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11 Abstract:

12 Epigenetic clocks allow the accurate prediction of age based on the methylation status of specific 

13 CpG sites in a variety of tissues. These predictive models can be used to distinguish the biological age of 

14 an organism from its chronological age, and are a powerful tool to measure the effectiveness of aging 

15 interventions. There is a growing need for methods to efficiently construct epigenetic clocks. The most 

16 common approach is to create clocks using elastic net regression modelling of all measured CpG sites, 

17 without first identifying specific features or CpGs of interest. The addition of feature selection 

18 approaches provides the opportunity to reduce the cost and time of clock development by decreasing the 

19 number of CpG sites included in clocks. Here, we apply both classic feature selection methods and novel 

20 combinatorial methods to the development of epigenetic clocks. We perform feature selection on the 

21 human whole blood methylation dataset of ~470,000 CpG features published by Hannum and colleagues 

22 (2015). We develop clocks to predict age, using a variety of feature selection approaches, and all clocks 

23 have R2 correlation scores of greater than 0.73. The most predictive clock uses 35 CpG sites for a R2 

24 correlation score of 0.87. The five most frequent sites across all clocks are also modelled to build a clock 

25 with a R2 correlation score of 0.83. These two clocks are validated on two external datasets where they 
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26 maintain excellent predictive accuracy and outperform Hannum et al’s model in accuracy of age 

27 prediction despite using significantly less CpGs.  We also identify the associated gene regulatory regions 

28 of these CpG sites, which may be possible targets for future aging studies. These novel feature selection 

29 algorithms will lower the number of sites needed to be sequenced to build clocks and allow 

30 conventionally expensive aging epigenetic studies to cost a fraction of what it would normally.

31

32 Introduction:

33 Epigenetic clocks allow for the prediction and observation of biological aging (Bocklandt, 2011). 

34 By profiling the methylation levels at specific sites in DNA, it is possible to accurately predict the age of 

35 organisms and tissues (Horvath 2013). This is often referred to as epigenetic or DNA methylation 

36 (DNAm) age.  CpG sites are areas of repetitive DNA bases where a guanine follows a cytosine, which 

37 can be modified via DNA methylation and demethylation to alter the structure of chromatin and gene 

38 expression in a cell (Moore et al., 2021).  Epigenetic clocks can now predict age across multiple species 

39 and tissue types (Thompson et al., 2018), and even predict mortality (Lu, Quach et al 2019). With the 

40 increased use of DNA methylation clocks to determine biological age and screen for interventions that 

41 slow or reverse aging the demand for more robust, accurate clocks is growing.

42

43 The first epigenetic clocks were created by Bocklandt et al (Bocklandt et al, 2011)  and quickly 

44 followed by the Hannum and Horvath labs in 2013 (Hannum et al, 2013; Horvath 2013). The Hannum 

45 clock, based on methylation analysis of DNA from peripheral blood mononuclear cells, was developed 

46 using elastic net regression modelling. 71 markers were selected from over 470,000 CpG sites to derive 

47 an age prediction accuracy of four years (Hanuum et al. 2013). Horvath’s clock encompasses multiple 

48 tissue types and includes 353 CpG sites that strongly predict age (Horvath 2013). Recently, there has 

49 been a focus on creating clocks with fewer CpG sites to enable epigenetic age profiling without the use of 

50 costly microarrays or expensive reduced-representation bisulfite sequencing (Ito el al. 2018, Park JL, et al. 

51 2016, Zbieć-Piekarska et al. 2014, Spólnicka, M. et al. 2017).  Alghanim et al.'s clock, built on blood 
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52 methylation data, only uses CpG sites from three gene regions to explain 84-85% of age variance 

53 (Alghanim et al. 2017), and Weidner’s clock based on only 3 CpG sites, is able to predict age with an 

54 error of less than five years (Weidner et al., 2014).

