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Abstract 19 

 20 
Local field potential (LFP) recordings reflect the dynamics of the current source density 21 
(CSD) in brain tissue. The synaptic, cellular and circuit contributions to current sinks and 22 
sources are ill-understood. We investigated these in mouse primary visual cortex using 23 
public Neuropixels recordings and a detailed circuit model based on simulating the Hodgkin-24 
Huxley dynamics of numerous cortical neurons belonging to 17 cell types. The model 25 
simultaneously captured spiking and CSD responses and demonstrated a two-way 26 
dissociation: Firing rates are altered with minor effects on the CSD pattern by adjusting 27 
synaptic weights, and CSD is altered with minor effects on firing rates by adjusting synaptic 28 
placement on the dendrites. We describe how thalamocortical inputs and recurrent 29 
connections sculpt specific sinks and sources early in the visual response, whereas cortical 30 
feedback crucially alters them in later stages. Our findings show that CSD analysis provides 31 
powerful constraints for modeling beyond those from considering spikes. 32 

 33 
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 2 

Introduction 35 

 36 
The local field potential (LFP) is the low-frequency component (below a few hundred Hertz) 37 
of the extracellular potential recorded in brain tissue that originates from the transmembrane 38 
currents in the vicinity of the recording electrode (Lindén et al., 2011; Buzsáki, Anastassiou, 39 
and Koch, 2012; Einevoll et al., 2013; Pesaran et al., 2018; Sinha and Narayanan, 2021). 40 
While the high-frequency component of the extracellular potential, the single- or multi-unit 41 
activity (MUA), primarily reflects action potentials of one or more nearby neurons, the LFP 42 
predominantly stems from currents caused by synaptic inputs (Mitzdorf, 1985; Einevoll et al., 43 
2007) and their associated return currents through the membranes. Thus, cortical LFPs 44 
represent aspects of neural activity that are complementary to those reflected in spikes, and 45 
as such, it can provide additional information about the underlying circuit dynamics from 46 
extracellular recordings. 47 
 48 
Applications of LFP are diverse and include investigations of sensory processing 49 
(Baumgartner and Barth, 1990; Victor et al., 1994; Kandel and Buzsáki, 1997; Henrie and 50 
Shapley, 2005; Einevoll et al., 2007; Belitski et al., 2008; Montemurro et al., 2008; Niell and 51 
Stryker, 2008; Nauhaus et al., 2008; Bastos et al., 2015; Senzai, Fernandez-Ruiz, and 52 
Buzsáki, 2019), motor planning (Scherberger, Jarvis and Andersen, 2005; Roux, Mackay 53 
and Riehle, 2006) and higher cognitive processes (Pesaran et al., 2002; Womelsdorf et al., 54 
2005; Liu and Newsome, 2006; Kreiman et al., 2006; Liebe et al., 2012). The LFP is also a 55 
promising candidate signal for steering neuroprosthetic devices (Mehring et al., 2003; 56 
Andersen, Musallam and Pesaran, 2004; Rickert et al., 2005; Markowitz et al., 2011; 57 
Stavisky et al., 2015) and for monitoring neural activity in human recordings (Mukamel and 58 
Fried, 2012) because the LFP is more easily and stably recorded in chronic settings than 59 
spikes. Due to the vast number of neurons and multiple neural processes contributing to the 60 
LFP, however, it can be challenging to interpret (Buzsáki, Anastassiou, and Koch, 2012; 61 
Einevoll et al., 2013; Hagen et al., 2016). While we have extensive phenomenological 62 
understanding of the LFP, less is known about how different cell and synapse types and 63 
connection patterns contribute to the LFP or how these contributions are sculpted by 64 
different information processing streams (e.g., feedforward vs. feedback) or brain state. 65 
 66 
One way to improve its interpretability is to calculate the current source density (CSD) from 67 
the LFP, which is a more localized measure of activity, and easier to read in terms of the 68 
underlying neural processes. The current sinks and sources indicate where positive ions flow 69 
into and out of cells, respectively, and are constrained by Kirchoff’s current law (i.e., currents 70 
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sum to zero over the total membrane area of a neuron). However, the interpretation of 71 
current sinks and sources is inherently ambiguous, as several processes can be the origin of 72 
a current sink or source (Buzsáki, 2006; Pettersen et al., 2006; Einevoll et al., 2007). For 73 
example, a current source may reflect an inhibitory synaptic current or an outflowing return 74 
current resulting from excitatory synaptic input elsewhere on the neuron, and there is no 75 
simple way of knowing which it is from an extracellular recording alone (Buzsáki, 2006).  76 
 77 
Another approach to uncovering the biophysical origins of current sinks and sources, and by 78 
extension the LFP, is to simulate them computationally (Pettersen, Hagen, and Einevoll, 79 
2008; Einevoll et al., 2013). Following the classic work by Rall in the 1960s (Rall, 1962), a 80 
forward-modeling scheme in which extracellular potentials are calculated from neuron 81 
models with detailed morphologies using volume conduction theory under the line source 82 
approximation has been established (Holt and Koch, 1999). With this framework, we have 83 
achieved a good understanding of the biophysical origins of extracellular potentials in single 84 
cells, both spikes (Koch, 1999; Pettersen and Einevoll, 2008; Hay et al., 2011) and LFPs 85 
(Lindén et al, 2010). Expanding on this understanding, models composed of populations of 86 
unconnected neurons (e.g. Pettersen, Hagen, and Einevoll, 2008; Lindén et al., 2011; 87 
Schomburg et al., 2012; Łęski et al., 2013; Sinha and Naryanan, 2015; Hagen et al., 2017; 88 
Ness et al., 2018) and recurrent network models (e.g. Vierling-Claassen et al., 2010; 89 
Reimann et al., 2013; Głąbska et al., 2014; Tomsett et al., 2015; Hagen et al., 2016; Hagen 90 
et al., 2018; Chatzikalymniou and Skinner, 2018) have been used to study the neural 91 
processes underlying LFP. 92 
 93 
While interesting insights about CSD and LFP were obtained from these computational 94 
approaches, establishing a direct relationship between the biological details of the circuit 95 
structure and the electrical signal like LFP remains a major unresolved challenge. One 96 
reason is that the amount and quality of data available for modeling the circuit architecture in 97 
detail has been limited. This situation improved substantially in recent years, and a broad 98 
range of data on the composition, connectivity, and physiology of cortical circuits have been 99 
integrated systematically (Billeh et al., 2020) in a biophysically detailed model of mouse 100 
primary visual cortex (area V1). In addition, significant improvements were achieved in the 101 
area of experimental recordings of the LFP and the simultaneous spiking responses. In 102 
particular, the Neuropixels probes (Jun et al., 2017) have recently allowed for recordings of 103 
LFP and hundreds of units across the cortical depth in multiple areas, with 20 μm spacing 104 
between recording channels allowing for an unprecedented level of spatial detail. These 105 
developments provide unique opportunities to improve our understanding of circuit 106 
mechanisms that determine LFP patterns. 107 
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 108 
Here, we analyze spikes and LFP from the publicly available visual coding dataset recorded 109 
using Neuropixels probes (www.brain-map.org; Siegle et al., 2021), and seek to explain 110 
these using the mouse V1 model developed by Billeh et al. (2020). The model is comprised 111 
of more than 50,000 biophysically detailed neuron models surrounded by an annulus of 112 
almost 180,000 generalized leaky-integrate-and-fire units. The neuron models belong to 17 113 
different cell type classes: one inhibitory class (Htr3a) in layer 1, and four classes in each of 114 
the other layers (2/3, 4, 5, and 6) where one is excitatory and three are inhibitory (Pvalb, Sst, 115 
Htr3a) in each layer. The visual coding dataset consists of simultaneous recordings from six 116 
Neuropixels 1.0 probes across a range of cortical and subcortical structures in 58 mice while 117 
they are exposed to a range of visual stimuli (about 100,000 units and 2 billion spikes over 118 
two hours of recording). 119 
 120 
In our analysis of this dataset, we identified a canonical CSD pattern that captures the 121 
evoked response in mouse V1 to a full-field flash. We then modified the biophysically 122 
detailed model of mouse V1 to reproduce the canonical CSD pattern. In this process, we 123 
discovered that the model can be modified by adjusting the synaptic weights to reproduce 124 
the experimental firing rates with only minor effects on the simulated CSD, and, conversely, 125 
that the simulated CSD can be altered with only minor effects on the firing rates by adjusting 126 
synaptic placement. Furthermore, we found that comparing the simulated CSD to the 127 
experimental CSD revealed discrepancies between model and data that were not apparent 128 
from only comparing the firing rates. Additionally, it was not until feedback from higher 129 
cortical visual areas (HVAs) was added to the model that simulations reproduced both the 130 
experimentally recorded CSD and firing rates, as opposed to only the firing rates. 131 
This bio-realistic modeling approach sheds light on specific components of the V1 circuit that 132 
contribute to the generation of the major sinks and sources of the CSD in response to abrupt 133 
visual stimulation. Our findings demonstrate that utilizing the LFP and/or the CSD in 134 
modeling can aid model configuration and implementation by revealing discrepancies 135 
between models and experiments and provide additional constraints on model parameters 136 
beyond those offered by the spiking activity. The new model obtained here is provided freely 137 
(https://www.dropbox.com/sh/x6zuogmjx8zns9f/AAAQbQbdXABsbbHUhC-qGBP7a?dl=0) to 138 
the community to facilitate further applications of biologically detailed modeling. 139 

