

1 **Zika virus replicates in the vagina of mice with intact interferon signaling**

2

3 Running Title: ZIKV vaginal infection in wild-type mice

4

5 Cesar A. Lopez^a, Sarah J. Dulson^a, Helen M. Lazear^{a,#}

6

7 ^aDepartment of Microbiology & Immunology, The University of North Carolina at Chapel Hill,
8 Chapel Hill, NC, USA

9

10 #Corresponding Author: helen.lazear@med.unc.edu

11

12 Word count (Abstract): 250

13 Word count: 5601

14

15 **ABSTRACT**

16 Zika virus (ZIKV) is unusual among flaviviruses in its ability to spread between humans through
17 sexual contact, as well as by mosquitoes. Sexual transmission has the potential to change the
18 epidemiology and geographic range of ZIKV compared to mosquito-borne transmission and
19 potentially could produce distinct clinical manifestations, so it is important to understand the host
20 mechanisms that control susceptibility to sexually transmitted ZIKV. ZIKV replicates poorly in wild-
21 type mice following subcutaneous inoculation, so most ZIKV pathogenesis studies use mice
22 lacking IFN- $\alpha\beta$ signaling (e.g. *Ifnar1*^{-/-}). However, we found that wild-type mice support ZIKV
23 replication following intravaginal infection, although the infection remained localized to the lower
24 female reproductive tract. Vaginal replication was not a unique property of ZIKV, as other
25 flaviviruses that generally are restricted in wild-type mice also were able to replicate in the vagina.
26 Vaginal ZIKV infection required a high-progesterone state (pregnancy or pre-treatment with depot
27 medroxyprogesterone acetate (DMPA)), identifying a key role for hormonal status in susceptibility
28 to vaginal infection. Progesterone-mediated susceptibility did not appear to result from a
29 compromised epithelial barrier, blunted antiviral gene induction, or changes in vaginal leukocyte
30 populations, leaving open the mechanism by which progesterone confers susceptibility to vaginal
31 ZIKV infection. Progesterone treatment is a key component of mouse vaginal infection models for
32 herpes simplex virus and *Chlamydia*, but the mechanisms by which DMPA increases
33 susceptibility to those pathogens also remain poorly defined. Understanding how progesterone
34 mediates susceptibility to ZIKV vaginal infection may provide insights into host mechanisms
35 influencing susceptibility to diverse sexually transmitted pathogens.

36

37

38 **IMPORTANCE**

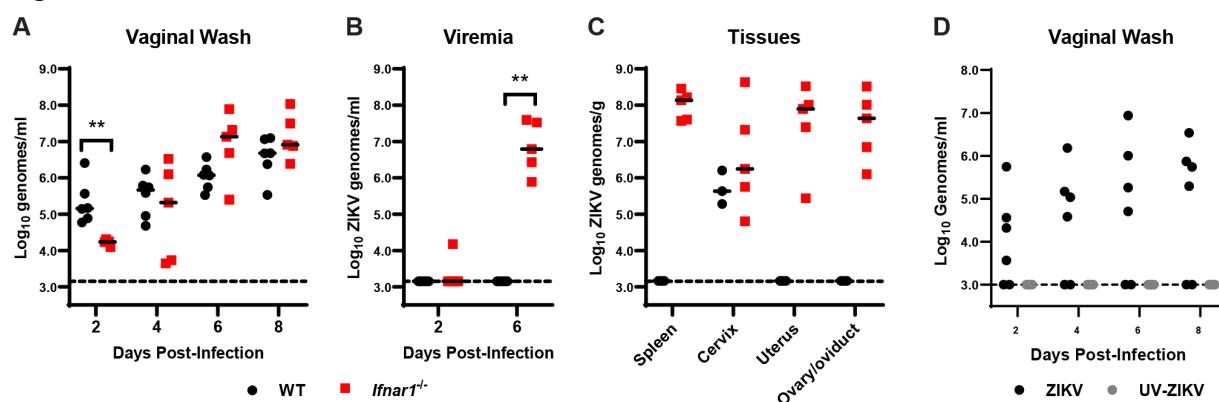
39 Zika virus (ZIKV) is transmitted by mosquitoes, similarly to other flaviviruses. However, ZIKV is
40 unusual in its ability also to spread through sexual transmission. We found that ZIKV was able to
41 replicate in the vaginas of wild-type mice, even though these mice do not support ZIKV replication
42 by other routes, suggesting that the vagina is particularly susceptible to ZIKV infection. Vaginal
43 susceptibility was dependent on a high progesterone state, which is a common feature of mouse
44 vaginal infection models for other pathogens, through mechanisms that have remained poorly
45 defined. Understanding how progesterone mediates susceptibility to ZIKV vaginal infection may
46 provide insights into host mechanisms that influence susceptibility to diverse sexually transmitted
47 pathogens.

48

49 **INTRODUCTION**

50 The unprecedented size of the 2015-2016 Zika virus pandemic in the Americas, in which
51 millions of people were infected, revealed new disease manifestations and transmission
52 mechanisms, including congenital infection and sexual transmission (1). Flaviviruses are
53 transmitted to humans by arthropod vectors (mosquitoes and ticks), and ZIKV is the first example
54 of a flavivirus that spreads between humans via sexual transmission (2). The first report of ZIKV
55 sexual transmission pre-dates the 2015-2016 epidemic and resulted from ZIKV infection in Africa
56 (3), suggesting that sexual transmission is a general property of ZIKV, rather than a new trait
57 coincident with its emergence in the Americas. The ability of ZIKV to spread via sexual
58 transmission in addition to mosquito-borne transmission expands the geographic range over
59 which ZIKV transmission can occur, could change the epidemiology of ZIKV even in areas with
60 mosquito-borne transmission, and has the potential to produce distinct pathologic outcomes if
61 congenital infection occurs via an ascending route rather than a hematogenous transplacental

62 route. Thus, it is important to understand the antiviral mechanisms that ZIKV may encounter in
63 the vagina that are distinct from antiviral mechanisms present at the skin following mosquito
64 inoculation.


65 Mouse models of ZIKV vaginal infection involve pre-treating mice with progesterone,
66 based on well-established infection models for herpes simplex virus (HSV) and *Chlamydia*
67 *muridarum* (4, 5). The mechanism by which progesterone makes mice susceptible to ZIKV
68 remains unknown but has been hypothesized to be due to a combination of thinned epithelium,
69 infiltrating immune cells susceptible to ZIKV infection, or deficiencies in antiviral signaling due to
70 decreased expression of antiviral sensing genes (6-8). ZIKV replication is restricted by the type I
71 interferon (IFN- $\alpha\beta$) response in mice because ZIKV is unable to antagonize mouse STAT2 (9,
72 10). Thus, mouse models of ZIKV pathogenesis, including those investigating vaginal infection,
73 typically use mice deficient in IFN- $\alpha\beta$ signaling, usually through genetic loss of the IFN- $\alpha\beta$ receptor
74 (*Ifnar1*^{-/-}) alone or in combination with the IFN- γ receptor, or by treatment of wild-type mice with
75 an IFNAR1-blocking monoclonal antibody (7, 11-15).

76 Here we show that although wild-type mice largely are resistant to ZIKV infection via
77 footpad inoculation, vaginal inoculation results in productive local ZIKV replication. We further
78 show that permissiveness to vaginal ZIKV replication is regulated by progesterone, in a manner
79 dominant to IFN- $\alpha\beta$ signaling, identifying a key role for hormonal status in susceptibility to vaginal
80 infection. Vaginal replication was not a unique property of ZIKV, as other flaviviruses that
81 generally are restricted in wild-type mice also were able to replicate in the vagina. Progesterone-
82 mediated susceptibility did not appear to result from a compromised epithelial barrier, blunted
83 antiviral gene induction, or changes in vaginal leukocyte populations, leaving open the
84 mechanism by which progesterone confers susceptibility to vaginal ZIKV infection.

86 RESULTS

87 **Wild-type mice support ZIKV replication after intravaginal inoculation.** Mouse models of
88 ZIKV pathogenesis typically employ mice lacking IFN- $\alpha\beta$ signaling (e.g. *Ifnar1*^{-/-}) to achieve robust
89 infection, as wild-type mice sustain only minimal replication following subcutaneous inoculation
90 (11, 16, 17). Accordingly, in seeking to define host mechanisms that control ZIKV infection in the
91 female reproductive tract, we compared ZIKV replication in wild-type and *Ifnar1*^{-/-} mice following
92 intravaginal inoculation. We pre-treated wild-type and *Ifnar1*^{-/-} mice with depot
93 medroxyprogesterone acetate (DMPA) (a standard component of mouse vaginal infection models
94 for herpes simplex virus (HSV), *Chlamydia*, and ZIKV), then 5 days later infected with 1000 FFU
95 of ZIKV via intravaginal instillation (Figure 1). We assessed viral replication in the vagina by
96 collecting vaginal washes 2, 4, 6, and 8 days post-infection (dpi) and measuring ZIKV RNA by
97 qRT-PCR. We found that viral loads increased from 2 through 8 dpi, indicating productive
98 replication in the vagina. In contrast to minimal viral replication observed in wild-type mice after
99 subcutaneous inoculation in the footpad (11, 16, 17), we observed similar ZIKV replication kinetics

Figure 1

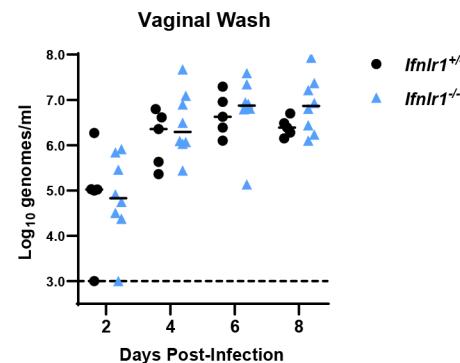


Figure 1: WT mice are susceptible to ZIKV vaginal infection. 6 to 7 week-old mice were pre-treated with 2 mg of DMPA and inoculated with 1000 FFU of ZIKV by intravaginal instillation 5 days later. **A-C.** Viral RNA extracted from vaginal washes (**A**), serum (**B**), or tissues (**C**) of wild-type and *Ifnar1*^{-/-} mice was measured by qRT-PCR. Data represent 5-6 (**A-B**) or 3-5 (**C**) mice per group combined from 2 independent experiments. WT and *Ifnar1*^{-/-} groups were compared by Mann-Whitney test with adjustment for multiple comparisons (*, P <0.05; **, P <0.01). **D.** WT mice were inoculated intravaginally with 1000 FFU of mock-inactivated or UV-inactivated ZIKV. Viral RNA was extracted from vaginal washes and measured by qRT-PCR. Data represent 6 mice per group combined from 2 independent experiments.

100 and RNA burden in the vaginas of wild-type compared to *Ifnar1*^{-/-} mice, with the only significant
101 difference being higher viral loads in wild-type mice at 2 dpi (Figure 1A). Although wild-type mice
102 supported ZIKV replication in the vagina, they did not support systemic infection as viremia was
103 detected only in *Ifnar1*^{-/-} mice (Figure 1B). Likewise, *Ifnar1*^{-/-} mice supported ascending infection
104 into the upper female reproductive tract (uterus, ovary, and oviduct) whereas ZIKV infection in
105 wild-type mice was restricted to the lower female reproductive tract (cervix) (Figure 1C). To
106 confirm that the ZIKV RNA we detected in vaginal washes represented replicating virus, we
107 inoculated wild-type mice with either infectious ZIKV or UV-inactivated virus and measured viral
108 RNA in vaginal washes collected 2 through 8 dpi. No ZIKV RNA was detected in vaginal washes
109 from mice inoculated with UV-inactivated virus, further supporting that the viral RNA detected in
110 vaginal washes results from productive infection (Figure 1D). Altogether, these results show that
111 ZIKV can replicate in the vagina of wild-type mice, but that IFN- $\alpha\beta$ signaling restricts systemic
112 spread.

