

1 SARS-COV-2 VIROPORINS ACTIVATE THE NLRP3-INFLAMMASOME VIA THE MITOCHONDRIAL 2 PERMEABILITY TRANSITION PORE

3
4 Joseph W. Guarnieri¹, Alessia Angelin¹, Deborah G. Murdock¹, Prasanth Portluri¹, Timothy Lie^{1,3}, Douglas C.
5 Wallace^{1,2*}.

6
7 ¹Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of
8 Philadelphia, Philadelphia, PA 19104, USA.

9 ²Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of
10 Pennsylvania, Philadelphia, PA 19104, USA.

11 ³University of Pennsylvania, Philadelphia, PA 19104 USA

12 *Correspondence: WallaceD1@chop.edu

17 SUMMARY

18 Cytokine storm precipitated by activation of the host innate immune defenses is a major cause of COVID19
19 death. To elucidate how SARS-CoV-2 initiates this inflammatory process, we studied viroporin proteins E and
20 Orf3a (2-E+2-3a). Expression of 2-E+2-3a in human 293T cells resulted in increased cytosolic Ca⁺⁺ and then
21 elevated mitochondrial Ca⁺⁺, taken up through the MUC11-sensitive mitochondrial calcium uniporter (MCU).
22 Increased mitochondrial Ca⁺⁺ resulted in stimulation of mitochondrial reactive oxygen species (mROS)
23 production, which was blocked by mitochondrially-targeted catalase or MnTBAP. To determined how mROS
24 activates the inflammasome, we transformed 293T cells with NLRP3, ASC, pro-caspase-1 and pro-IL-1 β plus
25 used THP1 derived macrophages to monitor the secretion of mature IL-1 β . This revealed that mROS activates
26 a factor that is released via the NIM811-sensitive mitochondrial permeability pore (mtPTP) to activate the
27 inflammasome. Hence, interventions targeting mROS and the mtPTP may mitigate the severity of COVID19
28 cytokine storms.

29
30 **Keywords:** SARS-CoV-2, COVID-19; cytokine storm; NLRP3-inflammasome; ORF3a; envelope (E); viroporin;
31 mitochondrial permeability transition pore; mitochondrial reactive oxygen species (mROS); mitochondria in
32 innate immune responses.

55 INTRODUCTION

56
57 Approximately 350 million cases of COVID19 have been reported globally, resulting in over 5.5 million
58 deaths (Dong et al., 2020). COVID19 is caused by SARS-CoV-2 whose genome structure encodes a polyprotein
59 that is cleaved into 16 non-structural proteins (nsp) as well as the structural proteins S (Spike), E (Envelope), M
60 (Membrane), and N (Nucleocapsid), and seven open reading frames (orfs) 3a, 6, 7a, 7b, 8, 9b, and 10, with
61 substantial homology with SARS-CoV-1.

62 Severe COVID19 manifests as pneumonia, acute respiratory distress syndrome, respiratory failure, and
63 cytokine storm resulting in multiple organ failure (Ferreira et al., 2021; Rodrigues et al., 2021; Yang et al., 2021).
64 The cytokine storm results from the elaboration of pro-inflammatory cytokines such as interleukin (IL)-1 β (Ajaz
65 et al., 2021; Chen et al., 2020; Chi et al., 2020; Han et al., 2020; Lucas et al., 2020; Wen et al., 2020).

66 The production of mature IL-1 β requires the activation of the mitochondrially-bound NLRP3-
67 inflammasome (NLRP3-I), which encompasses the NLR family pyrin domain containing 3 (NLRP3) receptor; the
68 adaptor molecule apoptosis-associated speck-like protein containing a caspase activation and recruitment
69 domain (ASC); and the pro-IL-1 β -converting enzyme pro-caspase-1 (CASP1). Upon activation, the NLRP3-I
70 triggers the proteolytic cleavage of pro-caspase-1 (pro-CASP1), and CASP1 cleaves pro-IL-1 β to generate IL-1 β
71 which is secreted from the cell (Broz and Dixit, 2016). Autopsy samples from severe COVID19 patients display
72 increased NLRP3-I activation in lung tissues and peripheral blood mononuclear cells (Rodrigues et al., 2021),
73 and monocytes isolated from severe COVID19 patients have increased levels of activated NLRP3-I and IL-1 β ,
74 (Ferreira et al., 2021). Thus, understanding the mechanism by which SARS-CoV-2 activates the NLRP3-I is
75 imperative for understanding the pathophysiology of severe COVID19.

76 Recently, mitochondrial dysfunction has been shown to activate the innate immune system via
77 mitochondrial reactive oxygen species (ROS) production and oxidation of the mitochondrial DNA (mtDNA) during
78 replication, induced by the expression of the rate-limiting enzyme cytosine monophosphate kinase 2 (CMPK2).
79 The oxidized mtDNA (Ox-mtDNA) is released from the mitochondrion to bind and activate the NLRP3-I (West
80 and Shadel, 2017; Zhong et al., 2018). While the mechanism by which SARS-CoV-2 activates the NLRP3-I is
81 unknown, expression of the SARS-CoV-1/2 viroporins have been associated with activation of NLRP3-I (Chen
82 et al., 2019; Nieto-Torres, 2015 #118; Siu et al., 2019; Xia et al., 2021; Yue et al., 2018) and are known to be
83 membrane ion channels (Hoover et al., 2017; Nieva et al., 2012).

84 SARS-CoV-2 encodes two viroporins E (2-E) (Verdiá-Báguena et al., 2021) and ORF3a (2-3a) (Qu et al.,
85 2021), with homologues to the SARS-CoV-1 proteins (Kern et al., 2021; Mandala et al., 2020). SARS-CoV-1/2
86 E and 3a viroporins localize to the endoplasmic reticulum (ER), Golgi apparatus, and plasma membrane (Gordon
87 et al., 2020a) where they increase the permeability to cations such as Ca⁺⁺ (Minakshi and Padhan, 2014; Verdiá-
88 Báguena et al., 2021; Kern, 2021 #420; Verdiá-Báguena et al., 2012). For SARS-CoV-1, the 1-E and 1-3a have
89 been shown to activate the NLRP3-I in human monocyte-derived macrophages (Chen et al., 2019; Siu et al.,
90 2019; Yue et al., 2018). In LPS-primed macrophages, co-expression of 1-E plus 1-3a resulted in higher levels of
91 IL-1 β secretion than either viroporin alone (Chen et al., 2019), 1-E has been reported to activate NLRP3-I through
92 disrupting Ca⁺⁺ homeostasis in cells (Nieto-Torres et al., 2015; Xia et al., 2021), and activation of the NLRP3-I
93 and secretion of IL-1 β by 1-E and 1-3a is mitigated by treatment with the mROS scavenger MitoQ (Chen et al.,
94 2019). However, the mechanism by which SARS-CoV-2 activates the NLRP3-I has yet to be explained.

