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ABSTRACT
Chronic migraine is characterised by persistent headaches for more than 15 days per
month; the intensity of the pain is fluctuating over time. Here, we explored the dynamic
interplay of connectivity patterns between regions known to be related to pain processing
and their relation to the ongoing dynamic pain experience. We recorded EEG from 80
sessions (20 chronic migraine patients in 4 separate sessions of 25 minutes). The patients
were asked to continuously rate the intensity of their endogenous headache. On different
time-windows, a dynamic causal model (DCM) of cross spectral responses was inverted to
estimate connectivity strengths. For each patient and session, the evolving dynamics of
effective connectivity were related to pain intensities and to pain intensity changes by
using a Bayesian linear model. Hierarchical Bayesian modelling was further used to
examine which connectivity-pain relations are consistent across sessions and across
patients.
The results reflect the multi-facetted clinical picture of the disease. Across all sessions,
each patient with chronic migraine exhibited a distinct pattern of pain intensity-related
cortical connectivity. The diversity of the individual findings are accompanied by
inconsistent relations between the connectivity parameters and pain intensity or pain
intensity changes at group level. This suggests a rejection of the idea of a common
neuronal core problem for chronic migraine.
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1 Introduction
The experience of pain is associated with a number of different neuronal oscillations in the
brain (Michail et al., 2016; Ploner et al., 2017), but precisely how brain regions in chronic
pain conditions are synchronised, and at which frequencies, remains largely unknown.

Across functional neuroimaging studies, several regions have been consistently found to
be related to pain processing, i.e. the thalamus, the primary (S1) and secondary
somatosensory cortices (S2), the insular cortex (IC), the anterior cingulate cortex (ACC),
and the prefrontal cortex (PFC; Apkarian et al., 2005; Bushnell et al., 2013; Price, 2000;
Rainville, 2002; Tracey, 2008; Treede et al., 1999). These brain regions are anatomically
connected, allowing serial and parallel information transfer (Price, 2000). For the serial
pathway, input relayed in the thalamus flows from S1 to S2, which plays a role in encoding
sensory information of nociceptive input (Bushnell et al., 2013). This ascending pain
pathway then continues from S2 to the IC, then to the ACC. In parallel, the S2, IC and ACC
can also directly receive input from the thalamus (Frot et al., 2008; Liang et al., 2011).
The IC has an integrative function in pain processing (Brooks & Tracey, 2007); the anterior
insular cortex (aIC) is functionally connected to regions related to affective and cognitive
aspects of pain, and the posterior insular cortex (pIC) is predominantly connected to
regions related to sensory aspects of pain (Peltz et al., 2011). The ACC is involved in
encoding emotional and motivational aspects of pain and has bi-directional connections
with the PFC (Bushnell et al., 2013; Price, 2000; Rainville, 2002; Wiech, Ploner, et al., 2008).

The medial and lateral PFC have been functionally differentiated; medial PFC (mPFC)
activity has been positively associated with pain intensity (Baliki et al., 2006; Hashmi et al.,
2013; May et al., 2019; Nickel et al., 2017; Schulz et al., 2015), and dorsolateral PFC (DLPFC)
activity has been negatively associated with pain affect, where it plays an important role in
pain modulation (Lorenz et al., 2003; Wiech, Farias, et al., 2008). Several other studies
utilising effective connectivity methods have found that placebo analgesia (i.e.,
endogenous pain modulation) increased connectivity from the DLPFC to the dorsal ACC
(dACC; Craggs et al., 2007; Sevel et al., 2015). Similarly, when investigating connectivity
between the left and right DLPFC, Sevel and colleagues found that the higher the
connectivity strength from the right to left DLPFC, the higher the temperatures of the
stimuli were in order to be perceived as painful (Sevel et al., 2016). This suggests an
important role of intra- and interhemispheric connectivity in pain modulation.

