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Abstract

Neural oscillations in the primary motor cortex (M1) shape corticospinal excitability. Power and
phase of ongoing mu (8-13 Hz) and beta (14-30 Hz) activity may mediate motor cortical output.
However, the functional dynamics of both mu and beta phase and power relationships and their
interaction, are largely unknown. Here, we employ recently developed real-time targeting of the
mu and beta rhythm, to apply phase-specific brain stimulation and probe motor corticospinal
excitability non-invasively. For this, we used instantaneous read-out and analysis of ongoing
oscillations, targeting four different phases (0°, 90°, 180°, and 270°) of mu and beta rhythms
with suprathreshold single-pulse transcranial magnetic stimulation (TMS) to M1. Ensuing motor
evoked potentials (MEPS) in the right first dorsal interossei muscle were recorded. Twenty
healthy adults took part in this double-blind randomized crossover study. Mixed model
regression analyses showed significant phase-dependent modulation of corticospinal output by
both mu and beta rhythm. Strikingly, these modulations exhibit a double dissociation. MEPs are
larger at the mu trough and rising phase and smaller at the peak and falling phase. For the beta
rhythm we found the opposite behavior. Also, mu power, but not beta power, was positively
correlated with corticospinal output. Power and phase effects did not interact for either rhythm,
suggesting independence between these aspects of oscillations. Our results provide insights into
real-time motor cortical oscillation dynamics, which offers the opportunity to improve the

effectiveness of TMS by specifically targeting different frequency bands.
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Introduction

Neocortical activity in the motor cortex is characterized by neural oscillations, foremost
in the mu (8-13 Hz) and beta (14-30 Hz) rhythms. On the one hand, changes in their power
correlate with motor functions such as preparation and execution of voluntary movement (Baker,
2007; Baker et al., 2003; Jenkinson & Brown, 2011; Jurkiewicz et al., 2006; Pfurtscheller et al.,
1996; Pfurtscheller & Lopes Da Silva, 1999; Saleh et al., 2010). On the other hand, motor
cortical output correlates with the phase of mu and beta oscillations (Berger et al., 2014;
Combrisson et al., 2017; Miller et al., 2012; O’Keeffe et al., 2020; Yanagisawa et al., 2012). This
phase-dependency may result from synchronization of neural spiking activity and is thus phase-
specifically coupled to the oscillatory envelope (Fetz et al., 2000; Haegens et al., 2011; Johnson
et al., 2020; Murthy & Fetz, 1992; 1996).

Although the coupling between cortical oscillation phase and spiking activity is well-
established, how the phase of mu and beta oscillations in the motor cortex relates to functional
cortical excitability is less clear. To provide causal evidence for a relation between oscillatory
phase and cortical excitability, one needs to synchronize the electrocortical read-outs and causal
probing of excitability with millisecond precision. Recent advances in real-time tracking of
cortical oscillations and non-invasive modulation of motor cortex activity in healthy human
participants have provided new insights (Bergmann et al., 2019; Madsen et al., 2019; Sasaki et
al., 2021; Schaworonkow et al., 2018; 2019; Shirinpour et al., 2020; Zrenner et al., 2016; 2018).
Such real-time systems, combining electroencephalography (EEG) and transcranial magnetic
stimulation (TMS), have provided evidence for a modulation of corticospinal excitability by
motor cortical oscillatory phase and power (Bergmann et al., 2019; Karabanov et al., 2021;

Madsen et al., 2018; Zrenner et al., 2018).
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Reports in non-human primates and patients with neurosurgical implants suggest that
motor functioning is phase-dependent on oscillations in the motor cortical mu rhythm (Haegens
etal., 2011; Yanagisawa et al., 2012). Based on this, first pursuits on real-time detection of
motor oscillation phase relationships in healthy volunteers have focused on the mu rhythm
(Bergmann et al., 2019; Madsen et al., 2019; Schaworonkow et al., 2018; 2019; Zrenner et al.,
2018), Various studies suggest that motor evoked potential (MEP) amplitude is larger at the
trough of the mu rhythm and smaller at the peak (Bergmann et al., 2019; Desideri et al., 2019;
Schaworonkow et al., 2018; 2019; Zrenner et al., 2018). However, others have provided
evidence that ongoing mu phase does not significantly predict corticospinal excitation
(Karabanov et al., 2021; Madsen et al., 2019). Rather, pre-stimulation mu power is suggested to
determine MEP amplitude (Bergmann et al., 2019; Karabanov et al., 2021; Madsen et al., 2019;
Thies et al., 2020).

