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Abstract 26 

Omics-based technologies are driving major advances in precision 27 

medicine but efforts are still required to consolidate their use in drug 28 

discovery. In this work, we exemplify the use of multi-omics to support the 29 

development of 3-chloropiperidines (3-CePs), a new class of candidate 30 

anticancer agents. Combined analyses of transcriptome and chromatin 31 

accessibility elucidated the mechanisms underlying sensitivity to test 32 

agents. Further, we implemented a new versatile strategy for the 33 

integration of RNA-seq and ATAC-seq data, able to accelerate and extend 34 

the standalone analyses of distinct omic layers. This platform guided the 35 

construction of a perturbation-informed basal signature able to predict 36 

cancer cell lines’ sensitivity and to further direct compound development 37 

against specific tumor types. Overall, this approach offered a scalable 38 

pipeline to support the early phases of drug discovery, understanding of 39 

mechanism and potentially inform the positioning of therapeutics in the 40 

clinic. 41 

Introduction 42 

Omics technologies have revolutionized the classical hypothesis-driven 43 

paradigm of drug discovery, offering a new perspective for the systematic 44 

identification of targets and therapeutics.1,2 An increasing number of 45 

examples are describing the use of these approaches to inspect the 46 

pharmacological profile of existing drugs, e.g. mechanism of action (MoA) 47 

and specific sensitivity biomarkers, as well as to assist their correct 48 

repositioning in the clinical practice.3,4,5,6 Compared to traditional 49 

approaches, omics-based methods capture the complexity of biological 50 

systems and pathological processes in its entirety at increasingly 51 

affordable costs.3 For this reason, refined strategies to handle the high-52 

dimensional information of omics data are continuously investigated to 53 

expedite their routine use in drug development up to the clinics.7,8–14  54 

Recent works from our group highlighted 3-chloropiperidines (3-CePs) as 55 

a novel class of candidate anticancer agents developed to improve the 56 

pharmacological profile of nitrogen mustard-based chemotherapeutics.15–57 

21 As intended, these agents were demonstrated to induce DNA lesions, 58 

a mechanism conceivably responsible for their cytotoxicity on tested 59 

cancer cell lines.19–21 Interestingly, despite their expected broad-acting 60 
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MoA, a subset of derivatives showed a preferential activity against 61 

pancreatic adenocarcinoma BxPC-3 cells worth to be clinically translated, 62 

especially in light of the broad resistance of pancreatic tumors to most of 63 

the available treatments.19–21  64 

The contribution of multi-omics to support early phases of drug discovery 65 

is growing exponentially in the era of precision medicine.7 Omics 66 

technologies have the potential to address some of the intrinsic difficulties 67 

of the traditional drug discovery and development path, assisting it early 68 

from target prioritization and hit identification up to the evaluation of 69 

candidates’ efficacy and safety.4 Drug-perturbation experiments have 70 

been employed to inspect the functionality of target proteins22 and the 71 

MoA of therapeutics, efficiently guiding the decision-making process in the 72 

development of lead compounds.4 The massive accumulation of genomic 73 

and transcriptomic profiles offers a precious substrate for the optimization 74 

of strategies able to predict susceptibility to known therapeutics23–26 75 

refined by the continuous acquisition of data from high-throughput single-76 

cell platforms.10–12,27,28 Beyond the widely used transcriptome analysis, 77 

changes in gene regulation can be evaluated in terms of chromatin 78 

accessibility by ATAC-seq.29–31 Examples of the joint use of these two 79 

omic techniques exist,13,14,32,33 but their synergistic employment on 80 

compounds under early development is still underexplored.3  81 

In this study, representative mono- (M) and bifunctional (B) 3-CePs 82 

bearing a single or double alkylating units (Fig. 1 A) were selected to 83 

exemplify the use of a multi-omic approach to investigate the molecular 84 

determinants of susceptibility to novel drug candidates and their MoA.19–85 

21 We analyzed transcriptional changes and chromatin status upon 86 

treatment in a high- (pancreatic adenocarcinoma BxPC-3) and low-87 

sensitive (colorectal adenocarcinoma HCT-15) cancer cell lines by RNA-88 

seq and ATAC-seq.29–31 In addition, we implemented our multi-omics 89 

pipeline in drug discovery to derive perturbation-informed signatures 90 

predicting compound sensitivity. Overall, the proposed approach not only 91 

allowed to identify potentially more susceptible target tumor types for the 92 

further development of test compounds, but also offered a versatile 93 

predictive framework to support precision oncology in a clinical setting. 94 

95 
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Results 96 

 97 

Cancer tropism of 3-CePs is not explained by DNA damage 98 

The mono- (M) and bifunctional (B) 3-chloropiperidines (3-CePs, Fig. 1 99 

A), despite having different potencies, were shown to be particularly active 100 

against BxPC-3 pancreatic adenocarcinoma cells.19,20 From this premise, 101 

the two compounds were selected along with the highly sensitive BxPC-3 102 

cell line and the low-sensitive HCT-15 colorectal adenocarcinoma one to 103 

illustrate how integrative omics approaches unveil the molecular 104 

mechanisms responsible for the described cellular tropism. 105 

First, to assess whether 3-CePs-induced DNA damage itself would differ 106 

in the two cell lines upon treatment, we measured the accumulation of 107 

DNA single-strand breaks after 6 h of treatment with both compounds at 108 

their cytotoxicity IC50s in BxPC-3 and at a ten-times higher concentration 109 

(10 nM and 100 nM M; 200 nM and 2 µM B).34 Surprisingly, the two cell 110 

lines showed very comparable DNA damage accumulation, in both cases 111 

higher after treatment with M compared to B (Fig. 1 B). These results 112 

clearly pointed towards differential responses in the two cell lines 113 

downstream of DNA damage. 114 

Since alkylating agents are known to alter the progression of the cell 115 

cycle,35–37 we next performed a cell cycle distribution analysis by flow 116 

cytometry after different times of treatment (6 h, 12 h, 72 h) with both 117 

compounds (Fig. 1 C). While M induced a persisting block in G1 118 

throughout the observation time in BxPC-3 cells, this block was absent in 119 

HCT-15 cells. In contrast, B induced an early G2/S block in HCT-15 cells 120 

(6 h), which was not observed at later time points, while such a block was 121 

most obvious at 12 h for BxPC-3 cells. Despite similar DNA damage 122 

accumulation, these findings clearly indicated a different behavior for the 123 

two cancer cell lines in terms of cell cycle progression after treatment with 124 

the two 3-CePs.  125 

To determine additional mechanisms explaining differential sensitivity to 126 

3-CePs, we measured the activation of the DNA repair machinery as 127 

another key aspect in the cellular response to genotoxicants.38 To verify 128 

the ability of the two cancer cell lines to detect double-strand breaks 129 

(DSBs), we assessed the phosphorylation of H2AX (γH2AX), an early 130 
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event of the DNA damage response (DDR),39 by flow cytometry after 6 h 131 

and 12 h of treatment with both agents (Fig. 1 D). Interestingly, despite 132 

the comparable DNA damage accumulation in the two cell lines, only 133 

HCT-15 showed an increase in the γH2AX-positive population, suggesting 134 

a more efficient engagement of the DNA repair machinery.  135 

Taken together, these results indicated that cell-specific mechanisms after 136 

the first event of DNA damage are responsible for the different 137 

susceptibilities to 3-CePs. 138 

Treatments elicit cell-specific transcriptional changes 139 

Different genetic and epigenetic factors define the responsiveness of 140 

tumor cells to chemotherapeutic agents.40 To address these globally, we 141 

analyzed changes in the transcriptome of the high- and low-sensitive cell 142 

lines after treatment with the two 3-CePs (Fig. 1 E). RNA-seq was 143 

performed on total RNA of HCT-15 and BxPC-3 cells exposed to DMSO 144 

0.5% (control) or treated with M (10 nM) or B (200 nM) for 6 h and 12 h 145 

(Fig. 2 A, S2 A) as in previous experiments.  146 

Principal component analysis (PCA) of all transcripts separated samples 147 

within each cell line according to treatment and time-point (Fig. S2 B), 148 

suggesting a clear transcriptional reprogramming after treatment. In fact, 149 

differential expression (DE) analysis pointed out that the expression of a 150 

large number of genes changed significantly in both cell lines after 151 

exposure to 3-CePs (Fig. 2 B, S2 C), especially at 6 h in BxPC-3 cells and 152 

upon treatment with B in HCT-15 cells. 153 

Gene Ontology (GO) enrichment was performed on the DE genes to 154 

determine signaling pathways and transcriptional programs explaining the 155 

observed differences. In a first explorative approach, we generated the 156 

union of DE genes per cell line irrespective of compound and time point, 157 

which allowed us also to distinguish between cell type-specific or shared 158 

DE genes (Fig. S2 D). The most representative biological processes 159 

identified by this analysis (Fig. S2 E, Supplementary data 1) are reported 160 

in Fig. 2 C (see Methods and Fig. S2 F for further details).  161 

Unexpectedly, we identified a strong translational response in BxPC-3  162 

cells after treatment, a process which is typically attenuated in stress 163 

conditions, as was the exposure to our DNA damaging agents, to allow 164 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2022. ; https://doi.org/10.1101/2022.02.21.481294doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.21.481294
http://creativecommons.org/licenses/by/4.0/


