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Abstract

Local field potential (LFP) recordings reflect the dynamics of the current source density
(CSD) in brain tissue. The synaptic, cellular and circuit contributions to current sinks and
sources are ill-understood. We investigated these in mouse primary visual cortex using
public Neuropixels recordings and a detailed circuit model based on simulating the Hodgkin-
Huxley dynamics of numerous cortical neurons belonging to 17 cell types. The model
simultaneously captured spiking and CSD responses and demonstrated a two-way
dissociation: Firing rates are altered with minor effects on the CSD pattern by adjusting
synaptic weights, and CSD is altered with minor effects on firing rates by adjusting synaptic
placement on the dendrites. We describe how thalamocortical inputs and recurrent
connections sculpt specific sinks and sources early in the visual response, whereas cortical
feedback crucially alters them in later stages. Our findings show that CSD analysis provides

powerful constraints for modeling beyond those from considering spikes.
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Introduction

The local field potential (LFP) is the low-frequency component (below a few hundred Hertz)
of the extracellular potential recorded in brain tissue that originates from the transmembrane
currents in the vicinity of the recording electrode (Lindén et al., 2011; Buzsaki, Anastassiou,
and Koch, 2012; Einevoll et al., 2013; Pesaran et al., 2018; Sinha and Narayanan, 2021).
While the high-frequency component of the extracellular potential, the single- or multi-unit
activity (MUA), primarily reflects action potentials of one or more nearby neurons, the LFP
predominantly stems from currents caused by synaptic inputs (Mitzdorf, 1985; Einevoll et al.,
2007) and their associated return currents through the membranes. Thus, cortical LFPs
represent aspects of neural activity that are complementary to those reflected in spikes, and
as such, it can provide additional information about the underlying circuit dynamics from

extracellular recordings.

Applications of LFP are diverse and include investigations of sensory processing
(Baumgartner and Barth, 1990; Victor et al., 1994; Kandel and Buzsaki, 1997; Henrie and
Shapley, 2005; Einevoll et al., 2007; Belitski et al., 2008; Montemurro et al., 2008; Niell and
Stryker, 2008; Nauhaus et al., 2008; Bastos et al., 2015; Senzai, Fernandez-Ruiz, and
Buzsaki, 2019), motor planning (Scherberger, Jarvis and Andersen, 2005; Roux, Mackay
and Riehle, 2006) and higher cognitive processes (Pesaran et al., 2002; Womelsdorf et al.,
2005; Liu and Newsome, 2006; Kreiman et al., 2006; Liebe et al., 2012). The LFP is also a
promising candidate signal for steering neuroprosthetic devices (Mehring et al., 2003;
Andersen, Musallam and Pesaran, 2004; Rickert et al., 2005; Markowitz et al., 2011;
Stavisky et al., 2015) and for monitoring neural activity in human recordings (Mukamel and
Fried, 2012) because the LFP is more easily and stably recorded in chronic settings than
spikes. Due to the vast number of neurons and multiple neural processes contributing to the
LFP, however, it can be challenging to interpret (Buzsaki, Anastassiou, and Koch, 2012;
Einevoll et al., 2013; Hagen et al., 2016). While we have extensive phenomenological
understanding of the LFP, less is known about how different cell and synapse types and
connection patterns contribute to the LFP or how these contributions are sculpted by

different information processing streams (e.g., feedforward vs. feedback) or brain state.

One way to improve its interpretability is to calculate the current source density (CSD) from
the LFP, which is a more localized measure of activity, and easier to read in terms of the
underlying neural processes. The current sinks and sources indicate where positive ions flow

into and out of cells, respectively, and are constrained by Kirchoff’s current law (i.e., currents
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sum to zero over the total membrane area of a neuron). However, the interpretation of
current sinks and sources is inherently ambiguous, as several processes can be the origin of
a current sink or source (Buzsaki, 2006; Pettersen et al., 2006; Einevoll et al., 2007). For
example, a current source may reflect an inhibitory synaptic current or an outflowing return
current resulting from excitatory synaptic input elsewhere on the neuron, and there is no

simple way of knowing which it is from an extracellular recording alone (Buzsaki, 2006).

Another approach to uncovering the biophysical origins of current sinks and sources, and by
extension the LFP, is to simulate them computationally (Pettersen, Hagen, and Einevoll,
2008; Einevoll et al., 2013). Following the classic work by Rall in the 1960s (Rall, 1962), a
forward-modeling scheme in which extracellular potentials are calculated from neuron
models with detailed morphologies using volume conduction theory under the line source
approximation has been established (Holt and Koch, 1999). With this framework, we have
achieved a good understanding of the biophysical origins of extracellular potentials in single
cells, both spikes (Koch, 1999; Pettersen and Einevoll, 2008; Hay et al., 2011) and LFPs
(Lindén et al, 2010). Expanding on this understanding, models composed of populations of
unconnected neurons (e.g. Pettersen, Hagen, and Einevoll, 2008; Lindén et al., 2011;
Schomburg et al., 2012; teski et al., 2013; Sinha and Naryanan, 2015; Hagen et al., 2017;
Ness et al., 2018) and recurrent network models (e.g. Vierling-Claassen et al., 2010;
Reimann et al., 2013; Gtgbska et al., 2014; Tomsett et al., 2015; Hagen et al., 2016; Hagen
et al., 2018; Chatzikalymniou and Skinner, 2018) have been used to study the neural

processes underlying LFP.

While interesting insights about CSD and LFP were obtained from these computational
approaches, establishing a direct relationship between the biological details of the circuit
structure and the electrical signal like LFP remains a major unresolved challenge. One
reason is that the amount and quality of data available for modeling the circuit architecture in
detail has been limited. This situation improved substantially in recent years, and a broad
range of data on the composition, connectivity, and physiology of cortical circuits have been
integrated systematically (Billeh et al., 2020) in a biophysically detailed model of mouse
primary visual cortex (area V1). In addition, significant improvements were achieved in the
area of experimental recordings of the LFP and the simultaneous spiking responses. In
particular, the Neuropixels probes (Jun et al., 2017) have recently allowed for recordings of
LFP and hundreds of units across the cortical depth in multiple areas, with 20 ym spacing
between recording channels allowing for an unprecedented level of spatial detail. These
developments provide unique opportunities to improve our understanding of circuit

mechanisms that determine LFP patterns.
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Here, we analyze spikes and LFP from the publicly available visual coding dataset recorded

using Neuropixels probes (www.brain-map.org; Siegle et al., 2021), and seek to explain

these using the mouse V1 model developed by Billeh et al. (2020). The model is comprised
of more than 50,000 biophysically detailed neuron models surrounded by an annulus of
almost 180,000 generalized leaky-integrate-and-fire units. The neuron models belong to 17
different cell type classes: one inhibitory class (Htr3a) in layer 1, and four classes in each of
the other layers (2/3, 4, 5, and 6) where one is excitatory and three are inhibitory (Pvalb, Sst,
Htr3a) in each layer. The visual coding dataset consists of simultaneous recordings from six
Neuropixels 1.0 probes across a range of cortical and subcortical structures in 58 mice while
they are exposed to a range of visual stimuli (about 100,000 units and 2 billion spikes over

two hours of recording).

In our analysis of this dataset, we identified a canonical CSD pattern that captures the
evoked response in mouse V1 to a full-field flash. We then modified the biophysically
detailed model of mouse V1 to reproduce the canonical CSD pattern. In this process, we
discovered that the model can be modified by adjusting the synaptic weights to reproduce
the experimental firing rates with only minor effects on the simulated CSD, and, conversely,
that the simulated CSD can be altered with only minor effects on the firing rates by adjusting
synaptic placement. Furthermore, we found that comparing the simulated CSD to the
experimental CSD revealed discrepancies between model and data that were not apparent
from only comparing the firing rates. Additionally, it was not until feedback from higher
cortical visual areas (HVAs) was added to the model that simulations reproduced both the
experimentally recorded CSD and firing rates, as opposed to only the firing rates.