95 We hypothesized that expression of 2-E plus 2-3a results in increased Ca⁺⁺ flux into the cytosol where it
96 is taken up by the mitochondrion through the mitochondrial Ca⁺⁺ uniporter (MCU). Within the mitochondrion, the
97 Ca⁺⁺ activates the pyruvate and α -ketoglutarate dehydrogenases to generate excessive NADH (Denton, 2009).
98 The increased NADH overloads the mitochondrial electron transport chain producing increased mitochondrial
99 ROS (mROS). The mROS oxidizes the mtDNA, and the Ox-mtDNA is released through the mitochondrial
100 permeability transition pore (mtPTP) to bind to the NLRP3 inflammasome. This activates caspase-1 to cleave
101 pro-IL-1 β resulting in the secretion of active IL-1 β (Xian et al., 2021; Zhong et al., 2018). Our current results
102 support this scenario, thus placing mitochondrial function at the nexus between SARS-CoV-2 infection and the
103 cytokine storm of severe COVID19.

109

RESULTS

110

111 Expression of 2-E+2-3a increases Ca^{++} leakage into the cytosol, elevates mitochondrial Ca^{++} levels, and 112 increases mROS production.

113

114 We constructed a polycistronic expression vector combining 2-E+2-3a (LV-E3a) (**Figure 1A&B**). In this
115 vector the 2-E+2-3a sequences were separated by the self-cleaving 2A peptide site (Liu et al., 2017; Szymczak-
116 Workman et al., 2012) to allow co-expression from a single transcript. The expression of 2-E+2-3a in LV-E3a
117 transduced 293T cells was confirmed by Western blot (**Figure 1C**). We next demonstrated that LV-E3a
118 transduced 293T cells experience increased cytosolic Ca^{++} with Fura-Red (**Figure 1D-F**) and mitochondrial Ca^{++}
119 with Rhod2 (**Figure 1G-I**). Thapsigargin (TG), which triggers Ca^{++} flux into the cytosol, increased mitochondrial
120 Ca^{++} uptake (Bagur and Hajnóczky, 2017; Csordás et al., 2018), and mitochondrial Ca^{++} uptake was increased
121 in TG treated LV-E3a transduced cells. Co-treatment with the mitochondrial calcium uniporter inhibitor 11
122 (MCUi11) (Di Marco et al., 2020; Márta et al., 2021) abolished mitochondrial calcium uptake (**Figure 1J**). Thus,
123 expression of 2-E+2-3a in 293T cells results in elevated cytosolic Ca^{++} which is taken up by the mitochondrial
124 calcium uniporter resulting in elevated mitochondrial Ca^{++} (**Figure 1J**).

125

126 We next demonstrated that 2-E+2-3a expression in 293T cells increased mROS production by staining
127 transduced cells with MitoSOX, which detects mitochondrial superoxide anion production. MitoSOX fluorescence
128 confirmed that 2-E+2-3a expression increased mROS production (**Figure 1K-M**). To determine if the increased
129 mROS was due to the entry of Ca^{++} into the mitochondrion, we treated the cells with MCUi11 which blocked the
130 increased mROS production (**Figure 1N**).

131

132 To confirm that the 2-E+2-3a induced ROS production was mROS, we transformed the 2-E+2-3a
133 expressing 293T cells with a vector expressing mitochondrially-targeted catalase (mCAT) (**Figure 2A-C**) which
134 removes mitochondrial H_2O_2 (Schriner et al., 2005), or treated the cells with the mitochondrially targeted catalytic
135 metalloporphyrin anti-oxidant, MnTBAP (Melov et al., 1998; Tong et al., 2007). Treatment with either MnTBAP
136 or mCAT extinguished the 2-E+2-3a activated ROS product, confirming that the ROS was generated by the
137 mitochondrion (**Figure 2D-I**).

138

139 2-E+2-3a induced mROS is involved in NLRP3-activated and IL-1 β production.

140

141 In SARS-CoV-1, activation of the NLRP3-I and pathogenicity are associated with both 1-E+1-3a (Chen
142 et al., 2019; Nieto-Torres et al., 2014; Xia et al., 2021; Zhang et al., 2021). To determine if this is the case for
143 SARS-CoV-2, we used two model systems to determine if 2-E+2-3a expression activates the NLRP3-I via the
144 mitochondrion. First, we transformed 293T cells with plasmids encoding the components of the NLRP3-I, thus
145 reconstituting the inflammasome (Shi et al., 2016) (**Figure 3A**). Second, we transduced THP1 cells which are a
146 human acute monocytic leukemia derived cell line with the 2-E+2-3a expression vector. The transduced THP1
147 cells were then treated with phorbol ester (PMA) to generate macrophages and the macrophages were treated
148 with LPS + nigericin (Pan et al., 2021) (**Figure 3B**). The expression of 2-E+2-3a in both cell systems, 293T
149 (**Figure 3C**) and THP1 macrophages (**Figure 3D-F**), resulted in enhanced secretion of NLRP3-activated IL-1 β
150 secretion.

151

152 We then confirmed that 2-E+2-3a expression activates the NLRP3-I and IL-1 β secretion via increased
153 mROS production. 293T cells expressing the inflammasome proteins (**Figure 3C**) and LPS-nigericin treated
154 THP1 macrophages (**Figure 3D&E**) were treated with mitochondrially targeted antioxidants, transformation with
155 mCAT or treatment with MnTBAP. Both mCAT expression and MnTBAP treatment impaired IL-1 β secretion.

156

157 We then determined if mROS activation of the NLRP3-I was mediated by release of an oxidized
158 mitochondrial component via the mtPTP, which has been conjectured but not proven. We treated 2-E+2-3a
159 transformed THP1 macrophages with the specific mtPTP inhibitor N-methyl-4-isoleucine-cyclosporin (NIM811).
160 NIM811 blocks the mtPTP by binding to cyclophilin D, analogous to cyclosporin A (CsA) but without calcineurin
161 inactivation (Dittmar et al., 2021; Tóth et al., 2019; Zhang et al., 2020). NIM811 treatment suppressed the
162 secretion of IL-1 β following LPS + nigericin activation of the THP1 macrophages demonstrating for the first time
163 that the mtPTP is the route by which an oxidized mitochondrial factor reaches the NLRP3-I (**Figure 3F**).