 

 5 

proper recovery of the protein quality control machinery.41,42 In contrast, a 165 

strong regulation of genes mediating protein stability and catabolism was 166 

observed in the low-sensitive cell line. In addition, HCT-15 cells activated 167 

genes involved in the DDR, consistently with their higher ability to detect 168 

and respond to DSBs. Both these two mechanisms pointed towards the 169 

activation of an adaptive stress response in the low-sensitive cell line. 170 

To further characterize these transcriptional changes over time in a cell 171 

type-specific context, we grouped the DE genes at 6 and 12 h in modules 172 

according to the similarity in their expression profiles and performed a 173 

functional enrichment on genes with similar expression patterns (Fig 2 D 174 

and S3 A, Supplementary data 2). Genes involved in ribosome biogenesis 175 

and DNA repair turned out to be upregulated particularly after 6 h of 176 

treatment in BxPC-3 cells (Clusters 2 and 3, Fig. 2 D). Besides, silencing 177 

of pro-survival genes involved in microtubule organization and the JAK-178 

STAT cascade (Cluster 1, Fig 2 D) was detected at the same time point. 179 

Only after 12 h of treatment (Fig. S3 A), BxPC-3 cells boosted 180 

carbohydrate metabolism, most likely an attempt to recover in extremis.43  181 

Also HCT-15 cells upregulated clusters of genes mediating DNA repair, 182 

protein stability and mitochondrial activity as early as 6 h of treatment, 183 

suggesting this time point as the most informative to describe the 184 

response to 3-CePs (Clusters 4 and 6, Figure 2 D). In contrast to BxPC-3 185 

cells, HCT-15 downregulated genes involved in translation and ribosome 186 

biogenesis from 6 h of exposure (Cluster 7, Figure 2 D), while intensifying 187 

their response to oxidative stress after 12 h (Cluster 17, Figure S3 A). 188 

This exploratory analysis showed clearly different transcriptional  189 

responses and distinct time dynamics in BxPC-3 compared to HCT-15 190 

cells, most likely responsible for their different susceptibility to 3-CePs. In 191 

particular, our findings pointed towards DNA repair and proteostasis as 192 

key mechanisms tuning sensitivity to the compounds, as further confirmed 193 

by inspecting the complete rank of DE genes via gene set enrichment 194 

analysis (GSEA, Fig. S3 B).44  195 

DNA repair and proteostasis are key modulators of the response to 196 

3-CePs 197 
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For their key role in the response to 3-CePs, DNA repair and protein 198 

homeostasis were further analyzed to clarify their contribution to BxPC-3 199 

sensitivity.  200 

Interestingly, DNA repair was activated in both cell lines early after 6 h of 201 

treatment but with a different modulation (Fig. 3 A). First, base-excision 202 

repair (BER) was suggested as the preferential pathway of BxPC-3 by GO 203 

enrichment while HCT-15 relied mostly on nucleotide-excision repair 204 

(NER), unleashing a generally stronger activation of the DDR. In detail, 205 

HCT-15 DE genes contributing to the response to the DNA damage 206 

stimulus were strongly upregulated already after 6 h especially in 207 

response to B, while activated only after 12 h in BxPC-3 (Fig. 3 B). In 208 

contrast, genes such as PPP4R2 and RAD51AP1, both involved in the 209 

first phases of DSBs repair,45,46 were even downregulated in BxPC-3 cells 210 

at 6h. 211 

The more efficient activation of DNA repair in HCT-15 was further 212 

confirmed on the overall rank of genes by GSEA at 6 h of treatment (Fig. 213 

3 C). As anticipated, most of the DE genes leading the enrichment in HCT-214 

15 belonged to NER (e.g. GTF2H3, RBX1) and other recombinational 215 

pathways such as Homologous Repair (HR) (e.g. MMS22L, BARD1) and 216 

Fanconi Anemia (FA) (e.g. BRIP1, FANCM), all better suited for the 217 

efficient repair of bulky lesions and highly toxic DSBs and crosslinks.47–52 218 

On the other hand, DE genes in BxPC-3 cells were mostly related to BER 219 

(e.g. APEX1, UNG) and MMR (Mismatch Repair) (e.g. MSH6, EXO1), 220 

which contribute to the repair of smaller lesions and mismatches.53,54 221 

In the analysis, proteostasis was identified as a second key biological 222 

process strictly related to genotoxic stress.55,56 HCT-15 cells engaged the 223 

protein folding and catabolism apparatus in response to 3-CePs, 224 

especially to B already at the early time point (Fig. 3 D). As observed for 225 

DNA repair, DE genes contributing to protein catabolism were upregulated 226 

as early as 6 h of exposure in HCT-15 cells, while even downregulated at 227 

the same time point in BxPC-3 and only upregulated after 12 h (Fig. 3 E). 228 

This response involved chaperones and co-chaperones (e.g. HSPA8, 229 

HSPA1B, BAG2, BAG5), other genes mediating protein catabolism (e.g. 230 

LAMP2, CUL3) and ER morphogenesis (e.g. RTN4).57–60 Interestingly, a 231 

transcriptional pattern revealed by GSEA at 6 h of treatment highlighted 232 

an intense positive modulation of the PERK-mediated branch of the 233 
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unfolded protein response (UPR) specifically in BxPC-3 (Fig. 3 F). Even 234 

more enlightening were the DE genes leading the enrichment: ATF4, 235 

DDIT3 (CHOP) and PPP1R15A (GADD34) were significantly upregulated 236 

after 6 h of exposure only in this cell line (Fig. 3 G, H). These genes 237 

participate in the PERK-mediated UPR triggering cell death after 238 

prolonged ER stress through the aberrant recovery of translation, which 239 

induces proteotoxicity.61,62 This mechanism would reasonably explain the 240 

ribosome biogenesis signature observed in BxPC-3 cells. Consistently, 241 

recent work reported a particular susceptibility for pancreatic cancer 242 

adenocarcinoma to ER stress and protein dyshomeostasis.63  243 

Furthermore, the ability of HCT-15 cells to control proteostasis may also 244 

depend on the activation of lipid and cholesterol biosynthesis in response 245 

to the compounds (Fig. S4 A). In fact, among other known pro-survival 246 

functions, these pathways contribute to resolving ER stress through 247 

pathways involving e.g. the Stearoyl-CoA Desaturase (SCD) enzyme, for 248 

which we detected a significant upregulation of the respective transcript 249 

in HCT-15 (Fig. S4 B).64,65  250 

Overall, the transcriptome analysis of this in vitro perturbation experiment 251 

allowed us to dissect the different responses to 3-CePs in our model cell 252 

lines, pointing towards protein homeostasis and DDR imbalances as 253 

mechanisms responsible for the high susceptibility of BxPC-3 cells. 254 

The response to 3-CePs is further regulated at the chromatin level 255 

The transcriptome analysis unveiled a defined framework of responses 256 

tuning the sensitivity to 3-CePs. To further characterize them at the 257 

epigenetic level, we examined chromatin accessibility in nuclei of BxPC-3 258 

and HCT-15 cells treated with M and B for 6 h and 12 h (Fig. 4 A, Fig. S5 259 

A) by ATAC-seq. 260 

3-CePs induced evident epigenetic changes in both cell lines, as 261 

suggested by PCA (Fig. S5 B) and confirmed by the number of 262 

differentially accessible regions (DARs) identified especially in BxPC-3 263 

cells (Fig. 4 B, Fig. S5 C). For further downstream analyses we focused 264 

on DARs mapping to promoters, whose specific condensation or 265 

compaction contribute to modulation of transcription of associated genes 266 

(Fig. 4 B). 267 
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Also in this case, to better describe the timing of chromatin remodeling, 268 

cell-specific promoter-associated DARs elicited after 6 h and 12 h of 269 

treatment were grouped in clusters sharing a similar pattern of regulation 270 

and functional enrichment was performed on the associated genes (Fig. 271 

4 C, S5 D, Supplementary data 3).  272 

In BxPC-3 cells, we observed condensation of promoters involved in 273 

carbohydrate metabolism and others mediating protein folding and UPR 274 

after 6 h of exposure (Cluster 1, Fig. 4 C), most likely contributing to the 275 

transcriptional downregulation of such processes observed at the same 276 

time point.57,66 On the contrary, relaxation of peaks involved in tRNA 277 

metabolism and mRNA splicing were detected, in line with the 278 

upregulation of translation and RNA processing evidenced by RNA-seq. 279 

In HCT-15 cells, relaxation of promoters involved in the DDR, lipid 280 

metabolism (Cluster 6, Fig. 4 C) as well as protein catabolism (Cluster 7, 281 

Fig. 4 C) was observed, again in line with our observations on 282 

transcriptome level. Altogether, these results attested that the regulation 283 

of elicited transcriptional pathways was accommodated by changes at the 284 

chromatin level, adding new information on the possible mechanisms 285 

determining the cellular responses to 3-CePs. 286 

A critical step in the analysis of multi-omic datasets is the integration of 287 

information obtained from the different layers. Though valuable strategies 288 

have been developed in recent years to integrate RNA-seq and ATAC-289 

seq data, alternatives are still required to optimize and enlarge the 290 

functional information obtained from the combination of these powerful 291 

techniques.67–69 In this study, we approached data integration through two 292 

alternative strategies, that we called pairwise and crosswise. 293 

As a first level of integration, we identified genes with concordant 294 

regulation in RNA-seq and ATAC-seq upon treatment. In this pairwise 295 

integration, we compared the direction of transcriptional regulation of 296 

genes to the accessibility of their promoters, as specified in the Methods 297 

section and shown in Fig. 4 D. Given the biological delay that could exist 298 

between chromatin remodeling and a detectable variation in transcript 299 

level, pairwise comparisons were also considered between chromatin 300 

changes after 6 h and transcriptional responses after 12 h of treatment.  301 
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Among genes with coherent regulation in BxPC-3 cells we found the tumor 302 