This bio-realistic modeling approach sheds light on specific components of the V1 circuit that
contribute to the generation of the major sinks and sources of the CSD in response to abrupt
visual stimulation. Our findings demonstrate that utilizing the LFP and/or the CSD in
modeling can aid model configuration and implementation by revealing discrepancies
between models and experiments and provide additional constraints on model parameters
beyond those offered by the spiking activity. The new model obtained here is provided freely
(https://www.dropbox.com/sh/x6zuogmijx8zns9f/AAAQbQbdXABsbbHUhC-gGBP7a?dI=0) to

the community to facilitate further applications of biologically detailed modeling.
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Results

Spikes and LFP were recorded across multiple brain areas, with a focus on six cortical (V1,

LM, AL, RL, AM, PM) and two thalamic (LGN, LP) visual areas, using Neuropixels probes in
58 mice (Siegle et al., 2021).
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Figure 1: lllustration of experimental data and the biophysical model for mouse primary visual

cortex (V1). (A) Schematic of the experimental setup, with six Neuropixels probes inserted into six
cortical (V1, LM, RL, AL, PM, AM) and two thalamic areas (LGN, LP). (B) Top: Spikes from many

simultaneously recorded neurons in V1 during a single trial. Bottom: Spikes from a single neuron
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recorded across multiple trials. In both cases, the stimulus was a full-field bright flash (onset at time O,
offset at 250 ms). (C) Top: LFP across all layers of V1 in response to the full-field bright flash,
averaged over 75 trials in a single animal. Bottom: CSD computed from the LFP with the delta iCSD
method. (D) Histology displaying trace of the Neuropixels probe across layers in V1, subiculum (SUB)
and dentate gyrus (DG). (E) Visualization of the V1 model with the Neuropixels probe in situ.

A schematic of the six probes used to perform the recordings in individual mice is shown in
Fig. 1A, and the spikes and LFP recorded in V1 of an exemplar mouse during presentation
of a full-field bright flash stimulus are displayed in Fig. 1B, C. The current source density
(CSD) can be estimated from the LFP (averaged over 75 trials) using the delta iCSD method
to obtain a more localized measure of inflowing (sinks) and outflowing currents (sources)
(Pettersen et al. 2006; Einevoll et al., 2013). The biophysically detailed model of mouse V1
used to simulate the neural activity and the recorded potential in response to the full-field
flash stimulus is illustrated in Fig. 1E. The extracellular electric field in the model was
recorded on an array of simulated point electrodes (Dai et al., 2020) arranged in a straight
line (Fig. 1D) and separated by 20 um, consistent with Neuropixels probes, shown in Fig. 1E

to scale with the model.

Uncovering a canonical visually evoked CSD response

We first established a “typical” experimentally recorded CSD pattern, to be reproduced with
the model. Though there is substantial inter-trial and inter-animal variability in the evoked
CSD response, we find that most trials and animals have several salient features in
common. In Fig. 2A, the trial-averaged evoked CSDs from five individual mice are displayed.
In the first four animals (# 1-4), we observe an early transient sink arising in layer 4 (L4)
around 40 ms after flash onset, followed by a sustained source starting at about 60 ms which
covers L4 and parts of layers 2/3 (L2/3) and layer 5 (L5). We also observe a sustained sink
covering layers 5 and 6 (L6) emerging at around 50 ms, as well as a sustained sink covering
layers 1 and 2/3 from about 60 ms. An animal that does not fully exhibit what we term

the “canonical” pattern is shown in the rightmost plot (# 5 in Fig. 2A); it has an early L4 sink
arising at 40 ms, but this sink is not followed by the sustained sinks and sources from 50-60
ms and onwards observed in the other animals. The timing and location of sinks and sources
are, overall, similar to those described earlier by Niell & Stryker (2008), and Senzai,
Fernandez-Ruiz, and Buzsaki (2019).
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238  Figure 2: Variability in experimentally recorded CSD. (A) Evoked CSD response to a full-field
239  flash averaged over 75 trials, from five animals in the dataset. (B) The first principal component (PC)
240  computed from the CSD of all n=44 animals, explaining 50.4% of the variance. (C) lllustration of
241  movement of sinks and sources in the calculation of the Wasserstein distance (WD) between the CSD
242 of two animals in the dataset. The gray lines in the rightmost panels display how the sinks or sources
243 of one animal are moved to match the distribution of sinks or sources of the other animal. (D) Left:
244 WDs from each animal to the PC 1 CSD. Right: Pairwise WDs between all 44 animals sorted by their
245  distance to the first PC. (E) CSD from five individual trials in example animal 1. (F) Distribution of
246  pairwise distances between single trial CSD (red) and pairwise distances between trial averaged CSD
247  of individual animals (blue). Both are normalized to the maximum pairwise distance between the trial

distance

Normalized CSD
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248  averaged CSD of individual animals. (G) Pairwise WDs between trials in each of 44 animals (white
249  boxplots), normalized to maximal pairwise WDs between trial averaged CSD of animals. Grey-colored
250 boxplot shows the distribution of pairwise WDs between trial-averaged CSD of individual animals, and
251 the red stars indicate the n=5 animals for which the inter-trial variability was greater than the inter-
252 animal variability (assessed with KS-tests, see S2 in Supplementary Figures).

253

254  To identify the robust features across animals in this dataset, we performed Principal

255  Component Analysis (PCA) on the trial-averaged evoked CSD from all animals. Five out of
256  the 58 animals in the data set did not have readable recordings of LFP in V1 during the

257  presentation of the full-field flash stimuli, and the exact probe locations in V1 could not be
258  recovered for nine other animals due to fading of fluorescent dye or artifacts in the optical
259  projection tomography (OPT) volume (see Methods). The remaining 44 (out of the 58)

260  animals in the data set were retained for the CSD analysis. The first principal component
261  (PC 1) (Fig. 2B) constitutes a weighted average of the CSD patterns from all 44 animals and
262  explains half (50.4 %) of the variance. The salient features typically observed in individual

263  animals are also prominent in the PC 1 CSD pattern (Fig. 2B), i.e., the canonical pattern.
264

265 Quantifying CSD pattern similarity

266  We use the Wasserstein or Earth Mover’s distance (WD), to quantify the differences in CSD
267  patterns (see Methods). The WD reflects the cost of transforming one distribution into

268  another by moving its “distribution mass” around (Rubner et al., 1998; Arjovsky et al., 2017).
269  An often-used analogy refers to the two distributions as two piles of dirt, where the WD tells
270  us the minimal amount of work that must be done to move the mass of one pile around until
271  its distribution matches the other pile (Rubner et al., 1998). In the context of CSD patterns,
272 the WD reflects the cost of transforming the distribution of sinks and sources in one CSD
273  pattern into the distribution of sinks and sources in another pattern, with larger WD indicating
274  greater dissimilarity between CSD patterns. The WDs are computed between the sinks of
275  two CSD patterns and between the sources of two CSD patterns independently, and then
276  summed to form a total WD between the CSD patterns (Fig. 2C). The sum of all sinks and
277  the sum of all sources in each CSD pattern are normalized to -1 and +1, respectively, so the
278 WD only reflects differences in patterns, and not differences in the overall amplitude. The
279 WD scales linearly with shifts in space and time.

280

281  When computing the WDs between the evoked CSD patterns of individual animals and the
282  canonical pattern, we find that the animals with CSD patterns that, by visual inspection,

283  resemble the canonical pattern (Fig. 2A, animals 1-4), are indeed among animals with
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284  smaller WD, while the animal with the more distinct CSD pattern (Fig. 2A, animal 5) is an
285  outlier (Fig. 2D).

286

287  The onset of the evoked response is less conspicuous in the single-trial CSD, due to

288  pronounced, ongoing sinks and sources, but there is still a visible increase in magnitude
289  from 40-50 ms and onwards (Fig. 2E), compatible with the latency of spiking responses to
290  full-field flashes in V1 (Siegle et al., 2021). An oscillation of sinks and sources with a

291  periodicity of ~20 ms, i.e., in the gamma range is apparent in the region stretching from L2/3
292  to the top of L5, which appears to be either partially interrupted or drowned out by more
293  sustained sinks and sources emerging at about 60 ms. At least some of this gamma-range
294 activity derives from the visual flash that covers the entire visual field and that drives retinal
295  neurons and post-synaptic targets in the lateral geniculate nucleus (LGN) in an oscillatory
296  manner (see the pronounced gamma-range oscillation in the LGN firing rate in Fig. 3D).
297

298  The inter-trial variability is roughly comparable to the inter-animal variability of the trial-

299  averaged responses. By computing the pairwise Wasserstein distances between single trial
300 CSDs within each animal, and comparing it to the pairwise WD between the trial-averaged
301  CSD of each animal, we find that inter-trial variability in CSD is significantly lower than the
302 inter-animal variability in trial-averaged CSD (Kolmogorov-Smirnov distance = 0.33; p <

303  0.001) (Fig. 2F).

