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Summary 

Cancer genomes harbor a broad spectrum of structural variants (SV) driving tumorigenesis, 

a relevant subset of which are likely to escape discovery in short reads. We employed Oxford 

Nanopore Technologies (ONT) sequencing in a paired diagnostic and post-therapy 

medulloblastoma to unravel the haplotype-resolved somatic genetic and epigenetic 

landscape. We assemble complex rearrangements and such associated with telomeric 

sequences, including a 1.55 Megabasepair chromothripsis event. We uncover a complex SV 

pattern termed ‘templated insertion thread’, characterized by short (mostly <1kb) insertions 

showing prevalent self-concatenation into highly amplified structures of up to 50kbp in size. 

Templated insertion threads occur in 3% of cancers, with a prevalence ranging to 74% in 

liposarcoma, and frequent colocalization with chromothripsis. We also perform long-read 

based methylome profiling and discover allele-specific methylation (ASM) effects, complex 

rearrangements exhibiting differential methylation, and differential promoter methylation 

in seven cancer-driver genes. Our study shows the potential of long-read sequencing in 

cancer. 

 

Keywords: long read sequencing, cancer genomics, ONT sequencing, complex 

rearrangements, epigenetic signatures, nanopore methylation calling 
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Introduction 

Cancer genomic landscapes are shaped by a diversity of somatic rearrangement patterns, ranging 

from simple deletions, duplications and reciprocal translocations to SVs formed via complex DNA 

rearrangements, including breakage-fusion-bridge cycles and chromothripsis events1–4. SVs are 

the most common source of cancer driver mutation, outnumbering point mutations for the 

generation of cancer drivers in the majority of common cancers2; yet, owing to technical 

difficulties with respect to their discovery and characterization5, their structure and patterns are 

underexplored compared to point mutations2. This is particularly true for complex DNA 

rearrangements, the characterisation of which remains an important challenge, with short-read 

(Illumina) sequencing data only partially resolving such structures3.  

 

Initial efforts to classify somatic SVs uncovered a variety of common somatic rearrangement 

patterns, which suggest that a wide variety of rearrangement processes are active in cancer. Using 

non-negative matrix factorization, Nik-Zainal et al.6 initially described six signatures of 

rearrangement in breast cancers sequenced using Illumina technology. More recent pan-cancer 

studies3,7, again pursued using short read data, combined simple SVs (e.g. deletion-type, 

duplication-type and inversion-type) into discrete higher level patterns based on breakpoint 

junction connectivity, resulting in over a dozen SV signatures. This included patterns of 

intermediate rearrangement complexity, such as templated insertion chains comprising up to 10 

breakpoints. Yet, more complex rearrangement patterns have so far largely resisted systematic 

classification based on breakpoint junction connectivity. An important reason for this is difficulty 

in assembling short-read data into coherent structural segments to study patterns of somatic 

rearrangements. This problem is exacerbated by repetitive sequences in the genome, in which SV 

breakpoints are readily missed by Illumina whole genomes sequencing (WGS). This leaves open 

the possibility that important patterns of structural rearrangement have not yet been discovered 

and are elusive due to the predominant use of short-read sequencing in cancer genomics2.  

 

Here we sought to evaluate the utility of long read sequencing technology8–11, in particular Oxford 

Nanopore technology (ONT), to reveal patterns of somatic structural variation. The technological 

choice was motivated by the fact that long read sequencing of 1000 Genomes Project samples 

showed a greatly increased number of confidently discovered SVs in repetitive regions, improved 

sensitivity for SVs smaller than 1 kbp in size, and advantages for investigating complex SV 

patterns by facilitating haplotype-resolved genomic sequence assembly12,13. ONT additionally 

shows great promise in cancer epigenomics, as from the same long reads both genetic and DNA 

methylome data can be obtained, the latter of which is quantified through measuring current 

changes within the nanopore14 – which should allow integrated characterization of genetic and 

epigenetic changes in tumors at single (long) molecule level. However, there is a current lack in 

suitable computational methods and hence a need in exploring and devising approaches leveraging 

long read data in cancer genomes – with the complications of intra-tumor heterogeneity in primary 

cancer samples, normal cell contamination, aneuploidy and complex SVs, and variation in tumor 

methylation levels.  
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To address the current lack of long-read analytical methods to explore cancer genomes, we 

performed ONT sequencing of a childhood medulloblastoma, and devised methods to enable 

characterizing SV and methylome patterns in these data. The tumor arose in a patient carrying a 

germline TP53 mutation (Li-Fraumeni syndrome, OMIM Entry # 151623), previously associated 

with Sonic-Hedgehog subgroup medulloblastoma (SHH-MB) and somatic chromothripsis15,16. We 

reveal the fully assembled haplotype-resolved structure of a complex chromothripsis event15,17. 

We further uncover a novel complex rearrangement pattern, termed templated insertion thread, 

which copies and concatenates a substantial number of short subkilobase-sized templated 

insertions in forward and reverse orientation, resulting in massively amplified sequences ranging 

up to several tens of kilobases in size. While not initially discovered by Illumina WGS, we 

demonstrate that common features associated with templated insertion threads allow their 

discovery in cancer genomes sequenced with short-reads. A search for these patterns in 2,569 short 

read cancer genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium2 

reveals templated insertion thread footprints in 3% of cancer genomes, with a particular abundance 

in liposarcoma (74%), glioblastoma (24%), osteosarcoma (22%) and melanoma (14%). Templated 

insertion threads can occasionally be linked to cancer-related gene overexpression, suggesting that 

cancer cells could exploit this somatic SV pattern to promote tumor evolution. Lastly, by 

integrating genomic and epigenomic readouts, we performed haplotype-resolved genome-wide 

analysis of CpG methylation. We associate a subset of the somatic DNA rearrangements, including 

templated insertion threads, with functional consequences, and demonstrate the ability to explain 

aberrant gene expression patterns, such as allele specific expression and gene-fusions, by 

integrating genomic and epigenetic long read data. 
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Graphical abstract. I) We investigate a single patient with chromothriptic sonic hedgehog medulloblastoma 
(Li-Fraumeni syndrome), with tissue samples taken from blood, the primary tumor at diagnosis, and a post -
treatment (relapse) tumor. II) Data on the three samples has been collected from four sources, 1) Illumina 
whole-genome, 2) Illumina transcriptome sequencing, 3) Illumina Infinium HumanMethylation450k, as well 
as 4) long-read whole-genome sequencing using Oxford Nanopore Technologies (ONT) sequencing. III)
An integrative analysis combines genomic, epigenomic as well as transcriptomic data to provide a 
comprehensive analysis of this heavily rearranged tumor sample. Long and short read sequencing data is 
used to inform the analysis of complex structural genomic variants and methylation called from haplotyped 
ONT reads and validated through the methylation array data allows for a haplotype-resolved study of 
genomic and epigenomic variation, which can then be examined for transcriptional effect. IV) This 
integrative analysis allows us to identify a large number of inter- and intra-chromosomal genomic 
rearrangements (A) including a complex rearrangement pattern we term templated insertion threads (B), 
as well as sample-specific and haplotype specific methylation patterns of known cancer genes (C). 
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Results 

ONT-based integrated phasing and SV discovery in a medulloblastoma patient.  

We sequenced the primary medulloblastoma (sample ID: LFS_MB_P) to ~30x ONT coverage, 

and generated ~15x for a tumor specimen taken during relapse (LFS_MB_1R) and a paired blood 

control sample, respectively, with a median read length of 5kbp (Table S1). We developed 

workflows and algorithms to analyze both genetic and epigenetic alterations in these samples 

(Methods). Making use of short-read data generated at 45x-48x coverage for these samples16,18,19 

(Table S2), we discovered single-nucleotide variants (SNVs) as well as short insertions and 

deletions (InDels), where ONT reads have limitations due to their relatively high error rate. As 

expected, germline variant calling confirmed a TP53 mutation (TP53:c.395A>T, p.Lys132Met, 

rs1057519996), consistent with Li-Fraumeni Syndrome, coupled with somatic inactivation of the 

wild-type TP53 allele through deletion in the tumor samples. To facilitate allele-specific analysis 

we devised a haplotype-phasing approach that generates initial haplotype blocks from ONT reads, 

which then are integrated with statistical haplotype phasing data from the 1000 Genomes Project20; 

haplotype switch errors are then corrected by leveraging somatic copy-number alterations (SCNA) 

in the tumor that result in allelic shifts away from the normal 1:1 haplotype ratio (Figure S2). In 

regions of the genome without SCNAs we estimate an N50 phased block length of 4.68 Mbp using 

this approach (Methods). The estimated proportion of the somatic genome that is haplotype-

resolvable using our phased germline variant call set is 93.6% for the primary tumor and 90.9% 

for the relapse sample, respectively.  
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Figure 1. Haplotype-phased assembly of an inter-chromosomal chromothripsis event. (A) A circos plot of 
the primary tumor showing from outside to inside the chromosome ideograms, read-depth, large (>10Mbp)
structural variants and inter-chromosomal rearrangements with orange: deletion-type, violet: duplication-
type, light-green: head-to-head inversion-type, pink: tail-to-tail inversion-type and dark-green: inter-
chromosomal. (B) Chromosome 5 exhibits a pattern of oscillating copy-number states (lower panel) and 
alternating heterozygous allele frequencies (upper panel) common to chromothripsis. (C, D) The CS11-17 
assembly is aligned to chromosome 11 and chromosome 17 with aligned segments corresponding to 
amplified regions at approximately copy-number 4 in panel D. Segments from chromosome 11 are in yellow, 
segments from chromosome 17 in purple. The subset of the chromosomes displayed (1-50Mbp) is 
highlighted in green in the chromosome ideograms as well as the location of the amplified segments. (E) 
FISH pictures of the red RP11-651L9 probe (chr17:16,169,409-16,359,715) and the green centromere 17 
probe showing distinctive intra-tumor heterogeneity for the CS11-17 structure. From left to right, (i) nucleus 
showing 2 signals for the RP11-651L9 probe, (ii) 4 signals for the RP11-651L9 probe, (iii) colocalization of 
the centromere 17 probe with the RP11-651L9 probe, and (iv) clusters of signals for the RP11-651L9 probe 
around the centromere 17, suggesting a possible peri-centromeric integration.
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Haplotype-phased assembly of complex somatic rearrangements. 

We integrated ONT-based somatic SV calling with Illumina-based SCNAs and variant detection 

to achieve haplotype-resolved reconstruction of the somatic SV landscape of this tumor 

(Methods). In the primary tumor, we find 697 somatic SVs, including 106 deletion-type SVs, 107 

duplication-type SVs, 189 inversion-type SVs and 295 inter-chromosomal rearrangements. Most 

of these rearrangements arose from two distinct chromothripsis events – one involving 

chromosomes 4, 5, 7, 9, 16, 19 and X, and the other chromosomes 11 and 17, respectively (Figure 

1AB, Figure S4). We explored targeted phased assembly of the genomic outcomes of both 

chromothripsis events (Methods), and constructed SV contigs for the chromothripsis event 

spanning chromosomes 4, 5, 7, 9, 16, 19 and X, and a phased assembly of fragments originating 

from chromosome 11 and 17 (denoted CS11-17, Figure 1CD). The CS11-17 segment, present in 

both primary tumor and relapse, has a size of 1.55 Mbp; the 17p-arm region affected contains the 

TP53 locus, which has been lost on the chromothriptic haplotype. We estimate an average copy-

number of 3 to 4 copies for CS11-17, consistent with FISH experiments (Table S3). FISH further 

shows extensive intra-tumor heterogeneity (ITH) of CS11-17 copy-numbers, which range from 1 

to 7 (Tables S3, S4, S5). We performed sequence-level characterization of CS11-17, and partially 

resolved peri-centromeric regions at its flanks (Figure 1CD), which could provide the necessary 

sequence context for homology based integration into the normal genome as observed previously 

for double minutes17 (Figure 1E). Indeed, the absence of classical double-minute chromosome 

structures in metaphase spreads analyzed by FISH suggests the likely reintegration of CS11-17 

(Figure S5). Yet, we failed to identify reads supporting reintegration of this structure into a 

chromosomal context, possibly due to limitations of ONT for resolving low-variant allele 

frequency SVs in conjunction with ITH, especially in complex regions that exhibit repetitive 

segments larger than the ONT read length21. 
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Figure 2. Templated insertion threads. (A) Self-alignment of a single ONT read that spans the entire length 
of the templated insertion thread, displaying an array of repetitive short sequence matches reflecting the 
copying and concatenation of few source sequence segments. (B) Matched illumina data shows a 
characteristic coverage increase (upper panel). An alignment of the ONT read (y-axis) against selected
templated insertion source sequences (x-axis) shows how the ONT read aligns across these source 
sequences multiple times in seemingly random order. (C) A scheme showing how templated insertions are 
copy and paste in direct adjacency and random order into a growing templated insertion thread. Arrows 
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next to the templated insertion thread indicate the segment orientation and dashed lines show discovered 
adjacencies among individual templated insertions. (D) The colocalization of the beginning and the end of 
the templated insertion thread (purple arrow) with chromothripsis segments on chromosome 5 and (E) 
chromosome 7. (F) Analysis of 2,569 cancer genomes reveals that liposarcomas often harbor templated 
insertion threads, preferentially on chromosome 12 (main panel). The inset shows the distribution of 
templated insertions along chromosome 12 where each horizontal line is a distinct liposarcoma sample. 
(G) Telomeric repeat analyses identified a complex SV rearrangement involving chromosome 4, 5 and 7 
that was stabilized by telomere fusion to the chr5p telomere in the primary medulloblastoma sample. 