 140 

 141 

 142 
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 5 

Results 143 

 144 
Spikes and LFP were recorded across multiple brain areas, with a focus on six cortical (V1, 145 
LM, AL, RL, AM, PM) and two thalamic (LGN, LP) visual areas, using Neuropixels probes in 146 
58 mice (Siegle et al., 2021).  147 

 148 

 149 

 150 

 151 
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 160 

 161 
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 163 
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 165 
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 167 

 168 

 169 

 170 

 171 

 172 
Figure 1:  Illustration of experimental data and the biophysical model for mouse primary visual 173 
cortex (V1). (A) Schematic of the experimental setup, with six Neuropixels probes inserted into six 174 
cortical (V1, LM, RL, AL, PM, AM) and two thalamic areas (LGN, LP). (B) Top: Spikes from many 175 
simultaneously recorded neurons in V1 during a single trial. Bottom: Spikes from a single neuron 176 
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recorded across multiple trials. In both cases, the stimulus was a full-field bright flash (onset at time 0, 177 
offset at 250 ms). (C) Top: LFP across all layers of V1 in response to the full-field bright flash, 178 
averaged over 75 trials in a single animal. Bottom: CSD computed from the LFP with the delta iCSD 179 
method. (D) Histology displaying trace of the Neuropixels probe across layers in V1, subiculum (SUB) 180 
and dentate gyrus (DG). (E) Visualization of the V1 model with the Neuropixels probe in situ.  181 

 182 

A schematic of the six probes used to perform the recordings in individual mice is shown in 183 
Fig. 1A, and the spikes and LFP recorded in V1 of an exemplar mouse during presentation 184 
of a full-field bright flash stimulus are displayed in Fig. 1B, C. The current source density 185 
(CSD) can be estimated from the LFP (averaged over 75 trials) using the delta iCSD method 186 
to obtain a more localized measure of inflowing (sinks) and outflowing currents (sources) 187 
(Pettersen et al. 2006; Einevoll et al., 2013). The biophysically detailed model of mouse V1 188 
used to simulate the neural activity and the recorded potential in response to the full-field 189 
flash stimulus is illustrated in Fig. 1E. The extracellular electric field in the model was 190 
recorded on an array of simulated point electrodes (Dai et al., 2020) arranged in a straight 191 
line (Fig. 1D) and separated by 20 μm, consistent with Neuropixels probes, shown in Fig. 1E 192 
to scale with the model. 193 

 194 

Uncovering a canonical visually evoked CSD response 195 
We first established a “typical” experimentally recorded CSD pattern, to be reproduced with 196 
the model. Though there is substantial inter-trial and inter-animal variability in the evoked 197 
CSD response, we find that most trials and animals have several salient features in 198 
common. In Fig. 2A, the trial-averaged evoked CSDs from five individual mice are displayed. 199 
In the first four animals (# 1-4), we observe an early transient sink arising in layer 4 (L4) 200 
around 40 ms after flash onset, followed by a sustained source starting at about 60 ms which 201 
covers L4 and parts of layers 2/3 (L2/3) and layer 5 (L5). We also observe a sustained sink 202 
covering layers 5 and 6 (L6) emerging at around 50 ms, as well as a sustained sink covering 203 
layers 1 and 2/3 from about 60 ms. An animal that does not fully exhibit what we term 204 
the “canonical” pattern is shown in the rightmost plot (# 5 in Fig. 2A); it has an early L4 sink 205 
arising at 40 ms, but this sink is not followed by the sustained sinks and sources from 50-60 206 
ms and onwards observed in the other animals. The timing and location of sinks and sources 207 
are, overall, similar to those described earlier by Niell & Stryker (2008), and Senzai, 208 
Fernandez-Ruiz, and Buzsáki (2019).  209 
 210 
 211 
 212 
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 237 
Figure 2:  Variability in experimentally recorded CSD. (A) Evoked CSD response to a full-field 238 
flash averaged over 75 trials, from five animals in the dataset. (B) The first principal component (PC) 239 
computed from the CSD of all n=44 animals, explaining 50.4% of the variance. (C) Illustration of 240 
movement of sinks and sources in the calculation of the Wasserstein distance (WD) between the CSD 241 
of two animals in the dataset. The gray lines in the rightmost panels display how the sinks or sources 242 
of one animal are moved to match the distribution of sinks or sources of the other animal. (D) Left: 243 
WDs from each animal to the PC 1 CSD. Right: Pairwise WDs between all 44 animals sorted by their 244 
distance to the first PC. (E) CSD from five individual trials in example animal 1. (F) Distribution of 245 
pairwise distances between single trial CSD (red) and pairwise distances between trial averaged CSD 246 
of individual animals (blue). Both are normalized to the maximum pairwise distance between the trial 247 
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 8 

averaged CSD of individual animals. (G) Pairwise WDs between trials in each of 44 animals (white 248 
boxplots), normalized to maximal pairwise WDs between trial averaged CSD of animals. Grey-colored 249 
boxplot shows the distribution of pairwise WDs between trial-averaged CSD of individual animals, and 250 
the red stars indicate the n=5 animals for which the inter-trial variability was greater than the inter-251 
animal variability (assessed with KS-tests, see S2 in Supplementary Figures). 252 
 253 
To identify the robust features across animals in this dataset, we performed Principal 254 
Component Analysis (PCA) on the trial-averaged evoked CSD from all animals. Five out of 255 
the 58 animals in the data set did not have readable recordings of LFP in V1 during the 256 
presentation of the full-field flash stimuli, and the exact probe locations in V1 could not be 257 
recovered for nine other animals due to fading of fluorescent dye or artifacts in the optical 258 
projection tomography (OPT) volume (see Methods). The remaining 44 (out of the 58) 259 
animals in the data set were retained for the CSD analysis. The first principal component 260 
(PC 1) (Fig. 2B) constitutes a weighted average of the CSD patterns from all 44 animals and 261 
explains half (50.4 %) of the variance. The salient features typically observed in individual 262 
animals are also prominent in the PC 1 CSD pattern (Fig. 2B), i.e., the canonical pattern. 263 

 264 

Quantifying CSD pattern similarity 265 

We use the Wasserstein or Earth Mover’s distance (WD), to quantify the differences in CSD 266 
patterns (see Methods). The WD reflects the cost of transforming one distribution into 267 
another by moving its “distribution mass” around (Rubner et al., 1998; Arjovsky et al., 2017). 268 
An often-used analogy refers to the two distributions as two piles of dirt, where the WD tells 269 
us the minimal amount of work that must be done to move the mass of one pile around until 270 
its distribution matches the other pile (Rubner et al., 1998). In the context of CSD patterns, 271 
the WD reflects the cost of transforming the distribution of sinks and sources in one CSD 272 
pattern into the distribution of sinks and sources in another pattern, with larger WD indicating 273 
greater dissimilarity between CSD patterns. The WDs are computed between the sinks of 274 
two CSD patterns and between the sources of two CSD patterns independently, and then 275 
summed to form a total WD between the CSD patterns (Fig. 2C). The sum of all sinks and 276 
the sum of all sources in each CSD pattern are normalized to -1 and +1, respectively, so the 277 
WD only reflects differences in patterns, and not differences in the overall amplitude. The 278 
WD scales linearly with shifts in space and time. 279 
 280 
When computing the WDs between the evoked CSD patterns of individual animals and the 281 
canonical pattern, we find that the animals with CSD patterns that, by visual inspection, 282 
resemble the canonical pattern (Fig. 2A, animals 1-4), are indeed among animals with 283 
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 9 

smaller WD, while the animal with the more distinct CSD pattern (Fig. 2A, animal 5) is an 284 
outlier (Fig. 2D).  285 
 286 
The onset of the evoked response is less conspicuous in the single-trial CSD, due to 287 
pronounced, ongoing sinks and sources, but there is still a visible increase in magnitude 288 
from 40-50 ms and onwards (Fig. 2E), compatible with the latency of spiking responses to 289 
full-field flashes in V1 (Siegle et al., 2021). An oscillation of sinks and sources with a 290 
periodicity of ~20 ms, i.e., in the gamma range is apparent in the region stretching from L2/3 291 
to the top of L5, which appears to be either partially interrupted or drowned out by more 292 
sustained sinks and sources emerging at about 60 ms. At least some of this gamma-range 293 
activity derives from the visual flash that covers the entire visual field and that drives retinal 294 
neurons and post-synaptic targets in the lateral geniculate nucleus (LGN) in an oscillatory 295 
manner (see the pronounced gamma-range oscillation in the LGN firing rate in Fig. 3D). 296 
 297 
The inter-trial variability is roughly comparable to the inter-animal variability of the trial-298 
averaged responses. By computing the pairwise Wasserstein distances between single trial 299 
CSDs within each animal, and comparing it to the pairwise WD between the trial-averaged 300 
CSD of each animal, we find that inter-trial variability in CSD is significantly lower than the 301 
inter-animal variability in trial-averaged CSD (Kolmogorov-Smirnov distance = 0.33; p < 302 
0.001) (Fig. 2F). 303 
 304 
The majority of animals (39 out of 44) have a WD to the 1st principal component, PC 1, of the 305 
CSD that is less than half of the greatest WD between the CSD of individual animals and the 306 
PC 1 CSD (Fig 2D); the pairwise WDs between animals are also less than half of the 307 
maximum pairwise WD for most animals (921 out of the total 946 pairwise WDs; Fig 2E). 308 
This supports the view that most animals exhibit the canonical CSD pattern captured by the 309 
PC 1 CSD (Fig. 2B). The total inter-trial variability is smaller than the inter-animal variability, 310 
both estimated by pairwise WDs (Fig. 2F-G), though there are n=5 animals for which the 311 
inter-trial WDs are larger than the inter-animal WDs (Fig. 2G, marked by red stars; 312 
determined with KS-tests on the distribution of pairwise WDs between animals and pairwise 313 
WDs between trials in each animal - see Fig. S4). 314 