suppressors ADRA2A, NME1, and KLF6 to be upregulated, elicited after 303 

treatment with both agents, and LATS2 and NME2 specific for M and B, 304 

respectively.70–73 Besides, other genes were involved in translation and 305 

RNA processing such as RNPS1 and LARP4B,74,75 and apoptosis such 306 

as AEN, PAWR, and CASP7.76–78 Interestingly, BxPC-3 also negatively 307 

regulated TXNIP, an inhibitor of the oxidative stress regulator thioredoxin, 308 

after treatment with B.79 Conversely, among downregulated hits we found 309 

apoptosis inhibitors such as WRAP53 and TRADD, as well as HSPB8, 310 

CALCOCO1 and SELENOH, all involved in the resolution of ER and 311 

oxidative stress.78,80,81 In HCT-15 cells, among identified positively 312 

regulated genes some were involved in DNA repair such as MRE11, 313 

MDM4, RNF138,82,83 others were oncogenes such as VIM and ARID4B or 314 

apoptosis inhibitors like TRADD.84,85 Notably, some genes involved in the 315 

modulation of the redox balance (GLRX3, SELENOF) showed double 316 

regulation after treatment with B as well as others active in proteostasis 317 

(PSMA5 after exposure to M, UBE2N to B).81,86 Among the downregulated 318 

genes, some were associated to cell adhesion (PLEKHO1, ITGB3, 319 

ICAM1) and translation (RPL19, RPL13).87 320 

Collectively, pairwise integration of RNA-seq and ATAC-seq shed light on 321 

genes with robust regulation at the transcriptional and chromatin level, 322 

adding further details to the previously identified response pathways. 323 

Crosswise integration expedites the comprehension of multi-omic 324 

data 325 

Through the pairwise approach, we identified genes with both 326 

transcriptional and chromatin regulation which significantly contributed to 327 

the observed cellular response. We further evaluated the crosstalk 328 

between RNA-seq and ATAC-seq at a different level by focusing on 329 

groups of genes co-regulated in the two omic layers. The identification of 330 

genes sharing similar regulation across conditions either at the 331 

transcriptional or chromatin level would maximize the detection of 332 

interacting pathways and regulatory processes, e.g. as a result of 333 

chromatin changes in promoters tuning the transcription of a certain gene 334 

set. This approach, which we termed crosswise integration, was achieved 335 

by vertical Construction of Co-expression network analysis (vCoCena). 336 
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vCoCena is designed to define modules of genes and/or genomic markers 337 

such as DARs with a similar pattern of regulation across conditions in 338 

multiple omic datasets. As a first step, we created separate co-expression 339 

networks for the RNA-seq and ATAC-seq layers (Fig. 5 A, S6 A). To 340 

prevent the construction of a network mostly describing the difference 341 

between the two cell lines, we first calculated separate networks for BxPC-342 

3 and HCT-15 cells which were then integrated horizontally (hCoCena).88 343 

The union of all DE and promoter DAR-associated genes detected in 344 

treated conditions was selected as input for constructing all networks. 345 

Clustering of the resulting RNA-seq and ATAC-seq networks identified a 346 

relevant number of gene modules with highly specific regulatory patterns 347 

(Fig. S6 B and C). At this point, the vertical, inter-omic integration 348 

(vCoCena) was applied to construct the final network consolidating the 349 

information from transcriptome and chromatin accessibility (Fig. S6 D, see 350 

Methods for details). The new network was then reclustered resulting in 351 

integrated modules of co-regulation including nodes originally derived 352 

from the two separate layers in different ratios, as shown in Fig. 5 B. 353 

The approach combined genes sharing similar regulation in the respective 354 

omic dataset, as approximated by the GFC pattern, with the postulate that 355 

genes grouped together cooperate in specific cellular processes. To 356 

define the underlying mechanisms, GO enrichment was performed on 357 

genes included in each of the modules and representative biological terms 358 

for the most relevant clusters were reported in Fig. 5 C (Supplementary 359 

data 4). Some modules validated the information obtained through 360 

previous analyses (Fig. S6 E): both the maroon and darkorange clusters 361 

suggested macroautophagy as a putative pathway accounting for the 362 

enhanced catabolism observed in HCT-15 cells.89 Consistently, the former 363 

RNA-seq-based module was downregulated at 6 h in BxPC-3 but 364 

upregulated already after 6 h with B in HCT-15, while the latter ATAC-365 

seq-based module included peaks condensing after 6 h only in BxPC-366 

3,confirming the latter cell line as refractory to a rapid engagement of its 367 

protein catabolism apparatus. Another mostly RNA-seq-based module 368 

validating our previous approach was the orchid module, upregulated after 369 

6 h in BxPC-3, containing genes involved in ribosome biogenesis. The 370 

darkgrey cluster instead, more balanced in terms of contribution from the 371 

two omic layers, showed positive regulation only in HCT-15 cells and 372 

included hits involved in DDR. 373 
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However, the crosswise integration also identified additional regulation, 374 

exemplified by the pink module. As approximated by the associated GFCs 375 

pattern, its 163 genes were positively modulated only in HCT-15 cells 376 

especially after 6 h of treatment with B (Fig. 5 D). Interestingly, functional 377 

enrichment identified hits both from RNA-seq and ATAC-seq involved in 378 

actin remodeling (Fig. 5 E), a mechanism affecting morphology and 379 

function of cancer cells (e.g. FHOD1, Fig. 5 F).90,91,92 Other module genes, 380 

such as FURIN, positively regulated at the chromatin level (Fig. 5 F), 381 

belonged to TGF β signaling (Fig. 5 E), an emerging player in cancer drug 382 

resistance.93,94 In addition, the module included genes of lipid metabolism 383 

and DNA repair belonging to both omic layers, which was in line with our 384 

initial findings (Fig. 5 E and F). 385 

Overall, the crosswise integration of RNA-seq and ATAC-seq data 386 

allowed an efficient combination of the functional information from the two 387 

omics layers. Clearly, this approach added further biology to what we had 388 

identified when analyzing transcriptional and chromatin landscape 389 

regulation individually.  390 

Perturbation-informed basal signatures efficiently predict sensitivity 391 

to our candidate drugs 392 

The information derived from the crosswise integration was employed to 393 

construct a signature of sensitivity to 3-CePs. Being more potent, M was 394 

selected as reference to describe a sensitivity prediction framework based 395 

on the use of a perturbation-informed omic signature (Fig. 6 A, S7 A, 396 

Methods).  397 

First, we selected vCoCena clusters with a marked difference in regulation 398 

between the two cell lines after treatment with M, considering only the 399 

most informative time point of 6 h (selected modules: cyan, darkgreen, 400 

darkgrey, darkorange, gold, indianred, khaki, lightgreen, steelblue, orchid; 401 

module selection criteria are described in detail in the Methods section). 402 

According to our analysis, genes that belong to these modules, coming 403 

both from RNA-seq and ATAC-seq analyses, are expected to be the major 404 

determinants of the differential susceptibility in the two cell lines. 405 

Importantly, we postulated that features accounting for sensitivity should 406 

be intrinsic for the two cell lines, thus explained already by significant 407 

differences in their basal status. For this reason, we performed DE 408 
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analysis between untreated BxPC-3 and HCT-15 control groups, 409 