Whereas findings on associations between corticospinal excitability and mu phase are
mixed, to the best of our knowledge, there are no real-time neuromodulation systems capable to
target the beta rhythm non-invasively. Despite superficial similarities between mu and beta
oscillations they reflect distinct functional sensorimotor networks and may have different
anatomical origins (Gaetz & Cheyne, 2006; Jones et al., 2009; Premoli et al., 2017; Ronnqvist et
al., 2013; Salmelin & Hari, 1994; Salmelin et al., 1995). As such, it is likely that phase-
modulation of cortical excitability would reflect distinct patterns for mu and beta rhythms.
Human and non-human primate studies have suggested a potential coupling of motor responses
and motor cortical beta-phase (Miller et al., 2012; Murthy & Fetz, 1996; Reimer & Hatsopoulos,
2010). Electrocorticography (ECoG) has shown phase-dependency of motor network beta-

rhythm activity in Parkinson’s disease patients (de Hemptine et al., 2013; Miller et al., 2012;
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82  O’Keeffe et al., 2020). Furthermore, beta phase-dependent stimulation in these patients has been
83  shown to ameliorate motor deficits (Cagnan et al., 2017; Holt et al., 2019; Salimpour et al.,
84  2022).
85 The absence of real-time TMS-EEG studies on beta rhythm may stem from the
86 intrinsically lower signal-to-noise ratio, faster pace, and broader frequency band compared to mu
87  oscillations. To reliably target the beta phase in real-time, we optimized a cutting-edge real-time
88  algorithm - Educated Temporal Prediction (ETP) - to perform accurate forward predictions
89  during real-time phase targeting (Shirinpour et al., 2020). Due to its robustness to noise and
90  superior speed, ETP can accurately track and stimulate both mu and beta oscillations. Using our
91  approach, we targeted mu and beta phase in the motor cortex in real-time. Our results show a
92  double dissociation in the relationship between mu and beta phase on corticospinal excitability.
93  That is, phases of mu oscillation that resulted in larger than average motor cortex output generate
94  smaller than average motor cortex output for the same phases of beta, and vice versa. Our data
95  provide the first evidence for distinct phase-dependency of mu- and beta-mediated functional
96  sensorimotor networks that modulate corticospinal excitability. Optimizing TMS-targeting to mu
97  or beta phase can increase robustness of TMS with clear implications for improving the efficacy
98  of TMS in clinical use.
99

100  Methods

101 Participants

102 We recruited 20 healthy volunteers (11 female, mean + std age: 22.7 y =2.9) in this

103  double-blinded randomized crossover study. Each participant visited for two sessions (targeting

104  mu and beta oscillations). Participants were right-handed, between 18 and 45 years of age,
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105 without a history of neurological or psychiatric disorders, head injuries, or metal or electric

106  implants in the head, neck, or chest area. Participants were not pre-selected on the basis of

107 electrophysiological characteristics, such as motor threshold or sensorimotor oscillatory power.
108  The study was approved by the institutional review board of the University of Minnesota and all
109  volunteers gave written informed consent prior to participation.

