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Abstract

The exome (WES) capture enriched for UTRs on 90 Arabian Peninsula (AP) populations
contributed nearly 20,000 new variants from a total over 145,000 total variants. Almost half of
these variants were in UTR3, reflecting the low effort we have dedicated to cataloguing these
regions, which can bear an important proportion of functional variants, as being discovered in
genome-wide association studies. By applying several pathogenic predicting tools, we have
demonstrated the high burden in potentially deleterious variants (especially in nonsynonymous
and UTR variants located in genes that have been associated mainly with neurologic disease
and congenital malformations) contained in AP WES, and the burden was as high as the
consanguinity level (inferred as sum of runs of homozygosity, SROH) increased. Arabians had
twice SROH values in relation to Europeans and East Asians, and within AP, Saudi Arabia had
the highest values and Oman the lowest. We must pursuit cataloguing diversity in populations
with high consanguinity, as the potentially pathogenic variants are not eliminated by genetic

drift as much as in less consanguineous populations.
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Introduction

The technological developments introduced with the next-generation sequencing methodology
are allowing the high throughput characterization of millions of polymorphisms, enhancing the
knowledge on genetic diversity between and within populations, and enabling new lens to
explore the genetic basis of diseases [1,2]. Directed sequencing of all exons (known as whole
exome sequencing, WES) is being increasingly used in clinical genetics [3], as these regions
are probable locations of candidate alleles conferring susceptibility to monogenic and complex
diseases. International consortia have been collecting big exome data and making them publicly
available for mining of variants [4,5], such as the Exome Sequencing Project (ESP) Exome
Variant Server (EVS) [6] representing more than 200,000 individuals from multiple ESP
cohorts, and the Exome Aggregation Consortium (ExAC) database [7] spanning 60,706
unrelated individuals sequenced as part of various disease-specific and population genetic
studies. The EXAC creators launched afterwards the Genome Aggregation Database
(gnomAD), which englobes currently 125,748 WES and 15,708 WGS [8]. This big data is
allowing to predict the functional effects of variants on diverse traits in different populations,
and guiding inference of disease risk at an individual basis. However, WES catalogues are still
extremely biased in terms of ancestry, being largely based on data from European and East
Asian populations [4,9], which limits the transferability of findings to other population groups
[10].

A region particularly understudied in large-scale sequencing projects is the Middle East and
more specifically the Arabian Peninsula (AP). AP populations are amongst the most non-
African ancestral populations in the globe, as this region was the first outpost of the successful
out-of-Africa (OOA) migration, at around 60 thousand years ago (ka) [11,12]. Concordantly,
signatures of ancient ancestry were detected in extant AP populations, especially in the Arabo-
Persian Gulf region: (1) as relic maternal lineages from the west-Eurasian haplogroups N1, N2
and X, branching directly from the root of macro-haplogroup N (Fernandes et al. 2012); (2) in
the autosomal genome, the component known as basal Eurasian, identifiable when ancient
DNA information is integrated in the analysis (Ferreira et al. 2021). There were clear
continuums throughout time linking western Arabia with the Levant and Africa, and eastern
Arabia with Iran and the Caucasus, making AP an important migration nexus between the main
human population groups [13,14]. This high admixture enriched the Arabian genomes with

non-autochthonous selected variants, mainly for malaria protection (higher in the west), lactose
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tolerance (European/South Asian-derived allele in the eastern AP) and other immune system
defences (throughout the Peninsula) [13,15].

