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Identification of novel leaf rust seedling resistance loci in Iranian bread wheat germplasm using genome‐wide 1 

association mapping 2 

Abstract 3 

Leaf or brown rust caused by Puccinia triticina Eriks. (Pt) is a major biotic constraint threatening bread wheat 4 

production worldwide. The continued evolution of new races of Pt necessitates a constant search for the 5 

identification of new resistance genes, or QTLs, to enhance the resistance durability of bread varieties. On a panel of 6 

320 bread wheat accessions, we used a genome-wide association study (GWAS) technique to map loci associated 7 

with Pt resistance using single-nucleotide polymorphism markers (SNPs) generated by genotyping-by-sequencing 8 

(GBS). The panel was tested with five Pt races gathered from different regions of IRAN to identify loci associated 9 

with seedling resistance. After estimating genetic relatedness and population structure among accessions, GWAS 10 

discovered a total of 19 SNPs on chromosomes 1B, 2B, 3A, 3B, 4A, 5B, 5D, 6A, 6B, 6D, 7B, and 7D that were 11 

significantly associated with seedling stage resistance. The three SNP markers rs12954, rs34220, and rs42447 on 12 

chromosomes 5D, 6A, and 7D, respectively, associated with resistance to Pt race PKTTS expressing potential new 13 

loci for leaf rust resistance. Overall, this research gives an integrated perspective of leaf rust resistance resources in 14 

Iranian bread wheat and recognizes new resistance loci that will be valuable to expand the set of resistance genes 15 

available to control this serious disease. 16 

Keywords: Wheat, Puccinia triticina (Pt), GWAS, MATs, Lr genes  17 
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Introduction 38 

Common wheat (Triticum aestivum L.) is among the most important and widely consumed food crops worldwide, 39 

and one of the most traded commodities on global markets (FAO 2020). Wheat is frequently attacked by a variety of 40 

diseases. Leaf rust caused by Puccinia triticina Eriks. (Pt), the most prevalent and serious foliar disease impacting 41 

wheat production globally, is one of the diseases that causes considerable yield losses in bread wheat (Kolmer 2019; 42 

Dinh et al. 2020). In highly susceptible cultivars, the leaf rust fungus mostly affects the leaf blades, but it can also 43 

attack the leaf sheath and glumes. Yield loss is usually caused by the reduction of kernel weight and kernel number 44 

per spike (Huerta-Espino et al. 2011; Figueroa et al. 2018).  45 

Although fungicides are effective to control rust diseases, using resistant cultivars is more effective, cost-effective, 46 

and environmentally safe (Chen, 2020). As a result, having adequate information on the leaf rust agent's population 47 

genetics and identifying novel sources of resistance in the cultivated and landrace gene pools of wheat to contribute 48 

to expanding and sustaining the genetic base of leaf rust resistance is critical (McInosch et al. 2013). Plant disease 49 

resistance genes can be categorized into two types: all-stage resistance (seedling resistance) and adult-plant 50 

resistance (APR). Seedling resistance, which is often race-specific, expresses at all stages of plant development and 51 

is commonly associated with a strong hypersensitive reaction with a high level of resistance, despite being easily 52 

broken down by changes in rust pathogen virulence. On the other hand, APR that also known as race nonspecific 53 

resistance is more effective at adult stages of plant development and is effective against all Pt races, and is durable. 54 

Many wheat cultivars have become susceptible because of the continual emergence of new pathogen races with new 55 

virulence. As a result, new sources of resistance and new Leaf rust (Lr) resistance genes must be discovered to 56 

manage this significant wheat disease (Kolmer et al. 2013; Dinh et al. 2020). Until today a total of 80 Lr genes (Leaf 57 

Rust Gene) have been discovered (Qureshi et al. 2018; McIntosh et al. 2013; Kumar et al. 2021). The majority of 58 

these genes confer seedling resistance, however, nine slow-rusting genes, namely Lr34 (Dyck 1977), Lr46 (Singh et 59 

al. 1998), Lr67 (Herrera-Foessel et al. 2014), Lr68 (Herrera-Foessel et al. 2012), Lr74 (McIntosh et al. 2013), Lr75 60 

(Singla et al. 2017), Lr77 (Kolmer et al. 2018), Lr78 (Kolmer et al. 2018), and Lr79 (Qureshi et al. 2018) govern 61 

adult plant resistance.  62 

Although bi-parental mapping was successful to discover genomic loci for leaf rust resistance, the restricted 63 

recombination events in bi-parental mapping limited the discovery of closely related markers valuable for MAS 64 

because of the long linkage block (Riedelsheimer et al. 2012). The genome-wide association study (GWAS) is the 65 

most recent methodological technique, which relies on the linkage disequilibrium (LD) principle and the utilization 66 

of many SNP (Single Nucleotide Polymorphism) markers. GWAS identifies associations between phenotyping and 67 

genotyping data in an association mapping population, and it provides complete surveys of germplasm pools and is a 68 

valuable complement to bi-parental mapping research (Zargar et al. 2015; Tibbs Cortes et al. 2021). GWAS utilizes 69 

the recombination events that happen during the evolution of populations. This provides the breakup of the LD 70 

blocks within the genome and results in a faster decay of the LD in the association mapping than in RILs 71 

(recombinant inbred lines) and DH (double haploid) populations, in which only the allelic diversity that separates 72 

between the parents can be evaluated. Therefore, GWAS can distinguish associated loci with the trait response at a 73 

much higher mapping resolution than bi-parental mapping (Rafalski 2002; Nordborg and Weigel 2008; Zhao et al. 74 

2008; Neumann et al. 2011). 75 

The GWAS method has been successfully applied in different plants for various traits. 76 

Different wheat traits have been studied using GWAS including agronomic traits (Safdar et al. 2020; Pang et al. 77 

2020), quality (Yang et al. 2020; Muqaddasi et al. 2020), drought stress (Abou-Elwafa et al. 2021; Shokat et al. 78 

2020; Rahimi et al. 2019), leaf rust (Spakota et al. 2019; Muqaddasi et al. 2021), and stem rust resistance (Saremi et 79 

al. 2021; Gao et al. 2017). For leaf rust resistance, Spakota et al. (2019) employed GWAS to identify related 80 

genomic areas in wheat genotypes, and eleven QTLs (Quantitative Trait Loci) were identified on nine chromosomes. 81 

In wheat landraces, Kertho et al. (2015) observed 73 QTLs associated with resistance to leaf rust and strip rust, and 82 

11 of them were regarded as novel. Also, Gao et al. (2016) discovered 46 QTLs associated with seedling and adult 83 

stage resistance for resistance to leaf rust, and about 30% of the phenotypic variance was explained by the ten most 84 

significant QTLs. 85 
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In the present study, GWAS was conducted on a diverse panel of wheat cultivars and landraces 86 

originating from several geographical areas in Iran. This study was designed to detect genetic loci related to seedling 87 

resistance to leaf rust by use of 320 Iranian wheat accessions against five Pt races, which will be used in marker-88 

assisted selection and further genetic dissections. 89 

Materials and methods 90 

Plant materials and Pt races 91 

A leaf rust association mapping (AM) panel of 320 wheat accessions was used in the present study, which includes 92 

102 varieties released between 1942 and 2014 and 218 landraces collected between 1931 and 1968 (Supplementary 93 

Table 1), along with the susceptible cultivar Boolani. Commercial cultivars were received from the Seed and Plant 94 

Improvement Institute (SPII), Karaj, Alborz, Iran, and landraces from the University of Tehran's Gene Bank. For 95 

298 accessions, both phenotypic and genotypic data were available (90 varieties and 208 landraces). 96 

The five Pt races PKTTS, PKTTT, PFTTT, PDTRR, and PDKTT, representing prevalent races of Pt in IRAN, were 97 

used to screen the wheat accessions. All isolates were collected from bread wheat germplasm. The 98 

virulence/avirulence profile of the rust races was determined using infection types based on the seedling stage of 99 

Thatcher wheat differentials that are near-isogenic for single-resistance genes based on the race nomenclature of 100 

Long and Kolmer (1989). The characteristics of used races are presented in Table 1. 101 

Table 1. Virulence/avirulence profile the five Pt races used to evaluate the wheat genotypes 102 

No Race Location Ineffective genes Effective genes 
1 PKTTT Dezfoul_Khouzestan Lr22b, Lr1, Lr2c, Lr3, Lr3ka, Lr3bg, 

