

1 **Interaction of human keratinocytes and nerve fiber terminals at the neuro-cutaneous unit**

2 Christoph Erbacher¹, Sebastian Britz², Philine Dinkel^{1, #}, Thomas Klein¹, Markus Sauer³,

3 Christian Stigloher², Nurcan Üçeyler^{1*}

4 ¹Department of Neurology, University of Würzburg, 97080 Würzburg, Germany

5 ² Imaging Core Facility, Biocenter, University of Würzburg, 97074 Würzburg, Germany

6 ³Department of Biotechnology and Biophysics, University of Würzburg, 97074 Würzburg,

7 Germany

8

9 Current affiliation:

10 [#]Institute of Clinical Genetics, Technical University Dresden, 01307 Dresden, Germany

11

12 **Corresponding author:**

13 Prof. Dr. Nurcan Üçeyler, MD

14 Department of Neurology, University of Würzburg,

15 Josef-Schneider-Str. 11, 97080 Würzburg, Germany

16 Phone: +49 931 201 23542

17 Fax: +49 931 201 623542

18 e-mail address: ueceyler_n@ukw.de

19

20

21

22

23

24

25 **Abstract:**

26 Traditionally, peripheral sensory neurons hold the monopole of transducing external stimuli.

27 Current research moves epidermal keratinocytes into focus as sensors and transmitters of

28 nociceptive and non-nociceptive sensations, tightly interacting with intraepidermal nerve fibers at

29 the neuro-cutaneous unit. In animal models, epidermal cells establish close contacts and ensheathe

30 sensory neurites. However, ultrastructural morphological and mechanistic data examining the

31 human keratinocyte-nociceptor interface are sparse. We investigated this exact interface in

32 human skin applying super-resolution array tomography, expansion microscopy, and structured

33 illumination microscopy. We show keratinocyte ensheatheent of nociceptors and connexin 43

34 plaques at keratinocyte-nociceptor contact sites in healthy native skin. We further derived a fully

35 human co-culture system, modeling ensheatheent and connexin 43 plaques *in vitro*. Unraveling

36 human intraepidermal nerve fiber ensheatheent and interaction sites marks a milestone in

37 research at the neuro-cutaneous unit. These findings are mind-changers on the way to decipher

38 the mechanisms of cutaneous nociception.

39

40 **1. Introduction**

41 Impairment of the thinly-myelinated A-delta and unmyelinated C-nerve fibers may
42 underlie small nerve fiber pathology observed in patients with peripheral (Birklein, 2005;
43 Lacomis, 2002; Üçeyler *et al.*, 2013) and central nervous system diseases (Nolano *et al.*, 2008;
44 Weis *et al.*, 2011). Cutaneous nerve fiber degeneration and sensitization are hallmarks of small
45 fiber pathology, however, the underlying pathomechanisms are unclear (Üçeyler, 2016). The
46 impact of skin cells on nociceptive and non-nociceptive stimulus detection is increasingly
47 recognized (Lumpkin and Caterina, 2007; Stucky and Mikesell, 2021).

48 Physiologically, keratinocytes are the predominant cell type in the epidermis and actively
49 participate in sensory signal transduction and nociception at the neuro-cutaneous unit (NCU). In
50 animal *in vitro* cell culture models, selective thermal, chemical, or mechanical keratinocyte
51 stimulation led to activation of co-cultured peripheral neurons (Klusch *et al.*, 2013; Mandadi *et*
52 *al.*, 2009; Sondersorg *et al.*, 2014). Using animal models, nociceptive behavior was induced in
53 mice selectively expressing transient receptor potential vanilloid 1 (TRPV1) in keratinocytes after
54 capsaicin treatment (Pang *et al.*, 2015). Mice expressing channelrhodopsin-2 in keratinocytes also
55 displayed pain behavior and intraepidermal nerve fiber (IENF) derived evoked nerve fiber action
56 potentials during laser stimulation (Baumbauer *et al.*, 2015).

57 For underlying functional stimulus transduction of keratinocytes and IENF, signaling
58 molecules such as adenosine triphosphate (ATP) are increasingly recognized (Mandadi *et al.*,
59 2009; Moehring *et al.*, 2018). Hemichannels or gap junctions formed by connexins and
60 pannexins, or vesicular transport may conduct ATP signaling towards afferent nerve fibers (Barr
61 *et al.*, 2013; Maruyama *et al.*, 2018; Sondersorg *et al.*, 2014). Signaling might happen via
62 specialized synapse-like connections to IENF (Talagas *et al.*, 2020b). In *Danio rerio* and
63 *Drosophila* models, nerve endings are frequently ensheathed by epidermal cells (Jiang *et al.*,

64 2019; O'Brien *et al.*, 2012) and tunneling of fibers through keratinocytes in human skin has
65 recently been shown via confocal microscopy (Talagas *et al.*, 2020a). However, the exact
66 mechanisms and mode of signal transduction at the NCU remain elusive.

67 In an embryonal stem cell-derived 2D human cell culture model, physical contacts
68 between sensory neurons and keratinocytes were observed hinting towards close coupling
69 (Krishnan-Kutty *et al.*, 2017). Still, direct and systematic information on ensheathment of human
70 IENF is scarce and ultrastructural architecture or molecular processes remain obscure.
71 Deciphering these contact zones in the human system may profoundly change the understanding
72 of somatosensory processing in health and disease. Ultimately, altered keratinocyte signal
73 molecule release or dysfunctional signaling sites may contribute to cutaneous pain perception
74 (Talagas *et al.*, 2017), which could open novel avenues for treatment of small fiber pathology and
75 neuropathic pain (Keppel Hesselink *et al.*, 2017).

76 We aimed at studying exactly these contact zones between keratinocytes and IENF at the
77 NCU in the human system to gain insights on ultrastructure and potential crosstalk in the
78 epidermis. A correlative light and electron microscopy approach via super-resolution array
79 tomography (srAT) in high-pressure frozen, freeze substituted samples (Markert *et al.*, 2017) and
80 expansion microscopy (ExM) (Tillberg *et al.*, 2016) in diagnostically relevant paraformaldehyde-
81 fixed tissue sections revealed ensheathment and pore protein connexin 43 (Cx43) plaques in
82 native human skin. We further succeeded to establish a fully human keratinocyte and sensory
83 neuron co-culture, which inherited both features of the NCU. We propose a crucial role of nerve
84 fiber ensheathment and Cx43-based keratinocyte-fiber contacts in neuropathic pain and small
85 fiber pathology widening the scope of somatosensorics to non-neuronal cells.

86

87

88 **Materials and methods**

89 **Participants**

90 Healthy volunteers were recruited at the Department of Neurology, University of
91 Würzburg, Germany. For srAT, a 2-mm skin punch biopsy was taken from the back at th10 level
92 (device by Stiefel GmbH, Offenbach, Germany) under local anesthesia following a standard
93 procedure (Üçeyler *et al.*, 2010). Tissue sections for ExM and cell cultures were acquired from 6-
94 mm skin biopsy samples taken from the upper thigh according to a previously published protocol
95 (Karl *et al.*, 2019). Our study was approved by the Würzburg Medical School Ethics committee
96 (#135/15).

97

98 **srAT sample preparation**

99 Biopsies were immediately wetted in freezing solution composed of 20 % (w/v)
100 polyvinylpyrrolidon in phosphate buffered saline (PBS) (0.1 M, pH = 7.4) to prevent
101 dehydration. The epidermal layer was manually dissected from dermal and subdermal
102 compartments of the skin sample and transferred into a type A aluminium specimen carrier
103 (Leica Microsystems, Wetzlar, Germany) with recesses of 200 µm containing
104 polyvinylpyrrolidon and capped with a second carrier without recess (Leica Microsystems,
105 Wetzlar, Germany). Subsequent high pressure freezing and freeze substitution was applied as
106 described previously (Markert *et al.*, 2016). 100-nm serial sections were cut via a histo Jumbo
107 Diamond Knife (DiATOME, Biel, Switzerland) with an ultra-microtome EM UC7 (Leica
108 Microsystems, Wetzlar, Germany). Sections were held together as array by adhesive glue (pattex
109 gel compact, Henkel, Düsseldorf-Holthausen, Germany), mixed with xylene (AppliChem,
110 Darmstadt, Germany) and Spinel Black 47400 pigment (Kremer pigmente, Aichstetten,

111 Germany), which was added to the lower side of the LR-White block prior to cutting. Ribbons
112 were collected on poly-L-lysine coated slides (Thermo Fisher Scientific, Waltham, MA, USA).

113

114 **srAT immunolabeling, fluorescence imaging, and image processing**

115 Primary and secondary antibodies used for srAT experiments are listed in Table 1.

116 Ultrathin serial tissue sections were encircled via a pap pen (Science Services, München,
117 Germany). A blocking solution containing 0.05 % (v/v) tween20 and 0.1% (w/v) bovine serum
118 albumin in PBS was added for 5 min. Primary antibodies diluted 1:400 in blocking solution were
119 then dropped onto the slides while the initial solution was withdrawn by applying filter paper on
120 the adjacent side of the encircled area. Primary antibodies were incubated for 1 hour in closed
121 humid chambers at room temperature (RT). Samples were washed four times with PBS in 5 min
122 intervals. Afterwards, secondary antibodies were applied for 30 min at RT at 1:400 dilution in
123 blocking solution containing 1:10,000 4',6-diamidino-2-phenylindole (DAPI; Sigma Aldrich, St.
124 Louise, MO, USA) in the closed humid chamber. Samples were washed again four times with
125 PBS and a last washing step with double distilled H₂O (ddH₂O) for 5 min was added. Slides were
126 dried with filter paper, mounted in mowiol 4-88 (Roth, Karlsruhe, Germany), and covered with
127 high precision cover glass No. 1.5H (Roth, Karlsruhe, Germany).

128

129 **Table 1:** Antibodies and directly conjugated markers. Used reagents in each experiment are
130 indicated under the column 'Application'.

Primary antibodies	Company	Catalog number	Application
Actin ExM 546 (phalloidin derivate)	Chrometa, Kortenaken, Belgium	na	ExM
Cholera Toxin Subunit B (Recombinant), Alexa Fluor 488 Conjugate	Thermo Fisher Scientific, Waltham, ME, USA	C34775	ICC
Monoclonal mouse anti- protein gene product 9.5	AbD serotec, Puchheim, Germany	7863-1004	srAT
Monoclonal rabbit anti-S100 β	Abcam, Cambridge, UK	ab52642	srAT
Mouse anti-Neurofilament marker (pan-neuronal, cocktail)	BioLegend, San Diego, CA, USA	837801	ICC
Polyclonal guinea pig anti- Desmoplakin	Progen, Heidelberg, Germany	DP-1	srAT
Polyclonal rabbit anti- protein gene product 9.5	Zytomed, Berlin, Germany	516- 3344	ExM
Polyclonal rabbit anti-Connexin 43	Sigma Aldrich, St. Louise, MO, USA	C6219	srAT, ExM, ICC
Rabbit polyclonal anti- Synaptophysin	Merck, Darmstadt, Germany	AB9272	ICC
Wheat germ agglutinin, Alexa Fluor 647 conjugate	Thermo Fisher Scientific, Waltham, ME, USA	W32466	ICC
Secondary antibodies			
Alexa Fluor 488 donkey anti-mouse	Dianova, Hamburg, Germany	715-545-150	srAT, ExM
CF568 donkey anti-rabbit	Biotium, Fremont, CA, USA	20098-1	ICC
CF633 goat anti-rabbit	Biotium, Fremont, CA, USA	20122-1	ExM, ICC
Cy3 goat anti-guinea pig	Dianova, Hamburg, Germany	106-165-003	srAT
SeTau-647 anti-Rabbit	Conjugated antibody kindly provided by Prof. Markus Sauer, Department of Biotechnology and Biophysics, University of Würzburg, Germany.		srAT

131 Abbreviations: ExM, expansion microscopy; ICC, immunohistochemistry; srAT, super-resolution
132 array tomography

133 Image acquisition was performed with the Zeiss ELYRA S.1 SR-SIM with 63x oil-
134 immersion objective plan-apochromat 63x, NA 1.4 Oil Dic M27 and ZEN (black edition)
135 software (all Zeiss, Oberkochen, Germany) with PCO Edge 5.5 sCMOS camera (PCO, Kelheim,
136 Germany), using three rotations. 700 nm z-stacks in 100 nm increments around the observed
137 focal point of DAPI staining per section were imaged. Fluorescence images were processed via
138 image J (version 1.51n, National Institute of Health, Bethesda, MD, USA). Channels were
139 assigned to a defined color code and minimum and maximum of the image histogram adjusted for
140 each channel separately.

141 The image slice with the brightest signal and best focus within the z-stack was determined for
142 each channel separately to adjust for different light emission wavelength of fluorophores. Each
143 channel was exported as a portable network graphic (png) format file.