Importantly, structural and functional abnormalities have been reported in these
pain-related areas in patients with migraine (Borsook et al., 2016; Filippi & Messina, 2019;
Jia & Yu, 2017; Tolner et al., 2019). Using a resting-state design, Lee and colleagues found
that compared to episodic migraine patients, chronic migraine (CM) patients have stronger
connectivity in brain regions that included the ACC, aIC and DLPFC (Lee et al., 2019). In
these regions, grey matter reductions have also been shown in migraine patients (Kim et
al., 2008; Maleki et al., 2012; Rocca et al., 2006). Although referring to these regions as
pain-related regions, they are certainly not pain specific, instead the perception of pain
likely arises from interactions between brain regions, resulting in a distinct spatial pattern
of neural activity (Kucyi & Davis, 2015; Liang et al., 2019).
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In order to gain insight into how the interactions between these regions encode the pain
experienced by migraine patients, we investigated how dynamic effective connectivity
between pain-related regions relates to the ongoing and fluctuating headache in CM. We
hypothesised that connection strengths in the ascending pain pathways would be
enhanced with increasing pain or higher levels of pain (i.e., S1 > S2, S2 > S1, S2 > pIC, pIC >
aIC, aIC > dACC, pIC > dACC, dACC > mPFC, mPFC > dACC, dACC > DLPFC in both
hemispheres). In contrast, we expected connection strengths from regions involved in pain
modulation to be enhanced with decreasing pain or lower levels of pain (i.e., DLPFC > dACC
in both hemispheres, left DLPFC > right DLPFC, right DLPFC > left DLPFC). Finally, we
aimed to give a more detailed insight into the connectivity effects in terms of spectral
outcomes in each region.

2 Methods
2.1 Participants
Twenty CM patients (18 females, aged 34±13 years) participated in this study. All
participants gave written informed consent. The study was approved by the Ethics
Committee of the Medical Department of the Ludwig-Maximilians-Universität München
and conducted in conformity with the Declaration of Helsinki. The patients were
diagnosed according to the ICHD-3 (Headache Classification Committee of the
International Headache Society (IHS), 2018), defined as a headache occurring on 15 or
more days/month for more than 3 months, which, on at least 8 days/month, has the
features of migraine headache (mean CM: 15±12 years). The patients in this study had a
history of migraine attacks between 2 and 50 years (M = 15.10 years, SD = 12.01 years). The
mean pain intensity as specified in the questionnaires was 4.90 (SD = 1.30) on a scale to 10.
All patients were seen in a tertiary headache centre.

All patients were permitted to continue their pharmacological treatment at a stable dose
(Supplementary Table 1). The patients did not report any other neurological or psychiatric
disorders or had contraindications for an MRI examination. Patients who had any
additional pain were excluded. For all patients, the pain was fluctuating and not constant
at the same intensity level. Patients with no pain or migraine attacks on the day of the
measurement were asked to return on a different day. Patients were characterised using
the German Pain Questionnaire (Deutscher Schmerzfragebogen; Casser et al., 2012) and
the German version of the Pain Catastrophizing Scale (PCS; Supplementary Table 1;
Sullivan et al., 1995). The pain intensity describes the average pain in the last 4 weeks from
0 to 10 with 0 representing no pain and 10 indicating maximum imaginable pain (please
note that this scale differs from the one used in the EEG experiment). The German version
of the Depression, Anxiety and Stress Scale (DASS) was used to rate depressive, anxiety,
and stress symptoms over the past week (Lovibond & Lovibond, 1995). None of the
patients was excluded based on their questionnaire scores. A study on healthy subjects
found similar results: a large sample of 1794 participants reported scores for depression of
3 ± 4, for anxiety of 2 ± 3, and for stress of 5 ± 4 (Henry & Crawford, 2005). None of the
patients in our study reported any psychiatric comorbidity. Patients were compensated
with 60€ for each session. The patients were recorded four times across 6 weeks with a
gap of at least 2 days (12±19 days) between sessions.
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2.2 Experimental procedure
During each EEG recording session, patients continuously rated the intensity of their
ongoing headache for a duration of 25 minutes using a linear slider potentiometer (Jahn et
al., 2021; Mayr et al., 2021, 2022; Schulz et al., 2020). The pain scale ranged from 0 to 100
with ‘0’ representing no pain and ‘100’ representing highest experienced pain. The
patients could see their ratings on the monitor as the position of the red cursor on a
horizontal grey bar (visual analogue scale) and numerically (in steps of 5; numeric analogue
scale). The patients were instructed to rate their pain as quickly and accurately as possible,
to move as little as possible during the recording, and to focus on their varying pain. The
pain ratings of the 20 CM patients across the four sessions are plotted in Supplementary
Figure 1.

2.3 Data acquisition
The EEG data were recorded using an array of 64 equidistantly distributed electrodes
(EASYCAP, Brain Products GmbH, Germany). The EEG was referenced to a vertex electrode,
grounded at the nose and sampled at 1 kHz. Impedances were kept below 20 kΩ.
Individual electrode positions were acquired using a stereo-optical system (CapTrak, Brain
Products GmbH, Germany). During one of the visits, structural MRI (T1-weighted) images
were acquired with a 3 tesla MRI scanner (Magnetom Skyra, Siemens, Germany) using a
64-channel head coil. The following parameters were used: TR/TE = 2060/2.17 ms; flip
angle = 12°; number of slices = 256; slice thickness = 0.75 mm; FoV = 240 x 240.