110

111 Transcranial magnetic stimulation

112 We applied single-pulse biphasic TMS using the Magstim Rapid? with a figure-of-eight
113 shaped D702 coil (Magstim Inc., Plymouth, MN, USA). The coil was placed over the left motor
114  cortex, corresponding to the hotspot of the right first dorsal interossei (FDI) muscle, and oriented
115  approximately at a 45° angle relative to the midline. Electromyography (EMG) was used to

116  record motor-evoked potentials (MEP) from the FDI using self-adhesive, disposable electrodes.
117  EMG sampling rate was set to 10 kHz using a BIOPAC ERS100C amplifier (BIOPAC systems,
118 Inc., Goleta, CA, USA). Initially, the motor hotspot, i.e. the location and orientation that leads to
119  the largest MEP, was determined. Hotspot coordinates were stored and coil location and

120  orientation in reference to the hotspot were continuously tracked using a Brainsight

121 neuronavigation system (Rogue Research Inc., Montreal, Canada). At the hotspot, the resting
122 motor threshold (RMT) was determined using an adaptive threshold-hunting algorithm

123 (Julkunen, 2019). The test intensity during the experimental session was set to 120% of RMT.

124
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126 Figure 1. Overview of the educated temporal prediction (ETP) algorithm. Left: The algorithm is first trained using

125

127  the resting state data from the sensorimotor cortex. Signals at sensorimotor cortex channel C3 are re-referenced

128 using a center-surround Laplacian montage using 8 channels (Fcl, Fc3, Fc5, C1, C5, Cpl, Cp3, and Cp5).

129 Depending on the experimental condition, we stimulated while tracking the phase of mu (8-13 Hz, blue) or beta (14-
130 30 Hz, orange) range. From the resting-state data, the typical cycle length is extracted and used during the real-time
131  stimulation. Right: During real-time application, EEG preprocessing follows the same pipeline as the training step.
132 TMSis triggered at four different phases, namely peak (0°), rising phase (90°), trough (180°), or falling phase

133 (270°). For each phase and oscillatory rhythm, we recorded MEPs from the FDI muscle.

134

135  EEG processing for real-time TMS triggering

136 Throughout the experiment, EEG was recorded using a 10-20 system, 64 active channel,
137 TMS-compatible EEG system (actiCAP slim EEG cap, actiCHamp amplifier; Brain Products

138 GmbH, Gilching, Germany). EEG data was streamed using Lab Streaming Layer (LSL) software
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139  to Matlab 2020b, where we used custom scripts to apply the ETP algorithm (Shirinpour et al.,
140  2020). A sampling rate of 10 kHz with a 24-bits resolution per channel was used, and

141  impedances were kept below 20 kQ. The electrode of interest for this experiment was C3,

142  located over the hand knob of the left sensorimotor area. To extract mu and beta oscillations

143 unique to the electrode of interest, a Laplacian reference method was used, where the mean of
144  the 8 surrounding electrodes was subtracted from the signal measured at C3 (Figure 1). This

145  Laplacian C3 signal was used for real-time stimulation, as well as for offline analysis of mu and
146 beta power.

147 The EEG-TMS setup for real-time stimulation used here follows our previously validated
148  implementation (Shirinpour et al., 2020). In short, the ETP algorithm uses resting-state data from
149  atraining step before the real-time application, which provides an initial estimate of individual
150  temporal dynamics of cortical oscillations. For this, we record resting-state data for three minutes
151 perform a C3 Laplacian spatial filtering, and clean the signal using a zero-phase FIR (Finite

152 Impulse Response) filter in the mu (8-13 Hz) or beta (14-30 Hz) range, as implemented in the
153  Fieldtrip toolbox (Oostenveld et al 2010). Then, the algorithm estimates the typical cycle length
154  (peak to peak interval) and validates its accuracy by simulating the accuracy of peak projection
155  using the training data (Figure 1).

156 During real-time estimation, the calculated cycle length is adjusted to inform the

157 forecasting algorithm that predicts upcoming peak, falling phase, trough, or rising phase

158  (throughout this paper phase angles will be expressed in relation to a cosine, e.g. 0° is peak) of
159  oscillation of interest and triggers TMS at the correct time. The EEG preprocessing pipeline

160  during real-time measurements was the same as during the validation phase. Overall processing

161  delay of our system, i.e. the time between sending trigger and actual pulse delivery was
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162  accounted for in our algorithm to accurately deliver the TMS at the desired phases (Shirinpour et
163  al., 2020). Real-time TMS-EEG was performed in four blocks of 150 pulses. Within each block,
164  phases were applied pseudorandomly. The experimenter and the participant were blinded to the
165  phase order. A jittered interval between 2 and 3 seconds between consecutive triggers was

166  introduced to minimize the direct effects of previous trials.

