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Abstract 15 

Neural oscillations in the primary motor cortex (M1) shape corticospinal excitability. Power and 16 

phase of ongoing mu (8-13 Hz) and beta (14-30 Hz) activity may mediate motor cortical output. 17 

However, the functional dynamics of both mu and beta phase and power relationships and their 18 

interaction, are largely unknown. Here, we employ recently developed real-time targeting of the 19 

mu and beta rhythm, to apply phase-specific brain stimulation and probe motor corticospinal 20 

excitability non-invasively.  For this, we used instantaneous read-out and analysis of ongoing 21 

oscillations, targeting four different phases (0°, 90°, 180°, and 270°) of mu and beta rhythms 22 

with suprathreshold single-pulse transcranial magnetic stimulation (TMS) to M1. Ensuing motor 23 

evoked potentials (MEPs) in the right first dorsal interossei muscle were recorded. Twenty 24 

healthy adults took part in this double-blind randomized crossover study. Mixed model 25 

regression analyses showed significant phase-dependent modulation of corticospinal output by 26 

both mu and beta rhythm. Strikingly, these modulations exhibit a double dissociation. MEPs are 27 

larger at the mu trough and rising phase and smaller at the peak and falling phase. For the beta 28 

rhythm we found the opposite behavior. Also, mu power, but not beta power, was positively 29 

correlated with corticospinal output. Power and phase effects did not interact for either rhythm, 30 

suggesting independence between these aspects of oscillations. Our results provide insights into 31 

real-time motor cortical oscillation dynamics, which offers the opportunity to improve the 32 

effectiveness of TMS by specifically targeting different frequency bands.  33 

 34 

  35 
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Introduction 36 

Neocortical activity in the motor cortex is characterized by neural oscillations, foremost 37 

in the mu (8-13 Hz) and beta (14-30 Hz) rhythms. On the one hand, changes in their power 38 

correlate with motor functions such as preparation and execution of voluntary movement (Baker, 39 

2007; Baker et al., 2003; Jenkinson & Brown, 2011; Jurkiewicz et al., 2006; Pfurtscheller et al., 40 

1996; Pfurtscheller & Lopes Da Silva, 1999; Saleh et al., 2010). On the other hand, motor 41 

cortical output correlates with the phase of mu and beta oscillations (Berger et al., 2014; 42 

Combrisson et al., 2017; Miller et al., 2012; O’Keeffe et al., 2020; Yanagisawa et al., 2012). This 43 

phase-dependency may result from synchronization of neural spiking activity and is thus phase-44 

specifically coupled to the oscillatory envelope (Fetz et al., 2000; Haegens et al., 2011; Johnson 45 

et al., 2020; Murthy & Fetz, 1992; 1996).  46 

Although the coupling between cortical oscillation phase and spiking activity is well-47 

established, how the phase of mu and beta oscillations in the motor cortex relates to functional 48 

cortical excitability is less clear. To provide causal evidence for a relation between oscillatory 49 

phase and cortical excitability, one needs to synchronize the electrocortical read-outs and  causal 50 

probing of excitability with millisecond precision. Recent advances in real-time tracking of 51 

cortical oscillations and non-invasive modulation of motor cortex activity in healthy human 52 

participants have provided new insights (Bergmann et al., 2019; Madsen et al., 2019; Sasaki et 53 

al., 2021; Schaworonkow et al., 2018; 2019; Shirinpour et al., 2020; Zrenner et al., 2016; 2018). 54 

Such real-time systems, combining electroencephalography (EEG) and transcranial magnetic 55 

stimulation (TMS), have provided evidence for a modulation of corticospinal excitability by 56 

motor cortical oscillatory phase and power (Bergmann et al., 2019; Karabanov et al., 2021; 57 

Madsen et al., 2018; Zrenner et al., 2018). 58 
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Reports in non-human primates and patients with neurosurgical implants suggest that 59 

motor functioning is phase-dependent on oscillations in the motor cortical mu rhythm (Haegens 60 

et al., 2011; Yanagisawa et al., 2012). Based on this, first pursuits on real-time detection of 61 

motor oscillation phase relationships in healthy volunteers have focused on the mu rhythm 62 