304

305  The maijority of animals (39 out of 44) have a WD to the 1% principal component, PC 1, of the
306 CSD thatis less than half of the greatest WD between the CSD of individual animals and the
307 PC 1 CSD (Fig 2D); the pairwise WDs between animals are also less than half of the

308  maximum pairwise WD for most animals (921 out of the total 946 pairwise WDs; Fig 2E).
309  This supports the view that most animals exhibit the canonical CSD pattern captured by the
310 PC 1 CSD (Fig. 2B). The total inter-trial variability is smaller than the inter-animal variability,
311  both estimated by pairwise WDs (Fig. 2F-G), though there are n=5 animals for which the
312  inter-trial WDs are larger than the inter-animal WDs (Fig. 2G, marked by red stars;

313  determined with KS-tests on the distribution of pairwise WDs between animals and pairwise
314  WDs between trials in each animal - see Fig. S4).

315

316 Quantifying firing rate variability

317  For the spike analysis (see Methods), we distinguish between fast-spiking (FS; putative

318  Pvalb inhibitory) neurons, and regular-spiking (RS; putative excitatory and non-Pvalb

319 inhibitory) neurons. All FS-neurons are grouped together into one population across all
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layers, while the RS-neurons are divided into separate populations for each layer (Fig. 3A).
The FS-neurons are merged across layers because we set a criterion of at least 10 recorded
neurons in any one layer when comparing the population firing rate in individual animals to
the average population firing rate in all animals, and only one animal had 10 FS-neurons or
more in any layer (Fig. S3). This criterion was set to have a more reliable estimate of the

population firing rates in individual animals.
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Figure 3: Variability in experimentally recorded spikes. (A) Trial-averaged laminar population
firing rates of regular-spiking (RS) cells, differentiated by layer, and fast-spiking (FS) cells across all
layers in response to full-field flash. Black line: Average across all animals. Gray shaded area: + 1
standard deviation. (B) Kolmogorov-Smirnov (KS) similarities (see Methods) between the trial-
averaged firing rates of each individual animal and the average firing rate over cells from all animals
(black line in (A)) at baseline (the interval of 250 ms before flash onset), peak evoked response (from
35 to 60 ms after flash onset), and during the sustained period (from 60 to 100 ms). (C) Correlations
between trial-averaged firing rates of individual mice and all mice (0-100 ms after flash onset). (D)
Baseline-subtracted evoked firing rates for excitatory cells in seven visual areas (average over trials,
neurons, and mice). Note the strong, stimulus triggered gamma-range oscillations in the firing of LGN
neurons (blue). (E) Mean (u) + standard deviation (o) of population firing rates during baseline, peak
evoked response, and the sustained period. Averaged across trials, neurons and time windows

defined above.
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We use the Kolmogorov-Smirnov (KS) similarity (defined as one minus the KS distance, see
Methods) and correlation to quantify the variability in spikes. The KS-similarity gives the
similarity between the distributions of average firing rates across neurons in two populations
in selected time windows, with KS-similarity = 1 implying identity. As such, KS-similarity
provides a metric to compare the magnitudes of firing rates in certain time periods. We
defined the ‘baseline’ window as the period over 250 ms before the flash onset, the ‘initial
peak’ window as 35 ms to 60 ms after flash onset, and the ‘sustained’ window as 60 ms to
100 ms after flash onset. The KS-similarity score during baseline is denoted “KSS,”, during
the ‘initial peak’ “KSS,”, and ‘sustained’ “KSSs”. The correlation, on the other hand, is
computed between two population firing rates throughout the 100 ms window. The
correlation thus gives us a measure of the similarity in the temporal profile of firing rates in
this interval, independent of magnitudes. We establish the experimental variability in KS-
similarities and correlation by computing these metrics between the population firing rates of
each individual animal and the average population firing rates of all other animals (averaged

over trials for both the individual animals and the average over all other animals) (Fig. 3B-C).

The population firing rates for FS neurons are more than twice as high than RS cells during
baseline, peak and sustained. Among the RS populations, the firing rate in L5 is the highest
at the peak and baseline, followed by L4 and L6, while L2/3 has the lowest firing rates (Fig.
3E).

Discrepancy between the original model and experimental observations

We simulated the response to a full-field flash stimulus with the biophysical network model of
mouse primary visual cortex as presented in Billeh et al., 2020. As input to the model, we
used experimentally recorded LGN spike trains (Fig. 4C) (see Methods). A Poisson source,
firing at a constant rate of 1 kHz, provides additional synaptic input to all cells, representing
the influence from the rest of the brain ("background” input). The thalamocortical input
consists of spike trains from 17,400 LGN units (Arkhipov et al., 2018; Billeh et al., 2020). The
public Neuropixels data contain recordings from 1,263 regular-spiking LGN neurons across
32 mice during 75 trials of full-field bright flash presentations, resulting in 94,725 spike trains.
To construct the input for each of our 10 simulation trials, we randomly sampled 10 unique
subsets of spike trains from this pool, until all 17,400 units had been assigned a spike train in

each trial.

Fig. 4A-B displays the resulting spiking pattern across all layers with its associated LFP. The

inferred CSD exhibits a strong sink in the L5 and L6 region, matched by a strong source
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Figure 4: LFP, CSD and spikes from simulations with the original model. (A) Top: Raster plot of
all ~50,000 cells in the model’s 400 um-radius “core” region spanning all layers, in a simulation of a

single trial with the flash stimulus. Bottom: Raster plot and histogram of spikes from 10 trials for an
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426 example cell. (B) Top: simulated LFP averaged over 10 trials of flash stimulus. Bottom: CSD

427  calculated from the LFP via the delta iCSD method. (C) Firing rate of experimentally recorded LGN
428  spike trains used as input to the model. (D) Wasserstein distance between CSD from the original
429  model (blue diamond) and PC 1 CSD from experiments together with the Wasserstein distances from
430  experimental CSD in every animal to PC 1 CSD (boxplot), normalized to maximal distance for

431 animals. (E) Experimentally recorded firing rates (black) and simulated firing rates (blue). (F) KS-
432  similarity between firing rates in original model (blue diamond) or individual animals (boxplots) and
433  firing rates in experiments at baseline, peak evoked response, and during the sustained period

434 (defined in Fig. 3). (G) Correlation between firing rates of model (blue diamond) or individual animals
435 in experiments (boxplots) and average population firing rates in experiments (0-100 ms). (H) Mean (u)
436  * standard deviation (c) of model firing rates during baseline, peak evoked response, and the

437 sustained period. Averaged across trials, neurons and time windows defined above.

438

439  below it, both starting at ~50 ms after flash onset (Fig. 4B; bottom). However, the early L4
440  sink, the later sustained L4 source, and the sustained L2/3 sink typically observed in the
441  experimental CSD (Fig. 2A, B) are either absent or too weak compared to the sink and

442  source in L5 and L6. The WD from the simulated CSD to the experimental PC 1 CSD is

443  greater than the WD between the CSD of the farthest outlier animal and the PC 1 CSD (WD
444  =1.84, normalized to the largest WD between CSD of individual animals and PC 1 CSD).
445  Thus, using experimental variability as a reference, the CSD from this simulation is an outlier
446  (Fig. 4C).

447

448  The population firing rates of the model, the KS similarities and correlation between the

449  model and the data, are plotted together with the data in Fig. 4D-F. The magnitudes of the
450  model firing rates are higher than the experimental firing rates in all populations and time
451  windows (Fig. 4H). However, the KS similarities between the model firing rates and the

452  experimental firing rates are still within the minimum to maximum range of the boxplots for
453  the RS L2/3, RS L4, and RS L5 cells in all time windows (Fig. 4F), and during baseline for
454  the FS cells. For RS L6 neurons the KS similarities were among the outliers of the

455  experiments in all time windows, while for FS neurons they were among the outliers during
456  the peak and sustained windows (RS L2/3: KSS, = 0.62, KSS, = 0.63, and KSS; = 0.54; RS
457  L4: KSS, =0.77, KSS, = 0.60, and KSSs = 0.63; RS L5 KSS;, = 0.77, KSS, = 0.77, and KSSs
458 =0.78; RS L6: KSS;, = 0.54, KSS, = 0.45, and KSSs = 0.47; FS: KSSy = 0.54, KSS, = 0.53,
459 and KSSs = 0.49). The temporal profile of the model firing rates are above the minimum of
460  the boxplots for all populations (RS L2/3: r = 0.38***, RS L4: r = 0.62***, RS L5: r = 0.75***,
461 RS L6:r=0.90""* FS: r=0.80**; *** p<0.001).