164

165 Thus, we have demonstrated that co-expression of 2-E+2-3a enhances Ca^{++} leakage into the cytosol,
166 increasing levels of cytosolic and mitochondrial Ca^{++} . This 2-E+2-3a mediated increase in mitochondrial Ca^{++}
167 induces the production of mROS, which in turn activates the NLRP3-I, via mtPTP transport of an oxidized
168 mitochondrial product, stimulating the secretion of IL-1 β . Increasing mitochondrial antioxidant defenses through
169 treatment with the pharmacological mROS scavenger MnTBAP, or genetic expression of mCAT, detoxifies 2-
170

163 E+2-3a induced mROS and blocks activation of the NLRP3-I. Together these findings reveal that the mechanism
164 by which 2-E+2-3a engage the NLRP3-I is via viroporin manipulation of mitochondrial physiology.
165

166 DISCUSSION

167 Because of the importance that activation of the inflammasome by SARS-CoV-2 has on the severity of
168 COVID19, we set out to define the physiological process by which the virus activates the NLRP3-I in hopes of
169 identifying drug targets to mitigate the cytokine storm. We found that the viroporins 2-E+2-3a were central to the
170 activation of the NLRP3-I and this occurred through a mitochondrial innate immunity signal transduction pathway.
171 Expression of viroporins 2-E+2-3a results in the release of ER and extracellular Ca⁺⁺ into the cytosol where the
172 Ca⁺⁺ is taken up by the mitochondrion via the mitochondrial calcium uniporter. The mitochondrial Ca⁺⁺ activates
173 the tricarboxylic acid cycle dehydrogenases generating excess NADH (Denton, 2009). This overloads the
174 electron transport chain producing increased mROS. The increased mROS oxidizes a mitochondrial factor that
175 is released through the mtPTP to bind and activate the NLRP3-I.
176

177 While our experiments, did not directly identify the mitochondrial factor released through the mtPTP, other
178 recent studies have shown that this factor is oxidized mtDNA which is a ligand of NLRP3-I (Xian et al., 2021;
179 Zhong et al., 2018). Thus, we complete the mitochondrial innate immune activation pathway by showing that
180 release of Ox-mtDNA is via the mtPTP.

181 Demonstration that SARS-CoV-2 activated the inflammasome via the mitochondria provides new
182 approaches to mitigating the severity of the cytokine storm. Previous studies have indicated that generalized
183 antioxidants such as N-acetyl cysteine (Garozzo et al., 2007; Geiler et al., 2010; Ghezzi and Ungheri, 2004),
184 glutathione (Cai et al., 2003; Nencioni et al., 2003), and catalase (Shi et al., 2014; Shi et al., 2010) can reduce
185 viral propagation and pathology. Our data extend these observations by indicating that the therapeutic potential
186 of drugs will be enhanced if they are mitochondrially targeted antioxidants such as MnTBAP (Melov et al., 1998;
187 Tong et al., 2007), EUK-8 and EUK-134 (Melov et al., 2001) and or inhibitors of the mtPTP such as NIM811
188 (Dittmar et al., 2021; Tóth et al., 2019; Zhang et al., 2020).

190 Limitations of the Study.

191 A unique feature of this research is the discovery that SARS-CoV-2 viroporins active the inflammasome via the
192 mitochondrion through elevated mitochondrial Ca⁺⁺ and mROS and the mtPTP. However, we have not identified
193 this released mitochondrial oxidized product. Rather, we relied of the publications of others implicating Ox-
194 mtDNA.

195 ACKNOWLEDGMENTS

196 The authors thank Dr. Bruce Beutler for gifts of expression plasmids and Dr. Cristina Mammucari
197 (Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy) and Dr. Kevin Foskett (Dept Cell
198 and Developmental Biology, University of Pennsylvania, 19104 Philadelphia, Pennsylvania) for gifting MCUi11,
199 which they purchased from AKos Consulting & Solutions GmbH. This work was supported by DOD grant
200 W81XWH-21-1-0128 awarded to D.C.W.
201

202 AUTHOR CONTRIBUTIONS

203 Conceptualization: J.W.G., D.C.W.; Methodology: J.W.G., P.P., D.C.W., A.A., D.M.; Literature and concept
204 integration: J.W.G., P.P., D.C.W., A.A., D.M.; Formal Analysis: J.W.G., A.A., D.M., D.C.W.; Writing – Original
205 Draft: J.W.G.; Investigation: J.W.G., A.A., D.M., D.C.W., T.L.; Sample Collection: J.W.G., T.L.; Writing – Review
206 & Editing: J.W.G., D.C.W., A.A., D.M.; Visualization: J.W.G., D.C.W., A.A., D.M.; Supervision: J.W.G., P.P.,
207 D.C.W., A.A., D.M.; Funding Acquisition: D.C.W.

208 DECLARATION OF INTERESTS

209 D.C.W. serves of the advisory boards of Plano Therapeutics, Medical Excellent Capital, and has a grant from
210 March Therapeutics.
211

216

217 MAIN FIGURE TITLES AND LEGENDS

218

219 **Figure 1. Expression of 2-E+2-3a induces mROS production by elevating mitochondrial Ca⁺⁺ levels. A-B)**

220 Schematics of our LV-EV and LV-E3a vectors. **C)** 293T cells were transduced with LV-EV or LV-E3a, and
221 samples analyzed by immunoblot with a mouse monoclonal antibody against FLAG-Tag, to detect the FLAG-
222 tagged 2-E+2-3a viroporins. GAPDH was a loading control. **D-F)** 24 hrs post-transduction cells were stained with
223 Fura-Red to measure cytosolic Ca⁺⁺ levels, **G-I)** Rhod2 & Mitotracker Deep Red (MTDR) to measure
224 mitochondrial Ca⁺⁺ levels, or **K-M)** MitoSOX and MTDR to measure mROS levels via **E-F. H-I, L-M)** data from
225 confocal microscopy or **D, G, K)** data from plate reader assays. **J, N)** 24 hrs post-transduction with LV-EV or LV-
226 E3a 293T cells were treated with or without 10 μ M MCUI11, and then 2.5 μ M TG and stained with **J)** Rhod2 to
227 measure mitochondrial Ca⁺⁺ levels, or **N)** MitoSOX to measure mROS levels by plate reader assays. Scale bar
228 = 30 μ m. Error bars represent SEM from 3 independent experiments; statistically significant data is indicated
229 with asterisks (*).

230

231 **Figure 2. Expression of mCAT or treatment with the mROS scavenger MnTBAP antioxidant defenses**

232 **A-B)** Schematics of p-EV and p-mCAT vectors. **C)** Catalase assay through
233 cleavage of H₂O₂ in 293T cell lysates collected 24 hrs post-transfection with p-EV or p-mCAT. **D-I)** 24 hrs post-
234 transfection levels of mROS assessed using MitoSOX and MTDR fluorescence 293T cells transduced with LV-
235 EV or LV-E3a and transfected **D, E, and H)** with p-mCAT or its respective control p-EV or **F, G, and I)** cultured
236 in the presence or absence of 50 μ M MnTBAP, DMSO used as a negative control. MTDR fluorescence was used
237 to normalize for mitochondrial content with mROS expressed as the ratio of MitoSOX/MTDR, by **D, F)** confocal
238 microscopy or **E, G)** plate reader assays **H, I)** Representative images of MitoSOX-stained cells. Scale bar = 30
239 μ m. Error bars represent SEM from 3 independent experiments; statistically significant data is indicated with
240 asterisks (*).