2.4 Pre-processing
The raw EEG data were pre-processed in the BrainVision Analyzer software (Brain Products
GmbH, Germany). Bad channels were interpolated, data were high-pass filtered with a
lower cut-off at 1 Hz and decomposed using an independent component analysis (ICA). On
the component data, 50 Hz power line noise was removed using CleanLine (Mullen, 2012)
and artefactual components reflecting eye movements and other larger artefacts were
removed from the data. A second ICA was performed and muscle artefacts were removed
from the data (Liebisch et al., 2021). A third ICA was utilised to remove components with
residual artefacts and spectrum interpolation (Leske & Dalal, 2019) eliminated residual
power line noise. Finally, the data were downsampled to 256 Hz and re-referenced to the
common average reference.

2.5 Effective connectivity and pain
In order to investigate how fluctuations in effective connectivity are related to the
patients’ endogenous dynamic pain experience, we used dynamic causal modelling (DCM)
and a hierarchical Bayesian framework as described and used previously (Park et al., 2018;
Van de Steen et al., 2019). More specifically, we used DCM for cross spectral density (CSD)
data features (K. J. Friston et al., 2012) combined with multilevel parametric empirical
Bayes (PEB; K. J. Friston et al., 2016).

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2022. ; https://doi.org/10.1101/2022.02.23.481583doi: bioRxiv preprint 

https://paperpile.com/c/8BFZX6/EtwH+rQoE+jKEp+yR0M
https://paperpile.com/c/8BFZX6/EtwH+rQoE+jKEp+yR0M
https://paperpile.com/c/8BFZX6/O6qd
https://paperpile.com/c/8BFZX6/iF69
https://paperpile.com/c/8BFZX6/IoO0
https://paperpile.com/c/8BFZX6/dAyg+3kz9
https://paperpile.com/c/8BFZX6/dAyg+3kz9
https://paperpile.com/c/8BFZX6/Thnb
https://paperpile.com/c/8BFZX6/XSdK
https://doi.org/10.1101/2022.02.23.481583
http://creativecommons.org/licenses/by-nc/4.0/


2.5.1 Within-window level: DCM for cross spectral density data features
The preprocessed data were imported to SPM12 (Penny et al., 2011) running on MATLAB
(Mathworks, USA; version 2017b). DCM for CSD was performed on every 5 second EEG
window. The preprocessed time-series were transformed to cross-spectral densities
between 4 to 90 Hz using a vector autoregressive model of order 12. DCM for CSD aims to
explain how the CSD data features are generated by underlying neurophysiology by using
a biologically plausible generative model (neural model/state equations + forward
model/observation equations). Regions and connections between them must be defined a
priori in the model. By inverting the generative model using a variational Bayesian
optimisation scheme (Variational Laplace algorithm; K. Friston et al., 2007a), we derived
the posterior distribution of the connectivity parameters defined in the model. The
optimisation scheme uses free energy as the objective function, which approximates the
log model evidence (K. Friston et al., 2007b).

We used a convolution-based neural mass model where each source (i.e., a functionally
specialised brain region) has three neuronal subpopulations: excitatory spiny stellate cells,
inhibitory interneurons, and excitatory pyramidal cells (Moran et al., 2013). Coupling
between sources can be divided into forward, backward and lateral extrinsic connections,
based on what the seed and target neuronal subpopulations are. The extrinsic connection
types to be defined in the model can be established based on the hierarchical organisation
of the cortex (Felleman & Van Essen, 1991).

For the spatial forward model, each source was treated as a patch on the cortical surface
(`IMG' option in SPM12) with a radius of 10 mm (Daunizeau et al., 2009). Individual
structural MRI (T1-weighted) images were used to compute individual cortical meshes and
co-registration was performed with individual electrode positions. Volume conduction
models of the head were constructed based on the boundary element method (BEM). For
three patients, we were unable to record individual electrode positions and thus standard
coordinates were used. For every patient, the individual head model with the different
tissue types (brain, skull and scalp), the normalised individual cortical mesh, and individual
electrode locations were plotted after co-registration for verification. Default prior
parameters for the generative model were used.