55   

56 Few epigenetic clock studies employ a discrete step to find optimal features for building clocks. 

57 Feature selection is commonly used in situations where the number of features far outnumber the number 

58 of samples (Guyon et al. 2003). Given the vast number of CpG sites in the genome and the relatively low 

59 number of samples in most studies, feature selection methods will improve the efficiency of clock 

60 building. Currently, the most common approach for clock building is to use a ‘correlation-with-age’ 

61 method, where CpGs that have a non-zero coefficient in ElasticNet Regression analyses are given more 

62 predictive power in the model (Horvath 2013, Hannum et al. 2013). Some clocks utilize more advanced 

63 feature selection methods such as Boruta (Renner et al., 2013), recursive feature selection (Wang et al., 

64 2018; Darst, Malecki and Engelman, 2018; Meng, Murrelle and Li, 2008) or neural networks (Spólnicka 

65 et al. 2017). These algorithms select even fewer CpG features whilst still accurately predicting age. 

66 However the number of clocks being built with these tools is minimal and there is more room to optimise 

67 feature selection methods and parameters.

68

69 Here, we use several feature selection approaches to construct accurate epigenetic clocks with 

70 low numbers of CpG sites on the publicly available Hannum dataset (GSE40279), and evaluate their 

71 accuracy and generalizability on other datasets: GSE52588 (Horvath et al, 2015), GSE137688 (McEwen 

72 2019), GSE85311 (Martens et al, 2020). We use a combination of modified standard methods that are 

73 readily available in python packages as well as the development of our own novel selection methods. We 

74 combine methods and use them in tandem to form new methods of feature selection, and optimise the 

75 development of epigenetic clocks to predict age.

76

77 Results:
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78 In order to test how few CpG sites could be selected while retaining predictive accuracy, we 

79 applied each of our feature selection methods to the Hannum methylation dataset (GSE40279). Table 1 

80 and Figure 1 summarise the results of the feature selection approaches, including the number of CpG 

81 sites identified with each approach, and the correlation (r2) with chronological age on a test set. The best 

82 model for age prediction for this dataset is SelectKBest for 2000 features followed by Boruta. This 

83 approach selects 35 CpG sites, with an r2 of 0.873 and a median absolute error of 3.08 years (Table 1).

84

Average R2 

Score (from 

10CV) STD (Years)

Mean Absolute 

Error (Years)

Median 

Absolute Error 

(Years)

KBest 2000 de novo then Boruta (35) 0.873 0.05 3.82 3.08

Intersection of all methods per CV fold then 

Boruta (102) 0.865 0.06 3.9 3

KBest 25 de novo (36) 0.862 0.06 3.96 3.14

Boruta de novo (53) 0.861 0.06 3.95 3.08

%-RFE de novo to 1500 then Boruta (52) 0.835 0.07 4.35 3.57

ElasticNet de novo/No Feature Selection (276) 0.827 0.06 4.64 3.91

%-RFE de novo to 100 (161) 0.825 0.07 4.69 3.83

Top 10 Most Frequent (10) 0.825 0.08 4.59 3.7

Top 5 Most Frequent (5) 0.82 0.08 4.6 3.79

%-RFE de novo to 10000 then Genetic 

Algorithm (54) 0.818 0.08 4.61 3.76

SFM ElasticNet de novo then Boruta (7) 0.813 0.07 4.7 3.71
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Genetic Algorithm de novo (85) 0.812 0.08 4.72 3.68

SFM ElasticNet de novo (16) 0.81 0.07 4.74 3.84

%-RFE de novo to 1500 then SFM (16) 0.81 0.07 4.74 3.84

SFM ExtraTrees de novo (5) 0.77 0.08 5.36 4.27

SFM ExtraTrees de novo then Boruta (5) 0.77 0.08 5.36 4.271

Neural Network feature selection (65) 0.76 0.08 5.65 4.79

Post Feature Selection Intersection of all 

methods (1) 0.73 0.09 5.75 4.38

Variance Threshold de novo (2) 0.02 0.02 11.9 10.61

85 Table 1. Results from feature selection methodology (in descending order of correlation scores). 

86

87 Our other feature selection methods, including most of the SelectFromModel (SFM) methods, the 

88 genetic algorithms and several combinations of methods, achieve an accuracy of between 0.77 to 0.82 

89 (Table 1). Despite being fundamentally different in their approach, these methods accomplish similar 

90 results and plateau in the same range of scores (Figure 1). Further optimization of each of these methods 

91 is needed to warrant their usage over other more successful methods.