(Bergmann et al., 2019; Madsen et al., 2019; Schaworonkow et al., 2018; 2019; Zrenner et al., 63 

2018), Various studies suggest that motor evoked potential (MEP) amplitude is larger at the 64 

trough of the mu rhythm and smaller at the peak (Bergmann et al., 2019; Desideri et al., 2019; 65 

Schaworonkow et al., 2018; 2019; Zrenner et al., 2018). However, others have provided 66 

evidence that ongoing mu phase does not significantly predict corticospinal excitation 67 

(Karabanov et al., 2021; Madsen et al., 2019). Rather, pre-stimulation mu power is suggested to 68 

determine MEP amplitude (Bergmann et al., 2019; Karabanov et al., 2021; Madsen et al., 2019; 69 

Thies et al., 2020). 70 

Whereas findings on associations between corticospinal excitability and mu phase are 71 

mixed, to the best of our knowledge, there are no real-time neuromodulation systems capable to 72 

target the beta rhythm non-invasively. Despite superficial similarities between mu and beta 73 

oscillations they reflect distinct functional sensorimotor networks and may have different 74 

anatomical origins (Gaetz & Cheyne, 2006; Jones et al., 2009; Premoli et al., 2017; Ronnqvist et 75 

al., 2013; Salmelin & Hari, 1994; Salmelin et al., 1995). As such, it is likely that phase-76 

modulation of cortical excitability would reflect distinct patterns for mu and beta rhythms. 77 

Human and non-human primate studies have suggested a potential coupling of motor responses 78 

and motor cortical beta-phase (Miller et al., 2012; Murthy & Fetz, 1996; Reimer & Hatsopoulos, 79 

2010). Electrocorticography (ECoG) has shown phase-dependency of motor network beta-80 

rhythm activity in Parkinson’s disease patients (de Hemptine et al., 2013; Miller et al., 2012; 81 
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O’Keeffe et al., 2020). Furthermore, beta phase-dependent stimulation in these patients has been 82 

shown to ameliorate motor deficits (Cagnan et al., 2017; Holt et al., 2019; Salimpour et al., 83 

2022).   84 

The absence of real-time TMS-EEG studies on beta rhythm may stem from the 85 

intrinsically lower signal-to-noise ratio, faster pace, and broader frequency band compared to mu 86 

oscillations. To reliably target the beta phase in real-time, we optimized a cutting-edge real-time 87 

algorithm - Educated Temporal Prediction (ETP) - to perform accurate forward predictions 88 

during real-time phase targeting (Shirinpour et al., 2020). Due to its robustness to noise and 89 

superior speed, ETP can accurately track and stimulate both mu and beta oscillations. Using our 90 

approach, we targeted mu and beta phase in the motor cortex in real-time. Our results show a 91 

double dissociation in the relationship between mu and beta phase on corticospinal excitability. 92 

That is, phases of mu oscillation that resulted in larger than average motor cortex output generate 93 

smaller than average motor cortex output for the same phases of beta, and vice versa. Our data 94 

provide the first evidence for distinct phase-dependency of mu- and beta-mediated functional 95 

sensorimotor networks that modulate corticospinal excitability. Optimizing TMS-targeting to mu 96 

or beta phase can increase robustness of TMS with clear implications for improving the efficacy 97 

of TMS in clinical use. 98 

 99 

Methods 100 

Participants 101 

We recruited 20 healthy volunteers (11 female, mean ± std age: 22.7 y ± 2.9) in this 102 

double-blinded randomized crossover study. Each participant visited for two sessions (targeting 103 

mu and beta oscillations). Participants were right-handed, between 18 and 45 years of age, 104 
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without a history of neurological or psychiatric disorders, head injuries, or metal or electric 105 

implants in the head, neck, or chest area. Participants were not pre-selected on the basis of 106 

electrophysiological characteristics, such as motor threshold or sensorimotor oscillatory power. 107 

The study was approved by the institutional review board of the University of Minnesota and all 108 

volunteers gave written informed consent prior to participation.  109 

 110 

Transcranial magnetic stimulation 111 

 We applied single-pulse biphasic TMS using the Magstim Rapid2 with a figure-of-eight 112 

shaped D702 coil (Magstim Inc., Plymouth, MN, USA). The coil was placed over the left motor 113 

cortex, corresponding to the hotspot of the right first dorsal interossei (FDI) muscle, and oriented 114 

approximately at a 45° angle relative to the midline. Electromyography (EMG) was used to 115 

record motor-evoked potentials (MEP) from the FDI using self-adhesive, disposable electrodes. 116 