113 In addition to the antiviral effects of IFN- $\alpha\beta$, type
114 III IFNs (IFN- λ) contribute to antiviral immunity at
115 epithelial barriers (18). IFN- λ has been reported to
116 restrict HSV infection in the vagina (19) and to restrict
117 ZIKV infection in the vagina when IFN- $\alpha\beta$ signaling is
118 inhibited by administration of an IFNAR1-blocking
119 antibody (15). To test whether IFN- λ controls vaginal
120 ZIKV infection in mice with intact IFN- $\alpha\beta$ signaling, we
121 used mice lacking the IFN- λ receptor (*Ifnlr1*^{-/-}). We
122 treated *Ifnlr1*^{+/+} and *Ifnlr1*^{-/-} mice with DMPA and infected
123 with 1000 FFU of ZIKV by intravaginal instillation. We
124 measured viral loads in vaginal washes by qRT-PCR

Figure 2

Figure 2: IFN- λ does not restrict ZIKV infection in the vagina. 5-6 week-old mice lacking (*Ifnlr1*^{-/-}) or retaining (*Ifnlr1*^{+/+}) IFN- λ signaling were pre-treated with 2 mg of DMPA and inoculated 5 days later with 1000 FFU of ZIKV by intravaginal instillation. Viral RNA was measured from vaginal washes by qRT-PCR. *Ifnlr1*^{-/-} and *Ifnlr1*^{+/+} groups were compared by Mann-Whitney with adjustment for multiple comparisons. Data are combined from 3 independent experiments.

125 and found no significant difference between *Ifnlr1^{+/−}* and *Ifnlr1^{−/−}* mice, suggesting that IFN-λ
126 signaling does not restrict ZIKV replication in the vagina in this model (Figure 2).

127

128 **A high-progesterone state is required for vaginal ZIKV infection.** Pre-treatment with DMPA
129 is a standard component of mouse models of vaginal infection with diverse pathogens including
130 HSV, *Chlamydia*, and ZIKV (4-7). Since we found that wild-type mice were susceptible to ZIKV
131 infection via an intravaginal but not a subcutaneous inoculation route, we considered whether
132 DMPA treatment rendered mice susceptible to systemic ZIKV infection. We treated wild-type mice

133 with DMPA or **Figure 3**

134 PBS, then 5 days

135 later infected with

136 1000 FFU of ZIKV

137 via intravaginal

138 instillation or

139 subcutaneous

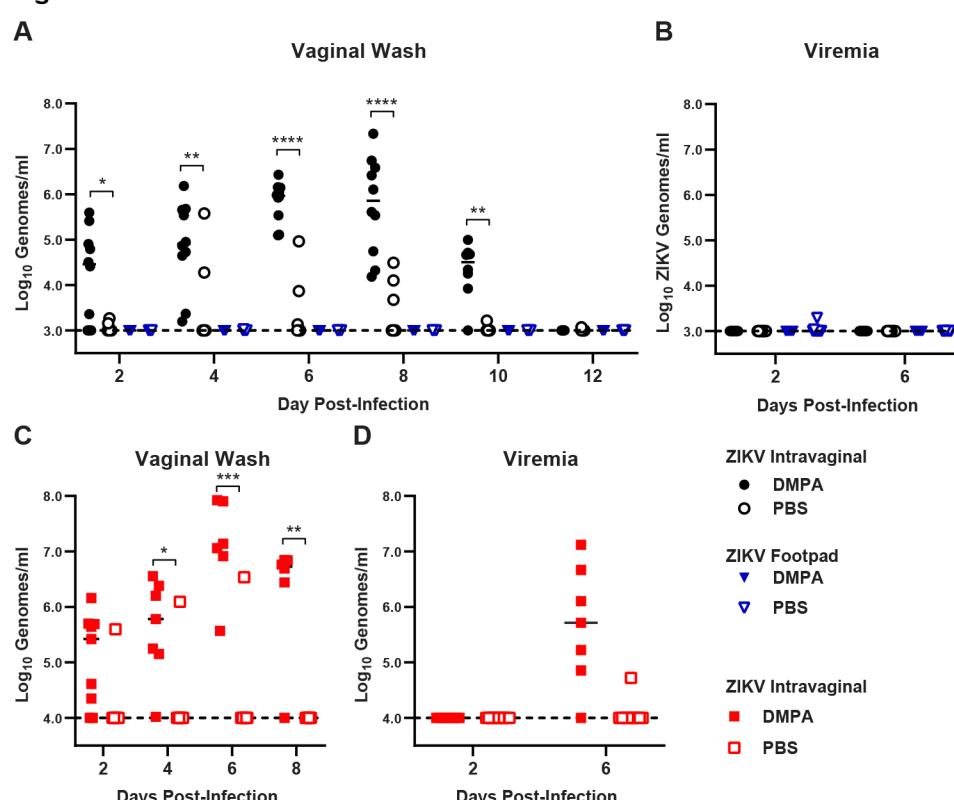
140 inoculation in the

141 footpad and

142 measured viral

143 RNA in vaginal

144 wash and in serum


145 by qRT-PCR. As

146 expected, DMPA

147 treatment

148 increased the

149 permissiveness of

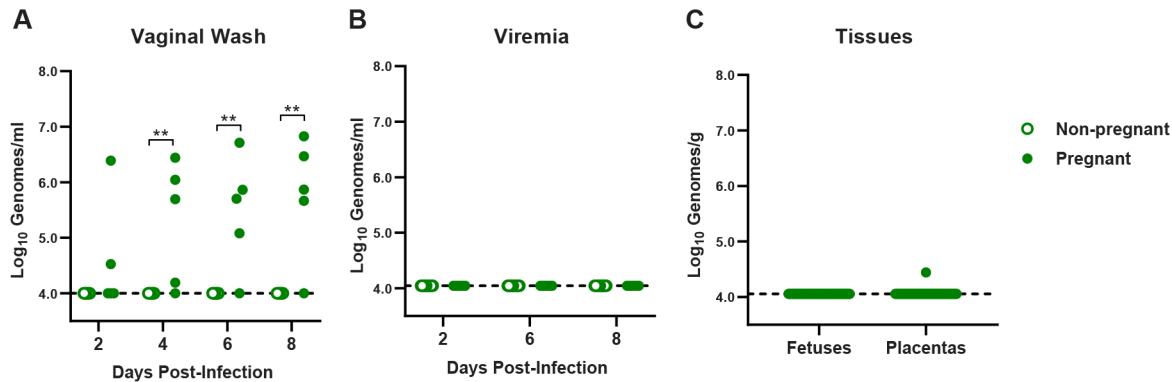
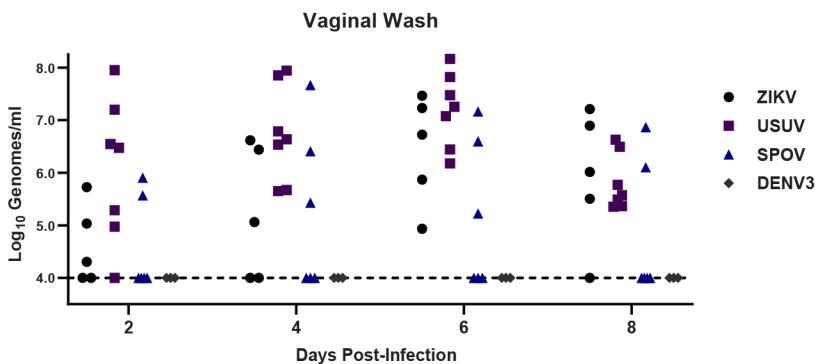


Figure 3: DMPA does not sensitize WT mice to ZIKV infection by footpad inoculation. 6-week-old wild-type (A-B) or *Ifnar1^{−/−}* mice (C-D) were pre-treated with either PBS or 2 mg of DMPA then infected with 1000 FFU of ZIKV by intravaginal instillation or subcutaneous inoculation in the footpad. Viral RNA in vaginal washes (A and C) or serum (B and D) was measured by qRT-PCR. Data represent 9 or 10 mice per group combined from 2 independent experiments. PBS and DMPA treated groups were compared by two-way ANOVA with multiple comparison correction (*, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$; ****, $P < 0.0001$).

150 wild-type mice to intravaginal infection: ZIKV RNA was detected in the vaginal wash from 10 of
151 10 DMPA-treated mice compared to only 5 of 10 PBS-treated mice (3 of which were positive on
152 only a single day) and DMPA-treated mice sustained higher viral loads in the vagina than PBS-
153 treated mice (Figure 3A). Consistent with previous experiments, DMPA-treated wild-type mice
154 supported ZIKV replication in the vagina but no ZIKV RNA was detected in the serum following
155 intravaginal inoculation (Figure 3B). Furthermore, no ZIKV RNA was detected in the serum of
156 mice inoculated by footpad regardless of DMPA treatment (Figure 3B), indicating that DMPA
157 treatment was not sufficient to render wild-type mice broadly susceptible to ZIKV infection.
158 Although *Ifnar1*^{-/-} mice are highly susceptible to ZIKV infection by subcutaneous inoculation,
159 productive vaginal infection required DMPA treatment (1 of 10 PBS-treated mice infected
160 compared to 9 of 9 DMPA-treated) (Figure 3C); all *Ifnar1*^{-/-} mice with productive vaginal infection
161 subsequently developed viremia (Figure 3D). These results demonstrate a key role for
162 progesterone in susceptibility to vaginal ZIKV infection, even in the context of immunodeficient
163 mice that are otherwise highly susceptible to ZIKV infection.

164 Since congenital infection is an important manifestation of ZIKV infection, and pregnancy
165 is a high-progesterone state (20), we evaluated vaginal ZIKV infection in pregnant mice (without
166 DMPA treatment). We mated 7-to-10-week old wild-type dams with wild-type sires and inoculated
167 7 days post-mating (roughly one-third of gestation) intravaginally with 1000 FFU of ZIKV. We
168 collected vaginal washes and serum and measured ZIKV RNA by qRT-PCR to assess local
169 replication in the vagina and systemic spread, and all mice were harvested at 8 dpi to assess
170 congenital infection. Pregnant mice supported vaginal ZIKV replication (viral RNA detected in the
171 vaginal wash from 4 of 5 pregnant mice) but ZIKV RNA was not detected in the vaginal lavage of
172 non-pregnant mice (0 of 12 mice) (Figure 4A). Consistent with our observations in non-pregnant
173 wild-type mice, pregnant wild-type mice did not support systemic ZIKV spread, as ZIKV RNA was
174 not detected in serum, even in the context of robust replication in the vagina (Figure 4B).

Figure 4


Figure 4: Pregnant WT mice are susceptible to intravaginal ZIKV infection. 7-to-10 week-old wild-type dams were mated with WT sires and inoculated 7 days afterwards intravaginally with 1000 FFU of ZIKV. Viral RNA was measured by qRT-PCR in vaginal washes (A), serum (B), or fetal tissues harvested at day 8 post-infection (C). Data are combined from 5 pregnant and 12 non-pregnant dams and 40 placentas and fetuses from 2 independent experiments. Pregnant and non-pregnant groups were compared by Mann-Whitney, adjusted for multiple comparisons (**, P <0.01).

175 Additionally, ZIKV RNA was detected in only 1 of the 40 placentas and none of the corresponding
176 fetuses (Figure 4C), consistent with the lack of ascending or systemic infection we observed after
177 vaginal ZIKV inoculation in DMPA-treated non-pregnant wild-type mice (Figure 1B). Altogether
178 these data suggest that a high progesterone state (DMPA treatment or pregnancy) is required for
179 vaginal permissiveness to ZIKV infection, and that vaginal infection is not sufficient for maternal-
180 fetal transmission.