167

168  Data processing and analysis

169  MEP analysis

170 We calculated peak-to-peak MEP amplitude using a custom Matlab script. MEPs were
171 identified in a window between 20 and 60 ms after the TMS pulse. We excluded MEPs if

172 average absolute EMG activity in a window from -100 to 0 ms before the TMS pulse was above
173 0.02 mV and larger than absolute average EMG activity + 2.5 times standard deviation in a

174 window -500 to -400 ms before the TMS pulse (Wischnewski et al., 2016). All MEPs were

175  visually inspected. Altogether, 3.3% of trials were removed (3.5% for targeting Mu phases and
176 3.0% for targeting Beta phases). For analysis, MEPs were normalized to the overall average.

177

178 Offline EEG analysis

179 Pre-TMS power was analyzed offline for inclusion in the main analysis. Raw EEG data
180  were re-referenced to the Laplacian C3 montage as was used for online analyses (Figure 1). Data
181  were epoched in a window between -1000 and 0 milliseconds with respect to TMS trigger and a
182  bandpass filter (2-50 Hz) was applied. Pre-TMS power was calculated by applying a fast Fourier

183  transform with Hanning taper at a resolution of 1 Hz as implemented in the Fieldtrip toolbox.
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184  Subsequently, we averaged power values between 8 and 13 Hz (mu power) and between 14 and
185 30 Hz (beta power) at the single-trial level.

186 To investigate potential differences in mu and beta oscillation topography, sensor-level
187  distributions were examined. Resting-state EEG data were re-referenced to Cz and filtered in the
188  mu (8-13 Hz) and beta (14-30 Hz) bands, respectively. We estimated the pairwise correlations
189  between the electrode of interest C3 to all other electrodes. Topographic plots were used to

190  depict the spatial distribution of the correlations for mu and beta separately, as well as the

191  difference between both conditions.

192

193  Statistical analysis

194 In a trial level analysis, a general linear mixed-effects model (GLMM) was used on trial
195  data with target phase (peak, falling, trough, rising) and target rhythm (mu, beta) as fixed effects
196  variable and participant number as random effects variable. MEP amplitude was the dependent
197  variable. Independently, after averaging MEPSs per phase for each participant, Raleigh’s Z test of
198  non-uniformity was performed for phase modulation at Mu and Beta oscillations.

199 To test the effects of pre-TMS power, GLMMs were run on Mu and Beta conditions

200  separately adding respective pre-TMS power as a continuous fixed effects variable. These

201 analyses were followed up by post hoc subject-level simple linear regression models.

202  Subsequently, Spearman rank correlation between pre-TMS power and MEP amplitude for each
203  subject and session were calculated.

204 Finally, Spearman rank correlation was performed on the topographic distribution of mu
205 and beta oscillations. For all analyses, significance level was set at a = 0.05.

206
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208 Figure 2. A) Group average (n = 20) + standard error of mean of normalized MEPs for targeted phases in the mu and

207
209 beta frequency. B) Circular representation of the data with smooth interpolation between conditions.

