevention;
366 national heart, lung, and blood institute; American heart association; world heart
367 federation; international . *Circulation* **120**, 1640–1645 (2009).

368 25. Shuster, A., Patlas, M., Pinthus, J. H. & Mourtzakis, M. The clinical importance of
369 visceral adiposity: a critical review of methods for visceral adipose tissue analysis. *Br. J.*
370 *Radiol.* **85**, 1–10 (2012).

371 26. Browning, L. M. *et al.* Measuring abdominal adipose tissue: comparison of simpler
372 methods with MRI. *Obes. Facts* **4**, 9–15 (2011).

373 27. Britton, K. A. *et al.* Body fat distribution, incident cardiovascular disease, cancer, and all-
374 cause mortality. *J. Am. Coll. Cardiol.* **62**, 921–925 (2013).

375 28. Stanley, M. R. I. A. S. G. of the L. A. R. G. G. D. dg108@columbia. edu K. D. E. Y. J.-E.
376 S. N. A. J. B. L. P.-S. F. X. H. Adipose tissue distribution is different in type 2 diabetes.
377 *Am. J. Clin. Nutr.* **89**, 807–814 (2009).

378 29. Neeland, I. J. *et al.* Body fat distribution and incident cardiovascular disease in obese
379 adults. *J. Am. Coll. Cardiol.* **65**, 2150–2151 (2015).

380 30. Agata, K. & Monyeki, M. A. Association between sport participation, body composition,
381 physical fitness, and social correlates among adolescents: the PAHL study. *Int. J. Environ.*
382 *Res. Public Health* **15**, 2793 (2018).

383 31. Maes, H. H. M., Neale, M. C. & Eaves, L. J. Genetic and environmental factors in relative
384 body weight and human adiposity. *Behav. Genet.* **27**, 325–351 (1997).

385 32. Locke, A. E. *et al.* Genetic studies of body mass index yield new insights for obesity
386 biology. *Nature* **518**, 197–206 (2015).

387 33. Lind, L. Genome-Wide Association Study of the Metabolic Syndrome in UK Biobank.
388 *Metab. Syndr. Relat. Disord.* **17**, 505–511 (2019).

389 34. Lind, L. Genetic Determinants of Clustering of Cardiometabolic Risk Factors in U.K.
390 Biobank. *Metab. Syndr. Relat. Disord.* **18**, 121–127 (2020).

391 35. Liu, Y. *et al.* Genetic architecture of 11 organ traits derived from abdominal MRI using
392 deep learning. *Elife* **10**, e65554 (2021).

393 36. Linge, J., Heymsfield, S. B. & Dahlqvist Leinhard, O. On the Definition of Sarcopenia in
394 the Presence of Aging and Obesity—Initial Results from UK Biobank. *Journals Gerontol.*
395 *Ser. A* **75**, 1309–1316 (2020).

396 37. Kawaguchi, T. *et al.* Risk estimation model for nonalcoholic fatty liver disease in the
397 Japanese using multiple genetic markers. *PLoS One* **13**, e0185490 (2018).

398 38. Pasello, M., Manara, M. C. & Scotlandi, K. CD99 at the crossroads of physiology and
399 pathology. *J. Cell Commun. Signal.* **12**, 55–68 (2018).

400 39. Mancina, R. M. *et al.* The MBOAT7-TMC4 Variant rs641738 Increases Risk of
401 Nonalcoholic Fatty Liver Disease in Individuals of European Descent. *Gastroenterology*
402 **150**, 1219-1230.e6 (2016).

403 40. Anstee, Q. M. & Day, C. P. The genetics of nonalcoholic fatty liver disease: spotlight on
404 PNPLA3 and TM6SF2. in *Seminars in liver disease* **35**, 270–290 (Thieme Medical
405 Publishers, 2015).

406 41. Liu, Y.-L. *et al.* TM6SF2 rs58542926 influences hepatic fibrosis progression in patients
407 with non-alcoholic fatty liver disease. *Nat. Commun.* **5**, 1–6 (2014).

408 42. Romeo, S. *et al.* Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty
409 liver disease. *Nat. Genet.* **40**, 1461–1465 (2008).

410 43. Holland, D. *et al.* Beyond SNP Heritability: Polygenicity and Discoverability of
411 Phenotypes Estimated with a Univariate Gaussian Mixture Model. *bioRxiv* 498550 (2019).
412 doi:10.1101/498550

413 44. Frei, O. *et al.* Bivariate causal mixture model quantifies polygenic overlap between
414 complex traits beyond genetic correlation. *Nat. Commun.* **10**, 2417 (2019).