Lr10, Lr11, Lr12, Lr13, Lr14a, Lr14b, 
Lr15, Lr16, Lr17, Lr18, Lr20, Lr21, 
Lr22a, Lr23, Lr24, Lr25, Lr26, Lr10, 
Lr27+ Lr31, Lr28, Lr30, Lr32, Lr33, 
Lr34, Lr35, Lr36, Lr37, Lrb, Lr13 

Lr2a, Lr2b, Lr9, Lr19, Lr29 

2 PFTTT Dezfoul_Khouzestan Lr22b, Lr1, Lr2b, Lr2c, Lr3, Lr3ka, 
Lr3bg, Lr10, Lr11, Lr12, Lr13, Lr14a, 
Lr14b, Lr17, Lr18, Lr20, Lr21, Lr22a, 
Lr23, Lr24, Lr25, Lr26, Lr28, Lr30, Lr32, 
Lr33, Lr34, Lr35, Lr36, Lr37, Lrb, Lr13 

Lr2a, Lr9, Lr15, Lr16, Lr19, 
Lr10, Lr27+ Lr31, Lr29 

3 PKTTS Moghan_Ardabil Lr22b, Lr1, Lr2c, Lr3, Lr3ka, Lr3bg, 
Lr10, Lr11, Lr12, Lr13, Lr14a, Lr14b, 
Lr15, Lr16, Lr17, Lr18, Lr20, Lr21, 
Lr22a, Lr23, Lr24, Lr25, Lr26, Lr10 / 
Lr27 + / Lr31, Lr29, Lr30, Lr32, Lr33, 
Lr34, Lr35, Lr36, Lr37, Lrb, Lr13 

Lr2a, Lr2b, Lr9, Lr19, Lr28 

4 PDKTT Ahwaz_Khouzestan Lr22b, Lr1, Lr2c,Lr3, Lr3bg, Lr10,(Lr10, 
Lr27+Lr31), Lr11, Lr12, Lr13, Lr14a, 
Lr14b, Lr15,Lr16, Lr17, Lr18, Lr20, 
Lr21, Lr22a, Lr23, Lr24, Lr25, Lr28, 
Lr30, Lr32, Lr33, Lr34, Lr35, Lr36, Lr37, 
Lrb 

Lr2a, Lr2b, Lr3ka, Lr9, 
Lr16, Lr19, Lr26, (Lr10, 
Lr27+Lr10), Lr29 

5 PDTRR Gorgan_Golestan Lr22b, Lr 1, Lr2a, Lr2b, Lr3ka, Lr9, 
Lr10, Lr11, Lr14a, Lr16, Lr19, Lr20, 
Lr23, Lr26, (Lr10, Lr27+ Lr31), Lr28, 
Lr29, Lr33, Lr37, Lr13  

Lr22b, Lr2c, Lr3, 
Lr3bg,Lr12, Lr13,Lr14b, 
Lr15, Lr17, Lr18, Lr21, 
Lr22a, Lr24, Lr25, Lr30, 
Lr32, Lr34, Lr35, Lr36, Lrb 

Phenotyping at Seedling Stage  103 
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Seven seeds of each accession were sown in pots with a diameter and a height of 10 cm, filled with a mixture of 104 

common soil, peat moss, and leaf mold. In each pot, four wheat accessions have been positioned at a suitable 105 

distance. Then they were stored on a growth chamber at 22-25 °C and a 16 h photoperiod for development. After 8-106 

10 days, when secondary leaves have emerged, inoculation of the seedlings were done separately by the spores of 107 

five rust races gathered from various fields of Iran. Then the inoculated seedlings moved in a dark room for one day 108 

at 17±2 °C and near 95% moisture, then they were placed in a growth chamber kept at 18°C/20°C (night/day) with 109 

16-h of photoperiod. The 10-12 days after inoculation, plant infection type (IT) was determined based on the method 110 

described by McIntosh et al. (1995) rated a scale of 0-4 where 0 = no visible uredia (immune), ; = hypersensitive 111 

fleck (very resistant), 1 = small uredia with necrosis (resistant), 2 = small- to medium-sized uredia (resistant to 112 

moderately resistant), 3 = medium-sized uredia with or without chlorosis (moderately resistant/moderately 113 

susceptible), and 4 = large-sized uredia without chlorosis (susceptible reaction). The 0- 4 scale for leaf rust was 114 

transformed to a linearized 0- 9 scale utilizing the weighted mean of the most and least predominant IT on the same 115 

leaf surface to employ the modified McIntosh ITs in genome-wide association studies (GWAS) (Zhang et al. 2014). 116 

Values 0 to 6 were considered as resistance IT and, 7 to 9 were considered as susceptible IT. 117 

Genotyping by sequencing and imputation method 118 

Genotypic evaluation of wheat accessions was conducted in collaboration with the US Ministry of Agriculture and 119 

the University of Kansas (Alipour et al. 2017). In brief, genomic DNA of wheat accessions was isolated from young 120 

leaves using the modified cetyltrimethyl ammonium bromide (CTAB) method (Saghai-Maroof et al. 1984). The 121 

GBS (Genotyping by sequencing) libraries were constructed with two restriction enzymes PstI and MspI according 122 

to the method of Poland et al. (2012). Subsequently, barcoded adapters ligation to individual samples were 123 

performed using T4 ligase. The DNA purification was carried out using the QIAquick PCR Purification Kit (Qiagen, 124 

Inc., Valencia, CA, USA). Finally, the amplified fragments between 250-300 bp were specified on the E-gel system 125 

and sent for sequencing on an Ion Proton sequencer (Life Technologies, Inc.). The sequencing data were first 126 

trimmed to 64 bp, and the same reads were grouped into tags. The UNEAK GBS pipeline (Lu et al. 2013) as part of 127 

the TASSEL 4.0 bioinformatics package (Bradbury et al. 2007) was used for SNPs calling, where SNPs with 128 

heterozygosity 10%>, minor allele frequency (MAF) >0.1, and missing data 20%> were removed and other SNPs 129 

were used for further analysis. The data was also subjected to imputation using BEAGLE v3.3.2 (Browning and 130 

Browning., 2009) based on available allele frequencies obtained after specifying the haplotype phase for all 131 

individuals. Four different reference genomes were evaluated and among them, the W7984 reference genome was 132 

selected to have the greatest annotation accuracy.  133 

Phenotypic data analysis 134 

Phenotypic data analysis including descriptive analysis, ANOVA (Analysis of Variance), correlation analysis, and 135 

heritability estimation was performed using the SAS software v.9.4. The Shapiro-Wilk test (PROC UNIVARIATE) 136 

and Levene's test (Snedecor and Cochran 1989) were conducted to determine the normal distribution of phenotypic 137 

data and to verify the homogeneity of data between experiments, respectively. For the GWAS analysis, the overall 138 

mean was used if the data were homogenous. The genetic, environmental, and phenotypic variances were estimated 139 

based on the Comstock & Robinson (1952) method as follow: 140 

σ�
�
�
MS� �MS�

r
 

σ�
�
� MS� 

σ�
�
� σ�

�
�MS� 

Where MSg is genotype mean square, MSe is error mean square and r is the number of experimental repetitions. The 141 

broad-sense heritability for leaf rust was calculated via the ratio of genetic variance to phenotypic variance as 142 

follow: 143 
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Pearson correlation coefficients among races were determined for IT values based on PROC CORR procedure in 144 

SAS software. 145 

Population structure and LD  146 

To apprehend the genetic structure of the population of Iranian wheat genotypes and to recognize subpopulations, 147 

we used Bayesian methods using STRUCTURE v2.3.3 (Pritchard et al. 2000). A putative range of subpopulations 148 

starting from k = 1 to 10 was assessed using an admixture model and with a burn-in and simulation phase consisting 149 

of 30,000 steps. An adhoc statistic based on the rate of change of the log-likelihood of the data between successive 150 

values was used to estimate K. (Evanno et al. 2005; Quraishi et al. 2011). LD between markers was estimated by 151 

comparing of observed vs. expected allele frequencies of the markers in TASSEL v.5.2.65 (Bradbury et al. 2007). A 152 

Kinship matrix (Q matrix) among individual genotypes for association studies was estimated using all SNP markers; 153 

the heat map was performed with the use of a classical equation from Van Randen (2008) in the R software. 154 

Principal Component Analysis (PCA) was done by use of SNP markers to specify the genetic relationships between 155 

the genotypes, and PC1 was plotted against PC2.  156 

Genome- wide association mapping 157 

A dataset including 298 accessions was obtained after combining phenotypic (320) and genotypic data (298). 158 

