

1 **Decoding mechanism of action and susceptibility to drug**
2 **candidates from integrated transcriptome and chromatin**
3 **state**

4 Caterina Carraro,¹ Lorenzo Bonaguro,^{2,3} Jonas Schulte-Schrepping,^{2,3}
5 Arik Horne,^{2,3} Marie Oestreich,² Stefanie Warnat-Herresthal,^{2,3} Tim
6 Helbing,⁴ Michele De Franco,¹ Kristian Händler,^{2,5,6} Sach Mukherjee,^{7,8}
7 Thomas Ulas,^{2,3,5} Valentina Gandin,¹ Richard Göttlich,⁴ Anna C.
8 Aschenbrenner,^{2,3,5,9} Joachim L. Schultze,^{2,3,5,*} Barbara Gatto^{1,*}

9 ¹Department of Pharmaceutical and Pharmacological Sciences, University of Padova,
10 Padova, Italy

11 ² Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V.,
12 Bonn, Germany

13 ³ Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of
14 Bonn, Bonn, Germany

15 ⁴ Institute of Organic Chemistry, Justus Liebig University Giessen, Giessen, Germany

16 ⁵ PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für
17 Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany

18 ⁶ Institute of Human Genetics, University of Lübeck, Lübeck, Germany

19 ⁷ Statistics and Machine Learning, Deutsches Zentrum für Neurodegenerative Erkrankungen
20 (DZNE) e.V., Bonn, Germany

21 ⁸ MRC Biostatistics Unit, University of Cambridge, Cambridge, UK

22 ⁹ Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI),
23 Radboud University Medical Center, Nijmegen, The Netherlands

24 * Corresponding author: j.schultze@uni-bonn.de, barbara.gatto@unipd.it

25

26 **Abstract**

27 Omics-based technologies are driving major advances in precision
28 medicine but efforts are still required to consolidate their use in drug
29 discovery. In this work, we exemplify the use of multi-omics to support the
30 development of 3-chloropiperidines (3-CePs), a new class of candidate
31 anticancer agents. Combined analyses of transcriptome and chromatin
32 accessibility elucidated the mechanisms underlying sensitivity to test
33 agents. Further, we implemented a new versatile strategy for the
34 integration of RNA-seq and ATAC-seq data, able to accelerate and extend
35 the standalone analyses of distinct omic layers. This platform guided the
36 construction of a perturbation-informed basal signature able to predict
37 cancer cell lines' sensitivity and to further direct compound development
38 against specific tumor types. Overall, this approach offered a scalable
39 pipeline to support the early phases of drug discovery, understanding of
40 mechanism and potentially inform the positioning of therapeutics in the
41 clinic.

42 **Introduction**

43 Omics technologies have revolutionized the classical *hypothesis-driven*
44 paradigm of drug discovery, offering a new perspective for the systematic
45 identification of targets and therapeutics.^{1,2} An increasing number of
46 examples are describing the use of these approaches to inspect the
47 pharmacological profile of existing drugs, e.g. mechanism of action (MoA)
48 and specific sensitivity biomarkers, as well as to assist their correct
49 repositioning in the clinical practice.^{3,4,5,6} Compared to traditional
50 approaches, omics-based methods capture the complexity of biological
51 systems and pathological processes in its entirety at increasingly
52 affordable costs.³ For this reason, refined strategies to handle the high-
53 dimensional information of omics data are continuously investigated to
54 expedite their routine use in drug development up to the clinics.^{7,8–14}

55 Recent works from our group highlighted 3-chloropiperidines (3-CePs) as
56 a novel class of candidate anticancer agents developed to improve the
57 pharmacological profile of nitrogen mustard-based chemotherapeutics.^{15–}
58 ²¹ As intended, these agents were demonstrated to induce DNA lesions,
59 a mechanism conceivably responsible for their cytotoxicity on tested
60 cancer cell lines.^{19–21} Interestingly, despite their expected broad-acting

61 MoA, a subset of derivatives showed a preferential activity against
62 pancreatic adenocarcinoma BxPC-3 cells worth to be clinically translated,
63 especially in light of the broad resistance of pancreatic tumors to most of
64 the available treatments.^{19–21}

65 The contribution of multi-omics to support early phases of drug discovery
66 is growing exponentially in the era of precision medicine.⁷ Omics
67 technologies have the potential to address some of the intrinsic difficulties
68 of the traditional drug discovery and development path, assisting it early
69 from target prioritization and hit identification up to the evaluation of
70 candidates' efficacy and safety.⁴ Drug-perturbation experiments have
71 been employed to inspect the functionality of target proteins²² and the
72 MoA of therapeutics, efficiently guiding the decision-making process in the
73 development of lead compounds.⁴ The massive accumulation of genomic
74 and transcriptomic profiles offers a precious substrate for the optimization
75 of strategies able to predict susceptibility to known therapeutics^{23–26}
76 refined by the continuous acquisition of data from high-throughput single-
77 cell platforms.^{10–12,27,28} Beyond the widely used transcriptome analysis,
78 changes in gene regulation can be evaluated in terms of chromatin
79 accessibility by ATAC-seq.^{29–31} Examples of the joint use of these two
80 omic techniques exist,^{13,14,32,33} but their synergistic employment on
81 compounds under early development is still underexplored.³

82 In this study, representative mono- (**M**) and bifunctional (**B**) 3-CePs
83 bearing a single or double alkylating units (Fig. 1 A) were selected to
84 exemplify the use of a multi-omic approach to investigate the molecular
85 determinants of susceptibility to novel drug candidates and their MoA.^{19–}
86 ²¹ We analyzed transcriptional changes and chromatin status upon
87 treatment in a high- (pancreatic adenocarcinoma BxPC-3) and low-
88 sensitive (colorectal adenocarcinoma HCT-15) cancer cell lines by RNA-
89 seq and ATAC-seq.^{29–31} In addition, we implemented our multi-omics
90 pipeline in drug discovery to derive perturbation-informed signatures
91 predicting compound sensitivity. Overall, the proposed approach not only
92 allowed to identify potentially more susceptible target tumor types for the
93 further development of test compounds, but also offered a versatile
94 predictive framework to support precision oncology in a clinical setting.

96 Results

97 98 Cancer tropism of 3-CePs is not explained by DNA damage

99 The mono- (**M**) and bifunctional (**B**) 3-chloropiperidines (3-CePs, Fig. 1
100 A), despite having different potencies, were shown to be particularly active
101 against BxPC-3 pancreatic adenocarcinoma cells.^{19,20} From this premise,
102 the two compounds were selected along with the highly sensitive BxPC-3
103 cell line and the low-sensitive HCT-15 colorectal adenocarcinoma one to
104 illustrate how integrative omics approaches unveil the molecular
105 mechanisms responsible for the described cellular tropism.

106 First, to assess whether 3-CePs-induced DNA damage itself would differ
107 in the two cell lines upon treatment, we measured the accumulation of
108 DNA single-strand breaks after 6 h of treatment with both compounds at
109 their cytotoxicity IC₅₀s in BxPC-3 and at a ten-times higher concentration
110 (10 nM and 100 nM **M**; 200 nM and 2 μ M **B**).³⁴ Surprisingly, the two cell
111 lines showed very comparable DNA damage accumulation, in both cases
112 higher after treatment with **M** compared to **B** (Fig. 1 B). These results
113 clearly pointed towards differential responses in the two cell lines
114 downstream of DNA damage.

115 Since alkylating agents are known to alter the progression of the cell
116 cycle,³⁵⁻³⁷ we next performed a cell cycle distribution analysis by flow
117 cytometry after different times of treatment (6 h, 12 h, 72 h) with both
118 compounds (Fig. 1 C). While **M** induced a persisting block in G1
119 throughout the observation time in BxPC-3 cells, this block was absent in
120 HCT-15 cells. In contrast, **B** induced an early G2/S block in HCT-15 cells
121 (6 h), which was not observed at later time points, while such a block was
122 most obvious at 12 h for BxPC-3 cells. Despite similar DNA damage
123 accumulation, these findings clearly indicated a different behavior for the
124 two cancer cell lines in terms of cell cycle progression after treatment with
125 the two 3-CePs.

126 To determine additional mechanisms explaining differential sensitivity to
127 3-CePs, we measured the activation of the DNA repair machinery as
128 another key aspect in the cellular response to genotoxins.³⁸ To verify
129 the ability of the two cancer cell lines to detect double-strand breaks
130 (DSBs), we assessed the phosphorylation of H2AX (γ H2AX), an early

131 event of the DNA damage response (DDR),³⁹ by flow cytometry after 6 h
132 and 12 h of treatment with both agents (Fig. 1 D). Interestingly, despite
133 the comparable DNA damage accumulation in the two cell lines, only
134 HCT-15 showed an increase in the γH2AX-positive population, suggesting
135 a more efficient engagement of the DNA repair machinery.

136 Taken together, these results indicated that cell-specific mechanisms after
137 the first event of DNA damage are responsible for the different
138 susceptibilities to 3-CePs.

139 **Treatments elicit cell-specific transcriptional changes**

140 Different genetic and epigenetic factors define the responsiveness of
141 tumor cells to chemotherapeutic agents.⁴⁰ To address these globally, we
142 analyzed changes in the transcriptome of the high- and low-sensitive cell
143 lines after treatment with the two 3-CePs (Fig. 1 E). RNA-seq was
144 performed on total RNA of HCT-15 and BxPC-3 cells exposed to DMSO
145 0.5% (control) or treated with **M** (10 nM) or **B** (200 nM) for 6 h and 12 h
146 (Fig. 2 A, S2 A) as in previous experiments.

147 Principal component analysis (PCA) of all transcripts separated samples
148 within each cell line according to treatment and time-point (Fig. S2 B),
149 suggesting a clear transcriptional reprogramming after treatment. In fact,
150 differential expression (DE) analysis pointed out that the expression of a
151 large number of genes changed significantly in both cell lines after
152 exposure to 3-CePs (Fig. 2 B, S2 C), especially at 6 h in BxPC-3 cells and
153 upon treatment with **B** in HCT-15 cells.

154 Gene Ontology (GO) enrichment was performed on the DE genes to
155 determine signaling pathways and transcriptional programs explaining the
156 observed differences. In a first explorative approach, we generated the
157 union of DE genes per cell line irrespective of compound and time point,
158 which allowed us also to distinguish between cell type-specific or shared
159 DE genes (Fig. S2 D). The most representative biological processes
160 identified by this analysis (Fig. S2 E, Supplementary data 1) are reported
161 in Fig. 2 C (see *Methods* and Fig. S2 F for further details).

162 Unexpectedly, we identified a strong translational response in BxPC-3
163 cells after treatment, a process which is typically attenuated in stress
164 conditions, as was the exposure to our DNA damaging agents, to allow

165 proper recovery of the protein quality control machinery.^{41,42} In contrast, a
166 strong regulation of genes mediating protein stability and catabolism was
167 observed in the low-sensitive cell line. In addition, HCT-15 cells activated
168 genes involved in the DDR, consistently with their higher ability to detect
169 and respond to DSBs. Both these two mechanisms pointed towards the
170 activation of an adaptive stress response in the low-sensitive cell line.

171 To further characterize these transcriptional changes over time in a cell
172 type-specific context, we grouped the DE genes at 6 and 12 h in modules
173 according to the similarity in their expression profiles and performed a
174 functional enrichment on genes with similar expression patterns (Fig 2 D
175 and S3 A, Supplementary data 2). Genes involved in ribosome biogenesis
176 and DNA repair turned out to be upregulated particularly after 6 h of
177 treatment in BxPC-3 cells (Clusters 2 and 3, Fig. 2 D). Besides, silencing
178 of pro-survival genes involved in microtubule organization and the JAK-
179 STAT cascade (Cluster 1, Fig 2 D) was detected at the same time point.
180 Only after 12 h of treatment (Fig. S3 A), BxPC-3 cells boosted
181 carbohydrate metabolism, most likely an attempt to recover *in extremis*.⁴³

182 Also HCT-15 cells upregulated clusters of genes mediating DNA repair,
183 protein stability and mitochondrial activity as early as 6 h of treatment,
184 suggesting this time point as the most informative to describe the
185 response to 3-CePs (Clusters 4 and 6, Figure 2 D). In contrast to BxPC-3
186 cells, HCT-15 downregulated genes involved in translation and ribosome
187 biogenesis from 6 h of exposure (Cluster 7, Figure 2 D), while intensifying
188 their response to oxidative stress after 12 h (Cluster 17, Figure S3 A).

189 This exploratory analysis showed clearly different transcriptional
190 responses and distinct time dynamics in BxPC-3 compared to HCT-15
191 cells, most likely responsible for their different susceptibility to 3-CePs. In
192 particular, our findings pointed towards DNA repair and proteostasis as
193 key mechanisms tuning sensitivity to the compounds, as further confirmed
194 by inspecting the complete rank of DE genes *via* gene set enrichment
195 analysis (GSEA, Fig. S3 B).⁴⁴

196 **DNA repair and proteostasis are key modulators of the response to**
197 **3-CePs**

198 For their key role in the response to 3-CePs, DNA repair and protein
199 homeostasis were further analyzed to clarify their contribution to BxPC-3
200 sensitivity.

201 Interestingly, DNA repair was activated in both cell lines early after 6 h of
202 treatment but with a different modulation (Fig. 3 A). First, base-excision
203 repair (BER) was suggested as the preferential pathway of BxPC-3 by GO
204 enrichment while HCT-15 relied mostly on nucleotide-excision repair
205 (NER), unleashing a generally stronger activation of the DDR. In detail,
206 HCT-15 DE genes contributing to the response to the DNA damage
207 stimulus were strongly upregulated already after 6 h especially in
208 response to **B**, while activated only after 12 h in BxPC-3 (Fig. 3 B). In
209 contrast, genes such as *PPP4R2* and *RAD51AP1*, both involved in the
210 first phases of DSBs repair,^{45,46} were even downregulated in BxPC-3 cells
211 at 6h.

212 The more efficient activation of DNA repair in HCT-15 was further
213 confirmed on the overall rank of genes by GSEA at 6 h of treatment (Fig.
214 3 C). As anticipated, most of the DE genes leading the enrichment in HCT-
215 15 belonged to NER (e.g. *GTF2H3*, *RBX1*) and other recombinational
216 pathways such as Homologous Repair (HR) (e.g. *MMS22L*, *BARD1*) and
217 Fanconi Anemia (FA) (e.g. *BRIP1*, *FANCM*), all better suited for the
218 efficient repair of bulky lesions and highly toxic DSBs and crosslinks.⁴⁷⁻⁵²
219 On the other hand, DE genes in BxPC-3 cells were mostly related to BER
220 (e.g. *APEX1*, *UNG*) and MMR (Mismatch Repair) (e.g. *MSH6*, *EXO1*),
221 which contribute to the repair of smaller lesions and mismatches.^{53,54}

222 In the analysis, proteostasis was identified as a second key biological
223 process strictly related to genotoxic stress.^{55,56} HCT-15 cells engaged the
224 protein folding and catabolism apparatus in response to 3-CePs,
225 especially to **B** already at the early time point (Fig. 3 D). As observed for
226 DNA repair, DE genes contributing to protein catabolism were upregulated
227 as early as 6 h of exposure in HCT-15 cells, while even downregulated at
228 the same time point in BxPC-3 and only upregulated after 12 h (Fig. 3 E).
229 This response involved chaperones and co-chaperones (e.g. *HSPA8*,
230 *HSPA1B*, *BAG2*, *BAG5*), other genes mediating protein catabolism (e.g.
231 *LAMP2*, *CUL3*) and ER morphogenesis (e.g. *RTN4*).⁵⁷⁻⁶⁰ Interestingly, a
232 transcriptional pattern revealed by GSEA at 6 h of treatment highlighted
233 an intense positive modulation of the PERK-mediated branch of the

234 unfolded protein response (UPR) specifically in BxPC-3 (Fig. 3 F). Even
235 more enlightening were the DE genes leading the enrichment: *ATF4*,
236 *DDIT3* (CHOP) and *PPP1R15A* (GADD34) were significantly upregulated
237 after 6 h of exposure only in this cell line (Fig. 3 G, H). These genes
238 participate in the PERK-mediated UPR triggering cell death after
239 prolonged ER stress through the aberrant recovery of translation, which
240 induces proteotoxicity.^{61,62} This mechanism would reasonably explain the
241 ribosome biogenesis signature observed in BxPC-3 cells. Consistently,
242 recent work reported a particular susceptibility for pancreatic cancer
243 adenocarcinoma to ER stress and protein dyshomeostasis.⁶³

244 Furthermore, the ability of HCT-15 cells to control proteostasis may also
245 depend on the activation of lipid and cholesterol biosynthesis in response
246 to the compounds (Fig. S4 A). In fact, among other known pro-survival
247 functions, these pathways contribute to resolving ER stress through
248 pathways involving e.g. the Stearoyl-CoA Desaturase (*SCD*) enzyme, for
249 which we detected a significant upregulation of the respective transcript
250 in HCT-15 (Fig. S4 B).^{64,65}

251 Overall, the transcriptome analysis of this *in vitro* perturbation experiment
252 allowed us to dissect the different responses to 3-CePs in our model cell
253 lines, pointing towards protein homeostasis and DDR imbalances as
254 mechanisms responsible for the high susceptibility of BxPC-3 cells.

255 **The response to 3-CePs is further regulated at the chromatin level**

256 The transcriptome analysis unveiled a defined framework of responses
257 tuning the sensitivity to 3-CePs. To further characterize them at the
258 epigenetic level, we examined chromatin accessibility in nuclei of BxPC-3
259 and HCT-15 cells treated with **M** and **B** for 6 h and 12 h (Fig. 4 A, Fig. S5
260 A) by ATAC-seq.

261 3-CePs induced evident epigenetic changes in both cell lines, as
262 suggested by PCA (Fig. S5 B) and confirmed by the number of
263 differentially accessible regions (DARs) identified especially in BxPC-3
264 cells (Fig. 4 B, Fig. S5 C). For further downstream analyses we focused
265 on DARs mapping to promoters, whose specific condensation or
266 compaction contribute to modulation of transcription of associated genes
267 (Fig. 4 B).

268 Also in this case, to better describe the timing of chromatin remodeling,
269 cell-specific promoter-associated DARs elicited after 6 h and 12 h of
270 treatment were grouped in clusters sharing a similar pattern of regulation
271 and functional enrichment was performed on the associated genes (Fig.
272 4 C, S5 D, Supplementary data 3).

273 In BxPC-3 cells, we observed condensation of promoters involved in
274 carbohydrate metabolism and others mediating protein folding and UPR
275 after 6 h of exposure (Cluster 1, Fig. 4 C), most likely contributing to the
276 transcriptional downregulation of such processes observed at the same
277 time point.^{57,66} On the contrary, relaxation of peaks involved in tRNA
278 metabolism and mRNA splicing were detected, in line with the
279 upregulation of translation and RNA processing evidenced by RNA-seq.
280 In HCT-15 cells, relaxation of promoters involved in the DDR, lipid
281 metabolism (Cluster 6, Fig. 4 C) as well as protein catabolism (Cluster 7,
282 Fig. 4 C) was observed, again in line with our observations on
283 transcriptome level. Altogether, these results attested that the regulation
284 of elicited transcriptional pathways was accommodated by changes at the
285 chromatin level, adding new information on the possible mechanisms
286 determining the cellular responses to 3-CePs.