92

93 ElasticNet de novo (Table 1, Figure 1) represents a model without any feature selection methods 

94 for comparison to the other models. This model uses all ~450,000 features to train a model without any 

95 pre-selection or iterative algorithms. The resulting clock from this approach is based on 276 CpGs, which 

96 is a much higher number of CpGs than clocks developed with the feature selection methods (Table 1), 

97 and with a lower r2 score than five of the feature selection models (Table 1).

98

99 The majority of Recursive Feature Elimination (RFE) and Boruta based methods score 0.82 or 

100 higher suggesting that for this dataset these methods work best (Table 1). Boruta de novo and KBest 25 
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101 de novo score remarkably well with no prior method being applied (0.861 and 0.862 respectively). These 

102 are the best performing solo feature selection methods.

103

104 Using the five most frequently-selected CpGs among all the methods to build a clock gave a 

105 correlation score of 0.83 and median absolute error of 3.79 years (Table 1). Table 2 shows the 

106 corresponding GeneIDs for these CpGs. The most frequent CpG site is cg16867657 (ELOVL2) and 

107 training a clock on this single feature results in a correlation score of 0.73 (Table 1). Overall, these results 

108 demonstrate that using feature selection methods accurate epigenetic clocks can be constructed with only 

109 a few CpGs.

110

Most Frequent 5 CpG Sites Associated GeneID

cg16867657 ELOVL2

cg10501210 C1orf132

cg22454769 FHL2

cg04875128 OTUD7A

cg19283806 CCDC102B

111 Table 2. Table showing the 5 CpG sites that are chosen as most frequent  predictors for aging and their 

112 associated gene symbols

113

114 We also tested a neural network approach for feature selection. An ElasticNet Regression model 

115 trained on the top 65 features selected by the neural network, has a moderate r2 value of 0.76. 

116 Interestingly, only four of the 65 identified neural network CpGs overlap with the CpGs selected by other 

117 methods described here. Given a neural network’s unique ability to detect these CpG sites as predictors, 

118 this is a promising predictive tool to uncover more obscure CpGs that most conventional methods miss.
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119

120 We selected two models developed above for further validation of their accuracy in independent 

121 datasets. SelectKBest for 2000 features followed by Boruta & the top 5 most frequent features are the best 

122 performing feature selection method and the clock with the lowest number of CpGs sets, respectively. 

123 We applied these two clock models to two published blood methylation datasets. GSE85311 is 

124 methylation profiling of blood taken from young and old human subjects of varying exercise level 

125 (Martens et al, 2020). GSE52588 is methylation profiling of blood taken from subjects with and without 

126 down syndrome (Horvath et al, 2015). Each of the clocks predicted age very well in these external data 

127 sets with R2 values greater than 0.93 (Table 3, Figure 2), performing better than Hannum’s final 

128 published clock created from 71 CpG sites (Hannum 2013), despite using far fewer features.

129

Feature Selection 

Methods

Data set r2 Score Mean Absolute 

Error (Years)

Median Absolute 

Error (Years)

KBest 2000 de novo 

then Boruta (35)

GSE85311 0.931 4.66 4.18

GSE52588 0.946 3.35 2.68

GSE137688 0.710 2.0 1.6

Top 5 Most Frequent 

(5)

GSE85311 0.964 5.71 5.60

GSE52588 0.932 4.56 3.98

GSE137688 0.470 2.72 2.29

130 Table 3. Table showing the results of the two final models trained on  the Hannum dataset (GSE40279, 

131 Hannum et al 2013) validated on external datasets: Horvath down syndrome blood dataset (GSE52588, 
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132 Horvath et al, 2015), Martens exercise blood dataset (GSE85311, Martens et al, 2020), and buccal 

133 dataset (GSE137688, McEwen 2019). Number of CpG sites/features in parentheses.

134

135 To test whether clocks developed with our feature selection approaches can be applied to datasets 

136 other than those developed in blood, the two selected models above were also applied to a buccal cell 

137 dataset (GSE137688, (McEwen 2019)). Using the methods on this dataset, we achieved a top r2 score of 

138 0.71 with the SelectKBest for 2000 features followed by Boruta method and r2 of 0.47 with the Top 5 

139 Most Frequent method (Table 3). The scores were expectedly lower than the results of the other two 

140 validation sets because the clocks were trained on blood data, and applied to buccal swab data, which 

141 have inherent sampling and variance differences. While the r2 scores were not as high, the models did 

142 have very low mean and median absolute errors; the lowest of all results in this paper. Given the 

143 abundance and ease of access buccal samples provide, this is promising rudimentary groundwork for the 

144 application of feature selection methods on sample types beyond blood.