identifying genes up- and downregulated at the transcriptional level in the 410 

high-sensitive cell line, and sorted out only those belonging to previously 411 

selected modules. This approach resulted in a subgroup of genes with 412 

different basal expression in BxPC-3 cells as well as a sufficiently 413 

compound- and cell line-specific regulation upon perturbation. This 414 

perturbation-informed signature was composed of 294 genes upregulated 415 

(signature up) and 170 genes downregulated (signature down) in the high-416 

sensitive BxPC-3 cells (Fig. 6 B, gene list available in Supplementary data 417 

5). GO enrichment on these genes identified protein synthesis, folding and 418 

catabolism, as well as cell adhesion, matrix organization and actin 419 

remodeling among the most significant biological functions (Fig. 6 C). 420 

Some interesting genes in the up signature were BNIP3 and FADD, both 421 

proapoptotic, as well as TXNIP, already identified as a thioredoxin 422 

inhibitor. Among those composing the down signature, we identified 423 

YOD1, HERPUD1 and HSPA5, involved in protein homeostasis and ER 424 

stress, but also ERCC6 and AUNIP of the DDR (Fig. 6 B).95–98  425 

To determine the robustness of the obtained signature and its ability to 426 

predict sensitivity to M, we next performed a gene set variation analysis 427 

(GSVA) on publicly available transcriptomes of common cell lines,99 428 

testing for both the up and down signatures (Fig. S7 B). A sensitivity score 429 

was calculated for each cell line as the difference between the enrichment 430 

scores (ES) of the up and the down signatures. The predicted rank was 431 

validated experimentally on representative cell lines (A-431, A549, HEK-432 

293, NTERA-2, PC-3, SH-SY5Y) demonstrating the strong predictive 433 

capacity of our perturbation-informed signature (Pearson’s R=0.84, 434 

p=0.038, Fig. 6 D). This signature outperformed a random one containing 435 

the same number of genes (R=-0.48, p=0.34, Fig. S7 C and D) and also 436 

a signature of equal size composed by the top up- and downregulated 437 

genes between the two cell lines (R=0.34, p=0.51, Fig. S7 E and F, gene 438 

list available in Supplementary data 6). Collectively, our crosswise 439 

integration approach resulted in a perturbation-informed signature 440 

capable of predicting drug sensitivity in a wide range of untreated tumor 441 

cell lines commonly used in cancer research. 442 

Encouraged by these results, we adapted our strategy to mimic a clinical 443 

setting utilizing the primary tumor samples of the Cancer Genome Atlas 444 
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TCGA database (Fig. S7 G). By applying GSVA, we examined the relative 445 

distribution of samples from different tumor types based on the calculated 446 

sensitivity score, unveiling which cancer types were predicted as generally 447 

more susceptible (i.e. kidney renal clear cell carcinoma KIRC, pancreatic 448 

adenocarcinoma PAAD, kidney renal papillary cell carcinoma KIRP, 449 

glioblastoma multiforme GBM) or less sensitive (i.e. tenosynovial giant cell 450 

tumor TCGT, cervical squamous cell carcinoma and endocervical 451 

adenocarcinoma CESC, rectum adenocarcinoma READ, colon 452 

adenocarcinoma COAD) to M, providing a framework for further in vivo 453 

development of this compound (Fig. 6 E).  454 

Interestingly, the predicted tumor types with the highest and lowest 455 

sensitivity turned out to be KIRC and TCGT, respectively, demonstrating 456 

that the designed signature was not driven by the original cell type of the 457 

cell lines used for its extrapolation and could go beyond the original cancer 458 

type. At the same time, PAAD and COAD (pancreatic and colorectal 459 

adenocarcinoma, as BxPC-3 and HCT-15 cells) were still among the most 460 

and least sensitive, confirming that cell type intrinsic determinants of 461 

susceptibility exist and are represented in our signature. Interestingly, 462 

intra-tumor variability resulted in a continuous distribution of samples 463 

scores within each cancer group, confirming the importance of clinically 464 

translating such predictions beyond the tumor type to better address 465 

patient-specific therapeutic needs. 466 

To enlarge the accessibility and clinical translatability of our framework, 467 

we finally introduced a LASSO regression model to predict the sensitivity 468 

of tumor samples in the external reference dataset (Fig. 6 F). We trained 469 

a regression model using TCGA basal transcriptomic profiles labelled with 470 

the previously predicted sensitivity scores in order to create a self-471 

supervised system able to emulate the prediction irrespective of the 472 

context dataset, detaching the predictive tool from the data space. From 473 

a clinical perspective, this further step would permit to collect a patient 474 

basal transcriptome and feed it to the model, not only improving the 475 

performance of the prediction but also avoiding any issue related to data 476 

sharing since the model itself does not contain any patients’ sensitive 477 

data.  478 

In detail, TCGA samples were labeled according to the calculated 479 

continuous sensitivity scores. Next, the model was trained on 80% of the 480 
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data and tested on the remaining 20%, which efficiently predicted drug 481 

sensitivity within the test samples (R = 0.97, RMSE = 0.063) (Fig. 6 G). 482 

Notably, such predictive capacity was maintained even when excluding 483 

from the transcriptomes all the signature genes used to define the 484 

sensitivity score label of the samples, suggesting the biological 485 

robustness of the predictive system (R = 0.97, RMSE = 0.066, Fig. S7 H). 486 

In fact, while the signature itself was good enough to rank samples based 487 

on experimental biological evidence, the model showed to go beyond the 488 

initial signature relying on additional predictive features previously not 489 

identified. 490 

Overall, we demonstrated how to further employ the integrated RNA-seq 491 

and ATAC-seq information to assemble an accurate and clinically-492 

accessible predictive strategy able both to orient drug development and 493 

to support the medical practice in the context of precision oncology.  494 
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Discussion 495 

Despite the advances of the last decades, efforts are continuously 496 

required to expedite routine use of omic-scale approaches in clinical and 497 

pre-clinical settings. Recent work illustrated the potential for omics 498 

technologies to accelerate the process of drug discovery from the initial 499 

identification of candidate lead compounds up to their pre-clinical and 500 

clinical development.8–14 Further, improvements in computational 501 

approaches for omics data analyses4,6,7 and an ever-increasing availability 502 

of public reference datasets100 make it now possible to develop completely 503 

new pipelines to address the pharmacological profile of any given drug, 504 

from its MoA to sensitivity biomarkers.1–3  505 

Here, we combined transcriptome and chromatin accessibility analyses 506 

within perturbation experiments to investigate the specific activity profile 507 

of 3-CePs, a new class of potential anticancer agents acting as DNA 508 

alkylators.15–21 Our combined analysis unveiled the basis of the 509 

preferential activity of 3-CePs against the pancreatic cancer cell line 510 

BxPC-3, which was demonstrated to be unable to properly control 511 

proteostasis and DDR under stress conditions upon exposure to the 512 

alkylating agents. On the contrary, the low-sensitive colorectal 513 

adenocarcinoma cell line HCT-15 potentiated protein folding and 514 

catabolism all together activating a more efficient DNA repair after 515 

treatment. Due to unresolved genotoxic stress and proteostasis 516 

dysregulation, widely described as crosstalking events,55,56 BxPC-3 cells 517 

activated the apoptotic branch of the PERK-mediated UPR via CHOP and 518 

GADD34, both upregulated after treatment.61,62 Accordingly, such 519 

behavior is in line with the described susceptibility of pancreatic cancer 520 

adenocarcinoma to ER stress and protein dyshomeostasis.63  521 

Beyond validating the described results, the analysis of chromatin 522 

accessibility was first employed to identify genes with concordant 523 

transcriptional and epigenetic regulation, a step we called pairwise 524 

integration. Among these genes, we found apoptotic mediators and tumor 525 

suppressors upregulated in BxPC-3 and downregulated in HCT-15, as 526 

well as redox balance and proteostasis hits upregulated in HCT-15 and 527 

downregulated in BxPC-3.  528 
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To further evaluate the interaction between transcriptional and chromatin 529 

accessibility responses, we proposed here a new versatile approach for 530 

the crosswise integration of RNA-seq and ATAC-seq, based on vCoCena 531 

(vertical Construction of Co-expression network analysis). This approach 532 

identified modules of genes co-regulated in the two omic layers across the 533 

analyzed experimental conditions. With this standalone method, we not 534 

only recapitulated the result of the independent transcriptomic and 535 

epigenomic analysis, but we also discovered additional pathways, e.g. 536 

actin and TGF β signaling, which modulate the response to the 537 

compounds. In detail, actin dynamics were recognized to potentially assist 538 

DSBs repair91 and a protumorigenic role was established for TGF β in 539 

mediating epithelial-mesenchymal transition, both processes that could 540 

additionally explain the more efficient response of HCT-15 cells to 3-541 

CePs.93 Efficient and versatile, this approach demonstrated to represent 542 

a valid option to integrate the information from multi-omic studies 543 

substituting the separate examination of each omic dataset.  544 

To further assist the development of 3-CePs, we set up a pilot sensitivity 545 

prediction framework readily transferable from the bench to the clinics. We 546 

designed a perturbation-informed signature derived from the integrated 547 

omic layers filtering the differentially expressed genes between the two 548 

cell lines at a steady state for those specifically involved in the cellular 549 

response to the treatment. Though based on a limited number of 550 

perturbed profiles, this gene signature predicted with high precision the 551 

sensitivity to 3-CePs only relying on the untreated transcriptome of test 552 

cell lines. The possibility to improve predictions from basal transcriptomes 553 

sounds attractive from a clinical perspective since it overcomes the need 554 

to screen for thousands of drugs and collect the same amount of profiles 555 

from limitedly-available patient samples, such as biopsies.101 Applied to 556 

TCGA tumor samples, this approach provided a list of susceptible cancer 557 

types, e.g. KIRC and PAAD, to support the further development of our 558 

drug candidate, and, once transferred on an ML platform, could offer a 559 

versatile predictive strategy translatable to the clinics.6,102  560 

In this study, we combined transcriptomic and epigenetic data to guide our 561 

exemplary analysis. Nevertheless, the modularity of our framework 562 

allows, with only minimal adjustment, its application to other omic 563 

technologies or experimental designs. Indeed, the vCoCena integration, 564 
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which is instrumental for both the biological interpretation of the data and 565 