287 A critical step in the analysis of multi-omic datasets is the integration of
288 information obtained from the different layers. Though valuable strategies
289 have been developed in recent years to integrate RNA-seq and ATAC-
290 seq data, alternatives are still required to optimize and enlarge the
291 functional information obtained from the combination of these powerful
292 techniques.⁶⁷⁻⁶⁹ In this study, we approached data integration through two
293 alternative strategies, that we called *pairwise* and *crosswise*.

294 As a first level of integration, we identified genes with concordant
295 regulation in RNA-seq and ATAC-seq upon treatment. In this *pairwise*
296 integration, we compared the direction of transcriptional regulation of
297 genes to the accessibility of their promoters, as specified in the *Methods*
298 section and shown in Fig. 4 D. Given the biological delay that could exist
299 between chromatin remodeling and a detectable variation in transcript
300 level, pairwise comparisons were also considered between chromatin
301 changes after 6 h and transcriptional responses after 12 h of treatment.

302 Among genes with coherent regulation in BxPC-3 cells we found the tumor
303 suppressors *ADRA2A*, *NME1*, and *KLF6* to be upregulated, elicited after
304 treatment with both agents, and *LATS2* and *NME2* specific for **M** and **B**,
305 respectively.⁷⁰⁻⁷³ Besides, other genes were involved in translation and
306 RNA processing such as *RNPS1* and *LARP4B*,^{74,75} and apoptosis such
307 as *AEN*, *PAWR*, and *CASP7*.⁷⁶⁻⁷⁸ Interestingly, BxPC-3 also negatively
308 regulated *TXNIP*, an inhibitor of the oxidative stress regulator thioredoxin,
309 after treatment with **B**.⁷⁹ Conversely, among downregulated hits we found
310 apoptosis inhibitors such as *WRAP53* and *TRADD*, as well as *HSPB8*,
311 *CALCOCO1* and *SELENOH*, all involved in the resolution of ER and
312 oxidative stress.^{78,80,81} In HCT-15 cells, among identified positively
313 regulated genes some were involved in DNA repair such as *MRE11*,
314 *MDM4*, *RNF138*,^{82,83} others were oncogenes such as *VIM* and *ARID4B* or
315 apoptosis inhibitors like *TRADD*.^{84,85} Notably, some genes involved in the
316 modulation of the redox balance (*GLRX3*, *SELENOF*) showed double
317 regulation after treatment with **B** as well as others active in proteostasis
318 (*PSMA5* after exposure to **M**, *UBE2N* to **B**).^{81,86} Among the downregulated
319 genes, some were associated to cell adhesion (*PLEKHO1*, *ITGB3*,
320 *ICAM1*) and translation (*RPL19*, *RPL13*).⁸⁷

321 Collectively, *pairwise* integration of RNA-seq and ATAC-seq shed light on
322 genes with robust regulation at the transcriptional and chromatin level,
323 adding further details to the previously identified response pathways.

324 **Crosswise integration expedites the comprehension of multi-omic 325 data**

326 Through the *pairwise* approach, we identified genes with both
327 transcriptional and chromatin regulation which significantly contributed to
328 the observed cellular response. We further evaluated the crosstalk
329 between RNA-seq and ATAC-seq at a different level by focusing on
330 groups of genes co-regulated in the two omic layers. The identification of
331 genes sharing similar regulation across conditions either at the
332 transcriptional or chromatin level would maximize the detection of
333 interacting pathways and regulatory processes, e.g. as a result of
334 chromatin changes in promoters tuning the transcription of a certain gene
335 set. This approach, which we termed *crosswise* integration, was achieved
336 by vertical Construction of Co-expression network analysis (vCoCena).

337 vCoCena is designed to define modules of genes and/or genomic markers
338 such as DARs with a similar pattern of regulation across conditions in
339 multiple omic datasets. As a first step, we created separate co-expression
340 networks for the RNA-seq and ATAC-seq layers (Fig. 5 A, S6 A). To
341 prevent the construction of a network mostly describing the difference
342 between the two cell lines, we first calculated separate networks for BxPC-
343 3 and HCT-15 cells which were then integrated horizontally (hCoCena).⁸⁸
344 The union of all DE and promoter DAR-associated genes detected in
345 treated conditions was selected as input for constructing all networks.
346 Clustering of the resulting RNA-seq and ATAC-seq networks identified a
347 relevant number of gene modules with highly specific regulatory patterns
348 (Fig. S6 B and C). At this point, the vertical, inter-omic integration
349 (vCoCena) was applied to construct the final network consolidating the
350 information from transcriptome and chromatin accessibility (Fig. S6 D, see
351 *Methods* for details). The new network was then reclustered resulting in
352 integrated modules of co-regulation including nodes originally derived
353 from the two separate layers in different ratios, as shown in Fig. 5 B.

354 The approach combined genes sharing similar regulation in the respective
355 omic dataset, as approximated by the GFC pattern, with the postulate that
356 genes grouped together cooperate in specific cellular processes. To
357 define the underlying mechanisms, GO enrichment was performed on
358 genes included in each of the modules and representative biological terms
359 for the most relevant clusters were reported in Fig. 5 C (Supplementary
360 data 4). Some modules validated the information obtained through
361 previous analyses (Fig. S6 E): both the *maroon* and *darkorange* clusters
362 suggested macroautophagy as a putative pathway accounting for the
363 enhanced catabolism observed in HCT-15 cells.⁸⁹ Consistently, the former
364 RNA-seq-based module was downregulated at 6 h in BxPC-3 but
365 upregulated already after 6 h with **B** in HCT-15, while the latter ATAC-
366 seq-based module included peaks condensing after 6 h only in BxPC-
367 3, confirming the latter cell line as refractory to a rapid engagement of its
368 protein catabolism apparatus. Another mostly RNA-seq-based module
369 validating our previous approach was the *orchid* module, upregulated after
370 6 h in BxPC-3, containing genes involved in ribosome biogenesis. The
371 *darkgrey* cluster instead, more balanced in terms of contribution from the
372 two omic layers, showed positive regulation only in HCT-15 cells and
373 included hits involved in DDR.

374 However, the *crosswise* integration also identified additional regulation,
375 exemplified by the *pink* module. As approximated by the associated GFCs
376 pattern, its 163 genes were positively modulated only in HCT-15 cells
377 especially after 6 h of treatment with **B** (Fig. 5 D). Interestingly, functional
378 enrichment identified hits both from RNA-seq and ATAC-seq involved in
379 actin remodeling (Fig. 5 E), a mechanism affecting morphology and
380 function of cancer cells (e.g. *FHOD1*, Fig. 5 F).^{90,91,92} Other module genes,
381 such as *FURIN*, positively regulated at the chromatin level (Fig. 5 F),
382 belonged to TGF β signaling (Fig. 5 E), an emerging player in cancer drug
383 resistance.^{93,94} In addition, the module included genes of lipid metabolism
384 and DNA repair belonging to both omic layers, which was in line with our
385 initial findings (Fig. 5 E and F).

386 Overall, the *crosswise* integration of RNA-seq and ATAC-seq data
387 allowed an efficient combination of the functional information from the two
388 omics layers. Clearly, this approach added further biology to what we had
389 identified when analyzing transcriptional and chromatin landscape
390 regulation individually.

391 **Perturbation-informed basal signatures efficiently predict sensitivity**
392 **to our candidate drugs**

393 The information derived from the *crosswise* integration was employed to
394 construct a signature of sensitivity to 3-CePs. Being more potent, **M** was
395 selected as reference to describe a sensitivity prediction framework based
396 on the use of a perturbation-informed omic signature (Fig. 6 A, S7 A,
397 Methods).

398 First, we selected vCoCena clusters with a marked difference in regulation
399 between the two cell lines after treatment with **M**, considering only the
400 most informative time point of 6 h (selected modules: *cyan*, *darkgreen*,
401 *darkgrey*, *darkorange*, *gold*, *indianred*, *khaki*, *lightgreen*, *steelblue*, *orchid*;
402 module selection criteria are described in detail in the *Methods* section).
403 According to our analysis, genes that belong to these modules, coming
404 both from RNA-seq and ATAC-seq analyses, are expected to be the major
405 determinants of the differential susceptibility in the two cell lines.

406 Importantly, we postulated that features accounting for sensitivity should
407 be intrinsic for the two cell lines, thus explained already by significant
408 differences in their basal status. For this reason, we performed DE

409 analysis between untreated BxPC-3 and HCT-15 control groups,
410 identifying genes up- and downregulated at the transcriptional level in the
411 high-sensitive cell line, and sorted out only those belonging to previously
412 selected modules. This approach resulted in a subgroup of genes with
413 different basal expression in BxPC-3 cells as well as a sufficiently
414 compound- and cell line-specific regulation upon perturbation. This
415 perturbation-informed signature was composed of 294 genes upregulated
416 (signature *up*) and 170 genes downregulated (signature *down*) in the high-
417 sensitive BxPC-3 cells (Fig. 6 B, gene list available in Supplementary data
418 5). GO enrichment on these genes identified protein synthesis, folding and
419 catabolism, as well as cell adhesion, matrix organization and actin
420 remodeling among the most significant biological functions (Fig. 6 C).
421 Some interesting genes in the *up* signature were *BNIP3* and *FADD*, both
422 proapoptotic, as well as *TXNIP*, already identified as a thioredoxin
423 inhibitor. Among those composing the *down* signature, we identified
424 *YOD1*, *HERPUD1* and *HSPA5*, involved in protein homeostasis and ER
425 stress, but also *ERCC6* and *AUNIP* of the DDR (Fig. 6 B).⁹⁵⁻⁹⁸

426 To determine the robustness of the obtained signature and its ability to
427 predict sensitivity to **M**, we next performed a gene set variation analysis
428 (GSVA) on publicly available transcriptomes of common cell lines,⁹⁹
429 testing for both the *up* and *down* signatures (Fig. S7 B). A sensitivity score
430 was calculated for each cell line as the difference between the enrichment
431 scores (ES) of the *up* and the *down* signatures. The predicted rank was
432 validated experimentally on representative cell lines (A-431, A549, HEK-
433 293, NTERA-2, PC-3, SH-SY5Y) demonstrating the strong predictive
434 capacity of our perturbation-informed signature (Pearson's R=0.84,
435 p=0.038, Fig. 6 D). This signature outperformed a random one containing
436 the same number of genes (R=-0.48, p=0.34, Fig. S7 C and D) and also
437 a signature of equal size composed by the top up- and downregulated
438 genes between the two cell lines (R=0.34, p=0.51, Fig. S7 E and F, gene
439 list available in Supplementary data 6). Collectively, our crosswise
440 integration approach resulted in a perturbation-informed signature
441 capable of predicting drug sensitivity in a wide range of untreated tumor
442 cell lines commonly used in cancer research.

443 Encouraged by these results, we adapted our strategy to mimic a clinical
444 setting utilizing the primary tumor samples of the Cancer Genome Atlas

445 TCGA database (Fig. S7 G). By applying GSVA, we examined the relative
446 distribution of samples from different tumor types based on the calculated
447 sensitivity score, unveiling which cancer types were predicted as generally
448 more susceptible (i.e. kidney renal clear cell carcinoma KIRC, pancreatic
449 adenocarcinoma PAAD, kidney renal papillary cell carcinoma KIRP,
450 glioblastoma multiforme GBM) or less sensitive (i.e. tenosynovial giant cell
451 tumor TCGT, cervical squamous cell carcinoma and endocervical
452 adenocarcinoma CESC, rectum adenocarcinoma READ, colon
453 adenocarcinoma COAD) to **M**, providing a framework for further *in vivo*
454 development of this compound (Fig. 6 E).

455 Interestingly, the predicted tumor types with the highest and lowest
456 sensitivity turned out to be KIRC and TCGT, respectively, demonstrating
457 that the designed signature was not driven by the original cell type of the
458 cell lines used for its extrapolation and could go beyond the original cancer
459 type. At the same time, PAAD and COAD (pancreatic and colorectal
460 adenocarcinoma, as BxPC-3 and HCT-15 cells) were still among the most
461 and least sensitive, confirming that cell type intrinsic determinants of
462 susceptibility exist and are represented in our signature. Interestingly,
463 intra-tumor variability resulted in a continuous distribution of samples
464 scores within each cancer group, confirming the importance of clinically
465 translating such predictions beyond the tumor type to better address
466 patient-specific therapeutic needs.

467 To enlarge the accessibility and clinical translatability of our framework,
468 we finally introduced a LASSO regression model to predict the sensitivity
469 of tumor samples in the external reference dataset (Fig. 6 F). We trained
470 a regression model using TCGA basal transcriptomic profiles labelled with
471 the previously predicted sensitivity scores in order to create a self-
472 supervised system able to emulate the prediction irrespective of the
473 context dataset, detaching the predictive tool from the data space. From
474 a clinical perspective, this further step would permit to collect a patient
475 basal transcriptome and feed it to the model, not only improving the
476 performance of the prediction but also avoiding any issue related to data
477 sharing since the model itself does not contain any patients' sensitive
478 data.

479 In detail, TCGA samples were labeled according to the calculated
480 continuous sensitivity scores. Next, the model was trained on 80% of the

481 data and tested on the remaining 20%, which efficiently predicted drug
482 sensitivity within the test samples ($R = 0.97$, $RMSE = 0.063$) (Fig. 6 G).
483 Notably, such predictive capacity was maintained even when excluding
484 from the transcriptomes all the signature genes used to define the
485 sensitivity score label of the samples, suggesting the biological
486 robustness of the predictive system ($R = 0.97$, $RMSE = 0.066$, Fig. S7 H).
487 In fact, while the signature itself was good enough to rank samples based
488 on experimental biological evidence, the model showed to go beyond the
489 initial signature relying on additional predictive features previously not
490 identified.

491 Overall, we demonstrated how to further employ the integrated RNA-seq
492 and ATAC-seq information to assemble an accurate and clinically-
493 accessible predictive strategy able both to orient drug development and
494 to support the medical practice in the context of precision oncology.

495 Discussion

496 Despite the advances of the last decades, efforts are continuously
497 required to expedite routine use of omic-scale approaches in clinical and
498 pre-clinical settings. Recent work illustrated the potential for omics
499 technologies to accelerate the process of drug discovery from the initial
500 identification of candidate lead compounds up to their pre-clinical and
501 clinical development.^{8–14} Further, improvements in computational
502 approaches for omics data analyses^{4,6,7} and an ever-increasing availability
503 of public reference datasets¹⁰⁰ make it now possible to develop completely
504 new pipelines to address the pharmacological profile of any given drug,
505 from its MoA to sensitivity biomarkers.^{1–3}

506 Here, we combined transcriptome and chromatin accessibility analyses
507 within perturbation experiments to investigate the specific activity profile
508 of 3-CePs, a new class of potential anticancer agents acting as DNA
509 alkylators.^{15–21} Our combined analysis unveiled the basis of the
510 preferential activity of 3-CePs against the pancreatic cancer cell line
511 BxPC-3, which was demonstrated to be unable to properly control
512 proteostasis and DDR under stress conditions upon exposure to the
513 alkylating agents. On the contrary, the low-sensitive colorectal
514 adenocarcinoma cell line HCT-15 potentiated protein folding and
515 catabolism all together activating a more efficient DNA repair after
516 treatment. Due to unresolved genotoxic stress and proteostasis
517 dysregulation, widely described as crosstalking events,^{55,56} BxPC-3 cells
518 activated the apoptotic branch of the PERK-mediated UPR via CHOP and
519 GADD34, both upregulated after treatment.^{61,62} Accordingly, such
520 behavior is in line with the described susceptibility of pancreatic cancer
521 adenocarcinoma to ER stress and protein dyshomeostasis.⁶³

522 Beyond validating the described results, the analysis of chromatin
523 accessibility was first employed to identify genes with concordant
524 transcriptional and epigenetic regulation, a step we called *pairwise*
525 integration. Among these genes, we found apoptotic mediators and tumor
526 suppressors upregulated in BxPC-3 and downregulated in HCT-15, as
527 well as redox balance and proteostasis hits upregulated in HCT-15 and
528 downregulated in BxPC-3.

529 To further evaluate the interaction between transcriptional and chromatin
530 accessibility responses, we proposed here a new versatile approach for
531 the *crosswise* integration of RNA-seq and ATAC-seq, based on vCoCena
532 (vertical Construction of Co-expression network analysis). This approach
533 identified modules of genes co-regulated in the two omic layers across the
534 analyzed experimental conditions. With this standalone method, we not
535 only recapitulated the result of the independent transcriptomic and
536 epigenomic analysis, but we also discovered additional pathways, e.g.
537 actin and TGF β signaling, which modulate the response to the
538 compounds. In detail, actin dynamics were recognized to potentially assist
539 DSBs repair⁹¹ and a protumorigenic role was established for TGF β in
540 mediating epithelial-mesenchymal transition, both processes that could
541 additionally explain the more efficient response of HCT-15 cells to 3-
542 CePs.⁹³ Efficient and versatile, this approach demonstrated to represent
543 a valid option to integrate the information from multi-omic studies
544 substituting the separate examination of each omic dataset.

545 To further assist the development of 3-CePs, we set up a pilot sensitivity
546 prediction framework readily transferable from the bench to the clinics. We
547 designed a perturbation-informed signature derived from the integrated
548 omic layers filtering the differentially expressed genes between the two
549 cell lines at a steady state for those specifically involved in the cellular
550 response to the treatment. Though based on a limited number of
551 perturbed profiles, this gene signature predicted with high precision the
552 sensitivity to 3-CePs only relying on the untreated transcriptome of test
553 cell lines. The possibility to improve predictions from basal transcriptomes
554 sounds attractive from a clinical perspective since it overcomes the need
555 to screen for thousands of drugs and collect the same amount of profiles
556 from limitedly-available patient samples, such as biopsies.¹⁰¹ Applied to
557 TCGA tumor samples, this approach provided a list of susceptible cancer
558 types, e.g. KIRC and PAAD, to support the further development of our
559 drug candidate, and, once transferred on an ML platform, could offer a
560 versatile predictive strategy translatable to the clinics.^{6,102}

561 In this study, we combined transcriptomic and epigenetic data to guide our
562 exemplary analysis. Nevertheless, the modularity of our framework
563 allows, with only minimal adjustment, its application to other omic
564 technologies or experimental designs. Indeed, the vCoCena integration,

565 which is instrumental for both the biological interpretation of the data and
566 the definition of the perturbation-informed signature, is agnostic of the type
567 of data used as soon as this is reduced to a network of co-regulation.

568 In conclusion, we present a complete end-to-end workflow to implement
569 the use of multi-omics in drug development, providing a human-readable
570 toolbox to interrogate pharmacological questions in both pre-clinical and
571 clinical settings. We applied this framework to understand the MoA of 3-
572 CePs revealing the cellular determinants of sensitivity to this novel class
573 of drugs and providing precious information for their clinical development
574 as anticancer candidates. Given its versatility, we envision our workflow
575 to be a broadly applicable resource to assist researchers in different steps
576 of the drug discovery and development process.

