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Abstract 59 

Background & Aims: Obesity and associated morbidities, metabolic associated liver disease 60 

(MAFLD) included, constitute some of the largest public health threats worldwide. Body 61 

composition and related risk factors are known to be heritable and identification of their genetic 62 

determinants may aid in the development of better prevention and treatment strategies. Recently, 63 

large-scale whole-body MRI data has become available, providing more specific measures of body 64 

composition than anthropometrics such as body mass index. Here, we aimed to elucidate the 65 

genetic architecture of body composition, by conducting the first genome-wide association study 66 

(GWAS) of these MRI-derived measures.  67 

Methods: We ran both univariate and multivariate GWAS on fourteen MRI-derived 68 

measurements of adipose and muscle tissue distribution, derived from scans from 34,036 White 69 

European UK Biobank participants (mean age of 64.5 years, 51.5% female).  70 

Results: Through multivariate analysis, we discovered 108 loci with distributed effects across the 71 

body composition measures and 256 significant genes primarily involved in immune system 72 

functioning. Liver fat stood out, with a highly discoverable and oligogenic architecture and the 73 

strongest genetic associations. Comparison with 21 common cardiometabolic traits revealed both 74 

shared and specific genetic influences, with higher mean heritability for the MRI measures (h2=.25 75 

vs. .16, p=1.4x10-6). We found substantial genetic correlations between the body composition 76 

measures and a range of cardiometabolic diseases, with the strongest correlation between liver fat 77 

and type 2 diabetes (rg=.48, p=1.6x10-22).  78 

Conclusions: These findings show that MRI-derived body composition measures complement 79 

conventional body anthropometrics and other biomarkers of cardiometabolic health, highlighting 80 
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the central role of liver fat, and improving our knowledge of the genetic architecture of body 81 

composition and related diseases. 82 

Keywords: genome-wide association study; body composition; liver fat; whole-body MRI   83 
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Introduction 84 

Obesity and associated cardiometabolic diseases are currently considered one of the largest global 85 

public health concerns1,2. Over one-third of the United States adult population qualifies for a 86 

diagnosis of metabolic syndrome,3 characterized by excessive visceral adiposity, insulin 87 

resistance, hypertension, low high-density lipoprotein cholesterol, and hypertriglyceridemia.4,5 88 

Metabolic syndrome substantially increases the risk of coronary artery disease, type 2 diabetes, 89 

cancer, and metabolic associated fatty liver disease (MAFLD, previously described as non-90 

alcoholic fatty liver disease6).7–11 Body composition is also associated with brain structure and 91 

brain disorders.12,13 An improved understanding of the genetic and biological determinants of body 92 

composition is needed to provide insights into the complex interplay between metabolic factors, 93 

prevent and treat multiple highly prevalent conditions, and improve public health outcomes.2,10 94 

Body composition is partly determined by a complex constellation of interacting metabolic 95 

processes and inter-organ cross-talk that may become dysregulated and lead to metabolic 96 

syndrome.14 In susceptible individuals, excessive energy intake, stored as visceral adipose tissue, 97 

combined with insulin resistance, leads to heightened lipolysis and release of free fatty acids.15 98 

Increased free fatty acid flux to the liver results in hypertriglyceridemia, which in turn contributes 99 

to dyslipidemia and atherosclerosis. Lipolysis in visceral adipose tissue further promotes insulin 100 

resistance and gluconeogenesis and increases pro-inflammatory reactions that exacerbate 101 

endothelial dysfunction and hypertension.15 This is reflected in heightened levels of pro-102 

inflammatory markers among individuals with metabolic syndrome.16 Muscle mass is also a 103 

determinant of cardiometabolic health,17 as skeletal muscle constitutes the largest insulin-sensitive 104 

tissue in the body and is the primary site for insulin-stimulated glucose utilization.18 Still, the 105 
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nature and extent of overlap between these different determinants of cardiometabolic functioning 106 

remain unclear. 107 

Measures of localized adipose tissue, liver fat and regional muscle volume can now be 108 

accurately extracted from whole-body MRI scans.19–22 MRI-based body tissue quantification 109 