181
182 **The vagina is permissive to replication of diverse IFN- $\alpha\beta$ -restricted flaviviruses.** ZIKV is
183 unique among flaviviruses in its ability to spread among humans via both vector-borne (mosquito)
184 and vector-independent (sexual) transmission routes. To assess whether this reflects an unusual
185 vaginal tropism of ZIKV, we evaluated vaginal infection with 3 additional flaviviruses, Spondweni
186 virus (SPOV), Usutu virus (USUV), and dengue virus (DENV). These flaviviruses were selected
187 because, like ZIKV, they replicate poorly in wild-type mice following subcutaneous inoculation
188 (21-23). Wild-type mice were treated with DMPA 5 days prior to intravaginal inoculation with 1000
189 FFU of ZIKV, SPOV, USUV, or 10,000 FFU of DENV3 and viral RNA was measured by qRT-PCR

190 from vaginal washes 2, 4, 6,
191 and 8 dpi (Figure 5). Viral
192 RNA was detected in vaginal
193 washes after ZIKV, USUV,
194 and SPOV infection,
195 suggesting that these viruses
196 could replicate in the vagina of
197 wild-type mice and at levels
198 similar to ZIKV. In contrast,
199 DENV3 RNA was not detected. To test whether the vagina is permissive to other RNA viruses
200 that generally are restricted by innate antiviral responses in wild-type mice (24, 25), we inoculated
201 wild-type mice intravaginally with 1000 FFU of rubella virus (*Matonaviridae*) or 5×10^8 genome
202 equivalents of hepatitis A virus (*Picornaviridae*) but detected no viral RNA in vaginal washes at
203 any of the time points evaluated through 8 dpi (data not shown). Altogether, these data show that
204 vaginal infection is not a unique property of ZIKV among flaviviruses. Rather, in wild-type mice
205 the vagina is more permissive to flavivirus replication compared to other inoculation sites but does
206 not allow unrestricted replication of all RNA viruses.

Figure 5

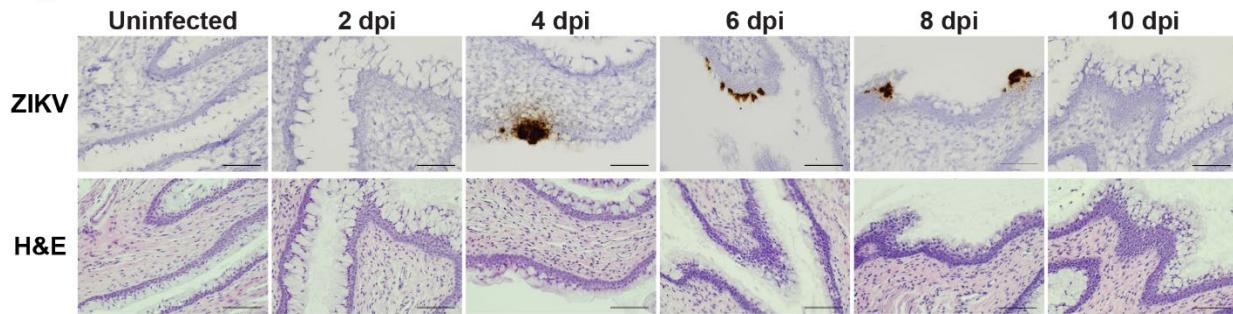


Figure 5: Diverse flaviviruses replicate in the vagina of WT mice. 6-week-old wild-type mice pre-treated with 2 mg of DMPA were inoculated with 1000 FFU of ZIKV, Usutu virus (USUV), Spondweni virus (SPOV), or dengue virus (DENV3) by intravaginal instillation. Viral RNA was measured from vaginal washes by qRT-PCR.

207

208 **ZIKV infection in the vagina is localized to the epithelium.** To better define the location of the
209 cells targeted by ZIKV in the vagina, we treated wild-type mice with DMPA, infected them
210 intravaginally, and detected ZIKV RNA in vaginal tissue using RNAscope *in situ* hybridization
211 (Figure 6). ZIKV positive cells were infrequent and sporadically distributed in the vagina, but they
212 tended to be clusters of adjacent epithelial cells located along the vaginal lumen, with little staining
213 in the parenchyma. We detected ZIKV staining in 0 of 3 mice at 2 dpi, 1 of 2 at 4 dpi, 3 of 3 at 6
214 dpi, 2 of 2 at 8 dpi, and 0 of 5 at 10 dpi. The largest clusters of infected cells were detected at 6

Figure 6

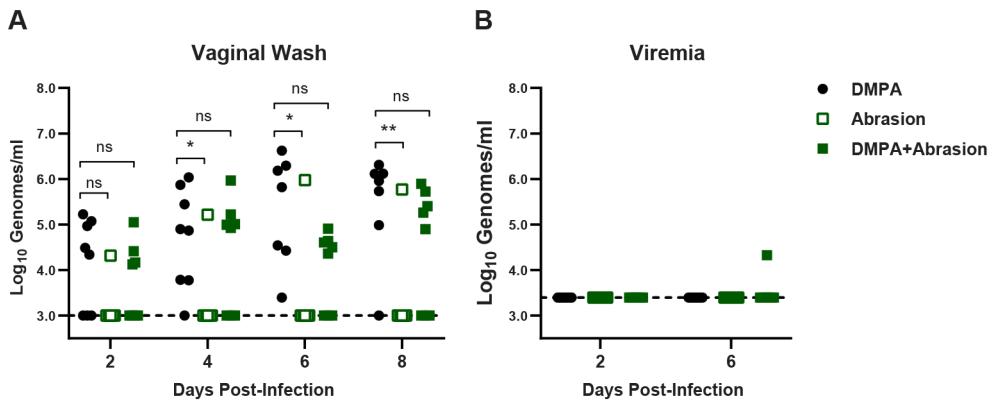


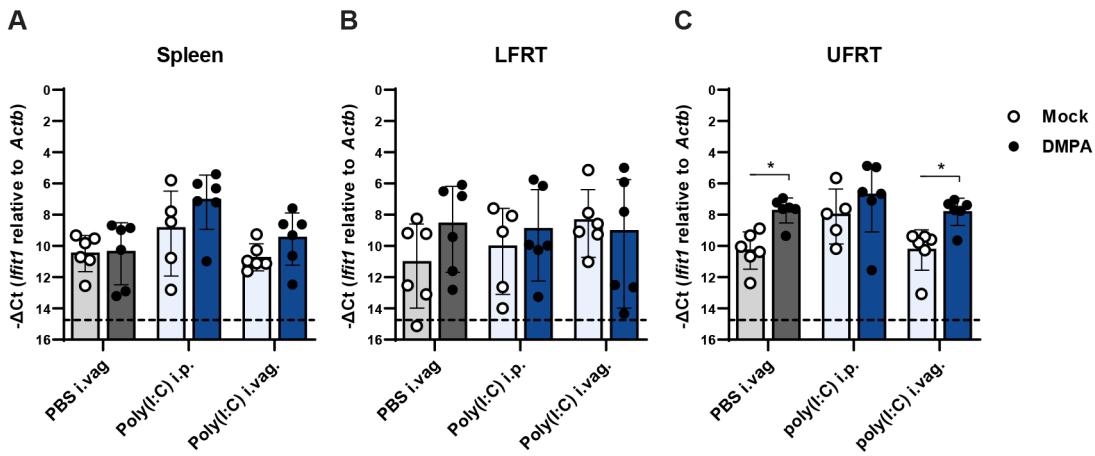
Figure 6: ZIKV targets vaginal epithelial cells. 5 to 6 week-old wild-type mice were treated with 2 mg of DMPA and 5 days later infected with 1000 FFU ZIKV intravaginally. Vaginal tissue was harvested 2 to 10 dpi, paraffin embedded, and adjacent sections were stained for ZIKV RNA or H&E. Each image is a single field at 20x (scale bar: 100 μ m).

215 dpi. There was no tendency for infected cells to be nearer to the cervix or nearer to the vaginal
216 opening. No sections from infected mice exhibited leukocyte infiltrate into to the vaginal tissue
217 relative to uninfected DMPA-treated mice. Altogether, these results indicate that ZIKV infection in
218 the vagina primarily targets epithelial cells, rather than the leukocytes that are the main targets of
219 ZIKV systemic infection (26, 27), and that infected cells are not associated with a pronounced
220 immune infiltrate.

221

222 **A physically compromised vaginal epithelial barrier is not sufficient to render wild-type**
223 **mice susceptible to ZIKV infection.** DMPA treatment induces a diestrus-like state in mice,
224 including a vaginal epithelium that is thinned and lacks extensive keratinization (7). Since we
225 found that ZIKV infects epithelial cells in the vagina, we hypothesized that a thinned epithelial
226 barrier is more easily targeted by ZIKV, explaining the requirement of DMPA for susceptibility of
227 wild-type and *Ifnar1*^{-/-} mice to vaginal ZIKV infection. To test whether an impaired epithelial barrier
228 could overcome the requirement for DMPA treatment, we abraded the vaginal epithelium of wild-
229 type mice with an interdental brush prior to intravaginal inoculation with 1000 FFU of ZIKV and
230 measured ZIKV RNA in vaginal washes by qRT-PCR. However, vaginal infection was only
231 detected in mice that were treated with DMPA, regardless of vaginal abrasion (Figure 7A)

Figure 7


Figure 7: Vaginal abrasion is not sufficient to sensitize WT mice to ZIKV intravaginal infection. 6 week old wild-type mice were treated with 2 mg of DMPA 5 days prior to inoculation, or vaginally abraded with an interdental brush immediately prior to inoculation with 1000 FFU ZIKV via vaginal instillation. Viral RNA in vaginal washes (A) or serum (B) was measured by qRT-PCR. Data represent 8 mice per group combined from 2 independent experiments. Abraded groups were compared to DMPA-only by two-way ANOVA, corrected for multiple comparisons (ns, not significant P >0.05; *, P <0.05; **, P <0.01).

232 suggesting that a disrupted epithelial barrier is not sufficient for productive ZIKV infection in the
233 vagina. Vaginal abrasion also did not facilitate ZIKV dissemination as ZIKV RNA was not detected
234 in serum even from abraded mice (Figure 7B). In DMPA-treated mice, abrasion did not result in
235 higher viral loads in vaginal washes, altogether suggesting that compromised epithelial barrier
236 integrity is not the mechanism by which DMPA treatment promotes vaginal ZIKV infection.