241

242 **Figure 3. mROS and the mtPTP are required for activation of the NLRP3-I by the 2-E+2-3a viroporins. A-**

243 **B)** Experimental design used to assess NLRP3-activated by IL-1 β in cell-free supernatants quantified by ELISA.
244 **A)** 293T cells with an NLRP3-I reconstitution system (NLRP3, ASC, pro-CASP1, pro-IL-1 β) and **B)** THP1
245 differentiated into macrophages and primed with LPS + nigericin. **C)** 293T cells transfected with LV-EV or LV-
246 E3a were transformed the NLRP3-I plasmids and p-mCAT or its control plasmid p-EV, or cultured in the presence
247 or absence of 50 μ M MnTBAP. **D, F)** THP1 cells were transduced with LV-EV or LV-E3a, differentiated into
248 macrophages, treated with LPS and nigericin, and treated with 100 μ M MnTBAP or 10 μ M NIM811, the
249 supernatants analyzed for IL-1 β by ELISA. **E)** THP1 cells stably expressing LV-mCAT or control were infected
250 with LV-EV or LV-E3a, differentiated into macrophages, and supernatant IL-1 β levels determined via ELISA.
251 Error bars represent SEM from 3 independent experiments; statistically significant data is indicated with asterisks
252 (*).

253

254 MAIN TABLES AND LEGENDS

255 Non-Applicable

256

257 STAR★METHODS

258

259 RESOURCE AVAILABILITY

260 **Lead Contact.**

261 Further information and requests for resources and reagents should be directed to and will be fulfilled by
262 the Lead Contact, & Douglas C. Wallace (WallaceD1@chop.edu).

263

264 **Materials Availability.**

265 This study did not generate new unique reagents.

266

267 **Data and Code Availability.**

268 This study did not generate any unique datasets. All data is included in the manuscript or supplementary
269 file.
270

271 EXPERIMENTAL MODEL AND SUBJECT DETAILS

273 Cells, Infections, & Reagents.

274 293T & THP1 cells were obtained from the American Type Culture Collection (ATCC). Cells were grown
275 at 37°C with an atmosphere of 98% humidity and 5% CO₂. 293T cells were maintained in Dulbecco's modified
276 Eagle's medium + GlutaMAX™ supplement with pyruvate (GIBCO), 1% non-essential amino acids (SIGMA),
277 and 10% fetal bovine serum (FBS) (Takara Bio). THP1 cells were grown in RPMI 1640 Medium (GIBCO)
278 supplemented with 10% FBS (Takara Bio). 293T cells were infected (MOI 4) as previously described (Potluri et
279 al., 2016). THP1 cells were infected (MOI 8) with the addition of 5 µg/ml polybrene (VectorBuilder) and spin-
280 inoculated at 700×g for 25min.

281 282 Plasmids, Viral Vectors, THP1 stable-transformants.

283 Plasmid Vectors. To express the components of the NLRP3-inflammasome (NLFP3-I), we utilized four plasmids
284 expressing mouse NLRP3 (pcDNA3-N-Flag-NLRP3, Addgene plasmid # 75127), ASC (pcDNA3-N-Flag-ASC1,
285 Addgene plasmid # 75134), CASP1 (pcDNA3-N-Flag-Caspase-1, Addgene plasmid # 75128) and pro-IL-1B
286 (pCMV-pro-IL1b-C-Flag, Addgene plasmid # 75131). The use and construction of the NLRP3-I expression
287 plasmids were previously described (Shi et al., 2016).

288 The plasmid vector used to express mitochondrial-targeted catalase (mCAT) and its respective control
289 vector were p-mCAT (VectorBuilder ID VB170403-1078nzg) and p-EV (VectorBuilder ID VB210726-1273jte),
290 vectorbuilder.com. The p-mCAT transgene cassette is transcribed from the 212 nucleotide elongation factor α1
291 "short" (EFS) promoter. The EFS promoter transcribes a polycistronic transcript encoding EGFP (enhanced
292 green fluorescent protein), a self-cleaving 2A peptide site, followed by mCAT, terminated by a simian virus 40
293 (SV40) late polyA sequence. p-EV is identical to the p-mCAT construct, except lacking the mCAT sequence.

294 Lentiviral Vectors. The lentiviral vector used to co-express 2-E+2-3a was LV-E3a (Vectorbuilder ID VB210112-
295 1153ufz) and its respective control vector LV-EV (Vectorbuilder ID VB210112-1153ufz). The LV-E3a vector
296 contains the *cytomegalovirus* (CMV) promoter, the 2-E+2-3a viroporins obtained from Gordon et al. 2020
297 (Gordon et al., 2020b) separated by a 2A peptide site, and terminated by a SV40 late polyA sequence cloned
298 into the LV-EV vector. The viroporins were modified by addindg anATG codon 5' and three N-terminal FLAG-
299 tags were added to the 3' end of each viral protein, and transcribed from the the proteins. LV-EV is an empty
300 vector.

301 The lentiviral vector expressing our mCAT and its respective control vector, LV-mCAT (VB210909-
302 1242kdf) and LV-EV(mCAT) (VB900122-0484ubz) were constructed and packaged by VectorBuilder. The LV-
303 mCAT vector includes the EFS promoter, EGFP, 2A peptide site, mCAT, , and SV40 late polyA sequence. The
304 LV-EV(mCAT) control vector lacks EGFP and mCAT.

305 THP1 mCAT stable-transformants. THP1 cells were transduced with LV-mCAT or empty vector and selected
306 with puromycin. Expression of mCAT was \validated stable-transformants by EGFP fluorescence.

307 308 METHOD DETAILS

310 Cell Staining.

311 293T cells were plated at a density of 45 × 10³ in 96-well 0.2% gelatin-coated (ScienCell) glass-bottom
312 plates with high-performance #1.5 mm cover glass (Cellvis). Twenty-four hours post-plating, sub-confluent
313 monolayers of 293T cells were transduced with LV-EV or LV-E3a. Twenty-four hours post-transduction, cells
314 were washed two times with phosphate-buffered saline (PBS), then stained. For determination of mROS levels,
315 cells were co-stained with 3 µM MitoSOX™ Red (MitoSOX, mitochondrial superoxide indicator) and 50 nM
316 MitoTracker™ Deep Red FM (MTDR) for 30 min at 37°C. For assaying mROS levels after treatment with
317 Thapsigargin (TG) using the plate reader, cells were stained with 3 µM MitoSOX for 30 min at 37°C. To quantify
318 mROS after staining, cells were washed three times in PBS, maintained in FluoroBrite™ DMEM (GIBCO)
319 supplemented with 12.5 mM HEPES (SIGMA) and 1% non-essential amino acids (SIGMA), and the fluorescence
320 measures

321 To determine cytosolic Ca^{++} levels, cells were washed three times with Tyrode's Salts (Sigma-Aldrich),
322 stained for 40 min with 2 μM Fura RedTM, acetoxyethyl ester (AM), cell-permeant (Fura-Red) in 0.02% pluronic
323 F127 (Pluronic® F-127) detergent. To determine mitochondrial Ca^{++} levels, cells were washed three times with
324 Tyrode's Salts, stained for 40 min with 10 μM Rhod-2, AM, cell-permeant (Rhod2) and 50 nM MTDR in 0.02%
325 pluronic F127. After staining cells were washed three times and maintained in Tyrode's Salts and fluorescence
326 measured. To determine mitochondrial Ca^{++} levels after treating with TG, cells were stained for 40 min with 10
327 μM Rhod2, washed three times and maintained in Tyrode's Salts, and fluorescence measured.