577

578 **Methods**

579 **Cell lines culturing**

580 Colon (HCT-15), pancreatic (BxPC-3), lung (A549) carcinoma cell lines
581 and human embryonic kidney (HEK-293) cells were purchased from
582 ATCC (American Type Culture Collection) while prostate (PC-3) and testis
583 (NTERA-2) carcinoma cell lines were kindly provided by Prof. W. Kolanus
584 (LIMES institute; University of Bonn), neuroblastoma (SH-SY5Y) by Prof.
585 D. Schmucker (LIMES institute; University of Bonn) and epidermoid (A-
586 431) carcinoma by Prof. G. Zunino (Istituto Nazionale dei Tumori di
587 Milano). Cell lines were maintained in logarithmic phase at 37 °C in a 5%
588 carbon dioxide atmosphere using RPMI-1640 (for BxPC-3, HCT-15, PC-
589 3), DMEM (for A-431, HEK-293, NTERA-2, SH-SY5Y) or Ham's F-12K
590 (for A549) media (by Gibco or Euroclone) containing 10% fetal calf serum,
591 antibiotics (50 units/mL penicillin and 50 µg/mL streptomycin) and 2 mM
592 L-glutamine (Euroclone).

593 **Direct detection and quantification of early DNA damage**

594 The extent of early DNA damage induced by 3-CePs in treated cells was
595 assessed by the Fast Micromethod single-strand-break assay. This
596 approach can detect both single and double-strand breaks, as well as
597 alkali-labile adduct sites in the DNA of treated cells. 5,000 cells/well were
598 seeded in 96-well microplates and treated next day for 6 h with **M** (10 nM
599 and 100 nM), **B** (200 nM and 2 µM) or DMSO 0.5%. After treatment, we
600 measured the effect of double and single-strand breaks on the rate of
601 unwinding of cellular DNA in denaturing alkaline conditions by monitoring
602 the fluorescence of a dye that preferentially binds to dsDNA up to 20 min
603 (Pico488 dsDNA quantification reagent, Lumiprobe). The assay was
604 performed following the protocol of Schröder et al.³⁴ Two experimental
605 replicates were performed, each one including three technical repeats.
606 Fluorescence signal was acquired by the FLUOstar Omega microplate
607 reader using Omega 5.11 software (BMG LABTECH). The resulting
608 curves based on mean normalized fluorescence values obtained for each
609 treatment and the control (DMSO 0.5%) are reported in Fig. 1 B.

610 **Cell cycle and flow cytometric H2AX phosphorylation analyses**

611 Possible effects of 3-CePs treatments on the cell cycle distribution of both
612 cell lines were analyzed by FACS, staining cellular DNA with the PI
613 (propidium iodide) dye. In addition, we monitored by antibody staining the
614 phosphorylation of histone H2AX, upstream event of the DDR cascade,
615 after 6 h and 12 h of treatment in order to investigate the ability of BxPC-
616 3 and HCT-15 cells to detect DSBs. 200,000 cells/well were seeded in 12-
617 well plates and treated next day for 6 h, 12 h or 72 h with **M** (10 nM), **B**
618 (200 nM) or DMSO 0.5%. Cells were harvested, washed with PBS, fixed
619 and permeabilized with the Foxp3 Transcription Factor Staining Buffer Set
620 (eBioscience, cat. #00-5523-00). In detail, cell suspensions were fixed for
621 1 h at room temperature with FixBuffer, washed twice with PermBuffer
622 and stained with anti-human γ H2AX AlexaFluor 488 (Biolegend, clone
623 2F3, cat. #613405) for 1 h at 4 °C. After the first staining, cells were
624 washed first with PermBuffer, then with PBS and stained secondly with PI
625 (30 min, dark). Samples were acquired on a BD Symphony instrument
626 equipped with 5 lasers (UV, violet, blue, yellow-green, red), the spectral
627 overlap between the channels were determined with single stained
628 samples using FACSDiva (v 9.1.2). Samples were analyzed in FlowJo
629 (BD, v 10.7.1). Events were gated first according to FSC-A and SSC-A
630 and cleaned from cell doubles with 3 consecutive gates (FSC-A vs. FSC-
631 H; SSC-A vs. SSC-H and PI-A vs. PI-H). The frequency of cells within
632 each phase of the cell cycle was calculated using the PI-A signal with the
633 FlowJo built-in algorithm (Watson model with constrained G2 peak). Three
634 biological replicates were obtained per condition and unpaired two-tailed
635 Student's *t*-test was performed to assess statistical significance ($p < 0.05$).

636 **RNA-seq and ATAC-seq experiments**

637 For both RNA-seq and ATAC-seq analyses, 300,000 cells/well were
638 seeded in 6-well plates and treated next day for 6 h, 12 h or 72 h with **M**
639 (10 nM), **B** (200 nM) or DMSO 0.5%. Both for RNA-seq and ATAC-seq
640 samples, three experimental replicates were obtained for each condition.

641 RNA-seq: at the end of the treatment, cells were washed, resuspended in
642 1 mL QIAzol reagent (Qiagen) and stored at -80 °C.

643 ATAC-seq: at the end of the treatment, cells were washed, harvested,
644 resuspended in PBS with EDTA, stained with the LIVE/DEAD Near-IR
645 fixable dye (Invitrogen, cat. #10119) for 10 min at 4 °C, centrifuged and

646 suspended in PBS with EDTA. 20,000 living cells/sample were sorted by
647 FACS and further processed for nuclei isolation and transposition reaction
648 following the protocol of Buenrostro et al.²⁹

649 We extracted the RNA using the miRNeasy mini kit (Qiagen) and checked
650 the RNA integrity and quantity using the tapestation RNA assay on a
651 tapestation4200 instrument (Agilent). We used 750ng total RNA to
652 generate NGS libraries using the TruSeq stranded total RNA kit (Illumina)
653 following manufacturer's instructions and generated ATAC-libraries from
654 fragmented cells following the protocol of Buenrostro et al. In both cases
655 we checked library size distribution via tapestation using D1000 (RNA)
656 and D5000 assays (ATAC) respectively on a Tapestation4200 instrument
657 (Agilent) and quantified the libraries via Qubit HS dsDNA assay
658 (Invitrogen). We clustered the libraries at 250pM final clustering
659 concentration on a NovaSeq6000 instrument using SP and S2 v1
660 chemistry (Illumina) and sequenced paired-end 2*50 cycles before
661 demultiplexing using bcl2fastq2 v2.20.

662 **RNA-seq data analysis**

663 Reads were aligned and quantified with STAR (v 2.5.2a)¹⁰³ using standard
664 parameters and mapped against the GRCh38p13 human reference
665 genome (Genome Reference Consortium). Raw counts were imported,
666 pre-filtered to exclude low-count genes (<100 reads, 17,693 mapped
667 transcripts), normalized and VST-transformed (variance stabilizing
668 transformation) following the DESeq2 (Bioconductor, v 1.26.0) pipeline
669 using default parameters.^{104,105} SVA (surrogate variable analysis) was
670 applied to identify latent variables responsible for batch effects and four of
671 them were included in the DESeq2 model.¹⁰⁶ All present transcripts were
672 used as input for principal component analysis (PCA). The call for
673 differentially expressed genes was performed for all treated vs control
674 comparisons (separate cell lines) using an adjusted p-value threshold
675 equal to 0.05, where IHW (IHW: independent hypothesis weighting) was
676 adopted for multiple testing. Only protein-coding hits were considered for
677 further functional analyses on DE genes. GSEA (gene set enrichment
678 analysis) based on the GO (gene ontology) *biological process* database
679 was employed for functional enrichments, both based on DE genes
680 (Supplementary data 1, 2) or log₂FC-based ranks. All enrichment dotplots
681 report the Count and p-value associated with each term, when p < 0.05.

682 Representative enrichment terms in Fig. 2 C were selected manually from
683 enrichment maps obtained for each group of genes depicted in the dotplot
684 (Supplementary data 7): to remove semantic redundancy, only the most
685 significant nodes among those converging into the same hub were
686 reported (higher Count and lower p-value, example in Fig. S2 F). SVA
687 batch-corrected normalized vst-transformed counts were used as input
688 for boxplots, heatmaps and \log_2 FC-based GSEA. Hierarchical clustering
689 was applied to identify blocks of DE genes with similar regulations across
690 conditions as reported in the presented heatmaps (Fig. 2 D, S3 A). In the
691 same heatmaps, row-scaled expression levels of cell-specific DE genes
692 elicited at 6 h and 12 h were reported separately for each of the analyzed
693 conditions.

694 ATAC-seq data analysis

695 After adapter trimming using Trimmomatic v 0.36¹⁰⁷, the sequencing reads
696 were aligned bowtie2 v 2.3.5 against the GRCh38p13 human reference
697 genome.¹⁰⁸ Subsequently, duplicated reads were removed using Picard
698 *dedup* function and the transposase-induced offset was corrected using
699 the deeptools v 3.1.3 *alignmentSieve* function.¹⁰⁹ After sorting and
700 indexing bam files with samtools v 1.9.,¹¹⁰ peak calling was performed
701 using MACS2 v 2.1.2.¹¹¹ Peak regions from sample-specific peak calling
702 results were unified in R v 3.6.2 using the *reduce* function implemented in
703 the GenomicRanges package v 1.38.0.¹¹² prior to quantification of
704 sequencing reads in these unified peak regions using the
705 *summarizeOverlaps* function implemented in the GenomicAlignments
706 package v1.22.1.¹¹² Raw counts were pre-filtered to exclude low-count
707 peaks (<20 reads, 63.434 mapped peaks), normalized and VST-
708 transformed following the DESeq2 (Bioconductor, v 1.26.0) pipeline using
709 default parameters.^{104,105} Peak regions were annotated using *ChIPseeker*
710 v1.22.1. All present peaks were used as input for principal component
711 analysis (PCA). The call for differentially accessible regions (DARs) was
712 performed for all treated vs control comparisons (separate cell lines)
713 considering a $p < 0.05$ threshold. Only peaks mapping in promoters of
714 protein-coding regions were considered for further functional analyses.
715 GSEA (gene set enrichment analysis) based on the GO (gene ontology)
716 *biological process* database was employed for functional enrichments
717 based on DAR-associated genes (Supplementary data 3). Normalized

718 and vst-transformed counts were used as input for heatmaps and
719 boxplots. Hierarchical clustering was applied to identify blocks of DAR-
720 associated genes with similar regulations across conditions as reported in
721 the presented heatmaps (Fig. 4 C, S5 D). In the same heatmaps, row-
722 scaled accessibility levels of cell-specific DARs at 6 h and 12 h were
723 reported separately for each of the analyzed conditions. For the *pairwise*
724 integration between transcriptional and chromatin accessibility data, we
725 identified hits having the same sign of regulation in RNA-seq and ATAC-
726 seq which were DE (protein-coding) and/or DAR-associated (protein-
727 coding mapping in promoters). Since a delay could exist between a prior
728 chromatin remodeling and a detectable variation in the respective
729 transcript level, pairwise comparisons were considered not only at the
730 same time point in both omic layers but also between chromatin changes
731 at 6 h and transcriptional responses at 12 h. We reported in Fig. 4 D only
732 hits with $(\log_2\text{FC}_{\text{RNA-seq}} + \log_2\text{FC}_{\text{ATAC-seq}}) > 1$ or < -1 . Interesting gene
733 names for each of the considered comparisons were also reported.

734 **Crosswise integration of RNA-seq and ATAC-seq data**

735 The *crosswise* integration of transcriptomic and chromatin accessibility
736 data was achieved through an adaptation of the CoCena (construction of
737 co-expression network analysis - automated) tool, which can identify
738 modules of genes showing similar regulation across conditions of interest.
739 The core principles driving both network construction and gene modules
740 detection by CoCena have been described previously.⁸⁸ In this analysis,
741 we first optimized the design of separate co-expression networks for the
742 RNA-seq and ATAC-seq layers. To avoid the creation of networks mostly
743 describing cell type differences, we calculated separate networks for
744 BxPC-3 and HCT-15 cells which were then integrated horizontally through
745 hCoCena^{2,88}. The union of all DE and promoter DAR-associated genes
746 detected in treated conditions was selected as input for constructing all
747 networks. For the construction of cell-specific networks, the specified
748 Pearson correlation cutoffs, edges and nodes for RNA-seq (BxPC-3:
749 cutoff=0.801, edges=356851, nodes=4266; HCT-15: cutoff=0.772,
750 edges=154497, nodes=4321) and ATAC-seq (BxPC-3: cutoff=0.702,
751 edges=48280, nodes=3479; HCT-15: cutoff=0.733, edges=13336,
752 nodes=3350) were used. The horizontally integrated networks contained
753 the union of all nodes and edges coming from parent networks, where

754 edges between nodes connected in both parent layers were recalculated
755 as a mean of their original weights. Clustering of the resulting RNA-seq
756 and ATAC-seq networks was performed based on the *infomap* algorithm,
757 where a threshold of minimum of 15 nodes per cluster was applied (Fig.
758 S6 B, C).¹¹³

759 Subsequently, inter-omic integration by vCoCena was applied to construct
760 the final network. In this case, the correlation between the mean group-
761 fold change (GFC) pattern of modules belonging to the two layers was
762 calculated to identify clusters of genes with similar regulation, suitable for
763 crosswise integration. Edges from the two separate networks were
764 selected for contributing to the integrated one based on a minimum cross-
765 layer correlation which could guarantee the maximum mixture between
766 layers in identified module pairs (minimum correlation cutoff=0.73,
767 edges=628783, nodes=8067). The new network was reclustered
768 exploiting again the *infomap* algorithm, applying a higher threshold of a
769 minimum of 30 nodes per cluster, and mean GFCs were recalculated: the
770 resulting integrated modules included nodes originally derived from the
771 two separate layers in different ratios, as shown in the relative heatmap
772 (Fig. 5 B). GO-based GSEA was performed on detected modules of genes
773 (Supplementary data 4) and the most significant terms ($p < 0.05$) were
774 reported.

775 **Sensitivity signature construction and prediction pipeline**

776 For the signature of sensitivity to **M**, relevant modules from the crosswise
777 vCoCena integration were selected as follows (Fig. S7 A): for each
778 module, in both cell lines separately, we calculated the difference between
779 the GFC (group fold-change) of the control and the **M** 6 h treated groups
780 ($\Delta\text{GFC}(\text{cell line}) = \text{GFC}(\mathbf{M6h}) - \text{GFC}(\text{ctrl})$). The early time point was
781 selected to guide the signature construction since from upstream analyses
782 it turned out to be the most informative of cell responses to 3-CePs. The
783 threshold score was then calculated as the difference between the
784 previously obtained ΔGFCs for the two cell lines ($\text{thr}_{\text{score}} = \Delta\text{GFC}(\text{BxPC-3})$
785 - $\Delta\text{GFC}(\text{HCT-15})$). Modules with $\text{thr}_{\text{score}}$ above q50, thus modules where

786 the regulation was sufficiently different in the two cell lines after treatment
787 with **M**, were selected (*cyan, darkgreen, darkgrey, darkorange, gold,*
788 *indianred, khaki, lightgreen, steelblue, orchid*). Genes from the identified
789 modules were grouped together and further considered to drive the
790 definition of our signature of interest.

791 Further on, DE analysis was performed between BxPC-3 and HCT-15
792 untreated control groups to identify baseline DE genes up- and
793 downregulated in the high-sensitive cell line ($\log_2\text{FC}$ threshold equal to 1,
794 $\text{padj} < 0.01$). In fact, given the much higher availability and clinical
795 spendability of RNA-seq compared to ATAC-seq profiles, the signature
796 was finally constructed only from basal transcriptomes. In particular, we
797 further selected among the identified module genes only those that were
798 also DE between the two untreated controls, ending up with a restricted
799 group of genes showing compound- and cell line-specific regulation upon
800 perturbation but, meanwhile, a significantly different basal expression in
801 BxPC-3 cells. This perturbation-informed signature was composed by 294
802 genes upregulated (signature *up*) and 170 genes downregulated
803 (signature *down*) in the high-sensitive BxPC-3 cells (listed in
804 Supplementary data 5).

805 To validate the predictive performance of the obtained signature, GSVA
806 (gene set variation analysis) was performed both with *up* and *down*
807 signatures on the basal RNA-seq profiles of cancer cell lines included in
808 the HPA (Human Protein Atlas).⁹⁹ A sensitivity score was calculated for
809 each cell line as the difference between the ESs (enrichment scores) of
810 the *up* and the *down* signatures. The predicted rank was validated on
811 selected cell lines (A-431, A549, HEK-293, NTERA-2, PC-3, SH-SY5Y)
812 as described in the next paragraph and Pearson correlation between
813 predicted sensitivity scores and viability decrease in cells treated with **M**
814 10 nM for 72 h was calculated. Two control signatures of the same size
815 were also tested: 1) a random genes signature (composed by random
816 genes among those annotated in the RNA-seq profile of HPA cell lines) 2)
817 a control signature composed by the top up- and down- $\log_2\text{FC}$ DE genes
818 between the two cell lines (listed in Supplementary data 6).

819 GSVA (v 1.38.2) was applied also on basal transcriptomes of samples
820 from the Cancer Genome Atlas TCGA database and their sensitivity score
821 was calculated as previously indicated. The relative distribution of

822 samples from different tumor types in terms of calculated sensitivity score
823 was plotted in Fig. 6 E, together with the indicated median value for each
824 group, to identify possibly more susceptible tumor types.

825 Finally, the signature-based prediction was used to train a LASSO-based
826 classifier (*cv.glmnet* function in *glmnet* package v 4.1 to assess lambda
827 penalty, *predict* function in *stats* package v 4.0.3 for actual prediction).
828 Briefly, TCGA samples were assigned to a continuous label based on the
829 previously inferred sensitivity scores. We next trained the classifier with
830 80% of these profiles and tested it on the remaining 20%: Pearson
831 correlation and RMSE were calculated to evaluate the predictive
832 performance of the classifier. To assess the biological robustness of our
833 signature and of the obtained model, the classifier was trained and tested
834 also using transcriptomes cleaned up from genes belonging to our
835 signature.

836 **Validation of 3-CePs sensitivity prediction on cancer cell lines**

837 The rank of sensitivity to **M** obtained from the newly constructed signature
838 was validated on a subset of available cell lines included in the Human
839 Cell Atlas. The selected cell lines spanned quite well between the max
840 and min detected susceptibility scores. Here are the screened cell lines
841 from the one predicted as most sensitive: PC-3, A549, A-431, SH-SY5Y,
842 NTERA-2, HEK-293. 5,000 cells/well were seeded in 96-well microplates
843 and after 24 h treated with **M** 10 nM for 72 h. Cell viability was assessed
844 at the end of the treatment by MTT, following previously adopted
845 protocols.¹⁹ Mean values of residual viability and standard deviations
846 obtained from two independent experiments in duplicated microplates,
847 each one containing three technical replicates, are reported in Table S1.
848 Pearson correlation between mean residual viability and predicted
849 susceptibility score in considered cell lines was calculated and reported in
850 Fig. 6.