the definition of the perturbation-informed signature, is agnostic of the type 566 

of data used as soon as this is reduced to a network of co-regulation.  567 

In conclusion, we present a complete end-to-end workflow to implement 568 

the use of multi-omics in drug development, providing a human-readable 569 

toolbox to interrogate pharmacological questions in both pre-clinical and 570 

clinical settings. We applied this framework to understand the MoA of 3-571 

CePs revealing the cellular determinants of sensitivity to this novel class 572 

of drugs and providing precious information for their clinical development 573 

as anticancer candidates. Given its versatility, we envision our workflow 574 

to be a broadly applicable resource to assist researchers in different steps 575 

of the drug discovery and development process. 576 

  577 
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Methods 578 

Cell lines culturing 579 

Colon (HCT-15), pancreatic (BxPC-3), lung (A549) carcinoma cell lines 580 

and human embryonic kidney (HEK-293) cells were purchased from 581 

ATCC (American Type Culture Collection) while prostate (PC-3) and testis 582 

(NTERA-2) carcinoma cell lines were kindly provided by Prof. W. Kolanus 583 

(LIMES institute; University of Bonn), neuroblastoma (SH-SY5Y) by Prof. 584 

D. Schmucker (LIMES institute; University of Bonn) and epidermoid (A-585 

431) carcinoma by Prof. G. Zunino (Istituto Nazionale dei Tumori di 586 

Milano). Cell lines were maintained in logarithmic phase at 37 °C in a 5% 587 

carbon dioxide atmosphere using RPMI-1640 (for BxPC-3, HCT-15, PC-588 

3), DMEM (for A-431, HEK-293, NTERA-2, SH-SY5Y) or Ham’s F-12K 589 

(for A549) media (by Gibco or Euroclone) containing 10% fetal calf serum, 590 

antibiotics (50 units/mL penicillin and 50 μg/mL streptomycin) and 2 mM 591 

L-glutamine (Euroclone).  592 

Direct detection and quantification of early DNA damage 593 

The extent of early DNA damage induced by 3-CePs in treated cells was 594 

assessed by the Fast Micromethod single-strand-break assay. This 595 

approach can detect both single and double-strand breaks, as well as 596 

alkali-labile adduct sites in the DNA of treated cells. 5,000 cells/well were 597 

seeded in 96-well microplates and treated next day for 6 h with M (10 nM 598 

and 100 nM), B (200 nM and 2 µM) or DMSO 0.5%. After treatment, we 599 

measured the effect of double and single-strand breaks on the rate of 600 

unwinding of cellular DNA in denaturing alkaline conditions by monitoring 601 

the fluorescence of a dye that preferentially binds to dsDNA up to 20 min 602 

(Pico488 dsDNA quantification reagent, Lumiprobe). The assay was 603 

performed following the protocol of Schröder et al.34 Two experimental 604 

replicates were performed, each one including three technical repeats. 605 

Fluorescence signal was acquired by the FLUOstar Omega microplate 606 

reader using Omega 5.11 software (BMG LABTECH). The resulting 607 

curves based on mean normalized fluorescence values obtained for each 608 

treatment and the control (DMSO 0.5%) are reported in Fig. 1 B. 609 

Cell cycle and flow cytometric H2AX phosphorylation analyses 610 
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Possible effects of 3-CePs treatments on the cell cycle distribution of both 611 

cell lines were analyzed by FACS, staining cellular DNA with the PI 612 

(propidium iodide) dye. In addition, we monitored by antibody staining the 613 

phosphorylation of histone H2AX, upstream event of the DDR cascade, 614 

after 6 h and 12 h of treatment in order to investigate the ability of BxPC-615 

3 and HCT-15 cells to detect DSBs. 200,000 cells/well were seeded in 12-616 

well plates and treated next day for 6 h, 12 h or 72 h with M (10 nM), B 617 

(200 nM) or DMSO 0.5%. Cells were harvested, washed with PBS, fixed 618 

and permeabilized with the Foxp3 Transcription Factor Staining Buffer Set 619 

(eBioscience, cat. #00-5523-00). In detail, cell suspensions were fixed for 620 

1 h at room temperature with FixBuffer, washed twice with PermBuffer 621 

and stained with anti-human γH2AX AlexaFluor 488 (Biolegend, clone 622 

2F3, cat. #613405) for 1 h at 4 °C. After the first staining, cells were 623 

washed first with PermBuffer, then with PBS and stained secondly with PI 624 

(30 min, dark). Samples were acquired on a BD Symphony instrument 625 

equipped with 5 lasers (UV, violet, blue, yellow-green, red), the spectral 626 

overlap between the channels were determined with single stained 627 

samples using FACSDiva (v 9.1.2). Samples were analyzed in FlowJo 628 

(BD, v 10.7.1). Events were gated first according to FSC-A and SSC-A 629 

and cleaned from cell doubles with 3 consecutive gates (FSC-A vs. FSC-630 

H; SSC-A vs. SSC-H and PI-A vs. PI-H). The frequency of cells within 631 

each phase of the cell cycle was calculated using the PI-A signal with the 632 

FlowJo built-in algorithm (Watson model with constrained G2 peak). Three 633 

biological replicates were obtained per condition and unpaired two-tailed 634 

Student’s t-test was performed to assess statistical significance (p < 0.05). 635 

RNA-seq and ATAC-seq experiments 636 

For both RNA-seq and ATAC-seq analyses, 300,000 cells/well were 637 

seeded in 6-well plates and treated next day for 6 h, 12 h or 72 h with M 638 

(10 nM), B (200 nM) or DMSO 0.5%. Both for RNA-seq and ATAC-seq 639 

samples, three experimental replicates were obtained for each condition. 640 

RNA-seq: at the end of the treatment, cells were washed, resuspended in 641 

1 mL QIAzol reagent (Qiagen) and stored at -80 °C.  642 

ATAC-seq: at the end of the treatment, cells were washed, harvested, 643 

resuspended in PBS with EDTA, stained with the LIVE/DEAD Near-IR 644 

fixable dye (Invitrogen, cat. #10119) for 10 min at 4 °C, centrifuged and 645 
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suspended in PBS with EDTA. 20,000 living cells/sample were sorted by 646 

FACS and further processed for nuclei isolation and transposition reaction 647 

following the protocol of Buenrostro et al.29  648 

We extracted the RNA using the miRNeasy mini kit (Qiagen) and checked 649 

the RNA integrity and quantity using the tapestation RNA assay on a 650 

tapestation4200 instrument (Agilent). We used 750ng total RNA to 651 

generate NGS libraries using the TruSeq stranded total RNA kit (Illumina) 652 

following manufacturer's instructions and generated ATAC-libraries from 653 

tagmented cells following the protocol of Buenrostro et al. In both cases 654 

we checked library size distribution via tapestation using D1000 (RNA) 655 

and D5000 assays (ATAC) respectively on a Tapestation4200 instrument 656 

(Agilent) and quantified the libraries via Qubit HS dsDNA assay 657 

(Invitrogen). We clustered the libraries at 250pM final clustering 658 

concentration on a NovaSeq6000 instrument using SP and S2 v1 659 

chemistry (Illumina) and sequenced paired-end 2*50 cycles before 660 

demultiplexing using bcl2fastq2 v2.20.  661 

RNA-seq data analysis 662 

Reads were aligned and quantified with STAR (v 2.5.2a)103 using standard 663 

parameters and mapped against the GRCh38p13 human reference 664 

genome (Genome Reference Consortium). Raw counts were imported, 665 

pre-filtered to exclude low-count genes (<100 reads, 17.693 mapped 666 

transcripts), normalized and VST-transformed (variance stabilizing 667 

transformation) following the DESeq2 (Bioconductor, v 1.26.0) pipeline 668 

using default parameters.104,105 SVA (surrogate variable analysis) was 669 

applied to identify latent variables responsible for batch effects and four of 670 

them were included in the DESeq2 model.106 All present transcripts were 671 

used as input for principal component analysis (PCA). The call for 672 

differentially expressed genes was performed for all treated vs control 673 

comparisons (separate cell lines) using an adjusted p-value threshold 674 

equal to 0.05, where IHW (IHW: independent hypothesis weighting) was 675 

adopted for multiple testing. Only protein-coding hits were considered for 676 

further functional analyses on DE genes. GSEA (gene set enrichment 677 

analysis) based on the GO (gene ontology) biological process database 678 

was employed for functional enrichments, both based on DE genes 679 

(Supplementary data 1, 2) or log2FC-based ranks. All enrichment dotplots 680 

report the Count and p-value associated with each term, when p < 0.05. 681 
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Representative enrichment terms in Fig. 2 C were selected manually from 682 