 315 

Quantifying firing rate variability  316 
For the spike analysis (see Methods), we distinguish between fast-spiking (FS; putative 317 
Pvalb inhibitory) neurons, and regular-spiking (RS; putative excitatory and non-Pvalb 318 
inhibitory) neurons. All FS-neurons are grouped together into one population across all 319 
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 10 

layers, while the RS-neurons are divided into separate populations for each layer (Fig. 3A). 320 
The FS-neurons are merged across layers because we set a criterion of at least 10 recorded 321 
neurons in any one layer when comparing the population firing rate in individual animals to 322 
the average population firing rate in all animals, and only one animal had 10 FS-neurons or 323 
more in any layer (Fig. S3). This criterion was set to have a more reliable estimate of the 324 
population firing rates in individual animals.  325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 
Figure 3: Variability in experimentally recorded spikes. (A) Trial-averaged laminar population 343 
firing rates of regular-spiking (RS) cells, differentiated by layer, and fast-spiking (FS) cells across all 344 
layers in response to full-field flash. Black line: Average across all animals. Gray shaded area: ± 1 345 
standard deviation.  (B) Kolmogorov-Smirnov (KS) similarities (see Methods) between the trial-346 
averaged firing rates of each individual animal and the average firing rate over cells from all animals 347 
(black line in (A)) at baseline (the interval of 250 ms before flash onset), peak evoked response (from 348 
35 to 60 ms after flash onset), and during the sustained period (from 60 to 100 ms). (C) Correlations 349 
between trial-averaged firing rates of individual mice and all mice (0-100 ms after flash onset). (D) 350 
Baseline-subtracted evoked firing rates for excitatory cells in seven visual areas (average over trials, 351 
neurons, and mice). Note the strong, stimulus triggered gamma-range oscillations in the firing of LGN 352 
neurons (blue). (E) Mean (µ) ± standard deviation (s) of population firing rates during baseline, peak 353 
evoked response, and the sustained period. Averaged across trials, neurons and time windows 354 
defined above. 355 
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We use the Kolmogorov-Smirnov (KS) similarity (defined as one minus the KS distance, see 356 
Methods) and correlation to quantify the variability in spikes. The KS-similarity gives the 357 
similarity between the distributions of average firing rates across neurons in two populations 358 
in selected time windows, with KS-similarity = 1 implying identity. As such, KS-similarity 359 
provides a metric to compare the magnitudes of firing rates in certain time periods. We 360 
defined the ‘baseline’ window as the period over 250 ms before the flash onset, the ‘initial 361 
peak’ window as 35 ms to 60 ms after flash onset, and the ‘sustained’ window as 60 ms to 362 
100 ms after flash onset. The KS-similarity score during baseline is denoted “KSSb”, during 363 
the ‘initial peak’ “KSSp”, and ‘sustained’ “KSSs”. The correlation, on the other hand, is 364 
computed between two population firing rates throughout the 100 ms window. The 365 
correlation thus gives us a measure of the similarity in the temporal profile of firing rates in 366 
this interval, independent of magnitudes. We establish the experimental variability in KS-367 
similarities and correlation by computing these metrics between the population firing rates of 368 
each individual animal and the average population firing rates of all other animals (averaged 369 
over trials for both the individual animals and the average over all other animals) (Fig. 3B-C). 370 
 371 
The population firing rates for FS neurons are more than twice as high than RS cells during 372 
baseline, peak and sustained. Among the RS populations, the firing rate in L5 is the highest 373 
at the peak and baseline, followed by L4 and L6, while L2/3 has the lowest firing rates (Fig. 374 
3E). 375 

 376 

Discrepancy between the original model and experimental observations 377 

We simulated the response to a full-field flash stimulus with the biophysical network model of 378 
mouse primary visual cortex as presented in Billeh et al., 2020. As input to the model, we 379 
used experimentally recorded LGN spike trains (Fig. 4C) (see Methods). A Poisson source, 380 
firing at a constant rate of 1 kHz, provides additional synaptic input to all cells, representing 381 
the influence from the rest of the brain ("background” input). The thalamocortical input 382 
consists of spike trains from 17,400 LGN units (Arkhipov et al., 2018; Billeh et al., 2020). The 383 
public Neuropixels data contain recordings from 1,263 regular-spiking LGN neurons across 384 
32 mice during 75 trials of full-field bright flash presentations, resulting in 94,725 spike trains. 385 
To construct the input for each of our 10 simulation trials, we randomly sampled 10 unique 386 
subsets of spike trains from this pool, until all 17,400 units had been assigned a spike train in 387 
each trial.  388 

 389 

Fig. 4A-B displays the resulting spiking pattern across all layers with its associated LFP. The 390 
inferred CSD exhibits a strong sink in the L5 and L6 region, matched by a strong source  391 
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 422 
Figure 4: LFP, CSD and spikes from simulations with the original model. (A) Top: Raster plot of 423 
all ~50,000 cells in the model’s 400 µm-radius “core” region spanning all layers, in a simulation of a 424 
single trial with the flash stimulus. Bottom: Raster plot and histogram of spikes from 10 trials for an 425 
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example cell. (B) Top: simulated LFP averaged over 10 trials of flash stimulus. Bottom: CSD 426 
calculated from the LFP via the delta iCSD method. (C) Firing rate of experimentally recorded LGN 427 
spike trains used as input to the model. (D) Wasserstein distance between CSD from the original 428 
model (blue diamond) and PC 1 CSD from experiments together with the Wasserstein distances from 429 
experimental CSD in every animal to PC 1 CSD (boxplot), normalized to maximal distance for 430 
animals. (E) Experimentally recorded firing rates (black) and simulated firing rates (blue). (F) KS-431 
similarity between firing rates in original model (blue diamond) or individual animals (boxplots) and 432 
firing rates in experiments at baseline, peak evoked response, and during the sustained period 433 
(defined in Fig. 3). (G) Correlation between firing rates of model (blue diamond) or individual animals 434 
in experiments (boxplots) and average population firing rates in experiments (0-100 ms). (H) Mean (µ) 435 
± standard deviation (s) of model firing rates during baseline, peak evoked response, and the 436 
sustained period. Averaged across trials, neurons and time windows defined above. 437 
 438 
below it, both starting at ~50 ms after flash onset (Fig. 4B; bottom). However, the early L4 439 
sink, the later sustained L4 source, and the sustained L2/3 sink typically observed in the 440 
experimental CSD (Fig. 2A, B) are either absent or too weak compared to the sink and 441 
source in L5 and L6. The WD from the simulated CSD to the experimental PC 1 CSD is 442 
greater than the WD between the CSD of the farthest outlier animal and the PC 1 CSD (WD 443 
= 1.84, normalized to the largest WD between CSD of individual animals and PC 1 CSD). 444 
Thus, using experimental variability as a reference, the CSD from this simulation is an outlier 445 
(Fig. 4C). 446 
 447 
The population firing rates of the model, the KS similarities and correlation between the 448 
model and the data, are plotted together with the data in Fig. 4D-F. The magnitudes of the 449 
model firing rates are higher than the experimental firing rates in all populations and time 450 
windows (Fig. 4H). However, the KS similarities between the model firing rates and the 451 
experimental firing rates are still within the minimum to maximum range of the boxplots for 452 
the RS L2/3, RS L4, and RS L5 cells in all time windows (Fig. 4F), and during baseline for 453 
the FS cells. For RS L6 neurons the KS similarities were among the outliers of the 454 
experiments in all time windows, while for FS neurons they were among the outliers during 455 
the peak and sustained windows (RS L2/3: KSSb  = 0.62, KSSp = 0.63, and KSSs = 0.54; RS 456 
L4: KSSb = 0.77, KSSp = 0.60, and KSSs = 0.63; RS L5 KSSb = 0.77, KSSp = 0.77, and KSSs 457 
= 0.78; RS L6: KSSb = 0.54, KSSp = 0.45, and KSSs = 0.47; FS: KSSb = 0.54, KSSp = 0.53, 458 
and KSSs = 0.49). The temporal profile of the model firing rates are above the minimum of 459 
the boxplots for all populations (RS L2/3: r = 0.38***, RS L4: r = 0.62***, RS L5: r = 0.75***, 460 
RS L6: r = 0.90***, FS: r = 0.80***; *** p<0.001). 461 
 462 
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The original model studied in Fig. 4 produced firing rates and orientation and direction tuning 463 
consistent with recordings in vivo (Billeh et al., 2020), but with some shortcomings, such as 464 
relatively slow responses of V1 to the onset of visual stimuli (Arkhipov et al., 2018; Billeh et 465 
al., 2020). Here, we see even more inconsistencies reflected clearly in the CSD pattern. This 466 
demonstrates the importance of multi-modal characterization of such biologically detailed 467 
models. To investigate the properties of the cortical circuit that sculpt the CSD, we 468 
manipulated the model and observed how both the CSD and firing rate responses were 469 
improved to match the experimental data. 470 