ONT sequencing reveals a novel complex rearrangement pattern denoted 

templated insertion thread.  

Notably, the somatic SVs included a highly unusual pattern of inter-chromosomal DNA 

rearrangement not matching previously described somatic SV classes. This rearrangement pattern 

involves short DNA segments, mostly 100bp–1kbp in size, that are concatenated by a structural 

rearrangement process in forward and reverse order, into a complex, highly amplified sequence 

comprising up to 50kbp of DNA and dozens to hundreds of breakpoint junctions (Figure 2A). We 

find two such structures in the primary tumor, yet, identify no such pattern in the relapse sample. 

We analyzed this unusual rearrangement pattern more closely and found that the length of the 

source sequence segments ranges from 144 - 3,637 bp, with all source segments with an estimated 

total copy-number greater than 10 being between 225 bp and 403 bp in size. The total length of 

the resulting somatic amplicon structure is 50.3kbp for the first structure (Figure 2B) and 39.9kbp 

for the second structure (Figure S6). Both of these structures result in inter-chromosomal 

adjacencies, via concatenation of templated insertions stemming from distinct chromosomes. Self-

alignments of ONT reads spanning the amplicon structure independently verified the repetitive 

nature of these insertions (Figure 2AB, Figure S6, S7). Based on a sequence analysis of these 

structures, and leveraging the full length of the ONT reads, we find that these structures most likely 

emerge from templated insertions3, which through a copy-and-paste process become concatenated 

in forward and reverse orientation with no apparent regularity with respect to the orientation of the 

concatenated source sequence segments (Figure 2C, S8) – and we therefore term this novel pattern 

‘templated insertion thread’.  

 

A comparison with previously described rearrangement patterns shows that the templated insertion 

thread pattern shares features with the chains of templated insertions pattern previously described 

by Li et al. using PCAWG data3 and the tandem short template jumps signature previously 

uncovered by Umbreit et al. in cell cultures22 – albeit with clear differences. While all these 

patterns concatenate templated insertions originating from distinct genomic locations, the most 

distinguishing feature of templated insertion threads is the prevalent self-concatenation of 

templated insertions in a zig-zag fashion, which result in short amplicons of remarkably high copy-

number (Figure 2BC, S9); by comparison the units comprising chains of templated insertions 

occur only once (no self-concatenation) in the previously described patterns3,22. As an additional 

discriminating feature, chains of templated insertions as described by Li et al.3 comprise from 1 to 

10 concatenated units, compared to >50 units included within a single templated insertion thread 

in this medulloblastoma sample (see Figure S9).  
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We performed further analyses of the spanning ONT reads, and found that the templated insertion 

threads colocalize with chromothriptic rearrangements (Figure 2DE). It is therefore possible that 

the rearrangement processes resulting in both event classes share some commonality, either with 

one event triggering the other, or with both chromothripsis and templated insertion threads enabled 

by the same initiating DNA lesion. Analysis of the repeat units (source sequence segments) 

becoming self-concatenated in templated insertion threads did not reveal any biases towards a 

specific sequence context; in the majority of cases, individual units originate from non-repetitive 

sequence (Methods). Interestingly, comparative alignment of ONT reads from the same sample 

revealed evidence for ITH with respect to the unit composition of templated insertion threads, with 

clear differences in concatenated unit numbers becoming evident; this suggests that sites of 

templated insertion thread events may be prone to undergo further somatic rearrangements 

generating further genetic heterogeneity (Figure S10). 

 

Graph-based discovery of templated insertion threads in Illumina WGS data.  

Most previously sequenced cancer genomes have been generated using short reads, which 

compared to long reads display poor sensitivity towards <1kb-sized rearrangements13 – the 

predominant rearrangement type within templated insertion threads. Irrespective of this, we 

hypothesized that the distinguishing features of templated insertion threads should be discoverable 

in short read data once explicitly sought for – to allow further analysis of this novel SV pattern in 

large short-read based cancer genome cohorts. To address this hypothesis, we first closely 

examined the Illumina WGS reads from LFS_MB_P at the sites of templated insertion threads. 

Indeed, we find specific short read alignment patterns characteristic of self- and cross-linked 

sequence segments at the respective rearranged sites, with exceptionally high copy-number of 

source segments and paired-end as well as split-read support for rearrangement junctions (Figure 

S11). Encouraged by this observation, we devised the graph-based algorithm rayas, to enable the 

discovery and characterization of templated insertion threads in short read WGS data (Methods). 

The algorithm combines read-depth and split-read patterns to identify rearrangement graphs, 

allowing the specification of 1:n relationships, whereby a single templated insertion source 

sequence (i.e., a node in the graph) can contribute to different rearrangement adjacencies (i.e., 

edges in the graph; Figures S11). Application of rayas to the primary and relapse samples led to 

the re-discovery of both templated insertion threads in the primary medulloblastoma, and 

confirmed the absence of these structures in the relapsed medulloblastoma. 

Pan-cancer landscape of templated insertion threads in 2,569 tumors.  

The ability of template insertion threads to amplify short sequences suggests a potentially broader 

relevance in cancer, since amplified DNA sequences could potentially act as cancer drivers such 

as by focally amplifying DNA regulatory sequences or altering the gene regulatory context to 

result in ectopic expression2,23,24. To enable a wider characterization of this SV pattern, we used 

rayas to interrogate 2,569 cancer genomes from the PCAWG consortium2. We find 169 templated 

insertion threads in 76 (~3%) cancer genomes, which suggests that this somatic rearrangement 

pattern arises in distinct cancers (Figure S12, Table S6). Across cancers the distribution of this 

pattern is highly heterogeneous, with 74% of liposarcomas, 24% of glioblastoma and 14% of 
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melanomas exhibiting template insertion threads, versus 7% of leiomyosarcomas (Figure S12). 

We caution that due to the lower sensitivity of short-reads for detecting complex SVs involving 

short repeat units13, future studies with larger cohorts of cancer samples sequenced with long-reads 

will likely reveal a higher frequency of templated insertion threads in cancer. 

 

On average, templated insertion threads consist of 4 distinct source segments with a median unit 

size of 558bp, and median number of concatenated units of 53.1, indicating that high copy number 

amplification is the norm rather than the exception for this SV pattern. We next analyzed these 76 

cancer genomes bearing template insertion threads in more detail, to determine features that may 

potentially correlate with the occurrence of template insertion threads. Interestingly, 65 out of these 

76 cancer genomes (86%) were previously classified as having at least one chromothripsis event2. 

The association of template insertion threads with chromothripsis is significant across 2,569 

cancers, when adjusting for tumor histology, gender and ancestry (p-value: 1.15 × 10−5, logistic 

regression). Interestingly we find a strong enrichment of templated insertions on chromosome 12 

in liposarcoma samples, with a propensity towards the 12q15 chromosome band (Figure 2F). 

Liposarcomas often form supernumerary ring or giant marker chromosomes that include multiple 

copies of the target oncogenes (MDM2, CDK4, among others) on chromosome 12, a chromosome 

that frequently undergoes chromothripsis in this cancer type18,25,26. A recent study also identified 

chromosome 12 as a hotspot for seismic amplification in liposarcoma27. These data suggest that 

templated insertion threads could arise in association with supernumerary ring or giant marker 

chromosomes, possibly triggered by the same initiating lesions or through a common 

rearrangement process.  

Telomere analysis of derivative chromosomal segments.  

Critical telomere shortening is one mechanism implicated in triggering complex structural 

rearrangements such as chromothripsis events28,29. Prompted by complex inter-chromosomal 

rearrangement seen in this medulloblastoma patient, we explored telomeric sequences associated 

with the resulting derivative chromosome structures, an analysis normally inaccessible to short 

reads. We devised a method to identify telomeric motifs, repeats of TTAGGG, TGAGGG, 

TCAGGG, TTGGGG or their reverse complement, in error-prone ONT reads and applied this 

method to the long read data of the primary tumor and the relapse sample (Methods). Using this 

approach, we confidently detect five structural rearrangements involving telomeric sequences – 

three in the primary tumor and two in relapse – where a telomeric sequence of one chromosome is 

fused to a rearranged segment of another chromosome (Figure 2G, S13). For one of these 

telomeres we identify a highly complex rearrangement pattern, involving the chromosome 5p 

telomere and several short sequence segments from chromosome 4, 5, and 7 (Figure 2G) 

reminiscent of chains of templated insertions. For this event, telomere crisis may have initiated the 

complex SV pattern present throughout chromosome 4, 5 and 7, including chromothripsis and the 

above mentioned templated insertion threads. Telomere fusions can also stabilize altered 

chromosomes after catastrophic events such as chromothripsis30, which would suggest an 

alternative sequence of events, with chromothripsis and templated insertion threads causing 

unprotected break sites healed through telomere addition. Another telomere crisis event observed 
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in the primary tumor likely fused chromosome 19 to the telomere of chromosome 16q, an event 

that could only be resolved unambiguously using the CHM13 telomere-to-telomere (CHM T2T) 

assembly31 as a reference sequence (Figure S13). We further investigated whether eroded 

telomeres were preferentially fused with genomic loci active in transcription as has been suggested 

previously32, but our small number of telomere fusions do not provide sufficient evidence. 

Telomeres can erode more rapidly in cells of Li-Fraumeni syndrome patients as compared to 

healthy individuals, which is thought to lead to an increased frequency of telomeric fusions33, and 

possibly contributed to the complex SV patterns observed in this study. 

Differential methylation from long-read data.  

ONT sequencing allows for direct assessment of the methylation likelihood of cytosine bases14, 

providing the opportunity to characterize global DNA methylation levels in this medulloblastoma 

sample, and to integrate DNA methylome and somatic rearrangement data. We quantified DNA 

methylation at base-level resolution using Nanopolish, which yields good correlation (pearson-R² 

0.9102 in primary tumor, 0.8497 in relapse) with methylation rates obtained through the 

HumanMethylation450 array platform (Figure S14).  

 

We attempted to identify patterns of variation in DNA methylation by comparing methylation rates 

between primary tumor and relapse sample using PycoMeth34. We find that directly testing 

methylation rates of gene promoter regions (as defined in methods) yields poor power, with only 

31 gene promoters called as differentially methylated (FDR <= 0.05, abs methylation rate 

difference > 0.5). We therefore apply two segmentation approaches, testing for differential 

methylation in segments defined using PycoMeth’s CGI finder and PycoMeth’s de novo 

methylome segmentation method Meth_Seg respectively (Methods). The between sample 

segmentation identified 662,262 methylation-based segments as well as 358,922 CpG-dense 

regions. Differential methylation calling on the segmented methylation calls reveal 2,459 

individual segments, or 26,542 CpG sites, called as differentially methylated (Figure 3A) with an 

average length of 402 base pairs per segment (FDR <= 0.05, abs methylation rate difference > 0.5, 

Figure S15). Of these CpG sites, 3,117 (11.74%) intersect with gene promoters, revealing 475 

genes with differential promoter methylation, seven of which were previously annotated as 

medulloblastoma driver genes35 representing a significant enrichment (Fisher’s exact test statistic: 

20.25, p-value: 1.6 × 10−7). Furthermore, 742 (2.80%) CpG sites intersect with 64 enhancers active 

in the cerebellum. Among these we detect hypermethylation in an enhancer and promoter region 

of the neuritin 1 gene (NRN1) (Figure 3B), previously identified as down-regulated in treatment-

resistant medulloblastoma36 and linked with tumor growth suppressive features in esophageal 

cancer37. We also observe a 329bp region in the promoter of PTCH1, a key driver in Sonic 

Hedgehog medulloblastoma38, which is methylated in the relapsed tumor and heterozygously 

deleted in both samples. Overall, analysis of the ONT data provides a substantially more 

comprehensive picture of the tumor methylome, with 78% of the between sample DMRs 

inaccessible to the commonly used 450K array, and 65% inaccessible to the 850K array (Figure 

S16). 
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Figure 3. Functional analysis of primary tumor and relapse sample. (A) Number of CpGs in regions found 
to be differentially methylated in the sample comparison (Primary tumor vs Relapse) as well as ASM in the 
two samples. Colors represent an estimation of discoverability with short-read sequencing methods. CpGs 
in low complexity regions (soft-masked in reference) are more difficult to map using only short reads. CpGs 
not phaseable with short reads are further than 150bps from a phased heterozygous non C>T variants. (B)
Methylation of NRN1 promoter and enhancer in the primary tumor sample. (C) Heterozygous deletion in 
promoter of PTCH1 (tumor suppressor gene and driver in Medulloblastoma) with differential methylation in 
the remaining haplotype. (D) PCDH17 (tumor suppressor gene) promoter with ASM pattern in the primary 
tumor sample. (E) Predicted gene fusion pairs from Arriba validated using ONT long read information, 
thresholded by confidence as reported by Arriba. Fusion pairs in the Supported by individual reads category 
are supported by at least one genomic read with a chimeric alignment including both genes. Pairs in the 
Explainable using genomic breakpoints category have a plausible explanation by following a graph of 
structural variations that connect the two genes. The category High confidence read support refers to pairs 
where both these criteria are met. (F) Example of a gene fusion pair that can be explained using genomic 
breakpoints but with no individual genomic read that covers both genes. Two separate insertions of a total 
length of 42,797 base pairs appear to be involved in the fusion of LINC01091 and FKBP9 such that even 
in ONT reads there was no read extending across the entire gene fusion.
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Resolving expression effects using ONT data. 