EMG sampling rate was set to 10 kHz using a BIOPAC ERS100C amplifier (BIOPAC systems, 117 

Inc., Goleta, CA, USA). Initially, the motor hotspot, i.e. the location and orientation that leads to 118 

the largest MEP, was determined. Hotspot coordinates were stored and coil location and 119 

orientation in reference to the hotspot were continuously tracked using a Brainsight 120 

neuronavigation system (Rogue Research Inc., Montreal, Canada). At the hotspot, the resting 121 

motor threshold (RMT) was determined using an adaptive threshold-hunting algorithm 122 

(Julkunen, 2019). The test intensity during the experimental session was set to 120% of RMT. 123 

 124 
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 125 

Figure 1. Overview of the educated temporal prediction (ETP) algorithm. Left: The algorithm is first trained using 126 

the resting state data from the sensorimotor cortex. Signals at sensorimotor cortex channel C3 are re-referenced 127 

using a center-surround Laplacian montage using 8 channels (Fc1, Fc3, Fc5, C1, C5, Cp1, Cp3, and Cp5). 128 

Depending on the experimental condition, we stimulated while tracking the phase of mu (8-13 Hz, blue) or beta (14-129 

30 Hz, orange) range. From the resting-state data, the typical cycle length is extracted and used during the real-time 130 

stimulation. Right: During real-time application, EEG preprocessing follows the same pipeline as the training step. 131 

TMS is triggered at four different phases, namely peak (0°), rising phase (90°), trough (180°), or falling phase 132 

(270°). For each phase and oscillatory rhythm, we recorded MEPs from the FDI muscle. 133 

 134 

EEG processing for real-time TMS triggering 135 

 Throughout the experiment, EEG was recorded using a 10-20 system, 64 active channel, 136 

TMS-compatible EEG system (actiCAP slim EEG cap, actiCHamp amplifier; Brain Products 137 

GmbH, Gilching, Germany). EEG data was streamed using Lab Streaming Layer (LSL) software 138 
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to Matlab 2020b, where we used custom scripts to apply the ETP algorithm (Shirinpour et al., 139 

2020). A sampling rate of 10 kHz with a 24-bits resolution per channel was used, and 140 

impedances were kept below 20 kΩ. The electrode of interest for this experiment was C3, 141 

located over the hand knob of the left sensorimotor area. To extract mu and beta oscillations 142 

unique to the electrode of interest, a Laplacian reference method was used, where the mean of 143 

the 8 surrounding electrodes was subtracted from the signal measured at C3 (Figure 1). This 144 

Laplacian C3 signal was used for real-time stimulation, as well as for offline analysis of mu and 145 

beta power.  146 

The EEG-TMS setup for real-time stimulation used here follows our previously validated 147 

implementation (Shirinpour et al., 2020). In short, the ETP algorithm uses resting-state data from 148 

a training step before the real-time application, which provides an initial estimate of individual 149 

temporal dynamics of cortical oscillations. For this, we record resting-state data for three minutes 150 

perform a C3 Laplacian spatial filtering, and clean the signal using a zero-phase FIR (Finite 151 

Impulse Response) filter in the mu (8–13 Hz) or beta (14–30 Hz) range, as implemented in the 152 

Fieldtrip toolbox (Oostenveld et al 2010). Then, the algorithm estimates the typical cycle length 153 

(peak to peak interval) and validates its accuracy by simulating the accuracy of peak projection 154 

using the training data (Figure 1).   155 

During real-time estimation, the calculated cycle length is adjusted to inform the 156 

forecasting algorithm that predicts upcoming peak, falling phase, trough, or rising phase 157 