offers more sensitive proxies of cardiometabolic health than body anthropometrics such as waist 110 

circumference and body mass index (BMI)23, which also lack a direct connection to 111 

pathophysiology.5,24 Measures of regional adipose tissue, most accurately and comprehensively 112 

identified through MRI,25,26 show independent associations with cardiometabolic diseases and 113 

improve risk prediction beyond body anthropometrics.27–29 114 

In addition to social and physical environmental factors,30 genetically determined individual 115 

differences play a significant role in regulating body composition.31–33 Cardiometabolic risk 116 

factors have both unique and shared genetic correlates.34 Much less is known about the genetics of 117 

specific MRI-derived body composition measures.35 We aimed to map the unique and shared 118 

genetic architectures across the MRI-derived body composition to provide a holistic understanding 119 

of the interplay between different tissue types and their role in metabolic syndrome and 120 

cardiometabolic health. 121 

Results 122 

We conducted GWASs of fourteen MRI-derived muscle and adipose tissue distribution measures 123 

and investigated the genetic link to conventional cardiometabolic risk factors. We included six 124 

measures of adipose tissue distribution: abdominal subcutaneous adipose tissue, visceral adipose 125 

tissue, abdominal fat ratio, anterior and posterior thigh muscle fat infiltration, and liver protein 126 

density fat fraction. Additionally, we investigated three measures related to thigh muscle tissue, 127 

namely anterior and posterior thigh muscle volume and weight-to-muscle ratio. We further 128 
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analyzed visceral and abdominal adipose tissue, and anterior and posterior muscle volume, divided 129 

by standing height in meters squared, and total thigh muscle volume z-score (sex-, height-, weight- 130 

and BMI-invariant).36 See Table 1 for an overview of these measures, and the Methods section for 131 

protocols and definitions. Given a total of fourteen individual measures, we set the univariate 132 

GWAS significance threshold at a=5*10-8/14=3.6*10-9. Our sample for the main analyses 133 

consisted of 34,036 White European participants of the UK Biobank (UKB), with a mean age of 134 

64.5 years (standard deviation (SD) 7.4 years), 51.5% female. We pre-residualized all measures 135 

for age, sex, test center, and the first twenty genetic principal components to control for population 136 

stratification.  137 

Table 1. MRI-derived measures of body composition included in this study, together with the 138 

available sample size and number of loci discovered through univariate GWAS. 139 

Measure Abbreviation N # loci 
Abdominal subcutaneous adipose tissue ASAT 33979 1 
Visceral adipose tissue VAT 33989 2 
Anterior thigh muscle volume ATMV 33415 7 
Posterior thigh muscle volume PTMV 33459 10 
Anterior thigh muscle fat infiltration (%) ATMFI 33347 19 
Posterior thigh muscle fat infiltration (%) PTMFI 33392 25 
Weight-muscle-ratio WMR 33406 1 
Abdominal fat ratio AFR 33375 1 
Liver proton density fat fraction (%) LPDFF 33674 8 
VAT/height2 VATi 33007 2 
ASAT/height2 ASATi 32998 1 
ATMV/height2 ATMVi 32442 5 
PTMV/height2 PTMVi 32483 0 
Total thigh muscle volume z-score  TTMVz 32401 5 

 140 

Univariate GWAS 141 

Univariate GWASs on the individual measures revealed a total of 87 loci, including 54 unique, 142 

surpassing the study-wide significance threshold of 3.6*10-9. Two loci stood out with highly 143 
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significant p-values, on chromosome 19 (lead rs58542926, p=8.8x10-113) and chromosome 22 144 

(lead rs738409, p=4.6x10-166), both identified in the GWAS on liver fat. Using converging 145 

positional, eQTL, and chromatin interaction information (see Methods), we mapped these loci to 146 

genes previously coupled to MAFLD (rs738409: PNPLA3, SAMM50, PARVB)37 as well as 147 

inflammatory processes and cancer (rs58542926: CD99).38 The Supplementary Information (SI) 148 

contains Manhattan plots and overviews of all loci discovered together with mapped genes. 149 