144

145 **Electron microscopy sample preparation and imaging**

146 For contrasting and carbon coating of the samples, cover glasses were removed and
147 mowiol was washed out with ddH₂O and blow dried. The object glass area containing the ribbon
148 was cut out with a diamond pen (Roth, Karlsruhe, Germany). A 2.5% (w/v) uranyl acetate
149 (Merck, Darmstadt, Germany) in ethanol solution was dropped onto the sections and incubated
150 for 15 min at RT. Sections were briefly washed in 100% ethanol, 50% (v/v) ethanol in ddH₂O,
151 and 100% ddH₂O, followed by 10 min incubation at RT with 50% (v/v) lead citrate solution in
152 decocted H₂O containing 80 mM lead citrate (Merck, Darmstadt, Germany) and 0.12 M
153 trisodium citrate (AppliChem, Darmstadt, Germany) (Reynolds, 1963). After washing in ddH₂O,
154 sections were dried and attached to specimen pin mounts via carbon conductive tape (Plano,
155 Wetzlar, Germany). Conductive silver (Plano, Wetzlar, Germany) was applied, connecting the
156 glass with the edges of the holder. A 5-nm carbon coat was applied, using a CCU-010 carbon

157 coating machine (Safematic, Bad Ragaz, Switzerland). Serial sections were imaged in a JSM-
158 7500F field emission scanning electron microscope (SEM; JEOL, Tokyo, Japan) with an
159 acceleration voltage of 5 kV, a probe current of 0.3 nA, and a working distance of 6.0 mm. At
160 each area of interest, several images with increasing magnification were acquired.

161

162 **srAT image processing, correlation, and modelling**

163 Montage and alignment of scanning electron microscopy (SEM) images were achieved
164 via the ImageJ plugin TrakEM2 (version 1.0a, 04.07.2012) (Cardona *et al.*, 2012; Schindelin *et*
165 *al.*, 2012). Images corresponding to the same section at different magnifications were merged
166 within one layer with least squares montage in similarity mode and an alignment error of 10-20
167 pixel. After each z-layer was positioned, serial 100-nm sections were orientated via align layers,
168 using similarity as transformation mode and 20-100 pixel alignment error. The area of interest in
169 each layer was exported in a tagged image file (tif) format. To correlate immunofluorescence (IF)
170 and SEM information, associated IF channel images and montaged SEM images were loaded into
171 the vector graphics editor program Inkscape (version 0.92.3, 11.03.2018) and processed
172 according to a standardized protocol (Markert *et al.*, 2017). IF channel images were overlaid and
173 linked, leaving only the DAPI channel visible as first image layer. Opacity of IF images was
174 reduced and DAPI labeled heterochromatin was used as an independent and unbiased landmark
175 for correlation. Linked IF images were linearly transformed (rotation and resizing, but no
176 distortions) to fit the cell nuclei orientation of the EM image. When adequate overlay was
177 achieved, a rectangular area containing the region of interest (ROI) was extracted and each layer
178 exported as a png file. Corresponding IF and EM images were then imported into the image
179 editor GIMP2 (Version 2.10.0, 02.05.2018) for appropriate overlay and exported as png files. For
180 tracing IENF in 3D, the open source software package IMOD was used (Kremer *et al.*, 1996).

181 Alternating 100-nm sections were imaged via IF and correlated with their corresponding EM
182 images. Within the 100-nm stepwise srAT stack, the trajectory of an IENF was volumetric
183 reconstructed as extrapolated tubular structure. Its position was determined based on PGP9.5
184 localization available for every second section. Furthermore, distinguishable electron density
185 compared to keratinocyte cytoplasm and absence of desmosomes between adjacent keratinocytes
186 were considered to identify the IENF in the EM context.

187

188 **Skin cryosections**

189 PFA fixed 10- μ m skin cryosections were blocked in 10% BSA(w/v) in PBS for 30 min
190 and incubated with primary antibodies against 1:100 PGP9.5 and Cx43 in 0.1% (w/v) saponin
191 and 1% (w/v) BSA in PBS over night at 4°C. Applied antibodies are listed in Table 1. After
192 washing with PBS, secondary antibodies were applied for 2 h at RT with 1% BSA(w/v) in PBS.
193 After washing, sections were covered with droplets of PBS and stored at 4°C until further
194 processing.

195

196 **Expansion microscopy**

197 ExM was adapted from former published protocols (Tillberg *et al.*, 2016; Zhao *et al.*, 2017).
198 Skin sections were incubated with PBS containing 0.1 mg/ml Acryloyl-X (Thermo Fisher
199 Scientific, Waltham, MA, USA) in dimethyl-sulfoxide (Sigma Aldrich, St. Louis, MO, USA) over
200 night at RT. Afterwards, 33 nM expandable phalloidin derivate Actin ExM 546 (Chrometra,
201 Kortenaken, Belgium), labeling actin cytoskeleton, was applied in PBS with 1% (w/v) BSA and
202 0.1 mg/ml Acryloyl-X for 1 h at RT. Subsequently, a monomer solution containing 8.625% (w/w)
203 sodium acrylate (Sigma-Aldrich, St. Louis, MO, USA), 2.5% (w/w) acrylamide (Sigma-Aldrich,
204 St. Louis, MO, USA), 0.15% (w/w) N,N'-methylenebisacrylamide (Sigma-Aldrich, St. Louis, MO,

205 USA), and 11.7% (w/w) sodium chloride (Sigma-Aldrich, St. Louis, MO, USA) in PBS was added
206 at 4°C for 30 min. Gelation was performed after replacement with fresh monomer solution,
207 additionally containing 0.2% (w/v) ammonium persulfate (Sigma-Aldrich, St. Louis, MO, USA),
208 0.2% (v/v) tetramethylethylenediamine (Sigma-Aldrich, St. Louis, MO, USA), and 0.01% 4-
209 Hydroxy-TEMPO (w/v) (Sigma-Aldrich, St. Louis, MO, USA). Sections were first incubated at
210 4°C for 30 min followed by 2h at 37°C. A gelation chamber assembled with each two coverslip
211 pieces No1 (R. Langenbrinck, Emmendingen, Germany) on the side as spacers and one on top,
212 serving as a lid, in a humidified plastic chamber was used to enable uniform gelation. Gelated
213 samples were digested in 4 U/ml proteinase K buffer (New England Biolabs, Ipswich, MA, USA)
214 with 50 mM Tris pH 8.0 (Serva, Heidelberg, Germany), 50 mM EDTA (Sigma-Aldrich, St. Louis,
215 MO, USA), 0.5% (v/v) Triton X-100 (Thermo Fisher Scientific Scientific, MA, USA) and 0.8 M
216 guanidine HCl (Sigma-Aldrich, St. Louis, MO, USA) for 2 h at 60°C. Subsequently, gels were
217 washed 10 min at RT with PBS, then with 1:2,500 DAPI (Sigma Aldrich, St. Louise, MO, USA)
218 in PBS for 20 min at RT and again 10 min in BPS at RT. Gels were transfer into a dark petri dish
219 with 100x times final gel volume of sterile ddH₂O with a razor blade. Gels were expanded for at
220 least 1 h at RT before direct post-expansion imaging or storage at 4°C.

221 Labeled sections were imaged both in pre-expansion and post-expansion state with an
222 DMi8 inverse microscope via 20x dry objective HC PL FLUOTAR L 20x/0.40, 11506243, LAS X
223 software, and DMC300G monochrome camera (all Leica Microsystems, Wetzlar, Germany) to
224 determine the expansion factor via manual alignment in inkscape. Further, imaging was performed
225 using the ELYRA S.1 SR-SIM with 63x water-immersion objective C-Apochromat, 63 x 1.2 NA,
226 441777-9970 (all Zeiss, Oberkochen, Germany), and a PCO Edge 5.5 sCMOS camera (PCO,
227 Kelheim, Germany). Gels were imaged inside poly-D lysine (Sigma Aldrich, St. Louise, MO,
228 USA) coated imaging chambers (Thermo Fisher Scientific, Waltham, ME, USA) to prevent

229 drifting. Non-computed (widefield) images were used. Min/Max values were processed via ImageJ
230 (version 1.51n, National Institute of Health, Bethesda, MD, USA) for visualization.

231

232 **Fully human co-culture system**

233 Human induced pluripotent stem cells (iPSC) derived from fibroblasts were differentiated
234 into sensory neurons of a healthy control cell line as previously described (Klein et al., submitted).
235 Co-culture chambers (ibidi, Gräfelfing, Germany) were attached to 12-mm BioCoat® Poly-D-
236 Lysine/Laminin coverslips (Corning, New York, NY, USA). Both inner chambers were
237 additionally coated with 1:50 matrigel growth factor reduced (Corning, Corning, New York, NY,
238 USA) at 37°C for 30 min. Four-week old neurons were detached via TrypLE (Thermo Fisher
239 Scientific, Waltham, MA, USA), transferred into falcon tubes containing DMEM/F12 (Dulbecco's
240 Modified Eagles Medium/Nutrient Mixture F-12; Thermo Fisher Scientific, Waltham, MA, USA)
241 at 37 °C, and centrifuged for 3 min with 500 x g at RT.

242 Conditioned neuronal medium, consisting of DMEM/F12 GlutaMAX + 1X B-27 Plus
243 Supplement + 1X N-2 Supplement + 100 U/ml 1% penicillin/ streptomycin (pen/strep; all Thermo
244 Fisher Scientific, Waltham, MA, USA) + 20 ng/ml BDNF + 20 ng/ml GDNF + 20 ng/ml NGFb
245 (all Peprotech, Rocky Hill, NJ, USA) + 200 ng/ml ascorbic acid (Sigma-Aldrich, St. Louis, MO,
246 USA), spiked with 10 µM floxuridine (Santa Cruz Biotechnology, Dallas, TX, USA), was
247 withdrawn prior to TrypLE treatment, filtrated via 0.2 µm syringe filters (Sarstedt, Nümbrecht,
248 Germany) and kept at 37°C. Neurons were resuspended in 70 µl of filtered conditioned neuronal
249 medium and seeded into one chamber compartment and acclimated for one week. Healthy control-
250 derived primary keratinocytes were acquired and cultured via routine methods (Karl *et al.*, 2019)
251 and seeded into the corresponding compartment. The chamber insert barrier separating the
252 associated chambers was removed after 24 h and medium exchanged either with fresh keratinocyte

253 medium, comprising of EpiLife Medium supplemented with 1% EpiLife defined growth
254 supplement, and 1% pen/strep (all Thermo Fisher Scientific, Waltham, USA) or stored conditioned
255 neuronal medium. After 6 days, co-cultures were fixed with 4% PFA (v/v) in PBS^{Ca⁺⁺/Mg⁺⁺} (PBS⁺⁺)
256 at RT for 15 min and washed three times 5 min in PBS. Briefly, coverslips were treated with 10
257 µg/ml wheat germ agglutinin, conjugated with Alexa Fluor 647 (WGA-647; Thermo Fisher
258 Scientific, Waltham, MA, USA) in PBS for 10 min at RT and washed two times with PBS.
259 Subsequently cells were blocked 30 min with 10% FCS (v/v) and 0.1% (w/v) saponin in PBS⁺⁺,
260 then labeled either 1:100 anti-Cx43, or 1:100 anti-synaptophysin antibodies for visualization of
261 contact sites over night at 4°C. Antibody solution contained 10% FCS (v/v) and 0.1% saponin (w/v)
262 in PBS. After washing, secondary antibodies, 1:10,000 DAPI, and 10 µg/ml cholera toxin subunit
263 B, conjugated with Alexa Fluor 488 (Thermo Fisher Scientific Scientific, MA, USA) were applied
264 for 30 min at RT in antibody solution without saponin. Coverslips were transferred onto object
265 holders, embedded with mowiol 4-88 (Roth, Karlsruhe, Germany) and -stored at 4°C until further
266 processing.

267

268 **2D co-culture live imaging and fluorescence microscopy**

269 Directly before barrier removal, the co-cultures were transferred into a Lab-Tek chamber
270 system (Thermo Fisher Scientific, Waltham, MA, USA) with two-well compartments. The
271 remaining well was filled with 500 µl PBS⁺⁺. After barrier removal and addition of conditioned
272 neuronal medium, co-cultures were incubated for 2d. For live-imaging, the Lab-Tek slide was
273 transferred to an inverse DMi8 microscope operated on LAS X software (Leica Microsystems,
274 Wetzlar, Germany), equipped with a live imaging chamber (ibidi, Gräfelfing, Germany). Phase
275 contrast images with 20x objective HC PL FLUOTAR L dry 20x/0.40, 11506243 were taken in
276 20 min intervals for 67 h with a DMC2900 color camera (both Leica Microsystems, Wetzlar,

277 Germany), with cells kept at 37°C, with 5% CO₂, and 20% O₂ (both v/v). Single regions were
278 stitched together as overview via Fiji plugin MosaicJ (Thévenaz and Unser, 2007). Min/Max
279 values were processed via ImageJ (version 1.51n, National Institute of Health, Bethesda, MD,
280 USA) for visualization.

281 Fluorescently labeled co-cultures were imaged with an Axio Imager.M2 (Zeiss,
282 Oberkochen, Germany), equipped with spinning disc-confocal system (X-light V1, CrestOptics,
283 Rome Italy) and Spot Xplorer CCD camera (SPOT Imaging, Sterling Heights, MI, USA) operated
284 on VisiView software (Visitron Systems, Puchheim, Germany) for overview and Lattice-SIM for
285 detailed super-resolution analysis with 63x water immersion C-Apochromat 63x/1.2 W Korr UV-
286 VIS-IR M27, 21787-9971-790 and ZEN (black edition) software (all Zeiss, Oberkochen,
287 Germany), with two aligned PCO Edge 4.2 M sCMOS cameras (PCO, Kelheim, Germany).
288 Min/Max values were processed via ImageJ (version 1.51n, National Institute of Health, Bethesda,
289 MD, USA) for visualization. For 3D visualization, Min/Max values of complete z-stacks were
290 adjusted per channel in ZEN (blue edition) software (Zeiss, Oberkochen, Germany) and depicted
291 in 3D mode.