(throughout this paper phase angles will be expressed in relation to a cosine, e.g. 0° is peak) of 158 

oscillation of interest and triggers TMS at the correct time. The EEG preprocessing pipeline 159 

during real-time measurements was the same as during the validation phase. Overall processing 160 

delay of our system, i.e. the time between sending trigger and actual pulse delivery was  161 
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accounted for in our algorithm to accurately deliver the TMS at the desired phases (Shirinpour et 162 

al., 2020). Real-time TMS-EEG was performed in four blocks of 150 pulses. Within each block, 163 

phases were applied pseudorandomly. The experimenter and the participant were blinded to the 164 

phase order. A jittered interval between 2 and 3 seconds between consecutive triggers was 165 

introduced to minimize the direct effects of previous trials.  166 

 167 

Data processing and analysis 168 

MEP analysis 169 

 We calculated peak-to-peak MEP amplitude using a custom Matlab script. MEPs were 170 

identified in a window between 20 and 60 ms after the TMS pulse. We excluded MEPs if 171 

average absolute EMG activity in a window from -100 to 0 ms before the TMS pulse was above 172 

0.02 mV and larger than absolute average EMG activity + 2.5 times standard deviation in a 173 

window -500 to -400 ms before the TMS pulse (Wischnewski et al., 2016). All MEPs were 174 

visually inspected. Altogether, 3.3% of trials were removed (3.5% for targeting Mu phases and 175 

3.0% for targeting Beta phases). For analysis, MEPs were normalized to the overall average. 176 

 177 

Offline EEG analysis 178 

 Pre-TMS power was analyzed offline for inclusion in the main analysis. Raw EEG data 179 

were re-referenced to the Laplacian C3 montage as was used for online analyses (Figure 1). Data 180 

were epoched in a window between -1000 and 0 milliseconds with respect to TMS trigger and a 181 

bandpass filter (2-50 Hz) was applied. Pre-TMS power was calculated by applying a fast Fourier 182 

transform with Hanning taper at a resolution of 1 Hz as implemented in the Fieldtrip toolbox. 183 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2022. ; https://doi.org/10.1101/2022.02.22.481530doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.481530
http://creativecommons.org/licenses/by-nc-nd/4.0/


Subsequently, we averaged power values between 8 and 13 Hz (mu power) and between 14 and 184 

30 Hz (beta power) at the single-trial level. 185 

 To investigate potential differences in mu and beta oscillation topography, sensor-level 186 

distributions were examined. Resting-state EEG data were re-referenced to Cz and filtered in the 187 

mu (8-13 Hz) and beta (14-30 Hz) bands, respectively. We estimated the pairwise correlations 188 

between the electrode of interest C3 to all other electrodes. Topographic plots were used to 189 

depict the spatial distribution of the correlations for mu and beta separately, as well as the 190 

difference between both conditions. 191 

 192 

Statistical analysis 193 

In a trial level analysis, a general linear mixed-effects model (GLMM) was used on trial 194 

data with target phase (peak, falling, trough, rising) and target rhythm (mu, beta) as fixed effects 195 

variable and participant number as random effects variable. MEP amplitude was the dependent 196 

variable. Independently, after averaging MEPs per phase for each participant, Raleigh’s Z test of 197 

non-uniformity was performed for phase modulation at Mu and Beta oscillations.  198 

To test the effects of pre-TMS power, GLMMs were run on Mu and Beta conditions 199 

separately adding respective pre-TMS power as a continuous fixed effects variable. These 200 

analyses were followed up by post hoc subject-level simple linear regression models. 201 

Subsequently, Spearman rank correlation between pre-TMS power and MEP amplitude for each 202 

subject and session were calculated.  203 

Finally, Spearman rank correlation was performed on the topographic distribution of mu 204 

and beta oscillations. For all analyses, significance level was set at α = 0.05.  205 

 206 
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 207 

Figure 2. A) Group average (n = 20) ± standard error of mean of normalized MEPs for targeted phases in the mu and 208 

beta frequency. B) Circular representation of the data with smooth interpolation between conditions. 209 

 210 

Results 211 

 Real-time TMS of ongoing cortical oscillations resulted in a double dissociation of phase 212 

relationships for Mu and Beta oscillations (Figure 2A). Accordingly, GLMM regression showed 213 

a significant interaction between target phase and target rhythm on MEP amplitude (F = 16.42, p 214 