The selection of pain-related regions and their connectivity pattern was based on previous
literature (Apkarian et al., 2005; Bushnell et al., 2013; Craggs et al., 2007; Lorenz et al.,
2003; Price, 2000; Rainville, 2002; Schulz et al., 2015; Sevel et al., 2015, 2016; Tracey, 2008;
Treede et al., 1999; Wiech, Farias, et al., 2008). The network that was examined included
the left and right primary somatosensory cortex (S1), left and right secondary
somatosensory cortex (S2), left and right anterior and posterior insular cortex (aIC; pIC),
dorsal anterior cingulate cortex (dACC), medial prefrontal cortex (mPFC), and the left and
right dorsolateral prefrontal cortex (DLPFC). Coordinates for the left and right DLPFC
were based on Sevel et al. and coordinates for the mPFC were based on Schulz et al.
(Schulz et al., 2015; Sevel et al., 2015). For the other regions, centre coordinates were
determined by termed-based meta-analyses in Neurosynth (Neurosynth.org; Yarkoni et al.,
2011). All coordinates were verified by atlases in FSL. For the dACC and mPFC, we treated
the left and right cortex as a single source; given their proximity and the spatial resolution
of EEG, they are difficult to separate. In Supplementary Table 2, the centre MNI
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coordinates of the regions are given and in Figure 1, the presumed coupling between the
regions is illustrated.

At this level, the specified model was inverted for each time-window independently in
order to estimate effective connectivity between selected regions (see Figure 1) in a
certain pain state. To invert the DCM models, the function ‘spm_dcm_csd’ was used. The
actual inversions of the DCMs were performed in parallel on the high-performance
computing infrastructure of Ghent University, the Free University of Brussels, and on the
Linux cluster of the Leibniz Supercomputing Centre. The same version of SPM (r7771) was
used on all clusters but the MATLAB version differed (2017b, 2019a). Running the same
window on the different clusters resulted in similar results. The explained variance of each
model was calculated to investigate whether the DCM was able to fit the observed CSD
well. Overall, we treated models with an explained variance of 50% and more as adequate
for further analysis. If the explained variance did not reach 50%, the model was excluded
from further analysis.

Figure 1 | Forward, backward and lateral connections that were estimated in each time window.
S1, primary somatosensory cortex; S2, secondary somatosensory cortex; pIC, posterior insular
cortex, aIC, anterior insular cortex; dACC, dorsal anterior cingulate cortex; mPFC, medial prefrontal
cortex; DLPFC, dorsolateral prefrontal cortex.

2.5.2 Within-session level: PEB across windows
Here, we estimated the connectivity-pain rating relations for each session of each
participant separately. The rating data were continuously recorded with a variable
sampling rate. As a DCM was inverted on every 5 second window, we processed the rating
data accordingly. The ratings within a 5 second window were averaged to have an estimate
of the pain state during that time window.
To disentangle the distinct aspects of pain intensity (AMP - amplitude) from cortical
processes related to the sensing of rising and falling pain, we computed the ongoing rate
of change in the pain ratings. This vector is calculated as the slope of the regression of the
least-squares line across a 5 s time window (SLP - slope, encoded as 1, -1, and 0). Periods
coded as 0 indicate time frames of constant pain. The absolute slope of pain ratings (aSLP -
absolute slope, encoded as 0 and 1) represents periods of motor-related connectivity
(slider movement), changes of visual input (each slider movement changes the screen), and
decision-making (each slider movement prerequisites a decision to move). Periods coded
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as 0 indicate time frames of constant pain without the need to move the slider. See
Supplementary Figure 1 for the detailed rating time courses of each session for each
subject.

Moving the slider to indicate a change in pain is embedded in a cascade of interwoven
steps. Preceding functional connections can influence the current rating and the current
rating can have an impact on subsequent cortical connectivity. To account for the unknown
timing between brain dynamics and the subsequent ratings, we shifted the rating vectors
(AMP, SLP, and aSLP) between -15 and 20 seconds in steps of 1 second. Therefore, each
statistical model was computed 36 times along the time shifts of the rating vector.

We modelled the connectivity parameters over time-windows using Bayesian linear models
where the endogenous pain rating vectors (AMP, SLP, and aSLP) were used as regressors.
In total, 36 models (shifts from -15 to 20 seconds in steps of 1 second) were estimated for
each session of each participant. The structure of each Bayesian linear model is described
below:

(1)θ
𝑖𝑗

= (𝑋
𝑖𝑗
(1) ⊗ 𝐼(1)) β

𝑖𝑗
(1) +  ε

𝑖𝑗
(1)           𝑤ℎ𝑒𝑟𝑒  ε

𝑖𝑗
(1)∼𝑁(0, Σ(1))

In equation (1), are the vectorised DCM parameters (i.e., estimates of all connectionθ
𝑖𝑗

strengths) for session i of participant j. Note that in this model the uncertainties of the
estimated connection strengths (i.e., posterior covariance) are considered. The parameters

are organised in such a way that the first elements of are the DCM parameters of theθ
𝑖𝑗

first window and the following elements are the DCM parameters of the second window

and so on. The size of thus, equals the number of parameters (P) times the number ofθ
𝑖𝑗

 

windows (W) in the session. is the design matrix with W rows and 4 columns, where the𝑋
𝑖𝑗
(1)

first column is a column of ones, the second column is the AMP vector (standardised), the

third column is the SLP vector, and the last column is the aSLP vector. is the identity𝐼(1)

matrix of size P. The Kronecker tensor product (⊗) of and means that each𝑋
𝑖𝑗
(1) 𝐼(1)

connectivity parameter can show a relation with pain ratings. The last term, representsε
𝑖𝑗
(1) 

the between-window variability (random effects). The parameters (4P x 1) wereβ
𝑖𝑗
(1) 

estimated with PEB (K. J. Friston et al., 2016) using the ‘spm_dcm_peb’ function.