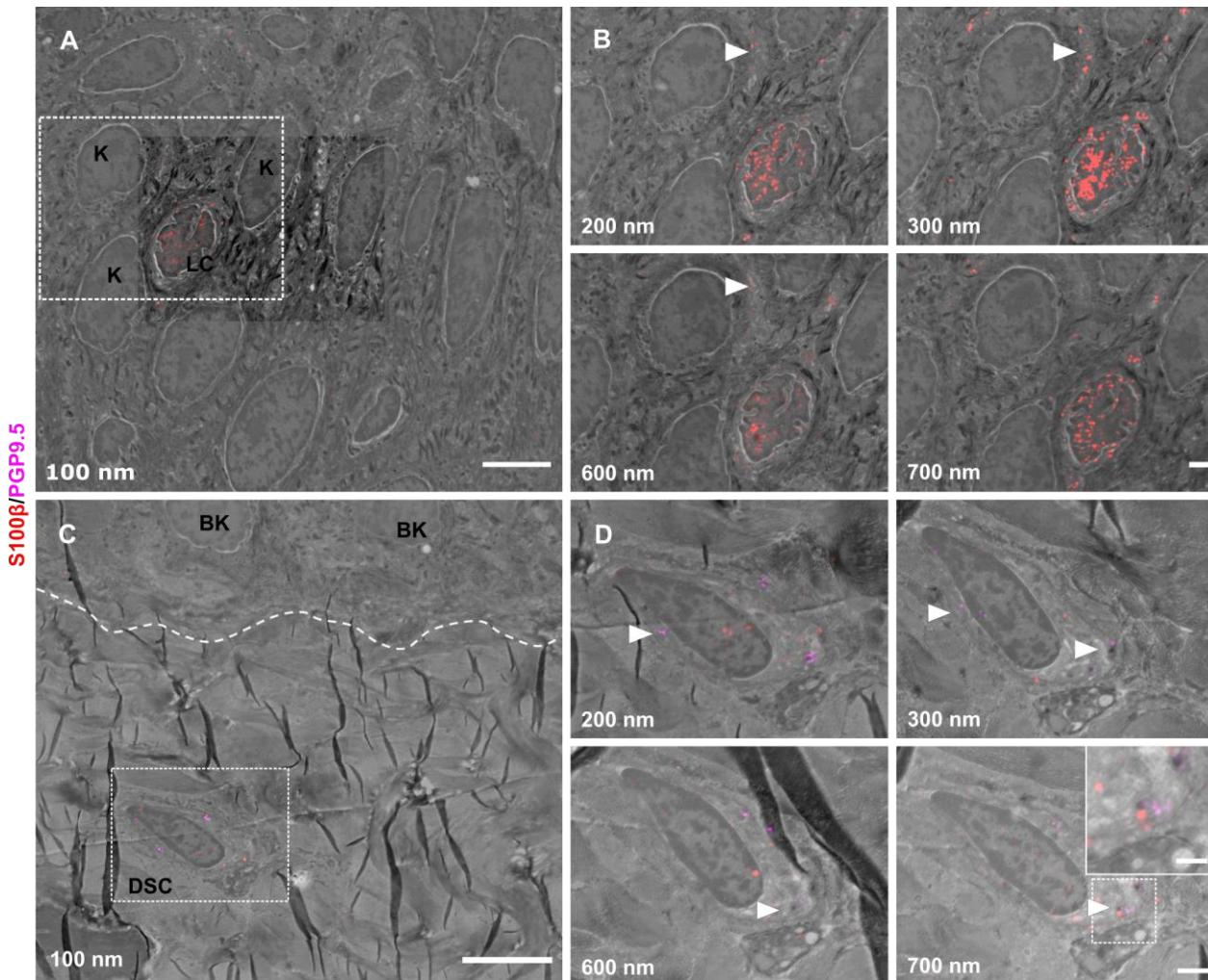

292

293 **Results**

294 **Human intraepidermal nerve fiber segments are engulfed by keratinocytes**

295 While many IENF were passing between neighboring keratinocytes, srAT revealed IENF
296 ensheathed by keratinocytes in all three healthy subjects. This tunneling of fibers was observed
297 both in the basal and upper epidermal layers for several consecutive 100-nm thin sections
298 indicated via PGP9.5 labeling (Figure 1A). IENF intersected closely to either the lateral,
299 posterior, or anterior boundary of the respective keratinocyte and was engulfed by the respective
300 cell for several µm (Figure 1A, Video1). For advanced tracing of an IENF through the epidermis,

301 a representative site was reconstructed (Figure 1B, Video2). Whilst a major part of the respective
302 nerve fiber grew in close contact to and in between keratinocytes, a substantial portion tunneled
303 through one basal keratinocyte. Specificity of antibodies was examined by tracking the
304 fluorophore signal within consecutive slices and negative control via omission of the primary
305 antibody (Figure supplement 1). High pressure freezing and freeze substitution followed by LR-
306 White embedding preserved the ultrastructure and antigenicity of the human skin tissue well,
307 illustrated by identification of collagen fibrils, desmosomes, nuclei, and mitochondria (Figure
308 1C).

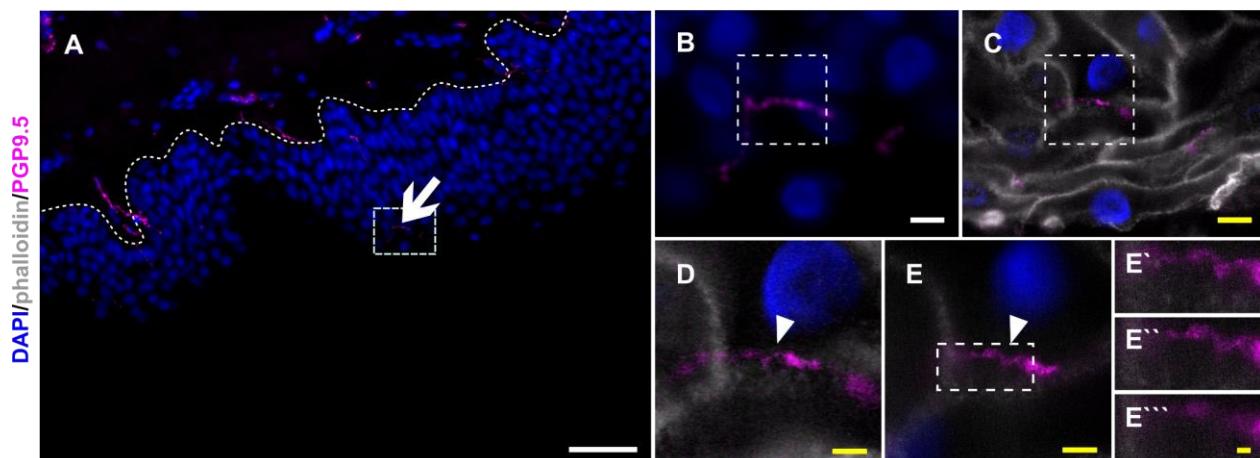


311 (A) Ensheathment of IENF by keratinocytes. Nerve fibers projecting within keratinocytes in skin
312 punch biopsy samples of two male (M1, M2) and one female subject (F1). First tile shows
313 keratinocyte cell bodies (orange), nuclei (blue), and fiber (magenta) in pseudo color. Each row
314 represents four consecutive sections with 100 nm thickness of correlated images, with PGP9.5
315 labeling for IENF (magenta), while dashed insets show higher magnification of the region of
316 interest in inlay. See also Video1. Scale bar 1 μ m, magnified insets 500 nm. (B) 3D

317 reconstruction of IENF processes traversing between and within keratinocytes. (B[~]) 3D
318 visualization of fluorescence signal from srAT approach, white rectangle indicates area in B^{~~}.
319 PGP9.5 (magenta) labeled nerve fiber processes between and in keratinocytes in close apposition
320 to nuclei (blue). DP-1 (yellow) marks intercellular desmosomal junctions as keratinocyte cell
321 boundaries. (B^{~~}) Single plane with overlay of PGP9.5 signal and EM. (B^{~~~}) Extrapolation of
322 IENF trajectory in 3D, based on IF signal and EM ultrastructure with fiber (magenta),
323 keratinocyte cell bodies (yellow-orange), and nuclei (blue); see also Video2. Scale bars 5 μm . (C)
324 Preservation of antigenicity and cellular structure in LR-White embedded epidermal tissue with
325 Overview area from SEM (C[~]). Scale bar 10 μm . (C^{~~}) SIM image of 100-nm skin section with
326 DP-1 (yellow), PGP9.5 (magenta), and DAPI (blue) labeling. Arrowhead indicates PGP9.5-
327 positive IENF processes. Scale bar 10 μm . (C^{~~~}) Correlated SIM and SEM image from dashed
328 rectangle in A. Scale bar 10 μm . (C^{~~~~}) Inset of c showing subcellular preservation of collagen
329 fibers (co), desmosomes (de), keratinocytes (k), mitochondria (m), and nucleus (n). Arrowhead
330 indicates IENF processes also observed via IF in a. Scale bar 1 μm . Abbreviations: DP-1,
331 desmoplakin 1; IENF, intraepidermal nerve fiber; IF, immunofluorescence; LR-White, London
332 Resin-White; PGP9.5, protein gene product-9.5; SEM, scanning electron microscopy; SIM,
333 structured illumination microscopy.

334 **srAT facilitates tracing of further skin cell populations**

335 The combination of cellular markers such as PGP9.5 or S100 β with information on cell
336 morphology from EM scans allowed tracing of various cell populations via srAT in human skin.
337 S100 β -positive Langerhans cells were visualized in the epidermis and their dendritic protrusions
338 were traced between keratinocytes (Figure 2A and B). Within the dermis, S100 β -PGP9.5-co-
339 localized signal identified dermal Schwann cells enwrapping nerve fiber processes (Figure
340 2C-D).



341
342 **Figure 2.** General utility of srAT for tracing skin cells.
343 (A) Epidermis with keratinocytes (K) and Langerhans cell (LC) (B) Single Z-sections of outlined
344 areas. LC was identified via S100 β (red). Arrowheads indicate LC protrusions in contact to K.
345 (C) Upper dermis and basement membrane (dashed line) with basal keratinocytes (BK) and
346 dermal Schwann cell (DSC). (D) Single Z-sections of outlined areas. DSC was identified via
347 PGP9.5 (magenta) and S100 β (red) labeling. Dermal fiber processes are enwrapped by CSC,
348 indicated with arrowheads. Inset in last panel shows magnification of marked fiber. Scale bars 5
349 μ m (A, C), 1 μ m (B, D), and 500 nm (inset in D) Abbreviations: BK, basal keratinocyte; DSC,
350 dermal Schwann cell; K, keratinocyte; LC, Langerhans cell; PGP9.5, protein product 9.5; S100 β ,
351 S100 calcium binding protein B.

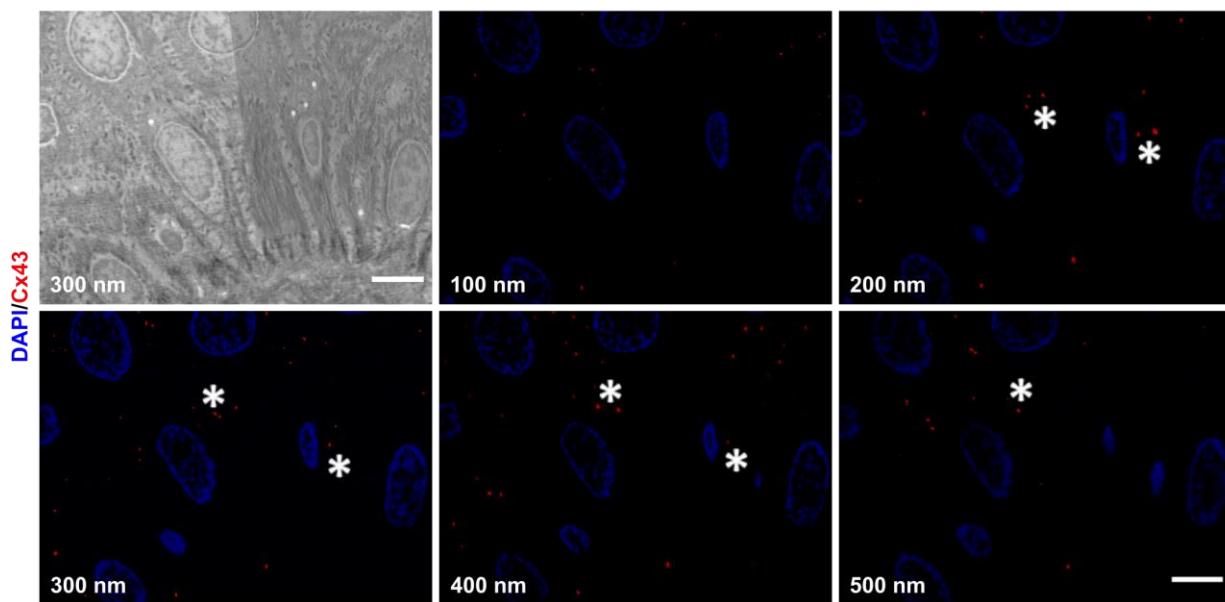
352

353 **Nerve fiber ensheathment can be visualized by ExM in diagnostic skin samples**