GWAS to discover marker-trait associations (MTAs) significantly with seedling resistance was performed using 159 

general linear model (GLM) and mixed linear model (MLM) using TASSELv.5.2.65 (Bradbury et al. 2007) and 160 

GAPIT package (Lipka et al. 2012) in RStudio (Team 2015).  Mixed-linear models (MLM), with kinship matrix (K) 161 

and population structure (Q) as a covariate, were selected based on the lowest MSD value. The results using t-tests 162 

showed that the GAPIT package (Lipka et al. 2012) supplied stronger control confounding effects. Therefore, only 163 

GAPIT results were reported (Lipka et al. 2012). MTAs with a LOD (Logarithm of the Odds) score above 3 (p-value 164 

< 0.001) were selected as significant markers for leaf rust resistance. FDR (False Discovery Rate) at the alpha level 165 

of 0.05 was used to reduce the false discovery rate of significant markers. In order to reduce the false discovery rate 166 

of significant markers, the FDR (False Discovery Rate) was set as 0.05 at the alpha level. 167 

Gene annotation 168 

The flanking sequences of significant marker-trait associations (MTAs) were received from the Illumina 90K SNP 169 

datasets (Wang et al. 2014). Gene ontology (GO) of the sequences significant loci was conducted by use of 170 

Ensemble plants database (https://plants.ensembl.org/) by aligning them to the IWGSC RefSeq v1.0 annotation 171 

(https://plants.ensembl.org/Multi/Tools/Blast#). The function of the putative genes was determined by examining 172 

the metabolic pathways involving the encoded enzymes. The overlapping genes with the highest identity percentage 173 

and blast score were selected for further analysis. The information of each gene adjacent to T. aestivum, including 174 

molecular function, biological process as well as orthologous genes in related species, were obtained from the 175 

ensemble-plants database (https://plants.ensembl.org/). 176 

Comparison QTLs with previously detected Lr-gene/QTLs 177 

To discover the relationship between the SNP markers identified that related to leaf rust resistance in this study to 178 

previously detected Lr-gene/QTLs, the positions of the most significant markers (FDR < 0.05) representative of 179 

each QTL to previously mapped QTL/genes were compared using wheat consensus map (Maccaferri et al. 2015). 180 

The graphical display of the genetic map was constructed using MapChart (Voorrips 2002).  181 

Results 182 

Phenotypic evaluation 183 

IT response (Infection Type) against five pathotypes (PKTTS, PKTTT, PFTTT, PDKTT, and PDTRR) was 184 

evaluated in the greenhouse for 320 accessions. The results are presented in Supplementary Table 2. In all the 185 

experiments, the susceptible cultivar Boolani was highly infected and showed the expected compatible ITs of 3 to 4 186 

for all five pathotypes. Wheat accessions had a wide variety of responses to all five Pt races used in our research 187 

(Supplementary Table 2). The leaf rust scores varied from immune (IT=0, LS=0) to highly susceptible reaction 188 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.24.481752doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.24.481752
http://creativecommons.org/licenses/by/4.0/


  

6 
 

(IT=4, LS=9) to all five Pt races (Table 2). The majority of the tested wheat accessions were susceptible to the Pt 189 

races and of these, 36, 32, 59, 38, and 77 accessions were resistant (IT rating < 3, linear score < 8) to races PKTTS, 190 

PKTTT, PFTTT, PDKTT, and PDTRR, respectively (Table 2), also a total of ten accessions were resistant to all five 191 

pathotypes (Table 3).  192 

The results of the Shapiro-Wilk normality test indicated that the phenotypic data of all five Pt pathotypes deviated 193 

significantly from a normal distribution (Table 4). The Leven’s test was then performed to test the homogeneity of 194 

the data. The results of Levene’s test indicated that the phenotypic variance of the data within experiments was 195 

homogenous (P = 0.23 to 0.79) for all five Pt pathotypes (Table 4). Therefore, the overall mean for each wheat 196 

accession was calculated and utilized in GWAS study. 197 

Table 2. grouping of wheat population based on infection type to five Pt races 198 

 
Infection Type 

Cultivar/ 
Landrace 

PKTTS PKTTT PFTTT PDKTT PDTRR 
No % No % No % No % No % 

Resistance reaction            
0 and ; Cultivar 1 0.31 3 0.94 0 0 0 0 10 3.13 

Landrace 2 0.63 0 0 0 0 0 0 6 1.88 
; 1, 1 and 1+ Cultivar 4 1.25 2 0.63 1 0.31 0 0 15 4.69 

Landrace 6 1.88 9 2.81 4 1.25 2 0.63 7 2.19 
; 2, 2 and 2+ Cultivar 2 0.63 3 0.94 7 2.19 0 0 5 1.56 

Landrace 4 1.25 1 0.31 8 2.5 2 0.63 4 1.25 
; 1 2 3 and 3 2 1 ; Cultivar 14 4.38 7 2.19 27 8.44 14 4.38 19 5.94 

Landrace 3 0.94 7 2.19 12 3.75 16 5 8 2.5 
Total Cultivar 21 6.56 15 4.69 35 10.94 14 4.38 49 15.31 

Landrace 15 4.69 17 5.31 24 7.5 20 6.25 25 7.81 
            

3 and 3+ Cultivar 80 25 79 24.68 67 20.94 87 27.19 53 16.56 
Landrace 188 58.75 184 57.5 190 59.38 190 59.38 189 59.06 

4 Cultivar 2 0.63 9 2.81 1 0.31 2 0.63 0 0 
Landrace 14 4.34 16 5 3 0.94 7 2.19 3 0.94 

Total Cultivar 82 25.63 84 26.25 68 21.25 89 27.81 53 16.56 
Landrace 202 63.13 200 62.5 193 60.31 197 61.56 192 60 

Total accessions  320 100 320 100 320 100 320 100 320 100 
 199 

Table 3. Resistance wheat accessions to all five Puccinia triticina (Pt) races 200 

   Disease score 
Accession Origin Type PKTTT PFTTT PDKTT PKTTS PDTRR 

622084 Mazandaran_Sari Landrace 0.70 0.70 5.33 0.70 0.70 
622099 Gilan_Rasht Landrace 0.70 3.34 2.67 0.70 0.35 
622247 Mazandaran_Sari Landrace 0.70 0.70 5.33 0.35 0.67 
622264 Mazandaran_Babol Landrace 0.70 2.17 1.19 1.67 0.35 
622272 Mazandaran_Amol Landrace 1.19 4.00 2.17 0.35 0.35 
624381 Bakhtaran_Bakhtaran Landrace 0.70 1.67 4.00 0.70 0.35 
627856 Mazandaran_Sari Landrace 1.19 0.70 1.19 1.19 0.35 
627963 Hamedan_Hamedan Landrace 0.70 1.19 1.69 1.50 0.35 
627057 Gilan_Fooman Landrace 2.17 1.84 7.5 2.84 0 

Shinghai - Varity 6.00 4.00 7.67 7.67 0.35 
The ANOVA for leaf rust seedling reactions showed highly significant differences (P < 0.001) between races, 201 

accessions, and race × accession interaction (Table 5). The coefficient of correlation (r) among all five Pt pathotypes 202 

was highly positive and significant. The correlation coefficient values for ITs ranged from 0.40-0.71. In particular, 203 
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high correlation coefficient values were observed for the pair-correlations of PKTTS vs. PFTTT (0.71), PFTTT vs. 204 

PDTRR (0.69), PFTTT vs. PKTTT (0.65), and PKTTS vs. PDTRR (0.60) (Table 6).  205 

Table 4. Descriptive statistics of 320 wheat accessions evaluated for their response to five Puccinia triticina (Pt) 206 

races 207 

Race Mean Min Max SD Shapiro-Wilk 
test a 

Leven’s 
test b 

	�
� 	�

� 	�
� H2 (%) 

PKTTT 8.30 0 9.00 2.15 P<0.0001 P=0.595 4.604 0.017 4.621 99.63 
PFTTT 7.92 0.70 9.00 2.00 P<0.0001 P=0.229 3.835 0.394 4.23 90.67 
PKTTS 8.30 0 9.00 2.06 P<0.0001 P=0.792 4.173 0.115 4.29 97.34 
PDTRR 7.33 0 9.00 3.12 P<0.0001 P=0.667 9.62 0.167 9.79 99.48 
PDKTT 8.37 1.19 9.00 1.11 P<0.0001 P=0.779 0.217 1.13 1.347 83.89 

a Shapiro-Wilk test was conducted to determine if the phenotypic data were normal or not. p<0.05 shows  non-208 

normal distribution. 209 
b Leven’s test was conducted to determine if the data among the experiments are homogenous or not. P>0.05 shows 210 

equal variance. 211 

SD = standard deviation 212 

	�
�=estimates of genotypic variance 213 

	�
�=estimates of environmental variance 214 

	�
�=estimates of phenotypic variance 215 

H2 = broad-sense heritability 216 

Table 5. Combined analysis of variance for infection types of wheat accessions to five Pt races 217 