462
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The original model studied in Fig. 4 produced firing rates and orientation and direction tuning
consistent with recordings in vivo (Billeh et al., 2020), but with some shortcomings, such as
relatively slow responses of V1 to the onset of visual stimuli (Arkhipov et al., 2018; Billeh et
al., 2020). Here, we see even more inconsistencies reflected clearly in the CSD pattern. This
demonstrates the importance of multi-modal characterization of such biologically detailed
models. To investigate the properties of the cortical circuit that sculpt the CSD, we
manipulated the model and observed how both the CSD and firing rate responses were

improved to match the experimental data.

Adjusting the model to fit experimental firing rates

Due to the discrepancy between the magnitudes of the model firing rates and the
experimental firing rates, especially with respect to the RS L6 and FS neurons, where the
model firing rates were among the experimental outliers, we selectively adjusted the
recurrent synaptic weights. We left the synaptic weights between LGN and the V1 model

unchanged since they were well constrained by data (Billeh et al. 2020).

We first reduced the synaptic weights from all excitatory populations to the fast-spiking PV-
neurons by 30% to bring their firing rates closer to the average firing rate in this population in
the experiments. This resulted in increased firing rates in all other (RS) populations due to
the reduced activity of the inhibitory Pvalb-neurons (Fig. S6). Therefore, we further applied
reductions in the synaptic weights from all excitatory neurons to RS neurons or increases in
the synaptic weights from inhibitory neurons to the RS neurons to bring their firing rates
closer to the experimental average firing rates. We multiplied the recurrent synaptic weights
with factors in the [0.2, 2.5] range until we arrived at a set of weights where none of the
model firing rates were among the experimental outliers in any time window (KSSy, = 0.73,
KSS,=0.77, and KSSs = 0.70; average across RS populations and the FS population) and
temporal profiles (RS L2/3: r = 0.49***, RS L4:r = 0.63***, RS L5: r=0.71"*, RS L6: r =
0.87***, FS: r = 0.86™*; *** p<0.001) (Fig. 5A-C).

The resulting spatial pattern (but not the magnitude) of the CSD, however, was largely
unchanged (Fig. 5D) compared to the original CSD (Fig. 4B). The overall magnitude was
reduced, and there were some traces of a sink arising at 40 ms after flash onset, and a L2/3
(and L1) sink after 60 ms, but they were substantially weaker relative to the L5/L6 dipole
than they were in the experiments. Furthermore, the large and sustained L4 source after 60

ms was still either absent or too weak to be visible. The WD between the CSD from this

14


https://doi.org/10.1101/2022.02.22.481540
http://creativecommons.org/licenses/by-nc/4.0/

498
499
500

501
502
503

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

527
528
529
530
531
532

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.22.481540; this version posted February 25, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

version of the model and the experimental PC 1 CSD remained among the outliers of the
animals (Fig. 5E) (Normalized WD = 1.26).
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Figure 5: Adjusting the model to fit spikes or CSD. (A) Average experimentally (black) and

simulated firing rates of experiments in the model with adjusted recurrent synaptic weights (green)

and original model (blue). Synaptic adjustments included scaling the weights from all excitatory

populations to the PV cells down by 30 % to reduce the firing rates in these fast-spiking populations,

reducing the synaptic weights from excitatory populations to all others and increasing synaptic
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weights from all PV cells to all other populations to compensate for the reduced inhibition. (B) KS
similarity between firing rates of model versions (markers) or individual animals in experiments
(boxplots) and firing rates of experiments at baseline, peak evoked response, and during the
sustained (defined in Fig. 3). (C) Correlation between simulated firing rates or individual animals
(boxplots) and measured firing rates (0-100 ms). (D) CSD resulting from simulation on model with
adjusted recurrent synaptic weights. (E) Wasserstein distance between CSD from model versions and
PC 1 CSD from experiments together with Wasserstein distances from CSD in animals to PC 1 CSD
(boxplot). (F) Effect of different patterns of placing excitatory synapses onto layer 4 excitatory cells on
this population’s contribution to the simulated CSD (left) and to the total simulated CSD (right). These
synaptic placement schemes with accompanying inflowing (blue arrows) and outflowing (orange
arrows) currents are illustrated in the middle. (G) Effect of synaptic placement on the simulated
population firing rate. (H) Contribution of L4 excitatory cells to the simulated CSD in the model where
all recurrent connections have been cut (left) and when all active channels have been removed from

all cells in the model (right).

Two-way dissociation between spikes and CSD

Simulations demonstrate that the LFP, and the associated CSD, can be significantly altered
by changes to synaptic placement (Einevoll et al., 2007; Pettersen, Hagen, and Einevoll,
2008; Lindén et al, 2010; Lindén et al, 2011; Leski et al., 2013; Hagen et al., 2017; Ness et
al., 2018). As observed in Fig. 5A, D, adjustments of synaptic weights can modify the
population firing rates substantially, yet without substantially changing the pattern of the
CSD, i.e., the placement and timing of sinks and sources. The inverse can also occur; that
is, the CSD pattern can be altered extensively with only minor effects on firing rates (Fig. 5F-
G).

In the model’s original network configuration, L4 excitatory neurons received geniculate input
from synapses placed within 150 um from the soma on both basal and apical dendrites, and
excitatory, recurrent input from other V1 neurons within 200 um from the soma on both basal
and apical dendrites. We tested the effects of synaptic location by placing all synapses from
both LGN and excitatory neurons onto the basal dendrites of L4 excitatory neurons (within
the same ranges as in the original configuration). This increased the contribution from the L4
excitatory neurons to the total CSD (Fig 5F, middle row, leftmost plot) by a factor of ~2, and
led to a dipole pattern with a single sink at the bottom and a single source at the top, as
opposed to having two pairs of sinks and sources like in the case of the original synaptic
placement (Fig. 5F top row; leftmost plot). The firing rate of the L4 excitatory cells, however,
remained essentially unchanged by this modification (Fig. 5G). On the other hand, placing all
synapses from LGN and excitatory neurons onto the apical dendrites of L4 excitatory

neurons resulted in even greater CSD magnitude from this population (Fig. 5F bottom row;
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leftmost plot), while the magnitude of its firing rates were reduced (Fig. 5G). In this case, the

pattern displayed a sink in the middle with a source above and below it.

These results indicate a two-way dissociation that can occur between CSD and firing rates of
excitatory neurons. The firing rates can be changed without substantially changing the CSD
by modifying the strength of synapses, while the CSD can be changed without substantially
changing the firing rates by modifying synaptic location. This suggests that utilizing the CSD
in the optimization of the model can provide constraints on the circuit architecture that could

not be obtained from spikes alone.

Effects of feedback from Higher Visual Areas to the model

Hartmann et al. (2019) found that feedback from higher visual areas (HVAs) can exert a
powerful influence on the magnitude of the evoked LFP response recorded in V1 of
macaque monkeys, particularly in the period 80-100 ms after stimulus onset. The sustained
L2/3 sink and L4 source we observe in the experimental CSD emerge at 60 ms (Fig. 2A-B),
which roughly coincides with the peak firing rates in the latero-medial (LM), rostro-lateral
(RL), antero-lateral (AL), and postero-medial (PM) cortical areas (Fig. 3C). Furthermore,
anatomical data indicate that synapses from HVAs terminate on L1 and L2/3 apical dendrites
of pyramidal cells (whose cell bodies reside in L2/3 or L5) (Glickfeld and Olsen, 2017;
Marques et al., 2018; Hartmann et al., 2019; Keller et al., 2020; Shen et al., 2020). Together,
these observations suggest that the sustained L2/3 sink and L4 source might, in part, be
induced by feedback from higher visual areas (HVA), where the sink is generated from the
input to the apical tufts in L1 and L2/3, and the source may be the return currents of this

input.