Leveraging Illumina RNA sequencing data generated for both primary tumor and relapse, we 

assessed whether differential methylation measured in gene promoters is associated with 

expression changes. Gene expression analysis revealed 49 genes with strong differential 

expression between the two samples (absolute log fold change >5 (a-l2fc), methods, Table S7), 

including in known medulloblastoma genes (amongst others KCNA1, and DMBT1)39,40. Of the 

total 475 promoter linked DMRs (415 are expressed in both samples), 57 overlap with 

differentially expressed genes (a-l2fc >2); the overlap between differential expression and DMR 

effects is statistically significant (Fisher’s exact test statistic: 12.27, p-value: 4.3 × 10−6). As 

previously described promoter methylation has a mostly negative relation to expression41, 50 out 

of the 57 pairs (87.7%), are negatively correlated, and we observe a significant inverse correlation 

(Spearman R: -0.31, p-value: 1.8 × 10-2) between methylation and expression levels (Figure S19). 

For example, we find that the BCAT1 gene is overexpressed and under-methylated in the relapse, 

consistent with a prior report observing that this gene is overexpressed in metastatic compared to 

non-metastatic medulloblastomas42. We also find TBX1 which is regulated by Sonic Hedgehog43 

with two separate promoter-linked DMRs, one hypermethylated and one hypomethylated in 

primary tumor, while underexpressed (5.29 l2fc) in the primary tumor as compared to the relapsed 

tumor (Figure S20). 

 

We further sought to integrate the transcriptomic data with the long ONT reads to look for 

supporting data for gene fusion events (see Table S7), previously described to be prevalent in 

SHH-Medulloblastoma44. We inferred gene fusion events from transcriptomic reads using Arriba 

on the primary tumor, and identified 127 putative gene fusion pairs of which 103 pairs are 

supported by genomic evidence, either directly through individual chimeric read alignments of 

ONT reads near the fusion breakpoints (53) or by tracing SVs called from long and short genomic 

reads (19) or both (31) (Methods). Breaking down predictions by Arriba confidence shows 

increased traceability for higher confidence fusion calls (Figure 3F). Tracing SVs, across a limited 

number of ONT reads, allows us to explain long and complex fusions, such as the gene fusion 

observed between FKBP9 and LINC01091, with the fusion breakpoint in a long (>69kbps) intron 

resulting in an intronic insertion of 42,797bps length (Figure 3G). Interestingly we observe a 

translocation involving NCOR1 and AC087379.1, genes on the CS11-17 structure. NCOR1, a 

tumor suppressor gene, has previously been reported in loss-of-function fusions in SHH 

medulloblastoma44; the NCOR1-AC087379.1 fusion detected here is out of frame and therefore 

would be predicted to disrupt NCOR1.  

Allele specific methylation and expression.  

ONT sequencing gives the unique opportunity to phase long methylation called reads, allowing 

high resolution allele specific methylation (ASM) analyses along the cancer genome. We analyzed 

ASM patterns, by running a second segmentation using PycoMeth Meth_Seg, a methylome 

segmentation method leveraging sample haplotype information (Methods). Using the same FDR 

cutoff as for DMR analysis (Methods), we identify 1,171 differentially methylated segments 
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between the haplotypes of the primary tumor sample, spanning a total of 24,725 CpGs, with an 

average segment length of 525 base pairs (Figure S16). Due to the lower sequencing depth in the 

relapse sample, the number of segments passing the significance threshold with ASM is lower, 

resulting in 77 differentially methylated segments (spanning 2,289 CpGs, Figure 3A). While 

detection power in relapse is low due to lower read-depth, 401 of the 1,172 ASM segments 

(34.22%) found in the primary tumor show the same effect in the relapse sample with regards to 

sign and methylation rate difference (Methods). To illustrate the benefit of using non bisulphite 

converted long reads for this analysis we separate out CpGs close to heterozygous variants 

(<=150bps away) versus CpGs further away from heterozygous variants (excluding C>T variants 

as those cannot be distinguished from methylation calls in bisulfite sequencing) observing that we 

can get 19,729 (395%) more CpGs confidently linked to ASM effects (Figure 3A).  

 

In the primary tumor sample, a total of 396 gene promoters and 29 enhancers intersected with 

segments with ASM, and 23 gene promoters and 1 enhancer in the relapse sample. Among these, 

we observe promoter methylation of PCDH17, a tumor-suppressor gene in which aberrant 

promoter methylation was previously observed in different tumors45–49. We also detected longer 

segments, such as a 26,751bp long region found as part of a larger ~250kbp long region on 

chromosome 15 spanning three protein coding genes as well as a 53 non-coding genes including 

the SNORD116 and SNORD115 clusters, which is partially methylated in one haplotype and fully 

methylated in the other. The full list of genes with sample specific or allele specific methylation 

can be found in Table S8. Unable to confirm a significant relationship between ASM and 

proximity to somatic variants, it is likely that a sizable fraction of ASM detected is associated with 

germline variation. 

 

We also investigated whether ASM is associated with gene expression levels, by performing allele 

specific expression analysis. Using the phased variants from the blood sample, we are able to 

compute ASE rates using WASP (Methods), focusing on the variants in the gene promoter region 

as defined for ASM. We observe a total of 220 genes with a significant ASE effect (Q-value <0.05). 

A total of 70 genes that show ASE effects were previously implicated in medulloblastoma, 

including the previously described ZIC1 driver gene35, which is also a potential drug target50. It is 

known that ASM plays an important role in the regulation of allele specific expression (ASE)51 

and ASM is increased in cancer, caused by disease associated regulatory SNPs52. A total of 20 

genes show ASM as well as significant ASE effects (FDR < 0.1, methods), where increased 

methylation is associated with reduced expression (Pearson R: -0.471, p-value: 3.6 × 10-2 , Figure 

3E), when accounting for haplotype copy number state this correlation is stronger (Partial 

correlation R: -0.501, p-value: 2.8 × 10-2), again we observe a significant overlap between ASE 

and ASM genes (Fisher’s exact test statistic: 4.1, p-value: 2.63 × 10-6, using all genes expressed in 

primary tumor as background).  

Haplotype resolved functional interpretation of complex rearrangements 

We notably observed ASM also in association with the chromothripsis event resulting in the 

complex CS11-17 structural segment. Since the CS11-17 rearrangement occurs in only one 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.20.480758doi: bioRxiv preprint 

https://paperpile.com/c/dsGdUK/ERCD+TyMp+gZ19+sBar+N7RB
https://paperpile.com/c/dsGdUK/LJC1K
https://paperpile.com/c/dsGdUK/f6S5
https://paperpile.com/c/dsGdUK/Y2Mu
https://paperpile.com/c/dsGdUK/C4PN
https://doi.org/10.1101/2022.02.20.480758
http://creativecommons.org/licenses/by-nd/4.0/


 

17 

haplotype, we searched for ASM between the CS11-17 haplotype and the corresponding wild-type 

(non-rearranged) haplotype stretches. We find a global pattern of demethylation of the CS11-17 

haplotype in contig 2 (Figure 4A) compared to the non-rearranged haplotype, which includes 

demethylation of TRIM66 and STK33. On contig 1 of CS11-17, the promoter regions of SPATA32, 

USP22 and MAP3K14-AS1 are demethylated on the corresponding wild-type haplotype in the 

primary tumor, while being methylated on CS11-17 as well as on both of the unaffected haplotypes 

in the relapse (Figure 4B). No ASE is found for the genes on the demethylated contig 2 of CS11-

17. USP22 on contig 1 of CS11-17 shows higher ASE in the demethylated allele, and MAP3K14-

AS1 in the methylated allele, most likely driven by the higher copy number of the chromothriptic 

haplotype. 

Functional annotation of the templated insertion threads and telomere SVs 

We next performed similar functional annotation of the templated insertion threads and the 

telomere insertions. The templated insertion threads appear to retain their original methylation 

state with only a slight reduction in methylation rate measured (average methylation rate reduction 

structure 1: 0.16, structure 2: 0.09, Figure S17). Interestingly the first templated insertion thread 

(Figure 2B) lands in an intronic region of BASP1, which was previously implicated in metastatic 

medulloblastoma in a mouse model specifically by transposon insertion mutagenesis53. While this 

is a different type of insertion, we notably do observe differences in splicing of BASP1 between 

the samples. Within the relapse sample, which does not harbor the templated insertion thread, we 

observe three splice junctions that are not used in the primary tumor (Junction 1 (5:17260615-

17275208): Fisher’s exact test p-value: 1.5 × 10−23, Junction 2 (5:17228332-17275208): p-value: 

2.0 × 10−22, Junction 3 (5:17263478-17275208): p-value: 4.4 × 10−10). The junction used for the 

main BASP1 isoform (BASP-201) is more frequently used in the primary tumor as compared to 

the relapse (Table S9). To further explore the functional relevance of the observed templated 

insertion threads we also searched for potential gene dysregulation effects within the 

transcriptomic data available for liposarcoma samples in PCAWG2. We identified one liposarcoma 

sample (donor id DO219945), which harbors a templated insertion thread on chromosome 12 

whose breakpoints intersect the coding sequence of proliferation-associated protein 2G4 (PA2G4), 

which can act as a contextual tumor suppressor54, in association with reduced PA2G4 expression 

(Figure S18A). Another liposarcoma sample (donor id DO219967) shows strong overexpression 

of CCND3, a known sarcoma oncogene, and BYSL, a gene associated with tumor prognosis55, in 

the immediate vicinity of a templated insertion thread (Figure S18B). These examples suggest a 

possibly relevant role of template insertion threads in cancer, illustrating the need of routinely 

generated long reads to fully characterize somatic SVs with respect to cancer-related genes in 

tumor genomes. 

 

Analyzing the telomere-associated SVs we find that four of such SVs observed in the primary 

tumor and relapse samples (Figure 2G, S13) harbor a breakpoint junction in intronic regions of 

protein coding genes, namely TLL1, THADA, and MYPOP in the primary tumor and LUZP2 in the 

relapse sample. The MYPOP and TLL1 SVs also show short templated insertions between the 

telomeric part and the above mentioned genes, with templated insertion source sequences 
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originating from intronic regions of various other genes (Figure 2G, S13). We performed 
differential expression analysis between the primary tumor and relapse, and found that TLL1
showed a slightly reduced expression in the primary tumor (-1.15 l2fc) whereas LUZP2 and
MYPOP displayed a reduced expression in relapse (-1.16 l2fc and -1.08 l2fc, respectively). 
Additionally, MYPOP is found to be subclonally amplified in the haplotype where the telomere 
associated SV is observed (allele specific copy-number ratio 0.7) with a matching allele specific 
expression rate (0.75). This amplification extends across most of chromosome 19q and happens 
only in the primary tumor, while in relapse the copy number ratio for MYPOP is 0.53 (Figure 
S21).

Figure 4. Methylation of complex genomic rearrangements. (A) Methylation rates of chromothriptic contig 
CS11_17 in the primary tumor sample show global demethylation of contig2, containing genes TRIM66 
and STK33, to a methylation rate of 42% on the CS11_17 haplotype from 76% in the corresponding 
genomic ranges on the non-chromothriptic haplotype. While contig1 displays some allele specific 
differences, no significant global effects are detected. (B) ASE and promoter linked ASM in primary 
tumor. (C) Demethylation of CS11_17 haplotype of contig2 effect shown on TRIM66 promoter. (D) ASM 
of promoter of gene SPATA32 and antisense transcript MAP3K14-AS1 on contig1. 
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Discussion 

We describe the haplotype-resolved genetic and epigenetic profile of a diagnosis and post-therapy 

medulloblastoma using long reads and present new computational methods for targeted de novo 

assembly and complex SV characterization, as well as phasing, segmentation, and investigation of 

ONT methylome profiles. We used an integrated phasing approach that combines long-reads with 

statistical phasing for haplotyping which enabled the assembly of a 1.55 Mbp chromothripsis event 

spanning 14 breakpoints. Furthermore, by leveraging the joint genetic and epigenetic readout of 

ONT data, we revealed haplotype-specific and chromothripsis related methylation changes – 

analyses difficult to pursue with short reads due to the sparsity of germline heterozygous single-

nucleotide polymorphisms and limitations in read length. The combination of long read genetic 

and phased methylation information from ONT reads can further be used to detect aberrant 

expression patterns, such as allelic expression imbalance or gene fusion events at greater level of 

detail. In the future, deep coverage and highly accurate long-read data will be needed to achieve 

the complete de novo assembly of cancer genomes, especially in the context of intra-tumour 

heterogeneity, contamination of normal cells, and large numbers of complex rearrangements.  