In the next step, we compared the different shift models. We averaged the free energies
of the models over sessions and participants and compared each model with the worst
model (approximate log Bayes factor). The winning model was further used.

2.5.3 Within-subject level: PEB across sessions
Here, we investigated for each participant which connectivity-pain rating relations (from
the winning shift model) are consistent over sessions (non-trivial across session means)
using the following PEB model:
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(2)β
𝑗
(1) = (𝑋(2) ⊗ 𝐼(2)) β

𝑗
(2) +  ε

𝑗
(2)           𝑤ℎ𝑒𝑟𝑒 ε

𝑗
(2)∼𝑁(0, Σ(2))

In equation (2), are the vectorised connectivity-pain rating relations for all four sessionsβ
𝑗
(1)

estimated at the previous level for participant j. thus equals the number of connectivityβ
𝑗
(1)

parameters in the network times the number of regressors in the previous level (4P) times

the number of sessions (S). is the design matrix with 4 rows and 1 column. is the𝑋(2) 𝐼(2)

identity matrix of size P. The last term, represents the between-session variabilityε
𝑗
(2) 

(random effects). The average connectivity-pain rating relations (i.e., parameters of sizeβ
𝑗
(2)

4P) were estimated using the ‘spm_dcm_peb’ function.

2.5.4 Within-group level: PEB across subjects
Here, we investigated which connectivity-pain rating relations are systematic over
patients. Therefore, participants' results that were consistent across sessions were
entered in a group-level Bayesian linear model:

(3)β(2) = (𝑋(3) ⊗ 𝐼(3)) β(3) +  ε(3)           𝑤ℎ𝑒𝑟𝑒 ε(3)∼𝑁(0, Σ(3)) 

In equation (3), are the vectorised parameter estimates. The size of equals theβ(2) β(2)

number of parameters in the network times the regressors of previous levels (4P) times

the number of participants (N). The group design matrix with N rows, consists of a𝑋(3)

column with constants to model the average of the pain-related changes in effective

connectivity across participants. is the identity matrix of size 4P. represents the𝐼(3) ε(3)

between-subject variability (random effects).

Bayesian model reduction (BMR) and a greedy search were used in order to remove
parameters that are redundant in the full model (K. J. Friston et al., 2016; K. Friston &
Penny, 2011). The functions ‘spm_dcm_peb’ and ‘spm_dcm_peb_bmc’ were used.

2.5.5 Sensitivity analysis
We performed a sensitivity analysis that shows the change in outcome measures as a
function of a change in parameters values. Technically, we numerically evaluated (at the
posterior mean) the gradient of outcomes with respect to the connectivity parameters
that show a pain-related connectivity at the group level (i.e., posterior probability > .95).
For simplicity, our outcome measures were the simulated spectral density of a “virtual
local field potential” in each region. This was conducted for every DCM separately.
Sensitivity profiles within participants were averaged. As a result, we obtained a sensitivity
profile per participant (size: number of frequency bands by number of regions by number
of parameters). Permutation one sample t-tests combined with the maximum statistic
approach to correct for multiple testing, were performed to assess significant sensitivity
profiles at the group-level (Maris & Oostenveld, 2007). This analysis was included to give us
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a more detailed insight into the connectivity effects in terms of spectral outcomes in each
source.

3 Results
3.1 DCM results
Across participants, the average number of remaining windows for session 1 to 4 were
287.10 (SD = 14.82), 285.15 (SD = 19.12), 287.55 (SD = 15.20) and 285.80 (SD = 26.99),
respectively. The mean percentages explained variance of these windows for session 1 to
4 were 98.10 (SD = 0.98), 98.02 (SD = 0.99), 98.10 (SD = 0.92), and 97.96 (SD = 1.17),
respectively. The number of remaining windows for each session of each patient and the
average explained variance over these windows for each session are given in
Supplementary Table 2.