Additionally, we assessed the generalization of the discovered loci in a hold-out set of 5,081 150 

non-White European UKB participants with identical processing steps. Of the 84 lead SNPs 151 

available in this set, 82 had effects in the same direction as the main analyses (97.6%, sign-test 152 

p<1x10-16). Thus, our results suggest a cross-ethnicity generalization of these genetic associations 153 

with MRI-derived measures of body composition, despite the known high variability of body 154 

anthropometrics across ethnicities.5,24 155 

In total, we identified eight study-wide significant loci for liver fat, validating those found in a 156 

previous smaller GWAS.35 Gene-based analysis through Multi-marker Analysis of GenoMic 157 

Annotation (MAGMA) identified 35 genome-wide significant genes, including the three primary 158 

MAFLD genes (TM6SF2 p=7.2*10-16, PNPLA3 p=1.0*10-14, and TMC4-MBOAT7 p=2.1*10-8),39–159 

42 further confirming the strong biological validity of this liver fat measure and its connection to 160 

MAFLD. Functional annotation of the set of 35 genes revealed differential expression in the liver, 161 

pancreas, and subcortical brain regions and significant enrichment among Gene Ontology (GO) 162 

biological processes specifically related to lipid homeostasis and metabolic processes. The SI 163 

further contains results of gene set enrichment analyses for each individual measure. 164 

Next, we estimated the polygenicity and effect size variance (‘discoverability’) by fitting a 165 

Gaussian mixture model of null and non-null effects to the GWAS summary statistics using 166 
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MiXeR.43,44 The results are summarized in Figure 1a, depicting the estimated proportion of genetic 167 

variance explained by discovered SNPs for each measure as a function of sample size. This 168 

illustrates that body MRI measures generally show genetic architectures similar to e.g. brain MRI 169 

measures, characterized by high polygenicity.45,46 However, the notable exception is liver fat, with 170 

substantially lower polygenicity and higher discoverability than the other measures, in line with 171 

the relatively few highly significant associations we identified through the GWAS. 172 

Figure 1b visualizes the phenotypic and genetic correlations between each pair of measures, 173 

confirming a strong structure and a subdivision between adipose- and muscle-related measures. 174 

SNP-based heritability ranged from 19% to 34% (all p<1x10-16); see the diagonal of Figure 1b. 175 

  176 

Figure 1. Comparison of the genetic architecture of individual body composition measures. a) 
The relation between genetic variance explained by genome-wide significant hits (y-axis) and 
sample size (x-axis) for each measure (solid colored lines). The vertical dashed blue line marks 
the current sample size, with the corresponding percent genetic variance explained indicated 
between brackets in the legend. b) Correlation between the measures, with phenotypic correlation 
shown in bottom triangle and genetic correlation in the upper triangle, and heritability on the 
diagonal. Abbreviations: ASAT=abdominal subcutaneous adipose tissue, VAT=visceral adipose 
tissue, AFR= abdominal fat ratio, WMR=weight-muscle-ratio, ATMV=anterior thigh muscle 
volume, PTMV=Posterior thigh muscle volume, ATMFI=anterior thigh muscle fat infiltration, 
PTMFI =posterior thigh muscle fat infiltration, Liver PDFF=liver proton density fat fraction, 
TTMVz=total thigh muscle volume z-score, i=index, referring to a measure divided by standing 
height2.   
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Multivariate GWAS 177 

Gene variants are likely to have distributed effects across these measures, as they are correlated 178 

components of the same biological system. We therefore also jointly analyzed all measures 179 

through the Multivariate Omnibus Statistical Test (MOSTest),47 which increases statistical power 180 

in a scenario of shared genetic signal across the univariate measures.47–49 After applying a rank-181 

based inverse normal transformation, we performed MOSTest on the residualized measures, 182 

yielding a multivariate association with 9.1 million SNPs included.  183 

MOSTest revealed 108 significant independent loci across all MRI-derived measures (see 184 

Figure 2a and SI). Figure 2b visualizes the significance of the association between the individual 185 