enrichment maps obtained for each group of genes depicted in the dotplot 683 

(Supplementary data 7): to remove semantic redundancy, only the most 684 

significant nodes among those converging into the same hub were 685 

reported (higher Count and lower p-value, example in Fig. S2 F). SVA 686 

batch-corrected normalized  vst-transformed counts were used as input 687 

for boxplots, heatmaps and log2FC-based GSEA. Hierarchical clustering 688 

was applied to identify blocks of DE genes with similar regulations across 689 

conditions as reported in the presented heatmaps (Fig. 2 D, S3 A). In the 690 

same heatmaps, row-scaled expression levels of cell-specific DE genes 691 

elicited at 6 h and 12 h were reported separately for each of the analyzed 692 

conditions. 693 

ATAC-seq data analysis  694 

After adapter trimming using Trimmomatic v 0.36107, the sequencing reads 695 

were aligned bowtie2 v 2.3.5 against the GRCh38p13 human reference 696 

genome.108 Subsequently, duplicated reads were removed using Picard 697 

dedup function and the transposase-induced offset was corrected using 698 

the deeptools v 3.1.3 alignmentSieve function.109 After sorting and 699 

indexing bam files with samtools v 1.9.,110 peak calling was performed 700 

using MACS2 v 2.1.2.111 Peak regions from sample-specific peak calling 701 

results were unified in R v 3.6.2 using the reduce function implemented in 702 

the GenomicRanges package v 1.38.0.112 prior to quantification of 703 

sequencing reads in these unified peak regions using the 704 

summarizeOverlaps function implemented in the GenomicAlignments 705 

package v1.22.1.112 Raw counts were pre-filtered to exclude low-count 706 

peaks (<20 reads, 63.434 mapped peaks), normalized and VST-707 

transformed following the DESeq2 (Bioconductor, v 1.26.0) pipeline using 708 

default parameters.104,105 Peak regions were annotated using ChIPseeker 709 

v1.22.1. All present peaks were used as input for principal component 710 

analysis (PCA). The call for differentially accessible regions (DARs) was 711 

performed for all treated vs control comparisons (separate cell lines) 712 

considering a p < 0.05 threshold. Only peaks mapping in promoters of 713 

protein-coding regions were considered for further functional analyses. 714 

GSEA (gene set enrichment analysis) based on the GO (gene ontology) 715 

biological process database was employed for functional enrichments 716 

based on DAR-associated genes (Supplementary data 3). Normalized 717 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2022. ; https://doi.org/10.1101/2022.02.21.481294doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.21.481294
http://creativecommons.org/licenses/by/4.0/


 

 22 

and vst-transformed counts were used as input for heatmaps and 718 

boxplots. Hierarchical clustering was applied to identify blocks of DAR-719 

associated genes with similar regulations across conditions as reported in 720 

the presented heatmaps (Fig. 4 C, S5 D). In the same heatmaps, row-721 

scaled accessibility levels of cell-specific DARs at 6 h and 12 h were 722 

reported separately for each of the analyzed conditions. For the pairwise 723 

integration between transcriptional and chromatin accessibility data, we 724 

identified hits having the same sign of regulation in RNA-seq and ATAC-725 

seq which were DE (protein-coding) and/or DAR-associated (protein-726 

coding mapping in promoters). Since a delay could exist between a prior 727 

chromatin remodeling and a detectable variation in the respective 728 

transcript level, pairwise comparisons were considered not only at the 729 

same time point in both omic layers but also between chromatin changes 730 

at 6 h and transcriptional responses at 12 h. We reported in Fig. 4 D only 731 

hits with (log2FCRNA-seq + log2FCATAC-seq)  > 1 or < -1. Interesting gene 732 

names for each of the considered comparisons were also reported. 733 

Crosswise integration of RNA-seq and ATAC-seq data 734 

The crosswise integration of transcriptomic and chromatin accessibility 735 

data was achieved through an adaptation of the CoCena (construction of 736 

co-expression network analysis - automated) tool, which can identify 737 

modules of genes showing similar regulation across conditions of interest. 738 

The core principles driving both network construction and gene modules 739 

detection by CoCena have been described previously.88 In this analysis, 740 

we first optimized the design of separate co-expression networks for the 741 

RNA-seq and ATAC-seq layers. To avoid the creation of networks mostly 742 

describing cell type differences, we calculated separate networks for 743 

BxPC-3 and HCT-15 cells which were then integrated horizontally through 744 

hCoCena2.88 The union of all DE and promoter DAR-associated genes 745 

detected in treated conditions was selected as input for constructing all 746 

networks. For the construction of cell-specific networks, the specified 747 

Pearson correlation cutoffs, edges and nodes for RNA-seq (BxPC-3: 748 

cutoff=0.801, edges=356851, nodes=4266; HCT-15: cutoff=0.772, 749 

edges=154497, nodes=4321) and ATAC-seq (BxPC-3: cutoff=0.702, 750 

edges=48280, nodes=3479; HCT-15: cutoff=0.733, edges=13336, 751 

nodes=3350) were used. The horizontally integrated networks contained 752 

the union of all nodes and edges coming from parent networks, where 753 
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edges between nodes connected in both parent layers were recalculated 754 

as a mean of their original weights. Clustering of the resulting RNA-seq 755 

and ATAC-seq networks was performed based on the infomap algorithm, 756 

where a threshold of minimum of 15 nodes per cluster was applied (Fig. 757 

S6 B, C).113 758 

Subsequently, inter-omic integration by vCoCena was applied to construct 759 

the final network. In this case, the correlation between the mean group-760 

fold change (GFC) pattern of modules belonging to the two layers was 761 

calculated to identify clusters of genes with similar regulation, suitable for 762 

crosswise integration. Edges from the two separate networks were 763 

selected for contributing to the integrated one based on a minimum cross-764 

layer correlation which could guarantee the maximum mixture between 765 

layers in identified module pairs (minimum correlation cutoff=0.73, 766 

edges=628783, nodes=8067). The new network was reclustered 767 

exploiting again the infomap algorithm, applying a higher threshold of a 768 

minimum of 30 nodes per cluster, and mean GFCs were recalculated: the 769 

resulting integrated modules included nodes originally derived from the 770 

two separate layers in different ratios, as shown in the relative heatmap 771 

(Fig. 5 B). GO-based GSEA was performed on detected modules of genes 772 

(Supplementary data 4) and the most significant terms (p < 0.05) were 773 

reported.  774 

Sensitivity signature construction and prediction pipeline 775 

For the signature of sensitivity to M, relevant modules from the crosswise 776 

vCoCena integration were selected as follows (Fig. S7 A): for each 777 

module, in both cell lines separately, we calculated the difference between 778 

the GFC (group fold-change) of the control and the M 6 h treated groups 779 

(∆GFC(cell line) = GFC(M6h) - GFC(ctrl )). The early time point was 780 

selected to guide the signature construction since from upstream analyses 781 

it turned out to be the most informative of cell responses to 3-CePs. The 782 

threshold score was then calculated as the difference between the 783 

previously obtained ∆GFCs for the two cell lines (thrscore = ∆GFC(BxPC-3) 784 

- ∆GFC(HCT-15)). Modules with thrscore above q50, thus modules where 785 
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the regulation was sufficiently different in the two cell lines after treatment 786 

with M, were selected (cyan, darkgreen, darkgrey, darkorange, gold, 787 

indianred, khaki, lightgreen, steelblue, orchid). Genes from the identified 788 

modules were grouped together and further considered to drive the 789 

definition of our signature of interest. 790 

Further on, DE analysis was performed between BxPC-3 and HCT-15 791 

untreated control groups to identify baseline DE genes up- and 792 

downregulated in the high-sensitive cell line (log2FC threshold equal to 1, 793 

padj < 0.01). In fact, given the much higher availability and clinical 794 

spendability of RNA-seq compared to ATAC-seq profiles, the signature 795 

was finally constructed only from basal transcriptomes. In particular, we 796 

further selected among the identified module genes only those that were 797 

also DE between the two untreated controls, ending up with a restricted 798 

group of genes showing compound- and cell line-specific regulation upon 799 

perturbation but, meanwhile, a significantly different basal expression in 800 

BxPC-3 cells. This perturbation-informed signature was composed by 294 801 

genes upregulated (signature up) and 170 genes downregulated 802 

(signature down) in the high-sensitive BxPC-3 cells (listed in 803 

Supplementary data 5). 804 

To validate the predictive performance of the obtained signature, GSVA 805 

(gene set variation analysis) was performed both with up and down 806 

signatures on the basal RNA-seq profiles of cancer cell lines included in 807 

the HPA (Human Protein Atlas).99 A sensitivity score was calculated for 808 

each cell line as the difference between the ESs (enrichment scores) of 809 

the up and the down signatures. The predicted rank was validated on 810 

selected cell lines (A-431, A549, HEK-293, NTERA-2, PC-3, SH-SY5Y) 811 

as described in the next paragraph and Pearson correlation between 812 

predicted sensitivity scores and viability decrease in cells treated with M 813 

10 nM for 72 h was calculated. Two control signatures of the same size 814 

were also tested: 1) a random genes signature (composed by random 815 

genes among those annotated in the RNA-seq profile of HPA cell lines) 2) 816 

a control signature composed by the top up- and down- log2FC DE genes 817 

between the two cell lines (listed in Supplementary data 6).  818 

GSVA (v 1.38.2) was applied also on basal transcriptomes of samples 819 

from the Cancer Genome Atlas TCGA database and their sensitivity score 820 

was calculated as previously indicated. The relative distribution of 821 
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samples from different tumor types in terms of calculated sensitivity score 822 