851 **Statistics and reproducibility**

852 Sample size was defined empirically to ensure robust statistical analysis.
853 Unpaired two-tailed Student's *t*-test was performed to assess statistically
854 significant differences ($p < 0.05$) in cell cycle and H2AX phosphorylation
855 analyses between treated and control conditions ($n=3$). All correlation
856 coefficients were calculated with a Pearson's test. The adopted statistical

857 tests, the considered significance levels and the number of biological
858 replicates are also reported in figure legends. Box plots are in the style of
859 Tukey, where the center of the box represents the median of values,
860 hinges represent the 25th and 75th percentile and the whiskers are
861 extended not further than the $1.5 * \text{IQR}$ (inter quartile range). The analysis
862 was performed on R (v. 3.6.2 or 4.0.3): the specific packages used for the
863 analysis, their version and relevant parameters used are explained in the
864 *Methods* sections. All plots were generated with *ggplot* (v. 3.3.2) except
865 for the heatmaps which were generated with the R package
866 *complexheatmap* (v. 2.2.0). To ensure the reproducibility of the
867 manuscript results, all the analyses were conducted within a containerized
868 environment (Docker). RNA-seq and ATAC-seq analyses were performed
869 with the docker image `jsschrepping/r_docker:jss_R362`
870 (https://hub.docker.com/r/jsschrepping/r_docker). The rest of the analysis
871 was conducted with the image `lorenzobonaguro/cocena:v3`
872 (<https://hub.docker.com/r/lorenzobonaguro/cocena>) for compatibility with
873 the CoCena pipeline.

874 **Data Availability**

875 All raw data included in this study are available at gene expression
876 omnibus (GEO). Raw RNA-seq data and count matrix under the GEO
877 accession number GSE179057. Raw ATAC-seq data and peak matrix are
878 available under the accession number GSE179059. Both datasets are
879 collected in a GEO SuperSeries (GSE179064).

880 During the review process reviewer can access the private dataset at the
881 link:

882 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE179064>

883 using the provided access token.

884 The cell line expression data employed in the prediction pipeline were
885 downloaded from <https://www.proteinatlas.org/about/download>. The file
886 *RNA HPA cell line gene data* contains transcript expression levels
887 summarized per gene in 69 cell lines and is based on the Human Protein
888 Atlas version 20.0 and Ensembl version 92.38.

889 Similarly, the TCGA expression data from cancer cell samples (the
890 Cancer Genome Atlas) were downloaded from the same web page of the
891 Human Cell Atlas (*Transcript expression levels summarized per gene in*
892 *7932 samples from 17 different cancer types*). Data are based on The
893 Human Protein Atlas version 20.0 and Ensembl version 92.38.

894 **Code availability**

895 The code to reproduce both pre-processing and downstream analyses
896 reported in this manuscript will be made publicly available on GitHub upon
897 acceptance. The CoCena script is accessible at <https://github.com/Ulas-lab/CoCena2>.

899 **Author contributions**

900 Conceptualization was by C.C., L.B, S.M., V.G., R.G., A.C.A., J.L.S and
901 B.G. The methodology was devised by C.C., L.B., J.S.-S., M.O, S.W.-H.,
902 T.U., while C.C, L.B., A.H., T.H., M.D.F., K.H. performed formal
903 experiments and C.C., L.B., J.S.-S. the data analyses. C.C, L.B. carried
904 out the investigations. The manuscript was written by C.C, L.B., J.L.S and
905 B.G. while all authors reviewed and edited it. The project was supervised
906 by C.C., L.B, J.L.S and B.G. Resources were provided by V.G., J.L.S.,
907 B.G.

908 **Correspondance**

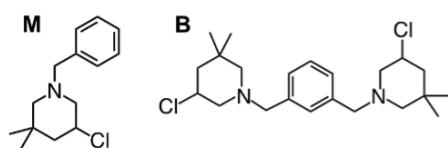
909 Correspondence to J. L. Schultze (j.schultze@uni-bonn.de) and B. Gatto
910 (barbara.gatto@unipd.it).

911 **Competing interests**

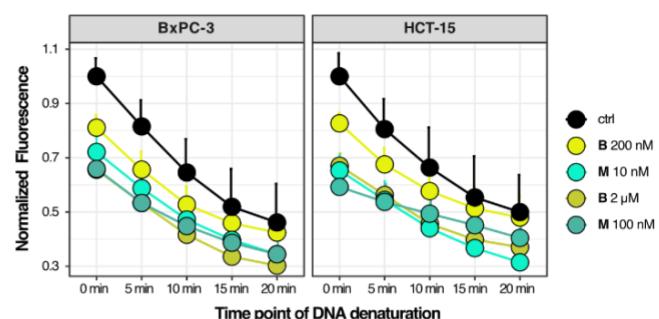
912 The authors declare no competing interests.

Figure 1

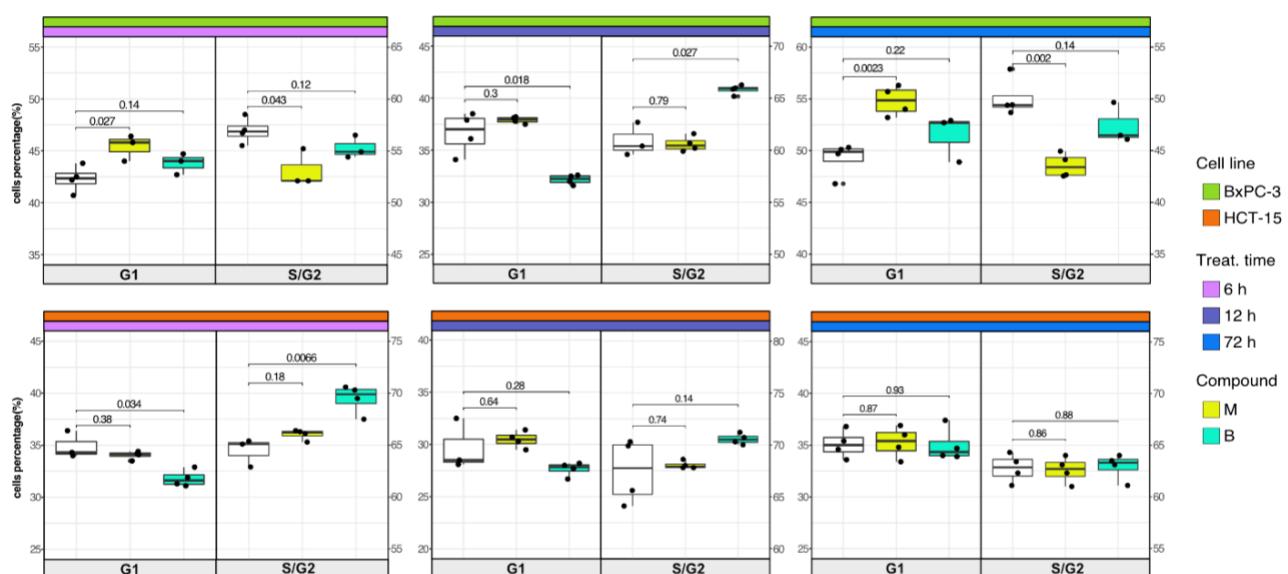
A.



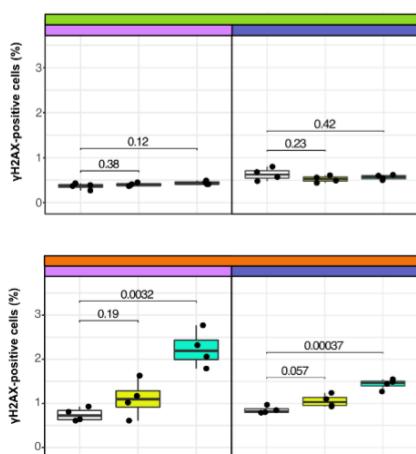
B.



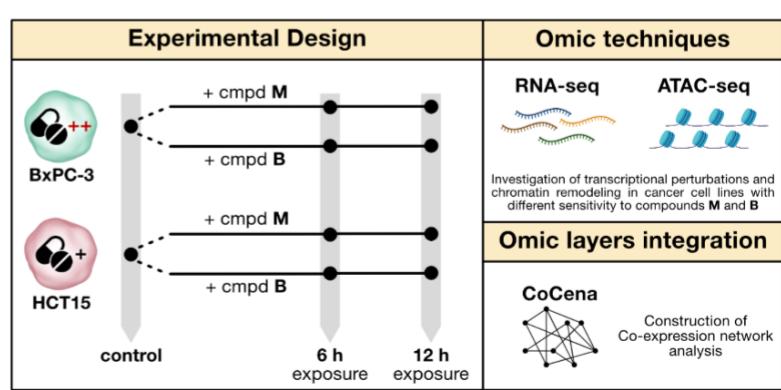
C.



D.



E.



914 **Figure 1. Cancer tropism of 3-CePs is not explained by DNA damage**

915 **A** Chemical structure of the analyzed 3-CePs (M = monofunctional, B = bifunctional).

916 **B** Quantification of genomic DNA damage in BxPC-3 and HCT-15 cells treated with M

917 (10 nM and 100 nM), B (200 nM and 2 μ M) or DMSO 0.5% (ctrl) for 6 h and analyzed

918 by the Fast Micromethod single-strand-break assay: alkaline denaturation of DNA is

919 followed in time up to 20 min by monitoring the fluorescence of the dsDNA-specific

920 PicoGreen dye. **C** Cell cycle distribution (accumulation in G1 vs G2/S phases) of

921 BxPC-3 and HCT-15 cells treated with M (10 nM), B (200 nM) or DMSO 0.5% for 6 h,

922 12 h and 72 h analyzed by FACS. Three biological replicates were obtained per

923 condition and unpaired two-tailed Student's *t*-test was performed to assess statistical

924 significance ($p < 0.05$). **D** Analysis of H2AX phosphorylation in BxPC-3 and HCT-15

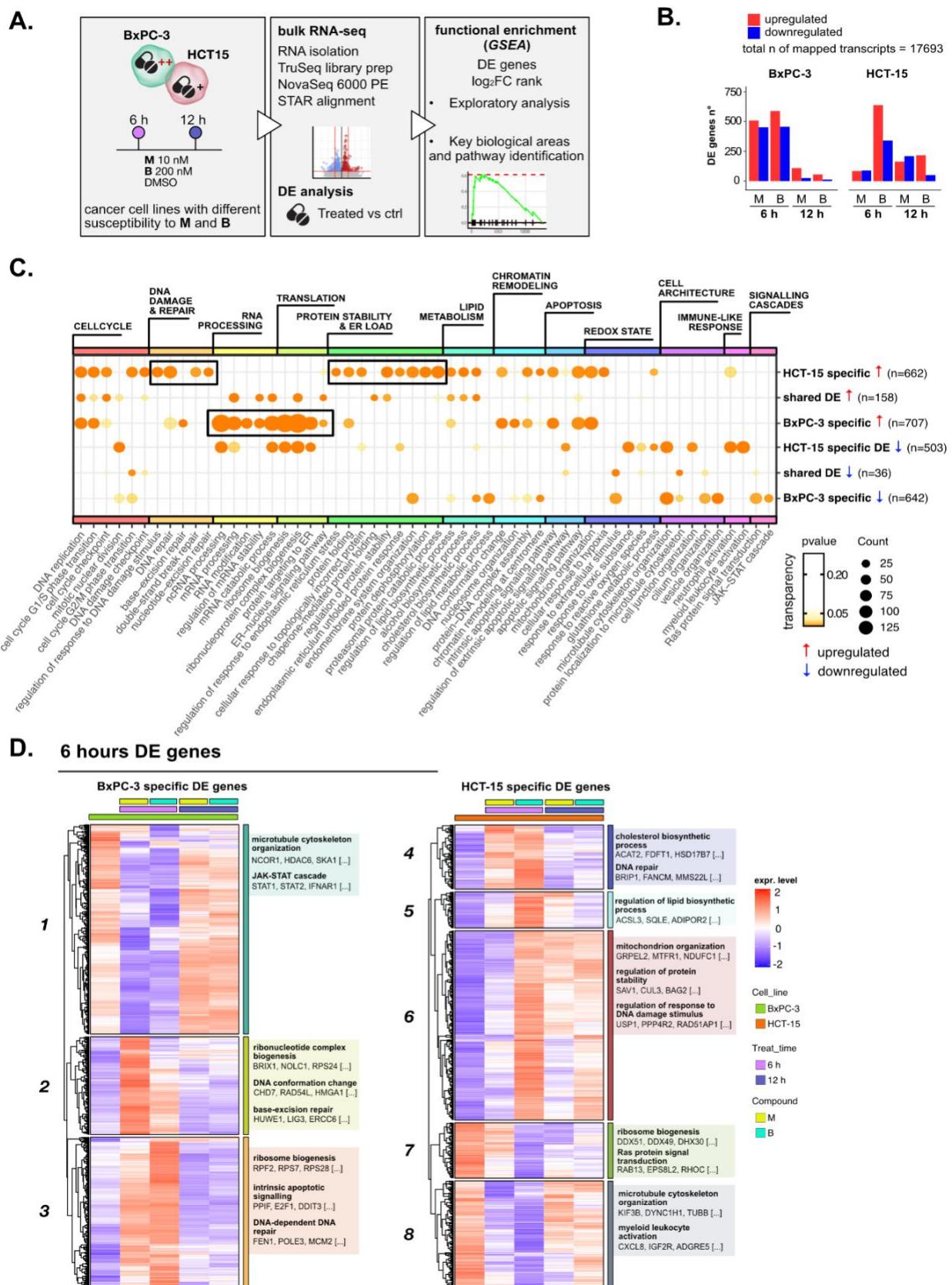
925 cells treated with M (10 nM), B (200 nM) or DMSO 0.5% for 6 h and 12 h analyzed by

926 FACS. Three biological replicates were obtained per condition and unpaired two-tailed

927 Student's *t*-test was performed to assess statistical significance ($p < 0.05$). **E**

928 Schematic representation of the adopted omic-based approach.

Figure 2

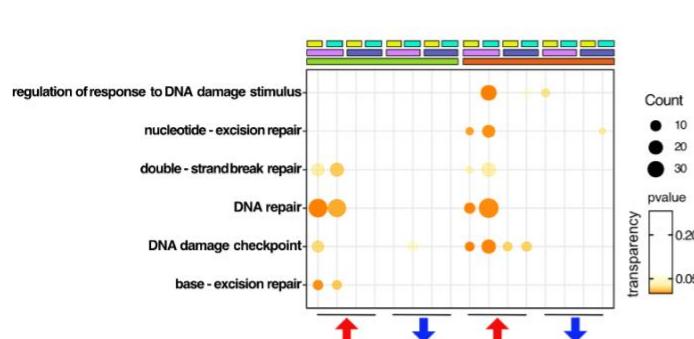


930 **Figure 2. Treatments elicit cell-specific transcriptional changes**

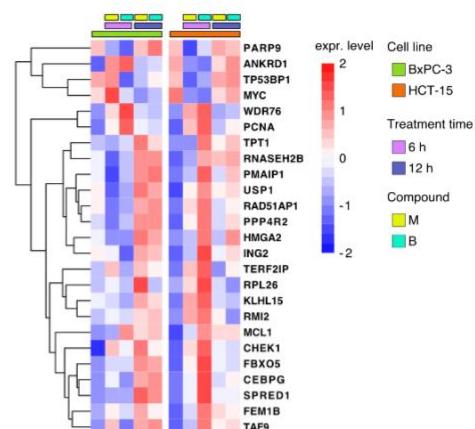
931 **A** Overview of the applied workflow for the RNA-seq analysis. **B** Number of up- (red)
932 and downregulated (blue) DE genes in BxPC-3 and HCT-15 cells after treatment with
933 M (10 nM), B (200 nM) or DMSO 0.5% (ctrl) for 6 h and 12 h (adjusted p threshold =
934 0.05, shrinkage = TRUE, multiple testing method = IHW). **C** GO database functional
935 enrichment (GSEA) on cell-specific and shared up- and downregulated DE genes. For
936 each identified biological process, enrichments in terms of Count and p-value of
937 representative terms are reported ($p < 0.05$). **D** Expression level of cell-specific 6 h DE
938 genes across test conditions. GSEA was performed on modules with similar regulation
939 identified by hierarchical clustering: for each cluster, representative GO terms and
940 genes of the associated load are reported.

Figure 3

A.

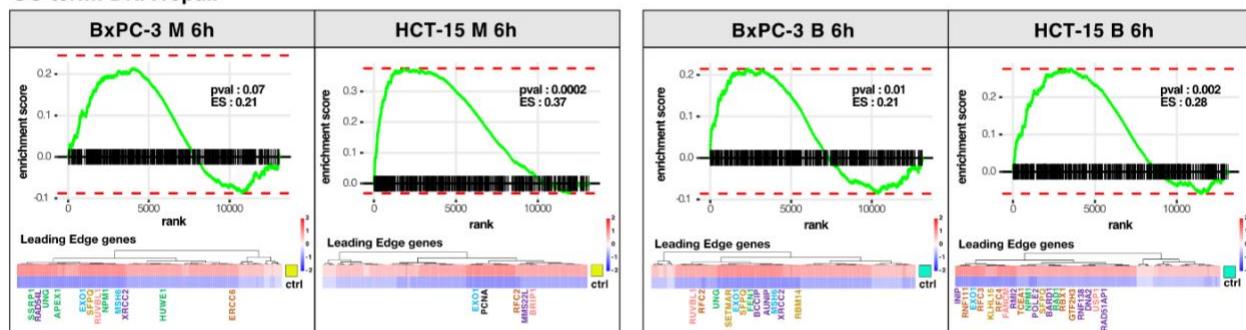


B.

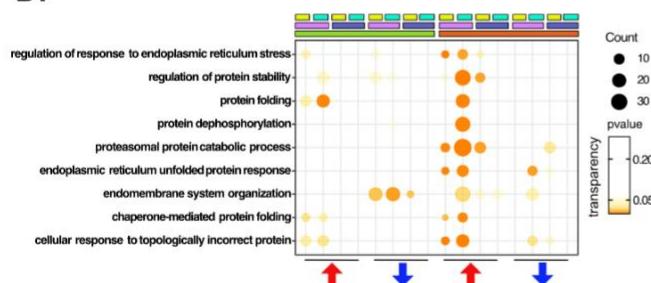


C.

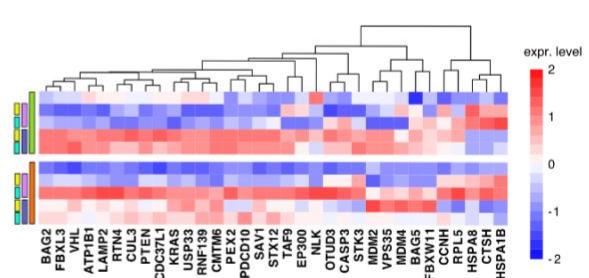
GO term: DNA repair



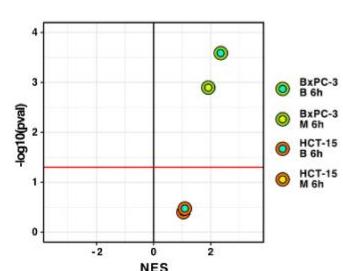
D.



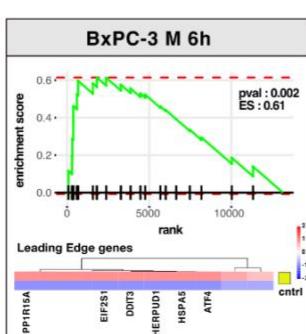
E.



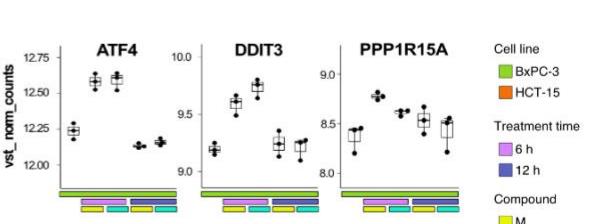
F.