145

146 We next wanted to test whether the features selected with our methods, could be used to make 

147 accurate clocks in other datasets. We took the CpGs selected from the Hannum dataset using our top two 

148 models (SelectKBest for 2000 followed by Boruta & the top 5 most frequent CpG features), and selected 

149 those same CpGs in the Horvath down syndrome dataset (GSE52588, Horvath et al, 2015). Using only 

150 those CpGs, we created a clock from that remaining dataset, using the same cross-validation scheme (see 

151 Methods) used for the original Hannum experiment above. Remarkably, clocks developed in this dataset 

152 based on 35 features (SelectKBest for 2000 features followed by Boruta) and 5 features (top 5 most 

153 frequent) achieved r2 scores of 0.928 and 0.911 respectively (Table 4). This shows these CpGs can be 

154 used across datasets to create accurate clocks and are possibly universal, non-dataset specific CpGs for 

155 predicting age.

156
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Feature Selection 

Method CpGs used

Average R2 Score (from 

10CV)

Mean Absolute Error 

(Years)

Median Absolute Error 

(Years)

KBest 2000 de novo then 

Boruta (35)

0.928 3.39 2.92

Top 5 Most Frequent (5) 0.911 4.02 3.72

157 Table 4. Table showing the results of the two models created from the Horvath down syndrome blood 

158 dataset (GSE52588, Horvath et al, 2015) using the same CpGs selected from the two feature selection 

159 methods from the initial Hannum experiment. These models were validated using the same 10CV scheme 

160 from the initial Hannum experiment. Number of CpG sites/features in parentheses.

161
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162

163 Figure 1. Figure showing the comparative methods with the number of features used in each model on 

164 the x-axis and their average R2 scores on the y-axis.  R2 scores are relatively similar across the board 

165 despite the number of features needed for prediction varying widely.
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166
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167 Figure 2. Figure showing the Predicted Ages vs Chronological Ages results of the two final models and 

168 Hannum’s model on the two external validation datasets GSE85311 and GSE52588. (A-B) Hannum (C-

169 D) KBest 2000 de novo then Boruta (E-F) Top 5 Most Frequent.

170 Discussion:

171 Overall we show feature selection methods can select CpG sites that are highly predictive of age, 

172 allowing for less features needed to build an accurate epigenetic clock. Many different types of feature 

173 selection methods are able to attain a reasonably high correlation score of around 0.75-0.85 whilst using a 

174 low number of CpG features. The rudimentary base code that outlines most of the feature selection ideas 

175 in this paper is publicly available and we hope that feature selection becomes a standard discrete step in 

176 future epigenetic clock studies. The corresponding genes of the most common CpG sites in these clocks 

177 are possible future targets for aging studies.

178

179 Two of our clocks, both trained on the original Hannum dataset, also performed well on two 

180 external datasets. The models, in fact, performed higher on validation datasets than the training dataset, 

181 and outperformed Hannum’s original clock that uses 71 features. This validates both the feature selection 

182 methods' ability to reliably select good CpGs and the construction of our clocks. These clocks are thus 

183 able to be used by others reliably to serve as predictors of chronological age. We also applied these 

184 models to a dataset of a different sample type; buccal epithelial cells. Although the r2 scores were only 

185 moderate for this dataset, the mean and median absolute errors were the lowest we observed. This 

186 suggests an interesting future potential for buccal/saliva methylation samples, as they are much more 

187 accessible and less expensive to obtain.

188

189 In addition to the validation of the clocks, we also tested whether the identified CpGs of two of 

190 these methods could be used to make accurate clocks using the Horvath down syndrome dataset (Horvath 

191 et al, 2015, GSE52588). These clocks still achieved high 0.91-0.92 r2 scores (Table 4). This suggests that 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.21.481326doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.21.481326
http://creativecommons.org/licenses/by/4.0/


13

192 these features and their ability to predict age are not dataset specific and can universally be used across 

193 other methylation datasets. 