 471 

Adjusting the model to fit experimental firing rates 472 
Due to the discrepancy between the magnitudes of the model firing rates and the 473 
experimental firing rates, especially with respect to the RS L6 and FS neurons, where the 474 
model firing rates were among the experimental outliers, we selectively adjusted the 475 
recurrent synaptic weights. We left the synaptic weights between LGN and the V1 model 476 
unchanged since they were well constrained by data (Billeh et al. 2020). 477 
 478 
We first reduced the synaptic weights from all excitatory populations to the fast-spiking PV-479 
neurons by 30% to bring their firing rates closer to the average firing rate in this population in 480 
the experiments. This resulted in increased firing rates in all other (RS) populations due to 481 
the reduced activity of the inhibitory Pvalb-neurons (Fig. S6). Therefore, we further applied 482 
reductions in the synaptic weights from all excitatory neurons to RS neurons or increases in 483 
the synaptic weights from inhibitory neurons to the RS neurons to bring their firing rates 484 
closer to the experimental average firing rates. We multiplied the recurrent synaptic weights 485 
with factors in the [0.2, 2.5] range until we arrived at a set of weights where none of the 486 
model firing rates were among the experimental outliers in any time window (KSSb = 0.73, 487 
KSSp = 0.77, and KSSs = 0.70; average across RS populations and the FS population) and 488 
temporal profiles (RS L2/3: r = 0.49***, RS L4: r = 0.63***, RS L5: r = 0.71***, RS L6: r = 489 
0.87***, FS: r = 0.86***; *** p<0.001) (Fig. 5A-C).  490 
 491 
The resulting spatial pattern (but not the magnitude) of the CSD, however, was largely 492 
unchanged (Fig. 5D) compared to the original CSD (Fig. 4B). The overall magnitude was  493 
reduced, and there were some traces of a sink arising at 40 ms after flash onset, and a L2/3 494 
(and L1) sink after 60 ms, but they were substantially weaker relative to the L5/L6 dipole 495 
than they were in the experiments. Furthermore, the large and sustained L4 source after 60 496 
ms was still either absent or too weak to be visible. The WD between the CSD from this 497 
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version of the model and the experimental PC 1 CSD remained among the outliers of the 498 
animals (Fig. 5E) (Normalized WD = 1.26).  499 
 500 

 501 
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 527 
Figure 5: Adjusting the model to fit spikes or CSD. (A) Average experimentally (black) and 528 
simulated firing rates of experiments in the model with adjusted recurrent synaptic weights (green) 529 
and original model (blue). Synaptic adjustments included scaling the weights from all excitatory 530 
populations to the PV cells down by 30 % to reduce the firing rates in these fast-spiking populations, 531 
reducing the synaptic weights from excitatory populations to all others and increasing synaptic 532 
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weights from all PV cells to all other populations to compensate for the reduced inhibition. (B) KS 533 
similarity between firing rates of model versions (markers) or individual animals in experiments 534 
(boxplots) and firing rates of experiments at baseline, peak evoked response, and during the 535 
sustained (defined in Fig. 3). (C) Correlation between simulated firing rates or individual animals 536 
(boxplots) and measured firing rates (0-100 ms). (D) CSD resulting from simulation on model with 537 
adjusted recurrent synaptic weights. (E) Wasserstein distance between CSD from model versions and 538 
PC 1 CSD from experiments together with Wasserstein distances from CSD in animals to PC 1 CSD 539 
(boxplot). (F) Effect of different patterns of placing excitatory synapses onto layer 4 excitatory cells on 540 
this population’s contribution to the simulated CSD (left) and to the total simulated CSD (right). These 541 
synaptic placement schemes with accompanying inflowing (blue arrows) and outflowing (orange 542 
arrows) currents are illustrated in the middle. (G) Effect of synaptic placement on the simulated 543 
population firing rate. (H) Contribution of L4 excitatory cells to the simulated CSD in the model where 544 
all recurrent connections have been cut (left) and when all active channels have been removed from 545 
all cells in the model (right). 546 

 547 

Two-way dissociation between spikes and CSD 548 
Simulations demonstrate that the LFP, and the associated CSD, can be significantly altered 549 
by changes to synaptic placement (Einevoll et al., 2007; Pettersen, Hagen, and Einevoll, 550 
2008; Lindén et al, 2010; Lindén et al, 2011; Łęski et al., 2013; Hagen et al., 2017; Ness et 551 
al., 2018). As observed in Fig. 5A, D, adjustments of synaptic weights can modify the 552 
population firing rates substantially, yet without substantially changing the pattern of the 553 
CSD, i.e., the placement and timing of sinks and sources. The inverse can also occur; that 554 
is, the CSD pattern can be altered extensively with only minor effects on firing rates (Fig. 5F-555 
G).  556 
 557 
In the model’s original network configuration, L4 excitatory neurons received geniculate input 558 
from synapses placed within 150 μm from the soma on both basal and apical dendrites, and 559 
excitatory, recurrent input from other V1 neurons within 200 μm from the soma on both basal 560 
and apical dendrites. We tested the effects of synaptic location by placing all synapses from 561 
both LGN and excitatory neurons onto the basal dendrites of L4 excitatory neurons (within 562 
the same ranges as in the original configuration). This increased the contribution from the L4 563 
excitatory neurons to the total CSD (Fig 5F, middle row, leftmost plot) by a factor of ~2, and 564 
led to a dipole pattern with a single sink at the bottom and a single source at the top, as 565 
opposed to having two pairs of sinks and sources like in the case of the original synaptic 566 
placement (Fig. 5F top row; leftmost plot). The firing rate of the L4 excitatory cells, however, 567 
remained essentially unchanged by this modification (Fig. 5G). On the other hand, placing all 568 
synapses from LGN and excitatory neurons onto the apical dendrites of L4 excitatory 569 
neurons resulted in even greater CSD magnitude from this population (Fig. 5F bottom row; 570 
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leftmost plot), while the magnitude of its firing rates were reduced (Fig. 5G). In this case, the 571 
pattern displayed a sink in the middle with a source above and below it.  572 
 573 
These results indicate a two-way dissociation that can occur between CSD and firing rates of 574 
excitatory neurons. The firing rates can be changed without substantially changing the CSD 575 
by modifying the strength of synapses, while the CSD can be changed without substantially 576 
changing the firing rates by modifying synaptic location. This suggests that utilizing the CSD 577 
in the optimization of the model can provide constraints on the circuit architecture that could 578 
not be obtained from spikes alone. 579 