 

The proposed long-read methods enabled us to describe a new complex DNA rearrangement 

pattern, termed templated insertion thread, consisting predominantly of short segments (<1kbp) 

that are copied and (self-)concatenated into amplified, highly repetitive somatic sequences of up 

to 50kbp in size. Umbreit et al. did not detect self-concatenating insertions of high copy-number 

in the cell cultures of their in vitro study, and their recently described tandem short template jump 

pattern22 therefore bears differences to the template insertion thread pattern described here. 

However, the study by Umbreit et al.22 provided additional validation data from a renal cell 

carcinoma, which included an example of a chained rearrangement with a zig-zag pattern of 

templated insertions involving at least a few self-concatenations. These validation data, therefore, 

further support the templated insertion thread pattern defined in our study. Future analysis of larger 

sample sets using long-reads will be required to delineate the full extent and scope of concatenated 

insertions in cancers, which is likely to be currently underestimated. Notably, tandem short 

template jumps22, like templated insertion threads, show an association with chromothripsis – 

which leaves the possibility of a continuum of concatenated insertion patterns arising in 

conjunction with complex DNA rearrangement processes.  

 

We demonstrate using a new graph-based method, rayas, that templated insertion threads can be 

identified in short read WGS data, which is important as it allows further study of this complex 

rearrangement pattern in existing large short-read cancer genomic cohorts. We describe a 

remarkable enrichment of this pattern in different adult cancers, with the strongest prevalence in 

liposarcomas (74% of cancer samples affected) and a clear colocalization of these events with 

genomic regions undergoing giant marker chromosome formation and chromothripsis. We did not 

identify any additional medulloblastoma samples with templated insertion threads in the PCAWG 
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short read dataset, which is perhaps explained by the relatively low portion of medulloblastoma 

samples contained in the PCAWG cohort exhibiting chromothripsis (~12%)56. One note of caution 

is that discovery of high-complexity regions as seen in templated insertion threads using short-

reads is obscured by somatic SV calling pipelines because multiple distinct SVs co-occur at the 

same SV breakpoint leading to algorithmic clustering and SV merging issues. This is contrary to 

long reads that have the capability to fully resolve the complex structure and composition of 

structural rearrangements in cancer genomes. While rayas can overcome this issue in part, it is 

likely that short read WGS masks additional cases of templated insertion threads, especially where 

they involve short (<1kb) templated insertion units or repeat-rich DNA, given the relatively poor 

sensitivity of Illumina reads for calling such SVs13.  

 

The long-read data also enabled investigation of the association of complex SVs and telomeric 

repeats, an analysis that revealed the fusion of telomeres with chromosomes that underwent 

chromothripsis. Some of these events were captured in a single long ONT read connecting a 

telomere to various SV rearrangements, reminiscent of SV mutations stabilized by independent 

telomere fusions. The assignment of telomeric repeats to chromosomal haplotypes also highlighted 

the need for continuous reference improvements, as some of these events could only be 

unambiguously resolved using the new CHM13 telomere-to-telomere (T2T) assembly31. A 

comparable analysis on short-read data failed to resolve the telomere-associated complex 

rearrangements, and only three out of the five SV to telomere junctions showed confident telomeric 

repeat motifs in an unmapped mate or a soft-clipped read, which underscores the critical need for 

long-read sequencing to investigate telomere-associated structural rearrangements, which are 

considered a key cancer mutational process in association with telomere crisis28. 

 

Despite the unprecedented view into somatic SV rearrangement patterns that ONT long-reads 

enable, a few key challenges remain: 1) Our strategy focused on targeted assemblies of high-copy 

number regions due to the moderate long-read sequencing coverage (up to 30-fold); while long-

read sequencing remains costly compared to Illumina sequencing, future gains in throughput will 

enable studies in larger sample panels with coverages adequate for uncovering SVs in the context 

of intra-tumor heterogeneity. 2) Our assemblies failed to resolve peri-centromeric regions involved 

in the CS11-17 chromothripsis region exceeding the available read length. As ONT read lengths 

are determined by the sample preparation protocol, this suggests that “ultra-long” preparations 

may prove beneficial to characterize somatic SVs contained within repeat-rich regions, once 

available for routine application. 3) Further computational methods development will be needed 

to achieve the assembly of entire derivative chromosomes in cancer, including new algorithms for 

SV-aware haplotyping and multi-allelic assemblies. 

 

In summary, our study shows the benefits of using long reads in refining complex and repetitive 

rearrangement patterns such as templated insertion threads and telomere associated SVs, and to 

integrate these with allele-specific methylation and expression changes. The computational 

methods developed in our study provide the foundation for a more broad application of long reads 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.20.480758doi: bioRxiv preprint 

https://paperpile.com/c/dsGdUK/Jiks
https://paperpile.com/c/dsGdUK/wGSMU
https://paperpile.com/c/dsGdUK/jrYV
https://paperpile.com/c/dsGdUK/HDdV
https://doi.org/10.1101/2022.02.20.480758
http://creativecommons.org/licenses/by-nd/4.0/


 

21 

in cancer genomics to uncover new somatic mutation patterns, and pave the way for deciphering 

the complex relationship of genetic and epigenetic changes in cancer biology. 

Data Availability 

Sequence data have been deposited at the European Genome-phenome Archive under the 

accession number EGAS00001005410. 

Software Availability 

Lorax: https://github.com/tobiasrausch/lorax 

Rayas: https://github.com/tobiasrausch/rayas 

Wally: https://github.com/tobiasrausch/wally 

Analysis scripts: https://github.com/PMBio/mb-nanopore-2022/ 

Acknowledgements 

We thank Frauke Devens, Kim Judge as well as DKFZ and EMBL IT and sequencing core 

facilities for excellent technical support. The present contribution is supported by the Helmholtz 

Association under the joint research school "HIDSS4Health - Helmholtz Information and Data 

Science School for Health”. 

A.E. received funding from the DFG (project number 460595631) and from the Wilhelm Sander 

Foundation (project number 2020.115.1). J.O.K. received funding from the BMBF (031L0184C) 

and from the NIH (1R01HG010169-01 and 2U24HG007497-05).  

Author contributions 

E.B., O.S., A.E. and J.O.K. designed the study. A.L. performed long read base calling and 

alignment. R.S. performed methylation calling and differential methylation analysis, T.R. 

implemented phasing, targeted assembly workflows, germline and somatic variant discovery and 

complex structural variant calling. R.S. and M.J.B. performed RNA alignment and expression 

quantification and performed subsequent expression analyses. M.S. performed FISH and 

established xenograft models for metaphase spreads. T.R., R.S., M.J.B., A.E. and J.O.K. analyzed 

complex mutation patterns and targeted assemblies. R.S. implemented the gene fusion validation. 

T.R. and J.O.K. performed templated insertion analysis and interpretation in PCAWG. R.S., T.R. 

and M.J.B. prepared the main display items, with additional contributions from A.E. and J.O.K. 

T.R., R.S., M.J.B., A.E. and J.O.K. wrote the manuscript, with input from E.B., A.L. and O.S. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.20.480758doi: bioRxiv preprint 

https://github.com/tobiasrausch/lorax
https://github.com/tobiasrausch/rayas
https://github.com/tobiasrausch/wally
https://github.com/PMBio/mb-nanopore-2022/
https://doi.org/10.1101/2022.02.20.480758
http://creativecommons.org/licenses/by-nd/4.0/


 

22 

Declaration of interests 

E.B. is a paid consultant and shareholder of Oxford Nanopore Technologies (O.N.T.). A.L. has 

received financial support from O.N.T. for consumables during the course of the project and is 

currently an employee of Oxford Nanopore Technologies (O.N.T.). The remaining authors declare 

no competing interests.  

Methods 

Patient material, DNA extraction and short-read whole-genome sequencing  

All biological samples included in this study were obtained after receiving written informed 

consent in accordance with the Declaration of Helsinki and approval from the respective 

institutional review boards. Medulloblastoma samples used for bulk sequencing had a tumor cell 

content confirmed by neuropathological evaluation of the hematoxylin and eosin stainings. DNA 

was extracted from frozen tissue and from blood using Qiagen kits. Purified DNA was quantified 

using the Qubit Broad Range double-stranded DNA assay (Life Technologies, Carlsbad, CA, 

USA). Genomic DNA was sheared using an S2 Ultrasonicator (Covaris, Woburn, MA, USA). 

Short-read whole-genome sequencing and library preparations for tumors and matched germline 

control were performed according to the manufacturer’s instructions (Illumina, San Diego, CA, 

USA). The quality of the libraries was assessed using a Bioanalyzer (Agilent, Stockport, UK). 

Sequencing was performed using the Illumina X Ten platform.  

DNA methylation array data 

Medulloblastoma samples were analyzed using Illumina Infinium HumanMethylation450 

BeadChip (450k) arrays or Methylation BeadChip (EPIC) arrays according to the manufacturer’s 

instructions.  

RNA sequencing 

RNA was extracted from frozen tissue using Qiagen kits. RNA quality was assessed using a 

Bioanalyzer (Agilent, Stockport, UK). Short-read RNA sequencing and library preparations for 

tumors were performed according to the manufacturer’s instructions (Illumina, San Diego, CA, 

USA). The quality of the libraries was assessed using a Bioanalyzer (Agilent, Stockport, UK). 

Sequencing was performed using the Illumina platform. 

Fluorescence in situ hybridization (FISH) 

Nick translation was carried out for BAC clone RP11 651L9 (chromosome 17) and centromere 17. 

FISH was performed on metaphase spreads from patient-derived xenograft models or tumor tissue 

using fluorescein isothiocyanate-labeled probes and rhodamine-labeled probes. Pre-treatment of 
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slides, hybridization, post-hybridization processing and signal detection were performed as 

described previously57. Samples showing sufficient FISH efficiency (>90% nuclei with signals) 

were evaluated. Signals were scored in, at least, 100 non-overlapping metaphases or nuclei. 

Metaphase FISH for verifying clone-mapping position was performed using peripheral blood cell 

cultures of healthy donors as outlined previously57. 

Long-read sequencing 

DNA was quantified using Qubit (Thermo Fisher) and fragment size assessed using FEMTOPulse 

(Agilent). Libraries were prepared using SQK LSK-109 (Oxford Nanopore) following the 

manufacturer’s protocol and sequenced on the PromethION (Oxford Nanopore).  

Short-read alignment, variant calling and copy-number segmentation.  

Paired-end, short-read FASTQ files (2x151bp) were aligned to the GRCh38 reference genome 

using the alternate contig-aware bwakit58. Alignments were sorted and indexed using samtools59 

and quality-controlled with alfred60. The median coverage of the blood (control), primary tumor 

and relapse sample were 48x, 45x and 47x, respectively. The insert size ranged from 373bp to 

406bp for the three samples. 

Single-nucleotide variants (SNVs) and short insertions and deletions (InDels) were called using 

FreeBayes61 and Strelka262. For germline variants we used a consensus approach and only retained 

polymorphisms supported by FreeBayes and Strelka for subsequent haplotyping. The integration 

of these two short-read germline call sets on GRCh38 yielded 3,790,471 bi-allelic SNVs and 

568,168 bi-allelic insertion and deletions. Bcftools was used to normalize and left-align indels. 

Copy-number segmentation employed Delly’s cnv mode63 with the GRCh38 mappability map and 

the DNAcopy64 package of the Bioconductor project (Figure S3). Structural variants were called 

using delly63 in a paired tumor-normal fashion to distinguish germline and somatic SVs. All 

command-line tools were installed using bioconda65. 

Long-read alignment and variant calling  

Long reads from Nanopore sequencing were basecalled with guppy version 4.0.14 using the high 

accuracy model for PromethION (r9.4.1_450bps_hac_prom). Resulting FASTQ files were aligned 

to the human reference genome (GRCh38) using minimap266 using the ‘--ax map-ont’ option and 

otherwise default parameters. The median long-read coverage was 15x for the blood and relapse 

sample and 30x for the primary tumor. The median read length was 4,480bp, 4,993bp and 5,678bp 

for the blood, primary tumor and relapse sample, respectively. The estimated sequencing error rate 

of the aligned data using Alfred’s qc mode60 was estimated to be 8.4% for the blood sample and 

6.8%-6.9% for the tumor samples. 