Source Sum of Squares df Mean Square F 
REP 0.522 1 0.522 2.857ns 
Race 484.756 4 121.189 24.94** 

Race × Rep 5959.959 1276 4.671 25.578 
Genotype 9238.251 319 28.960 158.589** 

Genotype × Race 5959.959 1276 4.67 25.677** 
Error 291.994 1599 0.183  

CV (%) 5.35    
 218 

Table 6. Correlation coefficients between the phenotypic data of 320 wheat accessions evaluated for 219 

response to Puccinia triticina (Pt) races 220 

 PKTTS PKTTT PFTTT PDKTT PDTRR 
PKTTS 1.00 0.481** 0.705** 0.561** 0.602** 
PKTTT  1.00 0.647** 0.546** 0.529** 
PFTTT   1.00 0.475** 0.689** 
PDKTT    1.00 0.400** 
PDTRR     1.00 

 221 

Linkage disequilibrium 222 

Linkage disequilibrium decay was examined for the original and imputed datasets for three genomes separately and 223 

all chromosomes within each genome. Based on the linkage disequilibrium analysis, the LD declined with the 224 

increases in genetic distance. The significant marker pairs at P < 0.001 were considered for the study. In general, 225 

genome B and D had the highest and lowest marker density, respectively (Table 7 and 8). However, it is more useful 226 

to test the LD between each pair of SNPs located on the same chromosome and determine the average of the LD in 227 

each genome to identify the pattern of LD in the three genomes. At the genome level in original datasets, for both 228 

Landraces and varieties, Genome A had 22.34% of significant marker pairs with an average r2- value of 0.10 for 229 
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varieties and 31.58% of significant marker pairs with an average r2- value of 0.1 for landraces. The maximum 230 

marker density for both Landraces and varieties was observed on chromosome 2B with 31387 pair SNPs for 231 

varieties and 30754 pair SNPs for landraces. Genome B had 26.39% of significant markers with an average r2- value 232 

of 0.13 for varieties and 28.71% of significant markers with an average r2- value of 0.078 for landraces. Genome D 233 

had 24.34% of significant marker pairs with an average r2- value of 0.12 for varieties and 25.27% of significant 234 

marker pairs with an average r2- value of 0.1 for landraces.  235 

 In imputed datasets, the extent of LD for the wheat varieties and landraces was 0.21 and 0.18, respectively, and the 236 

average genetic distance for both of them was about 1.76 cM. At the chromosome level, the maximum marker 237 

density for both Landraces and varieties was observed on chromosome 3B with 176175 pair SNPs for varieties and 238 

170925 pair SNPs for landraces. In general, the proportion of each A, B, and D genomes from total pairwise 239 

varieties SNP markers were estimated at almost 39, 39, and 31%, respectively, and in the landraces SNP markers 240 

approximately 48, 45, and 40%, respectively.  241 

Population structure and kinship matrix 242 

In order to determine the appropriate number of subpopulations, the number of clusters was plotted (K) against ΔK. 243 

The largest ΔK value was observed at K = 3 suggesting the presence of three subpopulations in the tested accessions 244 

for both datasets (Figure 1). Using the structure software, the population of 286 accessions was structured into three 245 

subpopulations, Sub1, Sub2, and Sub_3 (Figure 2). Sub_1 included 84 accessions, Sub_2 included 75 accessions 246 

and Sub_3 included 127 accessions. 247 

Table 7. A summary of observed LD (r2) among SNP pairs and the number of significant SNP pairs per 248 

chromosomes and genomes of Iranian bread wheat cultivars and landraces in original datasets 249 

Chromoso
me 

Cultivar Landrace 

TNSP r2 Distance 
(cM) 

NSSP TNSP r2 Distance 
(cM) 

NSSP 

1A 16283 6.75189 0.109825 3917 (24.06%) 12992 11.528 0.114653 4750 (36.53%) 
1B 22004 4.47251 0.141322 5775 (6.25%) 25210 4.5844 0.089915 8237 (32.67%) 
1D 10733 10.2787 0.184493 3367 (31.37%) 19042 6.3896 0.071123 4235 (22.24%) 
2A 20435 5.05017 0.123509 4915 (24.05%) 22359 4.8757 0.114976 7734 (34.59%) 
2B 31387 4.11067 0.12831 8386 (26.72%) 30754 4.125 0.092202 9932 (32.29%) 
2D 13331 6.58741 0.266553 4494 (33.7%) 15780 6.7303 0.195837 5174 (32.78%) 
3A 17793 9.80947 0.098266 3567 (20.05%) 17858 9.1444 0.069792 4272 (23.92%) 
3B 28610 4.62157 0.129764 7815 (27.32%) 29925 4.4702 0.091393 9351 (31.25%) 
3D 4725 17.5873 0.097313 704 (14.90%) 7601 19.707 0.090504 1628 (21.42%) 
4A 15937 7.97345 0.130939 3621 (22.72%) 15490 8.2723 0.109944 4342 (28.03%) 
4B 8325 9.53805 0.100295 1820 (21.86%) 8450 10.408 0.050408 1373 (16.25%) 
4D 3001 25.9259 0.134246 558 (18.59%) 3171 25.715 0.10865 1088 (34.31%) 
5A 15117 7.76999 0.110108 3238 (21.42%) 16814 8.0587 0.080919 4825 (28.70%) 
5B 26207 6.39664 0.132941 7680 (29.31%) 26766 6.3968 0.069826 6575 (24.56%) 
5D 5946 25.1631 0.00939E 796 (13.39%) 6990 28.565 0.066032 1377 (19.70%) 
6A 16119 7.47835 0.106207 3117 (19.34%) 17460 7.3983 0.118612 6784 (38.80%) 
6B 21869 4.38736 0.139339 6339 (28.99%) 24908 4.6098 0.071623 6560 (26.64%) 
6D 7845 18.2414 0.0104 1358 (17.31%) 8963 17.787 0.078422 2160 (24.10%) 
7A 22236 6.02434 0.015 5304 (23.85%) 27109 6.1406 0.107505 8369 (30.87%) 
7B 24351 4.78852 0.110689 5149 (21.14%) 25094 4.6028 0.080258 7081 (28.22%) 
7D 8108 19.9858 0.0166 1794 (22.13%) 10344 19.537 0.094395 2508 (24.24%) 

A genome 123920 7.26539 0.09912 27679 (22.3%) 130082 7.9166 0.102343 41076 (31.6%) 
B genome 162753 5.47362 0.12609 42964 (26.4%) 171107 5.5997 0.07795 49109 (28.7%) 
D genome 53689 17.6814 0.11827 13071 (24.4%) 71891 17.776 0.10071 18170 (25.3%) 

Total 340362 10.1401 0.11449 83714 (25 %) 373080 10.430 0.09367 108355 (29 %) 
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TNSP: Total number of SNP pairs, NSSP: Number of significant SNP pairs (P value< 0.001) 250 

 251 
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Table 8. A summary of observed LD (r2) among SNP pairs and the number of significant SNP pairs per 252 

chromosomes and genomes of Iranian bread wheat cultivars and landraces in imputed datasets 253 

Chromoso
me 

Cultivar Landrace 

TNSP r2 Distance 
(cM) 

NSSP TNSP r2 Distance 
(cM) 