 580 

Effects of feedback from Higher Visual Areas to the model 581 
Hartmann et al. (2019) found that feedback from higher visual areas (HVAs) can exert a 582 
powerful influence on the magnitude of the evoked LFP response recorded in V1 of 583 
macaque monkeys, particularly in the period 80-100 ms after stimulus onset. The sustained 584 
L2/3 sink and L4 source we observe in the experimental CSD emerge at 60 ms (Fig. 2A-B), 585 
which roughly coincides with the peak firing rates in the latero-medial (LM), rostro-lateral 586 
(RL), antero-lateral (AL), and postero-medial (PM) cortical areas (Fig. 3C). Furthermore, 587 
anatomical data indicate that synapses from HVAs terminate on L1 and L2/3 apical dendrites 588 
of pyramidal cells (whose cell bodies reside in L2/3 or L5) (Glickfeld and Olsen, 2017; 589 
Marques et al., 2018; Hartmann et al., 2019; Keller et al., 2020; Shen et al., 2020). Together, 590 
these observations suggest that the sustained L2/3 sink and L4 source might, in part, be 591 
induced by feedback from higher visual areas (HVA), where the sink is generated from the 592 
input to the apical tufts in L1 and L2/3, and the source may be the return currents of this 593 
input.  594 
 595 
Of these HVAs, the feedback from LM to V1 is best characterized (Marques et al., 2018; 596 
Keller et al., 2020; Shen et al., 2020), and has the highest connection density to V1 (Harris 597 
et al., 2019). Based on these considerations, we decided to test the hypothesis that the large 598 
sinks and sources in the upper layers were caused, at least in part, by feedback from LM. In 599 
addition to the earlier feedforward LGN input and the background input representing the 600 
influence of the rest of the brain, we introduced a feedback input constructed from 601 
experimentally recorded spike trains in LM. In total, the public Neuropixels dataset has 2075 602 
neurons recorded in LM (simultaneously with the recordings in LGN, V1, and other visual 603 
areas) from 42 animals during presentations of the full-field flash stimulus. 1,823 of the 2,075 604 
neurons were classified as RS, and spike trains from these were used to generate the 605 
feedback input to the model (Fig. 6A).  606 
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Figure 6: Introducing feedback from LM to V1 in the model. (A) Firing rate of the experimentally 631 
recorded LGN and LM units used as input to the model. (B-C) Total CSD resulting from simulation 632 
with input only from the LM and contributions from populations that receive input from LM. (D) Total 633 
CSD from simulation with both LGN input and LM input. (E) Wasserstein distance between CSD from 634 
model versions and PC 1 CSD from experiments together with Wasserstein distances from CSD in 635 
animals to PC 1 CSD (boxplot). (F) Average population firing rates of experiments (black line) and 636 
model versions. (G) KS similarity between simulated firing rates or individual animals (boxplots) and 637 
recorded firing rates at baseline, peak evoked response, and the sustained period (defined in Fig. 3). 638 
(H) Correlation between simulated and experimentally recorded firing rates (0-100 ms). 639 
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The synapses from this LM source were placed on the apical dendrites of L2/3 excitatory 641 
neurons (within 150 μm from the soma), on the apical tufts (> 300 μm from the soma) and 642 
the basal dendrites (within 150 μm from the soma) of L5 excitatory neurons, and on the 643 
somata and basal dendrites of L2/3, and L5 inhibitory (Pvalb and Sst) neurons (at any 644 
distance from the soma). The input onto L2/3 excitatory neurons did generate a sink in L1 645 
and L2/3 and a source below in L4 (Fig. 6B-C). 646 
 647 
The synaptic weights from LM to the populations targeted by the feedback were initialized at 648 
high values (see Methods), and then adjusted (decreased) by multiplying them with factors 649 
in the range [0.05, 0.5] (see Methods). The weights from the background to the feedback-650 
targeted populations were also multiplied by factors in the range [0.2, 0.5], and the weights 651 
of connections from Pvalb neurons to L2/3 excitatory and L5 excitatory neurons were 652 
multiplied by factors in the range [0.8, 1.2]. This weight scaling was done until the population 653 
firing rates were within the experimental variability. Additionally, the synapses from excitatory 654 
populations onto L6 excitatory cells were restricted to be within 150 μm from the soma to 655 
reduce the magnitude of the L5/L6 dipole (Fig. S3) (see Methods).  656 
 657 
When the model received this feedback input together with the LGN input, the resulting CSD 658 
pattern reproduced the main features observed in the experiments (Fig. 6D). The WD 659 
between the model CSD and the experimental PC 1 CSD was also no longer an outlier 660 
(Normalized WD = 0.41; Fig. 6E), and the population firing rates remained within the 661 
minimum and maximum value of the experimental boxplots for the firing rates in all windows 662 
and all populations, both with respect to magnitudes (KSSb = 0.77, KSSp =  0.70, and KSSs = 663 
0.68; average across all populations) and temporal profiles (RS L2/3: r = 0.36***, RS L4: r = 664 
0.64***, RS L5: r = 0.69***, RS L6: r = 0.87***, FS: r = 0.77***, *** p<0.001) (Fig. 6F-G). 665 
Thus, when average responses to the full-field flash are considered, this final adjusted model 666 
exhibits both the CSD and firing rate patterns that are consistent with the experimental 667 
observations and are well within animal variability (Fig. 6E-G). 668 

 669 

Identifying the biophysical origins of the canonical CSD 670 
With the canonical CSD (Fig. 2B) reproduced, we can use the model to probe the 671 
biophysical origins of its sinks and sources. We began by removing all recurrent connections 672 
and only feeding the LGN input to the model to find the contribution from the thalamocortical 673 
synapses onto excitatory and inhibitory neurons (Fig. 7A, top). The main thalamic 674 
contribution to the CSD is from synapses onto excitatory neurons, in line with the 675 
expectation that neurons with a spatial separation between synaptic input currents and the 676 
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return currents dominate the cortical LFP generation (Einevoll et al., 2013). (Neurons without 677 
apical dendrites will have largely overlapping synaptic input currents and return currents, 678 
resulting in a cancellation of current sinks and sources.) 679 
 680 
We further observed that the early L4 and the sustained L5/L6 sinks are present in the CSD 681 
contributions of excitatory neurons, though the magnitude of the L5/L6 sink is substantially 682 
reduced compared to its magnitude when the model is configured with recurrent synapses 683 
intact (Fig. 4B, 5D, and 6D). The sustained L2/3 sink and L4 source, on the other hand, were 684 
not visible. This suggests that the early L4 sink and the L5/L6 sink are at least partly 685 
generated by thalamocortical synapses. However, the substantially diminished magnitude of 686 
the L5/L6 sink indicates that recurrent synapses also contribute significantly to the 687 
generation of this sink.  688 
 689 
We then removed the LGN input and added the feedback (while keeping the recurrent 690 
connections cut), which resulted in a prominent upper layer dipole, with the sink residing in 691 
L1 and L2/3, and the source residing in L4 (Fig. 7A, bottom). Together with their absence 692 
when input came from LGN only (Fig. 7A, top), this suggests that the sustained L2/3 sink 693 
and the L4 source in the canonical pattern originate at least in part from the feedback 694 
synapses onto the apical dendrites of L2/3 and L5 pyramidal cells and the activity this input 695 
generates. 696 
 697 
To assess the extent to which active channels at the somata contributed to the CSD pattern, 698 
we compared the CSD resulting from a simulation with both LGN and feedback input (where 699 
the recurrent connections were still cut) when we included or excluded the active channels 700 
(NaT, NaP, NaV, h, Kd, Kv2like, Kv3_1, K_T, Im_v2, SK, Ca_HVA, Ca_LVA; only at the 701 
soma (see supplementary information in Gouwens et al., 2018 for definitions)) on all neurons 702 
in the model. The most prominent discrepancy between the CSD with and without active 703 
channels is the magnitude of the L4 source and the L2/3 sink (Fig. 7B). In this all-passive 704 
setting, the L4 source is significantly attenuated, and the L2/3 sink is either absent or 705 
dominated by a source in the same region. 706 
 707 
We explored whether the contributions from currents in recurrent connections come primarily 708 
from excitatory or inhibitory synapses by removing all connections from inhibitory (Pvalb, 709 
Sst, Htr3a) neurons to all other neurons, so that all postsynaptic currents stem from 710 
excitatory thalamocortical synapses, excitatory synapses from higher visual areas, or 711 
recurrent excitatory synapses in V1 (Fig. 7D and Fig. S5). Note that inhibitory synaptic 712 
currents give rise to sources, while excitatory synaptic currents give rise to a sink. Of course, 713 
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without inhibition, the network is unbalanced, which limits the conclusions that can be drawn 714 
from this simulation. However, the fact that the major sinks and sources are still present is 715 
an indication that the currents from excitatory input account for the majority of the sinks and 716 
sources observed in the experimental CSD.  717 
 718 
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 741 
Figure 7: Biophysical origin of canonical CSD. (A) Sinks and sources generated from 742 
thalamocortical (top row) and feedback (bottom row) synapses onto excitatory (left) and inhibitory 743 
(right) neurons. (B) Total CSD from thalamocortical and feedback synapses (without recurrent 744 
connections) with (left) and without (right) active channels in the V1 neurons. (C) Total CSD of model 745 
with both thalamocortical and feedback input when inhibitory synapses are removed. (D) Population 746 
contributions to the total CSD in final model with both LGN and feedback input and recurrent 747 
connections. (E) Summary of biophysical origins of the main contributions to the sinks and sources in 748 
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the canonical CSD in different periods of the first 100 ms after flash onset. Blue arrows indicate 749 
inflowing current (sinks), while orange arrows indicate outflowing current (sources) in the illustrations 750 
in the bottom. More arrows mean more current. Left: Before onset of evoked response (0-35 ms). The 751 
average inflowing and outflowing current in V1 neurons is zero in this time window. Middle: Initial 752 
evoked response (35-50 ms). The L4 sink is primarily generated by inflowing current thalamocortical 753 
synapses onto L4 excitatory cells. Right: Sustained evoked response (50-100 ms). The L5/L6 sink is 754 
primarily due to inflowing currents from thalamocortical synapses and recurrent excitatory synapses. 755 
Inflowing current at synapses from HVAs onto apical tufts of L2/3 and L5 excitatory cells generates, in 756 
part, the L2/3 sink, and the resulting return current generates, in part, the L4 source in this time 757 
window. 758 

 759 

The contributions from each population to the total CSD in the final model (Fig. 6D) with both 760 
LGN and feedback input and intact recurrent connections are displayed in Fig. 7D. From 761 
this, it is apparent that the L5/L6 dipole is mainly generated by L6 excitatory cells, the L2/3 762 
sink stems from sinks at the apical tufts of the L2/3 and L5 excitatory cells, the L4 sink from 763 
both the L4 excitatory and inhibitory cells, while the L4 source is a mix of sources from 764 
mainly L2/3, L4 and L5 excitatory cells, as well as the L4 inhibitory cells. (The magnitude of 765 
the CSD contribution from L4 inhibitory cells is greater than anticipated. Given their lack of 766 
apical dendrites, we would expect their postsynaptic current sinks and sources to largely 767 
cancel (Einevoll et al., 2013). Their contribution can be reduced by scrambling the 3-D 768 
orientation of these cells (Fig. S7). However, we cannot rule out that L4 inhibitory cells can 769 
have a contribution comparable in magnitude to the excitatory cells with the data we have 770 
available. We therefore let the L4 inhibitory cells keep their original orientation here.) 771 
 772 
We summarize the main contributions to the canonical CSD in Fig. 7E. Before the onset of 773 
the evoked response (0-35 ms) there is, on average, no significant net inflow or outflow of 774 
current to any neurons. Around 40 ms, an inflow of current from excitatory thalamocortical 775 
synapses onto all excitatory neurons and all Pvalb inhibitory neurons appears, with the 776 
largest current coming from the synapses targeting basal and apical dendrites of L4 777 
excitatory cells. This is the primary origin of the L4 sink. Following this initial L4 sink, there is 778 
a sustained sink in L5/L6 arising at ~50 ms, which originates partly from thalamocortical 779 
synapses onto L6 excitatory cells and partly from recurrent synapses from excitatory 780 
populations in V1 onto L6 excitatory cells. At ~60 ms, a sustained sink emerges in L1 and 781 
L2/3, which partly originates in synapses from higher visual areas targeting apical tufts of 782 
L2/3 and L5 excitatory cells. This feedback results in a stronger return current at the soma 783 
and basal dendrites of L2/3 excitatory cells and L5 excitatory cells. 784 