194

195 We identified five CpGs and their corresponding genes that were of particular interest, as they 

196 were most commonly identified across all feature selection methods in our study (Table 3). Four of these 

197 CpG sites, and particularly ELOVL2, have been previously identified as strong predictors of age. 

198 ELOVL2, C1orf132, FHL2 and CCDC102B are included in an online seven CpG site epigenetic clock 

199 from the University of Santiago de Compostela (Mathgene, 2021). Zbieć-Piekarska et al constructed a 

200 linear regression model using only ELOVL2’s CpG site (cg16867657) to predict age (Zbieć-Piekarska et 

201 al., 2015) and obtained a high degree of accuracy in blood samples from humans. By manipulating the 

202 expression of ELOVL2 and observing age-related changes in the eyes of mice, Chen et al suggest that the 

203 gene is a molecular regulator of aging in the retina. Spólnicka and colleagues used ELOVL2 to accurately 

204 detect age differences from 3 disease groups (Spólnicka et al., 2018), and also highlight C1orf132 and 

205 FHL2 as key genes from which CpG sites are used for their epigenetic clock. CCDC102B also has links 

206 to aging and age-related degenerative diseases (Hosoda et al., 2018, Xia et al., 2018). Ito and colleagues 

207 developed a clock using only the CpG sites associated with CCDC102B and ELOVL2  (Ito et al., 2018) 

208 and are able to predict age with an r2 of 0.75. Additionally, Fleckhaus et al.'s study develops a clock 

209 using 8 target regions, four of which are ELOVL2, FHL2, CCDC102B and C1orf132 (Fleckhaus etc al, 

210 2020). These papers show that our feature selection methods are able to select the most age-predictive 

211 CpG sites, consistently with other studies.

212

213 OTUD7A is the fifth gene of interest that we identified with our methods, but is the least 

214 documented. One study has previously identified that high methylation rates of CpG sites associated with 

215 OTUD7A are correlated with age (Tharakan et al., 2020), and Yin et al. identified it as a potential 

216 regulator for neurodevelopmental disorders (Yin et al.,2018). The role of OTUD7A in aging, if any, is 

217 not well-known and should be explored further.
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218

219 We also applied a neural network method for feature selection in this study, but found it was not 

220 as powerful in terms of predictive accuracy as the other feature selection methods. However, this method 

221 did select many CpG features that were missed by our other conventional and novel methods. As neural 

222 network architecture becomes more advanced in its ability to read in larger datasets, the features it selects 

223 may eventually rival the accuracy of other methods. The features identified with neural networks may 

224 also give rise to new sets of CpG sites and genes worthy of study in aging.

225

226 The feature selection methods we introduce here overcome the common computational issues of 

227 stock selection methods and select a low-number of CpG sites whilst still yielding predictions of age that 

228 have high accuracy. These methods can be applied to a range of future studies developing epigenetic 

229 clocks including across new tissue types, or by examining a limited subset of CpGs in mutual overlap 

230 between bulk methylation and single cell datasets (Trapp et al, 2021).  Parallelized, highly cost-reduced 

231 methods targeting  specific CpG regions  (Griffin et al. 2021)  are another prime example. Lastly, these 

232 methods are not limited to the identification of CpG sites as features, and this pipeline could be used to 

233 identify features for biomarkers or clocks developed from a range of datasets (eg. metabolomics, 

234 microbiome, clinical data), and to predict a variety of age and health outcomes.

235

236 Methods:

237 Data

238 The datasets for this study are from the Gene Expression Omnibus database under the accession 

239 codes GSE40279, GSE85311, GSE52588 and GSE137688. The main dataset GSE40279 we test the 

240 feature selection methods on contains 656 samples (instances) of whole blood human methylation levels 

241 at 473,035 CpG Sites (features), matched to chronological ages. All analysis was done in Python 3. All 

242 related code outlining our methods is available on github (https://github.com/adamyli/CLK-MKR).

243
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244 Cross-validation and overall approach

245 The main workflow methodology is outlined in Figure 3. The original dataset was split into 10 

246 folds for cross-validation (CV). For each set of training folds, every different feature selection method 

247 was performed to select the optimal features within that training data.  For every CV iteration, the 

248 intersection of each feature selection method was also recorded and we performed Boruta on the 

249 intersected features.  For each of the feature selection methods,  the resulting unique features from each 

250 of the 10 iterations were collected into an aggregated list and entered into a final results dataframe.  This 

251 dataframe contains every unique feature selected by each selection method at each of the 10 iterations. 