237

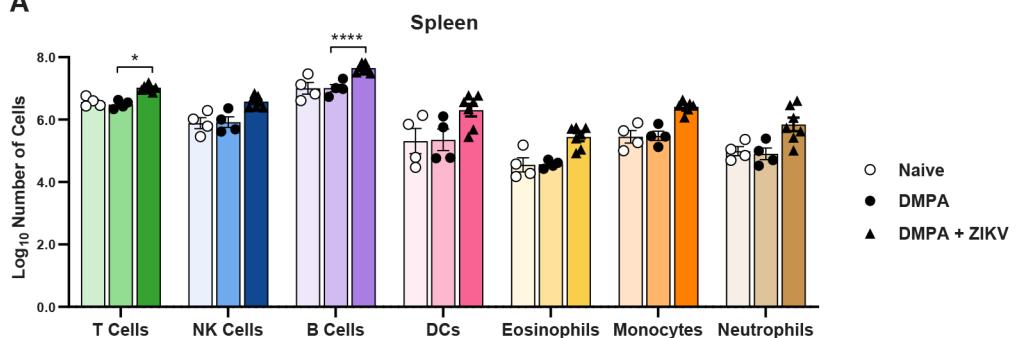
238 **DMPA treatment does not diminish ISG expression or induction.** We next considered
239 whether DMPA treatment might inhibit the basal expression or induction of IFN-stimulated genes
240 (ISGs) in the vagina, thereby permitting ZIKV replication. To test the effect of DMPA treatment on
241 vaginal ISG expression, we treated wild-type mice with DMPA or PBS then 4 days later
242 administered 50 µg of poly(I:C) intravaginally or intraperitoneally. One day after poly(I:C)
243 treatment, we harvested tissues and measured expression of the canonical ISG *Ifit1* by qRT-PCR.
244 We did not observe any DMPA-dependent change in *Ifit1* induction in the spleen or lower female
245 reproductive tract (LFRT, vagina and cervix) following intravaginal or intraperitoneal poly(I:C)

Figure 8

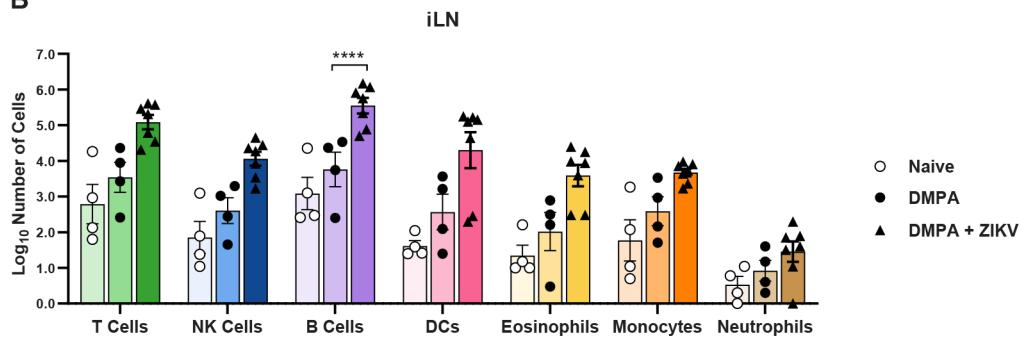
Figure 8: DMPA does not inhibit ISG expression. 5 to 6 week-old wild-type mice were treated with 2 mg of DMPA or PBS (mock). Four days later, mice were treated with 50 μ g of poly(I:C) intravaginally (i.vag.) or intraperitoneally (i.p.) or PBS i.vag. and tissues were harvested the following day. RNA was extracted from spleen (A), lower female reproductive tract (LFRT, vagina and cervix) (B), or upper female reproductive tract (UFRT, uterus and oviduct) (C). *Ifit1* expression was measured as $-\Delta Ct$ normalized to *Actb*. Mock and DMPA-treated groups were compared by Mann-Whitney with adjustment for multiple comparisons (*, $P < 0.05$).

246 treatment (Figure 8A and B). In the upper female reproductive tract (UFRT, uterus and oviduct),
247 DMPA increased *Ifit1* expression at baseline and induction in response to intravaginal poly(I:C)
248 treatment (Figure 8C). DMPA potentially could selectively regulate expression of some ISGs but
249 not *Ifit1*, or do so in response to viral infection but not poly(I:C) treatment, but our results do not
250 support a model where DMPA-induced susceptibility to vaginal ZIKV infection is due to a broad
251 inhibition of basal or induced ISG expression.

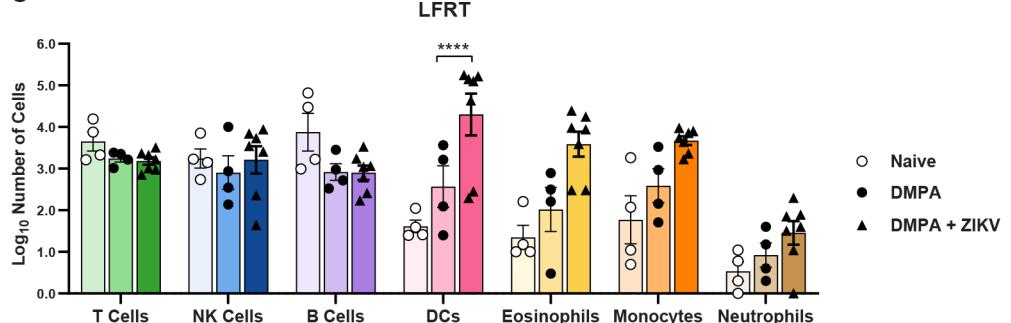
252


253 **DMPA treatment does not change vaginal or systemic leukocyte populations.** We next
254 considered whether DMPA might alter leukocyte populations in the vagina or systemically, which
255 could facilitate ZIKV infection by suppressing antiviral immunity or by recruiting susceptible target
256 cells to the site of infection. Wild-type mice were treated with DMPA alone, treated with DMPA
257 then infected with ZIKV intravaginally 5 days later, or left untreated. Six days after ZIKV infection
258 (11 days after DMPA treatment), cells were isolated from spleen, iliac lymph node, and LFRT.

259 Total


Figure 9

cell


A

B

C

Figure 9: DMPA treatment alone does not impact systemic or vaginal leukocyte populations. 5 to 6 week-old wild-type mice were left untreated, treated with 2 mg of DMPA, or treated with DMPA and 5 days later infected with 1000 FFU of ZIKV intravaginally. All mice were harvested 6 days after ZIKV infection (11 days after DMPA treatment). Cells were isolated from spleens, lymph node, and lower female reproductive tract, and analyzed by flow cytometry. Total cell counts were calculated for T cells, NK cells, B cells, dendritic cells (DCs), eosinophils, monocytes, and neutrophils (markers and gating as defined in methods). ZIKV infection caused an increase in the number of B cells in the spleen and iLN and T cells in the spleen (Figure 9A-B), and an

260 counts were calculated for T cells, NK cells, B cells, dendritic cells (DCs), eosinophils, monocytes,
261 and neutrophils (markers and gating as defined in methods). ZIKV infection caused an increase
262 in the number of B cells in the spleen and iLN and T cells in the spleen (Figure 9A-B), and an

263 increase in the number of DCs in the LFRT (Figure 9C) compared to DMPA treatment alone.
264 However, DMPA treatment alone caused no change in leukocyte populations in any of the tissues
265 analyzed compared to untreated mice. Although DMPA potentially could affect specific leukocyte
266 subsets not analyzed here, or affect activation states independently of cell numbers, our results
267 suggest that DMPA-induced susceptibility to vaginal ZIKV infection does not result from a
268 dramatic change in the immune milieu of the vagina.

269 Altogether, our data show that although wild-type mice generally do not support ZIKV
270 replication, the vagina is a unique site that supports the replication of ZIKV as well as other
271 flaviviruses. The ability of ZIKV to replicate in the vagina of wild-type mice requires a high
272 progesterone state (pregnancy or DMPA treatment) but the mechanism by which progesterone
273 promotes ZIKV vaginal infection remains unclear.

274

275 **DISCUSSION**

276 The emergence of ZIKV in Latin America in 2015-2016 not only revealed new severe
277 disease manifestations but also confirmed a prior report of sexual transmission as an additional
278 mode of transmission for ZIKV, making ZIKV the first arbovirus demonstrated to spread between
279 humans through sexual contact (1, 2). Although most ZIKV cases are presumed to be due to
280 transmission via mosquitoes, it is difficult to estimate to the extent to which sexual transmission
281 contributes to ZIKV transmission in areas with frequent and concurrent mosquito-borne
282 transmission. A retrospective study of ZIKV serology in Brazil found that cohabitating with a ZIKV-
283 seropositive sexual partner was associated with a 4-fold greater risk of also being seropositive
284 compared to cohabitating with a ZIKV-seronegative partner whereas cohabitating with a ZIKV-
285 seropositive non-sexual partner was associated with less than a 2-fold greater risk, supporting a
286 role for sexual transmission even in areas with mosquito-borne transmission (28). Sexual

287 transmission may thus have contributed to the high force of infection of ZIKV in this epidemic
288 even in Latin America where any ZIKV cases were presumed to have been acquired via mosquito.

289 Sexual transmission among humans appears to be an unusual property of ZIKV compared
290 to other flaviviruses, although the incidence and epidemiology of most flaviviruses precludes
291 certainty about the absence of sexual transmission. The best evidence that ZIKV is sexually
292 transmitted is travel-associated cases in the United States, Europe, and elsewhere, wherein
293 women without mosquito exposure became infected after their male partners returned from ZIKV-
294 endemic areas (2, 29-32). Of 5399 travel-associated ZIKV cases in the US 2015-2017, 52 resulted
295 in confirmed transmission to a sexual partner (33, 34). Though this represents only 1% of ZIKV
296 cases in the US resulting in forward sexual transmission, this is likely an underestimate of the rate
297 at which ZIKV-infected men transmit to their partners, since ~80% of ZIKV infections are
298 asymptomatic and screening has been focused on symptomatic women with travel-related
299 exposure. In contrast, DENV is the most prevalent human flavivirus infection, with an estimated
300 >100 million infections worldwide annually (35) but there have been only two recently-described
301 cases of DENV sexual transmission (36, 37) despite tens of thousands of travel-associated DENV
302 cases over the past >40 years (38-45). Our data in mice suggest that the vagina may be a
303 permissive site for replication of other flaviviruses, as we observed replication of other flaviviruses
304 (SPOV and USUV) that do not generally replicate in wild-type mice (21, 22). Since human
305 infections with those flaviviruses are rare (46, 47), it is not known whether they may share with
306 ZIKV the ability to spread through sexual transmission. It may be that there exists a subset of
307 flaviviruses capable of sexual transmission that have not yet been observed because of the lack
308 of a large enough outbreak for that to be detected. Sexual transmission would also require these
309 viruses to have tropism for the male reproductive tract as well as secretion into semen.
310 Interestingly, SPOV has been observed in semen in mice and to cause fetal pathology in mice,
311 though it has reduced tropism for the male reproductive tract compared to ZIKV (48, 49).

312 ZIKV pathogenesis often is modeled in *Ifnar1*^{-/-} mice to produce robust disseminated
313 infection, including via vaginal inoculation. Though others previously have observed productive
314 ZIKV vaginal infection in wild-type mice (8, 14, 50-52), these studies did not specifically
315 investigate the mechanisms that make the vagina an unusually susceptible site for ZIKV
316 replication in wild-type mice. We found that ZIKV replicates efficiently in the vagina of wild-type
317 mice as measured by viral RNA detectable in vaginal washes and cervix. Remarkably, wild-type
318 mice not only supported ZIKV replication in the vagina but they also sustained equivalent viral
319 loads in the vagina compared to *Ifnar1*^{-/-} mice throughout the course of infection. However, only
320 *Ifnar1*^{-/-} mice supported systemic infection. These data suggest different roles for IFN- $\alpha\beta$ in
321 controlling local ZIKV replication in the vagina versus the disseminated infection. We did not find
322 increased ZIKV replication in the vagina in mice lacking the IFN- λ receptor, contrasting with a
323 prior study reporting that IFN- λ plays a protective role against ZIKV infection in the female
324 reproductive tract (15). The design of the previous study differed from ours in several respects,
325 including using ovariectomized mice supplemented with hormones, treatment with an IFNAR1-
326 blocking antibody, and use of a mouse-adapted ZIKV strain, suggesting that any protective effect
327 of IFN- λ against vaginal ZIKV infection may be context specific.

328 Importantly, we found that a high progesterone state confers susceptibility to vaginal ZIKV
329 infection in both wild-type and *Ifnar1*^{-/-} mice, including high progesterone induced by pregnancy.
330 It is not clear to what extent sex hormones modulate susceptibility to ZIKV infection in humans,
331 though there is precedent for increased HIV susceptibility following progesterone treatment (53).
332 Likewise, progesterone increases susceptibility to HSV in mice (6, 54). The fact that pregnancy
333 in mice causes susceptibility to vaginal ZIKV infection could be important because the most
334 significant outcome of ZIKV infection is congenital infection after either mosquito-borne or sexual
335 transmission (55). The ability of ZIKV to spread sexually creates the potential for congenital
336 infection via an ascending transvaginal route, which would require the virus to cross distinct

337 anatomic and immunologic barriers compared to hematogenous transplacental transmission. It is
338 not known whether an alternative route of congenital infection would be associated with distinct
339 risks and outcomes to the developing fetus. Studies in non-human primates suggest that ZIKV
340 can spread to placenta and fetus following intravaginal inoculation, but the animals in these
341 studies also developed viremia so the route by which the virus spread to the placenta and fetus
342 is uncertain (56, 57).