328

329 SpectraMax Plate Reader Assay.

330 Measurement of mROS and cytosolic and mitochondrial Ca^{++} levels. After staining cells (see "Cell Staining"),
331 mean fluorescence was assessed using the SpectraMax® Paradigm® Multi-mode Detection Platform, equipped
332 with a Tunable Wavelength (TUNE) Detection Cartridge (Molecular Devices). was quantified by MitoSOX
333 fluorescence (ex:540 nm, em:590 nm) and MTDR (ex:633 nm, em:680 nm) and MitoSOX/MTDR calculated.
334 Rhod2 fluorescence for mitochondrial Ca^{++} level (ex:540 nm, em:590 nm) and MTDR (ex:633 nm, em:680 nm),
335 and Rhod2/MTDR calculated. Fura-Red fluorescence for cytosolic bound- Ca^{++} level (ex:405 nm, em:637 nm)
336 and unbound- Ca^{++} (ex:514 nm, em:672 nm) state. The ratio of bound- Ca^{++} /unbound- Ca^{++} was calculated.

337 Measurement of mitochondrial Ca^{++} and mROS after treating with TG. After staining cells with Rhod2 or MitoSOX
338 ("Cell Staining"), cells were treated for 10 min with or without 10 μM mitochondria channel uniporter inhibitor 11
339 (MCUi11), Dimethylsulfoxide (DMSO) as a negative control. Mitochondrial Ca^{++} determined from Rhod2 (ex:540
340 nm, em:590 nm) and mROS from MitoSOX (ex:540 nm, em:590 nm). Cells were then treated with 2.5 μM TG
341 and changes in mitochondrial Ca^{++} or mROS recorded every 15 seconds for 180 seconds. Relative change in
342 mitochondrial Ca^{++} was calculated by dividing the average change in Rhod2 fluorescence after treatment with
343 TG by Rhod2 fluorescence before treatment with TG. Relative change in mROS levels was calculated by dividing
344 the average change in MitoSOX fluorescence after treatment with TG by MitoSOX fluorescence before treatment
345 with TG.

346

347 Confocal Microscopy.

348 Live-cell imaging was performed using a Zeiss 710 LSM confocal microscope with an environmental
349 chamber maintained at 37°C and 5% CO₂. Laser lines used: diode 405 nm, Argon 514 nm, HeNe lasers 543 nm
350 and 633 nm excitation wavelengths. Fluorescence quantified using the Zeiss 710 LSM confocal microscope was
351 analyzed using ImageJ. Fluorescence intensities of stained cells were normalized to the unstained negative
352 cells. A minimum of 60 images was taken for each condition across at least three independent experiments.

353

354 Catalase Assay.

355 Catalase activity was assessed through cleavage of H₂O₂ in 293T cell lysates collected twenty-four hours
356 post-transfection with p-mCAT or p-EV, using a Catalysis Activity Kit (Abcam, ab83464).

357

358 Western blot analysis.

359 Twenty-four hours post-transduction, cells were washed once with cold PBS and then lysed with 2.5% n-
360 Dodecyl-B-D-Maltoside in 20 mM HEPES (pH 7.4), 50 mM β glycerophosphate, 2 mM EGTA, 10% (v/v) glycerol,
361 and 0.01% Bromophenol blue. Lysates were electrophoresed on 4 to 12%, Bis-Tris gels (Invitrogen) SDS-
362 polyacrylamide NuPAGETM gels. Gels were transferred to a nitrocellulose membrane by the iBlot Gel Transfer
363 System (Invitrogen), membranes blocked for one hour in 5% nonfat milk in 25 mM Tris-HCl, 150 mM NaCl, 0.1%
364 Tween 20 (TBST buffer and incubated overnight at 4°C with shaking in primary antibody diluted 1:1000 in TBST.
365 Membranes were then washed three times with TBST and incubated with Alexa Fluor-conjugated secondary
366 antibodies for one hour at room temperature. Protein levels were quantified using the Odyssey imaging system
367 (LiCOR Biosciences) using GAPDH as a loading control.

368

369 Detection of secreted IL-1 β in 293T cells with a reconstituted NLRP3-I and THP1 macrophages.

370 293T cells were plated at a density of 100×10^3 in 24-well plates. Twenty-four hours post-plating sub-
371 confluent monolayers of 293T cells were infected with LV-EV or LV-E3a. Six hours post-infection cells were co-
372 transfected using the TransIT-X2® Dynamic Delivery System (Mirus Bio) with the plasmids encoding the
373 components of the NLRP3-I (Shi et al., 2016), followed by p-mCAT or p-EV transduction. Twenty-four hours
374 post-transfection, cells were washed two times with PBS, then cultured with or without the addition of 50 μM

375 MnTBAP. Cell lysates and culture supernatants were collected twelve hours post-treatment and centrifuged to
376 remove cell debris. Supernatant IL-1 β was quantified by ELISA (Abcam, ab197742).

377 THP-1 cells were plated at a density of 100×10^3 in 96-well plates. THP1 cells were infected with LV-EV
378 or LV-E3a. Six hours post-infection, THP1 cells were differentiated into macrophages with 50 ng/ml Phorbol 12-
379 myristate 13-acetate (PMA) overnight. After differentiation, cells were washed two times with PBS, and fresh
380 media was added with addition of 100 μ M MnTBAP or 10 μ M N-methyl-4-isoleucine-cyclosporin (NIM811). Nine
381 hours post-treatment with MnTBAP or one hour post-treatment with NIM811 THP1 macrophages were stimulated
382 with 100 ng/ml Lipopolysaccharides (LPS) and 2.5 mM of nigericin for nine hours. Supernatants were collected,
383 centrifuged, and the amount of supernatants IL-1 β measured by ELISA (Abcam, ab46052). THP1 cells stably
384 expressing LV-mCAT or control vector, were infected with LV-EV or LV-E3a, and 6 hours post-infection the THP1
385 cells were differentiated into macrophages, and supernatant IL-1 β quantified via ELISA.

386 QUANTIFICATION AND STATISTICAL ANALYSIS

387 Statistical analysis

388 One-way ANOVA was performed for statistical differences between three or more groups, followed by a
389 post hoc Tukey's HSD test to test for statistical differences. For studies that require a quantitative evaluation
390 between two groups, statistical significance was determined using unpaired two-tail student's t-test. All data are
391 reported as mean \pm standard error of the mean (SEM). All statistical analysis was done on GraphPad Prism
392 9.01. For student's t-test * = p < value 0.05, ** = p < value 0.01, *** = p < value 0.001, **** = p < value 0.0001).