210

211 Results

212 Real-time TMS of ongoing cortical oscillations resulted in a double dissociation of phase
213 relationships for Mu and Beta oscillations (Figure 2A). Accordingly, GLMM regression showed
214  asignificant interaction between target phase and target rhythm on MEP amplitude (F = 16.42, p
215 < 0.001). Distinct phase relation patterns were confirmed by Rayleigh’s test for non-uniformity
216 of circular group level data. Normalized MEP amplitudes at phases of the Mu rhythm were non-
217 uniformly distributed (Z = 3.02, p = 0.048), with a mean direction of the circular distribution of &
218 = 225.00° and circular dispersion of x = 29.27°. Thus, MEP amplitudes were maximal when Mu
219  oscillations are at trough and rising phase (Figure 2B) and lower than average at the opposing

220  phases. Normalized MEP amplitudes at phases of the Beta rhythm were also non-uniformly

221 distributed (Z = 3.27, p = 0.037), with circular mean of ¢ = 29.05° and dispersion of x = 30.53°.
222 This means that MEP amplitudes were maximal when beta oscillations are at peak or falling

223 phase (Figure 2B) and again lower than average at the opposing phases.
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224 The results are largely consistent at the individual level. The observed pattern of larger
225  MEP amplitudes at the beta peak compared to the mu peak were observed in 13 out of 20

226  participants. Larger MEP amplitudes at beta falling compared to mu falling were observed in 14
227 out of 20 participants. Larger MEP amplitudes at mu trough compared to beta trough were

228  observed in 18 out of 20 participants. Larger MEP amplitudes at mu rising compared to beta

229  rising were observed in 14 out of 20 participants (Figure 3).
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232 Figure 3. Individual phase-dependent modulation of MEP amplitude for mu and beta oscillations. Error bars
233 represent standard error of mean.

234

235 In analyses of each target rhythm condition separately, we added pre-TMS power of the
236  targeted rhythm. MEP amplitude during targeting of the Mu rhythm was affected by both target
237 phase (F = 3.52, p = 0.014) and pre-TMS mu power (F = 11.99, p = 0.001). Crucially, however,

238  no significant phase*power interaction was observed (F = 1.65, p = 0.175), suggesting that both
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power and phase affect MEP amplitude independently. At an individual level, correlation
between Mu power and MEP amplitude ranged between p =-0.111 and p = 0.343 (median p =
0.071). A significant positive relationship was observed in 15 out of 40 sessions, whereas a
significant negative relationship was observed in 1 session (Figure 4A). MEP amplitude while
targeting beta rhythm was affected by target phase alone (F = 2.79, p = 0.038). No effect of pre-
TMS beta power (F = 2.06, p = 0.151), nor a phase*power interaction (F = 2.16, p = 0.091) was
observed on MEP amplitude. At an individual level, correlation between Beta power and MEP
amplitude ranged between p = -0.161 and p = 0.267 (median p = 0.053). A significant positive
relationship was observed in 12 out of 40 sessions, whereas a significant negative relationship

was observed in 4 out of 40 sessions (Figure 4B).
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Figure 4. Histogram of individual Spearman correlations between MEP amplitude and A) pre-TMS mu power, and
B) pre-TMS beta power.

One possible confound could arise where channels in the Laplacian reference montage
contribute differently to the target electrode between conditions. Therefore, we performed a
sensor-level analysis of mu and beta distributions, by looking at the channel-to-channel
correlations. Resulting topographic plots showed highly similar distributions for both mu and
beta rhythms at sensor level (Figure 5). Distributions were highly correlated (p = 0.975, p <
0.001), suggesting that our main results cannot be explained by differences in mu and beta signal

arrangement.

Mu rhythm Beta rhythm Difference

0.8

Correlation

o

Figure 5. Spatial topographies for the recorded mu rhythm, beta rhythm, and the difference between both. Color map
represents correlational values of electrode pairings between target electrode C3 and all other electrodes. The black

electrode corresponds to C3.

Discussion
In this study, we demonstrate for the first time that mu and beta oscillation phase
differentially modulate MEP amplitude. In summary, we found that 1) phase of mu and beta

oscillations picked up at sensorimotor channels modulate corticospinal excitation; I1) this phase-
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271 dependent MEP modulation follows an opposing pattern for mu and beta; I11) mu power, but not
272 beta power, significantly modulates MEP amplitude; IVV) modulation of MEP amplitudes by

273 phase and power do not interact.