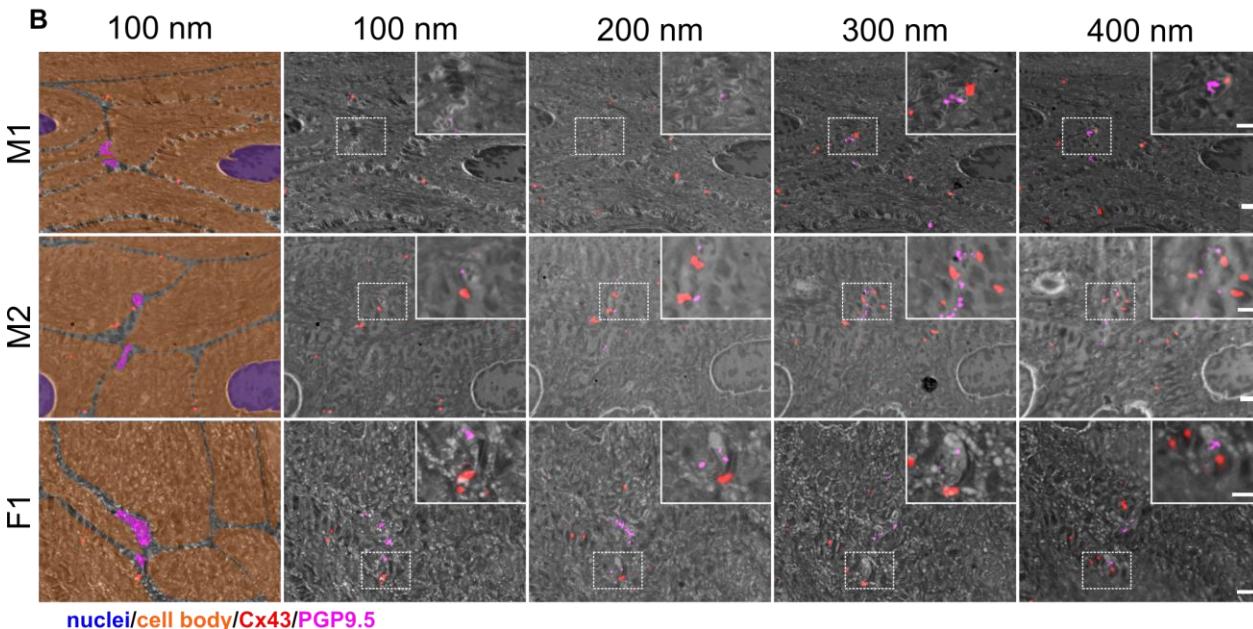
354 To visualize ensheathed nerve fibers also in thicker, diagnostically used skin punch
355 biopsy sections, we applied ExM allowing super-resolution imaging with epifluorescence
356 microscope setups. Expansion factor of samples fell between 4.3-4.4x and showed isotropic
357 epidermal expansion as documented via pre and post-expansion acquired images (Figure 3).
358 Actin filaments were used as a marker to outline epidermal cell bodies and IENF entry and exit
359 points, while cytoplasmic PGP9.5 identified IENF. Nerve fibers were traced via ExM for their
360 course through the epidermis, being ensheathed over several μm (Video3).

Figure 3. Resolving nerve fiber ensheathment in expanded skin tissue.

364 (A) Overview of skin section prior to expansion with PGP9.5-positive IENF (magenta) and
365 nuclear DAPI (blue) signal; dotted line illustrated epidermis-dermis border and arrow indicates
366 IENF. White rectangle marks inset enlarged in B. (B) Enlarged area prior to expansion and (C)
367 matched area post-expansion at same magnification with addition of actin marker phalloidin
368 (grey), white rectangles mark inset area of D and E. (D) enlarged IENF area at 20x magnification
369 and (E) at 63x magnification with arrowheads indicating IENF passing through keratinocyte.
370 Inset in E marks enlarged area in E'-E'''. (E') shows z-plane prior to E, (E'') same z-plane as E,


371 and E``` z-plane step after E. White scale bars indicate pre-expansion state, yellow scale bars
372 were corrected for expansion factor. Scale bars: 50 μ m (A), 5 μ m (B, C), 2 μ m (d, e), 500 nm
373 (E```). Z-step size of 1.2 μ m translates to approximate 276 nm in expanded gel. Abbreviations:
374 Cx43, connexin 43; DAPI, 4',6-diamidino-2-phenylindole; IENF, intraepidermal nerve fiber;
375 PGP9.5, protein gene product-9.5

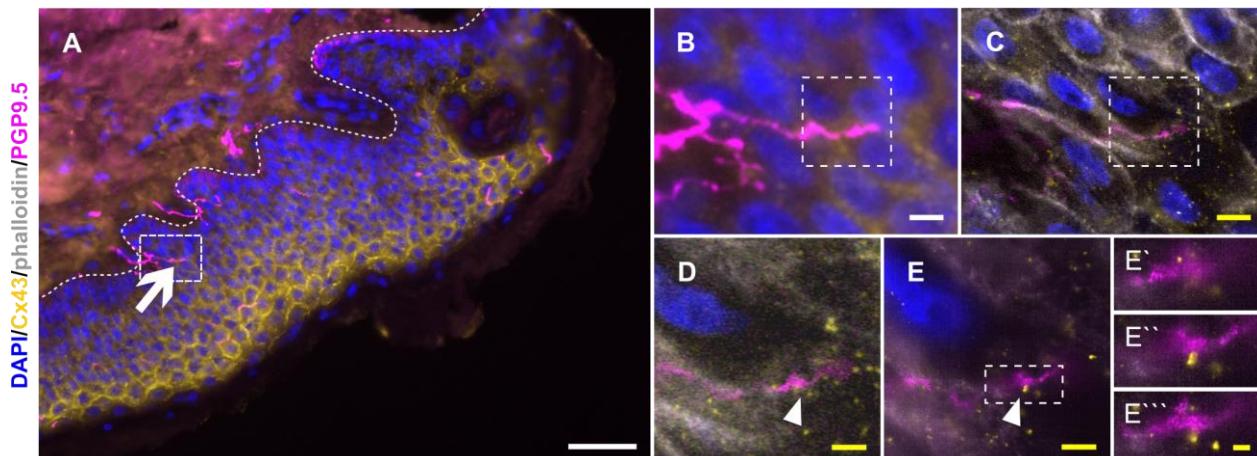
376


377 **Cx43 plaques as potential keratinocyte-nerve fiber communication sites**

378 Connexin hexamers can form hemichannels acting as small pores. In open state, small
379 molecules can pass and be released from the cell, which was already shown for ATP and Cx43
380 (Weber *et al.*, 2004). This may allow purinergic signaling towards neighboring cells or nerve
381 terminals in close proximity. For srAT, Cx43 labeling was assumed a *bona fide* signal, if ≥ 2
382 consecutive sections showed fluorescent staining, translating to 200-400 nm. These clusters were
383 mostly found at keratinocyte-keratinocyte contact zones (Figure 4A), however, distinct Cx43
384 plaques were also identified in direct proximity to single IENF when growing between
385 keratinocytes (Figure 4B).

A

B

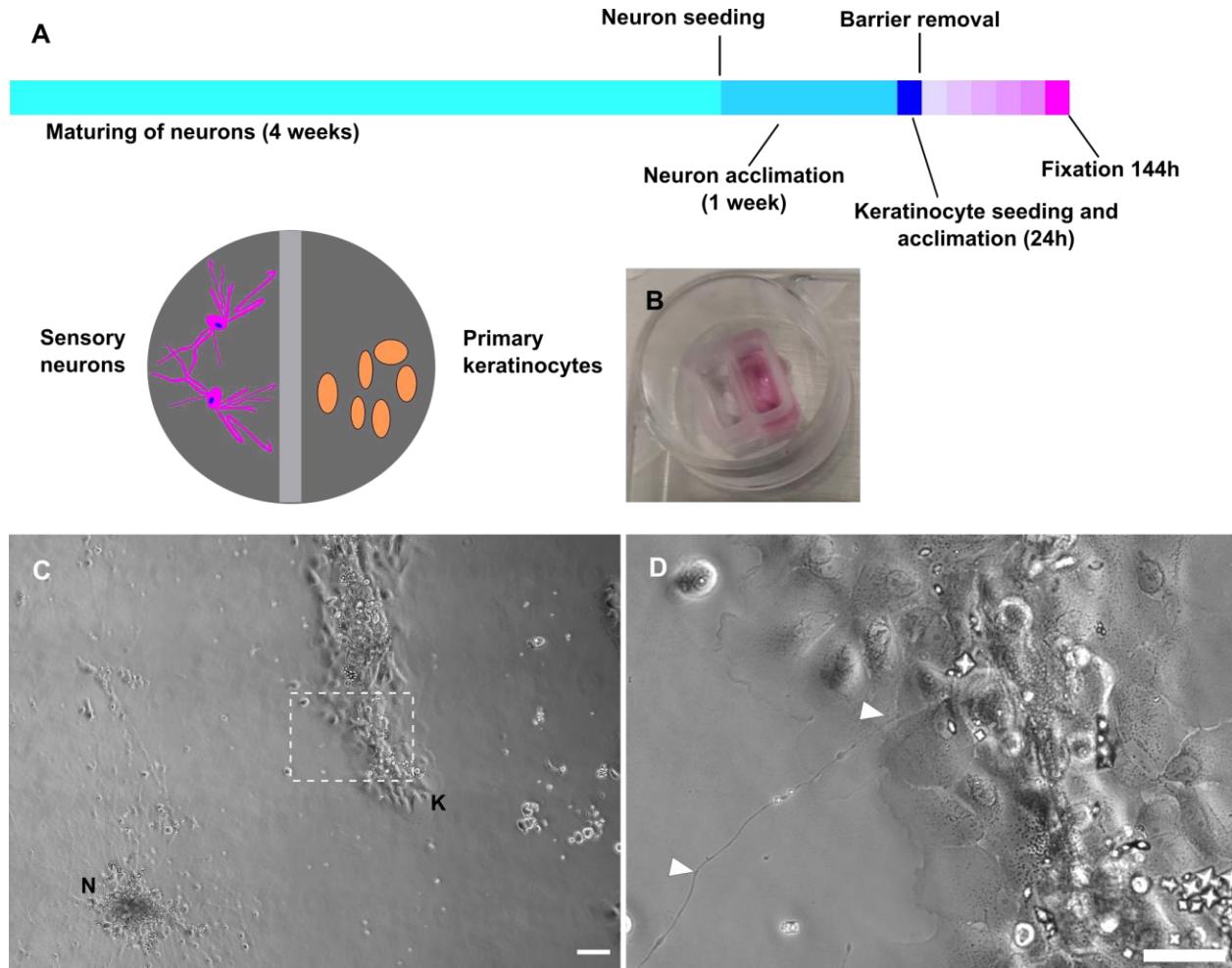


386

387 **Figure 4.** Identification of Cx43 plaques via srAT (A) Tracking of Cx43 plaques in epidermal
388 layers. First panel illustrates SEM overview of epidermal layers corresponding to five
389 consecutive sections of IF images showing Cx43 signal (red) and nuclei (blue). Asterisks show
390 examples of traced Cx43 plaques. (B) Cx43 plaques at keratinocyte-nerve fiber close contact
391 sites. Nerve fibers processing between keratinocytes in skin samples of two male subjects (M1,
392 M2) and one female subject (F1). Each row represents four consecutive sections of 100 nm

393 thickness. First tile shows keratinocyte cell bodies (orange), nuclei (blue) and fiber (magenta), in
394 pseudo color with Cx43 signal (red). Correlated PGP9.5 labeling (magenta) locates at nerve
395 fibers and Cx43 labeling (red) indicates Cx43 plaques. Insets show magnification of contact area.
396 Scale bars: 5 μ m (A), 1 μ m (B), magnified insets 500 nm. Abbreviations: Cx43, connexin 43; IF,
397 Immunofluorescence; PGP9.5, protein gene product-9.5; SEM, scanning electron microscopy.

398 In analogy to nerve fiber ensheathment, we investigated Cx43 accumulations also in
399 expanded diagnostic skin samples. In pre-expansion state, the attribution of single Cx43 plaques
400 to specific sites between keratinocytes or towards IENF was hardly possible, due to the compact
401 structure of the epidermis. However, after expansion, specific Cx43-positive accumulations in
402 direct contact to PGP9.5-positive IENF could be identified (Figure 5; Video3).