393 SUPPLEMENTAL VIDEO, DATA, AND EXCEL TABLE TITLE AND LEGENDS

394 Non-Applicable

395 REFERENCES

- 401 1. Ajaz, S., McPhail, M.J., Singh, K.K., Mujib, S., Trovato, F.M., Napoli, S., and Agarwal, K. (2021).
402 Mitochondrial metabolic manipulation by SARS-CoV-2 in peripheral blood mononuclear cells of patients with
403 COVID-19. American Journal of Physiology. Cell Physiology 320, C57-C65.
- 404 2. Bagur, R., and Hajnóczky, G. (2017). Intracellular Ca(2+) sensing: its role in calcium homeostasis and
405 signaling. Mol. Cell. 66, 780-788.
- 406 3. Broz, P., and Dixit, V.M. (2016). Inflammasomes: mechanism of assembly, regulation and signalling. Nat
407 Rev Immunol 16, 407-420.
- 408 4. Cai, J., Chen, Y., Seth, S., Furukawa, S., Compans, R.W., and Jones, D.P. (2003). Inhibition of influenza
409 infection by glutathione. Free Radical Biology and Medicine 34, 928-936.
- 410 5. Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., Wang, T., Zhang, X., Chen, H., Yu, H., et al.
411 (2020). Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin.
412 Invest. 130, 2620-2629.
- 413 6. Chen, I.Y., Moriyama, M., Chang, M.F., and Ichinohe, T. (2019). Severe acute respiratory syndrome
414 coronavirus viroporin 3a activates the NLRP3 inflammasome. Frontiers in Microbiology 10, 50.
- 415 7. Chi, Y., Ge, Y., Wu, B., Zhang, W., Wu, T., Wen, T., Liu, J., Guo, X., Huang, C., Jiao, Y., et al. (2020). Serum
416 cytokine and chemokine profile in relation to the severity of coronavirus disease 2019 in China. J. Infect. Dis.
417 222, 746-754.
- 418 8. Csordás, G., Weaver, D., and Hajnóczky, G. (2018). Endoplasmic reticulum-mitochondrial contactology:
419 structure and signaling functions. Trends Cell Biol. 28, 523-540.

428 9. Denton, R.M. (2009). Regulation of mitochondrial dehydrogenases by calcium ions. *Biochim. Biophys. Acta.*
429 1787, 1309-1316.

430

431 10. Di Marco, G., Vallese, F., Jourde, B., Bergsdorf, C., Sturlese, M., De Mario, A., Techer-Etienne, V., Haasen,
432 D., Oberhauser, B., Schleeger, S., et al. (2020). A high-throughput screening identifies MICU1 targeting
433 compounds. *Cell Rep* 30, 2321-2331.e2326.

434

435 11. Dittmar, M., Lee, J.S., Whig, K., Segrist, E., Li, M., Kamalia, B., Castellana, L., Ayyanathan, K., Cardenas-
436 Diaz, F.L., Morrisey, E.E., et al. (2021). Drug repurposing screens reveal cell-type-specific entry pathways
437 and FDA-approved drugs active against SARS-CoV-2. *Cell Rep* 35, 108959.

438

439 12. Dong, E., Du, H., and Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real
440 time. *Lancet Infect. Dis.* 20, 533-534.

441

442 13. Ferreira, A.C., Soares, V.C., de Azevedo-Quintanilha, I.G., Dias, S., Fintelman-Rodrigues, N., Sacramento,
443 C.Q., Mattos, M., de Freitas, C.S., Temerozo, J.R., Teixeira, L., et al. (2021). SARS-CoV-2 engages
444 inflamasome and pyroptosis in human primary monocytes. *Cell Death Discovery* 7, 43.

445

446 14. Garozzo, A., Tempera, G., Ungheri, D., Timpanaro, R., and Castro, A. (2007). N-acetylcysteine synergizes
447 with oseltamivir in protecting mice from lethal influenza infection. *Int. J. Immunopathol. Pharmacol.* 20, 349-
448 354.

449

450 15. Geiler, J., Michaelis, M., Naczk, P., Leutz, A., Langer, K., Doerr, H.W., and Cinatl, J. (2010). N-acetyl-L-
451 cysteine (NAC) inhibits virus replication and expression of pro-inflammatory molecules in A549 cells infected
452 with highly pathogenic H5N1 influenza A virus. *Biochem. Pharmacol.* 79, 413-420.

453

454 16. Ghezzi, P., and Ungheri, D. (2004). Synergistic combination of N-acetylcysteine and ribavirin to protect from
455 lethal influenza viral infection in a mouse model. *Int. J. Immunopathol. Pharmacol.* 17, 99-102.

456

457 17. Gordon, D.E., Hiatt, J., Bouhaddou, M., Rezelj, V.V., Ulferts, S., Braberg, H., Jureka, A.S., Obernier, K., Guo,
458 J.Z., Batra, J., et al. (2020a). Comparative host-coronavirus protein interaction networks reveal pan-viral
459 disease mechanisms. *Science* 370, eabe9403.

460

461 18. Gordon, D.E., Jang, G.M., Bouhaddou, M., Xu, J., Obernier, K., White, K.M., O'Meara, M.J., Rezelj, V.V.,
462 Guo, J.Z., Swaney, D.L., et al. (2020b). A SARS-CoV-2 protein interaction map reveals targets for drug
463 repurposing. *Nature* 583, 459-468.

464

465 19. Han, Y., Zhang, H., Mu, S., Wei, W., Jin, C., Tong, C., Song, Z., Zha, Y., Xue, Y., and Gu, G. (2020). Lactate
466 dehydrogenase, an independent risk factor of severe COVID-19 patients: a retrospective and observational
467 study. *Aging* 12, 11245-11258.

468

469 20. Hover, S., Foster, B., Barr, J.N., and Mankouri, J. (2017). Viral dependence on cellular ion channels - an
470 emerging anti-viral target? *J Gen Virol* 98, 345-351.

471

472 21. Kern, D.M., Sorum, B., Mali, S.S., Hoel, C.M., Sridharan, S., Remis, J.P., Toso, D.B., Kotecha, A., Bautista,
473 D.M., and Brohawn, S.G. (2021). Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs. *Nat. Struct.
474 Mol. Biol.* 28, 573-582.

475

476 22. Liu, Z., Chen, O., Wall, J.B.J., Zheng, M., Zhou, Y., Wang, L., Ruth Vaseghi, H., Qian, L., and Liu, J. (2017).
477 Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. *Sci. Rep.* 7, 2193.

478

479 23. Lucas, C., Wong, P., Klein, J., Castro, T.B.R., Silva, J., Sundaram, M., Ellingson, M.K., Mao, T., Oh, J.E.,
480 Israelow, B., et al. (2020). Longitudinal analyses reveal immunological misfiring in severe COVID-19. *Nature*
481 584, 463-469.

482
483 24. Mandala, V.S., McKay, M.J., Shcherbakov, A.A., Dregni, A.J., Kocolouris, A., and Hong, M. (2020). Structure
484 and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. *Nat. Struct.
485 Mol. Biol.* 27, 1202-1208.