415 45. Holland, D. *et al.* Beyond SNP heritability: Polygenicity and discoverability of
416 phenotypes estimated with a univariate Gaussian mixture model. *PLOS Genet.* **16**,
417 e1008612 (2020).

418 46. van der Meer, D. *et al.* Quantifying the polygenic architecture of the human cerebral
419 cortex: Extensive genetic overlap between cortical thickness and surface area. *Cereb.*
420 *Cortex* **30**, 5597–5603 (2020).

421 47. van der Meer, D. *et al.* Understanding the genetic determinants of the brain with
422 MOSTest. *Nat. Commun.* **11**, 1–9 (2020).

423 48. Van Der Meer, D. *et al.* The genetic architecture of human cortical folding. *Sci. Adv.* **7**,
424 eabj9446 (2021).

425 49. Shadrin, A. A. *et al.* Vertex-wise multivariate genome-wide association study identifies

426 780 unique genetic loci associated with cortical morphology. *Neuroimage* **244**, 118603
427 (2021).

428 50. Fabregat, A. *et al.* Reactome pathway analysis: a high-performance in-memory approach.
429 *BMC Bioinformatics* **18**, 1–9 (2017).

430 51. Fuchsberger, C. *et al.* The genetic architecture of type 2 diabetes. *Nature* **536**, 41–47
431 (2016).

432 52. Nikpay, M. *et al.* A comprehensive 1000 Genomes–based genome-wide association meta-
433 analysis of coronary artery disease. *Nat. Genet.* **47**, 1121–1130 (2015).

434 53. Malik, R. *et al.* Low-frequency and common genetic variation in ischemic stroke: The
435 METASTROKE collaboration. *Neurology* **86**, 1217–1226 (2016).

436 54. Wightman, D. P. *et al.* A genome-wide association study with 1,126,563 individuals
437 identifies new risk loci for Alzheimer’s disease. *Nat. Genet.* **53**, 1276–1282 (2021).

438 55. Howard, D. M. *et al.* Genome-wide meta-analysis of depression identifies 102
439 independent variants and highlights the importance of the prefrontal brain regions. *Nat.*
440 *Neurosci.* **22**, 343–352 (2019).

441 56. Ripke, S., Walters, J. T. R. & O’Donovan, M. C. Mapping genomic loci prioritises genes
442 and implicates synaptic biology in schizophrenia. *medRxiv* 2020.09.12.20192922 (2020).
443 doi:10.1101/2020.09.12.20192922

444 57. Watson, H. J. *et al.* Genome-wide association study identifies eight risk loci and
445 implicates metabo-psychiatric origins for anorexia nervosa. *Nat. Genet.* **51**, 1207–1214
446 (2019).

447 58. Brochu, M., Poehlman, E. T. & Ades, P. A. Obesity, body fat distribution, and coronary
448 artery disease. *J. Cardiopulm. Rehabil. Prev.* **20**, 96–108 (2000).

449 59. Dharmalingam, M. & Yamasandhi, P. G. Nonalcoholic Fatty Liver Disease and Type 2
450 Diabetes Mellitus. *Indian J. Endocrinol. Metab.* **22**, 421–428 (2018).

451 60. Liver, E. A. for the S. of T. & (EASD, E. A. for the S. of D. EASL-EASD-EASO Clinical
452 Practice Guidelines for the management of non-alcoholic fatty liver disease. *Obes. Facts*
453 **9**, 65–90 (2016).

454 61. Bianco, C., Tavaglione, F., Romeo, S. & Valenti, L. Genetic risk scores and
455 personalization of care in fatty liver disease. *Curr. Opin. Pharmacol.* **61**, 6–11 (2021).

456 62. De Vincentis, A. *et al.* Metabolic and genetic determinants for progression to severe liver
457 disease in subjects with obesity from the UK Biobank. *Int. J. Obes. (Lond)*. 1–8 (2021).
458 doi:10.1038/s41366-021-01015-w

459 63. Hamrick, M. W., McGee-Lawrence, M. E. & Frechette, D. M. Fatty infiltration of skeletal
460 muscle: mechanisms and comparisons with bone marrow adiposity. *Front. Endocrinol.*
461 (*Lausanne*). **7**, 69 (2016).

462 64. Tuttle, L. J., Sinacore, D. R. & Mueller, M. J. Intermuscular adipose tissue is muscle
463 specific and associated with poor functional performance. *J. Aging Res.* **2012**, (2012).