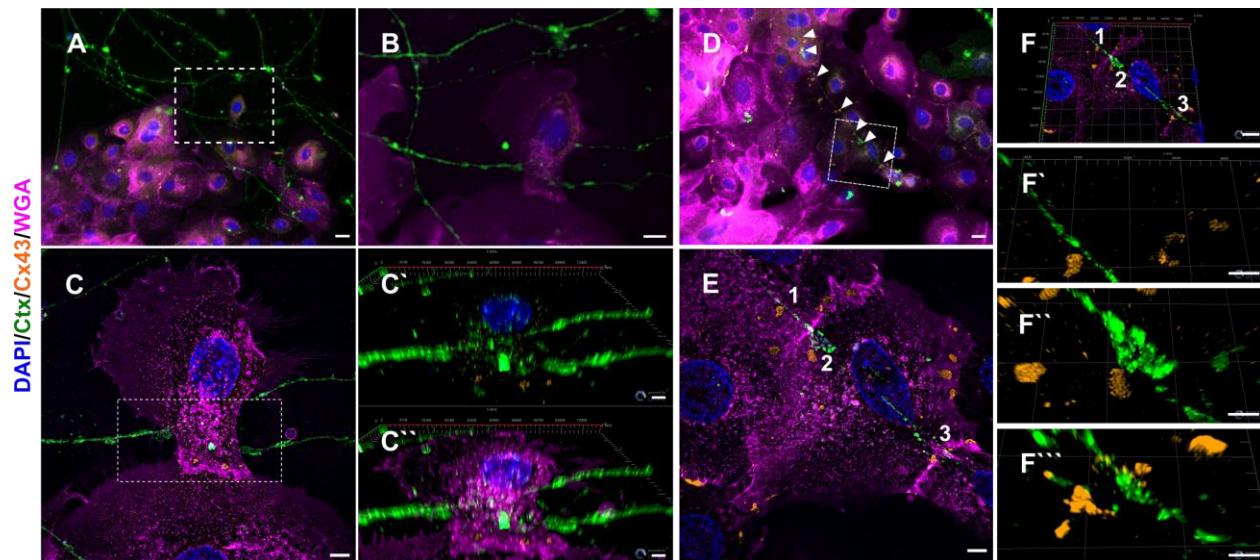

404 **Figure 5.** Cx43 accumulation at keratinocyte-nerve fiber contact site in expanded epidermis.
405 (A) Overview of skin section prior to expansion with PGP9.5-labeled IENF (magenta), Cx43
406 (yellow), and nuclear DAPI (blue); dotted line illustrates epidermis-dermis border and arrow
407 indicates IENF. White rectangle marks inset enlarged in B. (B) Enlarged area prior to expansion
408 and (C) matched area post-expansion at same magnification with addition of actin marker
409 phalloidin (grey), white rectangles mark inset area of D and E. (D) enlarged IENF area at 20x
410 magnification and (E) at 63x magnification with arrowheads indicating Cx43 plaque at IENF.

411 Inset in e marks enlarged area in E`-E```. (E`) shows z-plane prior to E, (E``) same z-plane as E,
412 and E``` z-plane step after E. White scale bars indicate pre-expansion state, yellow scale bars are
413 corrected for expansion factor. Scale bars: 50 μ m (A), 5 μ m (B, C), 2 μ m (D, E), 500 nm (E`-
414 E```). Z-step size of 1.2 μ m translates to approximate 274 nm in expanded gel. Abbreviations:
415 Cx43, connexin 43; IENF, intraepidermal nerve fiber; PGP9.5, protein gene product-9.5.

416

417 **Neurites establish contacts to keratinocytes in fully human co-culture system**

418 Sensory neurons and keratinocytes each formed clusters after seeding into two-compartment
419 chambers (Figure 6A-C). After barrier removal, neurites actively grew towards keratinocytes and
420 established contacts within few days (Figure 6C and D, Video4). Neurite-keratinocyte contacts
421 were apparent, both in conditioned neuronal medium and keratinocyte medium. However,
422 keratinocytes underwent terminal differentiation in neuronal medium, while predominantly
423 maintaining a basal state in keratinocyte medium (Figure supplement 2).

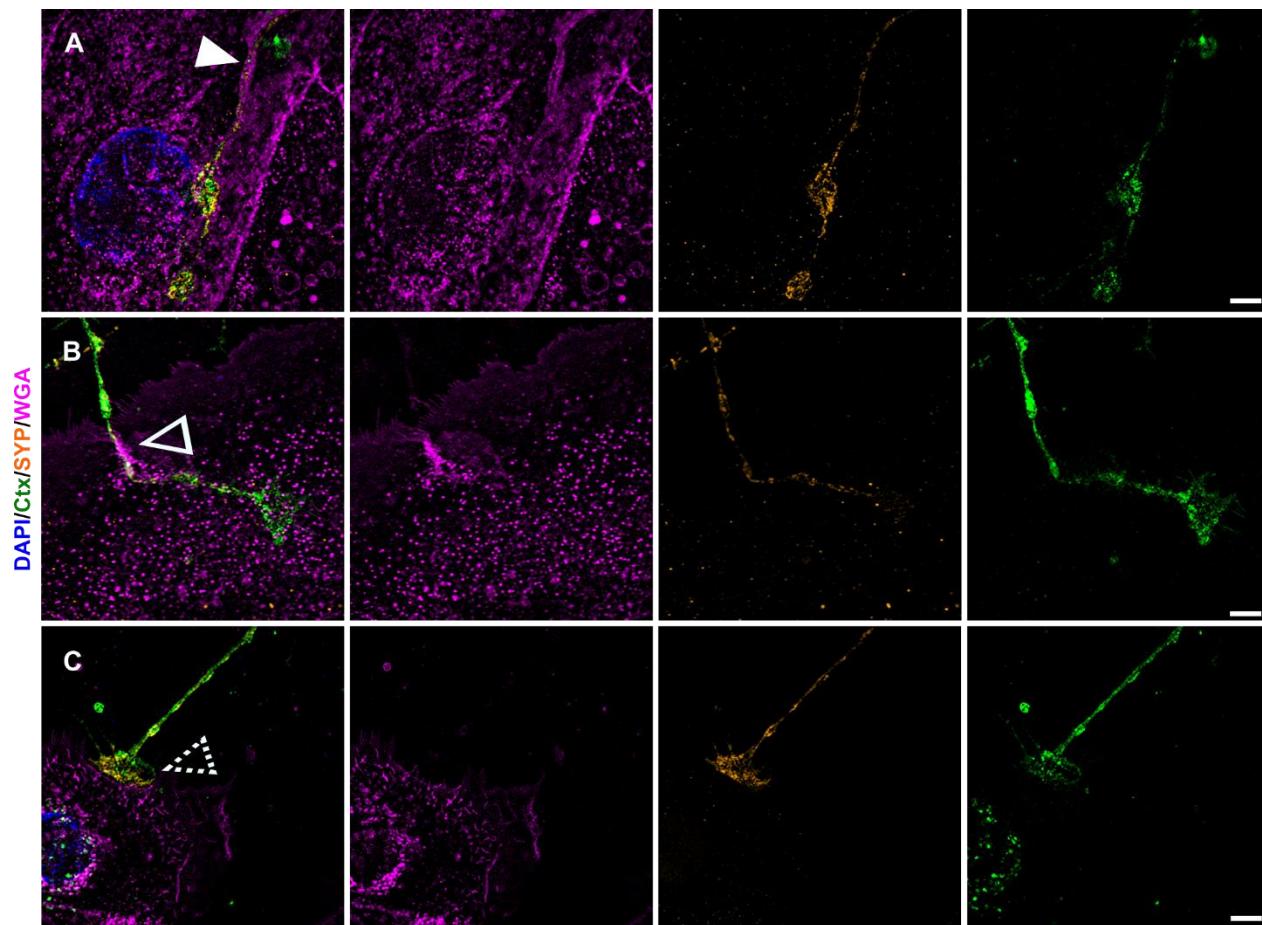

432

433

434

435 **Ensheathment and Cx43 complexes are present in a fully human co-culture model**

436 In order to distinguish the neurite versus keratinocyte membrane, we specifically labeled
437 sensory neurons via cholera toxin subunit B (Ctx) targeting the ganglioside
438 monosialotetrahexosylganglioside 1 (GM1) (Dederen *et al.*, 1994; Tong *et al.*, 1999). Conversely,
439 the membrane of keratinocytes was targeted by wheat germ agglutinin (WGA) (Belleudi *et al.*,
440 2011; Watt, 1983). We identified neurite-keratinocyte contacts using confocal microscopy
441 (Figure 7A and B) and observed ensheathment via lattice-SIM super-resolution microscopy
442 (Figure 7 C-C``). Non-ensheathed neurites frequently passed in close proximity and over
443 keratinocytes (Figure 7D). Intriguingly, Cx43 labeling revealed Cx43 plaques at those passing
444 sites, distributed over several individual keratinocytes (Figure 7D-F````).



445
446 **Figure 7.** Neurite ensheathment and Cx43 plaques in full human co-culture model.

447 (A) Confocal overview image of Ctx-positive sensory neurites (green), Cx43 positive (orange)
448 keratinocytes with membrane labeling of keratinocytes via WGA (magenta) and nuclear DAPI
449 (blue). (B) Inset of ensheathment area from A. (C) Single plane lattice SIM image and respective
450 inset area with 3D visualization of z-stack (2.925 μm depth, 0.196 μm steps) showing nucleus,
451 Cx43, and neurite signal (C') and including WGA (C``). (D) Confocal overview image of Ctx-

452 positive sensory neurites (green), Cx43-positive (orange) keratinocytes with membrane labeling
453 of keratinocytes via WGA (magenta) and nuclei (blue). Arrowheads indicate Cx43 - neurite
454 contact areas. (E) Single plane lattice SIM image and respective inset area with 3D visualization,
455 numbers represent single Cx43 plaques (F) of z-stack (2.925 μm depth, 0.196 μm steps). (F`-F````)
456 detailed neurite - Cx43 contact areas. Co-culture kept in keratinocyte medium. Scale bars: 20 μm
457 (A, D), 5 μm (C-C```, E, F`-F``````), 10 μm (F). Abbreviations: Ctx, cholera toxin subunit B; Cx43,
458 connexin 43; DAPI, 4',6-diamidino-2-phenylindole; SIM, structured illumination microscopy;
459 WGA, wheat germ agglutinin.

460 We further found neurites growing in a gutter-like structure (Figure 8A), merging into the
461 keratinocyte membrane (Figure 8B) and observed neurites that establish bouton-like contacts
462 with keratinocytes (Figure 8C). We included SYP labeling as a marker for small synaptic
463 vesicles, which might serve as another pathway of signal transduction between keratinocytes and
464 IENF (Talagas *et al.*, 2020b). In our iPSC-derived neurons, SYP was distributed throughout the
465 cytoplasm and not restricted to the cytoskeleton (Figure supplement 3). Conversely, only weak
466 SYP labeling, not associated with neurite contact sites, was present in keratinocytes (Figure 8A-
467 C).

469 **Figure 8.** Further keratinocyte-neurite interactions and synaptic vesicular SYP distribution.

470 Single plane lattice SIM images with overlay of nuclear DAPI (blue), WGA (magenta)
471 (yellow), and Ctx (green) signal as first panel, followed by single channel images of WGA, SYP,
472 and Ctx. Distinct contact sites with gutter like structure (A) indicated by filled arrowhead,
473 enwrapping (B) indicated via hollow arrowhead, and bouton-like contact (C) indicated via dashed
474 arrowhead were observed in human co-culture. SYP signal in a-c is predominantly restricted to
475 neurite with sparse dotted labeling in keratinocytes. Co-culture kept in keratinocyte medium.
476 Scale bars: 5 μ m. Abbreviations: Ctx, cholera toxin subunit B; DAPI, 4',6-diamidino-2-
477 phenylindole, SIM, structured illumination microscopy; SYP, synaptophysin; WGA, wheat germ
478 agglutinin.

479

480

481 **Discussion**

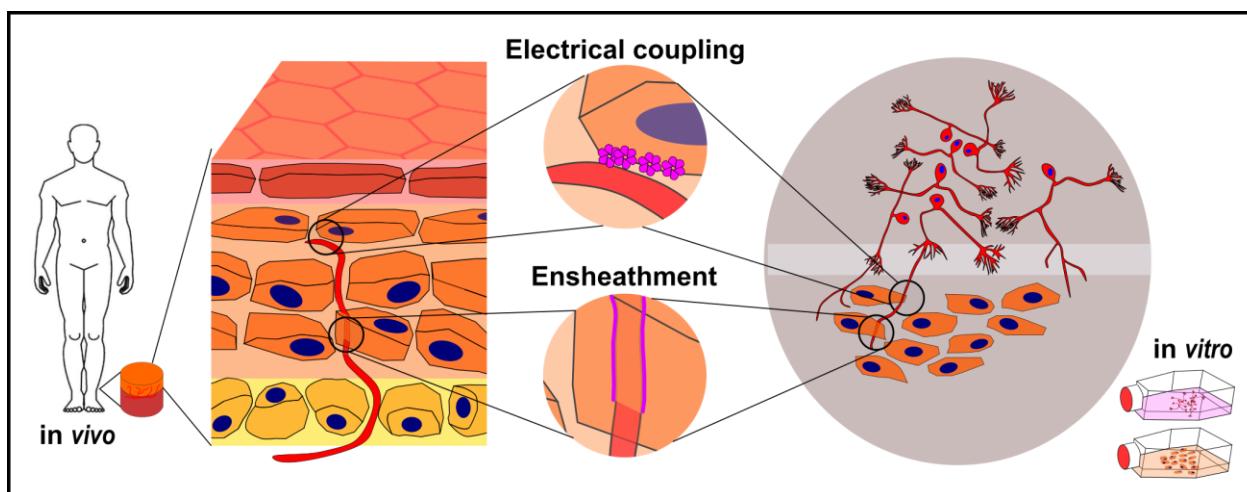
482 We have investigated the NCU in healthy human skin and provide evidence for crucial
483 morphological phenomena, namely nerve fiber ensheathment by keratinocytes and Cx43 contact
484 sites between keratinocytes and IENF. These findings may profoundly change the view on the
485 role neuronal and non-neuronal cells play in the development and maintenance of neuropathy and
486 neuropathic pain.