Figure 2. Multivariate locus discovery a) Manhattan plot of the multivariate GWAS on all MRI-
derived body composition measures, with the observed -log10(p) of each SNP shown on the y-axis. 
The x-axis shows the relative genomic location, grouped by chromosome, and the red dashed line 
indicates the whole-genome significance threshold of 5x10-8. The y-axis is clipped at -log10(p)=75. 
b) Heatmap showing -log10(p) of the association between the lead variants of MOSTest-identified 
independent loci (x-axis) and each of the individual MRI measures (y-axis). The values are capped 
at 7.5 (p=5x10-8). 
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measures and each of the 108 loci, illustrating the presence of many shared but also specific genetic 186 

variants. 187 

MAGMA identified 256 significant genes after multiple comparison correction (a=.05/18,203), 188 

with highly significant differential expression in the liver, pancreas, heart, muscle, and several 189 

other tissues (Figure 3). Coupling the significant genes to the Reactome database50 indicated most 190 

prominent associations with the adaptive immune system and cytokine signaling (p<1*10-16), see 191 

Supplementary Data and Supplementary Figure 2 for an overview. 192 

 193 

Comparison of genetic architecture with cardiometabolic risk factors 194 

We additionally analyzed a set of 21 measures of anthropometric and cardiometabolic factors (e.g., 195 

BMI, triglycerides, cholesterol, blood pressure; see Table 2), which were available for up to 196 

412,316 White European UKB participants. Through multivariate GWAS on this separate set of 197 

measures in the full UKB sample, we found 1134 genome-wide significant loci with a=5×10-8 (list 198 

provided in SI). Of the 108 loci identified through the primary multivariate analysis of MRI-199 

 
Figure 3. Tissue-specific differential expression of the set of significant genes identified through the multivariate 
GWAS on MRI-derived measures of body composition. The red-dotted line indicates the multiple comparisons-
corrected significance threshold. 
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derived body composition measures, 94 (87%) were significant in this secondary analysis in a 200 

larger sample. This indicates that these sets of measures overall are influenced by the same network 201 

of biological processes. 202 

The heritability of the MRI-derived measures (mean h2=.25) was significantly higher than the 203 

body anthropometrics and other biomarkers (mean h2=.16), p=1.4x10-6. As shown in Figure 4, 204 

these measures generally showed higher genetic correlations with the MRI-derived measures of 205 

adipose tissue than the muscle-related measures. Further, BMI, hip/waist circumference, and 206 

waist-to-hip-ratio were genetically correlated with nearly all body MRI measures. 207 

 

 
Figure 4. Genetic correlations of the MRI-derived body composition measures with standard 
anthropometrics and cardiometabolic measures. Abbreviations: BMI=body mass index, 
WHR=waist-hip ratio, CRP=C-reactive protein, ALT=alanine aminotransferase, GGT= 
gamma-glutamyl transferase, HDL=high-density lipoproteins, AST=aspartate aminotransferase, 
HbA1c=glycated hemoglobin, LDL=low-density lipoproteins, BP=blood pressure. 
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Genetic correlation with cardiovascular, metabolic and mental disorders 208 

Next, we analyzed the genetic overlap of the MRI-derived measures with medical conditions 209 

previously linked to cardiometabolic health, selecting recent GWAS with adequate power.51–57 As 210 

shown in Figure 5a, the strongest association across all measures was found for liver fat, with a 211 

genetic correlation of 0.48 (p=1.6x10-22) with type 2 diabetes. Coronary artery disease was found 212 

to have highly significant positive genetic correlations with visceral and subcutaneous adipose 213 

tissue. Overall, we found weak negative genetic correlations with muscle tissue measures and 214 

stronger positive genetic correlations with adipose tissue measures, with two exceptions; anorexia 215 

nervosa showed the opposite direction of correlation compared to the other conditions, and there 216 

was no discernible pattern for schizophrenia. Genetic correlations with the anthropometric and 217 

metabolic measures are provided in Figure 5b for comparison, indicating that the adipose tissue 218 

measures are as strong as or stronger correlated with these conditions than the conventional body 219 

anthropometrics.  220 
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  221 