G.



H.

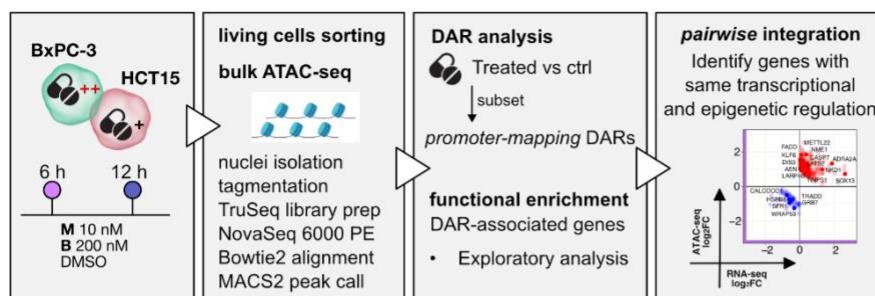


942 **Figure 3. DNA repair and proteostasis are key modulators of the response to 3-**
943 **CePs**

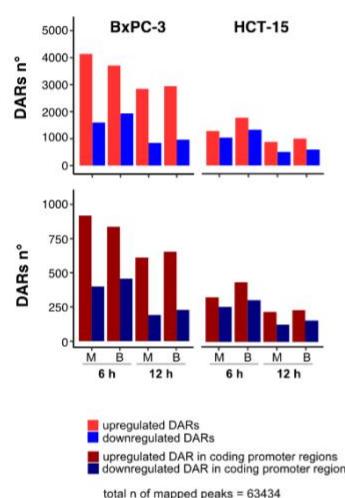
944 **A** GSEA for terms related to *DNA damage and repair* performed on DE genes detected
945 in each of the considered treated vs control comparisons. For each GO term ($p < 0.05$),
946 enrichments in terms of Count and p-value are reported. **B** Expression level of DE
947 genes included in the load of the GO term *regulation of response to DNA damage*
948 *stimulus* (HCT-15 cells, $p < 0.05$) in BxPC-3 and HCT-15 cells. **C** GSEA enrichment
949 plots for the *DNA repair* pathway obtained from \log_2FC ranks for each of the
950 considered treated vs control comparisons. The expression of leading edge genes is
951 also shown, where key DE genes are reported with the same color of their associated
952 DNA repair pathways (BER=base excision repair, NER=nucleotide-excission repair,
953 MMR=mismatch repair, HR=homologous recombination, NHEJ=non-homologous end
954 joining, FA=Fanconi anemia pathway).^{47–54,82,95,96,114–133} **D** GSEA for terms related to
955 *protein stability and ER load* performed on DE genes detected in each comparison.
956 For each GO term, enrichments in terms of Count and p-value are reported. **E**
957 Expression level of DE genes included in the load of the GO term *proteasomal protein*
958 *catabolic process* (HCT-15 cells, $p < 0.05$) in BxPC-3 and HCT-15 cells. **F** NES
959 (normalized enrichment score) and $-\log_{10}pval$ for the \log_2FC rank-based GSEA
960 enrichment of the GO term *PERK-mediated UPR* in treated vs control comparisons. **G**
961 GSEA enrichment plot for the *PERK-mediated UPR* pathway obtained from \log_2FC
962 rank in the M 6 h vs control comparison in BxPC-3 cells. The expression of leading
963 edge genes is also shown, where key DE genes of the mentioned pathway are
964 reported. **H** Boxplots showing the expression level of ATF4, DDIT3 and PPP1R15A
965 (vst-transformed normalized counts) in BxPC-3 cells.

Figure 4

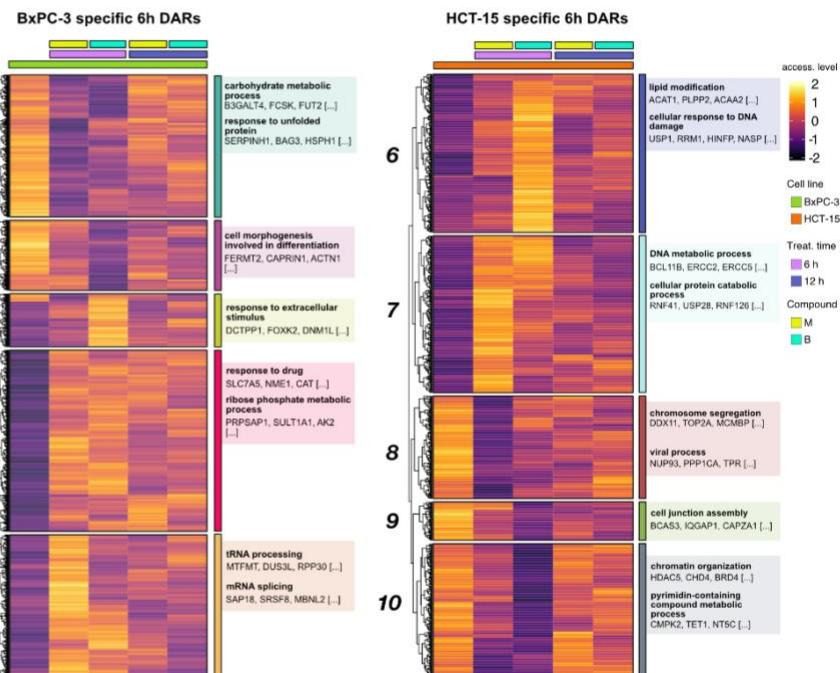
A.



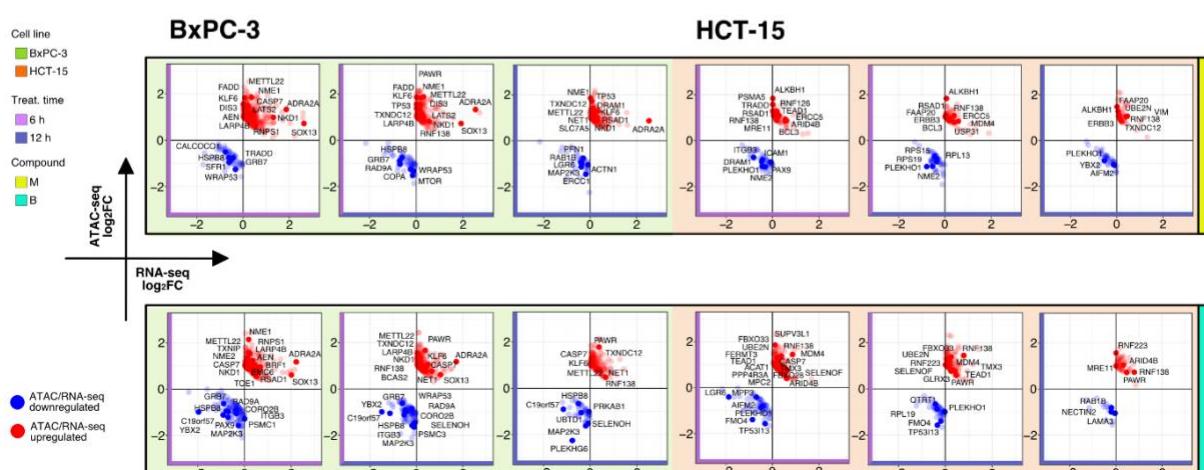
B.



C.



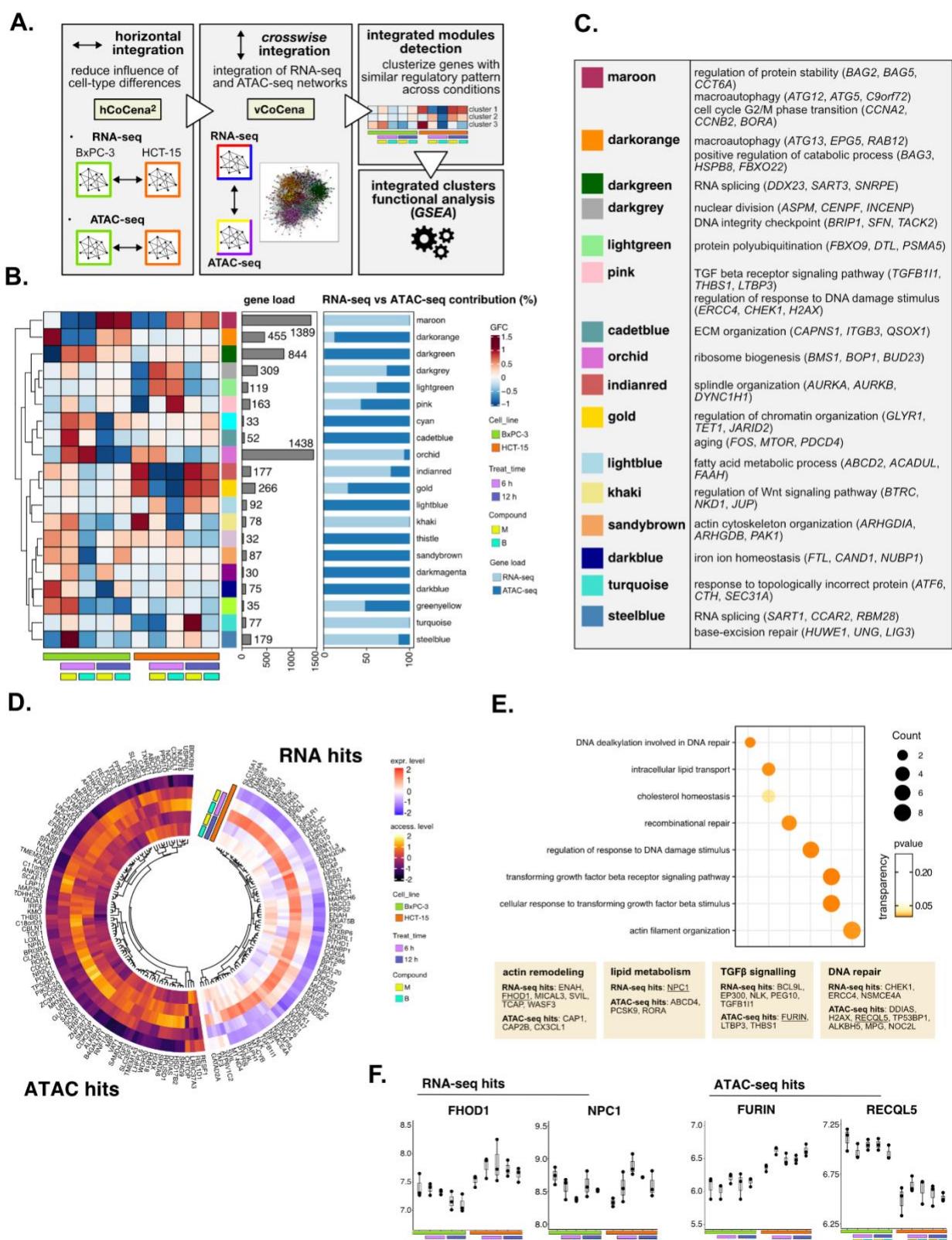
D.



967 **Figure 4. The response to 3-CePs is further regulated at the chromatin level**

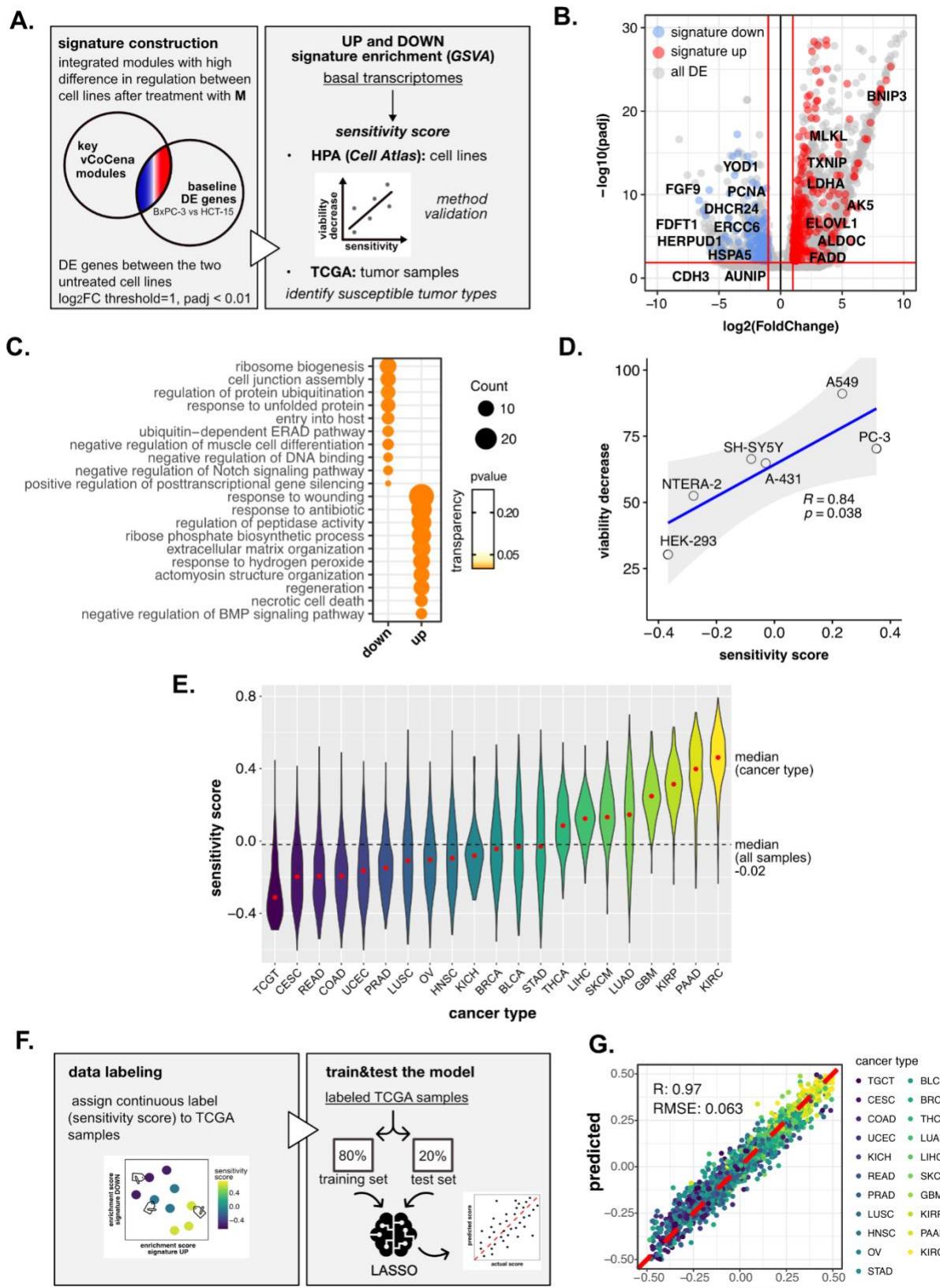
968 **A** Overview of the applied workflow for the ATAC-seq analysis. **B** Number of up- (red)
969 and downregulated (blue) DARs in BxPC-3 and HCT-15 cells after treatment with M
970 (10 nM), B (200 nM) or DMSO 0.5% (ctrl) for 6 h and 12 h (p-value threshold = 0.05,
971 shrinkage = TRUE). Light blue/red = all detected DARs, dark blue/red = protein coding
972 DARs mapping in promoter regions. **C** Accessibility level of cell-specific 6 h DARs
973 across test conditions. GSEA was performed on genes associated with DARs with
974 similar regulation, grouped in modules identified by hierarchical clustering: for each
975 cluster, representative GO terms and genes of the associated load are reported. **D**
976 Pairwise integration: ratio-ratio plots report the RNA-seq and ATAC-seq \log_2 FCs of
977 genes showing the same direction of transcriptional and chromatin accessibility
978 regulation. Integration was performed not only at the same time point in both omic
979 layers, but also between chromatin changes at 6 h and transcriptional responses at
980 12 h.

Figure 5



982 **Figure 5. Crosswise integration expedites the comprehension of multi-omic data**
983 **A** Overview of the applied workflow for the crosswise integration analysis. **B** Integrated
984 modules of genes from the RNA-seq and ATAC-seq layers obtained with vCoCena
985 and associated GFC (group fold change) pattern of regulation across conditions. The
986 relative contribution of hits from the RNA-seq or ATAC-seq layers is also reported for
987 each module. **C** Representative GO terms ($p < 0.05$) for the most relevant modules of
988 genes, identified by GSEA. Enrichments in terms of Count and p-value are reported.
989 **D** Expression and chromatin accessibility levels in HCT-15 cells of genes included in
990 the *pink* module (nodes can come from the RNA-seq or ATAC-seq layer). **E** Most
991 representative GO terms from GSEA on genes of the *pink* module (key areas: actin
992 remodeling, lipid metabolism, TGF β signaling, DNA repair). For each GO term ($p <$
993 0.05), enrichments in terms of Count and p-value are reported. **F** Boxplots showing
994 the expression level of FHOD1, NPC1, FURIN and RECQL5 (vst-transformed
995 normalized counts) in BxPC-3 and HCT-15 cells.

Figure 6



997 **Figure 6. Perturbation-informed basal signatures efficiently predict sensitivity**
998 **to our candidate drugs**

999 **A** Overview of the applied workflow for the sensitivity signature construction and
1000 associated drug susceptibility prediction. **B** M sensitivity signature genes (red =
1001 signature up, blue = signature down) pinpointed from all DE genes in the BxPC-3 vs
1002 HCT-15 baseline comparison. **C** Representative GO terms ($p < 0.05$) for genes of the
1003 M sensitivity signature (up and down), identified by GSEA. Enrichments in terms of
1004 Count and p-value are reported. **D** Pearson correlation between predicted sensitivity
1005 score and viability decrease in a subset of HPA (*Cell Atlas*) cell lines (validation set).
1006 **E** Sensitivity scores predicted from GSVA enrichment of our up and down signatures
1007 in RNA-seq profiles of TCGA tumor samples. Median values for all sample scores and
1008 within each tumor type are reported. **F** Overview of the applied workflow for the
1009 LASSO-based ML setup. **G** Predictive outcome of the trained model (Pearson
1010 correlation R and RMSE are reported).