487 Ensheathment was previously described in model organisms with mono- or double-
488 layered epidermis such as *Drosophila* and *Danio rerio* (Han *et al.*, 2012; O'Brien *et al.*, 2012). In
489 multi-layered mammalian and human skin, only sparse data exist from early EM studies reporting
490 conflicting observations. Given the small diameter of IENF ($\leq 1 \mu\text{m}$) within the dense tissue of
491 the epidermis, application of super-resolution microscopy techniques is inevitably necessary to
492 resolve the exact course of these neurites. Recently, “tunneling” of IENF within keratinocytes
493 was proposed via confocal microscopy in human skin (Talagas *et al.*, 2020a) and via SEM in an
494 heterologous rat-human co-culture model (Talagas *et al.*, 2020b). srAT and ExM techniques used
495 in our study fortify these findings at ultrastructural level and ExM opens the avenue for detailed
496 assessment in diagnostically relevant tissue sections. We further identified Cx43 plaques of
497 keratinocytes in close proximity to IENF as potential components of the NCU exactly size-
498 matching similar connexin and innexin plaques (Agullo-Pascual *et al.*, 2013; Markert *et al.*, 2016;
499 Taki *et al.*, 2018). Keratinocyte-keratinocyte communication via calcium wave propagation and
500 ATP release are canonical functions of Cx43, orchestrating proliferation, wound healing, and
501 inflammatory processes (Martin *et al.*, 2014; Tsutsumi *et al.*, 2009). It is of note that ATP was
502 also found to be a direct signal transducer from keratinocytes to sensory neurites (Cook and
503 McCleskey, 2002; Sondersorg *et al.*, 2014).

504 Interactions at the NCU may have unprecedented implications for a wide range of
505 somatosensory functions in health and disease. In *Drosophila* larvae, a bidirectional guidance
506 mechanism stabilizing existing fibers and limiting fiber arborization was proposed maintaining
507 sensory receptive fields. In this model, disturbance of ensheathment reduced nocifensive behavior
508 (Jiang *et al.*, 2019). In human patients, small fiber pathology is characterized by functional and/or
509 morphological impairment of IENF and is a common finding in a range of neurodegenerative,
510 metabolic, and chronic pain-associated diseases (Ghasemi and Rajabally, 2020; Pittenger *et al.*,
511 2005; Vinik *et al.*, 2001). Skin punch biopsies are an easily accessible biomaterial of increasingly
512 acknowledged diagnostic value (Evdokimov *et al.*, 2019; Lin *et al.*, 2016). Hence, studying the
513 NCU may help understand the pathophysiology of diseases of the peripheral and central nervous
514 system including dystrophic changes typically found in skin of patients with neuropathies
515 (Hovaguimian and Gibbons, 2011).

516 It is pivotal to recognize and further investigate the active role of keratinocytes within the
517 NCU. Keratinocytes communicate with IENF via ATP and facilitate normal and nociceptive
518 sensory perception in mechanical and thermal modalities (Moehring *et al.*, 2018; Sadler *et al.*,
519 2020). Vesicles (Maruyama *et al.*, 2018), pannexins (Sondersorg *et al.*, 2014), and connexins
520 (Barr *et al.*, 2013) are potential mediators of this ATP release and might be dependent on the
521 evoking stimulus. Our observation of Cx43 plaques along the course of IENF in native skin and
522 human co-culture model substantiates a morphological basis for keratinocyte hemichannels as
523 signaling pathway towards IENF. A single cell RNA-sequencing approach of human epidermal
524 cells determined “channel keratinocytes” with upregulated pore and intercellular communication
525 transcripts, e.g. Cx26 and Cx30 (Cheng *et al.*, 2018). Hemichannel or even gap junctional
526 communication between keratinocytes and IENF might hence not be restricted to Cx43 and
527 differentially organized in varying specialized keratinocytes.

528 We successfully established a fully human co-culture model of sensory neurons and
529 keratinocytes maintaining viability for at least six days and neurites growing towards and
530 interacting with keratinocytes. The 2D culture system reduced the multilayered complexity of
531 native skin, yet conserved ensheathment and Cx43 plaques as hallmarks of the NCU. Embryonic
532 stem cell-derived human sensory neurons and human keratinocytes were successfully co-cultured
533 before resulting in direct contacts and engulfed neurites (Krishnan-Kutty *et al.*, 2017). However,
534 our model uses fibroblast-derived iPSC which can be generated from virtually any relevant group
535 of patients. Recently, a heterologous model of rat DRG neurons and human keratinocytes showed
536 neurites passing along a keratinocyte gutter or being ensheathed by keratinocytes, which matches
537 our observations. Additionally, SYP, synaptotagmin, and syntaxin 1A were successfully labeled
538 demonstrating synapse-like contacts together with cytokeratin 6 as a keratinocyte marker and
539 pan-neurofilament as a neurite marker (Talagas *et al.*, 2020b). Neurofilaments represent
540 intermediate filaments within the cytoplasm and may not encompass the whole neuronal outline
541 compared to membrane labeling (see Figure supplement 3). In accordance with findings from
542 native DRG neurons, our sensory iPSC neurons contained SYP accumulations within the
543 cytoplasm (Chou *et al.*, 2002; Chung *et al.*, 2019), deeming a membranous labeling necessary to
544 clearly localize SYP in a co-culture approach. Keratinocytes showed no clusters of SYP
545 associated to passing neurites (Figure 8). Still, electrophysiological activity of neurons in contact
546 with keratinocytes can be attenuated by blocking vesicular secretion of keratinocytes via
547 botulinum neurotoxin type C, hinting towards a physiological role in signal transduction at the
548 NCU (Talagas *et al.*, 2020b).


549 Our data further show that diagnostic interpretation of IENF density in skin punch
550 biopsies solely based on PGP9.5 labeling deserves some caution. PGP9.5 is a cytoplasmic marker
551 that may not be distributed homogenously along the whole fiber and omits the neurites membrane

552 (Figure 1), which will be important for localization and co-localization of involved proteins at
553 super-resolution. Regarding *in vitro* approaches, our homologous model should minimize
554 variability and potential artifacts of heterologous co-cultures, especially since profound
555 differences in neuronal DRG subpopulations can be observed across mammalian species (Klein
556 *et al.*, 2021; Kupari *et al.*, 2021; Shiers *et al.*, 2020).

557

558 Conclusion

559 Sophisticated cell culture and animal models along with super-resolution microscopy are
560 barely beginning to unveil the complexity of the NCU. Epidermal keratinocytes show an
561 astonishing set of interactions with sensory IENF including ensheathment and electrical and
562 chemical synapse-like contacts to nerve fibers (Figure 9). Our morphological findings underline
563 the significance of keratinocytes in somatosensorics and cutaneous nociception and add to the
564 increasing change of textbook knowledge viewing sensory fibers as the sole transducers of
565 environmental stimuli. Expanding investigations towards skin cell impairment in small fiber
566 pathology will help to better understand the underlying mechanisms and open new avenues for
567 targeted treatment.

568

569 **Figure 9.** Keratinocyte-nerve fiber interactions in human epidermis and 2D model.

570 Proposed electrical synapses are potential transducers of sensory and nociceptive keratinocyte
571 adenosine triphosphate signaling towards intraepidermal nerve fibers. Ensheathment of fibers by
572 keratinocytes may orchestrate nerve fiber outgrowth and stabilization. Both observations are
573 conserved in human 2D co-culture model.

574

575 **Acknowledgements**

576 We thank Dr. Franziska Karl-Schöller for technical help in co-culture handling, Viktoria
577 Diesendorf, BSc for routine sensory neuron differentiation and Alexandra Gentschev, BSc for srAT
578 test runs (all Department of Neurology, University of Würzburg, Germany).

579 We also thank Daniela Bunsen, Claudia Gehrig-Höhn (Biocenter, Imaging Core Facility,
580 University of Würzburg, Germany), and Dr. Sebastian Markert (Department of Cell Biology, Johns
581 Hopkins University, Baltimore, USA) for expert technical help in srAT. We further thank Dr. Jan
582 Schlegel (Department of Biotechnology and Biophysics, University of Würzburg, Germany) for
583 the preparation of SeTau647 conjugated secondary antibody and Dr. Ralph Götz (Department of
584 Biotechnology and Biophysics, University of Würzburg, Germany) for the introduction into
585 expansion microscopy. The study was supported by the German Research Foundation (Deutsche
586 Forschungsgemeinschaft, DFG UE171/4-1). N.Ü. was supported by DFG UE171/15-1. M.S. was
587 supported by the grant ULTRARESOLUTION from the European Research Council.

588

589 **Author contributions**

590 C.E, N.Ü, and C.S. conceptualized the projects and experiments. C.E. performed all experiments.
591 T.K. established methodology for stem cell generation and neuronal differentiation. S.B. and P.D.

592 supported srAT sample generation and imaging. C.E. and N.Ü. wrote the manuscript with
593 contributions from S.B., M.S., and C.S. All authors read and approved the manuscript.

594

595 **Competing interests**

596 The authors declare no conflicts of interest.

597

598 **References:**

599 Agullo-Pascual, E., Reid, D.A., Keegan, S., Sidhu, M., Fenyö, D., Rothenberg, E., Delmar, M.,
600 2013. Super-resolution fluorescence microscopy of the cardiac connexome reveals
601 plakophilin-2 inside the connexin43 plaque. *Cardiovasc. Res.* 100, 231-240.

602 Barr, T.P., Albrecht, P.J., Hou, Q., Mongin, A.A., Strichartz, G.R., Rice, F.L., 2013. Air-
603 stimulated ATP release from keratinocytes occurs through connexin hemichannels. *PloS
604 one* 8, e56744.

605 Baumbauer, K.M., DeBerry, J.J., Adelman, P.C., Miller, R.H., Hachisuka, J., Lee, K.H., Ross,
606 S.E., Koerber, H.R., Davis, B.M., Albers, K.M., 2015. Keratinocytes can modulate and
607 directly initiate nociceptive responses. *eLife* 4.

608 Belleudi, F., Scrofani, C., Torrisi, M.R., Mancini, P., 2011. Polarized endocytosis of the
609 keratinocyte growth factor receptor in migrating cells: role of SRC-signaling and
610 cortactin. *PLoS One* 6, e29159.

611 Birklein, F., 2005. Complex regional pain syndrome. *J. Neurol.* 252, 131-138.

612 Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I., Preibisch, S., Longair, M.,
613 Tomancak, P., Hartenstein, V., Douglas, R.J., 2012. TrakEM2 software for neural circuit
614 reconstruction. *PloS one* 7, e38011.

615 Cheng, J.B., Sedgewick, A.J., Finnegan, A.I., Harirchian, P., Lee, J., Kwon, S., Fassett, M.S.,
616 Golovato, J., Gray, M., Ghadially, R., Liao, W., Perez White, B.E., Mauro, T.M., Mully,
617 T., Kim, E.A., Sbitany, H., Neuhaus, I.M., Grekin, R.C., Yu, S.S., Gray, J.W., Purdom,
618 E., Paus, R., Vaske, C.J., Benz, S.C., Song, J.S., Cho, R.J., 2018. Transcriptional
619 Programming of Normal and Inflamed Human Epidermis at Single-Cell Resolution. *Cell
620 Rep* 25, 871-883.

621 Chou, A.-K., Muhammad, R., Huang, S.-M., Chen, J.-T., Wu, C.-L., Lin, C.-R., Lee, T.-H., Lin,
622 S.-H., Lu, C.-Y., Yang, L.-C., 2002. Altered synaptophysin expression in the rat spinal
623 cord after chronic constriction injury of sciatic nerve. *Neurosci. Lett.* 333, 155-158.

624 Chung, J., Franklin, J.F., Lee, H.J., 2019. Central expression of synaptophysin and synaptoporin
625 in nociceptive afferent subtypes in the dorsal horn. *Sci. Rep.* 9, 1-11.

626 Cook, S., McCleskey, E., 2002. Cell damage excites nociceptors through release of cytosolic
627 ATP. *Pain* 95, 41-47.

628 Dederen, P.J., Gribnau, A.A., Curfs, M.H., 1994. Retrograde neuronal tracing with cholera toxin
629 B subunit: comparison of three different visualization methods. *J. Histochem. Cytochem.*
630 26, 856-862.

631 Evdokimov, D., Frank, J., Klitsch, A., Unterecker, S., Warrings, B., Serra, J., Papagianni, A.,
632 Saffer, N., Meyer zu Altenschildesche, C., Kampik, D., 2019. Reduction of skin
633 innervation is associated with a severe fibromyalgia phenotype. *Ann. Neurol.* 86, 504-516.

634 Ghasemi, M., Rajabally, Y.A., 2020. Small fiber neuropathy in unexpected clinical settings: a
635 review. *Muscle Nerve* 62, 167-175.

636 Han, C., Wang, D., Soba, P., Zhu, S., Lin, X., Jan, L.Y., Jan, Y.-N., 2012. Integrins regulate
637 repulsion-mediated dendritic patterning of drosophila sensory neurons by restricting
638 dendrites in a 2D space. *Neuron* 73, 64-78.

639 Hovaguimian, A., Gibbons, C.H., 2011. Diagnosis and treatment of pain in small-fiber
640 neuropathy. *Curr. Pain Headache Rep.* 15, 193-200.

641 Jiang, N., Rasmussen, J.P., Clanton, J.A., Rosenberg, M.F., Luedke, K.P., Cronan, M.R., Parker,
642 E.D., Kim, H.-J., Vaughan, J.C., Sagasti, A., 2019. A conserved morphogenetic
643 mechanism for epidermal ensheathment of nociceptive sensory neurites. *eLife* 8, e42455.

644 Karl, F., Wussmann, M., Kress, L., Malzacher, T., Fey, P., Groeber-Becker, F., Uceyler, N.,
645 2019. Patient-derived in vitro skin models for investigation of small fiber pathology. *Ann.*
646 *Clin. Transl. Neurol.* 6, 1797-1806.