NSSP 

1A 85575 0.148218 1.737691 27125 (31.7%) 92925 0.112764 1.596397 33515 (36.07%) 
2A 118025 0.292156 0.974187 57858 (49.02%) 123175 0.297454 0.944378 68675 (55.75%) 
3A 83675 0.159365 2.576447 25903 (30.96%) 73525 0.136413 2.939734 28144 (38.28%) 
4A 114925 0.371766 1.513597 57774 (50.27%) 108375 0.376224 1.612148 65451 (60.39%) 
5A 59375 0.169369 2.383461 18718 (31.53%) 58475 0.150278 2.416511 24007 (41.06%) 
6A 85175 0.181387 1.487802 29645 (34.8%) 84425 0.181735 1.501019 40176 (47.59%) 
7A 128575 0.234215 1.344495 49426 (38.44%) 126575 0.214252 1.365959 63357 (50.05%) 
1B 131075 0.206251 1.063813 49717 (37.93%) 133525 0.157517 1.041252 63803 (47.78%) 
2B 165475 0.198105 0.859164 66129 (39.96%) 155625 0.177663 0.913543 78536 (50.46%) 
3B 176175 0.245726 0.876581 78363 (44.48%) 170925 0.221549 0.903978 89150 (52.16%) 
4B 51325 0.1455 2.516753 13477 (26.26%) 43025 0.1018 3.002768 12311 (28.61%) 
5B 134225 0.204683 1.433217 55633 (41.45%) 134675 0.14301 1.449279 56285 (41.79%) 
6B 158275 0.205457 0.788418 66108 (41.77%) 164475 0.139023 0.758663 71582 (43.52%) 
7B 132875 0.156677 1.102364 41160 (30.98%) 125875 0.129711 1.157535 50573 (40.18%) 
1D 37075 0.294821 4.409069 16539 (44.61%) 40975 0.232567 3.832101 19755 (48.21%) 
2D 48025 0.23446 2.2455 16275 (33.89%) 52825 0.169092 2.048568 20548 (38.9%) 
3D 25475 0.143085 6.286093 5413 (21.25%) 30125 0.174879 5.31564 11411 (37.88%) 
4D 10275 0.167587 10.56621 2189 (21.3%) 10375 0.14746 10.71346 3543 (34.15%) 
5D 22375 0.155406 9.337668 5503 (24.59%) 24825 0.142184 8.361416 8953 (36.06%) 
6D 28475 0.142966 5.369092 6844 (24.04%) 33475 0.14123 4.565844 12606 (37.66%) 
7D 34475 0.208327 5.795738 10809 (31.35%) 40475 0.153099 4.947296 14019 (34.64%) 

A genome 675325 0.235213 1.620443 266449 (39.4%) 667475 0.223484 1.64269 323325 (48.4%) 
B genome 949425 0.20158 1.083656 370587 (39.0%) 928125 0.160951 1.110386 422240 (45.5%) 
D genome 206175 0.205106 5.343207 63572 (30.83%) 233075 0.170391 4.707401 90835 (38.97%) 

Total 1830925 0.214383 1.761302 700608 (38.3%) 1828675 0.184979 1.76314 836400 (45.7%) 
TNSP: Total number of SNP pairs, NSSP: Number of significant SNP pairs (P value< 0.001) 254 

 255 

Fig 1 Determination of subpopulations number in wheat genotypes based on ΔK values 256 
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To better evaluate population structure and investigate genetic relationships among wheat accessions, PCA of 257 

original and imputed SNPs was performed in 286 wheat accessions. For the original datasets, the two major 258 

components described a total of 18.59% of the genetic variance (Figure 3a), whereas it was 23.1% for the imputed 259 

datasets (Figure 3b). Group 1 included 105 accessions with 71 varieties and 34 landraces (63.28%); Group 2 260 

included the 108 accessions with 102 landraces and 6 varieties (37.76%); Group 2 included the smallest number of 261 

accessions with 73 accessions with 62 landraces and 11 varieties (25.52%) (Figure 4a). For Original datasets, 262 

accessions were also clustered into three main groups. Group 1 included 116 accessions with 6 varieties and 110 263 

landraces; Group 2 included 103 accessions with 85 landraces and 18 varieties; Group 3 included 66 accessions with 264 

3 landraces and 63 varieties (Figure 4b). 265 

 266 

Fig 2 A structure plot of the 286 wheat genotypes and landraces determined by K=3 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 Fig 3 Principal component analysis of Iranian accessions using original SNPs (A), and imputed SNPs. 277 

Marker - trait associations 278 

GWAS was conducted using infection type data to reveal the association between the phenotypic and genotypic data 279 

in the seedling stage. A total of 9043 and 44106 SNP markers were used in GWAS analysis in original and imputed 280 

datasets, respectively. Generally, GWAS identified a total of 36 and 390 significant marker-trait associations for 281 

original and imputed datasets at a significance level of –log10 P >3 (P<0.001), respectively (Table 9). In original 282 

datasets, 7, 4, 18, 3, and 4 significant SNP were detected for resistance to the pathotypes PKTTS, PKTTT, PFTTT, 283 

PDTRR, and PDKTT, respectively (Supplementary Table 3). These SNPs were distributed on 1B, 2A, 2B, 3B, 4A, 284 

4B, 4D, 5B, 5D, 6A, 6D, 7B and 7D chromosomes. In imputed datasets, 137, 101, 48, 45 and, 59 significant SNP 285 

were detected for resistance to the races PKTTS, PKTTT, PFTTT, PDTRR, and PDKTT, respectively 286 

(Supplementary Table 4). These SNPs were distributed on all chromosomes. In imputed datasets, rs10560, rs12690, 287 

A B 
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rs12954, rs14228, rs14431, rs17878, rs18054, rs19727, rs21735, rs21939, rs22627, rs23335, rs23336, rs23337,288 

rs28088, rs28089,  289 

 290 

291 

A 

Varieties 

Landraces  

Landraces  

37, 
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 292 

Fig 4 Cluster analysis using kiniship matrix of original data (A) and imputed data (B) for Iranian wheat accessions293 

B 

Varieties 

Landraces  

Landraces  
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rs28358, rs38875, rs44015, rs44160, rs44883, rs45575, rs47218, rs58203, rs59576, rs61015, rs61600, rs62825, 294 

rs6313, rs6314, rs64792, rs7195, rs8909, and rs9493 markers were significant for resistance at least two races, while 295 

the remaining MTAs were significant to only a single race (Supplementary Table 4). The largest number of 296 

associated markers in both datasets was identified on the B genome whereas the smallest number of significant 297 

SNPs markers for original and imputed datasets were on the D genome. The major of MTAs in imputed and original 298 

datasets were identified on chromosome 2A (52 MTAs) and 1B (6 MTAs), respectively. 299 

Table 9. Number of Marker-trait associations (MTAs) for infection type of studied races in Iranian wheat genotypes 300 

(P Value < 0.001) 301 

Genome PDTRR PKTTS PKTTT PFTTT PDKTT 
Original datasets 

Marker trait association 4 7 4 18 3 
Genome A 1 3 1 2 0 
Genome B 1 4 1 11 3 
Genome D 1 0 1 5 0 

Unassembled Chromosomes 1 0 1 0 0 
Imputed datasets 

Marker trait association 59 137 101 48 45 
Genome A 23 53 40 19 21 
Genome B 31 72 46 14 18 
Genome D 5 12 15 15 3 

Unassembled Chromosomes 0 0 0 0 3 
 302 

The results of FDR ≤ 0.05 of the GWAS results of both datasets are shown in Table 10. The results showed that 303 

there are only two markers for the original datasets in FDR < 0.05. Two identified markers (rs7087 and rs7088) are 304 

associated with the PFTTT race located on chromosome 2B and 6D at 59.184 cM and 51.214 cM, respectively. The 305 

results of the imputed datasets showed that there are a total of 17 MTAs in the FDR less than 0.05. All of the MTAs 306 

except three MTAs included rs9493, rs62902, and rs62903 (PDKTT), were assigned to PKTTS race. These MTAs 307 

were distributed on 1B, 2B, 3A, 3B, 4A, 5B, 5D, 6A, 6B, 6D, 7B and, 7D chromosomes. The maximum of MTAs (4 308 

MTAs) were located on chromosome 1B. The results of Manhattan and QQ-plots of highly associated SNPs for 309 

infection type are presented in Figure 5. 310 

Gene annotation 311 

To gain a deeper understanding of the relationship between SNPs and leaf rust resistance, we examined the gene 312 

annotations of these SNPs and studied the effect of SNPs on genes (Tables 15 and 16). The results of gene ontology 313 

showed that of the 390 MTAs that we identified using the imputed datasets 24.62% of them were located within 314 

protein-coding genes (Supplementary Table 5). For the original datasets, 6 MTAs (16.67%) were found within 315 

protein-coding genes (Supplementary Table 6). The chromosomal sequence, chromosomal position, the closest 316 

wheat gene to them, molecular function and biological processes of these genes, and other information of MTAs are 317 

presented in Tables 15 and 16. These genes mostly encode proteins involved in nucleotide binding, hydrolase 318 

activity, potassium ion transmembrane transporter activity, hydrolase activity, ATP binding, fatty-acyl-CoA binding, 319 

lipid binding, hydrolase activity, protein kinase activity, hydrolyzing O-glycosyl compounds, beta-320 

fructofuranosidase activity, acting on glycosyl bonds and, protein binding.  321 

Discussion 322 

The development of new races of leaf rust pathogens is a constant threat to global wheat production. Therefore, it is 323 

necessary to investigate additional resistance sources and genes to generate cultivars with effective genes for 324 

resistance to leaf rust. GWAS is a potent strategy to recognize QTL associated with complex traits in plants 325 