343 We found that most ZIKV-infected cells in the vagina were epithelial cells and that there
344 did not appear to be a pronounced immune infiltrate present near sites of infection. The
345 observation that ZIKV infects vaginal epithelial has been reported in mice with impaired IFN- $\alpha\beta$
346 signaling (15). The fact that epithelial cells appear to be the cells primarily infected in vaginal
347 tissue is notable because ZIKV has particular tropism for myeloid cells in systemic infection (26,
348 27). These data suggest a role for vaginal epithelial cells as mediators of host protection at this
349 site of infection. As pregnant wild-type mice also did not exhibit ascending infection or congenital
350 infection, understanding the mechanisms by which epithelial cells and other cell types restrict
351 ZIKV spread will be important for understanding the risks of sexually transmitted ZIKV in the
352 context of congenital infection.

353 It previously has been reported that the LFRT expresses lower levels of viral RNA pattern
354 recognition receptors than UFRT, though this expression pattern was not affected by DMPA
355 treatment (8). Accordingly, we found that DMPA did not inhibit baseline or induced expression of
356 *Ifit1*, an antiviral ISG, either in the vagina or the spleen in response to pI:C. Our results suggest
357 that DMPA does not induce a global downregulation of ISG expression that would promote viral
358 infection.

359 The mechanism by which progesterone confers susceptibility to vaginal ZIKV infection in
360 wild-type mice remains unclear. High progesterone states such as DMPA treatment and diestrus
361 are associated with a thinner vaginal epithelium (7, 54, 58), but we found that vaginal abrasion

362 was not sufficient to permit ZIKV infection in the absence of DMPA treatment, so a compromised
363 epithelial barrier is unlikely to be the primary mechanism by which the vagina becomes
364 susceptible to ZIKV infection. The vaginal epithelium becomes more permeable to leukocytes and
365 microbiota following administration of exogenous progesterone, neutrophil abundance in the
366 vagina increases during diestrus, and progesterone can skew the immune response away from a
367 Th1 towards a Th2 response (54, 59, 60). However, we did not observe a significant change in
368 leukocyte populations systemically or in vaginal tissue after DMPA treatment. Although DMPA
369 potentially could affect specific leukocyte subsets not analyzed here, or affect activation states
370 independently of cell numbers, our results suggest that DMPA-induced susceptibility to vaginal
371 ZIKV infection does not result from a dramatic change in the immune milieu of the vagina. The
372 lack of immune cell infiltrate after DMPA treatment is consistent with prior observations that sex
373 hormones alone do not modulate large changes in immune cell profiles within the LFRT in the
374 absence of infection (61).

375 Altogether, our results demonstrate that the vagina is an unusually permissive site for
376 ZIKV replication in wild-type mice, but this susceptibility is dependent upon a high-progesterone
377 state, even in immunocompromised mice. The mechanism by which progesterone confers ZIKV
378 susceptibility remains unclear but could include structural changes to the vaginal lumen or
379 epithelial barrier, local or systemic immunomodulatory effects, or direct effects on viral replication
380 in epithelial cells. DMPA treatment is a key component of mouse vaginal infection models for
381 other pathogens, such as HSV and *Chlamydia*, but the mechanisms by which DMPA increases
382 susceptibility to those pathogens also remain poorly defined. Thus, understanding how
383 progesterone mediates susceptibility to ZIKV vaginal infection may provide insights into host
384 mechanisms that influence susceptibility to diverse sexually transmitted pathogens.

385

386

387 **MATERIALS & METHODS**

388 **Cells and viruses.** Vero cells were maintained in Dulbecco's modified Eagle Media (DMEM)
389 supplemented with 5% heat-inactivated fetal bovine serum (FBS) and L-glutamine at 37°C with
390 5% CO₂. ZIKV strain H/PF/2013 was obtained from the U.S. Centers for Disease Control and
391 Prevention (62). SPOV strain SA AR 94 and USUV SA AR 1776 were obtained from the World
392 Reference Center for Emerging Viruses and Arboviruses (63, 64). DENV3 WHO reference strain
393 (CH54389) was obtained from Dr. Aravinda de Silva (UNC), RUBV strain M33 from Dr. Michael
394 Rossman (Purdue University) (65) and liver homogenate from HAV infected mice from Dr. Stanley
395 Lemon (UNC) (24).

396 Virus stocks were grown in Vero cells in DMEM supplemented with 2% FBS and HEPES
397 and titered by focus forming assay (FFA) (66). Virus was serially diluted in duplicate in DMEM
398 supplemented with 2% FBS and HEPES and added to confluent Vero cells in 96 well plates for
399 1-3 hours at 37°C with 5% CO₂ before being overlaid with 1% methylcellulose in minimum
400 essential Eagle medium (MEM) supplemented with 2% FBS, HEPES, and penicillin and
401 streptomycin. Cells were then incubated for 40-45 hours at 37°C with 5% CO₂ before being fixed
402 with 2% paraformaldehyde for 1 hour at room temperature. Cells were then rinsed off with 0.05%
403 Tween-20 in PBS and then incubated for 2 hours at room temperature or overnight at 4°C with
404 1µg/ml of the flavivirus cross-reactive antibody mE60 (67) in 0.1% saponin and 0.1% bovine
405 serum albumin to permeabilize cells. Following another rinse, cells were then incubated in a
406 1:5000 dilution of a horseradish peroxidase (HRP) conjugated goat anti-mouse IgG (Sigma).
407 Titration of RUBV was performed similarly but with a polyclonal anti-RUBV goat IgG at 1:4000
408 (LifeSpan BioSciences, LS-C103273) and a HRP conjugated anti-goat IgG at 1:5000 (Sigma).
409 Color was developed for 30 minutes in TrueBlue substrate (KPL). Foci were quantified using a
410 CTL Immunospot.

411 UV-inactivated ZIKV was generated by placing 0.2mL ZIKV H/PF/2013 at 1×10^6 FFU/mL
412 in a petri dish and exposing to UV light at 0.9999 J/cm² in an HL-2000 HybriLinker (UVP
413 Laboratory Products) for 10 minutes at room temperature. Mock-inactivated ZIKV was generated
414 similarly but placed under light in a tissue culture hood instead of UV light. Inactivation was
415 confirmed by amplifying UV- and mock-treated virus stocks on Vero cells for 4 days and then
416 titering by FFA.

417 **Mouse infections.** All mouse husbandry and experiments were performed with approval of the
418 University of North Carolina at Chapel Hill's Institutional Animal Care and Use Committee. All
419 mice were on a C57BL/6J background. *Ifnar1*^{-/-} mice were all bred in-house and wild-type mice
420 were either bred on site or purchased from The Jackson Laboratory. Unless otherwise indicated,
421 5-10 week old female mice were subcutaneously injected with 2mg depot medroxyprogesterone
422 acetate (DMPA) obtained via the UNC pharmacy, diluted in 100 μ l of PBS. Five days later, mice
423 were challenged with 1000 FFU of virus in 5 μ l via vaginal instillation or 50 μ l via footpad. Vaginal
424 abrasion was accomplished by scrubbing the vagina of anesthetized mice with interdental
425 brushes (GUM Proxabrush Go-Betweens tight-sized cleaners) a total of 10 combined full rotations
426 and insertions as previously described (68).

427 Vaginal washes were collected in a total of 100 μ l by twice pipetting 50 μ l of PBS with 0.4x
428 protease inhibitor (cComplete, EDTA-free) into the vagina and collecting immediately, every 2 days
429 after infection. Blood was collected into serum blood collection tubes (BD) days 2 and 6 after
430 infection via submandibular bleed with a 5 mm Goldenrod lancet or via terminal bleed cardiac
431 puncture. Serum was separated at 8000 rpm for 5 minutes. Tissues were collected from mice
432 after euthanasia by isoflurane overdose, cardiac bleed, and perfusion with 5-10 mL of PBS.
433 Tissues, vaginal washes, and serum were stored at -80°C until RNA extraction.

434 For experiments investigating the responsiveness of tissues to immunogenic RNA, we first
435 treated 5-6 week old mice with either PBS or 2mg DMPA subcutaneously. Four days later, mice

436 were treated with 50 µg polyinosinic:polycytidylic acid (poly(I:C)), low molecular weight
437 (Invivogen, TLR1-Picw) either intraperitoneally in 100µL or intravaginally in 20µL.

438 **Generation of IFN-λ receptor knock out mice.** Mice with a floxed allele of the IFN-λ receptor
439 (*Ifnlr1^{f/f}*) were received from Dr. Herbert Virgin (Washington University in St. Louis). *Ifnlr1^{f/f}* mice
440 were crossed with mice expressing Cre recombinase under the β-actin promoter (Jackson Labs
441 # 019099, obtained from Dr. Jenny Ting, UNC) to generate *Ifnlr1^{f/f}* mice with ubiquitous Cre
442 recombinase expression from a hemizygous Cre allele (resulting in *Ifnlr1^{+/−}*). These mice were
443 then crossed with *Ifnlr1^{f/f}* mice to generate litters in which 50% of pups lacked IFN-λ signaling
444 (*Ifnlr1^{+/−}*, Cre+) and 50% retained it (*Ifnlr1^{+/−}*, Cre-). Vaginal infection experiments were conducted
445 in a blinded manner, as genotyping for Cre and *Ifnlr1* was performed after the experiment was
446 completed.

447 **qRT-PCR.** RNA from vaginal washes and serum was extracted with the Qiagen viral RNA minikit.
448 RNA from tissues was extracted with the Qiagen RNeasy minikit after homogenization in a
449 MagNA Lyser instrument (Roche Life Science) with zirconia beads (BioSpec) in 600µL PBS
450 followed by incubation at room temperature for 10 minutes in an equal volume RLT buffer for lysis.
451 Viral genomes were quantified by Taqman one-step qRT-PCR on a CFX96 Touch real-time PCR
452 detection system (BioRad) and were reported on a log₁₀ scale measured against standard curves
453 from either a ZIKV A-plasmid as previously described (69), or from 400 bp gBlock double stranded
454 DNA fragments (Integrated DNA Technologies, IDT). ZIKV RNA was quantified as previously
455 published (70) and other viruses with the gBlocks and primers in Tables 1 and 2. To measure the
456 expression of *Ifit1* in each tissue, the difference in Ct values between *Ifit1* and *ActB* as a
457 housekeeping gene was calculated for each tissue sample and plotted as -ΔCt.

458 **In situ hybridization.** Tissues were collected from euthanized mice after exsanguination by
459 cardiac puncture and perfusion with 10 mL of PBS followed by 10 mL of 10% neutral buffered
460 formalin (NBF). Tissues were then stored overnight in 1mL of 10% NBF at 4°C before being

461 transferred to PBS at 4°C for longer term storage. Tissues were paraffin embedded and 5µm
462 sections stained with a ZIKV-specific RNA probe (Advanced Cell Diagnostics #467871) and a
463 hematoxylin counter-stain. Positive and negative staining controls for RNA-specific staining were
464 confirmed with probes against peptidyl-prolyl cis-isomerase B (PPIB, #321651) and
465 dihydrodipicolinate reductase (dapB, #320751) as recommended by the manufacturer. Tissue
466 processing, histology, and RNAscope was performed by the UNC Histology Research Core
467 Facility.

468 **Flow cytometry.** Spleens and iliac lymph nodes (iLNs) were mechanically dissociated and red
469 blood cells were lysed using RBC lysis buffer (0.84% NH4Cl in PBS). Cells were pelleted by
470 centrifugation and resuspend in media (RPMI 1640 with 1% FBS). Cells were filtered through a
471 70 µm cell strainer to make a single-cell suspension. LFRT tissue was excised, minced with
472 scissors, and digested in HBSS (with Ca²⁺ and Mg²⁺) containing 1 mg/mL Collagenase I and 0.05
473 mg/mL DNase I for 60min at 37°C in a shaking incubator. After incubation, 1mL FBS was added
474 to stop digestion and cells were serially filtered through a 40- and 70-µm cell strainer and washed
475 with HBSS (with Ca²⁺ and Mg²⁺). Cells were resuspended in media at a concentration of 1x10⁷
476 cells/mL for flow cytometric analysis.