Of these HVAs, the feedback from LM to V1 is best characterized (Marques et al., 2018;
Keller et al., 2020; Shen et al., 2020), and has the highest connection density to V1 (Harris
et al., 2019). Based on these considerations, we decided to test the hypothesis that the large
sinks and sources in the upper layers were caused, at least in part, by feedback from LM. In
addition to the earlier feedforward LGN input and the background input representing the
influence of the rest of the brain, we introduced a feedback input constructed from
experimentally recorded spike trains in LM. In total, the public Neuropixels dataset has 2075
neurons recorded in LM (simultaneously with the recordings in LGN, V1, and other visual
areas) from 42 animals during presentations of the full-field flash stimulus. 1,823 of the 2,075
neurons were classified as RS, and spike trains from these were used to generate the
feedback input to the model (Fig. 6A).
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Figure 6: Introducing feedback from LM to V1 in the model. (A) Firing rate of the experimentally

recorded LGN and LM units used as input to the model. (B-C) Total CSD resulting from simulation

with input only from the LM and contributions from populations that receive input from LM. (D) Total

CSD from simulation with both LGN input and LM input. (E) Wasserstein distance between CSD from

model versions and PC 1 CSD from experiments together with Wasserstein distances from CSD in

animals to PC 1 CSD (boxplot). (F) Average population firing rates of experiments (black line) and

model versions. (G) KS similarity between simulated firing rates or individual animals (boxplots) and

recorded firing rates at baseline, peak evoked response, and the sustained period (defined in Fig. 3).

(H) Correlation between simulated and experimentally recorded firing rates (0-100 ms).
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The synapses from this LM source were placed on the apical dendrites of L2/3 excitatory
neurons (within 150 um from the soma), on the apical tufts (> 300 yum from the soma) and
the basal dendrites (within 150 um from the soma) of L5 excitatory neurons, and on the
somata and basal dendrites of L2/3, and L5 inhibitory (Pvalb and Sst) neurons (at any
distance from the soma). The input onto L2/3 excitatory neurons did generate a sink in L1
and L2/3 and a source below in L4 (Fig. 6B-C).

The synaptic weights from LM to the populations targeted by the feedback were initialized at
high values (see Methods), and then adjusted (decreased) by multiplying them with factors
in the range [0.05, 0.5] (see Methods). The weights from the background to the feedback-
targeted populations were also multiplied by factors in the range [0.2, 0.5], and the weights
of connections from Pvalb neurons to L2/3 excitatory and L5 excitatory neurons were
multiplied by factors in the range [0.8, 1.2]. This weight scaling was done until the population
firing rates were within the experimental variability. Additionally, the synapses from excitatory
populations onto L6 excitatory cells were restricted to be within 150 ym from the soma to
reduce the magnitude of the L5/L6 dipole (Fig. S3) (see Methods).

When the model received this feedback input together with the LGN input, the resulting CSD
pattern reproduced the main features observed in the experiments (Fig. 6D). The WD
between the model CSD and the experimental PC 1 CSD was also no longer an outlier
(Normalized WD = 0.41; Fig. 6E), and the population firing rates remained within the
minimum and maximum value of the experimental boxplots for the firing rates in all windows
and all populations, both with respect to magnitudes (KSSy, = 0.77, KSS,= 0.70, and KSS; =
0.68; average across all populations) and temporal profiles (RS L2/3: r = 0.36***, RS L4: r =
0.64***, RS L5: r = 0.69***, RS L6: r = 0.87***, FS: r = 0.77***, *** p<0.001) (Fig. 6F-G).
Thus, when average responses to the full-field flash are considered, this final adjusted model
exhibits both the CSD and firing rate patterns that are consistent with the experimental

observations and are well within animal variability (Fig. 6E-G).

Identifying the biophysical origins of the canonical CSD

With the canonical CSD (Fig. 2B) reproduced, we can use the model to probe the
biophysical origins of its sinks and sources. We began by removing all recurrent connections
and only feeding the LGN input to the model to find the contribution from the thalamocortical
synapses onto excitatory and inhibitory neurons (Fig. 7A, top). The main thalamic
contribution to the CSD is from synapses onto excitatory neurons, in line with the

expectation that neurons with a spatial separation between synaptic input currents and the

19


https://doi.org/10.1101/2022.02.22.481540
http://creativecommons.org/licenses/by-nc/4.0/

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.22.481540; this version posted February 25, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

return currents dominate the cortical LFP generation (Einevoll et al., 2013). (Neurons without
apical dendrites will have largely overlapping synaptic input currents and return currents,

resulting in a cancellation of current sinks and sources.)

We further observed that the early L4 and the sustained L5/L6 sinks are present in the CSD
contributions of excitatory neurons, though the magnitude of the L5/L6 sink is substantially
reduced compared to its magnitude when the model is configured with recurrent synapses
intact (Fig. 4B, 5D, and 6D). The sustained L2/3 sink and L4 source, on the other hand, were
not visible. This suggests that the early L4 sink and the L5/L6 sink are at least partly
generated by thalamocortical synapses. However, the substantially diminished magnitude of
the L5/L6 sink indicates that recurrent synapses also contribute significantly to the

generation of this sink.

We then removed the LGN input and added the feedback (while keeping the recurrent
connections cut), which resulted in a prominent upper layer dipole, with the sink residing in
L1 and L2/3, and the source residing in L4 (Fig. 7A, bottom). Together with their absence
when input came from LGN only (Fig. 7A, top), this suggests that the sustained L2/3 sink
and the L4 source in the canonical pattern originate at least in part from the feedback
synapses onto the apical dendrites of L2/3 and L5 pyramidal cells and the activity this input

generates.

To assess the extent to which active channels at the somata contributed to the CSD pattern,
we compared the CSD resulting from a simulation with both LGN and feedback input (where
the recurrent connections were still cut) when we included or excluded the active channels
(NaT, NaP, NaV, h, Kd, Kv2like, Kv3_1, K_T, Im_v2, SK, Ca_HVA, Ca_LVA,; only at the
soma (see supplementary information in Gouwens et al., 2018 for definitions)) on all neurons
in the model. The most prominent discrepancy between the CSD with and without active
channels is the magnitude of the L4 source and the L2/3 sink (Fig. 7B). In this all-passive
setting, the L4 source is significantly attenuated, and the L2/3 sink is either absent or

dominated by a source in the same region.

We explored whether the contributions from currents in recurrent connections come primarily
from excitatory or inhibitory synapses by removing all connections from inhibitory (Pvalb,
Sst, Htr3a) neurons to all other neurons, so that all postsynaptic currents stem from
excitatory thalamocortical synapses, excitatory synapses from higher visual areas, or
recurrent excitatory synapses in V1 (Fig. 7D and Fig. S5). Note that inhibitory synaptic

currents give rise to sources, while excitatory synaptic currents give rise to a sink. Of course,
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714 without inhibition, the network is unbalanced, which limits the conclusions that can be drawn
715  from this simulation. However, the fact that the major sinks and sources are still present is
716  an indication that the currents from excitatory input account for the majority of the sinks and

717  sources observed in the experimental CSD.
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742  Figure 7: Biophysical origin of canonical CSD. (A) Sinks and sources generated from

743  thalamocortical (top row) and feedback (bottom row) synapses onto excitatory (left) and inhibitory
744 (right) neurons. (B) Total CSD from thalamocortical and feedback synapses (without recurrent

745  connections) with (left) and without (right) active channels in the V1 neurons. (C) Total CSD of model
746 with both thalamocortical and feedback input when inhibitory synapses are removed. (D) Population
747 contributions to the total CSD in final model with both LGN and feedback input and recurrent

748 connections. (E) Summary of biophysical origins of the main contributions to the sinks and sources in
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the canonical CSD in different periods of the first 100 ms after flash onset. Blue arrows indicate
inflowing current (sinks), while orange arrows indicate outflowing current (sources) in the illustrations
in the bottom. More arrows mean more current. Left: Before onset of evoked response (0-35 ms). The
average inflowing and outflowing current in V1 neurons is zero in this time window. Middle: Initial
evoked response (35-50 ms). The L4 sink is primarily generated by inflowing current thalamocortical
synapses onto L4 excitatory cells. Right: Sustained evoked response (50-100 ms). The L5/L6 sink is
primarily due to inflowing currents from thalamocortical synapses and recurrent excitatory synapses.
Inflowing current at synapses from HVAs onto apical tufts of L2/3 and L5 excitatory cells generates, in
part, the L2/3 sink, and the resulting return current generates, in part, the L4 source in this time

window.