< 0.001). Distinct phase relation patterns were confirmed by Rayleigh’s test for non-uniformity 215 

of circular group level data. Normalized MEP amplitudes at phases of the Mu rhythm were non-216 

uniformly distributed (Z = 3.02, p = 0.048), with a mean direction of the circular distribution of θ 217 

= 225.00° and circular dispersion of κ = 29.27°. Thus, MEP amplitudes were maximal when Mu 218 

oscillations are at trough and rising phase (Figure 2B) and lower than average at the opposing 219 

phases. Normalized MEP amplitudes at phases of the Beta rhythm were also non-uniformly 220 

distributed (Z = 3.27, p = 0.037), with circular mean of θ = 29.05° and dispersion of κ = 30.53°. 221 

This means that MEP amplitudes were maximal when beta oscillations are at peak or falling 222 

phase (Figure 2B) and again lower than average at the opposing phases. 223 
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 The results are largely consistent at the individual level. The observed pattern of larger 224 

MEP amplitudes at the beta peak compared to the mu peak were observed in 13 out of 20 225 

participants. Larger MEP amplitudes at beta falling compared to mu falling were observed in 14 226 

out of 20 participants. Larger MEP amplitudes at mu trough compared to beta trough were 227 

observed in 18 out of 20 participants. Larger MEP amplitudes at mu rising compared to beta 228 

rising were observed in 14 out of 20 participants (Figure 3).  229 

 230 

 231 

Figure 3. Individual phase-dependent modulation of MEP amplitude for mu and beta oscillations. Error bars 232 

represent standard error of mean. 233 

 234 

In analyses of each target rhythm condition separately, we added pre-TMS power of the 235 

targeted rhythm. MEP amplitude during targeting of the Mu rhythm was affected by both target 236 

phase (F = 3.52, p = 0.014) and pre-TMS mu power (F = 11.99, p = 0.001). Crucially, however, 237 

no significant phase*power interaction was observed (F = 1.65, p = 0.175), suggesting that both 238 
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power and phase affect MEP amplitude independently. At an individual level, correlation 239 

between Mu power and MEP amplitude ranged between ρ = -0.111 and ρ = 0.343 (median ρ = 240 

0.071). A significant positive relationship was observed in 15 out of 40 sessions, whereas a 241 

significant negative relationship was observed in 1 session (Figure 4A). MEP amplitude while 242 

targeting beta rhythm was affected by target phase alone (F = 2.79, p = 0.038). No effect of pre-243 

TMS beta power (F = 2.06, p = 0.151), nor a phase*power interaction (F = 2.16, p = 0.091) was 244 

observed on MEP amplitude. At an individual level, correlation between Beta power and MEP 245 

amplitude ranged between ρ = -0.161 and ρ = 0.267 (median ρ = 0.053). A significant positive 246 

relationship was observed in 12 out of 40 sessions, whereas a significant negative relationship 247 

was observed in 4 out of 40 sessions (Figure 4B). 248 

 249 

 250 
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Figure 4. Histogram of individual Spearman correlations between MEP amplitude and A) pre-TMS mu power, and 251 

B) pre-TMS beta power. 252 

 253 

One possible confound could arise where channels in the Laplacian reference montage 254 

contribute differently to the target electrode between conditions. Therefore, we performed a 255 

sensor-level analysis of mu and beta distributions, by looking at the channel-to-channel 256 

correlations. Resulting topographic plots showed highly similar distributions for both mu and 257 

beta rhythms at sensor level (Figure 5). Distributions were highly correlated (ρ = 0.975, p < 258 

0.001), suggesting that our main results cannot be explained by differences in mu and beta signal 259 

arrangement.  260 

 261 

 262 

Figure 5. Spatial topographies for the recorded mu rhythm, beta rhythm, and the difference between both. Color map 263 

represents correlational values of electrode pairings between target electrode C3 and all other electrodes. The black 264 

electrode corresponds to C3. 265 

 266 

Discussion 267 

 In this study, we demonstrate for the first time that mu and beta oscillation phase 268 

differentially modulate MEP amplitude. In summary, we found that I) phase of mu and beta 269 

oscillations picked up at sensorimotor channels modulate corticospinal excitation; II) this phase-270 
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dependent MEP modulation follows an opposing pattern for mu and beta; III) mu power, but not 271 

beta power, significantly modulates MEP amplitude; IV) modulation of MEP amplitudes by 272 

phase and power do not interact.   273 

To our knowledge, we provide the first direct evidence for MEP amplitude modulation by 274 

beta phase, in addition to mu phase, measured with real-time TMS-EEG. Beta-phase dependency 275 

has been hinted at by previous offline TMS studies using post-hoc analyses (Hussain et al., 2019; 276 