3.2 PEB results
3.2.1 Group results
Comparison of the 36 shift models revealed the 0 second shifting as the winning model. In
Figure 2, the log Bayes factors (free energy model i minus free energy of the worst model)
are plotted. The model with the lowest free energy was the model with the largest
negative shift (-15 sec).
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Figure 2 | Bayesian model comparison of the different shift models from -15 to 20 seconds. The
log Bayes factors (free energy model i minus free energy of the worst model) are plotted. The
model with the lowest free energy was the model with the largest negative shift (-15 sec).

PEB results before and after BMR showed no consistent relations between the
connectivity parameters and pain intensities at group level (all posterior probabilities of
being different from zero <= 0.95). One connection of note is the connectivity from the
DLPFC-r to the DLPFC-l, which showed on average a negative relation with AMP (β = -0.060,
posterior probability = 0.92), but was pruned away after BMR. Connectivity changes
related to increasing and decreasing pain were not consistent at group level (all posterior
probabilities < 0.95). Likewise, one connection from the dACC to DLPFC-l showed a
negative relation with increasing pain (β= -0.192, posterior probability = 0.95). This
connection was pruned away after BMR. Some connectivity parameters were related to
aSLP. Before BMR, the following connections had negative relations (posterior probability
> 0.95) with aSLP: the connection from S1-l to S2-l (β= -0.277, posterior SD β = 0.132), from
S2-l to pIC-l (β= -0.279, posterior SD β = 0.127), from aIC-l to dACC (β= -0.244, posterior SD
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β = 0.126) and from pIC-l to dACC (β= -0.251, posterior SD β = 0.124). The first three
connections were still present after BMR.

3.2.2 Individual results
In Figures 3 and 4 and Supplementary Figure 2, the individual results from the
within-session level PEB and within-subject level PEB are displayed. For visual purposes,
columns 1 to 4 show the beta values from the within-session level PEB and are thresholded
at a posterior probability of higher than 0.75. Column 5 shows the beta values from the
within-subject PEB, thresholded at a posterior probability higher than 0.95. The
connectivity from the DLPFC-r to the DLPFC-l showed at group level a negative relation
with AMP, but was pruned away after BMR. Looking at individual results (Figure 3), we see
that two patients had this negative relation consistently across sessions whereas one
patient showed an opposite relation. Other patients showed both negative and positive
relations in some single sessions. On average, the connection from the dACC to the
DLPFC-l showed a negative relation with increasing pain, however this connection was
removed after BMR. Three patients showed this negative relation consistently across
sessions, and one patient showed a positive relation across sessions. Other patients
showed both negative and positive relations in single sessions (Figure 4). Supplementary
Figure 2, shows the relations with aSLP.

Although averaging the free energies of the different shift models across sessions and
participants showed a clear winning model (the instant mapping model), when looking at
the winning model separately for sessions within patients, there was some variability. As a
post-hoc analysis, the analysis was repeated where we took individual-specific winning
models to the group level. Again, no consistent group results were found.
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Figure 3 | Individual results of relations between the connectivity parameters and AMP in each
session and across sessions. Columns 1 to 4 represent the beta values from the within-session
level PEB and are thresholded at a posterior probability > 0.75. Column 5 represents the beta values
from the within-subject PEB, thresholded at a posterior probability > 0.95.
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Figure 4 | Individual results of relations between the connectivity parameters and SLP in each
session and across sessions. Columns 1 to 4 represent the beta values from the within-session
level PEB and are thresholded at a posterior probability > 0.75. Column 5 represents the beta values
from the within-subject PEB, thresholded at a posterior probability > 0.95.

3.3 Sensitivity analysis
Even though no consistent group connectivity-pain relations were found, for completeness
we present the group results of the sensitivity analysis showing the influence of each
connectivity parameter on spectral outcomes in each source. On average, an increase in
forward connectivity from the S1-r to the S2-r was related to increases in oscillations
between 64 Hz and 71 Hz in the S2-r. In the pIC-r, two clear clusters of increases in
oscillations between 17-23 Hz and 28-41 Hz related to changes in connectivity from S2-r to
pIC-r were found. In the aIC-r, 6-7 Hz and 10 Hz oscillations were related to connectivity
from the pIC-r to the aIC-r. Connectivity from the pIC-l to the aIC-l was related to an
increase in oscillations between 13-19 Hz and 22-43 Hz in the aIC-l. Several increases
around 28 to 59 Hz oscillations were found in the dACC, which were related to increases in
connectivity to these regions from the pIC-l, aIC-r and aIC-l.
Other connections also had an influence on oscillations in the dACC and multiple
connections had a relation with oscillations in the frontal regions. Connectivity from the
dACC to the DLPFC-r was related to increases between 31-51 Hz in the DLPFC-r. In the
mPFC, increased oscillations between 13-15 Hz, 22-23 Hz and 29-45 Hz were found for the
connection from the dACC. The full group sensitivity results are displayed in Figure 5.
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Figure 5 | Group results of sensitivity analysis. T values thresholded with the maximum
statistic correction. Positive (red) values correspond to connectivity increases resulting in
increases in power (at a certain frequency in a specific region), while negative values correspond to
decreases in power.