The contributions from each population to the total CSD in the final model (Fig. 6D) with both
LGN and feedback input and intact recurrent connections are displayed in Fig. 7D. From
this, it is apparent that the L5/L6 dipole is mainly generated by L6 excitatory cells, the L2/3
sink stems from sinks at the apical tufts of the L2/3 and L5 excitatory cells, the L4 sink from
both the L4 excitatory and inhibitory cells, while the L4 source is a mix of sources from
mainly L2/3, L4 and L5 excitatory cells, as well as the L4 inhibitory cells. (The magnitude of
the CSD contribution from L4 inhibitory cells is greater than anticipated. Given their lack of
apical dendrites, we would expect their postsynaptic current sinks and sources to largely
cancel (Einevoll et al., 2013). Their contribution can be reduced by scrambling the 3-D
orientation of these cells (Fig. S7). However, we cannot rule out that L4 inhibitory cells can
have a contribution comparable in magnitude to the excitatory cells with the data we have

available. We therefore let the L4 inhibitory cells keep their original orientation here.)

We summarize the main contributions to the canonical CSD in Fig. 7E. Before the onset of
the evoked response (0-35 ms) there is, on average, no significant net inflow or outflow of
current to any neurons. Around 40 ms, an inflow of current from excitatory thalamocortical
synapses onto all excitatory neurons and all Pvalb inhibitory neurons appears, with the
largest current coming from the synapses targeting basal and apical dendrites of L4
excitatory cells. This is the primary origin of the L4 sink. Following this initial L4 sink, there is
a sustained sink in L5/L6 arising at ~50 ms, which originates partly from thalamocortical
synapses onto L6 excitatory cells and partly from recurrent synapses from excitatory
populations in V1 onto L6 excitatory cells. At ~60 ms, a sustained sink emerges in L1 and
L2/3, which partly originates in synapses from higher visual areas targeting apical tufts of
L2/3 and L5 excitatory cells. This feedback results in a stronger return current at the soma

and basal dendrites of L2/3 excitatory cells and L5 excitatory cells.
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Discussion

In the present study, we analyzed experimentally recorded spikes and LFP during
presentation of full-field flashes from a large-scale visual coding dataset derived from mouse
visual cortex (Siegle et al., 2021), and simulated the same experimental protocol using a
biophysically detailed model of mouse V1 (Billeh et al., 2020). Our analysis of the
experimental data focused on the responses in visual areas V1, LGN, and higher cortical
visual areas. We found that the evoked CSD in V1, computed from the LFP, is captured by a
canonical pattern of sinks and sources during the first 100 ms after stimulus onset (Fig. 2B).
This canonical CSD, in response to a flashed, bright field pattern, explains half (50.4 %) of

the variance in the trial-averaged CSD responses across animals.

Both the early L4 sink with concurrent sources above and below and the L5/L6 sink with a
source below were observed with a similar timing by Senzai, Fernandez-Ruiz, and Buzsaki
(2019). The L4 source and L2/3 sink were also observed in that study, but emerge
somewhat later than in our data — just after 100 ms as opposed to ~60 ms in our canonical
pattern. This discrepancy in onset might simply be due to differences in stimuli. In Senzai,
Fernandez-Ruiz, and Buzsaki (2019) the animals were exposed to 100 ms light pulses, while
the animals in our data were presented with 250 ms whole-field flashes of white screens.
Nonetheless, the canonical CSD pattern exhibits good overall agreement with the pattern

seen in Senzai, Fernandez-Ruiz, and Buzsaki (2019).

We introduced the Wasserstein distance as a method to evaluate the difference between
two CSD patterns and used it to quantify the variability in trial-averaged CSD between
animals (Fig. 2D), the trial-to-trial variability in CSD within animals (Fig. 2F-G), and the
difference between the model CSD, the trial-averaged CSD of individual animals, and the
canonical CSD pattern. For the firing rate analysis, we utilized KS-similarity and correlation
to quantify experimental variability and model performance with regard to magnitude and
temporal profile, respectively. Systematic use of quantitative metrics for biophysical
modeling at this scale is still relatively uncommon, and our work establishes a set of
measures for testing the model on LFP and spiking simultaneously, which can be useful for
future studies in the field. Of course, there may well be other metrics that are equally or more
suitable, and a systematic investigation into what would be the optimal metrics to apply is a

important avenue for future work.

Our aim was to simultaneously reproduce experimentally recorded spikes and CSD in our

simulations. The original model captured spiking responses to gratings well (reproducing,
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e.g., direction selectivity distributions for different neuronal populations) with variable
success when applied to other visual stimuli (Billeh et al., 2020). It was not originally tested
on LFP/CSD. We found that, for the full-field flash stimulus, this model did not reproduce the
CSD pattern in the upper layers of V1, and the spiking responses for this stimulus also

exhibited a number of discrepancies.

After making selective adjustments to the recurrent synaptic weights, the model could
reproduce the experimental firing rates (Fig. 5A-C), though the discrepancy between the
model CSD and the canonical CSD remained (Fig. 5D-E), with only minor differences
relative to the CSD of the original model (Fig. 4B). The fact that the model can capture the
experimental firing rates without capturing the experimental CSD and that adjustments to the
synaptic weights yielded significant alterations in firing rates with only small changes in the
CSD, supports the point that LFP/CSD reflects aspects of circuit dynamics that are

complementary to those reflected in locally recorded spikes.

Past simulation studies have demonstrated the importance of synaptic placement in shaping
the LFP and CSD signature (Einevoll et al., 2007; Pettersen, Hagen, and Einevoll, 2008;
Lindén et al, 2010; Lindén et al, 2011; Leski et al., 2013; Hagen et al., 2017; Ness et al.,
2018). To uncover the model adjustments that capture firing rates and CSD simultaneously,
we explored the effects of changes in the synaptic positioning. In one case, we placed all
excitatory synapses onto only basal or apical dendrites of L4 excitatory cells, as opposed to
their original placement on both apical and basal dendrites. Moving all excitatory synapses
onto basal dendrites resulted in substantial changes in both the pattern and magnitude of
the CSD contribution from these L4 excitatory cells, with only minor changes to their firing
rates (Fig. 5F-G). Placing all excitatory synapses on apical dendrites led to somewhat larger
changes in firing rates, though still similar to the firing rate of the original model, and to even

bigger changes in the CSD magnitude.

This demonstrates a two-way dissociation of the firing rates and the pattern of sinks and
sources in the CSD: The firing rates can be substantially altered with small effects on the
CSD by adjusting the synaptic weights, and the CSD can be substantially altered with only
small effects on the firing rates by adjusting synaptic placement. This implies that the LFP
can reveal deficiencies in the model architecture that would not be evident from the firing
rates alone, and that, to a certain extent, models can be optimized for firing rates and CSD

independently.
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Recent studies have shown that feedback from higher visual areas can exert a strong
influence on the magnitude of LFP during evoked responses (Hartmann et al., 2019). To
investigate whether such cortico-cortical influence can contribute to the sinks and sources of
the canonical CSD pattern, we added feedback consisting of experimentally recorded spikes
from the higher cortical visual area LM (Siegle et al., 2021) impinging on synapses placed
onto V1 neurons in our model, using anatomical data (Glickfeld and Olsen, 2017; Marques et
al., 2018; Hartmann et al., 2019; Keller et al., 2020; Shen et al., 2020). We found that the
feedback can play a significant role in shaping the sustained sinks and sources (Fig. 6B-D).
The resulting model CSD reproduced the major sinks and sources identified in the canonical
CSD pattern and was no longer among the outliers when compared to the experimental
variability (Fig. 6E). Interestingly, absence of the feedback was not apparent from analysis of
the firing rates alone, as the firing rates were already within the experimental variability
before adding the feedback, further underscoring the utility of the LFP in illuminating
structure-function relations in the circuit. Contributions from other visual cortical areas were
not included, even though they too impinge upon neurons in V1 (Harris et al., 2019; Siegle et

al., 2021), due to the lack of data characterizing such connections. This awaits future work.

With the major sinks and sources of the canonical CSD pattern reproduced, we explored
their biophysical origins. We found that the initial L4 sink originates in the thalamocortical
input to L4 excitatory cells, which aligns with suggestions made in Mitzdorf et al. (1987),
Swadlow, Gusev, and Bezdudnaya (2002), and Senzai, Fernandez-Ruiz, and Buzsaki
(2019). The sustained L5/L6 sink comes from postsynaptic currents in L6 excitatory cells
triggered by a combination of thalamocortical and recurrent excitatory inputs. The sustained
L2/3 sink stems, in part, from input from LM onto the apical tufts of L2/3 and L5 excitatory
cells. The sustained L4 source has its origins in a mixture of return currents from L2/3 and
L5 excitatory cells resulting from the abovementioned feedback onto the apical dendrites of
these cells, as well as contributions from L4 excitatory and inhibitory cells (Fig. 7A, D, and
E).