 785 
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Discussion 786 

In the present study, we analyzed experimentally recorded spikes and LFP during 787 
presentation of full-field flashes from a large-scale visual coding dataset derived from mouse 788 
visual cortex (Siegle et al., 2021), and simulated the same experimental protocol using a 789 
biophysically detailed model of mouse V1 (Billeh et al., 2020). Our analysis of the 790 
experimental data focused on the responses in visual areas V1, LGN, and higher cortical 791 
visual areas. We found that the evoked CSD in V1, computed from the LFP, is captured by a 792 
canonical pattern of sinks and sources during the first 100 ms after stimulus onset (Fig. 2B). 793 
This canonical CSD, in response to a flashed, bright field pattern, explains half (50.4 %) of 794 
the variance in the trial-averaged CSD responses across animals.  795 
 796 
Both the early L4 sink with concurrent sources above and below and the L5/L6 sink with a 797 
source below were observed with a similar timing by Senzai, Fernandez-Ruiz, and Buzsáki 798 
(2019). The L4 source and L2/3 sink were also observed in that study, but emerge 799 
somewhat later than in our data – just after 100 ms as opposed to ~60 ms in our canonical 800 
pattern. This discrepancy in onset might simply be due to differences in stimuli. In Senzai, 801 
Fernandez-Ruiz, and Buzsáki (2019) the animals were exposed to 100 ms light pulses, while 802 
the animals in our data were presented with 250 ms whole-field flashes of white screens. 803 
Nonetheless, the canonical CSD pattern exhibits good overall agreement with the pattern 804 
seen in Senzai, Fernandez-Ruiz, and Buzsáki (2019). 805 
 806 
We introduced the Wasserstein distance as a method to evaluate the difference between 807 
two CSD patterns and used it to quantify the variability in trial-averaged CSD between 808 
animals (Fig. 2D), the trial-to-trial variability in CSD within animals (Fig. 2F-G), and the 809 
difference between the model CSD, the trial-averaged CSD of individual animals, and the 810 
canonical CSD pattern. For the firing rate analysis, we utilized KS-similarity and correlation 811 
to quantify experimental variability and model performance with regard to magnitude and 812 
temporal profile, respectively. Systematic use of quantitative metrics for biophysical 813 
modeling at this scale is still relatively uncommon, and our work establishes a set of 814 
measures for testing the model on LFP and spiking simultaneously, which can be useful for 815 
future studies in the field. Of course, there may well be other metrics that are equally or more 816 
suitable, and a systematic investigation into what would be the optimal metrics to apply is a 817 
important avenue for future work. 818 
 819 
Our aim was to simultaneously reproduce experimentally recorded spikes and CSD in our 820 
simulations. The original model captured spiking responses to gratings well (reproducing, 821 
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e.g., direction selectivity distributions for different neuronal populations) with variable 822 
success when applied to other visual stimuli (Billeh et al., 2020). It was not originally tested 823 
on LFP/CSD. We found that, for the full-field flash stimulus, this model did not reproduce the 824 
CSD pattern in the upper layers of V1, and the spiking responses for this stimulus also 825 
exhibited a number of discrepancies. 826 
 827 
After making selective adjustments to the recurrent synaptic weights, the model could 828 
reproduce the experimental firing rates (Fig. 5A-C), though the discrepancy between the 829 
model CSD and the canonical CSD remained (Fig. 5D-E), with only minor differences 830 
relative to the CSD of the original model (Fig. 4B). The fact that the model can capture the 831 
experimental firing rates without capturing the experimental CSD and that adjustments to the 832 
synaptic weights yielded significant alterations in firing rates with only small changes in the 833 
CSD, supports the point that LFP/CSD reflects aspects of circuit dynamics that are 834 
complementary to those reflected in locally recorded spikes.  835 
 836 
Past simulation studies have demonstrated the importance of synaptic placement in shaping 837 
the LFP and CSD signature (Einevoll et al., 2007; Pettersen, Hagen, and Einevoll, 2008; 838 
Lindén et al, 2010; Lindén et al, 2011; Łęski et al., 2013; Hagen et al., 2017; Ness et al., 839 
2018). To uncover the model adjustments that capture firing rates and CSD simultaneously, 840 
we explored the effects of changes in the synaptic positioning. In one case, we placed all 841 
excitatory synapses onto only basal or apical dendrites of L4 excitatory cells, as opposed to 842 
their original placement on both apical and basal dendrites. Moving all excitatory synapses 843 
onto basal dendrites resulted in substantial changes in both the pattern and magnitude of 844 
the CSD contribution from these L4 excitatory cells, with only minor changes to their firing 845 
rates (Fig. 5F-G). Placing all excitatory synapses on apical dendrites led to somewhat larger 846 
changes in firing rates, though still similar to the firing rate of the original model, and to even 847 
bigger changes in the CSD magnitude.  848 
 849 
This demonstrates a two-way dissociation of the firing rates and the pattern of sinks and 850 
sources in the CSD: The firing rates can be substantially altered with small effects on the 851 
CSD by adjusting the synaptic weights, and the CSD can be substantially altered with only 852 
small effects on the firing rates by adjusting synaptic placement. This implies that the LFP 853 
can reveal deficiencies in the model architecture that would not be evident from the firing 854 
rates alone, and that, to a certain extent, models can be optimized for firing rates and CSD 855 
independently.  856 
 857 
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Recent studies have shown that feedback from higher visual areas can exert a strong 858 
influence on the magnitude of LFP during evoked responses (Hartmann et al., 2019). To 859 
investigate whether such cortico-cortical influence can contribute to the sinks and sources of 860 
the canonical CSD pattern, we added feedback consisting of experimentally recorded spikes 861 
from the higher cortical visual area LM (Siegle et al., 2021) impinging on synapses placed 862 
onto V1 neurons in our model, using anatomical data (Glickfeld and Olsen, 2017; Marques et 863 
al., 2018; Hartmann et al., 2019; Keller et al., 2020; Shen et al., 2020). We found that the 864 
feedback can play a significant role in shaping the sustained sinks and sources (Fig. 6B-D). 865 
The resulting model CSD reproduced the major sinks and sources identified in the canonical 866 
CSD pattern and was no longer among the outliers when compared to the experimental 867 
variability (Fig. 6E). Interestingly, absence of the feedback was not apparent from analysis of 868 
the firing rates alone, as the firing rates were already within the experimental variability 869 
before adding the feedback, further underscoring the utility of the LFP in illuminating 870 
structure-function relations in the circuit. Contributions from other visual cortical areas were 871 
not included, even though they too impinge upon neurons in V1 (Harris et al., 2019; Siegle et 872 
al., 2021), due to the lack of data characterizing such connections. This awaits future work.  873 
 874 
With the major sinks and sources of the canonical CSD pattern reproduced, we explored 875 
their biophysical origins. We found that the initial L4 sink originates in the thalamocortical 876 
input to L4 excitatory cells, which aligns with suggestions made in Mitzdorf et al. (1987), 877 
Swadlow, Gusev, and Bezdudnaya (2002), and Senzai, Fernandez-Ruiz, and Buzsáki 878 
(2019). The sustained L5/L6 sink comes from postsynaptic currents in L6 excitatory cells 879 
triggered by a combination of thalamocortical and recurrent excitatory inputs. The sustained 880 
L2/3 sink stems, in part, from input from LM onto the apical tufts of L2/3 and L5 excitatory 881 
cells. The sustained L4 source has its origins in a mixture of return currents from L2/3 and 882 
L5 excitatory cells resulting from the abovementioned feedback onto the apical dendrites of 883 
these cells, as well as contributions from L4 excitatory and inhibitory cells (Fig. 7A, D, and 884 
E).  885 
 886 
In line with observations made by Reimann et al. (2013), we found that the somatic voltage-887 
dependent membrane currents significantly shape the CSD signature (Fig. 5H and 7B). Even 888 
so, our findings still emphasize the importance of synaptic inputs in sculpting the CSD, as 889 
the addition of synaptic input (Fig. 6D) and changes to synaptic placement (Fig. 5F) 890 
substantially altered the CSD pattern.  891 
 892 
This investigation into the biophysical origins of sinks and sources is limited by the fact that 893 
the contributions from recurrent connections are difficult to estimate precisely due to the non-894 
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linear effects of these connections in terms of how they contribute to spiking. That is, their 895 
contribution cannot simply be found by subtracting the CSD from thalamocortical and 896 
feedback synapses with all recurrent connections removed (Fig. 7A) from the total CSD with 897 
the same input and recurrent connections intact (Fig. 6D). Still, this analysis provides an 898 
initial estimate into the biophysical origins of the sinks and sources observed experimentally 899 
and demonstrates the insights that can be obtained from modeling of extracellular signals.  900 
 901 
There is ample evidence that firing rates and LFP are modulated by the behavioral state of 902 
the animal, including measures like the pupil size (considered to be a proxy for arousal level) 903 
or running speed (Niell and Stryker, 2010; McGinley et al., 2015; Vinck et al., 2015; Saleem 904 
et al., 2017). In this study, the responses averaged over all trials have been the target for the 905 
modeling, without regard to any state-dependence of the responses. Our understanding of 906 
the state-dependent responses could benefit from the potential to probe the biophysical 907 
origins of extracellular signals. Therefore, reproducing these state-dependent responses is 908 
an interesting avenue for future research.  909 
 910 
Note that the set of synaptic weights and other parameters that can reproduce the 911 
experimental firing rates and CSD is unlikely to be unique. This is a consequence of the 912 
degeneracy inherent to neural networks, as many different parameterizations of neuronal 913 
networks can perform the same functions (Prinz, Bucher and Marder, 2004; Marder and 914 
Goaillard, 2006; Drion, O’Leary and Marder, 2015; O’Leary, 2018). Thus, our network should 915 
only be considered an example of a circuit model that can produce firing rates and CSD that 916 
match the experimental observations. Obtaining multiple solutions and characterizing their 917 
diversity using automatic searches of the parameter space will be an interesting direction for 918 
future work. We did not utilize such an approach here because the number of simulations 919 
required (typically, many thousands or more for automatic optimization approaches) would 920 
currently be prohibitively expensive on a model of this scale and level of complexity: running 921 
a 1 second simulation with this model takes ~90 minutes on 384 CPU-cores (Billeh et al., 922 
2020); a single trial in our simulations lasts 0.75 seconds.  923 
 924 
The original model used as a starting point here produced firing rates and direction and 925 
orientation tuning consistent with recordings during presentations of drifting gratings 926 
(Arkhipov et al., 2018; Billeh et al., 2020). In this study, we focused on the analysis and 927 
modeling of the response to full-field flashes. Ideally, the model should reproduce both firing 928 
rates and LFP simultaneously not only for flashes or drifting gratings, but for any visual 929 
stimulus (out-class generalization). This is a long-term goal, and can be called “the holy 930 
grail” of visual system modeling.  931 
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 932 
In this study, we developed a systematic framework to quantify experimental variability in 933 
both LFP/CSD and spikes and to evaluate model performance. We identified a canonical 934 
CSD pattern observed during presentations of full-field flash stimuli and obtained a bio-935 
realistic model that reproduced both the canonical CSD pattern and spikes simultaneously. 936 
We utilized this validated model to identify the biophysical origins of the canonical sinks and 937 
sources observed experimentally. Our models are freely shared and should be useful for 938 
future studies disentangling the mechanisms underlying spiking dynamics and 939 
electrogenesis in the cortex. 940 
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 1316 