274 To our knowledge, we provide the first direct evidence for MEP amplitude modulation by
275  beta phase, in addition to mu phase, measured with real-time TMS-EEG. Beta-phase dependency
276 has been hinted at by previous offline TMS studies using post-hoc analyses (Hussain et al., 2019;
277  Keil et al., 2014; Khademi et al., 2017; Schilberg et al., 2021; Torrecillos et al., 2020; van

278 Elswijk et al., 2010). Also, human subdural electrocorticographic (ECoG) recordings have

279 shown that motor cortical beta activity is phase-locked to neural population activity during

280  movement (de Hemptinne et al., 2013; Holt et al., 2019; Miller et al., 2012). Furthermore, motor
281  cortical spiking activity has been shown to be dependent on local field potential beta-phase in
282 non-human primates (Reimer & Hatsopoulos, 2010; Witham et al., 2007). Sensorimotor beta

283 oscillations have been suggested to arise from alternating de- and hyper-polarization of layer V
284  pyramidal cells, mediated by phase-locked gamma-aminobutyric acid (GABA) mediated

285 interneuron inputs (Baker, 2007; Bhatt et al., 2016; Lacey et al., 2014; Rossiter et al., 2014).

286  Here we show that beta phase-dependency can be probed non-invasively in real-time. Our data
287  showed largest MEP amplitudes during beta peak and falling phase (Figure 2). Salimpour et al.
288  (2022) applied real-time electrical motor cortex stimulation in Parkinson’s disease patients

289  during surgery. Although direct comparison of results from electrical stimulation and ECoG data
290  to ours may be challenging, it is interesting to point out that phase-dependency was similar, with
291  beta peak and falling phase leading to the largest motor output.

292 We found no dependency of beta power on MEP amplitude, nor was there an interaction

293  between beta phase and power, in line with previous findings (Hussain et al., 2019; Mitchell et
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294  al., 2007; Ogata et al., 2019; Peters et al., 2020; Schilberg et al., 2021). This should not imply
295  that beta oscillations are not related to motor output and evidence from previous research

296  suggests that the relationship between beta oscillations and motor activation is complex. Pre-

297  movement reduction of beta power has been associated with faster voluntary movement (Khanna
298 & Carmena, 2017). Chronic elevation of beta power, observed in Parkinson’s disease has been
299  related to difficulty initiating and controlling movements (Brown, 2006; Cannon et al., 2014;

300 Kuhnetal., 2006). Furthermore, in addition to low-amplitude ongoing beta activity, high-

301  amplitude beta bursts are suggested to be positively correlated to movement control (Bonaiuto et
302 al., 2021; Chen & Fetz, 2005; Feingold et al., 2015; O’Keeffe et al., 2020; Reimer &

303  Hatsopoulos, 2010). Although these behavioral studies imply that beta power and beta bursts are
304  crucial for endogenous control of voluntary movement, our and previous studies suggest that

305 they are not related to exogenously probed cortico-spinal excitability (Hussain et al., 2019; Ogata
306 etal., 2019, Peters et al., 2020). Furthermore, Peters and colleagues (2020) found that pre-TMS
307  resting beta power does not affect the propagation of TMS excitations throughout the cortical-
308  subcortical motor network. Therefore, it seems that beta power may be a predictor for

309  corticospinal activation during voluntary or task-related motor control, but not during resting-
310  state motor excitability per se.

311 Additionally, we found that corticospinal excitation was modulated by the mu rhythm

312 with an opposite phase relationship compared to beta oscillations. Various studies previously

313  indicated mu phase-dependent modulation of MEP amplitudes, with larger responses at the mu
314  trough compared to mu peak. (Bergmann et al., 2019; Desideri et al., 2019; Schaworonkow et al.,
315 2018; 2019; Zrenner et al., 2018). By real-time targeting of four, rather than two phases, our

316  results extend previous findings by showing that in particular the trough and subsequent rising
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317  phase yield largest corticospinal excitation, whereas mu peak and falling yield the smallest motor
318  cortex activation (Figure 2).