Despite the high ancestry admixture in AP, Arabs have traditionally a high level of
consanguinity, reaching an overall prevalence of 56% in Saudi Arabia, from which 33.6% are
first-cousin consanguineous marriages [16]. In addition to a high consanguinity rate, Arabs are
also characterized by large family sizes and advanced paternal and/or maternal age [17],
increasing the risk of congenital anomalies in their offspring [16]. These factors are associated
with a high number of congenital and genetic disorders [17], such as impaired hearing (3.5
times higher in consanguineous than in non-consanguineous mating) [16] and Down’s
syndrome (Arab countries exceeds the 1.2-1.7 per 1000 typical for industrialised countries;
[17,18]). Other complex disorders with a genetic component are also common throughout the
Arab world, including haemoglobinopathies, glucose-6-phosphate dehydrogenase deficiency
and metabolic diseases (obesity, type 2 diabetes and dyslipidemia), and all have been associated
with the high level of consanguinity in this region [16]. The reason for this is that high level of
consanguinity increases frequencies of rare variants and extends stretches of homozygous
chromosomal fragments (long runs of homozygosity across all sites, ROH) [19]. Thus, the
study of ROH length and burden of deleterious variation can provide important insights into
the human demographic history and clinical applications [20,21]. Most of the WES available
for Arabians were obtained in cohorts of patients [22-25]. Fewer WES are available for the
general population: one obtained in Qatari populations identified eight hematologic variants,
five metabolic, four eye-related, three inflammatory, three cardiovascular and three neurologic
as the most common disease-related variants in those consanguineous cohorts [26]; an
important cohort, the Greater Middle East (GME) Variome Project containing 2,497
individuals from 19 Arab and non-Arab Muslim countries [27] detected large and rare
homozygous blocks, compatible with recent consanguineous matings, rendering easy to

identify genes harbouring putatively high-impact homozygous variants.

As the effective size of the WES catalogue for AP general population remains low, in this work
we performed a characterization of Arabian WES by randomly selecting 25 individuals from
each AP country (Saudi Arabia, Yemen, United Arab Emirates and Oman). We enriched our
WES with the sequencing of the untranslated regions 5 and 3 (UTR5 and UTR3), usually not
included in these panels, as these regions play a role in the modulation of mMRNA transcription,
secondary structure, stability, localization, translation, and access to regulators like

microRNAs and RNA-binding proteins [28]. We aimed to identify new and rare variants
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(especially in UTRs), to infer their possible functional impact, and to relate them with the

consanguinity levels.
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Materials and methods

Sample collection and WES capture

We conducted WES of 94 individuals from AP (23 from Saudi Arabia, 24 from Yemen, 25
from Oman and 22 from UAE). These samples were part of a larger cohort of 420 Dubai
residents who were born across the AP. As this cohort was previously analysed with the
[llumina Human Omni Express Bead Chip containing 741,000 SNPs [13,29], it allowed us to
selected the 94 individuals for WES based on the genomic information that they were non-
related and non-recent migrants from sub-Saharan Africa. This study obtained the ethical
approval from the Ethics Committee of the University of Porto, Portugal (17/CEUP/2012).

WES was performed at two companies: Macrogen Inc. (Seoul, South Korea) for 50 samples
with a 100x average depth coverage; and STAB VIDA (Caparica, Portugal) for 44 samples
with a 30x average depth coverage. The WES were captured using the SureSelect Human All
Exon V5 + UTRs (50 Mb) target enrichment Kit. Sequencing was performed with 2 x 100 bp
paired end reads on Illumina HiSeq platform (Illumina, San Diego, CA, USA) according to

manufacturer’s protocol.

In order to have comparable values for other worldwide populations, the 1000 Genomes [30]
WGS from African, European and East Asian populations (90 individuals randomly selected
from each of these regions; Supplementary Table 1) were extracted, and variants located in the
genomic regions covered by our WES (including regulatory untranslated regions UTRS) were

considered for further analyses in this manuscript.

Variant calling, filtering and annotation

Paired-end reads were trimmed using the trimmomatic tool and aligned to human reference
genome NCBI Build 37 using the Burrows-Wheeler Aligner (BWA v0.7.16a) algorithm. The
paired-read alignments were sorted and stored in BAM format using samtools (v1.5). All the
samples passed the quality control performed with FastQC and Alfred tools. Duplicates were
marked and eliminated with Picard (v1.139), and local re-alignment and Base Quality Score
Recalibration were carried out using the Genome Analysis Toolkit (GATK, v4.2.0.0,

https://software.broadinstitute.org/gatk/).
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Variants were called using the Genome Analysis Toolkit (GATK v4.2.0.0) Haplotypecaller. A
minimum value of 10% was set for missing genotype, leading to exclusion of three samples
from further analyses. Variants were initially filtered to have a minimum depth of 7, Phred
quality score >30, and genotype quality score >20, using the bcftools (v2.26.0). In the case of
heterozygous callings for which the ratio of the less covered allele (reference or derived) over
the total calls was <25%, the genotyping was corrected to homozygous of the most frequent
allele, by using an in-house script. Finally, we excluded from the analysis multi-allelic variants,
indels and positions for which more than 5% of the genotypes were missing. A principal
component analysis (PCA) was performed using the SmartPCA tool from the EIGENSTRAT
software package (v6.1.3), to identify potential batch effects between laboratories, or outliers.
After the PCA, one sample was eliminated as it was a clear outlier. The final dataset contained
90 samples (23 from Saudi Arabia, 24 from Yemen, 24 from Oman and 19 from UAE). To
further assess the quality of the calling, we evaluated in the bcftools stats the aggregate

transition-to-transversion (Ti/Tv) ratio for all variants and exonic variants.