 
Figure 5. Genetic correlations of a) MRI-derived body composition measures, and b) 
anthropometric and metabolic measures (x-axis) with conditions linked to poor 
cardiometabolic health (y-axis). ***p=5x10-9, **p=5x10-6, *p=5x10-4. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.24.481887doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.24.481887
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

15 

Discussion 222 

Here, we reported results from a comprehensive, large-scale GWAS of MRI-derived measures of 223 

body composition. Joint analyses of measures of regional adipose and muscle tissue distributions 224 

revealed extensive genetic overlap and led to the identification of a large number of shared genetic 225 

risk loci across traits. We further showed genetic overlap with body anthropometrics and 226 

cardiometabolic measures as well as medical conditions linked to cardiometabolic health. Our 227 

findings illustrate how MRI-derived measures can be leveraged to improve our understanding of 228 

the biology underlying the metabolic system, identifying liver fat as a particularly promising 229 

measure, highlighting the integral role of steatosis and MAFLD in cardiometabolic health. 230 

The genetic correlations of body composition measures with common medical conditions 231 

underlined that they may complement conventional measures to better understand cardiometabolic 232 

health. Liver fat showed a stronger genetic correlation with type 2 diabetes than conventional 233 

measures. The amount of liver fat and its genetic determinants may thus play a central role in type 234 

2 diabetes development, and at a minimum robustly positions MAFLD onto the map of relevant 235 

comorbidities of type 2 diabetes alongside cardiovascular disease, kidney disease and diabetic 236 

retinopathy. Further, we found significant positive genetic correlations between coronary artery 237 

disease and visceral and subcutaneous adipose tissue, adding genetic evidence to the well-238 

established relation between this disease, obesity, and body fat distribution.58 239 

Liver fat also stood out from the other measures with regard to its genetic architecture. While 240 

all traits investigated were substantially heritable, the genetic discoverability of liver fat was much 241 

higher, with an oligogenic architecture as opposed to the polygenic architectures of the remaining 242 

traits and other complex biomedical measures.45 This was reflected in the GWAS yield, with a few 243 

highly significant loci coupled to lipid homeostasis explaining the majority of genetic variance for 244 
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this measure. These loci should be scrutinized for the biological link between liver fat and 245 

cardiometabolic conditions,59 and may potentially point to  fundamental processes that become 246 

dysregulated in these diseases. Indeed, all components of metabolic syndrome correlate with liver 247 

fat content.60 Evaluation of MAFLD risk has been recommended for any individual with metabolic 248 

syndrome and related morbidities (e.g. type 2 diabetes),11,60 and the large effects of these liver fat-249 

associated loci even may suggest potential as features for individual risk stratification in 250 

MAFLD.61,62 These findings also attest to the accuracy and clinical relevance of MRI-derived 251 

measures of liver fat, and support the notion that MAFLD should be considered an integral 252 

component of obesity and metabolic syndrome and a key non-communicable disease.11 253 

Another key finding was that the highest number of significant loci were found for muscle fat 254 

infiltration in the anterior and posterior thighs, two measures not previously genetically studied. 255 

Fatty infiltration of skeletal muscle reduces the muscle mass and strength,63 and has been 256 

implicated in aging and frailty.64 It has also been coupled to metabolic syndrome65 and 257 

cardiovascular mortality.66 Recent literature focused on liver disease and its progression have also 258 

highlighted the importance of muscle health.67 Muscle fat infiltration has been linked to higher 259 

comorbidity within MAFLD and decreased muscle fat infiltration has been correlated with 260 

improvement in steatohepatitis.68,69 Our findings suggest a strong genetic component to these 261 

associations, indicated by the large degree of shared genetic architecture with related diseases. 262 