477 Isolated cells were stained in PBS with 1% FBS for 20–30 min in the dark on ice. Fc
478 receptor blockade was performed with anti-CD16/32 mAb prior to surface staining. Dead cells
479 were excluded from analysis using Zombie UV (BioLegend). Cells were fixed in 2%
480 paraformaldehyde, and samples were acquired using an LSRII flow cytometer (BD Biosciences).
481 Data were analyzed using FlowJo software (Tree Star). The following antibodies were used in this
482 study: anti-CD16/32 (clone 2.4G2; BD Biosciences), anti-CD45 AF700 (clone 30-F11;
483 BioLegend), anti-CD3e APC-Fire/750 (clone 17A2; BioLegend), anti-CD19 PE-Cy7 (clone 6D5;
484 BioLegend), anti-NK1.1 PE (clone PK136; BioLegend), anti-CD11b APC (clone M1/70;
485 BioLegend), anti-CD11c BV650 (clone N418; BioLegend), anti-Ly6G FITC (clone IA8;

486 BioLegend), and anti-Ly6C BV605 (clone HK1.4; BioLegend). The following markers were used
487 to identify immune cell populations: T cells (CD45+CD3e+), B cells (CD45+CD19+), NK cells
488 (CD45+NK1.1+), dendritic cells (CD45+CD11c+), neutrophils (CD45+CD11b+Ly6G+), and
489 monocytes (CD45+CD11b+Ly6G-Ly6C+/-).

490 **Statistical analysis.** Statistical tests were performed with Graphpad Prism 9.0. Tests used
491 include unpaired multiple Mann-Whitney analyses with the Holm-Šídák method and two-way
492 ANOVA with matched time points where multiple time points of the same mouse were taken, the
493 Geisser-Greenhouse correction for lack of sphericity, comparison to control cell means, and the
494 Dunnett correction for multiple comparisons.

495

496 **ACKNOWLEDGEMENTS**

497 This work was supported by R21 AI144631 (H.M.L.) and start-up funds from UNC Chapel Hill
498 Department of Microbiology & Immunology and the Lineberger Comprehensive Cancer Center.
499 H.M.L. holds an Investigators in the Pathogenesis of Infectious Disease Award from the
500 Burroughs Wellcome Fund. C.A.L. was supported by F31 AI143237; S.J.D. was supported by
501 K12 GM000678. Histology services were provided by the UNC Histology Research Core Facility.
502 The UNC Flow Cytometry Core Facility is supported in part by P30 CA016086 Cancer Center
503 Core Support Grant to the UNC Lineberger Comprehensive Cancer Center.

504

505 **REFERENCES**

- 506 1. Pierson TC, Diamond MS. 2018. The emergence of Zika virus and its new clinical
507 syndromes. *Nature* 560:573-581.
- 508 2. Blitvich BJ, Magalhaes T, Laredo-Tiscareno SV, Foy BD. 2020. Sexual
509 Transmission of Arboviruses: A Systematic Review. *Viruses* 12:933.
- 510 3. Foy BD, Kobylinski KC, Chilson Foy JL, Blitvich BJ, Travassos da Rosa A, Haddow
511 AD, Lanciotti RS, Tesh RB. 2011. Probable non-vector-borne transmission of Zika
512 virus, Colorado, USA. *Emerg Infect Dis* 17:880-2.

513 4. Kaushic C, Ashkar AA, Reid LA, Rosenthal KL. 2003. Progesterone increases
514 susceptibility and decreases immune responses to genital herpes infection. *J Virol*
515 77:4558-65.

516 5. Kaushic C, Zhou F, Murdin AD, Wira CR. 2000. Effects of estradiol and
517 progesterone on susceptibility and early immune responses to Chlamydia
518 trachomatis infection in the female reproductive tract. *Infect Immun* 68:4207-16.

519 6. Gillgrass AE, Fernandez SA, Rosenthal KL, Kaushic C. 2005. Estradiol regulates
520 susceptibility following primary exposure to genital herpes simplex virus type 2,
521 while progesterone induces inflammation. *J Virol* 79:3107-16.

522 7. Tang WW, Young MP, Mamidi A, Regla-Nava JA, Kim K, Shresta S. 2016. A
523 Mouse Model of Zika Virus Sexual Transmission and Vaginal Viral Replication.
524 *Cell Rep* 17:3091-3098.

525 8. Khan S, Lew I, Wu F, Fritts L, Fontaine KA, Tomar S, Trapecar M, Shehata HM,
526 Ott M, Miller CJ, Sanjabi S. 2019. Low expression of RNA sensors impacts Zika
527 virus infection in the lower female reproductive tract. *Nat Commun* 10:4344.

528 9. Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, Sourisseau M,
529 Schwarz MC, Sanchez-Seco MP, Evans MJ, Best SM, Garcia-Sastre A. 2016. Zika
530 Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling. *Cell Host*
531 *Microbe* 19:882-90.

532 10. Tripathi S, Balasubramaniam VR, Brown JA, Mena I, Grant A, Bardina SV,
533 Maringer K, Schwarz MC, Maestre AM, Sourisseau M, Albrecht RA, Krammer F,
534 Evans MJ, Fernandez-Sesma A, Lim JK, Garcia-Sastre A. 2017. A novel Zika virus
535 mouse model reveals strain specific differences in virus pathogenesis and host
536 inflammatory immune responses. *PLoS Pathog* 13:e1006258.

537 11. Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, Diamond MS.
538 2016. A Mouse Model of Zika Virus Pathogenesis. *Cell Host Microbe* 19:720-30.

539 12. Uraki R, Jurado KA, Hwang J, Szigeti-Buck K, Horvath TL, Iwasaki A, Fikrig E.
540 2017. Fetal Growth Restriction Caused by Sexual Transmission of Zika Virus in
541 Mice. *J Infect Dis* 215:1720-1724.

542 13. Yockey LJ, Jurado KA, Arora N, Millet A, Rakib T, Milano KM, Hastings AK, Fikrig
543 E, Kong Y, Horvath TL, Weatherbee S, Kliman HJ, Coyne CB, Iwasaki A. 2018.
544 Type I interferons instigate fetal demise after Zika virus infection. *Sci Immunol* 3.

545 14. Yockey LJ, Varela L, Rakib T, Khoury-Hanold W, Fink SL, Stutz B, Szigeti-Buck K,
546 Van den Pol A, Lindenbach BD, Horvath TL, Iwasaki A. 2016. Vaginal Exposure
547 to Zika Virus during Pregnancy Leads to Fetal Brain Infection. *Cell* 166:1247-1256
548 e4.

549 15. Caine EA, Scheaffer SM, Arora N, Zaitsev K, Artyomov MN, Coyne CB, Moley KH,
550 Diamond MS. 2019. Interferon lambda protects the female reproductive tract
551 against Zika virus infection. *Nat Commun* 10:280.

552 16. Winkler CW, Myers LM, Woods TA, Messer RJ, Carmody AB, McNally KL, Scott
553 DP, Hasenkrug KJ, Best SM, Peterson KE. 2017. Adaptive Immune Responses to
554 Zika Virus Are Important for Controlling Virus Infection and Preventing Infection in
555 Brain and Testes. *J Immunol* 198:3526-3535.

556 17. Smith DR, Hollidge B, Daye S, Zeng X, Blancett C, Kuszpit K, Bocan T, Koehler
557 JW, Coyne S, Minogue T, Kenny T, Chi X, Yim S, Miller L, Schmaljohn C, Bavari
558 S, Golden JW. 2017. Neuropathogenesis of Zika Virus in a Highly Susceptible

559 Immunocompetent Mouse Model after Antibody Blockade of Type I Interferon.
560 PLoS Negl Trop Dis 11:e0005296.

561 18. Lazear HM, Schoggins JW, Diamond MS. 2019. Shared and Distinct Functions of
562 Type I and Type III Interferons. *Immunity* 50:907-923.

563 19. Ank N, West H, Bartholdy C, Eriksson K, Thomsen AR, Paludan SR. 2006.
564 Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and
565 displays potent antiviral activity against select virus infections in vivo. *J Virol*
566 80:4501-9.

567 20. Holinka CF, Tseng YC, Finch CE. 1979. Reproductive aging in C57BL/6J mice:
568 plasma progesterone, viable embryos and resorption frequency throughout
569 pregnancy. *Biol Reprod* 20:1201-11.

570 21. Salazar V, Jagger BW, Mongkolsapaya J, Burgomaster KE, Dejnirattisai W,
571 Winkler ES, Fernandez E, Nelson CA, Fremont DH, Pierson TC, Crowe JE, Jr.,
572 Sreaton GR, Diamond MS. 2019. Dengue and Zika Virus Cross-Reactive Human
573 Monoclonal Antibodies Protect against Spondweni Virus Infection and
574 Pathogenesis in Mice. *Cell Rep* 26:1585-1597 e4.

575 22. Blazquez AB, Escribano-Romero E, Martin-Acebes MA, Petrovic T, Saiz JC. 2015.
576 Limited susceptibility of mice to Usutu virus (USUV) infection and induction of
577 flavivirus cross-protective immunity. *Virology* 482:67-71.

578 23. Chen RE, Diamond MS. 2020. Dengue mouse models for evaluating pathogenesis
579 and countermeasures. *Curr Opin Virol* 43:50-58.

580 24. Hirai-Yuki A, Hensley L, McGivern DR, Gonzalez-Lopez O, Das A, Feng H, Sun L,
581 Wilson JE, Hu F, Feng Z, Lovell W, Misumi I, Ting JP, Montgomery S, Cullen J,
582 Whitmire JK, Lemon SM. 2016. MAVS-dependent host species range and
583 pathogenicity of human hepatitis A virus. *Science* 353:1541-1545.

584 25. Casazza RL, Philip DT, Lazear HM. 2022. Interferon lambda signals in maternal
585 tissues to exert protective and pathologic effects in a gestational-stage dependent
586 manner. *bioRxiv* doi:10.1101/2022.01.04.475019.

587 26. Michlmayr D, Andrade P, Gonzalez K, Balmaseda A, Harris E. 2017.
588 CD14(+)CD16(+) monocytes are the main target of Zika virus infection in
589 peripheral blood mononuclear cells in a paediatric study in Nicaragua. *Nat
590 Microbiol* 2:1462-1470.

591 27. McDonald EM, Anderson J, Wilusz J, Ebel GD, Brault AC. 2020. Zika Virus
592 Replication in Myeloid Cells during Acute Infection Is Vital to Viral Dissemination
593 and Pathogenesis in a Mouse Model. *J Virol* 94:e00838-20.

594 28. Magalhaes T, Morais CNL, Jacques I, Azevedo EAN, Brito AM, Lima PV, Carvalho
595 GMM, Lima ARS, Castanha PMS, Cordeiro MT, Oliveira ALS, Jaenisch T, Lamb
596 MM, Marques ETA, Foy BD. 2021. Follow-Up Household Serosurvey in Northeast
597 Brazil for Zika Virus: Sexual Contacts of Index Patients Have the Highest Risk for
598 Seropositivity. *J Infect Dis* 223:673-685.

599 29. Hills SL, Russell K, Hennessey M, Williams C, Oster AM, Fischer M, Mead P. 2016.
600 Transmission of Zika Virus Through Sexual Contact with Travelers to Areas of
601 Ongoing Transmission - Continental United States, 2016. *Mmwr-Morbidity and
602 Mortality Weekly Report* 65:215-216.