The ANNOVAR tool (version available in 2019-10-24; [31]) was used for the functional
annotation of the called variants, and to verify if they were previously described in the
following publicly available databases (downloaded on 10" September 2021): WGS group,
which included the GnomAD_WGS V2.0.1 (11st March 2017), dbSNP_142 (28" December
2014), Haplotype Reference Consortium (HRC; 3" December 2015), and 1000 Genomes (24"
August 2015); WES group, consisting in GhomAD_exome V2.0.1 (11st March 2017), NHLBI-
ESP (esp6500siv2_all; 22" December 2014) and ExAC (29" November 2015); ClinVar
(clinvar_20160302; 3" October 2017) and dbNSFP3.0a group; and finally, Greater Middle
East group (GME; 24" October 2016).

Functional constraint analysis

The online CADD tool (v1.6; https://cadd.gs.washington.edu/snv) was used to evaluate the
evolutionary conservation of AP (and comparable 1000 Genomes datasets) variants, through
several metrics. The first type of metrics considered only alignment-based conservation values:
(1) GERP or Genomic Evolutionary Rate Profiling [32], which evaluates non-neutral rates of
substitution from multiple mammalian species alignments, and categorizes mutations by their
predicted deleterious effect in neutral (-2< GERP < 2), slightly deleterious (2 <GERP< 4),

moderate (4 < GERP< 6), and extremely deleterious (GERP> 6) groups (categories according
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to [33,34]); (2) Phylop [35], also based on the alignment of mammalian species, for which a
negative value indicates faster-than expected evolution, while positive values imply

conservation.

Secondly, the metrics SIFT (Sorting Intolerant From Tolerant; [36]) and PolyPhen [37] that
predict whether nonsynonymous substitutions are likely to have a deleterious effect on the
protein function were investigated. A nonsynonymous variant with a SIFT score < 0.05 will be
classified as 'deleterious’ while others are called ‘'tolerated" (benign) [38]. In contrast,
PolyPhen2 calculates the probability that a given variant will be ‘benign’ for scores less than
or equal to 0.446, ‘possibly damaging’ for scores greater than 0.446 and less than or equal to
0.908, and ‘probably damaging’ for scores greater than 0.908.

Finally, the integrative “scaled C-score” was considered. This score provides a ranking of
variants more likely to be deleterious by integrating multiple annotations including
conservation and functional information into one metric [39]. We applied a cutoff of 20, below
which the variants were classified as benign and otherwise harmful, as suggested by the authors
[39].

Inbreeding features

To infer the degree of relatedness between the 90 AP WES we used the KING tool [40] by
estimating kinship coefficients and inferring IBD segments for all pairwise relationships.

Unrelated pairs can be precisely separated from close relatives with accuracy up 4th-degree.

To assess the individual runs of homozygosity (ROHSs), we estimated ROHs using the PLINK
tool (version 1.9) following these published [41] parameters: a size threshold (kb) to call an
ROH (homozyg-kb) of 1000 kb; a SNP number threshold to call an ROH (Homozyg-snp) of
10 SNPs; a sliding window size in SNPs (Homozyg-window-snp) of 20 SNPs; allowing 5
missing SNPs (Homozyg-window-missing); with a proportion of homozygous windows
threshold (Homozyg-window-threshold) of 0.05; a minimum SNP density of 200 kb to call an
ROH (Homozyg-density); allowing a maximum gap (Homozyg-gap) of 4000 kb; and allowing
only 1 heterozygous SNP (Homozyg-window-het). For each AP individual included in the
analysis, the sum of the length of ROHs (SROH) was calculated. These AP SROHSs were used
for testing the linear regression with the burden of predicted pathogenic non-synonymous

variants (inferred for both SIFT and PolyPhen algorithms), and a f-statistic test was applied.
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Mining of diseases associated with highlighted genes

Information for disease associated with genes for which AP individuals presented predicted
pathogenic non-synonymous and conserved UTR variants was collected from the OMIM
(https://www.omim.org/) database. Then, these diseases were mined in the MalaCards: The
human disease database (https://www.malacards.org/) for classification in broad categories. In
cases of disease affecting several organs, decisions were made for inclusion in one category

instead of another (Supplementary Table 2).