1011

1012 Bibliography

- 1013 1. Paananen, J. & Fortino, V. An omics perspective on drug target discovery
1014 platforms. *Brief. Bioinformatics* **21**, 1937–1953 (2020).
- 1015 2. Dugger, S. A., Platt, A. & Goldstein, D. B. Drug development in the era of
1016 precision medicine. *Nat. Rev. Drug Discov.* **17**, 183–196 (2018).
- 1017 3. Matthews, H., Hanison, J. & Nirmalan, N. “Omics”-Informed Drug and Biomarker
1018 Discovery: Opportunities, Challenges and Future Perspectives. *Proteomes* **4**,
1019 (2016).
- 1020 4. Mun, J., Choi, G. & Lim, B. A guide for bioinformaticians: 'omics-based drug
1021 discovery for precision oncology. *Drug Discov. Today* (2020)
1022 doi:10.1016/j.drudis.2020.08.004.
- 1023 5. Tsimberidou, A. M., Fountzilas, E., Nikanjam, M. & Kurzrock, R. Review of
1024 precision cancer medicine: Evolution of the treatment paradigm. *Cancer Treat.
1025 Rev.* **86**, 102019 (2020).
- 1026 6. Koromina, M., Pandi, M.-T. & Patrinos, G. P. Rethinking Drug Repositioning and
1027 Development with Artificial Intelligence, Machine Learning, and Omics. *OMICS*
1028 **23**, 539–548 (2019).
- 1029 7. Li, Y., Ma, L., Wu, D. & Chen, G. Advances in bulk and single-cell multi-omics
1030 approaches for systems biology and precision medicine. *Brief. Bioinformatics*
1031 (2021) doi:10.1093/bib/bbab024.
- 1032 8. Shaheen, S., Fawaz, F., Shah, S. & Büsselberg, D. Differential Expression and
1033 Pathway Analysis in Drug-Resistant Triple-Negative Breast Cancer Cell Lines
1034 Using RNASeq Analysis. *Int. J. Mol. Sci.* **19**, (2018).
- 1035 9. Li, X.-X. *et al.* RNA-seq reveals determinants for irinotecan sensitivity/resistance
1036 in colorectal cancer cell lines. *Int. J. Clin. Exp. Pathol.* **7**, 2729–2736 (2014).
- 1037 10. Ye, C. *et al.* DRUG-seq for miniaturized high-throughput transcriptome profiling
1038 in drug discovery. *Nat. Commun.* **9**, 4307 (2018).
- 1039 11. Srivatsan, S. R. *et al.* Massively multiplex chemical transcriptomics at single-cell
1040 resolution. *Science* **367**, 45–51 (2020).
- 1041 12. McFarland, J. M. *et al.* Multiplexed single-cell transcriptional response profiling
1042 to define cancer vulnerabilities and therapeutic mechanism of action. *Nat.
1043 Commun.* **11**, 4296 (2020).
- 1044 13. Rendeiro, A. F. *et al.* Chromatin mapping and single-cell immune profiling define
1045 the temporal dynamics of ibrutinib response in CLL. *Nat. Commun.* **11**, 577
1046 (2020).
- 1047 14. Kagohara, L. T. *et al.* Integrated single-cell and bulk gene expression and ATAC-
1048 seq reveals heterogeneity and early changes in pathways associated with
1049 resistance to cetuximab in HNSCC-sensitive cell lines. *Br. J. Cancer* **123**, 101–
1050 113 (2020).
- 1051 15. Zuravka, I. *et al.* Synthesis and DNA cleavage activity of Bis-3-chloropiperidines
1052 as alkylating agents. *ChemMedChem* **9**, 2178–2185 (2014).
- 1053 16. Zuravka, I., Roesmann, R., Sosic, A., Göttlich, R. & Gatto, B. Bis-3-

1054 chloropiperidines containing bridging lysine linkers: Influence of side chain
1055 structure on DNA alkylating activity. *Bioorg. Med. Chem.* **23**, 1241–1250 (2015).

1056 17. Zuravka, I., Susic, A., Gatto, B. & Göttlich, R. Synthesis and evaluation of a bis-
1057 3-chloropiperidine derivative incorporating an anthraquinone pharmacophore.
1058 *Bioorg. Med. Chem. Lett.* **25**, 4606–4609 (2015).

1059 18. Susic, A. *et al.* Direct and Topoisomerase II Mediated DNA Damage by Bis-3-
1060 chloropiperidines: The Importance of Being an Earnest G. *ChemMedChem* **12**,
1061 1471–1479 (2017).

1062 19. Carraro, C. *et al.* Behind the mirror: chirality tunes the reactivity and cytotoxicity
1063 of chloropiperidines as potential anticancer agents. *ACS Med. Chem. Lett.* **10**,
1064 552–557 (2019).

1065 20. Helbing, T. *et al.* Aromatic Linkers Unleash the Antiproliferative Potential of 3-
1066 Chloropiperidines Against Pancreatic Cancer Cells. *ChemMedChem* **15**, 2040–
1067 2051 (2020).

1068 21. Carraro, C. *et al.* Appended Aromatic Moieties in Flexible Bis-3-chloropiperidines
1069 Confer Tropism against Pancreatic Cancer Cells. *ChemMedChem* **16**, 860–868
1070 (2021).

1071 22. Faivre, E. J. *et al.* Selective inhibition of the BD2 bromodomain of BET proteins
1072 in prostate cancer. *Nature* **578**, 306–310 (2020).

1073 23. Lamb, J. *et al.* The Connectivity Map: using gene-expression signatures to
1074 connect small molecules, genes, and disease. *Science* **313**, 1929–1935 (2006).

1075 24. Subramanian, A. *et al.* A next generation connectivity map: L1000 platform and
1076 the first 1,000,000 profiles. *Cell* **171**, 1437–1452.e17 (2017).

1077 25. Uhlen, M. *et al.* A pathology atlas of the human cancer transcriptome. *Science*
1078 **357**, (2017).

1079 26. Barretina, J. *et al.* The Cancer Cell Line Encyclopedia enables predictive
1080 modelling of anticancer drug sensitivity. *Nature* **483**, 603–607 (2012).

1081 27. Bush, E. C. *et al.* PLATE-Seq for genome-wide regulatory network analysis of
1082 high-throughput screens. *Nat. Commun.* **8**, 105 (2017).

1083 28. Corsello, S. M. *et al.* Discovering the anti-cancer potential of non-oncology drugs
1084 by systematic viability profiling. *Nat. Cancer* **1**, 235–248 (2020).

1085 29. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J.
1086 Transposition of native chromatin for fast and sensitive epigenomic profiling of
1087 open chromatin, DNA-binding proteins and nucleosome position. *Nat. Methods*
1088 **10**, 1213–1218 (2013).

1089 30. Schmidl, C. *et al.* Combined chemosensitivity and chromatin profiling prioritizes
1090 drug combinations in CLL. *Nat. Chem. Biol.* **15**, 232–240 (2019).

1091 31. Granja, J. M. *et al.* Single-cell multiomic analysis identifies regulatory programs
1092 in mixed-phenotype acute leukemia. *Nat. Biotechnol.* **37**, 1458–1465 (2019).

1093 32. Tung, K.-L. *et al.* Integrated chromatin and transcriptomic profiling of patient-
1094 derived colon cancer organoids identifies personalized drug targets to overcome
1095 oxaliplatin resistance. *Genes Dis.* **8**, 203–214 (2021).

1096 33. Suzuki, A. *et al.* Characterization of cancer omics and drug perturbations in
1097 panels of lung cancer cells. *Sci. Rep.* **9**, 19529 (2019).

1098 34. Schröder, H. C., Batel, R., Schwertner, H., Boreiko, O. & Müller, W. E. G. Fast
1099 micromethod DNA single-strand-break assay. *Methods Mol. Biol.* **314**, 287–305
1100 (2006).

1101 35. Meyn, R. E. & Murray, D. Cell cycle effects of alkylating agents. *Pharmacol. Ther.*
1102 **24**, 147–163 (1984).

1103 36. Kaufmann, W. K. & Paules, R. S. DNA damage and cell cycle checkpoints.
1104 *FASEB J.* **10**, 238–247 (1996).

1105 37. Tu, L. C., Melendy, T. & Beerman, T. A. DNA damage responses triggered by a
1106 highly cytotoxic monofunctional DNA alkylator, hedamycin, a pluramycin
1107 antitumor antibiotic. *Mol. Cancer Ther.* **3**, 577–585 (2004).

1108 38. Li, L.-Y., Guan, Y., Chen, X.-S., Yang, J.-M. & Cheng, Y. DNA repair pathways
1109 in cancer therapy and resistance. *Front. Pharmacol.* **11**, 629266 (2020).

1110 39. Sharma, A., Singh, K. & Almasan, A. Histone H2AX phosphorylation: a marker
1111 for DNA damage. *Methods Mol. Biol.* **920**, 613–626 (2012).

1112 40. Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in cancer.
1113 *Nature* **575**, 299–309 (2019).

1114 41. Shenton, D. *et al.* Global translational responses to oxidative stress impact upon
1115 multiple levels of protein synthesis. *J. Biol. Chem.* **281**, 29011–29021 (2006).

1116 42. Burger, K. *et al.* Chemotherapeutic drugs inhibit ribosome biogenesis at various
1117 levels. *J. Biol. Chem.* **285**, 12416–12425 (2010).

1118 43. Lin, X., Xiao, Z., Chen, T., Liang, S. H. & Guo, H. Glucose metabolism on tumor
1119 plasticity, diagnosis, and treatment. *Front. Oncol.* **10**, 317 (2020).

1120 44. Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based
1121 approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci
1122 USA* **102**, 15545–15550 (2005).

1123 45. Chowdhury, D. *et al.* A PP4-phosphatase complex dephosphorylates gamma-
1124 H2AX generated during DNA replication. *Mol. Cell* **31**, 33–46 (2008).

1125 46. Modesti, M. *et al.* RAD51AP1 is a structure-specific DNA binding protein that
1126 stimulates joint molecule formation during RAD51-mediated homologous
1127 recombination. *Mol. Cell* **28**, 468–481 (2007).

1128 47. Satoh, M. S. & Hanawalt, P. C. TFIIH-mediated nucleotide excision repair and
1129 initiation of mRNA transcription in an optimized cell-free DNA repair and RNA
1130 transcription assay. *Nucleic Acids Res.* **24**, 3576–3582 (1996).

1131 48. Li, J.-M. & Jin, J. CRL ubiquitin ligases and DNA damage response. *Front. Oncol.*
1132 **2**, 29 (2012).

1133 49. Piwko, W. *et al.* The MMS22L-TONSL heterodimer directly promotes RAD51-
1134 dependent recombination upon replication stress. *EMBO J.* **35**, 2584–2601
1135 (2016).

1136 50. Westermark, U. K. *et al.* BARD1 participates with BRCA1 in homology-directed
1137 repair of chromosome breaks. *Mol. Cell. Biol.* **23**, 7926–7936 (2003).

1138 51. Cantor, S. B. *et al.* BACH1, a novel helicase-like protein, interacts directly with
1139 BRCA1 and contributes to its DNA repair function. *Cell* **105**, 149–160 (2001).

1140 52. Niraj, J., Färkkilä, A. & D'Andrea, A. D. The fanconi anemia pathway in cancer.
1141 *Annu. Rev. Cancer Biol.* **3**, 457–478 (2019).

1142 53. Fortini, P. *et al.* The base excision repair: mechanisms and its relevance for
1143 cancer susceptibility. *Biochimie* **85**, 1053–1071 (2003).

1144 54. Kunkel, T. A. & Erie, D. A. DNA mismatch repair. *Annu. Rev. Biochem.* **74**, 681–
1145 710 (2005).

1146 55. Hutt, D. & Balch, W. E. Cell Biology. The proteome in balance. *Science* **329**,
1147 766–767 (2010).

1148 56. González-Quiroz, M. *et al.* When endoplasmic reticulum proteostasis meets the
1149 DNA damage response. *Trends Cell Biol.* **30**, 881–891 (2020).

1150 57. Ran, R., Lu, A., Xu, H., Tang, Y. & Sharp, F. R. Heat-shock protein regulation of
1151 protein folding, protein degradation, protein function, and apoptosis. in *Handbook*
1152 of *neurochemistry and molecular neurobiology* (eds. Lajtha, A. & Chan, P. H.)
1153 89–107 (Springer US, 2007). doi:10.1007/978-0-387-30383-3_6.

1154 58. Eskelinen, E.-L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and
1155 autophagy. *Mol. Aspects Med.* **27**, 495–502 (2006).

1156 59. Scott, D. C. *et al.* Two distinct types of E3 ligases work in unison to regulate
1157 substrate ubiquitylation. *Cell* **166**, 1198–1214.e24 (2016).

1158 60. Jozsef, L. *et al.* Reticulon 4 is necessary for endoplasmic reticulum tubulation,
1159 STIM1-Orai1 coupling, and store-operated calcium entry. *J. Biol. Chem.* **289**,
1160 9380–9395 (2014).

1161 61. Han, J. *et al.* ER-stress-induced transcriptional regulation increases protein
1162 synthesis leading to cell death. *Nat. Cell Biol.* **15**, 481–490 (2013).

1163 62. Urra, H., Dufey, E., Lisbona, F., Rojas-Rivera, D. & Hetz, C. When ER stress
1164 reaches a dead end. *Biochim. Biophys. Acta* **1833**, 3507–3517 (2013).

1165 63. Garcia-Carbonero, N., Li, W., Cabeza-Morales, M., Martinez-Useros, J. &
1166 Garcia-Foncillas, J. New hope for pancreatic ductal adenocarcinoma treatment
1167 targeting endoplasmic reticulum stress response: A systematic review. *Int. J.
1168 Mol. Sci.* **19**, (2018).

1169 64. Tadros, S. *et al.* De Novo Lipid Synthesis Facilitates Gemcitabine Resistance
1170 through Endoplasmic Reticulum Stress in Pancreatic Cancer. *Cancer Res.* **77**,
1171 5503–5517 (2017).

1172 65. Romero, F. *et al.* Lipid synthesis is required to resolve endoplasmic reticulum
1173 stress and limit fibrotic responses in the lung. *Am. J. Respir. Cell Mol. Biol.* **59**,
1174 225–236 (2018).

1175 66. Zhou, W. *et al.* Clinical significance and biological function of fucosyltransferase
1176 2 in lung adenocarcinoma. *Oncotarget* **8**, 97246–97259 (2017).

1177 67. Höllbacher, B., Balázs, K., Heinig, M. & Uhlenhaut, N. H. Seq-ing answers:
1178 Current data integration approaches to uncover mechanisms of transcriptional
1179 regulation. *Comput. Struct. Biotechnol. J.* **18**, 1330–1341 (2020).

1180 68. Yan, F., Powell, D. R., Curtis, D. J. & Wong, N. C. From reads to insight: a
1181 hitchhiker's guide to ATAC-seq data analysis. *Genome Biol.* **21**, 22 (2020).

1182 69. Ackermann, A. M., Wang, Z., Schug, J., Naji, A. & Kaestner, K. H. Integration of
1183 ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature
1184 genes. *Mol. Metab.* **5**, 233–244 (2016).

1185 70. Wang, W., Guo, X. & Dan, H. α 2A-Adrenergic Receptor Inhibits the Progression

1186 of Cervical Cancer Through Blocking PI3K/AKT/mTOR Pathway. *Onco Targets*
1187 *Ther* **13**, 10535–10546 (2020).

1188 71. Pamidimukkala, N. *et al.* Nme1 and Nme2 genes exert metastasis-suppressor
1189 activities in a genetically engineered mouse model of UV-induced melanoma. *Br.*
1190 *J. Cancer* **124**, 161–165 (2021).

1191 72. Reeves, H. L. *et al.* Kruppel-like factor 6 (KLF6) is a tumor-suppressor gene
1192 frequently inactivated in colorectal cancer. *Gastroenterology* **126**, 1090–1103
1193 (2004).

1194 73. Furth, N. & Aylon, Y. The LATS1 and LATS2 tumor suppressors: beyond the
1195 Hippo pathway. *Cell Death Differ.* **24**, 1488–1501 (2017).

1196 74. Mayeda, A. *et al.* Purification and characterization of human RNPS1: a general
1197 activator of pre-mRNA splicing. *EMBO J.* **18**, 4560–4570 (1999).

1198 75. Schäffler, K. *et al.* A stimulatory role for the La-related protein 4B in translation.
1199 *RNA* **16**, 1488–1499 (2010).

1200 76. Hebbal, N., Wang, C. & Rangnekar, V. M. Mechanisms of apoptosis by the tumor
1201 suppressor Par-4. *J. Cell. Physiol.* **227**, 3715–3721 (2012).

1202 77. Kawase, T. *et al.* p53 target gene AEN is a nuclear exonuclease required for
1203 p53-dependent apoptosis. *Oncogene* **27**, 3797–3810 (2008).

1204 78. Lim, Y., Dorstyn, L. & Kumar, S. The p53-caspase-2 axis in the cell cycle and
1205 DNA damage response. *Exp. Mol. Med.* **53**, 517–527 (2021).

1206 79. Nishiyama, A., Masutani, H., Nakamura, H., Nishinaka, Y. & Yodoi, J. Redox
1207 regulation by thioredoxin and thioredoxin-binding proteins. *IUBMB Life* **52**, 29–
1208 33 (2001).

1209 80. Nthiga, T. M. *et al.* CALCOCO1 acts with VAMP-associated proteins to mediate
1210 ER-phagy. *EMBO J.* **39**, e103649 (2020).

1211 81. Hawkes, W. C. & Alkan, Z. Regulation of redox signaling by selenoproteins. *Biol.*
1212 *Trace Elem. Res.* **134**, 235–251 (2010).

1213 82. Yard, B. D., Reilly, N. M., Bedenbaugh, M. K. & Pittman, D. L. RNF138 interacts
1214 with RAD51D and is required for DNA interstrand crosslink repair and
1215 maintaining chromosome integrity. *DNA Repair (Amst)* **42**, 82–93 (2016).

1216 83. Eischen, C. M. Role of Mdm2 and Mdmx in DNA repair. *J. Mol. Cell Biol.* **9**, 69–
1217 73 (2017).

1218 84. Zhu, Q. S. *et al.* Vimentin is a novel AKT1 target mediating motility and invasion.
1219 *Oncogene* **30**, 457–470 (2011).

1220 85. Winter, S. F., Lukes, L., Walker, R. C., Welch, D. R. & Hunter, K. W. Allelic
1221 variation and differential expression of the mSIN3A histone deacetylase complex
1222 gene Arid4b promote mammary tumor growth and metastasis. *PLoS Genet.* **8**,
1223 e1002735 (2012).

1224 86. Ogata, F. T., Branco, V., Vale, F. F. & Coppo, L. Glutaredoxin: Discovery, redox
1225 defense and much more. *Redox Biol.* **43**, 101975 (2021).

1226 87. Janiszewska, M., Primi, M. C. & Izard, T. Cell adhesion in cancer: Beyond the
1227 migration of single cells. *J. Biol. Chem.* **295**, 2495–2505 (2020).

1228 88. Aschenbrenner, A. C. *et al.* Disease severity-specific neutrophil signatures in
1229 blood transcriptomes stratify COVID-19 patients. *Genome Med.* **13**, 7 (2021).

1230 89. Chang, H. & Zou, Z. Targeting autophagy to overcome drug resistance: further
1231 developments. *J. Hematol. Oncol.* **13**, 159 (2020).

1232 90. Tafazzoli-Shadpour, M., Mohammadi, E. & Torkashvand, E. Mechanics of actin
1233 filaments in cancer onset and progress. *Int. Rev. Cell Mol. Biol.* **355**, 205–243
1234 (2020).

1235 91. Caridi, C. P., Plessner, M., Grosse, R. & Chiolo, I. Nuclear actin filaments in DNA
1236 repair dynamics. *Nat. Cell Biol.* **21**, 1068–1077 (2019).

1237 92. Gasteier, J. E. *et al.* Activation of the Rac-binding partner FHOD1 induces actin
1238 stress fibers via a ROCK-dependent mechanism. *J. Biol. Chem.* **278**, 38902–
1239 38912 (2003).

1240 93. Brunen, D. *et al.* TGF- β : an emerging player in drug resistance. *Cell Cycle* **12**,
1241 2960–2968 (2013).