603 30. D'Ortenzio E, Matheron S, Yazdanpanah Y, de Lamballerie X, Hubert B,
604 Piorkowski G, Maquart M, Descamps D, Damond F, Leparc-Goffart I. 2016.
605 Evidence of Sexual Transmission of Zika Virus. *N Engl J Med* 374:2195-8.
606 31. Armstrong P, Hennessey M, Adams M, Cherry C, Chiu S, Harrist A, Kwit N, Lewis
607 L, McGuire DO, Oduyebo T, Russell K, Talley P, Tanner M, Williams C, Zika Virus
608 Response E, Laboratory T. 2016. Travel-Associated Zika Virus Disease Cases
609 Among U.S. Residents--United States, January 2015-February 2016. *MMWR*
610 *Morb Mortal Wkly Rep* 65:286-9.
611 32. Venturi G, Zammarchi L, Fortuna C, Remoli ME, Benedetti E, Fiorentini C, Trotta
612 M, Rizzo C, Mantella A, Rezza G, Bartoloni A. 2016. An autochthonous case of
613 Zika due to possible sexual transmission, Florence, Italy, 2014. *Euro Surveill*
614 21:30148.
615 33. Wilder-Smith A, Chang CR, Leong WY. 2018. Zika in travellers 1947-2017: a
616 systematic review. *J Travel Med* 25.
617 34. Centers for Disease Control and Prevention. Zika cases in the United States.
618 <https://www.cdc.gov/zika/reporting/index.html>. Accessed 2/3/2022.
619 35. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM,
620 Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR,
621 Simmons CP, Scott TW, Farrar JJ, Hay SI. 2013. The global distribution and
622 burden of dengue. *Nature* 496:504-7.
623 36. Lee C, Lee H. 2019. Probable female to male sexual transmission of dengue virus
624 infection. *Infect Dis (Lond)* 51:150-152.
625 37. Liew CH. 2020. The first case of sexual transmission of dengue in Spain. *J Travel*
626 *Med* 27:taz087.
627 38. Mohammed HP, Ramos MM, Rivera A, Johansson M, Munoz-Jordan JL, Sun W,
628 Tomashek KM. 2010. Travel-associated dengue infections in the United States,
629 1996 to 2005. *J Travel Med* 17:8-14.
630 39. Centers for Disease C, Prevention. 2010. Travel-associated Dengue surveillance
631 - United States, 2006-2008. *MMWR Morb Mortal Wkly Rep* 59:715-9.
632 40. Wichmann O, Gascon J, Schunk M, Puente S, Siikamaki H, Gjorup I, Lopez-Velez
633 R, Clerinx J, Peyerl-Hoffmann G, Sundoy A, Genton B, Kern P, Calleri G, de
634 Gorgolas M, Muhlberger N, Jelinek T, European Network on Surveillance of
635 Imported Infectious D. 2007. Severe dengue virus infection in travelers: risk factors
636 and laboratory indicators. *J Infect Dis* 195:1089-96.
637 41. Wilder-Smith A, Schwartz E. 2005. Dengue in travelers. *N Engl J Med* 353:924-32.
638 42. Jelinek T, Muhlberger N, Harms G, Corachan M, Grobusch MP, Knobloch J,
639 Bronner U, Laferl H, Kapaun A, Bisoffi Z, Clerinx J, Puente S, Fry G, Schulze M,
640 Hellgren U, Gjorup I, Chalupa P, Hatz C, Matteelli A, Schmid M, Nielsen LN, da
641 Cunha S, Atouguia J, Myrvang B, Fleischer K, European Network on Imported
642 Infectious Disease S. 2002. Epidemiology and clinical features of imported dengue
643 fever in Europe: sentinel surveillance data from TropNetEurop. *Clin Infect Dis*
644 35:1047-52.
645 43. Rigau-Perez JG, Gubler DJ, Vorndam AV, Clark GG. 1997. Dengue: A Literature
646 Review and Case Study of Travelers from the United States, 1986-1994. *J Travel*
647 *Med* 4:65-71.

648 44. Centers for Disease C. 1987. Imported and indigenous dengue fever--United
649 States, 1986. MMWR Morb Mortal Wkly Rep 36:551-4.

650 45. Gossner CM, Fournet N, Frank C, Fernandez-Martinez B, Del Manso M, Gomes
651 Dias J, de Valk H. 2022. Dengue virus infections among European travellers, 2015
652 to 2019. Euro Surveill 27:2001937.

653 46. Haddow AD, Woodall JP. 2016. Distinguishing between Zika and Spondweni
654 viruses. Bull World Health Organ 94:711-711A.

655 47. Cle M, Beck C, Salinas S, Lecollinet S, Gutierrez S, Van de Perre P, Baldet T,
656 Foulongne V, Simonin Y. 2019. Usutu virus: A new threat? Epidemiol Infect
657 147:e232.

658 48. McDonald EM, Duggal NK, Brault AC. 2017. Pathogenesis and sexual
659 transmission of Spondweni and Zika viruses. PLoS Negl Trop Dis 11:e0005990.

660 49. Jaeger AS, Weiler AM, Moriarty RV, Rybarczyk S, O'Connor SL, O'Connor DH,
661 Seelig DM, Fritsch MK, Friedrich TC, Aliota MT. 2020. Spondweni virus causes
662 fetal harm in Ifnar1(-/-) mice and is transmitted by Aedes aegypti mosquitoes.
663 Virology 547:35-46.

664 50. Scott JM, Lebratti TJ, Richner JM, Jiang X, Fernandez E, Zhao H, Fremont DH,
665 Diamond MS, Shin H. 2018. Cellular and Humoral Immunity Protect against
666 Vaginal Zika Virus Infection in Mice. J Virol 92:e00038-18.

667 51. Khan S, Woodruff EM, Trapecar M, Fontaine KA, Ezaki A, Borbet TC, Ott M,
668 Sanjabi S. 2016. Dampened antiviral immunity to intravaginal exposure to RNA
669 viral pathogens allows enhanced viral replication. J Exp Med 213:2913-2929.

670 52. Hastings AK, Yockey LJ, Jagger BW, Hwang J, Uraki R, Gaitsch HF, Parnell LA,
671 Cao B, Mysorekar IU, Rothlin CV, Fikrig E, Diamond MS, Iwasaki A. 2017. TAM
672 Receptors Are Not Required for Zika Virus Infection in Mice. Cell Rep 19:558-568.

673 53. Ferreira VH, Dizzell S, Nazli A, Kafka JK, Mueller K, Nguyen PV, Tremblay MJ,
674 Cochrane A, Kaushic C. 2015. Medroxyprogesterone Acetate Regulates HIV-1
675 Uptake and Transcytosis but Not Replication in Primary Genital Epithelial Cells,
676 Resulting in Enhanced T-Cell Infection. J Infect Dis 211:1745-56.

677 54. Quispe Calla NE, Vicetti Miguel RD, Boyaka PN, Hall-Stoodley L, Kaur B, Trout W,
678 Pavelko SD, Cherpes TL. 2016. Medroxyprogesterone acetate and levonorgestrel
679 increase genital mucosal permeability and enhance susceptibility to genital herpes
680 simplex virus type 2 infection. Mucosal Immunol 9:1571-1583.

681 55. Yarrington CD, Hamer DH, Kuohung W, Lee-Parritz A. 2019. Congenital Zika
682 syndrome arising from sexual transmission of Zika virus, a case report. Fertil Res
683 Pract 5:1.

684 56. Gurung S, Nadeau H, Maxted M, Peregrine J, Reuter D, Norris A, Edwards R,
685 Hyatt K, Singleton K, Papin JF, Myers DA. 2020. Maternal Zika Virus (ZIKV)
686 Infection following Vaginal Inoculation with ZIKV-Infected Semen in Timed-
687 Pregnant Olive Baboons. J Virol 94:e00058-20.

688 57. Newman CM, Tarantal AF, Martinez ML, Simmons HA, Morgan TK, Zeng X,
689 Rosinski JR, Bliss MI, Bohm EK, Dudley DM, Aliota MT, Friedrich TC, Miller CJ,
690 O'Connor DH. 2021. Early Embryonic Loss Following Intravaginal Zika Virus
691 Challenge in Rhesus Macaques. Front Immunol 12:686437.

692 58. Pessina MA, Hoyt RF, Jr., Goldstein I, Traish AM. 2006. Differential effects of
693 estradiol, progesterone, and testosterone on vaginal structural integrity.
694 *Endocrinology* 147:61-9.

695 59. Miyaura H, Iwata M. 2002. Direct and indirect inhibition of Th1 development by
696 progesterone and glucocorticoids. *J Immunol* 168:1087-94.

697 60. Piccinni MP, Giudizi MG, Biagiotti R, Beloni L, Giannarini L, Sampognaro S,
698 Parronchi P, Manetti R, Annunziato F, Livi C, et al. 1995. Progesterone favors the
699 development of human T helper cells producing Th2-type cytokines and promotes
700 both IL-4 production and membrane CD30 expression in established Th1 cell
701 clones. *J Immunol* 155:128-33.

702 61. Patton DL, Thwin SS, Meier A, Hooton TM, Stapleton AE, Eschenbach DA. 2000.
703 Epithelial cell layer thickness and immune cell populations in the normal human
704 vagina at different stages of the menstrual cycle. *Am J Obstet Gynecol* 183:967-
705 73.

706 62. Baronti C, Piorkowski G, Charrel RN, Boubis L, Leparc-Goffart I, de Lamballerie
707 X. 2014. Complete coding sequence of zika virus from a French polynesia
708 outbreak in 2013. *Genome Announc* 2:e00500-14.

709 63. Kokernot RH, Smithburn KC, Muspratt J, Hodgson B. 1957. Studies on arthropod-
710 borne viruses of Tongaland. VIII. Spondweni virus, an agent previously unknown,
711 isolated from *Taeniorhynchus (Mansonioides) uniformis*. *S Afr J Med Sci* 22:103-
712 12.

713 64. Williams MC, Simpson DI, Haddow AJ, Knight EM. 1964. The Isolation of West
714 Nile Virus from Man and of Usutu Virus from the Bird-Biting Mosquito *Mansonia*
715 *Aurites* (Theobald) in the Entebbe Area of Uganda. *Ann Trop Med Parasitol*
716 58:367-74.

717 65. Mangala Prasad V, Klose T, Rossmann MG. 2017. Assembly, maturation and
718 three-dimensional helical structure of the teratogenic rubella virus. *PLoS Pathog*
719 13:e1006377.

720 66. Brien JD, Lazear HM, Diamond MS. 2013. Propagation, quantification, detection,
721 and storage of West Nile virus. *Curr Protoc Microbiol* 31:15D 3 1-15D 3 18.

722 67. Oliphant T, Nybakken GE, Engle M, Xu Q, Nelson CA, Sukupolvi-Petty S, Marri A,
723 Lachmi BE, Olshevsky U, Fremont DH, Pierson TC, Diamond MS. 2006. Antibody
724 recognition and neutralization determinants on domains I and II of West Nile Virus
725 envelope protein. *J Virol* 80:12149-59.

726 68. Oh JE, Iijima N, Song E, Lu P, Klein J, Jiang R, Kleinstein SH, Iwasaki A. 2019.
727 Migrant memory B cells secrete luminal antibody in the vagina. *Nature* 571:122-
728 126.

729 69. Widman DG, Young E, Yount BL, Plante KS, Gallichotte EN, Carbaugh DL, Peck
730 KM, Plante J, Swanstrom J, Heise MT, Lazear HM, Baric RS. 2017. A Reverse
731 Genetics Platform That Spans the Zika Virus Family Tree. *mBio* 8:e02014-16.

732 70. Carbaugh DL, Baric RS, Lazear HM. 2019. Envelope Protein Glycosylation
733 Mediates Zika Virus Pathogenesis. *J Virol* 93:e00113-19.