252

253 Post-feature selection processes were then performed. These include the intersection between the 

254 results of all selection methods and ranking the top 5 and 10 most common features out of all the results.  

255 The results from these two post-feature selection processes were also added to the Results Dataframe. 

256 The original dataset was split into 10 folds again and for each column of the Results DataFrame, which 

257 represents the unique selected features for every method, we reduced the dataset down to the selected 

258 features. We trained the ElasticNet regression model for chronological age using training data (80%) and 

259 evaluated the model on the test data (20%) using the r2 scoring metric. For each column the mean of the 

260 10 r2 scores was the performance estimate of that feature selection method.

261

262 The best performing model was the clock from the SelectKBest method down to 2000 features 

263 followed by Boruta resulting in 35 selected features. The second model of interest uses the top 5 most 

264 frequently selected CpGs. These 2 models were validated using two external blood methylation datasets; 

265 (GSE52588) and (GSE85311) and their performance was compared to Hannum’s model’s predictions on 

266 these two datasets. The features from these two models were also used  to build models from the 

267 GSE52588 dataset and predict age using the same 10-fold CV as the Hannum dataset to investigate if 

268 these selected features are effective across datasets.

269
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270 These two models are also applied to a methylation dataset taken from buccal cells (GSE137688) 

271 to see if performance could be replicated in conventionally cheaper samples (McEwen 2019).

272

273

274 Figure 3. The workflow for feature selection and model evaluation. Feature selection was performed on 

275 training data for each iteration of 10-fold cross validation. The selected features of each iteration are 

276 aggregated into a list for each feature selection method type. The unique selected features for each 

277 method are collected into a dataframe where post-selection processes such as intersections are 

278 performed. We add the results to a dataframe. Each column of selected features in the results dataframe 

279 (each representing a different feature selection method) is tested using another training-testing split on 

280 the original data. This is done 10 times for 10-CV with the average of all scores being the performance 

281 estimate for that feature selection method.

282

283 Feature selection methods:
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284 SelectFromModel (SFM):

285 SFM is a function within skLearn (Pedregos et al., 2011) that wraps around and trains a model on 

286 a dataset and allows the user to specify a threshold of feature importance. Depending on whether the 

287 model is a standard regression or random forest model, the feature importance is calculated from the 

288 coefficients or mean importance respectively. Features (CpG sites) with less feature importance than this 

289 threshold are discarded, leaving only the features with the highest coefficient or importance. This method 

290 is fast but simple. Thresholds of 0.01, 0.05, 0.1, 0.5 are tested. For this study, the models that the SFM 

291 wraps around are ElasticNet Regression and ExtraTrees forest. 

292 The ExtraTrees Regression estimator is composed of a number of decision trees.  A decision tree 

293 can be thought of as an intuitive flowchart where an answer to one decision between 2 or more choices 

294 leads to another. Decision trees decide how to split by prioritizing the split that creates the least uniform 

295 distribution of labels or values. This branching of nodes continues until it reaches a node that cannot 

296 decide which split to use because they result in equally uniform distribu-tions - meaning any more 

297 branches will not help the tree make any better decisions.  In this sense ExtraTrees is similar to the more 

298 popular random forest with a few distinct differences. Random Forest samples the training data with 

299 replacement to train their decision trees whileExtraTrees uses the entire original dataset. However 

300 ExtraTrees randomly chooses the split instead of optimally finding a locally one which is what Random 

301 Forest does. ExtraTrees are therefore less exhaustive in their optimization and are faster than Random 

302 Forests.  This is ideal for us as a Random Forest with 5-8 trees in it can take several hours to train on a 

303 dataset as large as ours.  A random forest takes an advantage known as bagging by taking random 

304 instances of the dataset and training its model from solely those samples.  For a regression problem like 

305 ours the average value of all trees are taken as the final prediction.

306

307 Recursive Feature Elimination (RFE) and the introduction of %-RFE:

308 RFE is a function that trains a model on a dataset and removes the weakest feature based on the 

309 lowest feature importance from the dataset (Pedregos et al., 2011). This new dataset  of N-1 features is 
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310 trained again with a model and the process is repeated until only the user specified number of features is 

311 left. By removing 1 feature each time, RFE is a brute force algorithm that leaves only the best performing 

312 features at each iteration. However it does not take into account all features at the same time, and is 

313 unable to be aware of relationships between CpGs when it comes to predicting age e.g. some CpGs may 

314 become a strong predictor of ageing in the presence or absence of another. 