464 65. Gueugneau, M. *et al.* Skeletal muscle lipid content and oxidative activity in relation to
465 muscle fiber type in aging and metabolic syndrome. *Journals Gerontol. Ser. A Biomed.*
466 *Sci. Med. Sci.* **70**, 566–576 (2015).

467 66. Miljkovic, I. *et al.* Greater skeletal muscle fat infiltration is associated with higher all-
468 cause and cardiovascular mortality in older men. *Journals Gerontol. Ser. A Biomed. Sci.*
469 *Med. Sci.* **70**, 1133–1140 (2015).

470 67. Chakravarthy, M. V, Siddiqui, M. S., Forsgren, M. F. & Sanyal, A. J. Harnessing muscle–
471 liver crosstalk to treat nonalcoholic steatohepatitis. *Front. Endocrinol. (Lausanne)*. 982

472 (2020).

473 68. Linge, J., Ekstedt, M. & Leinhard, O. D. Adverse muscle composition is linked to poor
474 functional performance and metabolic comorbidities in NAFLD. *JHEP Reports* **3**, 100197
475 (2021).

476 69. Nachit, M. *et al.* Muscle fat content is strongly associated with NASH: a longitudinal
477 study in patients with morbid obesity. *J. Hepatol.* **75**, 292–301 (2021).

478 70. Rivas, D. A. *et al.* Diminished anabolic signaling response to insulin induced by
479 intramuscular lipid accumulation is associated with inflammation in aging but not obesity.
480 *Am. J. Physiol. Integr. Comp. Physiol.* **310**, R561–R569 (2016).

481 71. Argilés, J. M., López-Soriano, J., Almendro, V., Busquets, S. & López-Soriano, F. J.
482 Cross-talk between skeletal muscle and adipose tissue: a link with obesity? *Med. Res. Rev.*
483 **25**, 49–65 (2005).

484 72. Francisco, V. *et al.* Obesity, Fat Mass and Immune System: Role for Leptin . *Frontiers in*
485 *Physiology* **9**, 640 (2018).

486 73. Baumgartner, R. N., Heymsfield, S. B. & Roche, A. F. Human body composition and the
487 epidemiology of chronic disease. *Obes. Res.* **3**, 73–95 (1995).

488 74. Poulsen, P., Vaag, A., Kyvik, K. & Beck-Nielsen, H. Genetic versus environmental
489 aetiology of the metabolic syndrome among male and female twins. *Diabetologia* **44**,
490 537–543 (2001).

491 75. Shen, W. *et al.* Sexual dimorphism of adipose tissue distribution across the lifespan: a
492 cross-sectional whole-body magnetic resonance imaging study. *Nutr. Metab. (Lond.)* **6**, 17
493 (2009).

494 76. Sudlow, C. *et al.* UK biobank: an open access resource for identifying the causes of a

495 wide range of complex diseases of middle and old age. *PLoS Med.* **12**, e1001779 (2015).

496 77. Miller, K. L. *et al.* Multimodal population brain imaging in the UK Biobank prospective
497 epidemiological study. *Nat. Neurosci.* **19**, 1523–1536 (2016).

498 78. West, J. *et al.* Feasibility of MR-based body composition analysis in large scale
499 population studies. *PLoS One* **11**, e0163332 (2016).

500 79. Beasley, T. M., Erickson, S. & Allison, D. B. Rank-based inverse normal transformations
501 are increasingly used, but are they merited? *Behav. Genet.* **39**, 580–595 (2009).

502 80. Bycroft, C. *et al.* The UK Biobank resource with deep phenotyping and genomic data.
503 *Nature* **562**, 203–209 (2018).

504 81. Watanabe, K., Taskesen, E., Bochoven, A. & Posthuma, D. Functional mapping and
505 annotation of genetic associations with FUMA. *Nat. Commun.* **8**, 1826 (2017).

506

507 **Acknowledgements**

508 This work was partly performed on the TSD (Tjeneste for Sensitive Data) facilities, owned by the
509 University of Oslo, operated and developed by the TSD service group at the University of Oslo,
510 IT-Department (USIT). (tsd-drift@usit.uio.no). Computations were also performed on resources
511 provided by UNINETT Sigma2 - the National Infrastructure for High-Performance Computing
512 and Data Storage in Norway.