Graphs and statistical tests

The plots were built with the venn [42,43] and ggplot2 package [44] in R [45]. The calculations

for those plots were performed through in-house R-scripts.
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Results

Diversity of the AP WES (enriched for UTRS)

The 90 AP WES presented 145,630 variants, around half the level of diversity displayed by the
European (270,913 variants) and East Asian (254,527 variants) regions, and one third by sub-
Saharan Africans (443,767 variants) (1000 Genomes populations, for an equal number of
individuals and matching genomic segments). The transition-to-transversion ratio (Ti/Tv) was
2.59 for the entire dataset, and 3.23 when considering only the exonic variants as this latter

value is more comparable with other high quality WES datasets not enriched for UTRs [1,2].

Of the total 145,630 variants, 19,701 (13.5%) were new when compared against several public
databases (Figure 1A). Among the known variants (Figure 1B; Supplementary Table 3),
identical proportions (around a quarter) were shared between nonsynonymous, intronic and
UTR3 classes, followed by synonymous (~16%) class, and rare proportions of all remaining
classes (nonsense, UTR5, ncRNA, upstream/downstream, intergenic and splicing).
Interestingly, for the new variants (Figure 1C), almost half of these were located in UTR3,
followed still by 29% of intronic, 14% of synonymous and rare instances of the other classes
of new variants. It is not surprising the high proportion of new variants in UTR3, and that the
value of new variants in UTR5 is also twice the value for this class in known variants, as UTRs
are rarely covered in WES screenings. We detected very few new nonsynonymous variants (57
- <1% of total new variants), showing that saturation for this class of variants is almost reached

for populations of mainly Eurasian ancestry.

Interestingly, a substantial amount of AP variants (7092) was only shared with
clinically/functionally focused databases, namely ClinVar [46] and dbNSFP3.0a [47]. A
careful inspection of these variants revealed they were mostly included in the dbNSFP3.0a
dataset (88.8% non-synonymous, 6.78% non-sense and 2.19% splicing variants), which
prioritizes these type of variants from UK10K and EXAC datasets. These variants are of

possible functional relevance, as we will see in detail in the next section.
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Figure 1: The global diversity observed in the 90 AP WES. A. Venn diagram illustrating new
and shared variants between AP WES and publicly available databases (as referred in the
material and methods section). B. Classes of known variants observed in the AP WES. C.

Classes of new variants observed in the AP WES.

Functional constraint features of AP WES

The conservation score GERP (Figure 2A and B) allowed to confirm that AP had 83.9% of
variants classified either as neutral (66.2% for GERP<2) or as slightly deleterious (17.7% for
2 >GERP> 4). These variants were broadly distributed by class of variants, testifying that most
of the genome of AP is functionally neutral as expected. Comparatively, in the two most
deleterious categories (4 > GERP> 6 and 4 > GERP> 6) there was an increase of nonsense,
nonsynonymous and splicing variants, and a decrease of UTR5 and UTR3. The results from
the Phylop algorithm, another conservation score, were consistent with GERP (Supplementary
Figure 1). When comparing with the other worldwide regions (Figure 2C), AP displayed the
higher amount of moderate and extremely deleterious variants (15.31% and 0.81%
respectively; compensated by the lower amount of neutral variants), followed ex aequo by
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Europe (11.22% and 0.37% respectively) and East Asia (11.49% and 0.39% respectively), and
then Africa (10.18% and 0.30% respectively) with the lower values.
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Figure 2: Results for the conservation GERP and the integrative scaled C scores. A. Proportion
of AP variants from each class of variants in each GERP category. The line represents the total
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number of variants in each score category (same meaning for B, D and E). B. Proportion of AP
variants after normalizing by the total number of variants in each class, observed in that GERP
category. C. Proportion of variants from each GERP category in AP and other worldwide
regions. GERP values were classified into four groups: neutral (2< GERP), slightly deleterious
(2 <=GERP< 4), moderate (4 <= GERP< 6), and extremely deleterious (GERP> 6). D.
Proportion of AP variants from each class of variants along the scaled C-scores. E. Proportion
of AP variants after normalizing by the total number of variants in each class, along the scaled
C-scores. F. Proportion of variants with scaled C-scores below and above 20 (benign and

harmful variants, respectively) in AP and other worldwide regions.