315 Applying the stock RFE algorithm to our dataset of 473,035 features is computationally limiting 

316 due to the size of the dataset (Supplementary Table 1). Instead, we write an algorithm that removes a 

317 percentage-based number of features at each iteration allowing us to aggressively remove the majority of 

318 unnecessary features at the start but be more meticulous with our selection near the end. The percentage 

319 chosen is 1%, i.e. removing 4730 features at 473,035 and 1 feature at 100.

320

321 Boruta:

322 RFE is a ‘minimal optimal’ feature selection method, meaning it attempts to select the smallest 

323 set of features with the minimum error for an estimator and aims to optimize this ratio. Boruta differs as 

324 an ‘all-relevant’ feature selection method compatible with only tree-based regression methods, such as 

325 random forests (Kursa et al., 2010). Instead of trying to find the most compact set of features to predict 

326 with, it considers all features that could possibly contribute towards prediction overcoming the weakness 

327 of RFE's greedy nature. Boruta creates duplicates of the existing features with randomized values called 

328 ‘shadow features’. The dataset comprising the original and the shadows, is trained on the tree estimator 

329 and the shadow features compete with their original forms. Features that consistently beat their shadow 

330 counterparts are selected as reputable predictors. In order to deal with the computational power needed to 

331 train a random forest with over 470,000 features, we use fewer trees and adjusted iteration counts in these 

332 models. 

333

334 SelectKBest:
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335 SelectKBest is a feature selection method in sklearn similar to SFM that fits a dataset and selects 

336 features based on a scoring metric (Pedregos et al., 2011). For each feature it calculates the correlation 

337 value between the feature and target label and ranks them.  This method is fast due to its shallow nature 

338 of only training once so is not useful when used alone.  However, it is helpful to reduce the total number 

339 of features for usage of more greedy algorithms such as Boruta. In our methodology we select the top 25 

340 features and the top 2000 features using SelectKBest. We perform Boruta on the top 2000 features.

341

342 Variance Threshold:

343 Variance threshold  is a simple and exploratory method that removes all features whose column 

344 of values do not reach the threshold of variance (Pedregos et al., 2011). Since some datasets naturally 

345 may not have a high degree of variance in their recorded data, this method is not consistent. However 

346 since its execution is the fastest out of all the methods (Supplementary Table 1) it is included as an added 

347 method.

348

349 Neural Network (NN) Feature Selection:

350 The rudimentary neural network is built using PyTorch to feature select CpG sites, as neural 

351 networks have been known to capture nonlinear relationships between data points.  We were interested in 

352 seeing what would be good predictors of aging that might have been missed by the other linear regression 

353 models and lay the groundwork for future feature selection using NNs. As a proof-of-concept we used %-

354 RFE to reduce the number of features from 473,035 down to 100. The NN first uses all 100 original 

355 features  and trains the model once, its score being recorded as a benchmark. Following this, for each of 

356 the 100 features, the NN is then trained twice; once where all methylation levels of that feature equals 1 

357 and once where they all equal 0 to simulate the CpG being fully methylated and also absent. Both are 

358 done to account for the cases where the original methylation value is close to 0 or 1. The mean of the two 

359 resulting scores are compared to the benchmark with the difference being recorded for each CpG site. 

360 The CpG sites are ranked in difference to establish an idea of feature importance with the postulation that 
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361 a larger difference between the presence and absence of the CpG will insinuate that the CpG has a greater 

362 impact on age prediction. The top 50-75 are recorded as selected features.

363

364 Genetic Algorithm:

365 An algorithm based on the nature of Darwinism evolution where a population of ‘creatures’ are 

366 assigned a desired amount of features from the original dataset at random. These creatures are evaluated 

367 via predicting a validation set and assigned a score or ‘fitness’. The lowest scoring creatures are culled 

368 next, simulating survival of the fittest. The remaining creatures are bred by creating a child creature that 

369 has features from their shared ‘gene pool’ and having a new number of them selected randomly. There is 

370 a chance for a certain number of these ‘genes’ to be mutated. Meaning some of the features will be 

371 randomly swapped for a different one from the original dataset. This helps introduce variation. This 

372 process is repeated for a specified number of generations or until a desired fitness is met.