3.3.1 Individual results
The lack of consistency in group results could support the idea of a strong individuality in
the relationship between effective connectivity and pain. Besides the group results of the
sensitivity analysis that represent some consistent spectral outcomes over patients,
connectivity patterns also showed different spectral outcomes depending on the
participant. Individual sensitivity profiles can be found in the Supplementary material
(Supplementary Figure 3). The average across windows and sessions was taken to compute
t-values for visualisation.

4 Discussion

Although fluctuating pain is an almost daily experience in CM and other chronic pain
conditions, relations between brain dynamics and ongoing pain have been sparsely
investigated. Here, we aimed to investigate how dynamic effective connectivity between
pain-related regions relates to the fluctuating intensity of ongoing headache in CM. Our
pain rating regressors allowed us to examine brain dynamics related to pain intensity
(AMP), pain intensity changes (SLP), and pain-unrelated processes such as decision making,
motor processing, and changes of visual input (aSLP). At the group level, we found no
consistent relations between the connectivity parameters and AMP. In addition, no
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consistent connectivity changes related to SLP were found. The regressor encoding aSLP
showed consistent negative relations with the connections from S1-l to S2-l, S2-l to pIC-l,
and aIC-l to dACC, thus mostly encompassing the left ascending pathway. It is not
unsurprising that pain-related connections decrease during processes such as decision
making, visual and motor processing as connections in other networks might increase,
thereby shifting attention from pain (Schulz et al., 2020; Tracey et al., 2002). However,
individual data show a more complex picture by suggesting that each patient exhibits their
own signature of migraine-related pain encoding in the brain.

4.1 Ongoing variations of pain experience in chronic migraine
In a prior publication using the same design and the same patients in fMRI, we applied
linear mixed effects models to relate cortical activity and functional connectivity across
the whole brain to the same descriptors of the rating process: AMP, SLP and aSLP (Mayr et
al., 2021, 2022). Although the data type and analysis strategies differed, the same type of
regressors were used to relate brain dynamics to AMP. At group level, several regions and
connections were found to be related to AMP and SLP. Importantly, we assessed the
similarity between individual cortical results of the CM patients and group results by
computing spatial correlations. Variability across individual patterns of connectivity-AMP
relations and activity-AMP were large and did not resemble the findings at group level.
These previous publications mirror the large individual differences in connectivity-pain
relations found in the present study, where we used a linear Bayesian model by taking
uncertainties of individual connectivity-pain relations into account.

4.2 Preselection of cortical regions
Previous findings of structural and functional abnormalities reported in pain-related areas
in patients with migraine (Borsook et al., 2016; Filippi & Messina, 2019; Jia & Yu, 2017;
Tolner et al., 2019) supported our motivation to examine the primary and secondary
somatosensory cortices, the DLPFC, the medial prefrontal cortex and the dorsal ACC.
However, the phenomena investigated in these studies may not be comparable with our
findings; most connectivity studies on episodic migraine used a resting state design and
tested in the interictal phase during the absence of any headache (Colombo et al., 2015;
Maleki & Gollub, 2016; Russo et al., 2017). Although aberrant connectivity between
pain-related structures has been found in CM (Hsiao et al., 2021; Lee et al., 2019; Schwedt
et al., 2013), the widespread results, methods and study designs makes it difficult to infer
hypotheses on the underlying deviant connections. Unfortunately, the demanding
computational analysis allows the investigation of only a small number of preselected
cortical regions.

4.3 Further studies on cortical effects of ongoing variations of pain
There are a few studies that are either investigating applied fluctuating tonic pain in
healthy controls or naturally evolving endogenous back pain. For example, a seminal study
by Baliki et al. contrasted increasing pain to stable and decreasing chronic back pain which
showed higher activity in the right insula, S1, S2, mid cingulate and the cerebellum (Baliki
et al., 2006). Further studies found mPFC activity to be related to ongoing pain intensity
(Baliki et al., 2006; Hashmi et al., 2013; May et al., 2019; Nickel et al., 2017; Schulz et al.,
2015). In particular, gamma oscillations in the mPFC were found to be related to subjective
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pain intensity of both tonic pain (Nickel et al., 2017; Schulz et al., 2015) and chronic back
pain (May et al., 2019). Connectivity at alpha frequencies in the sensorimotor-prefrontal
network has also been shown to be associated with tonic pain in healthy controls (Nickel et
al., 2020). Based on these studies, we would have expected some results containing
connectivity parameters from and to the mPFC. However, these previous studies were
analysing the amplitude of cortical processes in different samples; they are not directly
comparable to the present variable connectivity scores in migraine patients. Furthermore,
mPFC activity being related to subjective tonic or chronic back pain intensity may not be
consistent across subjects. In the supplementary material of the study of Schulz et al.
(Schulz et al., 2015), some participants indeed showed clear positive relations between
prefrontal gamma oscillations and pain intensity but others showed no or even negative
relations. In a similar study on chronic back pain (May et al., 2019), group data showed a
positive relation between ongoing pain and gamma oscillations at the Fz electrode, but
some patients showed no or negative relations. From the 31 patients, only 9 showed a
positive relation that had a p-value lower than 0.1.