(Alqudah et al. 2020; Hall et al. 2010). GWAS has been successfully applied in wheat gene pools to identify several 326 

genes/QTLs that contribute to leaf rust resistance at both the seedling and adult plant stages (Kertho et al. 2015; 327 
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Aoun et al. 2016; Turner et al. 2017; Riaz et al. 2018). As shown in the present research and previous studies, wheat 328 

landraces are a rich 329 

 330 
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Fig 5 Manhattan and QQ-plots of highly associated haplotypes for Leaf rust. A) PFTTT race, B) PKTTS race, C) 359 

PDKTT race. The numbers of 1-22 on X axis represents chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 360 

4B, 4D, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B, 7D, and unknown respectively.361 
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Table 10. Summary of marker trait associations (MTAs) discovered significant for resistance to Puccinia triticina (Pt) races PKTTT, PFTTT, PKTTS, PDKTT, 362 

and PDTRR at FDR < 0.05 363 

SNP Race Type data Allele Chromosome Position (cM) P.value maf R2 pFDR effect 
rs7088 PFTTT Original C/T 2B 59.184 7.53E-07 0.23776 0.264 0.0068 0.16 
rs7087 PFTTT Original C/T 6D 51.214 2.97E-06 0.21503 0.264 0.0134 0.16 
rs43242 PKTTS Imputed G/T 1B 30.143 3.32E-08 0.12237 0.348 0.0015 1.45 
rs45675 PKTTS Imputed T/C 1B 30.711 3.51E-06 0.08391 0.348 0.0296 1.29 
rs45676 PKTTS Imputed C/T 1B 30.711 5.20E-06 0.08566 0.348 0.0296 1.25 
rs43873 PKTTS Imputed A/G 1B 45.006 6.78E-06 0.07867 0.348 0.0311 1.62 
rs62679 PKTTS Imputed A/G 3A 57.649 7.04E-06 0.09965 0.348 0.0311 0.94 
rs28322 PKTTS Imputed C/T 3B 62.576 5.37E-06 0.19405 0.348 0.0296 1.09 
rs3229 PKTTS Imputed C/T 3B 62.576 1.18E-05 0.18881 0.348 0.0433 -1.15 
rs10560 PKTTS Imputed C/T 4A 75.832 2.50E-06 0.07167 0.348 0.0296 1.39 
rs21735 PKTTS Imputed C/G 4A 62.152 2.92E-06 0.08042 0.348 0.0296 -1.50 
rs6151 PKTTS Imputed A/C 5B 70.681 4.52E-06 0.15559 0.348 0.0296 -0.91 
rs12954 PKTTS Imputed A/G 5D 111.553 1.56E-05 0.11188 0.348 0.0492 1.00 
rs34220 PKTTS Imputed A/C 6A 10.247 1.55E-05 0.06118 0.348 0.0492 1.18 
rs15705 PKTTS Imputed A/G 7B 117.414 8.23E-06 0.35664 0.348 0.0330 -0.85 
rs42447 PKTTS Imputed A/G 7D 83.31 1.06E-06 0.19755 0.348 0.0234 1.01 
rs9493 PDKTT Imputed A/G 3B 22.764 7.73E-07 0.09790 0.185 0.0243 0.51 
rs62902 PDKTT Imputed C/G 6B 47.831 1.45E-06 0.13286 0.185 0.0243 0.47 
rs62903 PDKTT Imputed C/G 6B 47.831 1.65E-06 0.13461 0.185 0.0243 0.47 

source of genes for resistance to leaf rust (Kertho et al. 2015; Aoun et al. 2016; Turner et al. 2017; Riaz et al. 2018). In the present study, we recognized ten 364 

accessions resistant to five Pt races that are prevalent in Iran. Nine of these accessions were wheat landraces. Iran is one of the countries in the Fertile Crescent 365 

region, which is known as the center origin and diversity of wheat. In addition, previous studies have suggested that the center of origin of P. triticina is probably 366 

somewhere in the Fertile Crescent region in southwest Asia (Arthur, 1929), where both sexual and asexual reproduction common (Kolmer et al. 2011). However, 367 

possible sexual recombination events are rare in the world (Kolmer et al. 2011). Therefore, this region could provide an opportunity for natural selection and 368 

maintenance of resistance accessions. Although wheat landraces may exhibit less desirable agronomic traits, they have been cultivated over many years by local 369 

farmers and have been adapted to climate conditions, and have been evolved disease resistance. They also are relatively easy to use in breeding programs 370 

compared to alien species (Sehgal et al. 2016). Therefore, the resistant landraces identified in the present study should be useful for developing wheat cultivars 371 

resistant to leaf rust. 372 

Pearson correlation coefficients based on infection types revealed the presence of significant correlations for all races in this study (Table 6). These significant 373 

correlations were mainly attributed to the similar Pt populations across the country and similar virulence/avirulence profile of these races. According to the 374 

virulence/avirulence profile test performed on 20 wheat lines carrying a single Lr gene, these five races were virulent to Lr22b, Lr1, Lr3ka, Lr9, Lr10, Lr11, 375 

Lr14a, Lr20, Lr23, Lr26, Lr33, Lr37, and Lr13 genes. Also, the GWAS panel used in this study probably controls same genomic loci conferring resistance to five 376 
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Pt races, and this was further proved by the GWAS analysis results that permitted identification of common QTL, for example, rs38875 marker, conferring 377 

resistance to  378 
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three Pt races PFTTT, PDKTT, and, PDTRR (Supplementary Table 4). Also, the rs59576 marker confers resistance 379 

to three Pt races PFTTT, PDKTT, and, PKTTS. Research findings by Desidrio et al. (2014) and Sapkota et al. 380 

(2019) showed that there is a high correlation between the phenotypic data evaluated with several Pt breeds, and 381 

common genomic loci were identified for resistance of those breeds, which was consistent with the results of this 382 

study.  383 

Information about population structure as a confounding factor plays an important role in GWAS analysis because 384 

the presence of population structure in the GWAS panel can lead to false association results (Oraguzie et al. 2007). 385 

Selection and Genetic drift are two important factors that justify the presence of a subpopulation in a large 386 

population (Buckler and Thornsberry 2002). Population structure, kinship matrix, and PCA analysis are widely 387 

utilized approach to infer cryptic population structure from genome-wide data such as high-density SNPs. In the 388 

present study, population STRUCTURE, PCA analysis, and kinship matrix classified the wheat accessions into three 389 

major subpopulations in both the original and imputed datasets. The population structure recognized in this study 390 

had a lesser number of subpopulations than several previously reported GWAS studies (Li et al. 2016; Liu et al. 391 

2017; Zegeye et al. 2014), that this due to all of the accessions obtained a small region. The presence of structure in 392 

the current population is for two reasons. A significant number of wheat cultivars in this study were obtained from 393 

the International Center for Maize and Wheat Improvement (CIMMYT), which is used either directly or as parents 394 

in cross-breeding programs leading to new cultivars (Supplementary Table 1). For both original and imputed 395 

datasets, population structure showed that CIMMYT advanced lines like Chamran, Darab 2, and Gahar appeared in 396 

the same sub-populations along with Iranian cultivars. Also, the role of agro-ecological zones of the country in the 397 

formation of three sub-populations and the preservation of this genetic diversity, especially for landraces can be 398 

considered.  399 

In order to conduct association studies, the extent of LD and the decay of LD have a great influence on how to 400 

analyze association mapping and the SNP markers needed (Flint-Garcia et al. 2003). The results of LD showed that, 401 

the LD decay at a higher distance in genome D, than in genomes A and B. Genome B exhibits the lowest level of 402 

LD decay. Based on these results, fewer markers are required to detect target QTLs on genome D using GWAS than 403 

those required for detecting QTLs on the other genomes (Liu et al. 2017). A comparison of the SNP numbers for 404 

each genome reveals that, the D genome had the lowest number of SNPs followed by genomes A and B, 405 

respectively. Thus, it can be concluded that our SNPs and wheat population are suitable for GWAS analysis of traits 406 

related to target alleles. There is a high chance to identify target QTL with large and small effects based on the high 407 

and low LD found across the three genomes (Würschum et al. 2011). Other researchers have reported the same LD 408 

decay pattern across all three wheat genomes (Liu et al. 2017; Ayana et al. 2018). A large number of marker pairs 409 

were found in the B and A genomes whereas the younger D genome had a smaller number of markers. The same 410 

results were reported by others (Berkman et al. 2013; Edae et al. 2015). The higher diversity observed in the A and 411 