513 **Materials & Correspondence**

514 The data incorporated in this work were gathered from public resources. The code is available via
515 <https://github.com/precimed/mostest> (GPLv3 license), and GWAS summary statistics are
516 uploaded to the GWAS catalog (<https://www.ebi.ac.uk/gwas/>). Correspondence and requests for
517 materials should be addressed to d.v.d.meer@medisin.uio.no

518 **Methods**

519 *Participants*

520 We made use of data from participants of the UKB population cohort, obtained from the data
521 repository under accession number 27412. The composition, set-up, and data gathering protocols
522 of the UKB have been extensively described elsewhere⁷⁶. For the primary analyses, we selected
523 White Europeans that had undergone the body MRI protocol, with available genetic and complete
524 covariate data (N=34,036, mean age 64.5 years (SD=7.4), 51.5 % female). For the replication
525 analyses, we made use of data from non-White Europeans (N=5081, mean age 63.0 years
526 (SD=7.7), 52.9 % female).

527

528 *Data collection and pre-processing*

529 Body and liver MRI scans were collected from three scanning sites throughout the United
530 Kingdom, all with identical scanners and protocols. They were acquired on 1.5T Siemens
531 MAGNETOM Aera scanners using a body dual-echo Dixon Vibe protocol and a single-slice multi-
532 echo gradient Dixon acquisition, respectively. The UKB core neuroimaging team has published
533 extensive information on the applied scanning protocols and procedures, which we refer to for
534 more details.⁷⁷ We acquired the data as processed by AMRA (Linköping, Sweden;
535 <https://www.amramedical.com>), subsequently released by UKB. We bridged with UKB project
536 accession #6569 to obtain early access to this data, which was then obtained from the UKB data
537 repositories and stored locally at the secure computing cluster of the University of Oslo.

538 The AMRA body MRI processing included intensity inhomogeneity correction, non-rigid
539 registration of atlases to acquired image volumes, quantification of fat and muscle composition
540 using a voting scheme, and visual inspection for segmentation accuracy and manual adjustment.⁷⁸

541 The liver MRI data were processed using a magnitude-based chemical shift technique with a 6-
542 peak lipid model and then registered to the body MRI data and corrected for liver T2* to obtain a
543 T1-weighted measure of liver proton density fat fraction (PDFF). AMRA implements manual
544 quality control of the image/segmentation quality.

545

546 *Measurement protocols and definitions*

547 We extracted a selection of body composition measures (Table 1; see also UKB online
548 documentation (<http://biobank.ctsu.ox.ac.uk/showcase/>)). Specifically, we extracted the following
549 measures of adipose tissue: visceral adipose tissue (VAT), defined as the adipose tissue within the
550 abdominal cavity, and abdominal subcutaneous adipose tissue (ASAT), defined as the adipose
551 tissue between the top of the femoral head and the top of T9. We also extracted measures of muscle
552 fat infiltration (MFI) derived from the anterior and posterior thighs, averaged over both legs, and
553 liver proton density fat fraction (PDFF). As measures of muscle tissue, we included anterior and
554 posterior thigh fat-free muscle volume (ATMV and PTMV), and total thigh muscle volume,
555 encompassing the gluteus, iliacus, adductors, hamstrings, quadriceps femoris, and sartorius,
556 normalized to a z-score (TTMVz) that corrects for BMI, age, sex and height.³⁶ We extracted two
557 ratios from the UKB repository, namely weight-to-muscle ratio (WMR), defined as weight/TTMV,
558 and abdominal fat ratio (AFR), which is (VAT+ASAT)/(VAT+ASAT+TTMV). Additionally, for
559 VAT, ASAT, ATMV, and PTMV, we computed index measures by dividing these measures by
560 the squared standing height in meters (e.g., ASATi is ASAT/height²). This is done since weight,
561 adipose tissue, and lean tissue compartments scale to approximate height squared.

562 We subsequently regressed out age, sex, scanner site, and the first twenty genetic principal
563 components from each measure. Following this, we applied rank-based inverse normal

564 transformation⁷⁹ to the residuals of each measure, leading to normally distributed measures as
565 input for the GWAS.

566 For the secondary analyses, comparing the set of MRI-derived measures of body composition
567 to measures of cardiometabolic health, we included 21 measures available in the UKB as listed in
568 Table 2.