Quality control 1317 
Of the 58 mice in the visual coding dataset, nine were excluded because the exact probe 1318 
location could not be recovered due to fading of fluorescent dye or artifacts in the optical 1319 
projection tomography (OPT) volume (Siegle et al., 2021). Another five animals were 1320 
excluded because they were missing LFP recordings from V1 during presentation of the 1321 
flash stimulus. Thus, data for 44 animals were retained for the CSD analysis.  1322 
 1323 
For the spike analysis, the same nine animals for which the exact probe location could not 1324 
be recovered were excluded, and two additional animals were excluded because they did 1325 
not have any cells recorded in V1, leaving a total of 47 animals for this part of the data 1326 
analysis. 1327 

 1328 
Neuronal classification 1329 
We distinguished between regular-spiking (RS) and fast-spiking (FS) cells by the time from 1330 
trough to peak of the spike waveforms (Barthó et al., 2004). For cortical cells, the spike 1331 
duration was bimodally distributed with a dip at ~0.4 ms, while for thalamic cells, it was 1332 
bimodally distributed with a dip at ~0.3 ms (Fig. S1). Thus, the cut off in the classification of 1333 
cells as RS or FS was set at 0.4 ms for LM and V1, and at 0.3 ms for cells in LGN.  1334 
 1335 
When comparing the model firing rates to the experimental firing rates, the excitatory and 1336 
non-Pvalb populations were grouped together in each layer of the model to make up the RS 1337 
cells in L2/3, L4, L5, and L6, while the Pvalb cells across all layers were grouped together to 1338 
make up the FS cells of V1. The layer boundaries were taken from the Allen Common 1339 
Coordinate Framework (CCF) (Oh et al., 2014), allowing for the assignment of each neuron’s 1340 
position to a specific cortical layer (Siegle et al., 2021).  1341 

 1342 

Model 1343 

 1344 

The model contains a total of 230,924 neurons, of which 51,978 are biophysically detailed 1345 
multicompartment neurons with somatic Hodkin-Huxley conductances and passive 1346 
dendrites, and 178,946 are leaky-integrate-and-fire (LIF) neurons. The neuron models are 1347 
arranged in a cylinder with a radius 845 μm and a height 860 μm (corresponding to the 1348 
average cortical thickness of V1 taken from the Allen Common Cordinate Framework (CCF) 1349 
(Billeh et al., 2020; Oh et al., 2014). The multicompartment neurons are placed in the “core” 1350 
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of the model with a radius of 400 μm, while the LIF neurons form an annulus surrounding 1351 
this core. The neuron models belong to 17 different classes: one excitatory class and three 1352 
inhibitory (Pvalb, Sst, Htr3a) in each of the layers 2/3 through 6, and a single Htr3a inhibitory 1353 
class in layer 1. The LGN module providing thalamocortical input to the model consists of 1354 
17,400 units selectively connected to the excitatory neurons and Pvalb neurons in L2/3 to 1355 
L6, as well as the non-Pvalb neurons in L1. The background input to all neurons in the 1356 
model comes from a single Poisson source firing at 1 kHz and represents influence from the 1357 
rest of the brain. The feedback input to L2/3 and L5 excitatory, Pvalb, and Sst neurons 1358 
comes from a node representing LM. 1359 

 1360 
Simulation configuration 1361 
Instructions on how to run simulations of the model are provided in Billeh et al., 2020. The 1362 
files and code necessary to run the model versions presented in Fig. 4, 5, and 6 are 1363 
provided in the directories old_model_fig4, intermediate_model_fig5, and final_model_fig6, 1364 
respectively, in the Dropbox folder (see Code and data availability).  1365 

 1366 
Data processing 1367 
LFP and CSD 1368 
The LFP in simulations was obtained from the extracellular potential by first downsampling to 1369 
every other electrode along the probe (resulting in a spatial separation of 40 μm between 1370 
each recording electrode, equal to the spacing in the public Neuropixels data) and using a 1371 
low-pass 5th order Butterworth filter with a cut off frequency of 500 Hz (utilizing functions 1372 
scipy.signal.butter and scipy.signal.filtfilt). The same filtering was applied to get the 1373 
experimental LFP. The CSD was calculated from the experimental and model LFP using the 1374 
delta iCSD method (Pettersen et al., 2006), where the radius of laterally (orthogonal to the 1375 
probe axis) constant CSD was assumed to be 400 μm - the radius of the V1 model’s “core” 1376 
region consisting of biophysically detailed multicompartment neurons. For the experimental 1377 
CSD, this radius was set to 800 μm, roughly corresponding to the size of mouse V1. 1378 

 1379 
Visual stimulus 1380 
The stimulus used to compare the model and the experiments was full-field flashes. In the 1381 
experiments, the mice were presented with gray screens for 1 second, followed by 250 ms of 1382 
white screen, and then 750 ms of gray screen over 75 trials. In the simulations, both the 1383 
stimulus presentation and the pre- and the post-stimulus gray screen periods lasted 250 ms, 1384 
and the number of trials was 10. 1385 

 1386 
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Input from Lateral Geniculate Nucleus (LGN) 1387 
Originally, the LGN spike trains used as input to the model were generated with the FilterNet 1388 
module provided with the model, using 17,400 “LGN units” (Billeh et al., 2020). However, 1389 
when this input was used for simulations, the onset of the evoked response in V1 was 20-30 1390 
ms delayed in comparison with experiments. Therefore, we used experimentally recorded 1391 
LGN spike trains as input to the model instead. We assigned a recorded spike train to each 1392 
of the 17,400 LGN units in all trials. In total, the public Neuropixels data contain recordings 1393 
from 1,263 regular-spiking LGN neurons across 32 animals during 75 trials of full-field flash 1394 
presentations. We divided the total pool of spike trains into 10 subsets, and then randomly 1395 
sampled spike trains from one subset in each trial until all 17,400 LGN units had been 1396 
assigned a spike train in all trials. 1397 