486
487 25. Márta, K., Hasan, P., Rodríguez-Prados, M., Paillard, M., and Hajnóczky, G. (2021). Pharmacological
488 inhibition of the mitochondrial Ca(2+) uniporter: relevance for pathophysiology and human therapy. *Journal
489 of molecular and cellular cardiology* 151, 135-144.

490
491 26. Melov, S., Doctrow, S.R., Schneider, J.A., Haberson, J., Patel, M., Coskun, P.E., Huffman, K., Wallace, D.C.,
492 and Malfroy, B. (2001). Lifespan extension and rescue of spongiform encephalopathy in superoxide
493 dismutase 2 nullizygous mice treated with superoxide dismutase-catalase mimetics. *Journal of Neuroscience*
494 21, 8348-8353.

495
496 27. Melov, S., Schneider, J.A., Day, B.J., Hinerfeld, D., Coskun, P., Mirra, S.S., Crapo, J.D., and Wallace, D.C.
497 (1998). A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase.
498 *Nat. Genet.* 18, 159-163.

499
500 28. Minakshi, R., and Padhan, K. (2014). The YXXΦ motif within the severe acute respiratory syndrome
501 coronavirus (SARS-CoV) 3a protein is crucial for its intracellular transport. *Virol. J.* 11, 75.

502
503 29. Nencioni, L., Iuvara, A., Aquilano, K., Ciriolo, M.R., Cozzolino, F., Rotilio, G., Garaci, E., and Palamara, A.T.
504 (2003). Influenza A virus replication is dependent on an antioxidant pathway that involves GSH and Bcl-2.
505 *FASEB Journal* 17, 758-760.

506
507 30. Nieto-Torres, J.L., DeDiego, M.L., Verdiá-Báguena, C., Jimenez-Guardeño, J.M., Regla-Nava, J.A.,
508 Fernandez-Delgado, R., Castaño-Rodriguez, C., Alcaraz, A., Torres, J., Aguiella, V.M., et al. (2014). Severe
509 acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and
510 pathogenesis. *PLoS Pathog.* 10, e1004077.

511
512 31. Nieto-Torres, J.L., Verdiá-Báguena, C., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Castaño-Rodriguez, C.,
513 Fernandez-Delgado, R., Torres, J., Aguiella, V.M., and Enjuanes, L. (2015). Severe acute respiratory
514 syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. *Virology*
515 485, 330-339.

516
517 32. Nieva, J.L., Madan, V., and Carrasco, L. (2012). Viroporins: structure and biological functions. *Nat. Rev.
518 Microbiol.* 10, 563-574.

519
520 33. Pan, P., Shen, M., Yu, Z., Ge, W., Chen, K., Tian, M., Xiao, F., Wang, Z., Wang, J., Jia, Y., et al. (2021).
521 SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. *Nat.
522 Commun.* 12, 4664.

523
524 34. Potluri, P., Procaccio, V., Scheffler, I.E., and Wallace, D.C. (2016). High throughput gene complementation
525 screening permits identification of a mammalian mitochondrial protein synthesis (p-) mutant. *Biochim.
526 Biophys. Acta.* 1857, 1336-1343.

527
528 35. Qu, Y., Wang, X., Zhu, Y., Wang, W., Wang, Y., Hu, G., Liu, C., Li, J., Ren, S., Xiao, M.Z.X., et al. (2021).
529 ORF3a-mediated incomplete autophagy facilitates severe acute respiratory syndrome coronavirus-2
530 replication. *Frontiers in cell and developmental biology* 9, 716208.

531
532 36. Rodrigues, T.S., de Sá, K.S.G., Ishimoto, A.Y., Becerra, A., Oliveira, S., Almeida, L., Gonçalves, A.V.,
533 Perucello, D.B., Andrade, W.A., Castro, R., et al. (2021). Inflammasomes are activated in response to SARS-
534 CoV-2 infection and are associated with COVID-19 severity in patients. *The Journal of Experimental Medicine*
535 218, e20201707.

536
537 37. Schriner, S.E., Linford, N.J., Martin, G.M., Treuting, P., Ogburn, C.E., Emond, M., Coskun, P.E., Ladiges,
538 W., Wolf, N., Van Remmen, H., et al. (2005). Extension of murine life span by overexpression of catalase
539 targeted to mitochondria. *Science* 308, 1909-1911.

540
541 38. Shi, H., Wang, Y., Li, X., Zhan, X., Tang, M., Fina, M., Su, L., Pratt, D., Bu, C.H., Hildebrand, S., et al. (2016).
542 NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome
543 component. *Nat. Immunol.* 17, 250-258.

544
545 39. Shi, X., Shi, Z., Huang, H., Zhu, H., Zhou, P., Zhu, H., and Ju, D. (2014). Ability of recombinant human
546 catalase to suppress inflammation of the murine lung induced by influenza A. *Inflammation* 37, 809-817.

547
548 40. Shi, X.L., Shi, Z.H., Huang, H., Zhu, H.G., Zhou, P., and Ju, D. (2010). Therapeutic effect of recombinant
549 human catalase on H1N1 influenza-induced pneumonia in mice. *Inflammation* 33, 166-172.

550
551 41. Siu, K.L., Yuen, K.S., Castano-Rodriguez, C., Ye, Z.W., Yeung, M.L., Fung, S.Y., Yuan, S., Chan, C.P.,
552 Yuen, K.Y., Enjuanes, L., et al. (2019). Severe acute respiratory syndrome coronavirus ORF3a protein
553 activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. *FASEB Journal*
554 33, 8865-8877.

555
556 42. Szymczak-Workman, A.L., Vignali, K.M., and Vignali, D.A. (2012). Verification of 2A peptide cleavage. *Cold*
557 *Spring Harbor Protoc* 2012, 255-257.

558
559 43. Tong, J., Schriner, S.E., McCleary, D., Day, B.J., and Wallace, D.C. (2007). Life extension through
560 neurofibromin mitochondrial regulation and antioxidant therapy for Neurofibromatosis-1 in *Drosophila*
561 *melanogaster*. *Nat. Genet.* 39, 476-485.

562
563 44. Tóth, E., Maléth, J., Závogyán, N., Fanczal, J., Grassalkovich, A., Erdős, R., Pallagi, P., Horváth, G., Tretter,
564 L., Bílant, E.R., et al. (2019). Novel mitochondrial transition pore inhibitor N-methyl-4-isoleucine cyclosporin
565 is a new therapeutic option in acute pancreatitis. *The Journal of Physiology* 597, 5879-5898.

566
567 45. Verdiá-Báguena, C., Aguilella, V.M., Queralt-Martín, M., and Alcaraz, A. (2021). Transport mechanisms of
568 SARS-CoV-E viroporin in calcium solutions: Lipid-dependent anomalous mole fraction effect and regulation
569 of pore conductance. *Biochimica et biophysica acta. Biomembranes* 1863, 183590.