1242 94. Dubois, C. M. *et al.* Evidence that furin is an authentic transforming growth factor-
1243 beta1-converting enzyme. *Am. J. Pathol.* **158**, 305–316 (2001).

1244 95. Lou, J. *et al.* AUNIP/C1orf135 directs DNA double-strand breaks towards the
1245 homologous recombination repair pathway. *Nat. Commun.* **8**, 985 (2017).

1246 96. Pascucci, B. *et al.* CSA and CSB play a role in the response to DNA breaks.
1247 *Oncotarget* **9**, 11581–11591 (2018).

1248 97. Schulze, A. *et al.* The ubiquitin-domain protein HERP forms a complex with
1249 components of the endoplasmic reticulum associated degradation pathway. *J.
1250 Mol. Biol.* **354**, 1021–1027 (2005).

1251 98. Ernst, R., Mueller, B., Ploegh, H. L. & Schlieker, C. The otubain YOD1 is a
1252 deubiquitinating enzyme that associates with p97 to facilitate protein dislocation
1253 from the ER. *Mol. Cell* **36**, 28–38 (2009).

1254 99. Uhlén, M. *et al.* Proteomics. Tissue-based map of the human proteome. *Science*
1255 **347**, 1260419 (2015).

1256 100. Perez-Riverol, Y. *et al.* Quantifying the impact of public omics data. *Nat.
1257 Commun.* **10**, 3512 (2019).

1258 101. Adam, G. *et al.* Machine learning approaches to drug response prediction:
1259 challenges and recent progress. *NPJ Precis. Oncol.* **4**, 19 (2020).

1260 102. Warnat-Herresthal, S. *et al.* Swarm Learning for decentralized and confidential
1261 clinical machine learning. *Nature* **594**, 265–270 (2021).

1262 103. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**,
1263 15–21 (2013).

1264 104. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change
1265 and dispersion for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

1266 105. Gentleman, R. C. *et al.* Bioconductor: open software development for
1267 computational biology and bioinformatics. *Genome Biol.* **5**, R80 (2004).

1268 106. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva
1269 package for removing batch effects and other unwanted variation in high-
1270 throughput experiments. *Bioinformatics* **28**, 882–883 (2012).

1271 107. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
1272 sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

1273 108. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat.*

1318 126. Xu, D. *et al.* RMI, a new OB-fold complex essential for Bloom syndrome protein
1319 to maintain genome stability. *Genes Dev.* **22**, 2843–2855 (2008).

1320 127. McVey, M., Khodaverdian, V. Y., Meyer, D., Cerqueira, P. G. & Heyer, W.-D.
1321 Eukaryotic DNA polymerases in homologous recombination. *Annu. Rev. Genet.*
1322 **50**, 393–421 (2016).

1323 128. Liu, S. & Kong, D. End resection: a key step in homologous recombination and
1324 DNA double-strand break repair. *GENOME INSTAB. DIS.* **2**, 39–50 (2021).

1325 129. Jaafar, L., Li, Z., Li, S. & Dynan, W. S. SFPQ•NONO and XLF function separately
1326 and together to promote DNA double-strand break repair via canonical
1327 nonhomologous end joining. *Nucleic Acids Res.* **45**, 1848–1859 (2017).

1328 130. Tellier, M. & Chalmers, R. The roles of the human SETMAR (Metnase) protein
1329 in illegitimate DNA recombination and non-homologous end joining repair. *DNA*
1330 *Repair (Amst)* **80**, 26–35 (2019).

1331 131. Ferretti, L. P. *et al.* Cullin3-KLHL15 ubiquitin ligase mediates CtIP protein
1332 turnover to fine-tune DNA-end resection. *Nat. Commun.* **7**, 12628 (2016).

1333 132. Rajendra, E., Garaycoechea, J. I., Patel, K. J. & Passmore, L. A. Abundance of
1334 the Fanconi anaemia core complex is regulated by the RuvBL1 and RuvBL2
1335 AAA+ ATPases. *Nucleic Acids Res.* **42**, 13736–13748 (2014).

1336 133. Nijman, S. M. B. *et al.* The deubiquitinating enzyme USP1 regulates the Fanconi
1337 anemia pathway. *Mol. Cell* **17**, 331–339 (2005).

Supplementary Information

Decoding mechanism of action and susceptibility to anticancer candidates from integrated transcriptome and chromatin accessibility state

Caterina Carraro,¹ Lorenzo Bonaguro,^{2,3} Jonas Schulte-Schrepping,^{2,3} Arik Horne,^{2,3} Marie Oestreich,² Stefanie Warnat-Herresthal,^{2,3} Tim Helbing,⁴ Michele De Franco,¹ Kristian Händler,^{2,5,6} Sach Mukherjee,^{7,8} Thomas Ulas,^{2,3,5} Valentina Gandin,¹ Richard Göttlich,⁴ Anna C. Aschenbrenner,^{2,3,5,9} Joachim L. Schultze,^{2,3,5,*} Barbara Gatto^{1,*}

¹ Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy

² Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany

³ Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany

⁴ Institute of Organic Chemistry, Justus Liebig University Giessen, Giessen, Germany

⁵ PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany

⁶ Institute of Human Genetics, University of Lübeck, Lübeck, Germany

⁷ Statistics and Machine Learning, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany

⁸ MRC Biostatistics Unit, University of Cambridge, Cambridge, UK

⁹ Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands

* Corresponding author

Figure S1

A.

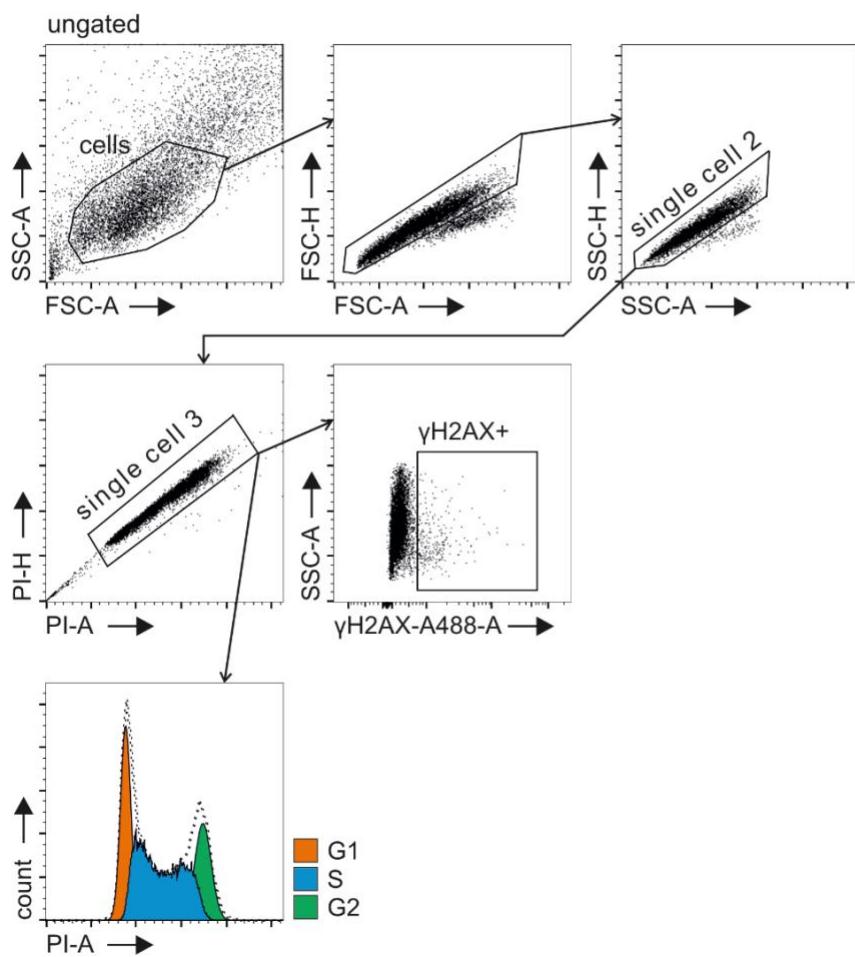
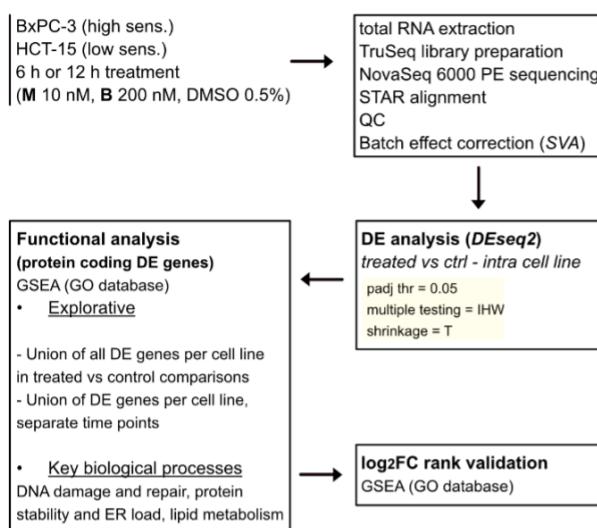


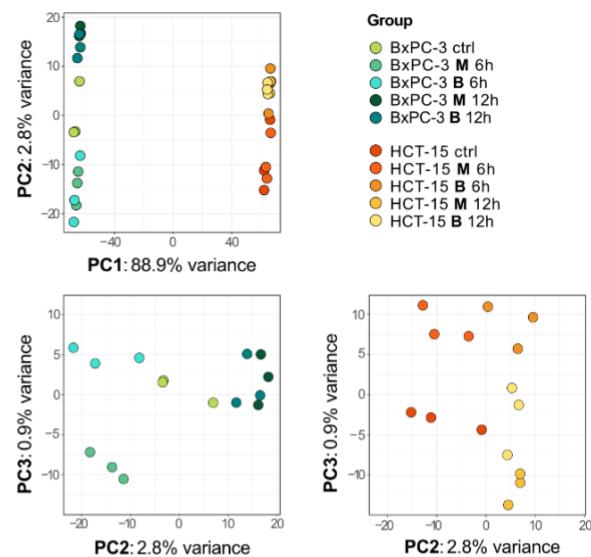
Figure S1. A Flow cytometry gating strategy for the cell cycle analysis and γ H2AX induction reported in Fig.1 C and 1 D.

Figure S2

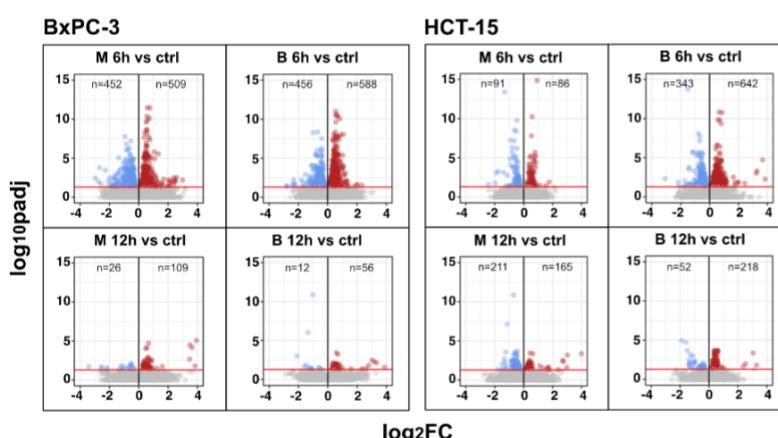
A.



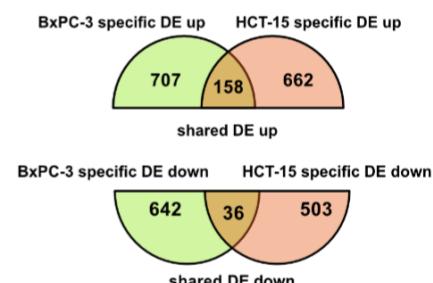
B.



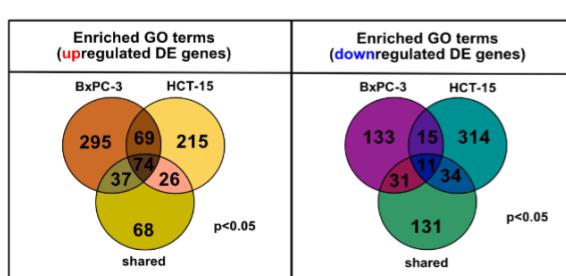
C.



D.



E.



F.

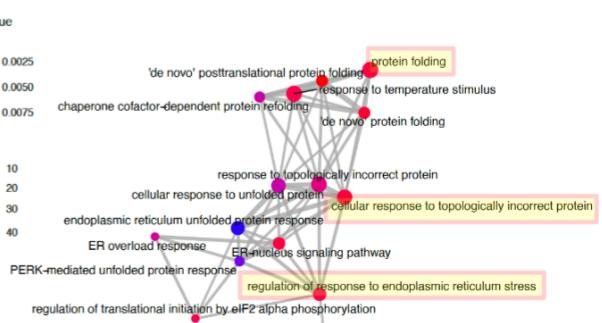
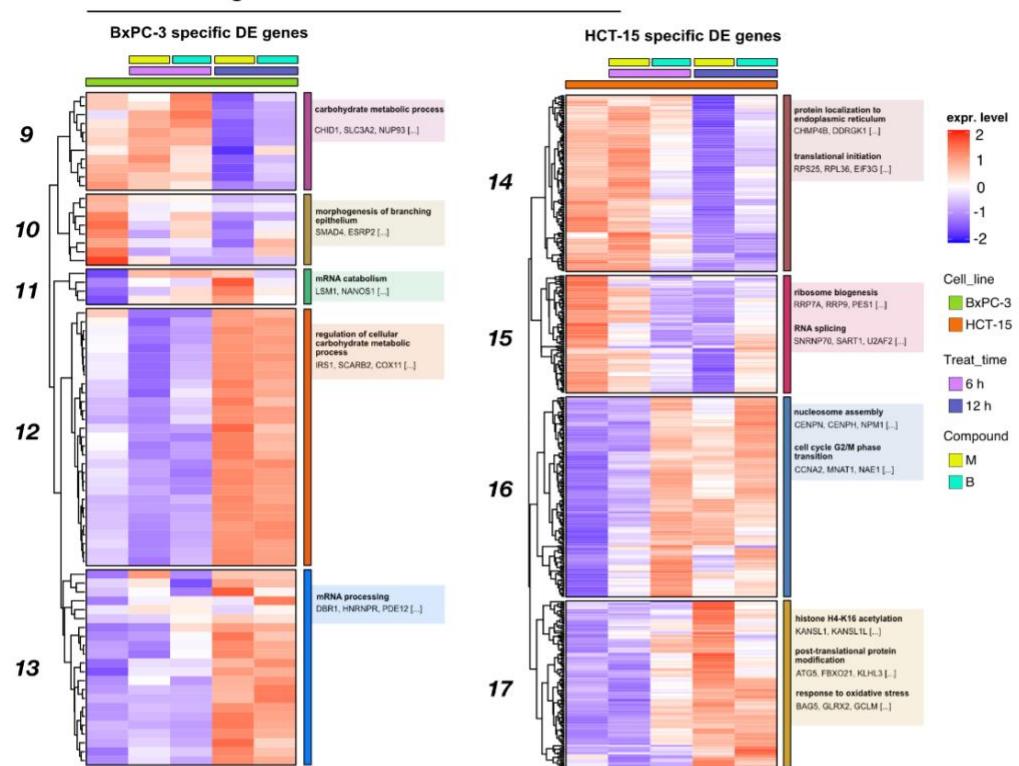


Figure S2. **A** Scheme of the applied workflow for the RNA-seq analyses. **B** Principal component analysis (PCA) post SVA batch correction of RNA-seq data: PC1 vs PC2 showed sample separation by cell line, PC2 vs PC3 (cell lines depicted separately) showed treatment and time point separation. **C** Volcano plots reporting up- and downregulated DE genes in all treated vs control comparisons (adjusted p-value < 0.05). **D** Venn plot reporting the number of specific and shared up- and downregulated DE genes between BxPC-3 and HCT-15 cells (union of DE genes in all treated vs control comparisons). **E** Enriched GO terms ($p < 0.05$) derived from GSEA on BxPC-3 and HCT-15 DE genes (union of DE genes in all treated vs control comparisons) and on shared DE genes (up- and downregulated separately). **F** Schematic representation of enrichment map-based selection of representative GO terms to be reported in Fig. 2 C.

Figure S3

A.

12 hours DE genes



B.

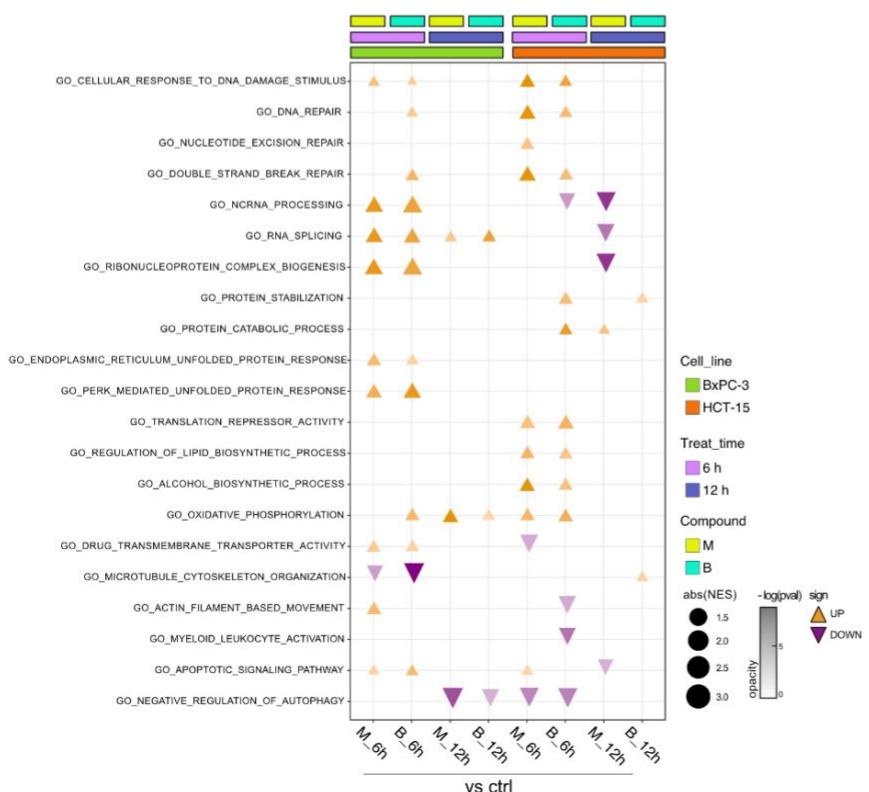
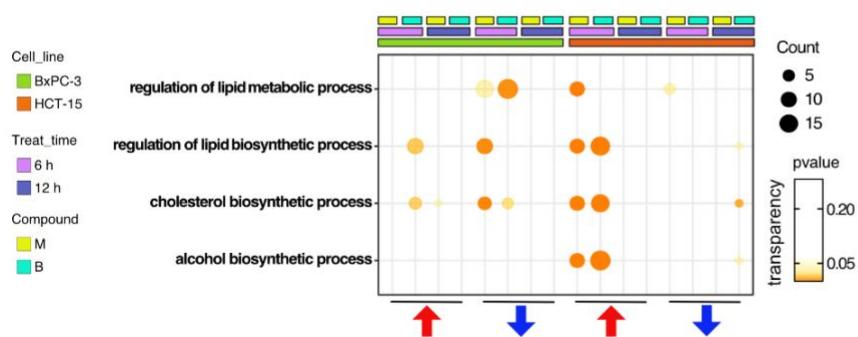


Figure S3. A Expression level of cell-specific 12 h DE genes across test conditions. GSEA was performed on modules with similar regulation identified by hierarchical clustering: for each cluster, representative GO terms and genes of the associated load are reported. **B** GO database functional enrichment (GSEA) obtained from \log_2FC ranks in all treated vs control comparison both in BxPC-3 and HCT-15 cells. For each identified biological process, enrichments in terms of absolute normalized enrichment score (abs(NES)) and $-\log(p)$ of representative terms are reported ($p < 0.05$).