Structural variants (SVs) from the long-read data were called using Nanovar67, Sniffles68 and 

Delly63. Consensus germline SVs were filtered using a stringent reciprocal overlap of 80% and a 

maximum breakpoint offset of 50bp, yielding 7,952 deletions and 8,185 insertions, which is lower 

compared to recent studies using long-reads12,13 likely because of our relatively low germline 
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coverage of only 15x (Figure S1). For somatic SVs we followed a more lenient union approach 

of short-read SV calls (delly) and long-read SV calls (nanovar, sniffles and delly) to not miss any 

interesting variants and only required absence of an SV in the matched control and a minimum 

support of 2 reads in the tumor, followed by manual inspection of somatic SVs in IGV69 and a 

newly developed alignment visualization tool, called wally, which enables a fast batch alignment 

plotting of hundreds of SVs in a paired tumor-normal split-view. 

Nanopore methylation calling 

Read-level CpG methylation likelihood ratios were estimated using nanopolish70 version 0.11.1. 

Methylation rates were computed from binarized methylation calls thresholded at absolute log-

likelihood ratio of 2.5 and compared to methylation rates observed in 450k arrays. Methylation 

ratios predicted from long reads showed good correlation with array data, with pearson R 0.9453 

for the primary tumor sample and R 0.9141 for the relapse sample. 

Haplotype-phasing of short variants 

We used a three-stage approach to phase bi-allelic heterozygous SNVs and InDels present in our 

consensus call set from FreeBayes and Strelka. In brief, the first stage uses read-based phasing of 

the long-read data to generate initial haplotype blocks, these are concatenated using population 

phasing in the second step and finally, remaining switch errors are corrected using shifted allelic 

ratios in the matched tumor. The procedure is illustrated in Figure S2 where initial phased blocks 

are colored red and blue that are then extended using statistical phasing and corrected based on the 

matched tumor genome.  

For read-based phasing we used WhatsHap71 with the ‘--indel’ option and the aligned long-read 

data. The WhatsHap output VCF was indexed using HTSlib72. WhatsHap determines phased sets 

which are groups of heterozygous genotypes at which the phase has been inferred using long reads. 

These phased sets are specified in the PS field of the VCF/BCF file format73. With the SHAPEIT4 

algorithm74 and the phased blocks from WhatsHap we then carried out population phasing using 

the 1000 Genomes haplotype reference panel20,75. We used the ‘--use-PS 0.0001’ option to define 

the expected error rate in the phased sets. The statistically phased VCF files were then augmented 

for each variant with the matched tumor B-allele frequencies to correct remaining switch errors in 

regions of unequal haplotype ratio in the tumor sample. As a result of statistical phasing and the 

use of a haplotype reference panel the statistically phased VCF files are restricted to high-quality 

variants present in the panel. We therefore used this phased VCF file as a haplotype scaffold to 

drop in additional variants present in our donor using WhatsHap and the long-read aligned data. 

Overall, our haplotype-phasing approach phased 2,642,137 bi-allelic heterozygous variants 

(2,214,532 SNVs and 360,226 InDels) at a median read length of approximately 5kbp which 

allowed us to study almost the entire mappable genome, 93.59% for the primary tumor and 90.89% 

for the relapse, in a haplotype-resolved manner. To split alignment files by haplotype we employed 

Alfred60 using the phased VCF and the unphased alignment as input. 
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Targeted assembly of complex DNA rearrangements.  

To enable targeted assembly of complex SVs, we used our haplotype scaffold and the integrated 

map of somatic structural variants and copy-number alterations. We first applied delly’s cnv mode 

and the somatic SV calls to identify amplicons on chromosome 11 and chromosome 17 that are 

inter-connected by split-reads and that have approximately the same total copy-number. We then 

developed a targeted method to assemble these high copy-number regions by selecting reads that 

either bridge at least two amplicons or are part of the amplified haplotype based on the depth 

observed for each germline allele. We implemented the method in our long-read analysis toolbox 

for cancer genomics, termed lorax, and the tool requires as input the phased germline variants in 

VCF/BCF format, a set of amplicon regions in BED format and the input tumor BAM file. The 

method then screens the BAM file for split-reads connecting at least two amplicons and it annotates 

the haplotype support based on all phased, heterozygous variants covered by the read sequence. 

Each read is then assigned to either haplotype 1 or haplotype 2 based on the observed variants. 

The total allelic depth across all reads in the respective amplicon region determines the amplified 

haplotype which is retained for further analysis. We discard all reads that have confident 

alignments outside the amplicon boundaries to deplete reads from contaminating normal cells 

occurring on the same haplotype background or sub-clonal reads from different rearrangement 

structures. User-defined parameters control the precision of amplicon boundaries (default 1kbp), 

the minimum required clipping length of split reads (default 100bp) and the minimum mapping 

quality (default 10). A final pass through the BAM file extracts the sequences of all selected reads, 

which are then assembled and polished using wtdbg276. Lorax also re-estimates the amplicon 

boundaries based on the observed read clipping patterns which was used to iteratively refine the 

input amplicon regions. We trimmed the assembly at repetitive ends that lacked a unique alignment 

to the reference. The final contigs were aligned back to the reference genome using minimap266 to 

infer alignment coordinates and breakpoints. 

Discovery of complex templated DNA rearrangements.  

To discover complex templated DNA rearrangements using short-reads we devised a graph-based 

algorithm, called rayas, that uses matched tumor-normal cancer genomics sequencing data. The 

algorithm parses the tumor and normal BAM file to compute a sample-specific coverage and split-

read profile at single-nucleotide resolution. Rayas uses soft- and hard-clips and records the 

positions where these splits occur. The coverage profile is used to determine the average genome-

wide coverage, its standard deviation and to normalize for overall coverage differences between 

tumor and normal. Using a minimum seed window size (default 100bp) rayas then scans the 

coverage profile for putative SV breakpoints, always screening two adjacent windows for 

unexpected coverage increases when entering a templated insertion source segment or unexpected 

coverage decreases when leaving a templated insertion source segment. Command-line parameters 

control the minimum number of split-reads required at these SV breakpoints and the required 

magnitude of the coverage increase or decrease. The matched control is processed simultaneously 

to account for potential mapping artifacts, i.e. regions where both the tumor and the control show 

unexpected coverage and split-read patterns which are subsequently filtered out. Once all 
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candidate segments have been identified, rayas re-uses the identified split-reads to connect 

segments and builds a graph 𝐺 = (𝑉, 𝐸) with 𝑣 𝜖 𝑉 representing a templated insertion source 

segment and 𝑒 = (𝑣, 𝑤) 𝜖 𝐸 being an edge from 𝑣 to 𝑤 with 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒) representing the split-read 

support. Using the connected components of 𝐺, rayas filters out singletons (i.e. segments lacking 

confident split-read support) as well as connected subgraphs 𝐺𝑆 = (𝑉𝑆, 𝐸𝑆) with 𝑉𝑆 ⊆ 𝑉and 𝐸𝑆 ⊆

𝐸 where all nodes of 𝐺𝑆 are nearby in the genome with the definition of nearby depending on a 

user-defined threshold (by default 10kbp). All remaining connected components are written to a 

BED file with a unique component id. For each component, all genomic segments and edges are 

outputted and the results can be visualized as a graph (Figure S11). Using this approach we 

identified two templated insertion threads in the primary tumor. In addition, a single additional 

putative instance of this pattern was detected in the Illumina data of the relapse but not in the ONT 

data from the same sample; this putative event showed much lower split-read support (5 compared 

to >>100 for the primary tumor templated insertion threads) and an unexpected density of variant 

calls, suggesting that it may be caused by a mapping artifact or a collapsed repeat rather than a 

templated insertion thread. A simple threshold for the minimum split-read support (i.e., node out-

degree in the rearrangement graph) removes such false positives, indicating excellent sensitivity 

and specificity of rayas using illumina data. For the PCAWG data, we filtered for connected 

components with at least one segment with a total copy-number greater than 10, a node degree 

greater than 50 and evidence of at least one direct self-concatenation supported by at least 3 split-

reads, as these features were characteristic of the templated insertion threads found in the 

medulloblastoma. 

The algorithm implemented in lorax for detecting templated insertions with long reads uses the 

same discovery approach as rayas, but then scans the original alignment data to extract long reads 

that span multiple templated insertions. These reads can be selectively assembled, inspected 

through self-alignments or back-aligned to the source sequence segments as shown in Figure 2. 

The visualization of long read alignments spanning dozens to hundreds of breakpoint junctions 

employed minimap266, MUMmer77, custom R scripts and a newly developed tool, called wally, 

that enables the plotting of long read mappings with alignments widely distributed across the 

genome by lining up matches along the read sequence (as shown in Figure S9). 

Telomere analysis of derivative chromosomal segments. 

As part of our long-read analysis toolbox for cancer genomics, termed lorax, we also developed a 

method that identifies telomeric motifs, repeats of TTAGGG, TGAGGG, TCAGGG, TTGGGG 

or their reverse complement, in error-prone ONT reads and applied this method to the long read 

data of the primary tumor and the relapse sample. As suggested previously78, we start by 

precomputing all possible strand-specific 18-mer telomere motifs, scan all long-reads for exact 

motif matches and count their occurence. We then search for distal non-telomeric alignments of 

these reads and intersect reads that show both a telomeric repeat and a unique alignment outside a 

telomere region of a minimum length of 1kbp. We use the control genome to filter out likely 

mapping artifacts due to incomplete reference sequences by masking alignments from the control 

genome that show both a telomeric repeat and a unique alignment outside a telomere region. In 

case of mapping ambiguities, we used the CHM13 telomere-to-telomere (CHM T2T) assembly 31 
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as an alternative reference sequence. The method to detect telomere fusions is implemented in our 

long-read alignment toolkit lorax as a new sub-command. For the matched illumina data, we apply 

a window-based search (default 1kbp) that counts reads with a telomeric motif based on the 

mapping location of the read (or its mate if the read is unmapped). If both read1 and read2 are 

unmapped the sequencing pair is discarded. We filter out all windows that are discovered in the 

matched control (blood) and retain in the tumor only windows with at least 5 supporting paired-

ends. The short-read method is implemented in the alfred toolkit60 as a new sub-command, called 

‘alfred telmotif’.  

Differential methylation testing.  

In order to find genomic regions with differential methylation between samples, we used the 

software package PycoMeth34. PycoMeth aggregates methylation likelihood ratios reported by 

Nanopolish over predefined regions, computes a read-level methylation rate from thresholded log-

likelihood ratios (threshold 2.0) and then performs a Wilcoxon rank-sum test (for 2-sample 

comparison) or Kruskal Wallis test (for more than two samples) for methylation rates across 

samples. P-values were then adjusted for multiple testing using independent hypothesis 

weighting79, using a weight based on the variance of methylation rates, and the Benjamini-

Hochberg method80. Regions with FDR<=0.05 are reported as differentially methylated regions 

(DMRs). Candidate regions for differential methylation testing are selected based on two different 

segmentation methods: 1) sequence segmentation and 2) methylome segmentation. Sequence 

segmentation uses PycoMeth's CGI Finder module, which determines CpG islands based on local 

CG-density. For methylome segmentation PycoMeth Meth_Seg, a de novo methylome 

segmentation method which implements a bayesian changepoint-detection algorithm, is used to 

determine regions with consistent methylation rate from the read-level methylation predictions. 

For ASM analysis, PycoMeth Meth_Seg was provided with haplotype information to perform a 

haplotype-aware segmentation. 

We investigated differentially methylated regions between the primary tumor and the relapse 

sample, as well as between all three samples by applying PycoMeth Meth_Comp using both 

candidate region approaches with the parameter using the parameter —hypothesis bs_diff 

in order to test for difference in read-level methylation rate per segment. DMR identification was 

performed both in a sample and haplotype comparison mode. To assign reads to haplotypes we 

used WhatsHap’s haplotag command and the three-stage phased blood variants. This haplotype 

assignment was used as the read-group parameter in PycoMeth, allowing it to consider ASM in 

the methylome segmentation. In PycoMeth, differential methylation calling was then performed 

between haplotypes within each sample, in order to determine regions with ASM. For further 

analyses, DMRs were filtered by an effect size threshold of 0.5 absolute methylation rate 

difference. Differentially methylated regions were then mapped to genes based on their proximity 

to a transcription start site (TSS), that is they were labeled as promoter methylation if a region was 

in the range 2,000bps upstream to 500bps downstream from the any transcript’s TSS, or if it 

overlapped with an enhancer active in Cerebellum as annotated by EnhancerAtlas 2.081. Enhancers 

were then linked to the nearest gene, if the gene is closer than 30kbps. Since detection power in 

the relapse sample was lower, due to lower read-depth, we investigated whether ASM effects 
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found in primary tumor could be found in relapse as well by applying the same 0.5 absolute 

methylation rate difference threshold. 

RNA alignment and expression quantification 

Gene-expression quantification was performed in line with the GTEx standards. In short, we 

(re)processed the RAW expression data by first aligning the reads to the human reference genome, 

build 38, using STAR in two step mapping per sample. The mapping was performed in two modes. 

One for the allele specific expression, using a custom reference genome, replacing the homozygous 

SNP variants with the relevant genotype of the sample, and supplying a VCF with heterozygous 

variants when mapping in STAR, used for allele specific expression and gene fusion detection. 