B genomes could be related to their older evolutionary background and due to gene flow from T. turgidum as 412 

opposed to lack of gene flow from Ae. tauschii to bread wheat (Dvorak et al. 2006; Jordan et al. 2015).  413 

Totally 36 and 390 MTAs were significantly (P-value < 0.001) related to leaf rust resistance in Original and imputed 414 

datasets, respectively. However, only the relationship of the 19 high-confidence (FDR ≤ 0.05) SNPs across 12 415 

chromosomes with previously identified Lr genes/QTL are explained below (Table 10) and the other SNPs are 416 

shown in tables 12 and 13. These markers represent 15 loci spread through chromosomes 1B, 2B, 3A, 3B, 4A, 5B, 417 

5D, 6A, 6B, 6D, 7B, and 7D. The consensus map constructed by Maccaferri et al. (2015) was utilized to compare 418 

the significant SNPs identified in the study with previously cataloged Lr genes and QTLs. Figure 6 shows the 419 

schematic display of these resistance loci onto standardized chromosomes with similar length.  420 

Chromosome 1B 421 

GWAS identified four SNPs rs43242 (30.143cM), rs45675 (30.711cM), rs45676 (30.711cM) and rs43873 422 

(45.006cM) for resistance to the PKTTS race. Nine known Lr genes, Lr26, Lr33, Lr44 (Dyck and Sykes 1994), Lr46 423 

(Singh 1998), Lr51 (Helguera 2005), Lr55 (Brown-Guedira 2003), Lr71 (Singh et al. 2013), Lr75 (Singla et al. 424 

2017), and LrZH84 (Zhao et al. 2008), and five QTLs, QLr.stars-1BC1 (Li et al. 2016), QLr.cimmyt- 1BS 425 

(Rosewarne et al. 2012), QLr.stars-1BS1 (Li et al. 2016), QLr.ifa-1B (Buerstmayr et al. 2014), QLr.stars-1BL2 (Li 426 

et al. 2016), are mapped on chromosome 1B. Of these, Lr26, Lr44, Lr51, Lr55, and Lr71 were originated from 427 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.24.481752doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.24.481752
http://creativecommons.org/licenses/by/4.0/


  

20 
 

Secale cereal, spelta wheat, Triticum speltoides, Elymus trachycaulis, and spelta wheat, respectively (Dyck and 428 

Skyes 1994). Since no Secale cereale, spelta, and Triticum speltoides were involved on our GWAS panel, these 429 

markers are unlikely to be these genes. Lr46, from spring wheat cultivar CIMMYT Pavon 76 (Singh et al. 1998), 430 

Lr75, from wheat cultivar Arina (Schnurbsch et al. 2004), and QLr.ifa-1B, confer APR, and since the experiment 431 

was performed in the seedling stage, these markers are unlikely to be genes. LrZh84, probably derived from wheat 432 

cultivar Predgomaia, has been effective in the field for >30 years in China. Other QTLs mapped in this region, 433 

QLr.stars-1BC1, QLr.cimmyt-1BS, and QLr.stars-1BS1 (Li et al. 2016), showed seedling resistance, and based on 434 

consensus map (maccaferi et al. 2015), three identified SNP markers (rs43242, rs45675, and rs45676) have almost 435 

same position with this QTLs, so it is likely these markers related to this QTLs. SNP marker rs43873 (45.006cM) 436 

were located close to QTL, QLr.stars-1BL2 (Li et al. 2016). This QTL was mapped to be related to response leaf 437 

rust resistance in the seedling stage. Therefore, based on the genetic positions of the SNPs, it seems that they are 438 

probably associated with the previous QTLs.  439 

Chromosome 2B 440 

Of the QTLs identified in GWAS in both datasets in FDR < 0.05, marker rs7088 on 2B at 59.184cM, was 441 

discovered to be related to resistance to the PFTTT race. Lr genes including Lr13 (Dyck et al. 442 

1966), Lr16 (McCartney et al. 2005), Lr23 (McIntosh and Dyck 1975), Lr48 (Bansal et al. 2008), Lr73 (Park et al. 443 

2014), LrZH22 (Wang et al. 2016), LrA2K (Sapkota et al. 2019), Lr35 (Seyfarth et al. 1999), Lr50 (Brown-Guedira 444 

2003) and three QTL, QLr.cimmyt 2BS (Rosewarne et al., 2012), QLr.hebau-2BS (Zhang et al., 2017), and QLr.uga-445 

2BS (Spakota et al. 2019), were also identified on chromosome 2B. Of these, Lr13 (originated from Fontana), Lr48 446 

(Originated from CSP44), and Lr35 are APR genes. As a result, the QTLs detected on chromosome 2B are unlikely 447 

to be APR genes. The other genes ie Lr16, Lr23, Lr73, and QLr.cimmyt-2BS are seedling resistance genes. Also, 448 

Lr50 was derived from T. timopheevii armeniacum, since T. timopheevii armeniacum was included on our GWAS 449 

panel, these markers are unlikely to be this gene. According to the consensus map (Maccaferri et al. 2015), these 450 

genes are nearly co-located with these QTLs.  451 

Chromosome 3A 452 

SNP rs62679 was identified at 57.65cM on chromosome 3A, which carries Lr63 (Kolmer et al. 2010), Lr66 (Marais 453 

et al. 2010) genes, and three QTLs, SNPIWA5005, SNPIWA5006, and SNPIWA5786 (Kertho et al. 2015). Lr63 and 454 

Lr66 genes were derived from Triticum monococcum and Aegilops speltoides, respectively. Given that no Triticum 455 

monococcum and Aegilops speltoides were involved in our GWAS panel, these two genes are unlikely to be 456 

rs62679. SNP rs62679 was mapped near a previously mapped QTL, SNPIWA5005, SNPIWA5006, and 457 

SNPIWA5786, and therefore, the locus on 3A found in this study can be attributed to these QTLs.  458 

Chromosome 3B 459 

On chromosome 3B, we identified SNPs rs28322, rs3229, and rs9493 that were related to seedling resistance to 460 

PKTTS, PKTTS, and PDKTT, respectively. Other Lr gene/QTLs that have been already reported close to rs28322, 461 

rs3229, and rs9493 include two Lr genes, Lr27 (Mago et al. 2011) and Lr74 (Bansal et al. 2014) and four QTLs, 462 

q3BS-1 (Li et al. 2016), QLr.wpt-3BS (Gerard et al. 2018), Qlr.inra-3Bb.1 (Azzimonti et al. 2014), and QLr.wpt-463 

3BL (Gerard et al. 2018), which in order to determine whether the SNP markers and previously identified 464 

genes/QTLs are related, further genetic analysis is required. 465 

 Chromosome 4A 466 

SNPs rs21735 and rs10560 at 62.15cM and 75.83cM, respectively, were detected in this research to be associated 467 

with resistance to PKTTS race in the seedling stage. Using the consensus map (Maccaferi et al. 2015) the SNP 468 

rs21735 is located in the same region as QLr.stars-4AL1. Therefore, it seems that rs21735 is probably associated 469 

with QLr.stars-4AL1 (Li et al. 2016). Also, based on the consensus map, Marker rs10560 was identified in the 470 

vicinity of marker IWA3756 (48.39cM). So, according to the consensus genetic map (Maccaferi et al. 2015) for both 471 

SNPs, it appears to be associated to previously identified QTLs, which are effective against the PKTTS race. 472 

Chromosome 5B 473 
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SNP rs6151, associated with PKTTS race in seedling stage, was observed near the genomic region of QLr.stars-474 

5BL1 (Li et al. 2016) and IWA6383_5BL_138.8 (Turner et al. 2016). Furthermore, the Lr18 (Carpenter et al. 2017) 475 

and Lr52 (Hiebert et al. 2005) leaf rust-resistant genes, originated from T.aestivum, are mapped on the 5BL 476 

chromosome. Based on virulence/avirulence profile PKTTS, it has virulence on Lr18 indicating that rs6151is 477 

unlikely to be Lr18. Based on the position of QTLs on the consensus map and their origin, the identified marker is 478 

likely related to QTLs, QLr.stars-5BL1 and IWA6383_5BL_138.8.  479 

Chromosome 5D 480 

SNP rs12954 was detected on chromosome 5D at 111.55cM. Lr1 gene and two QTLs, IWA6289_5DS_0 and 481 