In line with observations made by Reimann et al. (2013), we found that the somatic voltage-
dependent membrane currents significantly shape the CSD signature (Fig. 5H and 7B). Even
so, our findings still emphasize the importance of synaptic inputs in sculpting the CSD, as
the addition of synaptic input (Fig. 6D) and changes to synaptic placement (Fig. 5F)
substantially altered the CSD pattern.

This investigation into the biophysical origins of sinks and sources is limited by the fact that

the contributions from recurrent connections are difficult to estimate precisely due to the non-
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linear effects of these connections in terms of how they contribute to spiking. That is, their
contribution cannot simply be found by subtracting the CSD from thalamocortical and
feedback synapses with all recurrent connections removed (Fig. 7A) from the total CSD with
the same input and recurrent connections intact (Fig. 6D). Still, this analysis provides an
initial estimate into the biophysical origins of the sinks and sources observed experimentally

and demonstrates the insights that can be obtained from modeling of extracellular signals.

There is ample evidence that firing rates and LFP are modulated by the behavioral state of
the animal, including measures like the pupil size (considered to be a proxy for arousal level)
or running speed (Niell and Stryker, 2010; McGinley et al., 2015; Vinck et al., 2015; Saleem
et al., 2017). In this study, the responses averaged over all trials have been the target for the
modeling, without regard to any state-dependence of the responses. Our understanding of
the state-dependent responses could benefit from the potential to probe the biophysical
origins of extracellular signals. Therefore, reproducing these state-dependent responses is

an interesting avenue for future research.

Note that the set of synaptic weights and other parameters that can reproduce the
experimental firing rates and CSD is unlikely to be unique. This is a consequence of the
degeneracy inherent to neural networks, as many different parameterizations of neuronal
networks can perform the same functions (Prinz, Bucher and Marder, 2004; Marder and
Goaillard, 2006; Drion, O’Leary and Marder, 2015; O’Leary, 2018). Thus, our network should
only be considered an example of a circuit model that can produce firing rates and CSD that
match the experimental observations. Obtaining multiple solutions and characterizing their
diversity using automatic searches of the parameter space will be an interesting direction for
future work. We did not utilize such an approach here because the number of simulations
required (typically, many thousands or more for automatic optimization approaches) would
currently be prohibitively expensive on a model of this scale and level of complexity: running
a 1 second simulation with this model takes ~90 minutes on 384 CPU-cores (Billeh et al.,

2020); a single trial in our simulations lasts 0.75 seconds.

The original model used as a starting point here produced firing rates and direction and
orientation tuning consistent with recordings during presentations of drifting gratings
(Arkhipov et al., 2018; Billeh et al., 2020). In this study, we focused on the analysis and
modeling of the response to full-field flashes. Ideally, the model should reproduce both firing
rates and LFP simultaneously not only for flashes or drifting gratings, but for any visual
stimulus (out-class generalization). This is a long-term goal, and can be called “the holy

grail” of visual system modeling.
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In this study, we developed a systematic framework to quantify experimental variability in
both LFP/CSD and spikes and to evaluate model performance. We identified a canonical
CSD pattern observed during presentations of full-field flash stimuli and obtained a bio-
realistic model that reproduced both the canonical CSD pattern and spikes simultaneously.
We utilized this validated model to identify the biophysical origins of the canonical sinks and
sources observed experimentally. Our models are freely shared and should be useful for
future studies disentangling the mechanisms underlying spiking dynamics and

electrogenesis in the cortex.
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Quality control

Of the 58 mice in the visual coding dataset, nine were excluded because the exact probe
location could not be recovered due to fading of fluorescent dye or artifacts in the optical
projection tomography (OPT) volume (Siegle et al., 2021). Another five animals were
excluded because they were missing LFP recordings from V1 during presentation of the

flash stimulus. Thus, data for 44 animals were retained for the CSD analysis.

For the spike analysis, the same nine animals for which the exact probe location could not
be recovered were excluded, and two additional animals were excluded because they did
not have any cells recorded in V1, leaving a total of 47 animals for this part of the data

analysis.

Neuronal classification

We distinguished between regular-spiking (RS) and fast-spiking (FS) cells by the time from
trough to peak of the spike waveforms (Bartho et al., 2004). For cortical cells, the spike
duration was bimodally distributed with a dip at ~0.4 ms, while for thalamic cells, it was
bimodally distributed with a dip at ~0.3 ms (Fig. S1). Thus, the cut off in the classification of
cells as RS or FS was set at 0.4 ms for LM and V1, and at 0.3 ms for cells in LGN.

When comparing the model firing rates to the experimental firing rates, the excitatory and
non-Pvalb populations were grouped together in each layer of the model to make up the RS
cells in L2/3, L4, L5, and L6, while the Pvalb cells across all layers were grouped together to
make up the FS cells of V1. The layer boundaries were taken from the Allen Common
Coordinate Framework (CCF) (Oh et al., 2014), allowing for the assignment of each neuron’s

position to a specific cortical layer (Siegle et al., 2021).

Model

The model contains a total of 230,924 neurons, of which 51,978 are biophysically detailed
multicompartment neurons with somatic Hodkin-Huxley conductances and passive
dendrites, and 178,946 are leaky-integrate-and-fire (LIF) neurons. The neuron models are
arranged in a cylinder with a radius 845 um and a height 860 um (corresponding to the
average cortical thickness of V1 taken from the Allen Common Cordinate Framework (CCF)

(Billeh et al., 2020; Oh et al., 2014). The multicompartment neurons are placed in the “core”
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of the model with a radius of 400 um, while the LIF neurons form an annulus surrounding
this core. The neuron models belong to 17 different classes: one excitatory class and three
inhibitory (Pvalb, Sst, Htr3a) in each of the layers 2/3 through 6, and a single Htr3a inhibitory
class in layer 1. The LGN module providing thalamocortical input to the model consists of
17,400 units selectively connected to the excitatory neurons and Pvalb neurons in L2/3 to
L6, as well as the non-Pvalb neurons in L1. The background input to all neurons in the
model comes from a single Poisson source firing at 1 kHz and represents influence from the
rest of the brain. The feedback input to L2/3 and L5 excitatory, Pvalb, and Sst neurons

comes from a node representing LM.

Simulation configuration

Instructions on how to run simulations of the model are provided in Billeh et al., 2020. The
files and code necessary to run the model versions presented in Fig. 4, 5, and 6 are
provided in the directories old_model_fig4, intermediate_model_fig5, and final_model_fig6,

respectively, in the Dropbox folder (see Code and data availability).

Data processing

LFP and CSD

The LFP in simulations was obtained from the extracellular potential by first downsampling to
every other electrode along the probe (resulting in a spatial separation of 40 um between
each recording electrode, equal to the spacing in the public Neuropixels data) and using a
low-pass 5™ order Butterworth filter with a cut off frequency of 500 Hz (utilizing functions
scipy.signal.butter and scipy.signal filtfilt). The same filtering was applied to get the
experimental LFP. The CSD was calculated from the experimental and model LFP using the
delta iCSD method (Pettersen et al., 2006), where the radius of laterally (orthogonal to the
probe axis) constant CSD was assumed to be 400 um - the radius of the V1 model’s “core”
region consisting of biophysically detailed multicompartment neurons. For the experimental

CSD, this radius was set to 800 um, roughly corresponding to the size of mouse V1.

Visual stimulus

The stimulus used to compare the model and the experiments was full-field flashes. In the
experiments, the mice were presented with gray screens for 1 second, followed by 250 ms of
white screen, and then 750 ms of gray screen over 75 trials. In the simulations, both the
stimulus presentation and the pre- and the post-stimulus gray screen periods lasted 250 ms,

and the number of trials was 10.
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Input from Lateral Geniculate Nucleus (LGN)

Originally, the LGN spike trains used as input to the model were generated with the FilterNet
module provided with the model, using 17,400 “LGN units” (Billeh et al., 2020). However,
when this input was used for simulations, the onset of the evoked response in V1 was 20-30
ms delayed in comparison with experiments. Therefore, we used experimentally recorded
LGN spike trains as input to the model instead. We assigned a recorded spike train to each
of the 17,400 LGN units in all trials. In total, the public Neuropixels data contain recordings
from 1,263 regular-spiking LGN neurons across 32 animals during 75 trials of full-field flash
presentations. We divided the total pool of spike trains into 10 subsets, and then randomly
sampled spike trains from one subset in each trial until all 17,400 LGN units had been

assigned a spike train in all trials.