     1398 

Input from lateromedial area (LM) 1399 
The experimentally recorded spike trains in the LM were used to construct the feedback 1400 
input to V1. In total, the public Neuropixels data contain recordings from 1,823 regular-1401 
spiking LM neurons across 42 animals during presentations of the full-field flash stimulus. 1402 
Spikes were randomly sampled from the pool of all spike trains to construct a spike train that 1403 
was used as input to all the cells that were targeted by the feedback in the model. All 1404 
neurons received the same spike train. 1405 
 1406 
Background input 1407 
The input from the poisson source firing at 1kHz was not stimulus dependent. It is a coarse 1408 
representation of the continuous influence of the rest of the brain on V1. 1409 

 1410 

Dendritic targeting 1411 
LGN to V1 1412 
In the original model, the synapses from LGN onto excitatory V1 neurons were placed on 1413 
apical and basal dendrites within 150 μm from the soma, while synapses onto inhibitory V1 1414 
neurons were placed on their soma and on their basal dendrites without distance limitations 1415 
(Billeh et al. 2020). This placement was left unchanged in this study. 1416 
 1417 
V1-V1 1418 
The synapses for recurrent connections were placed according to the following rules in the 1419 
original model (Billeh et al. 2020): 1420 
 1421 
Excitatory-to-Excitatory Connections 1422 
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All synapses from excitatory V1 neurons onto other excitatory V1 neurons were placed along 1423 
the dendrites and avoided the soma. In layers 2/3 and 4, the placement of synapses was 1424 
restricted to be within 200 μm from the somata, while in layers 5 and 6, they could be placed 1425 
anywhere along the dendrites. 1426 
 1427 
Excitatory-to-Inhibitory Connections 1428 
All synapses from excitatory V1 neurons onto inhibitory V1 neurons were placed on their 1429 
somata or dendrites without any distance limitations. 1430 
 1431 
Inhibitory-to-Excitatory Connections 1432 
Synapses from Pvalb neurons onto excitatory V1 neurons were placed on the soma and on 1433 
the dendrites within 50 μm from the soma. Synapses from Sst neurons were placed only on 1434 
dendrites and only more than 50 μm from the soma. Synapses from Htr3a neurons were 1435 
placed on dendrites between 50 and 300 μm from the soma. 1436 
 1437 
Inhibitory-to-Inhibitory Connections 1438 
Synapses from inhibitory neurons to other inhibitory neurons were placed according to the 1439 
same rules as the inhibitory-to-excitatory connections described above. 1440 
 1441 
These placement rules were kept in this study, except for the synapses from excitatory 1442 
neurons to excitatory L6 neurons. Here, they were restricted to be within 150 μm of the 1443 
soma. The purpose of this restriction was to reduce the spatial separation between the 1444 
current sink and source, and thereby decrease the magnitude of the L6 sink-source dipole. 1445 

 1446 

LM-V1 1447 
The synapses from the node representing LM to V1 were placed on the apical dendrites of 1448 
L2/3 neurons (within 150 μm from the soma), on the apical tufts (> 300 μm from the soma) 1449 
and the basal dendrites (within 150 μm from the soma) of L5 excitatory cells, and on the 1450 
somata and basal dendrites of L2/3 and L5 inhibitory cells (at any distance from the soma).  1451 
 1452 
Adjusting synaptic weights 1453 
The synaptic weights for thalamocortical connections were left unchanged from the original 1454 
model. Before the addition of feedback from higher visual areas to the model, the synaptic 1455 
weights for recurrent connections in V1 were multiplied by factors in the range [0.2, 2.5]. 1456 
After the addition of feedback, the synaptic weights from the background node to the 1457 
populations targeted by feedback the L2/3 and L5 excitatory, Pvalb, and Sst cells were 1458 
multiplied by factors in the range [0.2, 0.5]. The synaptic weights from the node representing 1459 
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LM were initially set equal to the original weights between the background node and the 1460 
populations targeted by the feedback, but this led to too high firing rates compared to the 1461 
experimental firing rates in these populations, so they were multiplied by factors in the range 1462 
[0.2, 0.5]. Finally, the connections from Pvalb neurons in V1 to L2/3 excitatory neurons and 1463 
L5 excitatory cells were re-scaled in the range [0.8, 1.2] times the weights set prior to the 1464 
addition of feedback. 1465 

 1466 

Quantification and statistical analysis 1467 

 1468 
Firing rates 1469 
The time-resolved population firing rates (bin size 1 ms, filtered using 1470 
scipy.ndimage.gaussian_filter with sigma = 2) were computed by averaging the spike count 1471 
over all cells in a population and over all trials (10 trials in the simulations and 75 trials in the 1472 
experiments). The distribution of firing rates across cells used in the calculation of the KS-1473 
similarities were computed by averaging over the time windows baseline, initial peak, and 1474 
sustained activity (defined in Fig. 3) and over all trials. 1475 
 1476 
Kolmogorov-Smirnov similarity 1477 
The KS-similarity scores (Billeh et al., 2020) were computed by first calculating the KS-1478 
distance (using the function scipy.stats.ks_2samp) between two distributions of firing rates 1479 
across cells, and subtracting this number from 1, such that a KS-similarity score of 1 implies 1480 
identity and a score of 0 implies no overlap between the two distributions. In the comparison 1481 
of the model to the experimental data, the KS-similarity was computed between the 1482 
distribution of firing rates across cells in each RS and the FS population of the model and the 1483 
distribution of firing rates across cells from all animals in the corresponding populations. To 1484 
assess the variability in the experiments, the KS-similarity was calculated between the 1485 
distribution of firing rates across cells in the same RS and FS populations in individual 1486 
animals, provided there were more than 10 cells recorded in a given population in this 1487 
animal, and the distribution of firing rates across cells from all other animals. 1488 
 1489 
Correlation 1490 
We computed the similarity in the profile of time-resolved population firing rates with the 1491 
Pearson correlation coefficient (using the function scipy.stats.pearsonr). The correlation 1492 
between the model and the experimental firing rates was calculated between model 1493 
population firing rates and the population firing rates averaged across cells from all animals. 1494 
The level of experimental variability was assessed by calculating the correlation between 1495 
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population firing rates in each animal and the population firing rates averaged across cells 1496 
from all other animals. 1497 

 1498 
CSD analysis 1499 
Since the number of recording electrodes in V1 are not the same in all animals, we 1500 
interpolated the CSD of each animal and the CSD from simulations onto dimensions of the 1501 
same lengths (𝑀 = 30 points along the depth and 𝐾 = 100	points along the time axis for 100 1502 
ms time windows) before we quantitatively analyzed the CSD. 1503 
 1504 
 1505 
PCA 1506 
The trial-averaged CSD of each animal was flattened into a vector of length 𝑀 ×𝐾 = 3000, 1507 
and the vectors of all 𝑁 = 44	animals were stacked together into a matrix of size 44 × 3000. 1508 
Then, we performed PCA (using sklearn.decomposition.PCA) on this matrix to obtain the 1509 
principal components which would constitute weighted averages of the trial-averaged CSD 1510 
patterns. 1511 
 1512 
Wasserstein distance (WD) 1513 
The 1st Wasserstein distance  𝑊(𝑃!, 𝑃") between two distributions 𝑃! and 𝑃" is defined as 1514 

 1515 

 1516 

 1517 

Where 𝑐(𝑥, 𝑦)	is the cost of moving a unit “mass” from position 𝑥 to 𝑦  following the optimal 1518 
transport plan 𝛾(𝑥, 𝑦) in all transport plans 𝛤(𝑃!, 𝑃") (Arjovsky et al., 2017; Rubner et al., 1519 
1998).  1520 
 1521 
In the utilization of WD to quantify the similarity between two CSD patterns, the distance 1522 
between the distribution of sinks in the two patterns	𝑊(𝑃#$%&#,!, 𝑃#$%&#,") and the distance 1523 

between distribution of sources of the two patterns 𝑊(𝑃#()*+,#,!, 𝑃#()*+,#,") are calculated 1524 

separately, and summed to form a total WD between the two CSD patterns: 1525 

 1526 

 1527 

 1528 
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where P1 and P2 refer to the two CSD patterns. The Python Optimal transport library 1529 
(https://pythonot.github.io/index.html) was used to implement this calculation.  1530 
 1531 
This application of the WD to compare CSD patterns comes with certain considerations that 1532 
are important to note. First, although we compute WD for sinks and sources separately, 1533 
sinks and sources do not arise independently. Current leaving the extracellular space in one 1534 
place leads to current entering the extracellular space in another place, so current sinks and 1535 
sources are inter-dependent. Second, the cost of shifting a sink or a source in space relative 1536 
to shifting it in time is determined by the relative resolution in space vs. time. This relative 1537 
cost does not necessarily correspond to the actual cost of changing the underlying 1538 
physiology such that two distributions of sinks or sources match spatially vs. temporally. 1539 
Determining the most appropriate relative cost of moving sinks and sources in space vs. 1540 
time would require more detailed data than currently available and is beyond the scope of 1541 
this study. 1542 

 1543 

Code and data availability 1544 

 1545 

The experimental data is publicly available at  1546 
https://portal.brain-map.org/explore/circuits/visual-coding-neuropixels. The code and files 1547 
necessary to run the model simulations presented here are available at 1548 
https://www.dropbox.com/sh/x6zuogmjx8zns9f/AAAQbQbdXABsbbHUhC-qGBP7a?dl=0. 1549 
The code for the data analysis performed in this paper is available at 1550 
https://github.com/atleer/CINPLA_Allen_V1_analysis.git. 1551 
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