A similar pattern was observed for the integrative scaled C-scores, but now with better
resolution (Figure 2D and E). Nonsense variants are the most extreme in the harmful scale,
preceded by the splicing variants. For non-synonymous variants, a high percentage of them
(45,89%) displayed values equal or higher to 20, so more prone to have functional impact. In
the other extreme, variants that are of lower functional impact, were the synonymous, intronic,
UTRs, and the rarer ncRNA, upstream/downstream and intergenic variants. Comparing with
the other geographical regions (Figure 2F), again AP had a higher proportion of potentially
harmful variants when inferred through the scaled C-scores (10.86%) than the rest of the globe
(East Asia — 8.89%; Europe — 8.52%; Africa — 7.38%).

Focusing on the predicted pathogenicity for AP nonsynonymous variants, provided by SIFT
and PolyPhen metrics (Figure 3A), a proportion of 15.56% (4,673 out of 30,033
nonsynonymous variants for which values for both metrics were available) were inferred as
pathogenic by SIFT and PolyPhen (“deleterious” and “probably damaging”, respectively).
These variants were distributed in 3,285 genes, and 756 of these genes have been associated
with diseases of various types (Figure 3B), namely (in decreasing importance) neurologic,
congenital malformation, metabolic, ear and eye, immune and infection-related, oncologic,
cardiovascular and blood. Only six of these inferred as pathogenic nonsynonymous variants
were new, and they were located in the genes: CYFIP1, associated with congenital
malformation and neurologic diseases; ITGA10 and PIAS3, associated with oncologic, and ear
and eye diseases; GNG14 involved in signalling pathways; CIGALT1CI1L that enables the
activity of a galactosyltransferase whose deficit is associated with congenital malformation;
and FAM240A that is mainly expressed in brain.
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Figure 3: Pathogenic predictions. A. SIFT scores versus PolyPhen2 scores. The known variants
are represented in light blue dots while new variants are represented as dark blue dots. The
yellow dashed line correspond to the thresholds for predicting 0.446<Possibly
Damaging<0.908 for PolyPhen2. The red dashed lines correspond to the thresholds for
predicting deleterious variants: <0.05 for SIFT and Probably Damaging >0.908 for PolyPhen2.
B. Diseases associated with 756 of the genes bearing predicted pathogenic (by both SIFT and
PolyPhen) non-synonymous variants in AP, according to OMIM (classification of disease
based on MalaCards database; Supplementary Table 4). C. Diseases associated with 31 of the
genes bearing non-conserved (C-score above 20) UTR3 and UTR5 variants in AP, according

to OMIM (classification of disease based on MalaCards database; Supplementary Table 4).

Our AP WES had the special feature of being enriched for the UTR regions, providing
additional information for these parts of the genome that, although untranslated, can be pivotal
in the regulation of gene expression. As we have referred before, most of UTR variants are
non-conserved, but focusing on the proportion of UTRs with C-scores above 20, 1.76% of
UTRS5 and 0.31% of UTR3 variants (47 out of 2671 UTR5 and 138 out of 43,868 UTR3) can
be potentially harmful variants. These variants were distributed in 116 genes, and 31 of these
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genes have been associated with various types of diseases (Figure 3C), with the high percentage
of them classified as neurologic diseases (34.04%) and congenital malformation (12.77%),

compatible with the results observed for the inferred pathogenic nonsynonymous variants.

Inbreeding features inferred from the AP WES

The inference of relatedness between the 90 AP WES, based on the genomic kinship
coefficient, revealed that all the individuals were classified as unrelated (up 4th-degree), as
expected for a cohort representative of the general population. We then estimated ROHSs longer
than 1Mb in AP and other worldwide populations, in order to compare inbreeding features. In
concordance with the known higher consanguinity of AP populations, there were more ROHs
of all sizes in Arabia than in the other regions of the globe (Figure 4A), mainly for the ROH
size category 2-4Mb. The largest ROHs detected in each AP population were: Oman-70.4Mb;
Yemen-59.8Mb; Saudi Arabia-41.2Mb; and UAE-26Mb.