Interestingly, fat accumulation in the muscle arises through specific pathways, including the 263 

intramyocellular accumulation of lipid,63 which is associated with insulin insensitivity and 264 

inflammation.70  265 

The genetic correlations between the MRI-derived body composition measures indicate partly 266 

overlapping biological processes with some unique genetic determinants. The correlation structure 267 
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further suggests that adipose tissue distribution is genetically largely independent from muscle 268 

tissue. However, it should be noted that global correlations underestimate overlap when a mixture 269 

of genetic effects in the same and opposing directions cancels each other out.46 Indeed, adipose 270 

and muscle tissue are known to have complex regulatory cross-talk, both releasing metabolism-271 

regulating molecules to maintain a balanced weight-to-muscle ratio.71 The increased yield from 272 

the multivariate GWAS analysis, nearly doubling the number of unique loci discovered, is in line 273 

with the hypothesis of strong biological interplay and shared molecular mechanisms. The 274 

multivariate GWAS allowed for identifying loci that have distributed effects across the included 275 

body composition measures. These may help to explain the complexity of metabolic syndrome 276 

and the frequent comorbidity between diseases associated with body composition. Our findings 277 

that a substantial portion of the genetic determinants of these measures are related to the immune 278 

system fit with a large body of literature indicating that adipose tissue is an active metabolic and 279 

endocrine organ that secretes a host of pro- and anti-inflammatory factors, and with the 280 

characterization of obesity as a state of chronic low-grade inflammation.72 Thus, the current 281 

genetic findings can form the basis for functional follow-up studies to determine the molecular 282 

mechanisms involved in the complex relations between lipids and the immune system.  283 

There was high genetic overlap between the sets of MRI-derived measures of body composition 284 

and the conventional measures of body anthropometrics and cardiometabolic health, indicating 285 

that they tag similar biological processes. The body anthropometrics were correlated with both 286 

muscle and adipose tissue, indicating little specificity, in line with the long-standing recognized 287 

limitations of these global measures that they fail to distinguish between specific body types that 288 

differ widely in risk for disease.73   289 
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Strengths of this study are the large number of whole-body MRI scans and the use of state-of-290 

the-art, precise body composition measures, including multiple measures not previously 291 

investigated. With this, we were able to replicate loci reported earlier in smaller samples and with 292 

different measurement protocols.35 We further combined the study of individual measures with a 293 

multivariate approach to genetic discovery, allowing for greater GWAS hit yield and insight into 294 

the overall architecture of these complementary indicators of body composition and associated 295 

diseases. The findings allow for numerous follow-up investigations; further studies are needed to 296 

clarify the causal directions between the measures, and the role of putative moderators such as 297 

sex,74 age, and ethnicity.75 298 

To conclude, the high prevalence of cardiometabolic diseases, combined with substantial 299 

morbidity and mortality, indicates a strong need for new therapeutic targets. While these diseases 300 

are often comorbid, they are treated separately, with this polypharmacy bringing along increased 301 

risk of adverse drug reactions.4 Genetic data is less subjected to reverse causation and confounding 302 

than environmental factors. Knowledge about shared and specific genetic determinants is therefore 303 

central to develop effective strategies that optimally treat the individual. We showed that accurate 304 

MRI-derived measures of liver and regional adipose and muscle tissue characteristics have strong 305 

genetic components, with shared influences that can be leveraged to boost discovery. As such, 306 

these findings have the potential to significantly enhance our understanding of body composition 307 

and related diseases, provide drug targets for MAFLD and related traits, and contribute to 308 

combatting a significant, increasing threat to public health.  309 
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materials should be addressed to d.v.d.meer@medisin.uio.no  517 
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Methods 518 

Participants 519 

We made use of data from participants of the UKB population cohort, obtained from the data 520 

repository under accession number 27412. The composition, set-up, and data gathering protocols 521 

of the UKB have been extensively described elsewhere76. For the primary analyses, we selected 522 

White Europeans that had undergone the body MRI protocol, with available genetic and complete 523 

covariate data (N=34,036, mean age 64.5 years (SD=7.4), 51.5 % female). For the replication 524 

analyses, we made use of data from non-White Europeans (N=5081, mean age 63.0 years 525 

(SD=7.7), 52.9 % female). 526 

 527 

Data collection and pre-processing 528 

Body and liver MRI scans were collected from three scanning sites throughout the United 529 

Kingdom, all with identical scanners and protocols. They were acquired on 1.5T Siemens 530 