was plotted in Fig. 6 E, together with the indicated median value for each 823 

group, to identify possibly more susceptible tumor types. 824 

Finally, the signature-based prediction was used to train a LASSO-based 825 

classifier (cv.glmnet function in glmnet package v 4.1 to assess lambda 826 

penalty, predict function in stats package v 4.0.3 for actual prediction). 827 

Briefly, TCGA samples were assigned to a continuous label based on the 828 

previously inferred sensitivity scores. We next trained the classifier with 829 

80% of these profiles and tested it on the remaining 20%: Pearson 830 

correlation and RMSE were calculated to evaluate the predictive 831 

performance of the classifier. To assess the biological robustness of our 832 

signature and of the obtained model, the classifier was trained and tested 833 

also using transcriptomes cleaned up from genes belonging to our 834 

signature. 835 

Validation of 3-CePs sensitivity prediction on cancer cell lines 836 

The rank of sensitivity to M obtained from the newly constructed signature 837 

was validated on a subset of available cell lines included in the Human 838 

Cell Atlas. The selected cell lines spanned quite well between the max 839 

and min detected susceptibility scores. Here are the screened cell lines 840 

from the one predicted as most sensitive: PC-3, A549, A-431, SH-SY5Y, 841 

NTERA-2, HEK-293. 5,000 cells/well were seeded in 96-well microplates 842 

and after 24 h treated with M 10 nM for 72 h. Cell viability was assessed 843 

at the end of the treatment by MTT, following previously adopted 844 

protocols.19 Mean values of residual viability and standard deviations 845 

obtained from two independent experiments in duplicated microplates, 846 

each one containing three technical replicates, are reported in Table S1. 847 

Pearson correlation between mean residual viability and predicted 848 

susceptibility score in considered cell lines was calculated and reported in 849 

Fig. 6. 850 

Statistics and reproducibility 851 

Sample size was defined empirically to ensure robust statistical analysis. 852 

Unpaired two-tailed Student’s t-test was performed to assess statistically 853 

significant differences (p < 0.05) in cell cycle and H2AX phosphorylation 854 

analyses between treated and control conditions (n=3). All correlation 855 

coefficients were calculated with a Pearson’s test. The adopted statistical 856 
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tests, the considered significance levels and the number of biological 857 

replicates are also reported in figure legends. Box plots are in the style of 858 

Tukey, where the center of the box represents the median of values, 859 

hinges represent the 25th and 75th percentile and the whiskers are 860 

extended not further than the 1.5 * IQR (inter quartile range). The analysis 861 

was performed on R (v. 3.6.2 or 4.0.3): the specific packages used for the 862 

analysis, their version and relevant parameters used are explained in the 863 

Methods sections. All plots were generated with ggplot (v. 3.3.2) except 864 

for the heatmaps which were generated with the R package 865 

complexheatmap (v. 2.2.0). To ensure the reproducibility of the 866 

manuscript results, all the analyses were conducted within a containerized 867 

environment (Docker). RNA-seq and ATAC-seq analyses were performed 868 

with the docker image jsschrepping/r_docker:jss_R362 869 

(https://hub.docker.com/r/jsschrepping/r_docker). The rest of the analysis 870 

was conducted with the image lorenzobonaguro/cocena:v3 871 

(https://hub.docker.com/r/lorenzobonaguro/cocena) for compatibility with 872 

the CoCena pipeline.  873 

Data Availability  874 

All raw data included in this study are available at gene expression 875 

omnibus (GEO). Raw RNA-seq data and count matrix under the GEO 876 

accession number GSE179057. Raw ATAC-seq data and peak matrix are 877 

available under the accession number GSE179059. Both datasets are 878 

collected in a GEO SuperSeries (GSE179064).  879 

During the review process reviewer can access the private dataset at the 880 

link: 881 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE179064 882 

using the provided access token. 883 

The cell line expression data employed in the prediction pipeline were 884 

downloaded from https://www.proteinatlas.org/about/download. The file  885 

RNA HPA cell line gene data contains transcript expression levels 886 

summarized per gene in 69 cell lines and is based on the Human Protein 887 

Atlas version 20.0 and Ensembl version 92.38.  888 
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Similarly, the TCGA expression data from cancer cell samples (the 889 

Cancer Genome Atlas) were downloaded from the same web page of the 890 

Human Cell Atlas (Transcript expression levels summarized per gene in 891 

7932 samples from 17 different cancer types). Data are based on The 892 

Human Protein Atlas version 20.0 and Ensembl version 92.38.  893 

Code availability 894 

The code to reproduce both pre-processing and downstream analyses 895 

reported in this manuscript will be made publicly available on GitHub upon 896 

acceptance. The CoCena script is accessible at https://github.com/Ulas-897 

lab/CoCena2. 898 
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Figure 1. Cancer tropism of 3-CePs is not explained by DNA damage 914 

A Chemical structure of the analyzed 3-CePs (M = monofunctional, B = bifunctional). 915 

B Quantification of genomic DNA damage in BxPC-3 and HCT-15 cells treated with M 916 

(10 nM and 100 nM), B (200 nM and 2 µM) or DMSO 0.5% (ctrl) for 6 h and analyzed 917 

by the Fast Micromethod single-strand-break assay: alkaline denaturation of DNA is 918 

followed in time up to 20 min by monitoring the fluorescence of the dsDNA-specific 919 

PicoGreen dye. C Cell cycle distribution (accumulation in G1 vs G2/S phases) of 920 

BxPC-3 and HCT-15 cells treated with M (10 nM), B (200 nM) or DMSO 0.5% for 6 h, 921 

12 h and 72 h analyzed by FACS. Three biological replicates were obtained per 922 

condition and unpaired two-tailed Student’s t-test was performed to assess statistical 923 

significance (p < 0.05). D Analysis of H2AX phosphorylation in BxPC-3 and HCT-15 924 

cells treated with M (10 nM), B (200 nM) or DMSO 0.5% for 6 h and 12 h analyzed by 925 

FACS. Three biological replicates were obtained per condition and unpaired two-tailed 926 

Student’s t-test was performed to assess statistical significance (p < 0.05). E 927 

Schematic representation of the adopted omic-based approach.  928 
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Figure 2. Treatments elicit cell-specific transcriptional changes 930 

A Overview of the applied workflow for the RNA-seq analysis. B Number of up- (red) 931 

and downregulated (blue) DE genes in BxPC-3 and HCT-15 cells after treatment with 932 

M (10 nM), B (200 nM) or DMSO 0.5% (ctrl) for 6 h and 12 h (adjusted p threshold = 933 

0.05, shrinkage = TRUE, multiple testing method = IHW). C GO database functional 934 

enrichment (GSEA) on cell-specific and shared up- and downregulated DE genes. For 935 

each identified biological process, enrichments in terms of Count and p-value of 936 

representative terms are reported (p < 0.05). D Expression level of cell-specific 6 h DE 937 

genes across test conditions. GSEA was performed on modules with similar regulation 938 

identified by hierarchical clustering: for each cluster, representative GO terms and 939 

genes of the associated load are reported.  940 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2022. ; https://doi.org/10.1101/2022.02.21.481294doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.21.481294
http://creativecommons.org/licenses/by/4.0/


 

 32 

 941 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2022. ; https://doi.org/10.1101/2022.02.21.481294doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.21.481294
http://creativecommons.org/licenses/by/4.0/


 

 33 

Figure 3. DNA repair and proteostasis are key modulators of the response to 3-942 

CePs 943 

A GSEA for terms related to DNA damage and repair performed on DE genes detected 944 

in each of the considered treated vs control comparisons. For each GO term (p < 0.05), 945 

enrichments in terms of Count and p-value are reported. B Expression level of DE 946 

genes included in the load of the GO term regulation of response to DNA damage 947 

stimulus (HCT-15 cells, p < 0.05) in BxPC-3 and HCT-15 cells. C GSEA enrichment 948 

plots for the DNA repair pathway obtained from log2FC ranks for each of the 949 

considered treated vs control comparisons. The expression of leading edge genes is 950 

also shown, where key DE genes are reported with the same color of their associated 951 

DNA repair pathways (BER=base excision repair, NER=nucleotide-excision repair, 952 

MMR=mismatch repair, HR=homologous recombination, NHEJ=non-homologous end 953 

joining, FA=Fanconi anemia pathway).47–54,82,95,96,114–133 D GSEA for terms related to 954 

protein stability and ER load performed on DE genes detected in each comparison. 955 

For each GO term, enrichments in terms of Count and p-value are reported. E 956 

Expression level of DE genes included in the load of the GO term proteasomal protein 957 

catabolic process (HCT-15 cells, p < 0.05) in BxPC-3 and HCT-15 cells. F NES 958 

(normalized enrichment score) and - log10pval for the log2FC rank-based GSEA 959 

enrichment of the GO term PERK-mediated UPR in treated vs control comparisons. G 960 

GSEA enrichment plot for the PERK-mediated UPR pathway obtained from log2FC 961 

rank in the M 6 h vs control comparison in BxPC-3 cells. The expression of leading 962 

edge genes is also shown, where key DE genes of the mentioned pathway are 963 

reported. H Boxplots showing the expression level of ATF4, DDIT3 and PPP1R15A 964 