569 *Table 2. Measures of cardiometabolic health used in the secondary analyses, together with*
570 *abbreviations and available sample sizes.*

Measure	Abbreviation	N
Cholesterol		389832
High-density lipoproteins	HDL	356802
Low-density lipoproteins	LDL	389115
Triglycerides		389524
Apolipoprotein A		354829
Apolipoprotein B		387945
Cholesterol to HDL		356734
ApoB to ApoA		353056
C-Reactive Protein	CRP	388993
Glucose		356558
Glycated hemoglobin	HbA1c	389728
Alanine aminotransferase	ALT	389701
Aspartate aminotransferase	AST	388406
Gamma-glutamyl transferase	GGT	389634
Creatinine		389637
Body mass index	BMI	407558
Waist circumference		408179
Hip circumference		408134
Waist-to-hip ratio	WHR	408096
Diastolic blood pressure	DBP	36591
Systolic blood pressure	SBP	36591

571

572 *GWAS procedure*

573 We made use of the UKB v3 imputed data, which has undergone extensive quality control
574 procedures as described by the UKB genetics team.⁸⁰ After converting the BGEN format to PLINK

575 binary format, we additionally carried out standard quality check procedures, including filtering
576 out individuals with more than 10% missingness, SNPs with more than 5% missingness, and SNPs
577 failing the Hardy-Weinberg equilibrium test at $p=1*10^{-9}$. We further set a minor allele frequency
578 threshold of 0.005, leaving 9,061,022 SNPs.

579 We carried out GWAS through the freely available MOSTest software
580 (<https://github.com/precimed/mostest>). Details about the procedure and its extensive validation
581 have been described previously.⁴⁷ GWAS on each of the pre-residualized and normalized measures
582 were carried out using the standard additive model of linear association between genotype vector,
583 g_j , and phenotype vector, y . Independent significant SNPs and genomic loci were identified in
584 accordance with the PGC locus definition, as also used in FUMA SNP2GENE.⁸¹ First, we selected
585 a subset of SNPs that passed genome-wide significance threshold 5×10^{-8} , and used PLINK to
586 perform a clumping procedure at LD $r^2=0.6$ to identify the list of independent significant SNPs.
587 Second, we clumped the list of independent significant SNPs at LD $r^2=0.1$ threshold to identify
588 lead SNPs. Third, we queried the reference panel for all candidate SNPs in LD r^2 of 0.1 or higher
589 with any lead SNPs. Further, for each lead SNP, its corresponding genomic loci were defined as a
590 contiguous region of the lead SNPs' chromosome, containing all candidate SNPs in $r^2=0.1$ or
591 higher LD with the lead SNP. Finally, adjacent genomic loci were merged if separated by less than
592 250 KB. Allele LD correlations were computed from EUR population of the 1000 genomes Phase
593 3 data. We made use of the Functional Mapping and Annotation of GWAS (FUMA) online
594 platform (<https://fuma.ctglab.nl/>) to map significant SNPs from the MOSTest analyses to genes.

595

596 *MiXeR analysis*

597 We applied a causal mixture model^{43,44} to estimate the percentage of variance explained by
598 genome-wide significant SNPs as a function of sample size. For each SNP, i , MiXeR models its
599 additive genetic effect of allele substitution, β_i , as a point-normal mixture, $\beta_i = (1 - \pi_1)N(0, 0) +$
600 $\pi_1N(0, \sigma_\beta^2)$, where π_1 represents the proportion of non-null SNPs ('polygenicity') and σ_β^2
601 represents the variance of effect sizes of non-null SNPs ('discoverability'). Then, for each SNP, j ,
602 MiXeR incorporates LD information and allele frequencies for 9,997,231 SNPs extracted from
603 1000 Genomes Phase3 data to estimate the expected probability distribution of the signed test
604 statistic, $z_j = \delta_j + \epsilon_j = N \sum_i \sqrt{H_i} r_{ij} \beta_i + \epsilon_j$, where N is the sample size, H_i indicates
605 heterozygosity of i -th SNP, r_{ij} indicates an allelic correlation between i -th and j -th SNPs, and $\epsilon_j \sim$
606 $N(0, \sigma_0^2)$ is the residual variance. Further, the three parameters, $\pi_1, \sigma_\beta^2, \sigma_0^2$, are fitted by direct
607 maximization of the likelihood function. Fitting the univariate MiXeR model does not depend on
608 the sign of z_j , allowing us to calculate $|z_j|$ from MOSTest p-values. Finally, given the estimated
609 parameters of the model, the power curve $S(N)$ is then calculated from the posterior distribution
610 $p(\delta_j | z_j, N)$.

611

612 *Gene-set analyses*

613 We carried out gene-based analyses using MAGMA v1.08 with default settings, which entails the
614 application of a SNP-wide mean model and the use of the 1000 Genomes Phase 3 EUR reference
615 panel. Gene-set analyses were done in a similar manner, restricting the sets under investigation to
616 those that are part of the Gene Ontology biological processes subset (n=7522), as listed in the
617 Molecular Signatures Database (MsigdB; c5.bp.v7.1).