MAGNETOM Aera scanners using a body dual-echo Dixon Vibe protocol and a single-slice multi-531 

echo gradient Dixon acquisition, respectively. The UKB core neuroimaging team has published 532 

extensive information on the applied scanning protocols and procedures, which we refer to for 533 

more details.77 We acquired the data as processed by AMRA (Linköping, Sweden; 534 

https://www.amramedical.com), subsequently released by UKB. We bridged with UKB project 535 

accession #6569 to obtain early access to this data, which was then obtained from the UKB data 536 

repositories and stored locally at the secure computing cluster of the University of Oslo.  537 

The AMRA body MRI processing included intensity inhomogeneity correction, non-rigid 538 

registration of atlases to acquired image volumes, quantification of fat and muscle composition 539 

using a voting scheme, and visual inspection for segmentation accuracy and manual adjustment.78 540 
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The liver MRI data were processed using a magnitude-based chemical shift technique with a 6-541 

peak lipid model and then registered to the body MRI data and corrected for liver T2* to obtain a 542 

T1-weighted measure of liver proton density fat fraction (PDFF). AMRA implements manual 543 

quality control of the image/segmentation quality.  544 

 545 

Measurement protocols and definitions 546 

We extracted a selection of body composition measures (Table 1; see also UKB online 547 

documentation (http://biobank.ctsu.ox.ac.uk/showcase/)). Specifically, we extracted the following 548 

measures of adipose tissue: visceral adipose tissue (VAT), defined as the adipose tissue within the 549 

abdominal cavity, and abdominal subcutaneous adipose tissue (ASAT), defined as the adipose 550 

tissue between the top of the femoral head and the top of T9. We also extracted measures of muscle 551 

fat infiltration (MFI) derived from the anterior and posterior thighs, averaged over both legs, and 552 

liver proton density fat fraction (PDFF). As measures of muscle tissue, we included anterior and 553 

posterior thigh fat-free muscle volume (ATMV and PTMV), and total thigh muscle volume, 554 

encompassing the gluteus, iliacus, adductors, hamstrings, quadriceps femoris, and sartorius, 555 

normalized to a z-score (TTMVz) that corrects for BMI, age, sex and height.36 We extracted two 556 

ratios from the UKB repository, namely weight-to-muscle ratio (WMR), defined as weight/TTMV, 557 

and abdominal fat ratio (AFR), which is (VAT+ASAT)/(VAT+ASAT+TTMV). Additionally, for 558 

VAT, ASAT, ATMV, and PTMV, we computed index measures by dividing these measures by 559 

the squared standing height in meters (e.g., ASATi is ASAT/height2). This is done since weight, 560 

adipose tissue, and lean tissue compartments scale to approximate height squared. 561 

We subsequently regressed out age, sex, scanner site, and the first twenty genetic principal 562 

components from each measure. Following this, we applied rank-based inverse normal 563 
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transformation79 to the residuals of each measure, leading to normally distributed measures as 564 

input for the GWAS.  565 

For the secondary analyses, comparing the set of MRI-derived measures of body composition 566 

to measures of cardiometabolic health, we included 21 measures available in the UKB as listed in 567 

Table 2. 568 

Table 2. Measures of cardiometabolic health used in the secondary analyses, together with 569 

abbreviations and available sample sizes. 570 

Measure Abbreviation N 
Cholesterol  389832 
High-density lipoproteins HDL 356802 
Low-density lipoproteins LDL 389115 
Triglycerides  389524 
Apolipoprotein A  354829 
Apolipoprotein B  387945 
Cholesterol to HDL  356734 
ApoB to ApoA  353056 
C-Reactive Protein CRP 388993 
Glucose  356558 
Glycated hemoglobin HbA1c 389728 
Alanine aminotransferase ALT 389701 
Aspartate aminotransferase AST 388406 
Gamma-glutamyl transferase GGT 389634 
Creatinine  389637 
Body mass index BMI 407558 
Waist circumference  408179 
Hip circumference  408134 
Waist-to-hip ratio WHR 408096 
Diastolic blood pressure DBP 36591 
Systolic blood pressure SBP 36591 