734

735 **FIGURE LEGENDS**

736 **Figure 1: WT mice are susceptible to ZIKV vaginal infection.** 6 to 7 week-old mice were pre-
737 treated with 2 mg of DMPA and inoculated with 1000 FFU of ZIKV by intravaginal instillation 5
738 days later. **A-C.** Viral RNA extracted from vaginal washes (**A**), serum (**B**), or tissues (**C**) of wild-
739 type and *Ifnar1*^{-/-} mice was measured by qRT-PCR. Data represent 5-6 (**A-B**) or 3-5 (**C**) mice per
740 group combined from 2 independent experiments. WT and *Ifnar1*^{-/-} groups were compared by
741 Mann-Whitney test with adjustment for multiple comparisons (*, P <0.05; **, P <0.01). **D.** WT mice
742 were inoculated intravaginally with 1000 FFU of mock-inactivated or UV-inactivated ZIKV. Viral
743 RNA was extracted from vaginal washes and measured by qRT-PCR. Data represent 6 mice per
744 group combined from 2 independent experiments.

745

746 **Figure 2: IFN-λ does not restrict ZIKV infection in the vagina.** 5-6 week-old mice lacking
747 (*Ifnlr1*^{-/-}) or retaining (*Ifnlr1*^{+/+}) IFN-λ signaling were pre-treated with 2 mg of DMPA and inoculated
748 5 days later with 1000 FFU of ZIKV by intravaginal instillation. Viral RNA was measured from
749 vaginal washes by qRT-PCR. *Ifnlr1*^{-/-} and *Ifnlr1*^{+/+} groups were compared by Mann-Whitney with
750 adjustment for multiple comparisons. Data are combined from 3 independent experiments.

751

752 **Figure 3: DMPA does not sensitize WT mice to ZIKV infection by footpad inoculation.** 6-
753 week-old wild-type (**A-B**) or *Ifnar1*^{-/-} mice (**C-D**) were pre-treated with either PBS or 2 mg of DMPA
754 then infected with 1000 FFU of ZIKV by intravaginal instillation or subcutaneous inoculation in the
755 footpad. Viral RNA in vaginal washes (**A** and **C**) or serum (**B** and **D**) was measured by qRT-PCR.
756 Data represent 9 or 10 mice per group combined from 2 independent experiments. PBS and
757 DMPA treated groups were compared by two-way ANOVA with multiple comparison correction
758 (*, P <0.05; **, P <0.01; ***, P < 0.001; ****, P <0.0001).

759

760 **Figure 4: Pregnant WT mice are susceptible to intravaginal ZIKV infection.** 7-to-10 week-old
761 wild-type dams were mated with WT sires and inoculated 7 days afterwards intravaginally with

762 1000 FFU of ZIKV. Viral RNA was measured by qRT-PCR in vaginal washes (**A**), serum (**B**), or
763 fetal tissues harvested at day 8 post-infection (**C**). Data are combined from 5 pregnant and 12
764 non-pregnant dams and 40 placentas and fetuses from 2 independent experiments. Pregnant and
765 non-pregnant groups were compared by Mann-Whitney, adjusted for multiple comparisons (**, P
766 <0.01).

767

768 **Figure 5: Diverse flaviviruses replicate in the vagina of WT mice.** 6-week-old wild-type mice
769 pre-treated with 2 mg of DMPA were inoculated with 1000 FFU of ZIKV, Usutu virus (USUV),
770 Spondweni virus (SPOV), or dengue virus (DENV3) by intravaginal instillation. Viral RNA was
771 measured from vaginal washes by qRT-PCR.

772

773 **Figure 6: ZIKV targets vaginal epithelial cells.** 5 to 6 week-old wild-type mice were treated with
774 2 mg of DMPA and 5 days later infected with 1000 FFU ZIKV intravaginally. Vaginal tissue was
775 harvested 2 to 10 dpi, paraffin embedded, and adjacent sections were stained for ZIKV RNA or
776 H&E. Each image is a single field at 20x (scale bar: 100 μ m).

777

778 **Figure 7: Vaginal abrasion is not sufficient to sensitize WT mice to ZIKV intravaginal
779 infection.** 6 week old wild-type mice were treated with 2 mg of DMPA 5 days prior to inoculation,
780 or vaginally abraded with an interdental brush immediately prior to inoculation with 1000 FFU
781 ZIKV via vaginal instillation. Viral RNA in vaginal washes (**A**) or serum (**B**) was measured by qRT-
782 PCR. Data represent 8 mice per group combined from 2 independent experiments. Abraded
783 groups were compared to DMPA-only by two-way ANOVA, corrected for multiple comparisons
784 (ns, not significant P >0.05; *, P <0.05; **, P <0.01).

785

786 **Figure 8: DMPA does not inhibit ISG expression.** 5 to 6 week-old wild-type mice were treated
787 with 2 mg of DMPA or PBS (mock). Four days later, mice were treated with 50 μ g of poly(I:C)

788 intravaginally (i.vag). or intraperitoneally (i.p.) or PBS i.vag. and tissues were harvested the
789 following day. RNA was extracted from spleen (**A**), lower female reproductive tract (LFRT, vagina
790 and cervix) (**B**), or upper female reproductive tract (UFRT, uterus and oviduct) (**C**). *Ifit1* expression
791 was measured as $-\Delta Ct$ normalized to *Actb*. Mock and DMPA-treated groups were compared by
792 Mann-Whitney with adjustment for multiple comparisons (*, P <0.05).

793

794 **Figure 9: DMPA treatment alone does not impact systemic or vaginal leukocyte**
795 **populations.** 5 to 6 week-old wild-type mice were left untreated, treated with 2 mg of DMPA, or
796 treated with DMPA and 5 days later infected with 1000 FFU of ZIKV intravaginally. All mice were
797 harvested 6 days after ZIKV infection (11 days after DMPA treatment). Cells were isolated from
798 spleens, lymph node, and lower female reproductive tract, and analyzed by flow cytometry. Total
799 cell counts were calculated for T cells, NK cells, B cells, DCs, eosinophils, monocytes, and
800 neutrophils for spleen (**A**), iliac lymph node (**B**) or lower female reproductive tract (**C**). Data
801 represent 4 (Naive and DMPA) or 7 (ZIKV) mice per group, combined from 2 independent
802 experiments. Naive and ZIKV-infected groups were compared to DMPA-treated by two-way
803 ANOVA corrected for multiple comparisons (*, P<0.05; ****, P<0.00001).

804

805 **TABLES**

806 **Table 1 Sequences used for qPCR standard curves.**

Virus & strain	Accession #	gBlock sequence
USUV (SA AR 1776)	AY453412.1	ACAACTGGGGAGGCCACAATCCTAAGAGAGCTGAG GACACGTACGTGTGCAAGAGTGGCGTTACTGACAGA GGCTGGGGCAATGGCTGTGGACTATTGGCAAGGG AAGTATAGACACGTGTGCCAACTTCACCTGCTCCCT GAAAGCGGTGGGCCGAATGATCCAACCGGAAATGT TAAGTATGAAGTGGGAATCTTCATACATGGTTCCACC AGCTCTGACACTCATGGCAACTATTCTTCACAAGTAG GAGCATCACAAAGCTGGCGGTTACCATCACTCCCA ACTCCCCAGCCATCACTGTGAAGATGGGTGACTATG GAGAAATATCAGTTGAGTGTGAACCAAGAAATGGGTT

		GAACACTGAGGCATACTACATCATGTCAGTGGCAC CA
SPOV (SA AR 94)	KX227370.1	TCACCTTCGCTCGCACCCCTCTGAAACAATTCA GCACCGCCACAGTGGAGCTGCAATATGCAGGTGA AGATGGGCCGTGCAAAGTCCCAGTAGTAATTACCA GTGACACCAATAGCATGGCCTCGACAGGCAGGCTG ATCA CAGCGAATCCGGTGGTCACGGAAAGTGGAGC AAACTCAAAGATGATGGTCGAGATTGACCCCTCGTT GGTGTCTTACATTATTGTGGCACTGGCACAACAAA ATTACCCACCATTGGCACAGAGCCGGTAGTTCAATT GGACGTGCATTGAGGCTACCATGAGAGGGAGCAA ACG GATGGCGGTCTCGCGACACCGCTTGGACTT G GCTCTGTTGGGGCATGTTCAACTCCGTTGGAAAGT TTG TCCACCAGGTGTTGGATCAGCATTAAAGGCATT GTTGGAGGCATGTCCTGGTCACACAGCTCCTGAT AGGATTCT
DENV3 (CH53489)	DQ863638.1	CTACGTATGTAAGCATAACATACGTGGATAGAGGCTG GGGAAACGGTTGTTGGTTGTTGGAAAAGGAAGCTT GGTGACATGCGCGAAATTCAATGCTTAGAATCAATA GAGGGAAAAGTGGTGCAACATGAGAACCTCAAATAC ACTGTACATTACAGTGCACACAGGAGACCAACAC CAGGTGGAAATGAAACGCAGGGAGTCACGGCTGA GATAACACCCAGGCATCAACCGTTGAAGCTATCTT GCCTGAATATGAAACCCTTGGCTAGAATGCTCACC ACGGACAGGTTGGATTCAATGAAATGATCTTATTG ACAATGAAGAACAAAGCATGGATGGTACATAGACAAT GGTTCTTGACCTCCCCCTACCATGGACATCAGGAG CT
RUBV (M33)	X72393.1	CAACCGCGTGACTGAGGGCGAACGAGAACAGTGC GGTATATGCGCATCTCGCGTCACCTGCTCAACAAGA ATCA CACCGAGATGCCCGAACCGAACGCGTTCTCAG TG CCGTTCGCCGTGGCTACCGCGCG
HAV	KX343018	GTTTGGAACGTACCTGCAGTGTAACTTGGCTT TCATGAATCTCTTGATCTTCACAAGGGTAGGCTAC GGTGAACCTCTAGGCTAATACTTCTATGAAGAGAT GCCTTGGATAGGGTAACAGCGGGGATATTGGTGAG TTGTTAACACAAAACCATTCAACGCCGGAGGACTG ACTCTCATCCAGTGGATG

807

808 **Table 2. Primer sets used for qRT-PCR**

Virus or gene target	Primer type	Sequence
USUV (SA AR 1776)	Forward	TCACAACTAGGAGCATCACAAG

	Reverse	CCATAGTCACCCATCTTCACAG
	Probe	/56-FAM/TT TAC CAT C/ZEN/A CTC CCA ACT CCC CAG /3IABkFQ/
SPOV (SA AR 94)	Forward	TGTGCCAATGGTGGGTAAT
	Reverse	GGAAAGTGGAGCAAACCAAAG
	Probe	/56-FAM/CGAGATTGA/ZEN/CCCTCCGTTGGTGA/3IABkFQ/
DENV3 (CH53489)	Forward	ATTACAGTGCACACAGGAGAC
	Reverse	CTAGCCCAAGGGTTCCATATTTC
	Probe	/56-FAM/TGGGAAATG/ZEN/AAACGCAGGGAGTCA/3IABkFQ/
RUBV (M33)	Forward	CGAACGAGAAGTGCCTATATG
	Reverse	GCGAACCGGCAGTGAGAA
	Probe	/56-FAM/ACCTGCTCA/ZEN/ACAAGAATCACACCGA/3IABkFQ/
HAV	Forward	GGTAGGCTACGGGTGAAAC
	Reverse	AACAACTCACCAATATCCGC
	Probe	/56-FAM/AGATGCCTT/ZEN/GGATAGGGTAACAGCG/3IABkFQ/
<i>ActB</i>	Forward	GACTCATCGTACTCCTGCTTG
	Reverse	GATTACTGCTCTGGCTCCTAG
	Probe	/56-FAM/CTGGCCTCA/ZEN/CTGTCCACCTTCC/3IABkFQ/
<i>Ifit1</i>	Forward	TGAAGCAGATTCTCCATGACC
	Reverse	GCAAGAGAGCAGAGAGTCAAG
	Probe	/56-FAM/ACAGCTACC/ZEN/ACCTTACAGCAACCAT/3IABkFQ/