Second, for the differential expression and splicing analyses we remapped the samples to the 

standard genome. Gene information was taken from ENSEMBL (v101) and gene-expression 

quantification was performed using RNASeQC, in line with the GTEx consortium expression 

quantification. Using LeafCutter82 we quantified splicing across the two samples, as well as a 

cerebellum reference dataset (SRP151960)83. 

Reference RNA expression datasets and differential expression 

For comparative expression analysis we leverage data from the ALS consortium (SRP151960)83 

and GTEx cerebellum expression data. The data from the ALS consortium were reprocessed as 

done for the two medulloblastoma samples, see above, and the GTEx data84 was used as is. This 

data was leveraged both for direct comparison of expression levels, and for correction of the gene 

expression levels.  

 

The first five principal components (PCs) were calculated on the combined ALS and GTEx dataset. 

The medulloblastoma samples were projected into this same PC space, using the rotation 

information, and the first five PCs were regressed out from the expression levels of all samples, 

medulloblastoma, GTEx and ALS. Next we used a Z-score transformation on both the raw and 

corrected expression of the reference samples and placed the two medulloblastoma samples in 

these distributions. Given that there are still major differences between the samples and studies, in 

terms of age, disease and batch, we only use the two samples in a comparative setting. The 

reference data is used to test for concordance of effects with and without correction. For the 

differential expression analysis we used the log TPM values and checked concordance in Z-scores. 

Allele specific expression and allele specific copy number estimation.  

ASE on the primary tumor and relapse samples was called from the RNA sequencing data using 

WASP85 and the phased germline variants, using the approach described in the WASP paper85. In 

order to verify whether ASE was driven by DNA copy number amplification or depletion in one 

haplotype, we estimate allele specific DNA copy number ratio using GATK 

CollectAllelicCounts86 on the same variants used to identify ASE. 
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Gene fusion and validation using DNA long reads.  

Potential gene fusions were detected from RNA sequencing data using Arriba87 (V2.0.0). The SVs 

called from both short and long read data were used to inform Arriba, and we included the provided 

blacklist, other settings were left at defaults. After identification of the gene fusion pairs we set-

out to validate these using the long read DNA data. First, we check for individual read support 

from ONT reads with chimeric alignments mapping to both genes. Fusion pairs involving long 

intergenic non-coding RNA genes, which are characterized by long introns of on average 10kbps 

length88, or fusion containing large intronic insertions, however often do not have individual 

genomic reads spanning exons of both genes. In order to additionally validate such fusions with 

large insertions, for which no single ONT read spans the fusion pairs, we devised a graph-based 

method to suggest the most plausible gene fusion reconstruction. We construct a graph with nodes 

representing each base pair position in the reference and edges representing neighboring basepairs. 

Structural variations, both inter- and intrachromosomal, were then represented as additional edges 

in the graph, creating shortcuts between the locations on the side of the genomic breakpoint 

connected by the structural variation). A gene fusion pair was then explained by determining the 

shortest path between the two fusion partners in the graph using Dijkstra’s algorithm for shortest 

paths89. Edges which crossed the exons of a gene not involved in the fusion were removed for the 

purpose of finding the shortest path. Fusion pairs were classified as either validated by individual 

read support, explainable using the graph algorithm, or both (high confidence read support). 

References 

1.  Priestley P, Baber J, Lolkema MP, Steeghs N, de Bruijn E, Shale C, et al. Pan-cancer 

whole-genome analyses of metastatic solid tumours. Nature. 2019 Nov;575(7781):210–6. 

2.  ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of 

whole genomes. Nature. 2020 Feb;578(7793):82–93. 

3.  Li Y, Roberts ND, Wala JA, Shapira O, Schumacher SE, Kumar K, et al. Patterns of 

somatic structural variation in human cancer genomes. Nature. 2020 Feb;578(7793):112–

21. 

4.  Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, et al. 

The landscape of genomic alterations across childhood cancers. Nature. 2018 Mar 

15;555(7696):321–7. 

5.  Ho SS, Urban AE, Mills RE. Structural variation in the sequencing era. Nat Rev Genet. 

2020 Mar;21(3):171–89. 

6.  Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of 

somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016 Jun 

2;534(7605):47–54. 

7.  Hadi K, Yao X, Behr JM, Deshpande A, Xanthopoulakis C, Tian H, et al. Distinct Classes 

of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.20.480758doi: bioRxiv preprint 

https://paperpile.com/c/dsGdUK/OdsR
https://paperpile.com/c/dsGdUK/X32h
https://paperpile.com/c/dsGdUK/u1mf
http://paperpile.com/b/dsGdUK/WJZqv
http://paperpile.com/b/dsGdUK/WJZqv
http://paperpile.com/b/dsGdUK/pT2LY
http://paperpile.com/b/dsGdUK/pT2LY
http://paperpile.com/b/dsGdUK/GXdH2
http://paperpile.com/b/dsGdUK/GXdH2
http://paperpile.com/b/dsGdUK/GXdH2
http://paperpile.com/b/dsGdUK/2RCX9
http://paperpile.com/b/dsGdUK/2RCX9
http://paperpile.com/b/dsGdUK/2RCX9
http://paperpile.com/b/dsGdUK/Ot1r
http://paperpile.com/b/dsGdUK/Ot1r
http://paperpile.com/b/dsGdUK/9iy6
http://paperpile.com/b/dsGdUK/9iy6
http://paperpile.com/b/dsGdUK/9iy6
http://paperpile.com/b/dsGdUK/2TyU
http://paperpile.com/b/dsGdUK/2TyU
https://doi.org/10.1101/2022.02.20.480758
http://creativecommons.org/licenses/by-nd/4.0/


 

30 

Cell. 2020 Oct 1;183(1):197–210.e32. 

8.  Sakamoto Y, Sereewattanawoot S, Suzuki A. A new era of long-read sequencing for cancer 

genomics. J Hum Genet. 2020 Jan;65(1):3–10. 

9.  Sakamoto Y, Zaha S, Suzuki Y, Seki M, Suzuki A. Application of long-read sequencing to 

the detection of structural variants in human cancer genomes. Comput Struct Biotechnol J. 

2021 Jul 28;19:4207–16. 

10.  Mantere T, Kersten S, Hoischen A. Long-Read Sequencing Emerging in Medical Genetics. 

Front Genet. 2019 May 7;10:426. 

11.  Nattestad M, Goodwin S, Ng K, Baslan T, Sedlazeck FJ, Rescheneder P, et al. Complex 

rearrangements and oncogene amplifications revealed by long-read DNA and RNA 

sequencing of a breast cancer cell line. Genome Res. 2018 Aug;28(8):1126–35. 

12.  Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, et al. Multi-

platform discovery of haplotype-resolved structural variation in human genomes. Nat 

Commun. 2019 Apr 16;10(1):1–16. 

13.  Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D, Bonder MJ, et al. 

Haplotype-resolved diverse human genomes and integrated analysis of structural variation. 

Science [Internet]. 2021 Apr 2 [cited 2021 Jul 5];372(6537). Available from: 

https://science.sciencemag.org/content/372/6537/eabf7117?rss=1 

14.  Laszlo AH, Derrington IM, Brinkerhoff H, Langford KW, Nova IC, Samson JM, et al. 

Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore 

MspA. Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):18904–9. 

15.  Rausch T, Jones DTW, Zapatka M, Stütz AM, Zichner T, Weischenfeldt J, et al. Genome 

sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with 

TP53 mutations. Cell. 2012 Jan 20;148(1-2):59–71. 

16.  Waszak SM, Northcott PA, Buchhalter I, Robinson GW, Sutter C, Groebner S, et al. 

Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective 

genetic study and prospective validation in a clinical trial cohort. Lancet Oncol. 2018 

Jun;19(6):785–98. 

17.  Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, et al. Massive Genomic 

Rearrangement Acquired in a Single Catastrophic Event during Cancer Development. Cell. 

2011 Jan 7;144(1):27–40. 

18.  Voronina N, Wong JKL, Hübschmann D, Hlevnjak M, Uhrig S, Heilig CE, et al. The 

landscape of chromothripsis across adult cancer types. Nat Commun. 2020 May 

8;11(1):2320. 

19.  Simovic M, Bolkestein M, Moustafa M, Wong JKL, Körber V, Benedetto S, et al. Carbon 

ion radiotherapy eradicates medulloblastomas with chromothripsis in an orthotopic Li-

Fraumeni patient-derived mouse model. Neuro Oncol. 2021 Dec 1;23(12):2028–41. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.20.480758doi: bioRxiv preprint 

http://paperpile.com/b/dsGdUK/2TyU
http://paperpile.com/b/dsGdUK/KzpZ
http://paperpile.com/b/dsGdUK/KzpZ
http://paperpile.com/b/dsGdUK/mEUB
http://paperpile.com/b/dsGdUK/mEUB
http://paperpile.com/b/dsGdUK/mEUB
http://paperpile.com/b/dsGdUK/mwSwd
http://paperpile.com/b/dsGdUK/mwSwd
http://paperpile.com/b/dsGdUK/itAZ
http://paperpile.com/b/dsGdUK/itAZ
http://paperpile.com/b/dsGdUK/itAZ
http://paperpile.com/b/dsGdUK/sk87O
http://paperpile.com/b/dsGdUK/sk87O
http://paperpile.com/b/dsGdUK/sk87O
http://paperpile.com/b/dsGdUK/wGSMU
http://paperpile.com/b/dsGdUK/wGSMU
http://paperpile.com/b/dsGdUK/wGSMU
http://paperpile.com/b/dsGdUK/wGSMU
https://science.sciencemag.org/content/372/6537/eabf7117?rss=1
http://paperpile.com/b/dsGdUK/yp1i
http://paperpile.com/b/dsGdUK/yp1i
http://paperpile.com/b/dsGdUK/yp1i
http://paperpile.com/b/dsGdUK/eKykq
http://paperpile.com/b/dsGdUK/eKykq
http://paperpile.com/b/dsGdUK/eKykq
http://paperpile.com/b/dsGdUK/Mkg6
http://paperpile.com/b/dsGdUK/Mkg6
http://paperpile.com/b/dsGdUK/Mkg6
http://paperpile.com/b/dsGdUK/Mkg6
http://paperpile.com/b/dsGdUK/G0dXF
http://paperpile.com/b/dsGdUK/G0dXF
http://paperpile.com/b/dsGdUK/G0dXF
http://paperpile.com/b/dsGdUK/hc4l
http://paperpile.com/b/dsGdUK/hc4l
http://paperpile.com/b/dsGdUK/hc4l
http://paperpile.com/b/dsGdUK/Bq5K
http://paperpile.com/b/dsGdUK/Bq5K
http://paperpile.com/b/dsGdUK/Bq5K
https://doi.org/10.1101/2022.02.20.480758
http://creativecommons.org/licenses/by-nd/4.0/


 

31 

20.  1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang 

HM, et al. A global reference for human genetic variation. Nature. 2015 Oct 

1;526(7571):68–74. 

21.  Fujimoto A, Wong JH, Yoshii Y, Akiyama S, Tanaka A, Yagi H, et al. Whole-genome 

sequencing with long reads reveals complex structure and origin of structural variation in 

human genetic variations and somatic mutations in cancer. Genome Med. 2021 Apr 

29;13(1):65. 

22.  Umbreit NT, Zhang C-Z, Lynch LD, Blaine LJ, Cheng AM, Tourdot R, et al. Mechanisms 

generating cancer genome complexity from a single cell division error. Science [Internet]. 

2020 Apr 17;368(6488). Available from: http://dx.doi.org/10.1126/science.aba0712 

23.  Zhang X, Choi PS, Francis JM, Imielinski M, Watanabe H, Cherniack AD, et al. 

Identification of focally amplified lineage-specific super-enhancers in human epithelial 

cancers. Nat Genet. 2016 Feb;48(2):176–82. 

24.  Weischenfeldt J, Dubash T, Drainas AP, Mardin BR, Chen Y, Stütz AM, et al. Pan-cancer 

analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer 

hijacking. Nat Genet. 2017 Jan;49(1):65–74. 

25.  Micci F, Teixeira MR, Bjerkehagen B, Heim S. Characterization of supernumerary rings 

and giant marker chromosomes in well-differentiated lipomatous tumors by a combination 

of G-banding, CGH, M-FISH, and chromosome- and locus-specific FISH. Cytogenet 

Genome Res. 2002;97(1-2):13–9. 

26.  Mandahl N, Magnusson L, Nilsson J, Viklund B, Arbajian E, von Steyern FV, et al. 

Scattered genomic amplification in dedifferentiated liposarcoma. Mol Cytogenet. 2017 Jun 

24;10:25. 

27.  Rosswog C, Bartenhagen C, Welte A, Kahlert Y, Hemstedt N, Lorenz W, et al. 

Chromothripsis followed by circular recombination drives oncogene amplification in human 

cancer. Nat Genet [Internet]. 2021 Nov 15; Available from: 

http://dx.doi.org/10.1038/s41588-021-00951-7 

28.  Maciejowski J, Li Y, Bosco N, Campbell PJ, de Lange T. Chromothripsis and Kataegis 

Induced by Telomere Crisis. Cell. 2015 Dec 17;163(7):1641–54. 