373 The genetic algorithm is powerful as it allows the user many points of optimization, depending on 

374 the creativity of the user. For instance, the number of generations, number of  features and creatures are 

375 all linked variables where a perfect balance can be found. When it comes to the breeding process it is 

376 possible to implement a ‘polygamous’ aspect where a highly successful creature is allowed to breed 

377 multiple times to ensure the most predictive features are passed on and tested further in other 

378 combinations. Mutation rate, number of genes allowed to mutate as well as number of children produced 

379 per breed (with possibility of scaling number of children produced with the fitness of the parent). It is 

380 also common for genetic algorithms to be run in parallel, predicting subsets of a label, e.g. an algorithm 

381 for young samples and one for old. 

382

383 Novel methods combining multiple feature selection methods:

384 The introduction of %-RFE and to a lesser extent SFM allows us to synthesize novel feature 

385 selection methods. %-RFE allows for the removal of ‘fluff’ down to a more manageable number of 

386 features (usually a few thousand) and allows for more powerful methods to be used such as Boruta, 
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387 Neural Networks and RFECV. These methods require more iterations and computational power so being 

388 able to distill down to the most important thousand features to choose from is ideal. The synthesized 

389 methods consist of %-RFE first selecting features to an amount appropriate for the next method. SFM is 

390 also used as a preliminary selection method in this way.  The final synthesized methods consist of 

391 modular code functions that allow us to alternate the order in which the selection methods are used as 

392 well as let us combine them together and use the output of onemethod as the input of another.

393

394 Clock Models:

395 The epigenetic clocks are built using ElasticNetRegression models. ElasticNet is chosen as it is 

396 the current standard for epigenetic clocks  and outperforms Random Forests and SVMs with these data 

397 and feature selection methods.

398 This model is a variant of classical linear regression. This aims to solve for the coefficients of a 

399 linear equation that equals the ’best fit line’.  The best fit line minimizes the sum of squares by having the 

400 least distance between the data points and the line. The equation for ordinary linear regression is as 

401 follows:

402 argmin = ∑(𝑦𝑎 ― 𝑦𝑝)2

403 argmin = ∑(𝑦𝑎 ―(𝛽1𝑥1 + ...𝛽𝑛𝑥𝑛) ― 𝑏)2

404 Where y_a is the actual value of the target label and prediction y_p calculated by the summation of 

405 predictors ‘x’ multiplied by a vector of coefficients β_n that is found from fitting the model b.is the y-

406 intercept.  argmin signifies a cost function where we seek to minimize the answer given input arguments. 

407 Regularization is a process in which different variants of bias and penalties are introduced to 

408 assist in finding the solution to this equation that allows for the best predictive accuracy. These penalties 

409 are controlled by a lambda value (alpha in sklearn) that controls how heavy (large) this penalty is.  The 

410 L1 penalty is referred to as Lasso Regression, it adds a bias that is the absolute value of the coefficients. 

411 The L2 penalty is referred to as Ridge regression, this adds a bias that is the squared value of the 

412 coefficients. Unlike ridge regression, lasso regression can shrink the coefficients of unneeded parameters 
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413 (features) to 0 (due to the penalty term not being squared), essentially eliminating them, leaving only 

414 useful features. Lasso can be quite aggressive however, taking only 1 feature out of several correlated 

415 ones or selecting too few. This is where ElasticNet comes in. The generic form of the ElasticNet equation 

416 is:

417 argmin = ∑(𝑦𝑎 ― 𝛽𝑥𝑛)2 + 𝜆1∑ |𝛽| + 𝜆2∑ 𝛽2

418 Where L1 is the regularization penalty for the ’Lasso’ part of the regression equation andL2 is the penalty 

419 for the ’Ridge’ portion (Zou, Hastie. 2005). ElasticNet combines both Lassoand Ridge regressions, 

420 adding both terms to the equations.  Each penalty gets an indepen-dent alpha / lambda that is tuned via 

421 cross-validation or other methods. This method allows the best of both worlds depending on the feature.

422
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