Not only AP individuals had larger ROHs, but also the total sum of ROHs (SROHS) per AP
genome was in mean twice the values observed in the individuals from other worldwide
populations (Figure 4B): 1200Mb in AP; 720Mb in East Asians, 700Mb in Europeans; and
650Mb in Africans. Within AP, the highest values were observed in Saudi Arabia and the
lowest in Oman. In terms of SROH distribution within each population group, there was a high
heterogeneity between values from AP individuals (Supplementary Figure 2), while
individuals from other regions were more homogeneous in this metric. This highest SRHOs
values in each AP country were: Saudi Arabia-1969Mb; Yemen-1781Mb; UAE-1171Mb; and
Oman-1152MB.

Interestingly, within AP there is a very significant positive linear regression (r=0.9712; p-
value=1.315e%%) between SROHSs and the burden of predicted pathogenic non-synonymous

variants (inferred for both SIFT and PolyPhen algorithms; Figure 4C).
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Figure 4: Inbreeding features. A. Mean number of ROHs, NROHs>1 Mb per population in
different length categories, for AP and other globe regions. B. NROHSs versus the mean sum
ROH length (SROH) in each region: Africa in red (ESN-Esan in Nigeria, GWD- Mandinka in
Gambia, LWK-Luhya in Kenya, MSL-Mende in Sierra Leone, and YRI-Yoruba in Nigeria);
AP in green; East Asia in blue (CDX-Dai in China, CHB-Han in China, CHS-Han in South
China, JPT-Japanese in Japan, and KHV-Kinh in Vietnam), and Europe in purple (GBR-British
in UK, IBS-Iberians in Spain, and TSI-Toscani in Italia). C. Linear regression between SROH
and predicted pathogenic non-synonymous variants (for both SIFT and PolyPhen algorithms)

in individuals from AP.
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Discussion

In the present study, we have performed a WES exome capture enriched for UTRs on AP
populations, still poorly represented on international WES catalogues. We were able to identify
19,701 new variants (13.5% of the total 145,630), that were not catalogued in other public
databases, and almost half of these were located in UTR3. We further confirmed that 185 of
the UTR variants could be deleterious (inference based on the scaled C-score), being located
in genes associated with various types of diseases, especially neurologic and congenital
malformation, testifying the importance of screening UTR variants [28,48]. Our results match
a previous report [28] focused on the UTR variants from the NHGRI GWAS Catalog [49],
which were shown to be mostly associated with immunological, neoplastic and neurological
pathologies. As the fine-mapping of UTR regions, especially in terms of their functional
impact, is lacking behind the coding regions, there are currently no better pathogenic inferences
for these variants than metrics based on conservation. As we improve our knowledge on the
functional impact of UTRs, we will refine inferences about their role in diseases. These UTR
variants add up to the substantial proportion in the AP WES of 4,673 nonsynonymous variants
(15.56% out of 30,033 total) inferred as pathogenic by SIFT and PolyPhen metrics, and that
were distributed in 3,285 genes, 23% of which have been associated also with neurologic and

congenital malformation diseases, as well as other complex disorders.

We have demonstrated that this high burden on pathogenic variants in a relatively low diverse
WES cohort (half the level of European and East Asian, and one third of sub-Saharan cohorts)
can be explained by the demonstrated considerably high proportion of ROHs due to
consanguinity practices. It is known that the strong bottleneck in the OOA dispersal led to a
higher burden of pathogenic variants in Europeans and East Asians relative to sub-Saharan
Africans [34], but the values for AP are impressive. The low diversity in the AP WES seems
contra-intuitive to the identified high admixture in AP populations of sub-Saharan African and
South Asian ancestries [13,14,29], but the high consanguinity is strong enough to opose the
enrichment with diversity from other population groups. We must reinforce that we were
careful in pre-selecting individuals with a main Arabian/NearEast background for WES
screening, avoiding Arabian individuals with recent events of admixture. So, values of SROHs
would still be more heterogeneous for AP populations if we had included these Arabians with
more recent events of admixture. As it is, the main Arabian/NearEast background WES studied
here contained several large and homozygous blocks, especially so in Saudi Arabia, where