29.  Ernst A, Jones DTW, Maass KK, Rode A, Deeg KI, Jebaraj BMC, et al. Telomere 

dysfunction and chromothripsis. Int J Cancer. 2016 Jun 15;138(12):2905–14. 

30.  Sieverling L, Hong C, Koser SD, Ginsbach P, Kleinheinz K, Hutter B, et al. Genomic 

footprints of activated telomere maintenance mechanisms in cancer. Nat Commun. 2020 

Feb 5;11(1):733. 

31.  Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete 

sequence of a human genome [Internet]. bioRxiv. 2021 [cited 2021 Dec 13]. p. 

2021.05.26.445798. Available from: 

https://www.biorxiv.org/content/10.1101/2021.05.26.445798v1 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.20.480758doi: bioRxiv preprint 

http://paperpile.com/b/dsGdUK/zd9l8
http://paperpile.com/b/dsGdUK/zd9l8
http://paperpile.com/b/dsGdUK/zd9l8
http://paperpile.com/b/dsGdUK/pvjE
http://paperpile.com/b/dsGdUK/pvjE
http://paperpile.com/b/dsGdUK/pvjE
http://paperpile.com/b/dsGdUK/pvjE
http://paperpile.com/b/dsGdUK/xEUT
http://paperpile.com/b/dsGdUK/xEUT
http://paperpile.com/b/dsGdUK/xEUT
http://dx.doi.org/10.1126/science.aba0712
http://paperpile.com/b/dsGdUK/FWa6
http://paperpile.com/b/dsGdUK/FWa6
http://paperpile.com/b/dsGdUK/FWa6
http://paperpile.com/b/dsGdUK/UCtp
http://paperpile.com/b/dsGdUK/UCtp
http://paperpile.com/b/dsGdUK/UCtp
http://paperpile.com/b/dsGdUK/I2D6
http://paperpile.com/b/dsGdUK/I2D6
http://paperpile.com/b/dsGdUK/I2D6
http://paperpile.com/b/dsGdUK/I2D6
http://paperpile.com/b/dsGdUK/YaIZ
http://paperpile.com/b/dsGdUK/YaIZ
http://paperpile.com/b/dsGdUK/YaIZ
http://paperpile.com/b/dsGdUK/cAFO
http://paperpile.com/b/dsGdUK/cAFO
http://paperpile.com/b/dsGdUK/cAFO
http://paperpile.com/b/dsGdUK/cAFO
http://dx.doi.org/10.1038/s41588-021-00951-7
http://paperpile.com/b/dsGdUK/HDdV
http://paperpile.com/b/dsGdUK/HDdV
http://paperpile.com/b/dsGdUK/PCiM
http://paperpile.com/b/dsGdUK/PCiM
http://paperpile.com/b/dsGdUK/9S0g
http://paperpile.com/b/dsGdUK/9S0g
http://paperpile.com/b/dsGdUK/9S0g
http://paperpile.com/b/dsGdUK/jrYV
http://paperpile.com/b/dsGdUK/jrYV
http://paperpile.com/b/dsGdUK/jrYV
http://paperpile.com/b/dsGdUK/jrYV
https://www.biorxiv.org/content/10.1101/2021.05.26.445798v1
https://doi.org/10.1101/2022.02.20.480758
http://creativecommons.org/licenses/by-nd/4.0/


 

32 

32.  Liddiard K, Grimstead JW, Cleal K, Evans A, Baird DM. Tracking telomere fusions 

through crisis reveals conflict between DNA transcription and the DNA damage response. 

NAR Cancer. 2021 Mar;3(1):zcaa044. 

33.  Tabori U, Nanda S, Druker H, Lees J, Malkin D. Younger age of cancer initiation is 

associated with shorter telomere length in Li-Fraumeni syndrome. Cancer Res. 2007 Feb 

15;67(4):1415–8. 

34.  Snajder RH, Stegle O, Bonder MJ. PycoMeth: A toolbox for differential methylation testing 

from Nanopore methylation calls [Internet]. bioRxiv. 2022 [cited 2022 Feb 19]. p. 

2022.02.16.480699. Available from: 

https://www.biorxiv.org/content/10.1101/2022.02.16.480699v1 

35.  Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, Ehrenberger T, et 

al. The whole-genome landscape of medulloblastoma subtypes. Nature. 2017 Jul 

19;547(7663):311–7. 

36.  Bacolod MD, Lin SM, Johnson SP, Bullock NS, Colvin M, Bigner DD, et al. The gene 

expression profiles of medulloblastoma cell lines resistant to preactivated 

cyclophosphamide. Curr Cancer Drug Targets. 2008 May;8(3):172–9. 

37.  Du W, Gao A, Herman JG, Wang L, Zhang L, Jiao S, et al. Methylation of NRN1 is a novel 

synthetic lethal marker of PI3K-Akt-mTOR and ATR inhibitors in esophageal cancer. 

Cancer Sci. 2021 Jul;112(7):2870–83. 

38.  Pritchard JI, Olson JM. Methylation of PTCH1, the Patched-1 gene, in a panel of primary 

medulloblastomas. Cancer Genet Cytogenet. 2008 Jan 1;180(1):47–50. 

39.  Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, et al. 

Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2011 Apr 

10;29(11):1408–14. 

40.  Pang JC-S, Dong Z, Zhang R, Liu Y, Zhou L-F, Chan BW, et al. Mutation analysis of 

DMBT1 in glioblastoma, medulloblastoma and oligodendroglial tumors. Int J Cancer. 2003 

May 20;105(1):76–81. 

41.  Newell-Price J, Clark AJ, King P. DNA methylation and silencing of gene expression. 

Trends Endocrinol Metab. 2000 May;11(4):142–8. 

42.  de Bont JM, Kros JM, Passier MMCJ, Reddingius RE, Sillevis Smitt PAE, Luider TM, et 

al. Differential expression and prognostic significance of SOX genes in pediatric 

medulloblastoma and ependymoma identified by microarray analysis. Neuro Oncol. 2008 

Oct;10(5):648–60. 

43.  Yamagishi H, Maeda J, Hu T, McAnally J, Conway SJ, Kume T, et al. Tbx1 is regulated by 

tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer. 

Genes Dev. 2003 Jan 15;17(2):269–81. 

44.  Skowron P, Farooq H, Cavalli FMG, Morrissy AS, Ly M, Hendrikse LD, et al. The 

transcriptional landscape of Shh medulloblastoma. Nat Commun. 2021 Mar 19;12(1):1749. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.20.480758doi: bioRxiv preprint 

http://paperpile.com/b/dsGdUK/n8Qg
http://paperpile.com/b/dsGdUK/n8Qg
http://paperpile.com/b/dsGdUK/n8Qg
http://paperpile.com/b/dsGdUK/FJwA
http://paperpile.com/b/dsGdUK/FJwA
http://paperpile.com/b/dsGdUK/FJwA
http://paperpile.com/b/dsGdUK/jiWT
http://paperpile.com/b/dsGdUK/jiWT
http://paperpile.com/b/dsGdUK/jiWT
http://paperpile.com/b/dsGdUK/jiWT
https://www.biorxiv.org/content/10.1101/2022.02.16.480699v1
http://paperpile.com/b/dsGdUK/LJC1K
http://paperpile.com/b/dsGdUK/LJC1K
http://paperpile.com/b/dsGdUK/LJC1K
http://paperpile.com/b/dsGdUK/7q9v
http://paperpile.com/b/dsGdUK/7q9v
http://paperpile.com/b/dsGdUK/7q9v
http://paperpile.com/b/dsGdUK/cfsa
http://paperpile.com/b/dsGdUK/cfsa
http://paperpile.com/b/dsGdUK/cfsa
http://paperpile.com/b/dsGdUK/7qOh
http://paperpile.com/b/dsGdUK/7qOh
http://paperpile.com/b/dsGdUK/JNot
http://paperpile.com/b/dsGdUK/JNot
http://paperpile.com/b/dsGdUK/JNot
http://paperpile.com/b/dsGdUK/7RCD
http://paperpile.com/b/dsGdUK/7RCD
http://paperpile.com/b/dsGdUK/7RCD
http://paperpile.com/b/dsGdUK/SbBM
http://paperpile.com/b/dsGdUK/SbBM
http://paperpile.com/b/dsGdUK/cWMM
http://paperpile.com/b/dsGdUK/cWMM
http://paperpile.com/b/dsGdUK/cWMM
http://paperpile.com/b/dsGdUK/cWMM
http://paperpile.com/b/dsGdUK/NANy
http://paperpile.com/b/dsGdUK/NANy
http://paperpile.com/b/dsGdUK/NANy
http://paperpile.com/b/dsGdUK/h0d3
http://paperpile.com/b/dsGdUK/h0d3
https://doi.org/10.1101/2022.02.20.480758
http://creativecommons.org/licenses/by-nd/4.0/


 

33 

45.  Yang S, Dai Z, Li W, Wang R, Huang D. Aberrant promoter methylation reduced the 

expression of protocadherin 17 in nasopharyngeal cancer. Biochem Cell Biol. 2019 

Aug;97(4):364–8. 

46.  Baranova I, Kovarikova H, Laco J, Dvorak O, Sedlakova I, Palicka V, et al. Aberrant 

methylation of PCDH17 gene in high-grade serous ovarian carcinoma. Cancer Biomark. 

2018;23(1):125–33. 

47.  Byzia E, Soloch N, Bodnar M, Szaumkessel M, Kiwerska K, Kostrzewska-Poczekaj M, et 

al. Recurrent transcriptional loss of the PCDH17 tumor suppressor in laryngeal squamous 

cell carcinoma is partially mediated by aberrant promoter DNA methylation. Mol Carcinog. 

2018 Jul;57(7):878–85. 

48.  Lin Y-L, Wang Y-P, Li H-Z, Zhang X. Aberrant Promoter Methylation of PCDH17 

(Protocadherin 17) in Serum and its Clinical Significance in Renal Cell Carcinoma. Med Sci 

Monit. 2017 Jul 8;23:3318–23. 

49.  Uyen TN, Sakashita K, Al-Kzayer LFY, Nakazawa Y, Kurata T, Koike K. Aberrant 

methylation of protocadherin 17 and its prognostic value in pediatric acute lymphoblastic 

leukemia. Pediatr Blood Cancer [Internet]. 2017 Mar;64(3). Available from: 

http://dx.doi.org/10.1002/pbc.26259 

50.  Northcott PA, Shih DJH, Peacock J, Garzia L, Morrissy AS, Zichner T, et al. Subgroup-

specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012 Aug 

2;488(7409):49–56. 

51.  Meaburn EL, Schalkwyk LC, Mill J. Allele-specific methylation in the human genome: 

implications for genetic studies of complex disease. Epigenetics. 2010 Oct 1;5(7):578–82. 

52.  Do C, Dumont ELP, Salas M, Castano A, Mujahed H, Maldonado L, et al. Allele-specific 

DNA methylation is increased in cancers and its dense mapping in normal plus neoplastic 

cells increases the yield of disease-associated regulatory SNPs. Genome Biol. 2020 Jun 

29;21(1):153. 

53.  Bertrand KC, Faria CC, Skowron P, Luck A, Garzia L, Wu X, et al. A functional genomics 

approach to identify pathways of drug resistance in medulloblastoma. Acta Neuropathol 

Commun. 2018 Dec 27;6(1):146. 

54.  Stevenson BW, Gorman MA, Koach J, Cheung BB, Marshall GM, Parker MW, et al. A 

structural view of PA2G4 isoforms with opposing functions in cancer. J Biol Chem. 2020 

Nov 20;295(47):16100–12. 

55.  Lin L-L, Liu Z-Z, Tian J-Z, Zhang X, Zhang Y, Yang M, et al. Integrated Analysis of Nine 

Prognostic RNA-Binding Proteins in Soft Tissue Sarcoma. Front Oncol. 2021 May 

7;11:633024. 

56.  Cortés-Ciriano I, Lee JJ-K, Xi R, Jain D, Jung YL, Yang L, et al. Comprehensive analysis 

of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet. 