Input from lateromedial area (LM)

The experimentally recorded spike trains in the LM were used to construct the feedback
input to V1. In total, the public Neuropixels data contain recordings from 1,823 regular-
spiking LM neurons across 42 animals during presentations of the full-field flash stimulus.
Spikes were randomly sampled from the pool of all spike trains to construct a spike train that
was used as input to all the cells that were targeted by the feedback in the model. All

neurons received the same spike train.

Background input
The input from the poisson source firing at 1kHz was not stimulus dependent. It is a coarse

representation of the continuous influence of the rest of the brain on V1.

Dendritic targeting

LGN to V1

In the original model, the synapses from LGN onto excitatory V1 neurons were placed on
apical and basal dendrites within 150 ym from the soma, while synapses onto inhibitory V1
neurons were placed on their soma and on their basal dendrites without distance limitations

(Billeh et al. 2020). This placement was left unchanged in this study.
Vi1-v1
The synapses for recurrent connections were placed according to the following rules in the

original model (Billeh et al. 2020):

Excitatory-to-Excitatory Connections
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1423 All synapses from excitatory V1 neurons onto other excitatory V1 neurons were placed along
1424  the dendrites and avoided the soma. In layers 2/3 and 4, the placement of synapses was
1425  restricted to be within 200 um from the somata, while in layers 5 and 6, they could be placed
1426  anywhere along the dendrites.

1427

1428  Excitatory-to-Inhibitory Connections

1429  All synapses from excitatory V1 neurons onto inhibitory V1 neurons were placed on their
1430  somata or dendrites without any distance limitations.
1431

1432 Inhibitory-to-Excitatory Connections

1433  Synapses from Pvalb neurons onto excitatory V1 neurons were placed on the soma and on
1434  the dendrites within 50 uym from the soma. Synapses from Sst neurons were placed only on
1435  dendrites and only more than 50 ym from the soma. Synapses from Htr3a neurons were
1436  placed on dendrites between 50 and 300 ym from the soma.

1437

1438  Inhibitory-to-Inhibitory Connections

1439  Synapses from inhibitory neurons to other inhibitory neurons were placed according to the
1440  same rules as the inhibitory-to-excitatory connections described above.

1441

1442  These placement rules were kept in this study, except for the synapses from excitatory
1443  neurons to excitatory L6 neurons. Here, they were restricted to be within 150 um of the
1444  soma. The purpose of this restriction was to reduce the spatial separation between the
1445  current sink and source, and thereby decrease the magnitude of the L6 sink-source dipole.
1446

1447  LM-V1

1448  The synapses from the node representing LM to V1 were placed on the apical dendrites of
1449  L2/3 neurons (within 150 uym from the soma), on the apical tufts (> 300 uym from the soma)
1450  and the basal dendrites (within 150 um from the soma) of L5 excitatory cells, and on the
1451 somata and basal dendrites of L2/3 and L5 inhibitory cells (at any distance from the soma).
1452

1453  Adjusting synaptic weights

1454  The synaptic weights for thalamocortical connections were left unchanged from the original
1455  model. Before the addition of feedback from higher visual areas to the model, the synaptic
1456  weights for recurrent connections in V1 were multiplied by factors in the range [0.2, 2.5].
1457  After the addition of feedback, the synaptic weights from the background node to the

1458  populations targeted by feedback the L2/3 and L5 excitatory, Pvalb, and Sst cells were
1459  multiplied by factors in the range [0.2, 0.5]. The synaptic weights from the node representing
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1460 LM were initially set equal to the original weights between the background node and the
1461  populations targeted by the feedback, but this led to too high firing rates compared to the
1462  experimental firing rates in these populations, so they were multiplied by factors in the range
1463  [0.2, 0.5]. Finally, the connections from Pvalb neurons in V1 to L2/3 excitatory neurons and
1464 L5 excitatory cells were re-scaled in the range [0.8, 1.2] times the weights set prior to the
1465  addition of feedback.

1466

1467 Quantification and statistical analysis

1468

1469  Firing rates

1470  The time-resolved population firing rates (bin size 1 ms, filtered using

1471  scipy.ndimage.gaussian_filter with sigma = 2) were computed by averaging the spike count
1472  over all cells in a population and over all trials (10 trials in the simulations and 75 trials in the
1473  experiments). The distribution of firing rates across cells used in the calculation of the KS-
1474  similarities were computed by averaging over the time windows baseline, initial peak, and
1475  sustained activity (defined in Fig. 3) and over all trials.

1476

1477  Kolmogorov-Smirnov similarity

1478  The KS-similarity scores (Billeh et al., 2020) were computed by first calculating the KS-
1479  distance (using the function scipy.stats.ks_2samp) between two distributions of firing rates
1480  across cells, and subtracting this number from 1, such that a KS-similarity score of 1 implies
1481 identity and a score of 0 implies no overlap between the two distributions. In the comparison
1482  of the model to the experimental data, the KS-similarity was computed between the

1483  distribution of firing rates across cells in each RS and the FS population of the model and the
1484  distribution of firing rates across cells from all animals in the corresponding populations. To
1485  assess the variability in the experiments, the KS-similarity was calculated between the

1486  distribution of firing rates across cells in the same RS and FS populations in individual

1487  animals, provided there were more than 10 cells recorded in a given population in this

1488  animal, and the distribution of firing rates across cells from all other animals.

1489

1490  Correlation

1491  We computed the similarity in the profile of time-resolved population firing rates with the
1492  Pearson correlation coefficient (using the function scipy.stats.pearsonr). The correlation
1493  between the model and the experimental firing rates was calculated between model

1494  population firing rates and the population firing rates averaged across cells from all animals.

1495  The level of experimental variability was assessed by calculating the correlation between
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population firing rates in each animal and the population firing rates averaged across cells

from all other animals.

CSD analysis

Since the number of recording electrodes in V1 are not the same in all animals, we
interpolated the CSD of each animal and the CSD from simulations onto dimensions of the
same lengths (M = 30 points along the depth and K = 100 points along the time axis for 100

ms time windows) before we quantitatively analyzed the CSD.

PCA

The trial-averaged CSD of each animal was flattened into a vector of length M x K = 3000,
and the vectors of all N = 44 animals were stacked together into a matrix of size 44 x 3000.
Then, we performed PCA (using sklearn.decomposition.PCA) on this matrix to obtain the
principal components which would constitute weighted averages of the trial-averaged CSD

patterns.

Wasserstein distance (WD)

The 1st Wasserstein distance W (P;, P,) between two distributions P; and P, is defined as

W(P,Py) = inf // c(x,y)y(z, y)dedy

YED (P, P2)

Where c(x,y) is the cost of moving a unit “mass” from position x to y following the optimal
transport plan y(x, y) in all transport plans I'(P;, P,) (Arjovsky et al., 2017; Rubner et al.,
1998).

In the utilization of WD to quantify the similarity between two CSD patterns, the distance
between the distribution of sinks in the two patterns W (Ps;,ks 1, Psinks.2) @nd the distance

between distribution of sources of the two patterns W (Psoyrces 1, Psources,2) are calculated

separately, and summed to form a total WD between the two CSD patterns:

WCSD(PM PQ) = W<Psink:s,lv Psinks,?) + V[/(Psources,h Psources,2)
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where P; and P- refer to the two CSD patterns. The Python Optimal transport library

(https://pythonot.github.io/index.html) was used to implement this calculation.

This application of the WD to compare CSD patterns comes with certain considerations that
are important to note. First, although we compute WD for sinks and sources separately,
sinks and sources do not arise independently. Current leaving the extracellular space in one
place leads to current entering the extracellular space in another place, so current sinks and
sources are inter-dependent. Second, the cost of shifting a sink or a source in space relative
to shifting it in time is determined by the relative resolution in space vs. time. This relative
cost does not necessarily correspond to the actual cost of changing the underlying
physiology such that two distributions of sinks or sources match spatially vs. temporally.
Determining the most appropriate relative cost of moving sinks and sources in space vs.
time would require more detailed data than currently available and is beyond the scope of

this study.

Code and data availability

The experimental data is publicly available at

https://portal.brain-map.org/explore/circuits/visual-coding-neuropixels. The code and files

necessary to run the model simulations presented here are available at
https://www.dropbox.com/sh/x6zuogmjx8zns9f/AAAQbQbdXABsbbHUNhC-gGBP7a?dI=0.
The code for the data analysis performed in this paper is available at
https://github.com/atleer/CINPLA_Allen_V1 analysis.qit.
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