647 Keppel Hesselink, J.M., Kopsky, D.J., Bhaskar, A.K., 2017. Skin matters! The role of
648 keratinocytes in nociception: a rational argument for the development of topical
649 analgesics. *J. Pain Res.* 10, 1-8.

650 Klein, A., Solinski, H.J., Malewicz, N.M., Ieong, H.F.-h., Sypek, E.I., Shimada, S.G., Hartke,
651 T.V., Wooten, M., Wu, G., Dong, X., 2021. Pruriception and neuronal coding in
652 nociceptor subtypes in human and nonhuman primates. *eLife* 10, e64506.

653 Klusch, A., Ponce, L., Gorzelanny, C., Schafer, I., Schneider, S.W., Ringkamp, M., Holloschi,
654 A., Schmelz, M., Hafner, M., Petersen, M., 2013. Coculture model of sensory neurites and
655 keratinocytes to investigate functional interaction: chemical stimulation and atomic force
656 microscope-transmitted mechanical stimulation combined with live-cell imaging. *J.*
657 *Invest. Dermatol.* 133, 1387-1390.

658 Kremer, J.R., Mastronarde, D.N., McIntosh, J.R., 1996. Computer visualization of three-
659 dimensional image data using IMOD. *J. Struct. Biol.* 116, 71-76.

660 Krishnan-Kutty, V., Bigliardi, P.L., Dykas, M.M., Pomp, O., Kyaw, H.M., Poddar, K.,
661 Venkatesan, T., Bigliardi-Qi, M., 2017. Peripheral nerve fibres form multifacet
662 interactions with keratinocytes in a novel complete human 2D culture model. *Exp.*
663 *Dermatol.* 26, 281-284.

664 Kupari, J., Usoskin, D., Parisien, M., Lou, D., Hu, Y., Fatt, M., Lönnerberg, P., Spångberg, M.,
665 Eriksson, B., Barkas, N., 2021. Single cell transcriptomics of primate sensory neurons
666 identifies cell types associated with chronic pain. *Nat. Commun.* 12, 1-15.

667 Lacomis, D., 2002. Small-fiber neuropathy. *Muscle Nerve* 26, 173-188.

668 Lin, C.-H., Chao, C.-C., Wu, S.-W., Hsieh, P.-C., Feng, F.-P., Lin, Y.-H., Chen, Y.-M., Wu, R.-
669 M., Hsieh, S.-T., 2016. Pathophysiology of small-fiber sensory system in Parkinson's
670 disease: skin innervation and contact heat evoked potential. *Medicine (Baltimore)* 95.

671 Lumpkin, E.A., Caterina, M.J., 2007. Mechanisms of sensory transduction in the skin. *Nature*
672 445, 858.

673 Mandadi, S., Sokabe, T., Shibasaki, K., Katanosaka, K., Mizuno, A., Moqrich, A., Patapoutian,
674 A., Fukumi-Tominaga, T., Mizumura, K., Tominaga, M., 2009. TRPV3 in keratinocytes
675 transmits temperature information to sensory neurons via ATP. *Pflugers. Arch.* 458, 1093-
676 1102.

677 Markert, S.M., Bauer, V., Muenz, T.S., Jones, N.G., Helmlprobst, F., Britz, S., Sauer, M., Rössler,
678 W., Engstler, M., Stigloher, C. 2017. 3D subcellular localization with superresolution
679 array tomography on ultrathin sections of various species. In: *Methods Cell Biol.* pp. 21-
680 47. Elsevier.

681 Markert, S.M., Britz, S., Proppert, S., Lang, M., Witvliet, D., Mulcahy, B., Sauer, M., Zhen, M.,
682 Bessereau, J.-L., Stigloher, C., 2016. Filling the gap: adding super-resolution to array
683 tomography for correlated ultrastructural and molecular identification of electrical
684 synapses at the *C. elegans* connectome. *Neurophotonics* 3, 041802.

685 Martin, P.E., Easton, J.A., Hodgins, M.B., Wright, C.S., 2014. Connexins: sensors of epidermal
686 integrity that are therapeutic targets. *FEBS Lett.* 588, 1304-1314.

687 Maruyama, K., Takayama, Y., Sugisawa, E., Yamanoi, Y., Yokawa, T., Kondo, T., Ishibashi, K.-
688 i., Sahoo, B.R., Takemura, N., Mori, Y., 2018. The ATP transporter VNUT mediates
689 induction of Dectin-1-triggered *Candida* nociception. *iScience* 6, 306-318.

690 Moehring, F., Cowie, A.M., Menzel, A.D., Weyer, A.D., Grzybowski, M., Arzua, T., Geurts,
691 A.M., Palygin, O., Stucky, C.L., 2018. Keratinocytes mediate innocuous and noxious
692 touch via ATP-P2X4 signaling. *eLife* 7.

693 Nolano, M., Provitera, V., Estraneo, A., Selim, M.M., Caporaso, G., Stancanelli, A.,
694 Saltalamacchia, A.M., Lanzillo, B., Santoro, L., 2008. Sensory deficit in Parkinson's
695 disease: evidence of a cutaneous denervation. *Brain* 131, 1903-1911.

696 O'Brien, G.S., Rieger, S., Wang, F., Smolen, G.A., Gonzalez, R.E., Buchanan, J., Sagasti, A.,
697 2012. Coordinate development of skin cells and cutaneous sensory axons in zebrafish. *J.
698 Comp. Neurol.* 520, 816-831.

699 Pang, Z., Sakamoto, T., Tiwari, V., Kim, Y.S., Yang, F., Dong, X., Guler, A.D., Guan, Y.,
700 Caterina, M.J., 2015. Selective keratinocyte stimulation is sufficient to evoke nociception
701 in mice. *Pain* 156, 656-665.

702 Pittenger, G.L., Mehrabyan, A., Simmons, K., Dublin, C., Barlow, P., Vinik, A.I., 2005. Small
703 fiber neuropathy is associated with the metabolic syndrome. *Metab. Syndr. Relat. Disord.*
704 3, 113-121.

705 Reynolds, E.S., 1963. The use of lead citrate at high pH as an electron-opaque stain in electron
706 microscopy. *J. Cell Biol.* 17, 208-212.

707 Sadler, K.E., Moehring, F., Stucky, C.L., 2020. Keratinocytes contribute to normal cold and heat
708 sensation. *eLife* 9, e58625.

709 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
710 S., Rueden, C., Saalfeld, S., Schmid, B., 2012. Fiji: an open-source platform for
711 biological-image analysis. *Nature methods* 9, 676-682.

712 Shiers, S., Klein, R.M., Price, T.J., 2020. Quantitative differences in neuronal subpopulations
713 between mouse and human dorsal root ganglia demonstrated with RNAscope in situ
714 hybridization. *Pain* 161, 2410-2424.

715 Sondersorg, A.C., Busse, D., Kyereme, J., Rothermel, M., Neufang, G., Gisselmann, G., Hatt, H.,
716 Conrad, H., 2014. Chemosensory information processing between keratinocytes and
717 trigeminal neurons. *J. Biol. Chem.* 289, 17529-17540.

718 Stucky, C.L., Mikesell, A.R., 2021. Cutaneous pain in disorders affecting peripheral nerves.
719 *Neurosci. Lett.* 765, 136233.

720 Taki, T., Takeichi, T., Sugiura, K., Akiyama, M., 2018. Roles of aberrant hemichannel activities
721 due to mutant connexin26 in the pathogenesis of KID syndrome. *Sci. Rep.* 8, 1-11.

722 Talagas, M., Lebonvallet, N., Leschiera, R., Elies, P., Marcorelles, P., Misery, L., 2020a. Intra-
723 epidermal nerve endings progress within keratinocyte cytoplasmic tunnels in normal
724 human skin. *Exp. Dermatol.* 29, 387-392.

725 Talagas, M., Lebonvallet, N., Leschiera, R., Marcorelles, P., Misery, L., 2017. What about
726 physical contacts between epidermal keratinocytes and sensory neurons? *Exp. Dermatol.*
727 27, 9-13.

728 Talagas, M., Lebonvallet, N., Leschiera, R., Sinquin, G., Elies, P., Haftek, M., Pennec, J.P.,
729 Ressnikoff, D., La Padula, V., Le Garrec, R., 2020b. Keratinocytes Communicate with
730 Sensory Neurons via Synaptic-like Contacts. *Ann. Neurol.* 88, 1205-1219.

731 Thévenaz, P., Unser, M., 2007. User-friendly semiautomated assembly of accurate image
732 mosaics in microscopy. *Microsc. Res. Tech.* 70, 135-146.

733 Tillberg, P.W., Chen, F., Piatkevich, K.D., Zhao, Y., Yu, C.-C.J., English, B.P., Gao, L.,
734 Martorell, A., Suk, H.-J., Yoshida, F., DeGennaro, E.M., Roossien, D.H., Gong, G.,
735 Seneviratne, U., Tannenbaum, S.R., Desimone, R., Cai, D., Boyden, E.S., 2016. Protein-
736 retention expansion microscopy of cells and tissues labeled using standard fluorescent
737 proteins and antibodies. *Nat. Biotechnol.* 34, 987-992.

738 Tong, Y.G., Wang, H.F., Ju, G., Grant, G., Hökfelt, T., Zhang, X., 1999. Increased uptake and
739 transport of cholera toxin B-subunit in dorsal root ganglion neurons after peripheral
740 axotomy: Possible implications for sensory sprouting. *J. Comp. Neurol.* 404, 143-158.

741 Tsutsumi, M., Inoue, K., Denda, S., Ikeyama, K., Goto, M., Denda, M., 2009. Mechanical-
742 stimulation-evoked calcium waves in proliferating and differentiated human
743 keratinocytes. *Cell Tissue Res.* 338, 99-106.

744 Üçeyler, N., 2016. Small fiber pathology—a culprit for many painful disorders? *Pain* 157, S60-
745 S66.

746 Üçeyler, N., Kafke, W., Riediger, N., He, L., Necula, G., Toyka, K., Sommer, C., 2010. Elevated
747 proinflammatory cytokine expression in affected skin in small fiber neuropathy.
748 *Neurology* 74, 1806-1813.

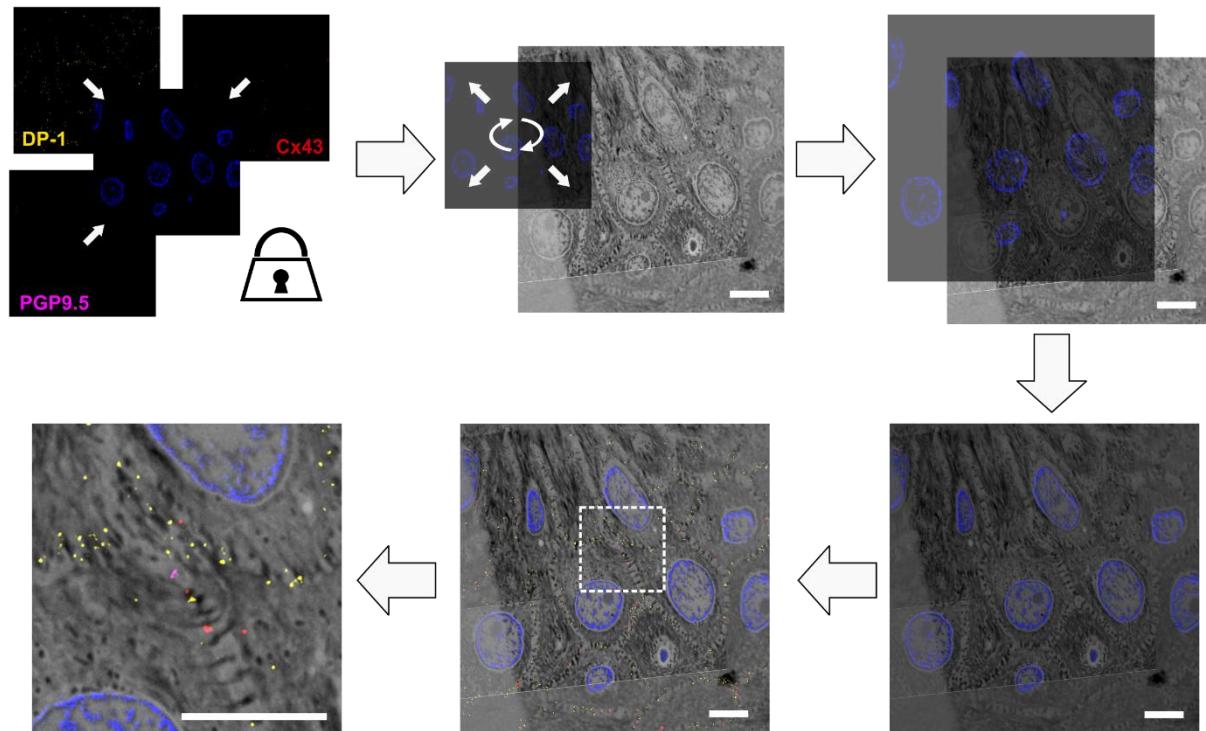
749 Üçeyler, N., Zeller, D., Kahn, A.-K., Kewenig, S., Kittel-Schneider, S., Schmid, A., Casanova-
750 Molla, J., Reiners, K., Sommer, C., 2013. Small fibre pathology in patients with
751 fibromyalgia syndrome. *Brain* 136, 1857-1867.

752 Vinik, A., Erbas, T., Stansberry, K., Pittenger, G., 2001. Small fiber neuropathy and
753 neurovascular disturbances in diabetes mellitus. *Exp. Clin. Endocrinol. Diabetes* 109,
754 S451-S473.