first-cousin marriages are common [16]. Two Saudi Arabian genomes had the highest sum of
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ROHes, as high as 2,000Mb. For contextualisation, the diploid human genome has 6,200Mb, so
those Saudi individuals had ROHs across 32% of their genomes. In mean, the Arabian
individuals had ROHs across 19% of their genomes, against 12% in East Asians, 11% in
Europeans and 10% in sub-Saharan Africans. And as we are sequencing coding and regulatory
regions of the genome, it is not surprising the high amount of predicted pathogenic variants we

found.

Our findings highlight the importance of continuing to catalogue WES in general population
cohorts, and in regions of the globe poorly represented in international consortia. The gains
definitely pay off the efforts. A contribution of near 20,000 new variants from sequencing
around 2% of the genome in 90 AP individuals is substantial. The pursuit of this cataloguing
in populations with high consanguinity is advisable. As we have seen here, the higher the
consanguinity the higher the burden of potentially pathogenic variants. These variants are
harder to detect in less consanguineous populations due to the effect of genetic drift, which is
opposed by consanguinity. In conclusion, we must enrich WES catalogues in ethnic groups and
in populations with diverse breeding features, in order to increase the power to robustly identify

disease-associated variants in the human species.
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Figure legends

Figure 1: The global diversity observed in the 90 AP WES. A. Venn diagram illustrating new
and shared variants between AP WES and publicly available databases (as referred in the
material and methods section). B. Classes of known variants observed in the AP WES. C.
Classes of new variants observed in the AP WES.

Figure 2: Results for the conservation GERP and the integrative scaled C scores. A. Proportion
of AP variants from each class of variants in each GERP category. The line represents the total
number of variants in each score category (same meaning for B, D and E). B. Proportion of AP
variants after normalizing by the total number of variants in each class, observed in that GERP
category. C. Proportion of variants from each GERP category in AP and other worldwide
regions. GERP values were classified into four groups: neutral (2< GERP), slightly deleterious
(2 <=GERP< 4), moderate (4 <= GERP< 6), and extremely deleterious (GERP> 6). D.
Proportion of AP variants from each class of variants along the scaled C-scores. E. Proportion
of AP variants after normalizing by the total number of variants in each class, along the scaled
C-scores. F. Proportion of variants with scaled C-scores below and above 20 (benign and

harmful variants, respectively) in AP and other worldwide regions.

Figure 3: Pathogenic predictions. A. SIFT scores versus PolyPhen2 scores. The known variants
are represented in light blue dots while new variants are represented as dark blue dots. The
yellow dashed line correspond to the thresholds for predicting 0.446<Possibly
Damaging<0.908 for PolyPhen2. The red dashed lines correspond to the thresholds for
predicting deleterious variants: <0.05 for SIFT and Probably Damaging >0.908 for PolyPhen2.
B. Diseases associated with 756 of the genes bearing predicted pathogenic (by both SIFT and
PolyPhen) non-synonymous variants in AP, according to OMIM (classification of disease
based on MalaCards database; Supplementary Table 4). C. Diseases associated with 31 of the
genes bearing non-conserved (C-score above 20) UTR3 and UTRS variants in AP, according

to OMIM (classification of disease based on MalaCards database; Supplementary Table 4).

Figure 4: Inbreeding features. A. Mean number of ROHs, NROHs>1 Mb per population in
different length categories, for AP and other globe regions. B. NROHSs versus the mean sum
ROH length (SROH) in each region: Africa in red (ESN-Esan in Nigeria, GWD- Mandinka in
Gambia, LWK-Luhya in Kenya, MSL-Mende in Sierra Leone, and YRI-Yoruba in Nigeria);
AP in green; East Asia in blue (CDX-Dai in China, CHB-Han in China, CHS-Han in South
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China, JPT-Japanese in Japan, and KHV-Kinh in Vietnam), and Europe in purple (GBR-British
in UK, IBS-lberians in Spain, and TSI-Toscani in Italia). C. Linear regression between SROH

and predicted pathogenic non-synonymous variants (for both SIFT and PolyPhen algorithms)
in individuals from AP.
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