Keil et al., 2014; Khademi et al., 2017; Schilberg et al., 2021; Torrecillos et al., 2020; van 277 

Elswijk et al., 2010). Also, human subdural electrocorticographic (ECoG) recordings have 278 

shown that motor cortical beta activity is phase-locked to neural population activity during 279 

movement (de Hemptinne et al., 2013; Holt et al., 2019; Miller et al., 2012). Furthermore, motor 280 

cortical spiking activity has been shown to be dependent on local field potential beta-phase in 281 

non-human primates (Reimer & Hatsopoulos, 2010; Witham et al., 2007). Sensorimotor beta 282 

oscillations have been suggested to arise from alternating de- and hyper-polarization of layer V 283 

pyramidal cells, mediated by phase-locked gamma-aminobutyric acid (GABA) mediated 284 

interneuron inputs (Baker, 2007; Bhatt et al., 2016; Lacey et al., 2014; Rossiter et al., 2014). 285 

Here we show that beta phase-dependency can be probed non-invasively in real-time. Our data 286 

showed largest MEP amplitudes during beta peak and falling phase (Figure 2). Salimpour et al. 287 

(2022) applied real-time electrical motor cortex stimulation in Parkinson’s disease patients 288 

during surgery. Although direct comparison of results from electrical stimulation and ECoG data 289 

to ours may be challenging, it is interesting to point out that phase-dependency was similar, with 290 

beta peak and falling phase leading to the largest motor output.  291 

We found no dependency of beta power on MEP amplitude, nor was there an interaction 292 

between beta phase and power, in line with previous findings (Hussain et al., 2019; Mitchell et 293 
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al., 2007; Ogata et al., 2019; Peters et al., 2020; Schilberg et al., 2021). This should not imply 294 

that beta oscillations are not related to motor output and evidence from previous research 295 

suggests that the relationship between beta oscillations and motor activation is complex. Pre-296 

movement reduction of beta power has been associated with faster voluntary movement (Khanna 297 

& Carmena, 2017). Chronic elevation of beta power, observed in Parkinson’s disease has been 298 

related to difficulty initiating and controlling movements (Brown, 2006; Cannon et al., 2014; 299 

Kühn et al., 2006). Furthermore, in addition to low-amplitude ongoing beta activity, high-300 

amplitude beta bursts are suggested to be positively correlated to movement control (Bonaiuto et 301 

al., 2021; Chen & Fetz, 2005; Feingold et al., 2015; O’Keeffe et al., 2020; Reimer & 302 

Hatsopoulos, 2010). Although these behavioral studies imply that beta power and beta bursts are 303 

crucial for endogenous control of voluntary movement, our and previous studies suggest that 304 

they are not related to exogenously probed cortico-spinal excitability (Hussain et al., 2019; Ogata 305 

et al., 2019, Peters et al., 2020). Furthermore, Peters and colleagues (2020) found that pre-TMS 306 

resting beta power does not affect the propagation of TMS excitations throughout the cortical-307 

subcortical motor network. Therefore, it seems that beta power may be a predictor for 308 

corticospinal activation during voluntary or task-related motor control, but not during resting-309 

state motor excitability per se. 310 

Additionally, we found that corticospinal excitation was modulated by the mu rhythm 311 

with an opposite phase relationship compared to beta oscillations. Various studies previously 312 

indicated mu phase-dependent modulation of MEP amplitudes, with larger responses at the mu 313 

trough compared to mu peak. (Bergmann et al., 2019; Desideri et al., 2019; Schaworonkow et al., 314 