4.4 Individual signatures of AMP encoding in migraine using DCM
Therefore, the most important question we have to address is whether this study was able
to reveal brain dynamics related to pain in individual patients. Each patient underwent
four recording sessions to investigate consistency of pain processing patterns. Across all
sessions, 16 of the 20 patients showed one or more consistent relation with some
connectivity parameter in the pain network and AMP and 17 patients showed one or more
consistent relation with falling and rising pain. The variable results do not just encompass
differences in the magnitude of relations between connectivity and pain processing across
individuals, but also in the directionality of the relations. For example some patients show
enhanced connectivity from region A to B when their pain increases, whereas others show
decreased connectivity. The interpretation of these findings depends mostly on the
function(s) encoded by that region and whether that region can have both inhibitory and
excitatory connections with other regions. Variability in the sensitivity profiles do suggest
that a change in connectivity between two regions may have different spectral outcomes
depending on the patient. Mayr et al. (Mayr et al., 2022) also found qualitative differences
across patients in relations between brain connectivity and AMP. These findings open the
question whether there are mechanisms that determine a positive, negative, or
non-existent relation between brain activity and AMP for a given connection.

4.5 Requirements for the applicability of individual descriptors brain
dynamics

The current study design was aimed to approximate the daily-life experience of migraine
patients, which is the experience of fluctuating pain intensity. The assessment of repeated
sessions is mandatory in order to minimise the influence of random noise that may occur
within single sessions. To better understand the inherently dynamic individual pain
experience, it is important to further investigate the stability of the relevant pain-related
cortical processes over time (Mun et al., 2019). Similar to our previous study (Mayr et al.,
2022), we suggest that individual-specific neural reorganisation due to repeated attacks
could underlie qualitative rather than gradual/quantitative differences between
individuals. Such reliable cortical target processes could be utilised to accurately predict
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the pain ratings in each patient. In a follow-up study, we will use machine learning
techniques to explore whether pain ratings can be predicted on the basis of the individual
brain dynamics that we have analysed in the present investigation. We would assume a
better prediction at the individual level compared to predictions that are based on data
from the entire sample. In a similar vein, we expect a stronger future focus on individual
analyses (Martucci et al., 2014). Consequently, determining individually unique and stable
brain dynamics that encode AMP and SLP in single patients could be a prerequisite to
define a reliable target for possible neuromodulatory interventions (Jensen et al., 2014).

4.6 Limitations
This study was a first step to gain insight in relations between fluctuating connectivity and
the almost daily headaches that CM patients experience. Thus, we began with testing the
cortical networks most mentioned in the pain literature. Nevertheless, there is a possibility
that we have not selected the network most important for pain processing in CM.
In addition, other models might be better suited to investigate the dynamically evolving
pain-related oscillations. Sophisticated methods like hidden Markov models (Hughey &
Krogh, 1996) could be used to examine transitions of different brain states and how these
states relate to the reported pain. Auto-regressive models on the pain ratings and
comparing models with different regressors of smoothed fitted ratings could gain further
insight.
Finally, the present design does not allow to include a healthy control group. This group
would likely show some fluctuating network activity. However, the pain rating would
consist of a rating time course of zeros. A “correlation” with zeros is mathematically not
possible and a healthy control group using this design is therefore not possible.

4.7 Summary and outlook
The current findings support other studies from our research group showing that
individual patients have unique patterns of brain dynamics underlying their chronic pain
that are difficult to capture. Using neuroimaging to find a biomarker for subjective pain
intensity at the group level might not lead to fruitful results. Finding the appropriate
neuroimaging method and analysis to establish brain markers that are stable throughout
multiple recording sessions of the same patient may be the way forward to guide
individualised treatments. Finding subtypes of patients that process pain in the same way
would be valuable but would require a large sample of patients, each with repeated
recordings.
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