2020 Mar;52(3):331–41. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.20.480758doi: bioRxiv preprint 

http://paperpile.com/b/dsGdUK/ERCD
http://paperpile.com/b/dsGdUK/ERCD
http://paperpile.com/b/dsGdUK/ERCD
http://paperpile.com/b/dsGdUK/TyMp
http://paperpile.com/b/dsGdUK/TyMp
http://paperpile.com/b/dsGdUK/TyMp
http://paperpile.com/b/dsGdUK/gZ19
http://paperpile.com/b/dsGdUK/gZ19
http://paperpile.com/b/dsGdUK/gZ19
http://paperpile.com/b/dsGdUK/gZ19
http://paperpile.com/b/dsGdUK/sBar
http://paperpile.com/b/dsGdUK/sBar
http://paperpile.com/b/dsGdUK/sBar
http://paperpile.com/b/dsGdUK/N7RB
http://paperpile.com/b/dsGdUK/N7RB
http://paperpile.com/b/dsGdUK/N7RB
http://paperpile.com/b/dsGdUK/N7RB
http://dx.doi.org/10.1002/pbc.26259
http://paperpile.com/b/dsGdUK/f6S5
http://paperpile.com/b/dsGdUK/f6S5
http://paperpile.com/b/dsGdUK/f6S5
http://paperpile.com/b/dsGdUK/Y2Mu
http://paperpile.com/b/dsGdUK/Y2Mu
http://paperpile.com/b/dsGdUK/C4PN
http://paperpile.com/b/dsGdUK/C4PN
http://paperpile.com/b/dsGdUK/C4PN
http://paperpile.com/b/dsGdUK/C4PN
http://paperpile.com/b/dsGdUK/YLLQ
http://paperpile.com/b/dsGdUK/YLLQ
http://paperpile.com/b/dsGdUK/YLLQ
http://paperpile.com/b/dsGdUK/7469
http://paperpile.com/b/dsGdUK/7469
http://paperpile.com/b/dsGdUK/7469
http://paperpile.com/b/dsGdUK/p3Rr
http://paperpile.com/b/dsGdUK/p3Rr
http://paperpile.com/b/dsGdUK/p3Rr
http://paperpile.com/b/dsGdUK/Jiks
http://paperpile.com/b/dsGdUK/Jiks
http://paperpile.com/b/dsGdUK/Jiks
https://doi.org/10.1101/2022.02.20.480758
http://creativecommons.org/licenses/by-nd/4.0/


 

34 

57.  Lichter P, Tang CJ, Call K, Hermanson G, Evans GA, Housman D, et al. High-resolution 

mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science. 

1990 Jan 5;247(4938):64–9. 

58.  Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. 

Bioinformatics. 2009 Jul 15;25(14):1754–60. 

59.  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence 

Alignment/Map format and SAMtools. Bioinformatics. 2009 Jun 8;25(16):2078–9. 

60.  Rausch T, Hsi-Yang Fritz M, Korbel JO, Benes V. Alfred: interactive multi-sample BAM 

alignment statistics, feature counting and feature annotation for long- and short-read 

sequencing. Bioinformatics. 2018 Dec 6;35(14):2489–91. 

61.  Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing 

[Internet]. arXiv [q-bio.GN]. 2012. Available from: http://arxiv.org/abs/1207.3907 

62.  Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Källberg M, et al. Strelka2: fast 

and accurate calling of germline and somatic variants. Nat Methods. 2018 Aug;15(8):591–4. 

63.  Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant 

discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012 Sep 

15;28(18):i333–9. 

64.  Venkatraman ES, Olshen AB. A faster circular binary segmentation algorithm for the 

analysis of array CGH data. Bioinformatics. 2007 Mar 15;23(6):657–63. 

65.  Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda: 

sustainable and comprehensive software distribution for the life sciences. Nat Methods. 

2018 Jul 2;15(7):475–6. 

66.  Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018 Sep 

15;34(18):3094–100. 

67.  Tham CY, Tirado-Magallanes R, Goh Y, Fullwood MJ, Koh BTH, Wang W, et al. 

NanoVar: accurate characterization of patients’ genomic structural variants using low-depth 

nanopore sequencing. Genome Biol. 2020 Mar 3;21(1):56. 

68.  Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, et al. 

Accurate detection of complex structural variations using single-molecule sequencing. Nat 

Methods. 2018 Jun;15(6):461–8. 

69.  Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. 

Integrative genomics viewer. Nat Biotechnol. 2011 Jan;29(1):24–6. 

70.  Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. Detecting DNA 

cytosine methylation using nanopore sequencing. Nat Methods. 2017 Apr;14(4):407–10. 

71.  Patterson M, Marschall T, Pisanti N, van Iersel L, Stougie L, Klau GW, et al. WhatsHap: 

Weighted Haplotype Assembly for Future-Generation Sequencing Reads. J Comput Biol. 

2015 Jun;22(6):498–509. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.20.480758doi: bioRxiv preprint 

http://paperpile.com/b/dsGdUK/E2Zg
http://paperpile.com/b/dsGdUK/E2Zg
http://paperpile.com/b/dsGdUK/E2Zg
http://paperpile.com/b/dsGdUK/bwtfY
http://paperpile.com/b/dsGdUK/bwtfY
http://paperpile.com/b/dsGdUK/Q7oV3
http://paperpile.com/b/dsGdUK/Q7oV3
http://paperpile.com/b/dsGdUK/YEjfN
http://paperpile.com/b/dsGdUK/YEjfN
http://paperpile.com/b/dsGdUK/YEjfN
http://paperpile.com/b/dsGdUK/LJLDg
http://paperpile.com/b/dsGdUK/LJLDg
http://arxiv.org/abs/1207.3907
http://paperpile.com/b/dsGdUK/OyaS
http://paperpile.com/b/dsGdUK/OyaS
http://paperpile.com/b/dsGdUK/9iqh
http://paperpile.com/b/dsGdUK/9iqh
http://paperpile.com/b/dsGdUK/9iqh
http://paperpile.com/b/dsGdUK/u1Ytv
http://paperpile.com/b/dsGdUK/u1Ytv
http://paperpile.com/b/dsGdUK/u6mjG
http://paperpile.com/b/dsGdUK/u6mjG
http://paperpile.com/b/dsGdUK/u6mjG
http://paperpile.com/b/dsGdUK/7x1iE
http://paperpile.com/b/dsGdUK/7x1iE
http://paperpile.com/b/dsGdUK/4zkq6
http://paperpile.com/b/dsGdUK/4zkq6
http://paperpile.com/b/dsGdUK/4zkq6
http://paperpile.com/b/dsGdUK/IBxl
http://paperpile.com/b/dsGdUK/IBxl
http://paperpile.com/b/dsGdUK/IBxl
http://paperpile.com/b/dsGdUK/yWCq
http://paperpile.com/b/dsGdUK/yWCq
http://paperpile.com/b/dsGdUK/9nHO
http://paperpile.com/b/dsGdUK/9nHO
http://paperpile.com/b/dsGdUK/KmNSk
http://paperpile.com/b/dsGdUK/KmNSk
http://paperpile.com/b/dsGdUK/KmNSk
https://doi.org/10.1101/2022.02.20.480758
http://creativecommons.org/licenses/by-nd/4.0/


 

35 

72.  Bonfield JK, Marshall J, Danecek P, Li H, Ohan V, Whitwham A, et al. HTSlib: C library 

for reading/writing high-throughput sequencing data. Gigascience [Internet]. 2021 Feb 16 

[cited 2021 Jul 7];10(2). Available from: 

https://academic.oup.com/gigascience/article/10/2/giab007/6139334 

73.  Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call 

format and VCFtools. Bioinformatics. 2011 Aug 1;27(15):2156–8. 

74.  Delaneau O, Zagury J-F, Robinson MR, Marchini JL, Dermitzakis ET. Accurate, scalable 

and integrative haplotype estimation. Nat Commun. 2019 Nov 28;10(1):1–10. 

75.  1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, 

Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. 

Nature. 2012 Nov 1;491(7422):56–65. 

76.  Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods. 2020 

Feb;17(2):155–8. 

77.  Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile 

and open software for comparing large genomes. Genome Biol. 2004 Jan 30;5(2):R12. 

78.  Behr JM, Yao X, Hadi K, Tian H, Deshpande A, Rosiene J, et al. Loose ends in cancer 

genome structure [Internet]. bioRxiv. 2021 [cited 2021 Nov 18]. p. 2021.05.26.445837. 

Available from: https://www.biorxiv.org/content/10.1101/2021.05.26.445837v1 

79.  Ignatiadis N, Klaus B, Zaugg JB, Huber W. Data-driven hypothesis weighting increases 

detection power in genome-scale multiple testing. Nat Methods. 2016 Jul;13(7):577–80. 

80.  Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful 

Approach to Multiple Testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289–300. 

81.  Gao T, Qian J. EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586 

tissue/cell types across nine species. Nucleic Acids Res. 2020 Jan 8;48(D1):D58–64. 

82.  Li YI, Knowles DA, Humphrey J, Barbeira AN, Dickinson SP, Im HK, et al. Annotation-

free quantification of RNA splicing using LeafCutter. Nat Genet. 2018 Jan;50(1):151–8. 

83.  Conlon EG, Fagegaltier D, Agius P, Davis-Porada J, Gregory J, Hubbard I, et al. 

Unexpected similarities between C9ORF72 and sporadic forms of ALS/FTD suggest a 

common disease mechanism. Elife [Internet]. 2018 Jul 13;7. Available from: 

http://dx.doi.org/10.7554/eLife.37754 

84.  GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human 

tissues. Science. 2020 Sep 11;369(6509):1318–30. 

85.  van de Geijn B, McVicker G, Gilad Y, Pritchard JK. WASP: allele-specific software for 

robust molecular quantitative trait locus discovery. Nat Methods. 2015 Nov;12(11):1061–3. 

86.  McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The 

Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA 

sequencing data. Genome Res. 2010 Sep;20(9):1297–303. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.20.480758doi: bioRxiv preprint 

http://paperpile.com/b/dsGdUK/xlGMO
http://paperpile.com/b/dsGdUK/xlGMO
http://paperpile.com/b/dsGdUK/xlGMO
http://paperpile.com/b/dsGdUK/xlGMO
https://academic.oup.com/gigascience/article/10/2/giab007/6139334
http://paperpile.com/b/dsGdUK/NBbEP
http://paperpile.com/b/dsGdUK/NBbEP
http://paperpile.com/b/dsGdUK/Xphoe
http://paperpile.com/b/dsGdUK/Xphoe
http://paperpile.com/b/dsGdUK/hnPqR
http://paperpile.com/b/dsGdUK/hnPqR
http://paperpile.com/b/dsGdUK/hnPqR
http://paperpile.com/b/dsGdUK/Q4bC
http://paperpile.com/b/dsGdUK/Q4bC
http://paperpile.com/b/dsGdUK/yVr8
http://paperpile.com/b/dsGdUK/yVr8
http://paperpile.com/b/dsGdUK/x5OR
http://paperpile.com/b/dsGdUK/x5OR
http://paperpile.com/b/dsGdUK/x5OR
https://www.biorxiv.org/content/10.1101/2021.05.26.445837v1
http://paperpile.com/b/dsGdUK/dlre
http://paperpile.com/b/dsGdUK/dlre
http://paperpile.com/b/dsGdUK/lyEP
http://paperpile.com/b/dsGdUK/lyEP
http://paperpile.com/b/dsGdUK/P6UD
http://paperpile.com/b/dsGdUK/P6UD
http://paperpile.com/b/dsGdUK/wsCB
http://paperpile.com/b/dsGdUK/wsCB
http://paperpile.com/b/dsGdUK/bRv6
http://paperpile.com/b/dsGdUK/bRv6
http://paperpile.com/b/dsGdUK/bRv6
http://paperpile.com/b/dsGdUK/bRv6
http://dx.doi.org/10.7554/eLife.37754
http://paperpile.com/b/dsGdUK/1DEH
http://paperpile.com/b/dsGdUK/1DEH
http://paperpile.com/b/dsGdUK/0Tot
http://paperpile.com/b/dsGdUK/0Tot
http://paperpile.com/b/dsGdUK/lgfE
http://paperpile.com/b/dsGdUK/lgfE
http://paperpile.com/b/dsGdUK/lgfE
https://doi.org/10.1101/2022.02.20.480758
http://creativecommons.org/licenses/by-nd/4.0/


 

36 

87.  Uhrig S, Ellermann J, Walther T, Burkhardt P, Fröhlich M, Hutter B, et al. Accurate and 

efficient detection of gene fusions from RNA sequencing data. Genome Res. 2021 

Mar;31(3):448–60. 

88.  Chernikova D, Managadze D, Glazko GV, Makalowski W, Rogozin IB. Conservation of the 

Exon-Intron Structure of Long Intergenic Non-Coding RNA Genes in Eutherian Mammals. 

Life [Internet]. 2016 Jul 15;6(3). Available from: http://dx.doi.org/10.3390/life6030027 

89.  Dijkstra EW. A note on two problems in connexion with graphs. Numer Math. 1959 Dec 

1;1(1):269–71. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.20.480758doi: bioRxiv preprint 

http://paperpile.com/b/dsGdUK/OdsR
http://paperpile.com/b/dsGdUK/OdsR
http://paperpile.com/b/dsGdUK/OdsR
http://paperpile.com/b/dsGdUK/X32h
http://paperpile.com/b/dsGdUK/X32h
http://paperpile.com/b/dsGdUK/X32h
http://dx.doi.org/10.3390/life6030027
http://paperpile.com/b/dsGdUK/u1mf
http://paperpile.com/b/dsGdUK/u1mf
https://doi.org/10.1101/2022.02.20.480758
http://creativecommons.org/licenses/by-nd/4.0/