 571 

GWAS procedure  572 

We made use of the UKB v3 imputed data, which has undergone extensive quality control 573 

procedures as described by the UKB genetics team.80 After converting the BGEN format to PLINK 574 
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binary format, we additionally carried out standard quality check procedures, including filtering 575 

out individuals with more than 10% missingness, SNPs with more than 5% missingness, and SNPs 576 

failing the Hardy-Weinberg equilibrium test at p=1*10-9. We further set a minor allele frequency 577 

threshold of 0.005, leaving 9,061,022 SNPs. 578 

We carried out GWAS through the freely available MOSTest software 579 

(https://github.com/precimed/mostest). Details about the procedure and its extensive validation 580 

have been described previously.47 GWAS on each of the pre-residualized and normalized measures 581 

were carried out using the standard additive model of linear association between genotype vector, 582 

𝑔#, and phenotype vector, 𝑦. Independent significant SNPs and genomic loci were identified in 583 

accordance with the PGC locus definition, as also used in FUMA SNP2GENE.81 First, we selected 584 

a subset of SNPs that passed genome-wide significance threshold 5x10-8, and used PLINK to 585 

perform a clumping procedure at LD r2=0.6 to identify the list of independent significant SNPs. 586 

Second, we clumped the list of independent significant SNPs at LD r2=0.1 threshold to identify 587 

lead SNPs. Third, we queried the reference panel for all candidate SNPs in LD r2 of 0.1 or higher 588 

with any lead SNPs. Further, for each lead SNP, its corresponding genomic loci were defined as a 589 

contiguous region of the lead SNPs' chromosome, containing all candidate SNPs in r2=0.1 or 590 

higher LD with the lead SNP. Finally, adjacent genomic loci were merged if separated by less than 591 

250 KB. Allele LD correlations were computed from EUR population of the 1000 genomes Phase 592 

3 data. We made use of the Functional Mapping and Annotation of GWAS (FUMA) online 593 

platform (https://fuma.ctglab.nl/) to map significant SNPs from the MOSTest analyses to genes.  594 

 595 

MiXeR analysis 596 
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We applied a causal mixture model43,44 to estimate the percentage of variance explained by 597 

genome-wide significant SNPs as a function of sample size. For each SNP, 𝑖, MiXeR models its 598 

additive genetic effect of allele substitution,	𝛽(, as a point-normal mixture, 𝛽( = (1 − 𝜋.)𝑁(0,0) +599 

𝜋.𝑁(0, 𝜎56), where 𝜋. represents the proportion of non-null SNPs (`polygenicity`) and 𝜎56 600 

represents the variance of effect sizes of non-null SNPs (`discoverability`). Then, for each SNP, 𝑗, 601 

MiXeR incorporates LD information and allele frequencies for 9,997,231 SNPs extracted from 602 

1000 Genomes Phase3 data to estimate the expected probability distribution of the signed test 603 

statistic, 𝑧# = 𝛿# + 𝜖# = 𝑁∑ <𝐻(𝑟(#𝛽( + 𝜖#( , where 𝑁 is the sample size, 𝐻( indicates 604 

heterozygosity of i-th SNP, 𝑟(# indicates an allelic correlation between i-th and j-th SNPs, and 𝜖# ∼605 

𝑁(0, 𝜎@6) is the residual variance. Further, the three parameters, 𝜋., 𝜎56, 𝜎@6, are fitted by direct 606 

maximization of the likelihood function. Fitting the univariate MiXeR model does not depend on 607 

the sign of 𝑧#, allowing us to calculate |𝑧#| from MOSTest p-values. Finally, given the estimated 608 

parameters of the model, the power curve	𝑆(𝑁) is then calculated from the posterior distribution 609 

𝑝D𝛿#E𝑧#, 𝑁). 610 

 611 

Gene-set analyses 612 

We carried out gene-based analyses using MAGMA v1.08 with default settings, which entails the 613 

application of a SNP-wide mean model and the use of the 1000 Genomes Phase 3 EUR reference 614 

panel. Gene-set analyses were done in a similar manner, restricting the sets under investigation to 615 

those that are part of the Gene Ontology biological processes subset (n=7522), as listed in the 616 

Molecular Signatures Database (MsigdB; c5.bp.v7.1). 617 
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