(vst-transformed normalized counts) in BxPC-3 cells.  965 
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Figure 4. The response to 3-CePs is further regulated at the chromatin level 967 

A Overview of the applied workflow for the ATAC-seq analysis. B Number of up- (red) 968 

and downregulated (blue) DARs in BxPC-3 and HCT-15 cells after treatment with M 969 

(10 nM), B (200 nM) or DMSO 0.5% (ctrl) for 6 h and 12 h (p-value threshold = 0.05, 970 

shrinkage = TRUE). Light blue/red = all detected DARs, dark blue/red = protein coding 971 

DARs mapping in promoter regions. C Accessibility level of cell-specific 6 h DARs 972 

across test conditions. GSEA was performed on genes associated with DARs with 973 

similar regulation, grouped in modules identified by hierarchical clustering: for each 974 

cluster, representative GO terms and genes of the associated load are reported. D 975 

Pairwise integration: ratio-ratio plots report the RNA-seq and ATAC-seq log2FCs of 976 

genes showing the same direction of transcriptional and chromatin accessibility 977 

regulation. Integration was performed not only at the same time point in both omic 978 

layers, but also between chromatin changes at 6 h and transcriptional responses at 979 

12 h. 980 
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Figure 5. Crosswise integration expedites the comprehension of multi-omic data 982 

A Overview of the applied workflow for the crosswise integration analysis. B Integrated 983 

modules of genes from the RNA-seq and ATAC-seq layers obtained with vCoCena 984 

and associated GFC (group fold change) pattern of regulation across conditions. The 985 

relative contribution of hits from the RNA-seq or ATAC-seq layers is also reported for 986 

each module. C Representative GO terms (p < 0.05) for the most relevant modules of 987 

genes, identified by GSEA. Enrichments in terms of Count and p-value are reported. 988 

D Expression and chromatin accessibility levels in HCT-15 cells of genes included in 989 

the pink module (nodes can come from the RNA-seq or ATAC-seq layer). E Most 990 

representative GO terms from GSEA on genes of the pink module (key areas: actin 991 

remodeling, lipid metabolism, TGF β signaling, DNA repair). For each GO term (p < 992 

0.05), enrichments in terms of Count and p-value are reported. F Boxplots showing 993 

the expression level of FHOD1, NPC1, FURIN and RECQL5 (vst-transformed 994 

normalized counts) in BxPC-3 and HCT-15 cells.  995 
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Figure 6. Perturbation-informed basal signatures efficiently predict sensitivity 997 

to our candidate drugs 998 

A Overview of the applied workflow for the sensitivity signature construction and 999 

associated drug susceptibility prediction. B M sensitivity signature genes (red = 1000 

signature up, blue = signature down) pinpointed from all DE genes in the BxPC-3 vs 1001 

HCT-15 baseline comparison. C Representative GO terms (p < 0.05) for genes of the 1002 

M sensitivity signature (up and down), identified by GSEA. Enrichments in terms of 1003 

Count and p-value are reported. D Pearson correlation between predicted sensitivity 1004 

score and viability decrease in a subset of HPA (Cell Atlas) cell lines (validation set). 1005 

E Sensitivity scores predicted from GSVA enrichment of our up and down signatures 1006 

in RNA-seq profiles of TCGA tumor samples. Median values for all sample scores and 1007 

within each tumor type are reported. F Overview of the applied workflow for the 1008 

LASSO-based ML setup. G Predictive outcome of the trained model (Pearson 1009 

correlation R and RMSE are reported). 1010 
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Figure S1. A Flow cytometry gating strategy for the cell cycle analysis and γH2AX 

induction reported in Fig.1 C and 1 D. 
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Figure S2. A Scheme of the applied workflow for the RNA-seq analyses. B Principal 

component analysis (PCA) post SVA batch correction of RNA-seq data: PC1 vs PC2 

showed sample separation by cell line, PC2 vs PC3 (cell lines depicted separately) 

showed treatment and time point separation. C Volcano plots reporting up- and 

downregulated DE genes in all treated vs control comparisons (adjusted p-value < 

0.05). D Venn plot reporting the number of specific and shared up- and downregulated 

DE genes between BxPC-3 and HCT-15 cells (union of DE genes in all treated vs 

control comparisons). E Enriched GO terms (p < 0.05) derived from GSEA on BxPC-

3 and HCT-15 DE genes (union of DE genes in all treated vs control comparisons) and 

on shared DE genes (up- and downregulated separately). F Schematic representation 

of enrichment map-based selection of representative GO terms to be reported in Fig. 

2 C. 
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Figure S3. A Expression level of cell-specific 12 h DE genes across test conditions. 

GSEA was performed on modules with similar regulation identified by hierarchical 

clustering: for each cluster, representative GO terms and genes of the associated load 

are reported. B GO database functional enrichment (GSEA) obtained from log2FC 

ranks in all treated vs control comparison both in BxPC-3 and HCT-15 cells. For each 

identified biological process, enrichments in terms of absolute normalized enrichment 

score (abs(NES)) and -log(p) of representative terms are reported (p < 0.05). 
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Figure S4. A GSEA for terms related to lipid metabolism performed on DE genes 

detected in each of the considered treated vs control comparisons. For each GO term 

(p < 0.05), enrichments in terms of Count and p-value are reported. B GSEA 

enrichment plots for the lipid biosynthesis process pathway obtained from log2FC 

ranks for each of the considered treated vs control comparisons. DE leading edge 

genes are also reported, together with boxplots showing the expression level of SCD 

(vst-transformed normalized counts) in BxPC-3 cells.  
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Figure S5. A Scheme of the applied workflow for the ATAC-seq analyses. B Principal 

component analysis (PCA) of ATAC-seq data: PC1 vs PC2 showed samples 

separation by cell line, PC2 vs PC3 (cell lines depicted separately) showed treatment 

and time point separation. C Upset plots reporting up- and downregulated DARs (p < 

0.05) and their overlap between all treated vs control comparisons in both cell lines. D 

Accessibility level of cell-specific 12 h DARs across test conditions. GSEA was 

performed on genes associated with DARs with similar regulation, grouped in modules 

identified by hierarchical clustering: for each cluster, representative GO terms and 

genes of the associated load are reported. 
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Figure S6. A Scheme of the applied workflow for the crosswise integration analysis. 

B Horizontally integrated modules of genes from the RNA-seq layer and associated 

GFC (group fold change) pattern of regulation across conditions. C Horizontally 

integrated modules of genes from the ATAC-seq layer and associated GFC (group 

fold change) pattern of regulation across conditions. D Crosswise integrated vCoCena 

network. E Most representative GO terms from GSEA on genes of the maroon, orchid, 

darkorange, darkgrey modules. For each GO term (p < 0.05), enrichments in terms of 

Count and p-value are reported. 
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Figure S7. A Scheme of the applied workflow for the sensitivity signature construction 

and associated drug susceptibility prediction. B HPA (Cell Atlas) cell lines separation 

based on GSVA enrichment of our newly constructed up vs down signatures of 

sensitivity to M. Color scale reflects samples predicted sensitivity score (up signature 

enrichment - down signature enrichment). C HPA (Cell Atlas) cell lines separation 

based on GSVA enrichment of random up vs down signatures. Color scale reflects 

samples predicted sensitivity score (up signature enrichment - down signature 

enrichment). D Pearson correlation between predicted sensitivity score and viability 

decrease in a subset of HPA (Cell Atlas) cell lines (validation set) using a random 

signature. E HPA (Cell Atlas) cell lines separation based on GSVA enrichment of 

control up vs down signatures. GSVA was performed using a control signature 

composed by DE genes with top up and down log2FC. Color scale reflects samples 

predicted sensitivity score (up signature enrichment - down signature enrichment). F 

Pearson correlation between predicted sensitivity score and viability decrease in a 

subset of HPA (Cell Atlas) cell lines (validation set) using a control signature composed 

by DE genes with top up and down log2FC. G TCGA tumor samples separation based 

on GSVA enrichment of our newly constructed up vs down signatures of sensitivity to 

M. Color scale reflects samples predicted sensitivity score (up signature enrichment -

down signature enrichment). H Predictive performance after the exclusion of genes 

belonging to our signature from training and test set transcriptomes (Pearson 

correlation R and RMSE are reported). 
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Table S1.

Cell line Viability decrease SD signature SS random SS topFC SS
HEK-293 30,3 15,1 -0,37 0,18 -0,26
NTERA-2 52,5 6,14 -0,28 0,17 -0,18
SH-SY5Y 66,4 4,61 -0,08 0,08 0,15
A-431 64,8 7,54 -0,03 -0,13 -0,66
A549 91,1 2,85 0,23 0,07 0,007
PC-3 70,3 0,14 0,35 -0,02 0,12
SD: standard deviation
signature SS: perturbation-informed signature sensitivity score
random SS: random signature sensitivity score
topFC SS: top up and down log2FC control signature sensitivity score

Table S1. Average viability decrease in cell lines treated with M 10 nM for 
72 h with associated standard deviation (SD). For each cell line, predicted 
sensitivity scores based on our perturbation-informed signature (signature SS), 
a random one (random SS), a control one based on top up and down log2FC 
DE genes between BxPC-3 and HCT-15 (topFC SS) were also reported.
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