Figure S4

A.



B.

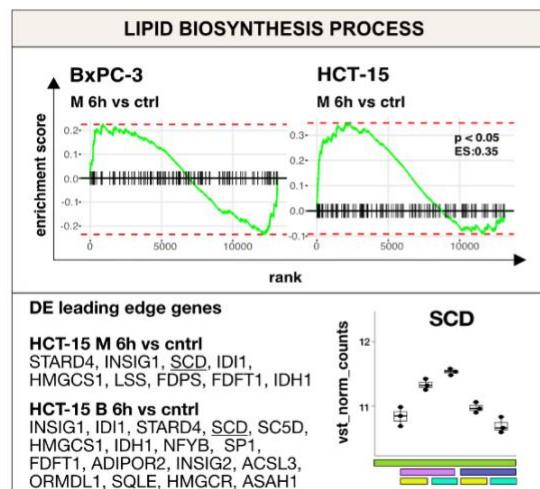
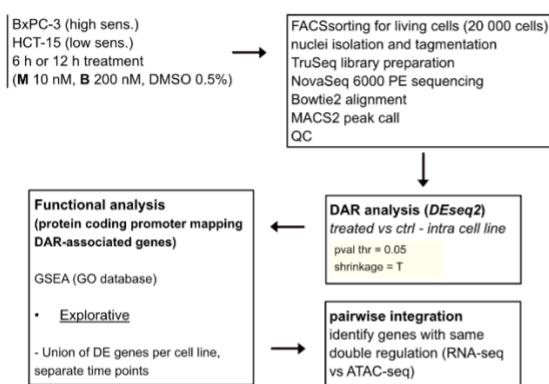


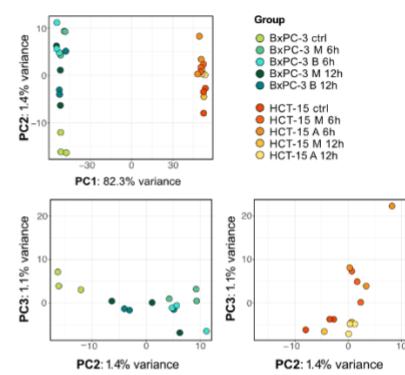
Figure S4. A GSEA for terms related to *lipid metabolism* performed on DE genes detected in each of the considered treated vs control comparisons. For each GO term ($p < 0.05$), enrichments in terms of Count and p-value are reported. **B** GSEA enrichment plots for the *lipid biosynthesis process* pathway obtained from \log_2FC ranks for each of the considered treated vs control comparisons. DE leading edge genes are also reported, together with boxplots showing the expression level of SCD (vst-transformed normalized counts) in BxPC-3 cells.

Figure S5

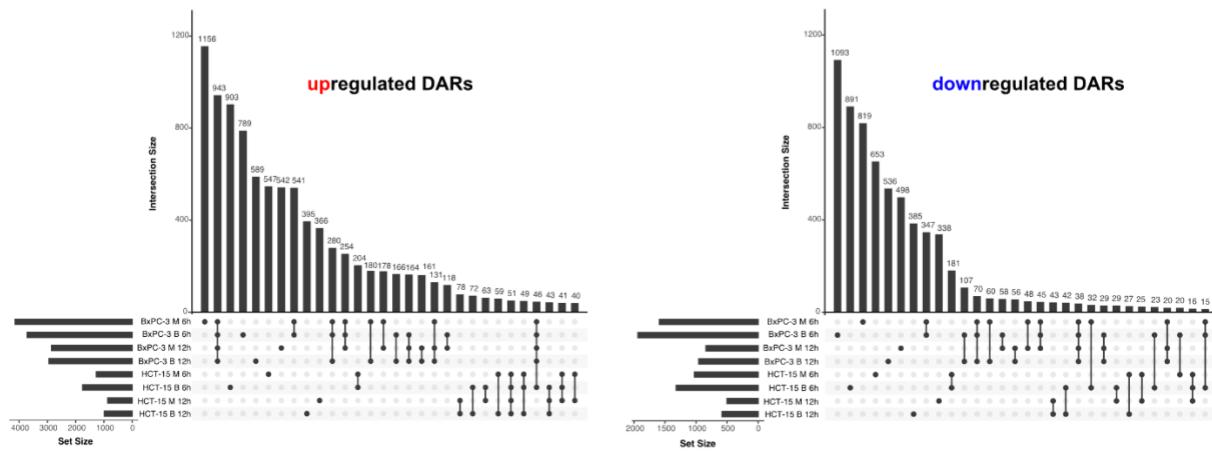
A.



B.



C.



D.

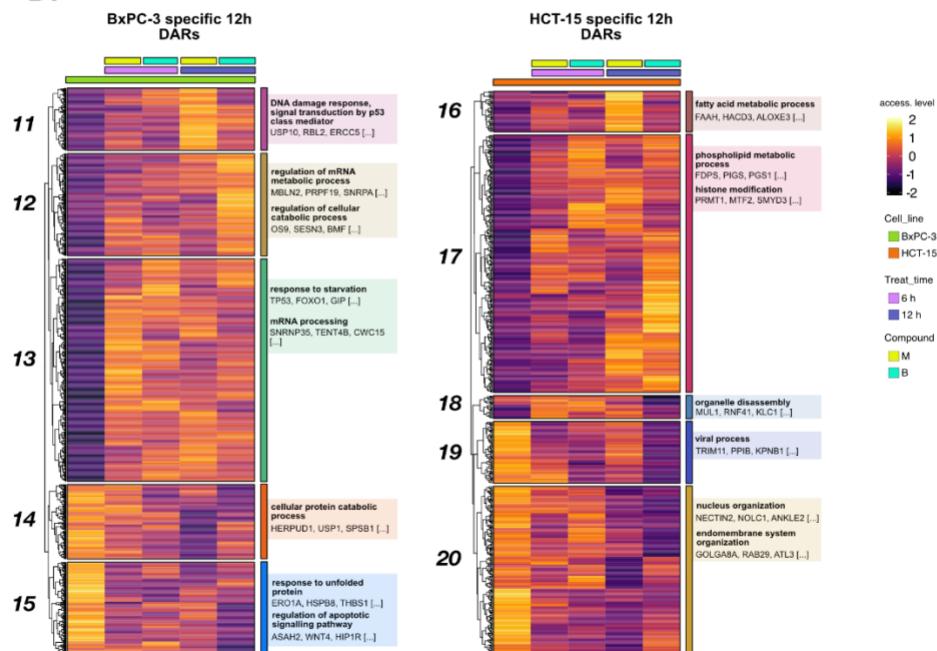
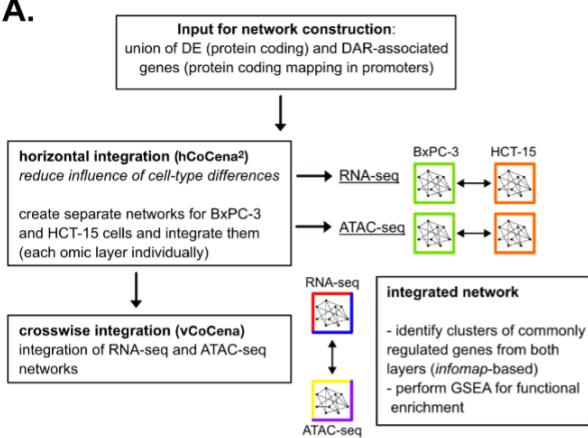


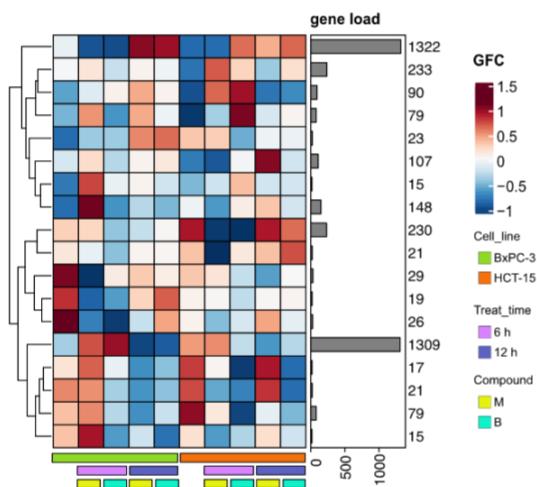
Figure S5. **A** Scheme of the applied workflow for the ATAC-seq analyses. **B** Principal component analysis (PCA) of ATAC-seq data: PC1 vs PC2 showed samples separation by cell line, PC2 vs PC3 (cell lines depicted separately) showed treatment and time point separation. **C** Upset plots reporting up- and downregulated DARs ($p < 0.05$) and their overlap between all treated vs control comparisons in both cell lines. **D** Accessibility level of cell-specific 12 h DARs across test conditions. GSEA was performed on genes associated with DARs with similar regulation, grouped in modules identified by hierarchical clustering: for each cluster, representative GO terms and genes of the associated load are reported.

Figure S6

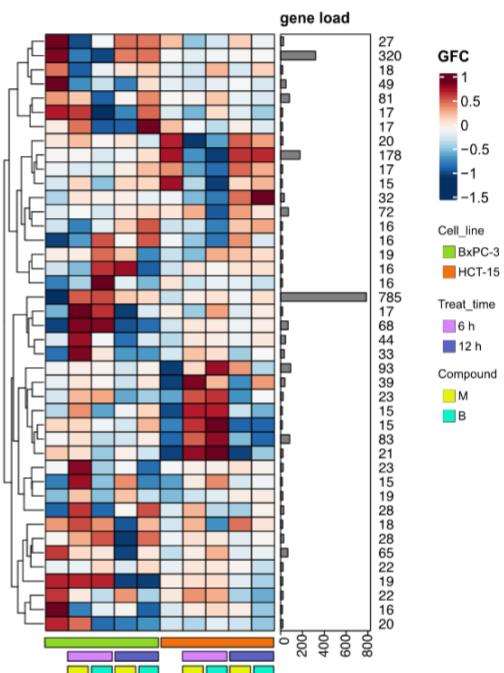
A.



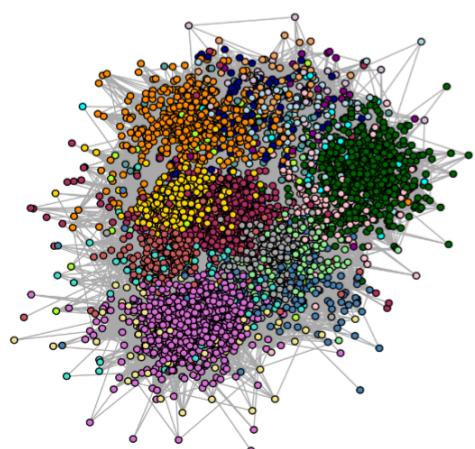
B.



C.



D.



E.

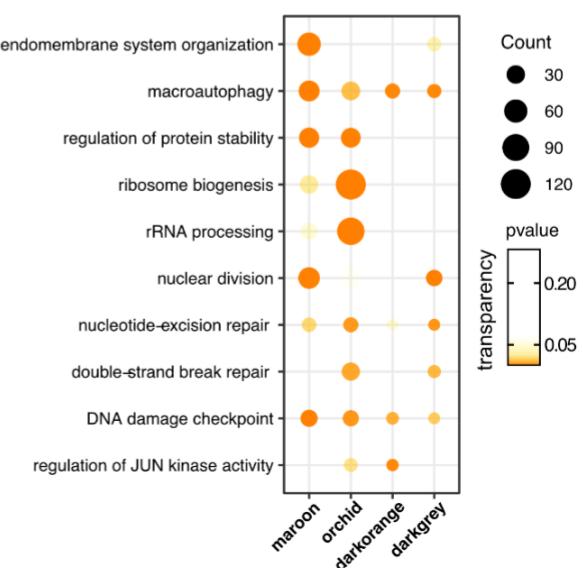


Figure S6. **A** Scheme of the applied workflow for the *crosswise* integration analysis. **B** Horizontally integrated modules of genes from the RNA-seq layer and associated GFC (group fold change) pattern of regulation across conditions. **C** Horizontally integrated modules of genes from the ATAC-seq layer and associated GFC (group fold change) pattern of regulation across conditions. **D** *Crosswise* integrated vCoCena network. **E** Most representative GO terms from GSEA on genes of the *maroon*, *orchid*, *darkorange*, *darkgrey* modules. For each GO term ($p < 0.05$), enrichments in terms of Count and p-value are reported.

Figure S7

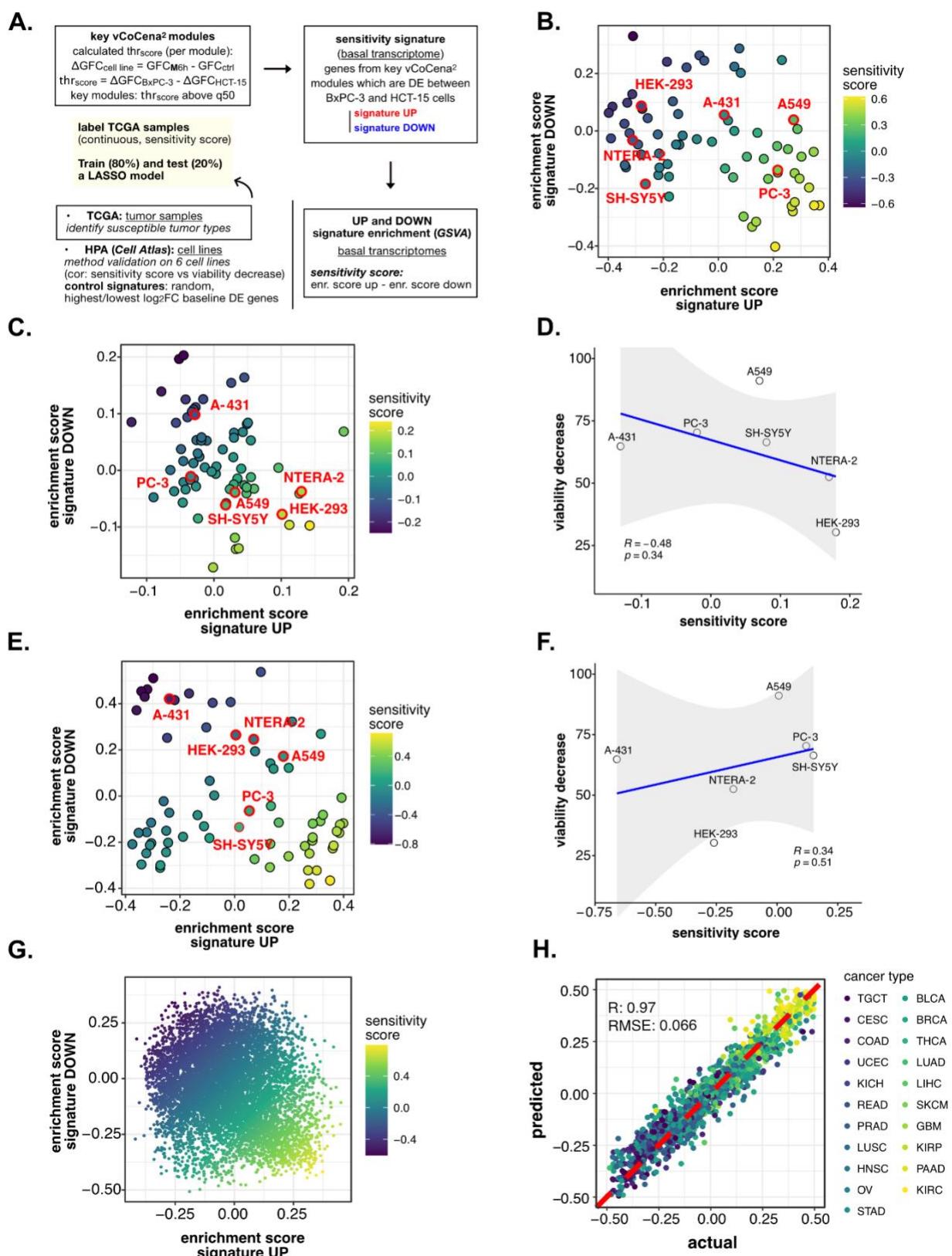


Figure S7. A Scheme of the applied workflow for the sensitivity signature construction and associated drug susceptibility prediction. **B** HPA (*Cell Atlas*) cell lines separation based on GSVA enrichment of our newly constructed up vs down signatures of sensitivity to M. Color scale reflects samples predicted sensitivity score (up signature enrichment - down signature enrichment). **C** HPA (*Cell Atlas*) cell lines separation based on GSVA enrichment of random up vs down signatures. Color scale reflects samples predicted sensitivity score (up signature enrichment - down signature enrichment). **D** Pearson correlation between predicted sensitivity score and viability decrease in a subset of HPA (*Cell Atlas*) cell lines (validation set) using a random signature. **E** HPA (*Cell Atlas*) cell lines separation based on GSVA enrichment of control up vs down signatures. GSVA was performed using a control signature composed by DE genes with top up and down \log_2FC . Color scale reflects samples predicted sensitivity score (up signature enrichment - down signature enrichment). **F** Pearson correlation between predicted sensitivity score and viability decrease in a subset of HPA (*Cell Atlas*) cell lines (validation set) using a control signature composed by DE genes with top up and down \log_2FC . **G** TCGA tumor samples separation based on GSVA enrichment of our newly constructed up vs down signatures of sensitivity to M. Color scale reflects samples predicted sensitivity score (up signature enrichment - down signature enrichment). **H** Predictive performance after the exclusion of genes belonging to our signature from training and test set transcriptomes (Pearson correlation R and RMSE are reported).

Table S1.

Cell line	Viability decrease	SD	signature SS	random SS	topFC SS
HEK-293	30,3	15,1	-0,37	0,18	-0,26
NTERA-2	52,5	6,14	-0,28	0,17	-0,18
SH-SY5Y	66,4	4,61	-0,08	0,08	0,15
A-431	64,8	7,54	-0,03	-0,13	-0,66
A549	91,1	2,85	0,23	0,07	0,007
PC-3	70,3	0,14	0,35	-0,02	0,12

SD: standard deviation

signature SS: perturbation-informed signature sensitivity score

random SS: random signature sensitivity score

topFC SS: top up and down log₂FC control signature sensitivity score

Table S1. Average viability decrease in cell lines treated with **M** 10 nM for 72 h with associated standard deviation (SD). For each cell line, predicted sensitivity scores based on our perturbation-informed signature (signature SS), a random one (random SS), a control one based on top up and down log₂FC DE genes between BxPC-3 and HCT-15 (topFC SS) were also reported.