319 Pre-stimulus mu power was a significant predictor for corticospinal excitability, but did
320  not interact with mu phase, suggesting independence between mu power and phase. Subject-level
321  positive correlations were observed in majority of subjects. Although the observed relationship
322 was relatively weak - correlations varying between -0.1 and 0.3 - it is in line with previous

323  observations (Bergmann et al., 2019; Karabanov et al., 2021; Schilberg et al., 2021; Thies et al.,
324  2020). However, others have found no relationship between mu power and MEP amplitude

325  (Berger et al., 2014; Zrenner et al., 2018), or even a negative association (Madsen et al., 2019;
326  Sauseng et al., 2009, Zarkowski et al., 2006). At a first glance, a positive relationship between
327  mu power and corticospinal activity seems counterintuitive since sensorimotor mu oscillations
328  are related to GABAa-mediated inhibitory activity (Bergmann et al., 2019). Also, higher mu

329  power has been shown to reduce TMS-induced blood oxygenation level-dependent (BOLD)

330  responses throughout the cortical-subcortical motor network (Peters et al., 2020). However, mu
331  oscillations are thought to predominantly originate from the somatosensory cortex (Gaetz &

332 Cheyne, 2006; Jones et al., 2009; Premoli et al., 2017; Ronnqyvist et al., 2013; Salmelin & Hari,
333 1994, Salmelin et al., 1995). Interconnections between somatosensory and primary motor cortex
334  comprise of an intricate network of excitatory and inhibitory reciprocal connections. Increased
335 mu power may reflect feedforward inhibition to primary motor cortex resulting in local

336 disinhibition (Thies et al., 2020). This may result in a net-facilitation or net-inhibition of

337  corticospinal activation, yielding contradictory findings between studies.

338 Sensorimotor mu and beta oscillations have been suggested to stem from distinct neural

339  origins (Gaetz & Cheyne, 2006; Jones et al., 2009; Premoli et al., 2017; Ronnqvist et al., 2013;
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340  Salmelin & Hari, 1994; Salmelin et al., 1995). Specifically, mu oscillations are proposed to

341  originate pre-dominantly from the post-central gyrus (Salmelin & Hari, 1994; Salmelin et al.,

342 1995), although pre-central origins of mu have been reported as well (Ronngvist et al., 2013;

343  Smit et al., 2013; Szurhaj et al., 2003). In contrast, beta oscillations are thought to stem from pre-
344  central primary motor cortex (Donoghue et al., 1998; Jurkiewicz et al., 2006; Salmelin & Hari,
345  1994; Salmelin et al., 1995), but are also observed in post-central somatosensory cortex (Brovelli
346  etal., 2004; Jurkiewicz et al., 2006; Szurhaj et al., 2003). Although our study cannot make

347  inferences on the source of mu and beta oscillations, sensor-level signal distributions were highly
348  similar (Figure 5). Similar scalp-level topographies suggest that potential differences in neural
349  origin did not influence phase detection during real-time stimulation. A potential explanation for
350 the opposing phase-relationship we observed results from differences in axonal orientation

351  within mu and beta sources. This possibility could be investigated in future studies.

352 Our findings are crucial for the improvement of TMS effectiveness for treatment of

353  neurological and psychiatric disorders. Targeting optimal rhythms with repetitive TMS could

354  decrease variability of TMS outcomes (Baur et al., 2020; Zrenner et al., 2018). For instance,

355  targeting optimal oscillation phase could improve efficacy of TMS in the recovery of stroke

356  (Hussain et al., 2020) and treatment of major depressive disorder (Zrenner et al., 2020). In this
357  study, to our knowledge, we were able to non-invasively target the beta rhythm in real-time

358  reliably for the first time. In future work it will be crucial to further optimize real-time and

359  closed-loop systems, in order to target different oscillatory rhythms, and different spatial

360 locations (Metsomaa et al., 2021). Eventually, this will allow for adaptive non-invasive

361  neuromodulation that can provide personalized decoding of on-going brain states. This
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362 individualization can greatly benefit clinical application of TMS, by reducing variability between
363  and within patients.

364
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