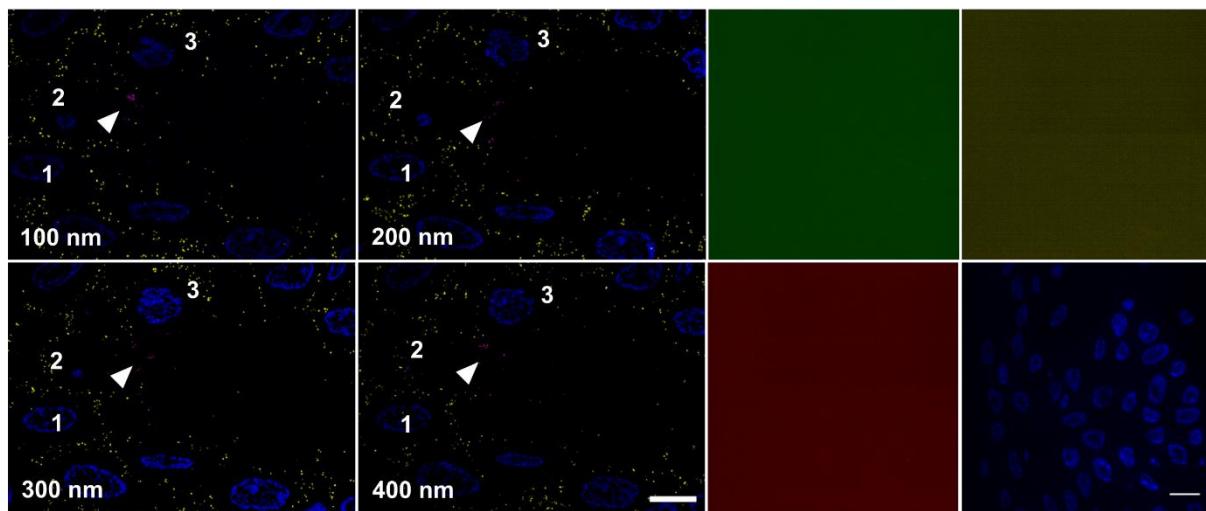
755 Watt, F.M., 1983. Involucrin and other markers of keratinocyte terminal differentiation. *J. Invest.*
756 *Dermatol.* 81, S100-S103.

757 Weber, P.A., Chang, H.-C., Spaeth, K.E., Nitsche, J.M., Nicholson, B.J., 2004. The permeability
758 of gap junction channels to probes of different size is dependent on connexin composition
759 and permeant-pore affinities. *Biophys. J.* 87, 958-973.

760 Weis, J., Katona, I., Müller-Newen, G., Sommer, C., Necula, G., Hendrich, C., Ludolph, A.C.,
761 Sperfeld, A.-D., 2011. Small-fiber neuropathy in patients with ALS. *Neurology* 76, 2024-
762 2029.


763 Zhao, Y., Bucur, O., Irshad, H., Chen, F., Weins, A., Stancu, A.L., Oh, E.-Y., DiStasio, M.,
764 Torous, V., Glass, B., 2017. Nanoscale imaging of clinical specimens using pathology-
765 optimized expansion microscopy. *Nat. Biotechnol.* 35, 757.

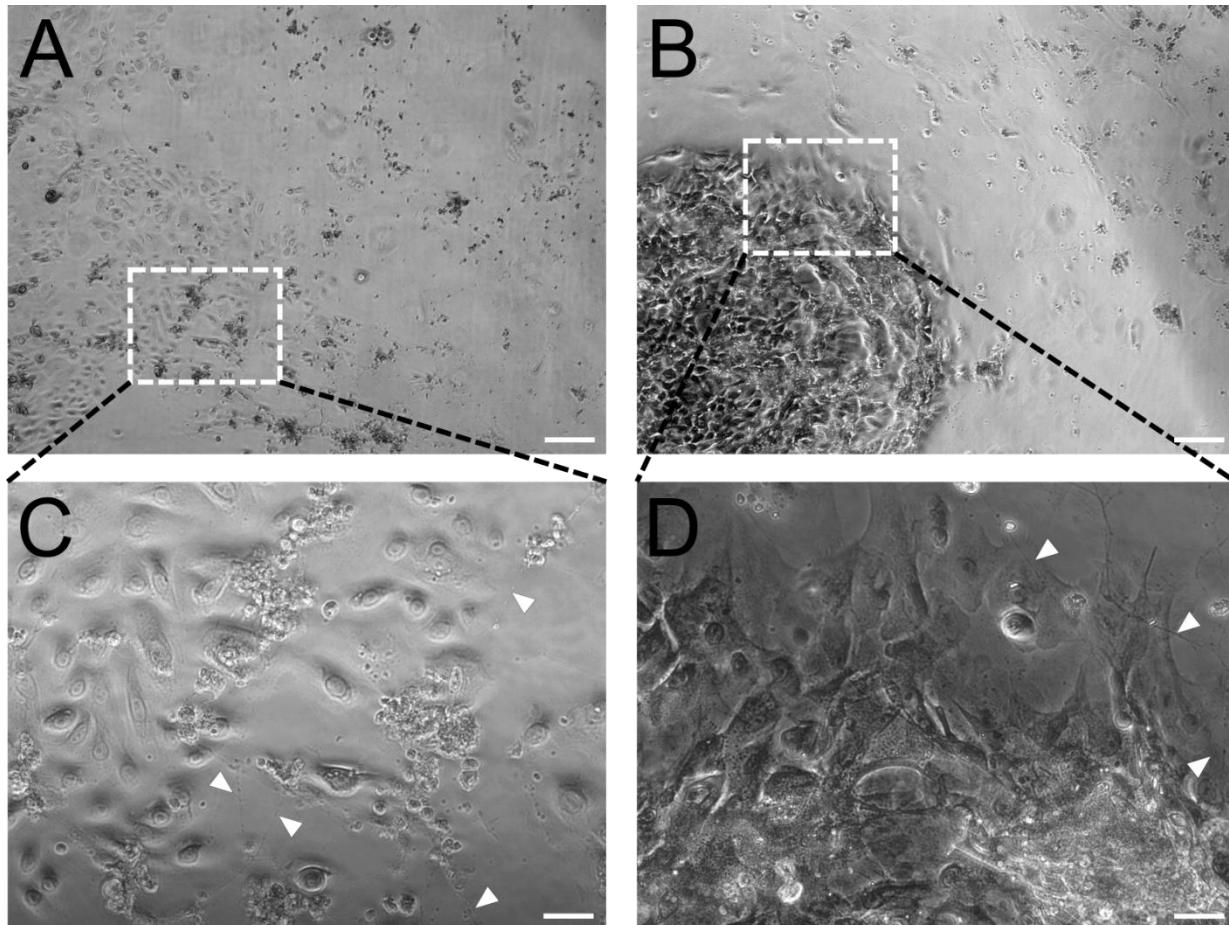
766


767

768 **Supplementary Information**

A

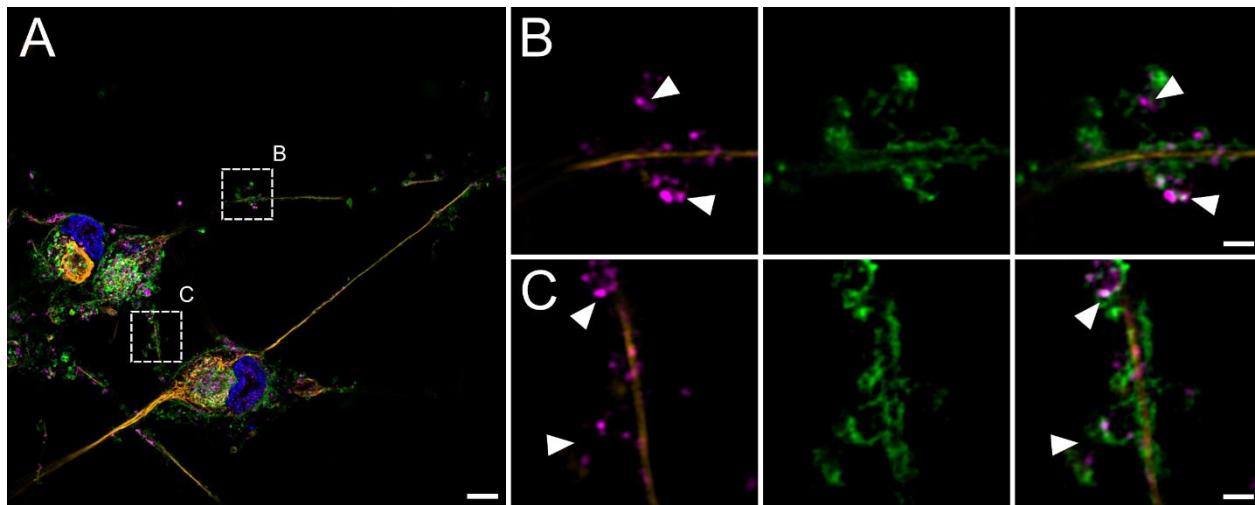
B



769

770 **Figure supplement 1:** CLEM principle and labeling verification. (A) Principle of unbiased
771 correlation using intrinsic landmarks. IF channels are locked and hidden behind nuclear DAPI
772 signal, which is used as only visible fluorescent channel, applied as landmark channel (blue).
773 DAPI signal and SEM nucleus texture are used to achieve unbiased correlation of IF and SEM

774 information. After optimization of the correlation, the channels of interest are made visible,
775 overlaid and regions of interest selected. No further changes of image locations were applied
776 afterwards. IF signal specificity. (B) Four consecutive tissue sections with nuclear DAPI (blue),
777 DP-1 (yellow), and PGP9.5 (magenta) labeling showing traceable persistent labeling. Arrowhead
778 indicates PGP9.5 positive nerve fiber and numbers show position of respective nuclei. Nucleus
779 number 2 is ceasing within the z-stack. Scale bar 5 μ m. (C) Application of secondary antibodies
780 Al488-anti mouse (green), SeTau-647-anti rabbit (yellow), and Cy3-anti guinea pig (red) alone
781 showed no fluorescent signal. DAPI signal (blue) for orientation. Scale bar 10 μ m.
782 Abbreviations: Al488, Alexa Fluor 488; Cy3, cyanine 3; DAPI, 4',6-diamidino-2-phenylindole ;
783 DP-1, desmoplakin 1; IF, immunofluorescence, PGP9.5, protein product 9.5 SEM, scanning
784 electron microscopy.


785

786

787 **Figure supplement 2.** Comparison of co-culture dependent on media condition. Overview of
788 contrast imaged co-culture in keratinocyte medium (A) and conditioned neuronal medium (B)
789 imaged with 5x objective. Insets represent enlarged areas in C and D at 20x objective. Single
790 keratinocytes show basal or early differentiated state in keratinocyte medium (C), whereas
791 differentiated and aggregated keratinocytes are predominant in conditioned neuronal medium (D)
792 Arrowheads indicate passing neurites. Scale bars: 200 μ m (A, B) and 50 μ m (C, D).

793

794 **Figure supplement 3.** Neurite outline and synaptic vesicular SYP localization. (A) Overview
795 images of neuronal culture with DAPI (blue), Ctx (green), pan-NF (yellow), and SYP (magenta).
796 Insets indicate enlarged areas in B and C. (B, C). First panel shows overlay of neurofilament
797 marker pan-NF and SYP with apparent extra neuronal SYP accumulations (indicated via
798 arrowheads). Second panel shows neurite membrane marker Ctx. Last panel depicts overlay,
799 revealing SYP signal located within the outline of neurites. Scale bars: 5 μ m (A), 1 μ m (B, C).
800 Abbreviations: Ctx, cholera toxin subunit B; DAPI, 4',6-diamidino-2-phenylindole, pan-NF, pan-
801 neurofilament; SIM, structured illumination microscopy; SYP, synaptophysin.
802

803
804
805 **Video 1:** srAT with serial 100 nm sections with two frames per second. PGP9.5 (magenta) marks
806 IENF ensheathed in keratinocytes. Scale bar 5 μ m. Abbreviations: IENF, intraepidermal nerve
807 fiber; PGP9.5, protein product 9.5; srAT super-resolution array tomography.
808

809 **Video 2.** srAT with serial 100 nm SEM sections and 3D interpolation of keratinocyte nuclei
810 (blue), keratinocyte cell bodies (yellow-orange), and IENF (magenta). Four sections per second.

811 Scale bar 5 μm . Abbreviations: IENF, intraepidermal nerve fiber; SEM, scanning electron
812 microscopy; srAT super-resolution array tomography.

813
814 **Video 3.** Ensheathment and Cx43 plaque in expanded human epidermis. Magnification with
815 filled arrowhead indicating part of an IENF, labeled via PGP9.5 (magenta), tunneling through a
816 keratinocyte, labeled via phalloidin (grey). Additional hollow arrowhead showing a Cx43 plaque
817 in contact with IENF. Physical 1.2 μm stack step size, translating to 276 nm biological step size.
818 Framerate of two planes per second. Expansion factor corrected scale bar 1 μm . Abbreviations:
819 Cx43, connexin 43; IENF, intraepidermal nerve fiber; PGP9.5, protein gene product-9.5.

820
821 **Video 4.** Live imaging of fully human sensory neuron-keratinocyte co-culture with neurite
822 establishing contact to keratinocyte colony. Arrowheads indicate outgrowing neurite. Framerate
823 of eight time points per second with 20 min intervals per time point. Scale bar 50 μm .

824
825