2018; 2019; Zrenner et al., 2018). By real-time targeting of four, rather than two phases, our 315 

results extend previous findings by showing that in particular the trough and subsequent rising 316 
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phase yield largest corticospinal excitation, whereas mu peak and falling yield the smallest motor 317 

cortex activation (Figure 2).  318 

Pre-stimulus mu power was a significant predictor for corticospinal excitability, but did 319 

not interact with mu phase, suggesting independence between mu power and phase. Subject-level 320 

positive correlations were observed in majority of subjects. Although the observed relationship 321 

was relatively weak - correlations varying between -0.1 and 0.3 - it is in line with previous 322 

observations (Bergmann et al., 2019; Karabanov et al., 2021; Schilberg et al., 2021; Thies et al., 323 

2020). However, others have found no relationship between mu power and MEP amplitude 324 

(Berger et al., 2014; Zrenner et al., 2018), or even a negative association (Madsen et al., 2019; 325 

Sauseng et al., 2009, Zarkowski et al., 2006). At a first glance, a positive relationship between 326 

mu power and corticospinal activity seems counterintuitive since sensorimotor mu oscillations 327 

are related to GABAa-mediated inhibitory activity (Bergmann et al., 2019). Also, higher mu 328 

power has been shown to reduce TMS-induced blood oxygenation level-dependent (BOLD) 329 

responses throughout the cortical-subcortical motor network (Peters et al., 2020). However, mu 330 

oscillations are thought to predominantly originate from the somatosensory cortex (Gaetz & 331 

Cheyne, 2006; Jones et al., 2009; Premoli et al., 2017; Ronnqvist et al., 2013; Salmelin & Hari, 332 

1994; Salmelin et al., 1995). Interconnections between somatosensory and primary motor cortex 333 

comprise of an intricate network of excitatory and inhibitory reciprocal connections. Increased 334 

mu power may reflect feedforward inhibition to primary motor cortex resulting in local 335 

disinhibition (Thies et al., 2020). This may result in a net-facilitation or net-inhibition of 336 

corticospinal activation, yielding contradictory findings between studies.  337 

Sensorimotor mu and beta oscillations have been suggested to stem from distinct neural 338 

origins (Gaetz & Cheyne, 2006; Jones et al., 2009; Premoli et al., 2017; Ronnqvist et al., 2013; 339 
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Salmelin & Hari, 1994; Salmelin et al., 1995). Specifically, mu oscillations are proposed to 340 

originate pre-dominantly from the post-central gyrus (Salmelin & Hari, 1994; Salmelin et al., 341 

1995), although pre-central origins of mu have been reported as well (Ronnqvist et al., 2013; 342 

Smit et al., 2013; Szurhaj et al., 2003). In contrast, beta oscillations are thought to stem from pre-343 

central primary motor cortex (Donoghue et al., 1998; Jurkiewicz et al., 2006; Salmelin & Hari, 344 

1994; Salmelin et al., 1995), but are also observed in post-central somatosensory cortex (Brovelli 345 

et al., 2004; Jurkiewicz et al., 2006; Szurhaj et al., 2003). Although our study cannot make 346 

inferences on the source of mu and beta oscillations, sensor-level signal distributions were highly 347 

similar (Figure 5). Similar scalp-level topographies suggest that potential differences in neural 348 

origin did not influence phase detection during real-time stimulation. A potential explanation for 349 

the opposing phase-relationship we observed results from differences in axonal orientation 350 

within mu and beta sources. This possibility could be investigated in future studies.  351 

Our findings are crucial for the improvement of TMS effectiveness for treatment of 352 

neurological and psychiatric disorders. Targeting optimal rhythms with repetitive TMS could 353 

decrease variability of TMS outcomes (Baur et al., 2020; Zrenner et al., 2018). For instance, 354 

targeting optimal oscillation phase could improve efficacy of TMS in the recovery of stroke 355 

(Hussain et al., 2020) and treatment of major depressive disorder (Zrenner et al., 2020). In this 356 

study, to our knowledge, we were able to non-invasively target the beta rhythm in real-time 357 

reliably for the first time. In future work it will be crucial to further optimize real-time and 358 

closed-loop systems, in order to target different oscillatory rhythms, and different spatial 359 

locations (Metsomaa et al., 2021). Eventually, this will allow for adaptive non-invasive 360 

neuromodulation that can provide personalized decoding of on-going brain states. This 361 
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individualization can greatly benefit clinical application of TMS, by reducing variability between 362 

and within patients.  363 

 364 
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