IWA1429_5DL3_48.4 are located on chromosome 5D (Turner et al. 2016; Gao et al. 2016). SNP rs12954 is effective 482 

for resistance against the PKTTS race. PKTTS race used in this study is virulent to the Lr1 gene indicating that 483 

rs1294 is unlikely to be Lr1 (Table 1).  IWA6289_5DS_0 is an APR QTL, confer slow rusting resistance, it is 484 

unlikely that SNP rs12954 is IWA6289_5DS_0. Also, SNP rs12954 was mapped far from IWA1429_5DL3_48.4, So 485 

that they are about 30 cM apart from each other. Therefore, it is likely that the genomic region tagged by SNP 486 

rs12954 related to a different QTL that confers resistance to leaf rust during seedling stage. 487 

Chromosome 6A 488 

The SNP rs34220 was detected significant for resistance to leaf rust on chromosome 6A (Figure 5, 6; Table 10). 489 

Three catalogued Lr genes, Lr56, Lr62 (Marais et al. 2008), and Lr64 (Kolmer et al. 2010), and two QTLs, 490 

IWA680_6AS and 6A_t1 (Gao et al. 2016; Turner et al., 2016) have already been detected on chromosome 6A for 491 

leaf rust resistance. Lr56, Lr62, and Lr64 are seedling resistance genes originated from Aegilops sharonensis, 492 

Aegilops neglecta and, Triticum dicoccoides, respectively (Somo et al. 2016; Kolmer et al. 2010). Due to the lack of 493 

genetic materials that carries these genes in our GWAS panel, it is unlikely that this locus represents Lr56, Lr62, and 494 

Lr64. IWA680_6AS and 6A_t1 (Turner et al. 2016; Gao et al. 2016), both QTLs identified on chromosome 6A confer 495 

APR. According to the genetic locus of gene/QTLs on the consensus genetic map and their origin, SNP identified in 496 

this position maybe associated with distinct loci for leaf rust resistance; however, more studies are needed to 497 

discover their associations between them. 498 

Chromosome 6B 499 

On chromosome 6B, we identified two SNPs rs62902 and rs62903 in a same position (47.83cM), that were related 500 

to seedling resistance for PDKTT race. Other Lr genes and QTLs that have been previously identified close to these 501 

SNPs include Four known genes, Lr3a, Lr3bg, Lr3ka and, Lr9 (McVey and Long, 1993) and, 6B_3, 6B_1, 502 

IWA7873, IWA7506, IWA5785, IWA8192, IWA6142, 6B_4, IWA3131, IWA3133, IWA5785, IWA6826, IWA6825, 503 

IWA7873, IWA8192, IWA6142, 6B_3, 6B_3, IWA596, IWA3699, and IWA7506 (Kertho et al. 2016) QTLs which 504 

requires further genetic studies to discover the association between the gene tagged by rs62903 and identified 505 

QTL/genes. 506 

Chromosome 6D 507 

Marker rs7087 was mapped to the proximity of two previously mapped QTLs on chromosome 6D. According to the 508 

consensus map, the genetic map position of rs7087 (42.29) was 8.86 and 11.29 cM from IWA619 and IWA7616, 509 

respectively (Kertho et al. 2016). Based on genetic map position, it is likely that rs7087 is correspond to IWA619 or 510 

IWA7616 leaf rust resistance QTLs. Further genetic research will be needed to found the association between rs7087 511 

and previously identified QTLs. 512 

Chromosome 7B 513 

Four previous identified Lr genes (Lr14a, Lr14b, Lr68, and Lr72) and a QTL, QLr.hwwg-7BL, (Lu et al. 2017) were 514 

already mapped on chromosome 7B within the region where rs15705 SNP was identified (Figure 6). Among the 515 

four Lr genes previously mapped on 7B, Lr14a and Lr72 are from durum wheat (T. turgidum diccocides), and two 516 

genes, Lr68 and Lr14b are from common wheat (McIntosh et al. 1995; Herrera-Foessel et al. 2012). Lr68 is an APR 517 

gene and provides a high level of slow rusting resistance (Herrera-Foessel et al. 2012), this suggests that is it 518 
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unlikely rs15705 corresponds to Lr68. Marker rs15705 is a SNP for resistance to PKTTS race and this race is 519 

virulent to the Lr14a gene indicating that rs15705 is unlikely to be Lr14a. Previously reported QTL for chromosome 520 

7BL, QLr.hwwg-7BL, is an APR gene for leaf rust resistance (Li et al. 2014). Based on the relative length distance in 521 

consensus map (Maccaferri et al. 2015), the other QTLs detected on the 7BL >20cM are distanced from the detected 522 

marker. Further studies, such as utilize SSR markers for GWAS, allelism test or diagnostic marker analysis, can 523 

facilitate the determination of the association between rs15705 and reported gene/QTLs on chromosome 7BL.  524 

Chromosome 7D 525 

Three known Lr genes Lr19, Lr29, and Lr34, and three QTLs, qNV.Lr-7D (Riaz et al. 2017), QLr.hebau-7DS 526 

(Zhang et al. 2017), and QLrP.sfr-7DS (Schnurbusch et al. 2004), were already mapped on chromosome 7D within 527 

the region where rs42447 was identified (Fig. 6). Lr19, Lr29, and Lr34 were derived from Thinopyron ponticum, 528 

Thinopyron ponticum, and T. aestivum Terenzio, respectively. As no genetic material carrying Thinopyron ponticum 529 

was used in our GWAS analysis, rs42447 is unlikely to represent Lr19 and Lr29. Likewise, three other QTL, QTL, 530 

qNV.Lr-7D, QLr.hebau-7DS, and QLrP.sfr-7DS, and Lr34 gene are APR, therefore it is unlikely rs42447 be these 531 

gene/QTLs. As a result, rs42447 was found on chromosome 7D where no Pt resistance genes or QTLs had 532 

previously been identified. Therefore, the SNP rs42447 identified in genomic region 7D (83.31 cM) appears to be 533 

related to novel sources of resistance and could be valuable in breeding programs to enhance resistance to leaf rust.  534 

Annotation of SNP sequences to the genes in Triticum aestivum L. proved our findings that these genomic regions 535 

encode proteins that are key components of signaling pathways that are activated in response to biotic and abiotic 536 

stresses. In general, these stresses change the expression of related genes in plants, for instance, increase or decrease 537 

of essential metabolites, changes in enzyme activity and protein synthesis, also the production of novel proteins 538 

(Zhu, 2016). For example, ATP binding protein (Lagudah 2011), ATPase activity (Heath, 1997), catalytic activity 539 

(Dmochowska-Boguta et al. 2015), carbohydrate-binding (Wu et al. 2020), nucleic acid binding (Zhang et al. 2019) 540 

were reported in earlier studies to be linked to plant diseases resistance. These genes are present in genomic regions 541 

associated with resistance traits and can be considered possible candidate genes for resistance against diseases as 542 

well as for future cloning of these loci. 543 

Conclusions 544 

GWAS is an effective strategy for the discovery of molecular markers related to genes and QTLs in wheat. In this 545 

research, we assessed a diverse panel of 320 varieties and landraces of Iran for their response to five Pt races, 546 

PKTTS, PKTTT, PFTTT, PDTRR, and PDKTT, and have been detected ten wheat accessions highly resistant to all 547 

five Pt races. Totally, GWAS identified 19 QTL highly significant for resistance to leaf rust on chromosomes 1B, 548 

2B, 3A, 3B, 4A, 5B, 5D, 6A, 6B, 6D, 7B, and 7D. Among these, a total of three SNP, on chromosomes 5D, 6A, and 549 

7D, respectively, have been identified on genomic regions where no previously cataloged Lr genes has been 550 

reported from T. aestivum that represents potential novel loci for leaf rust resistance. Other significant SNPs, have 551 

been identified near known Lr genes or QTLs, and so, further research is required to approve the detected markers in 552 

this study to determine their relationship. These markers can be important targets for marker-assisted selection and 553 

fine mapping of functional genes after further validation. 554 
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Fig 6 Chromosomal locations of quantitative trait loci (QTL) detected significant for resistance to leaf rust (LR) in this study relative to known Lr genes or QTL 645 

on those chromosomes based on the wheat consensus genetic map (Maccaferri et al. 2015). Markers detected significant for leaf rust resistance in this study are 646 

all in blue font and the previous detected genres/QTls are red fount. For better readability, not all markers are presented in this figure647 
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