570
571 46. Verdiá-Báguena, C., Nieto-Torres, J.L., Alcaraz, A., DeDiego, M.L., Torres, J., Aguilella, V.M., and Enjuanes,
572 L. (2012). Coronavirus E protein forms ion channels with functionally and structurally-involved membrane
573 lipids. *Virology* 432, 485-494.

574
575 47. Wen, W., Su, W., Tang, H., Le, W., Zhang, X., Zheng, Y., Liu, X., Xie, L., Li, J., Ye, J., et al. (2020). Immune
576 cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. *Cell Discov.* 6, 31.

577
578 48. West, A.P., and Shadel, G.S. (2017). Mitochondrial DNA in innate immune responses and inflammatory
579 pathology. *Nat Rev Immunol* 17, 363-375.

580
581 49. Xia, B., Shen, X., He, Y., Pan, X., Liu, F.L., Wang, Y., Yang, F., Fang, S., Wu, Y., Duan, Z., et al. (2021).
582 SARS-CoV-2 envelope protein causes acute respiratory distress syndrome (ARDS)-like pathological
583 damages and constitutes an antiviral target. *Cell Res.* 31, 847-860.

584
585 50. Xian, H., Liu, Y., Rundberg Nilsson, A., Gatchalian, R., Crother, T.R., Tourtellotte, W.G., Zhang, Y., Aleman-
586 Muench, G.R., Lewis, G., Chen, W., et al. (2021). Metformin inhibition of mitochondrial ATP and DNA
587 synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. *Immunity* 54, 1463-
588 1477.e1411.

589

590 51. Yang, L., Xie, X., Tu, Z., Fu, J., Xu, D., and Zhou, Y. (2021). The signal pathways and treatment of cytokine
591 storm in COVID-19. *Signal Transduct. Target. Ther.* 6, 255.

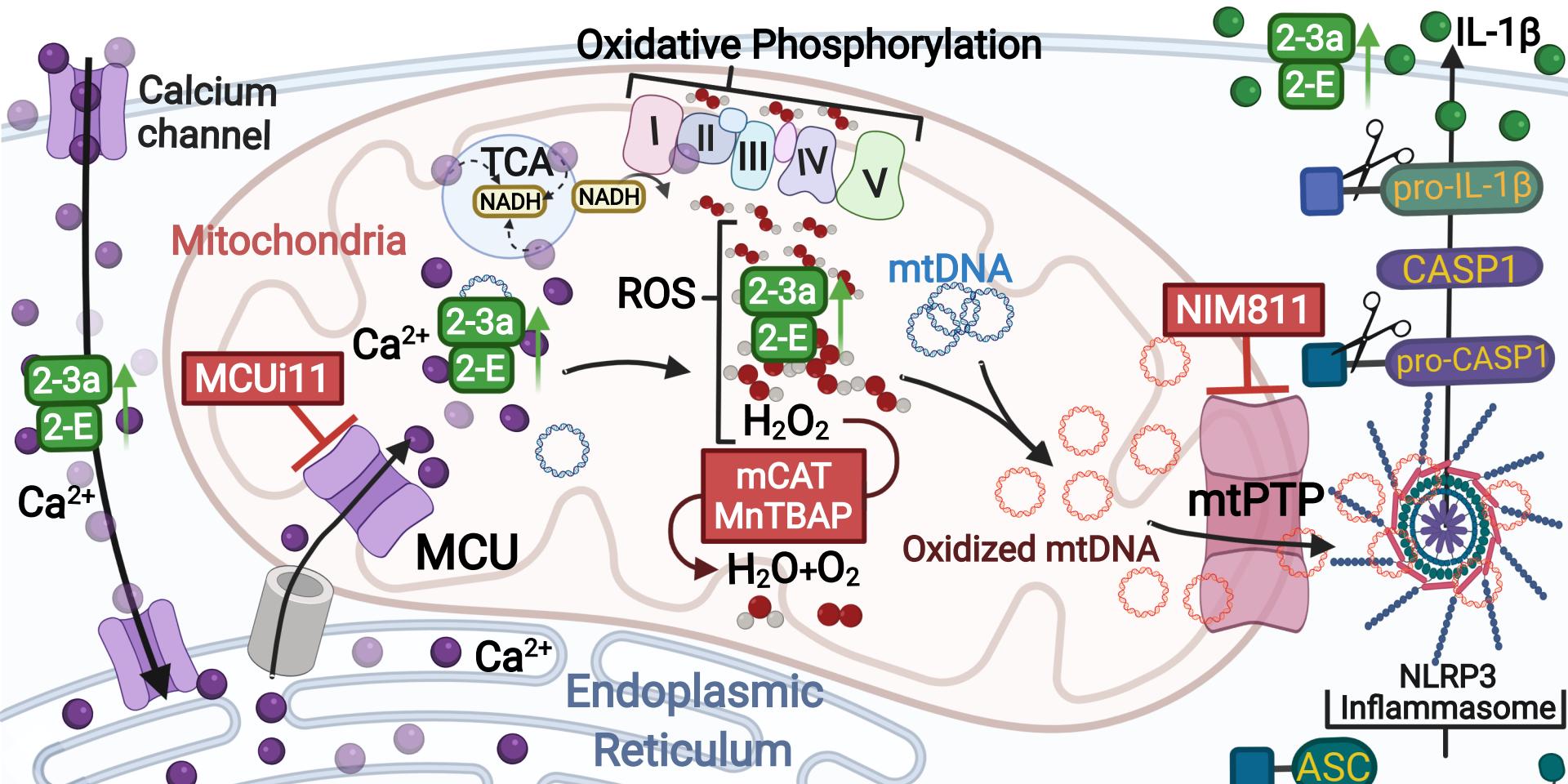
592

593 52. Yue, Y., Nabar, N.R., Shi, C.S., Kamenyeva, O., Xiao, X., Hwang, I.Y., Wang, M., and Kehrl, J.H. (2018).
594 SARS-Co coronavirus open reading frame-3a drives multimodal necrotic cell death. *Cell Death Dis.* 9, 904.

595

596 53. Zhang, M., He, Q., Chen, G., and Li, P.A. (2020). Suppression of NLRP3 inflammasome, pyroptosis, and cell
597 death by NIM811 in rotenone-exposed cells as an in vitro model of Parkinson's disease. *Neuro-degenerative
598 diseases* 20, 73-83.

599


600 54. Zhang, X., Liu, Y., Liu, J., Bailey, A.L., Plante, K.S., Plante, J.A., Zou, J., Xia, H., Bopp, N.E., Aguilar, P.V.,
601 et al. (2021). A trans-complementation system for SARS-CoV-2 recapitulates authentic viral replication
602 without virulence. *Cell* 84, 2229-2238.e2213.

603

604 55. Zhong, Z., Liang, S., Sanchez-Lopez, E., He, F., Shalapour, S., Lin, X.J., Wong, J., Ding, S., Seki, E.,
605 Schnabl, B., et al. (2018). New mitochondrial DNA synthesis enables NLRP3 inflammasome activation.
606 *Nature* 560, 198-203.

607

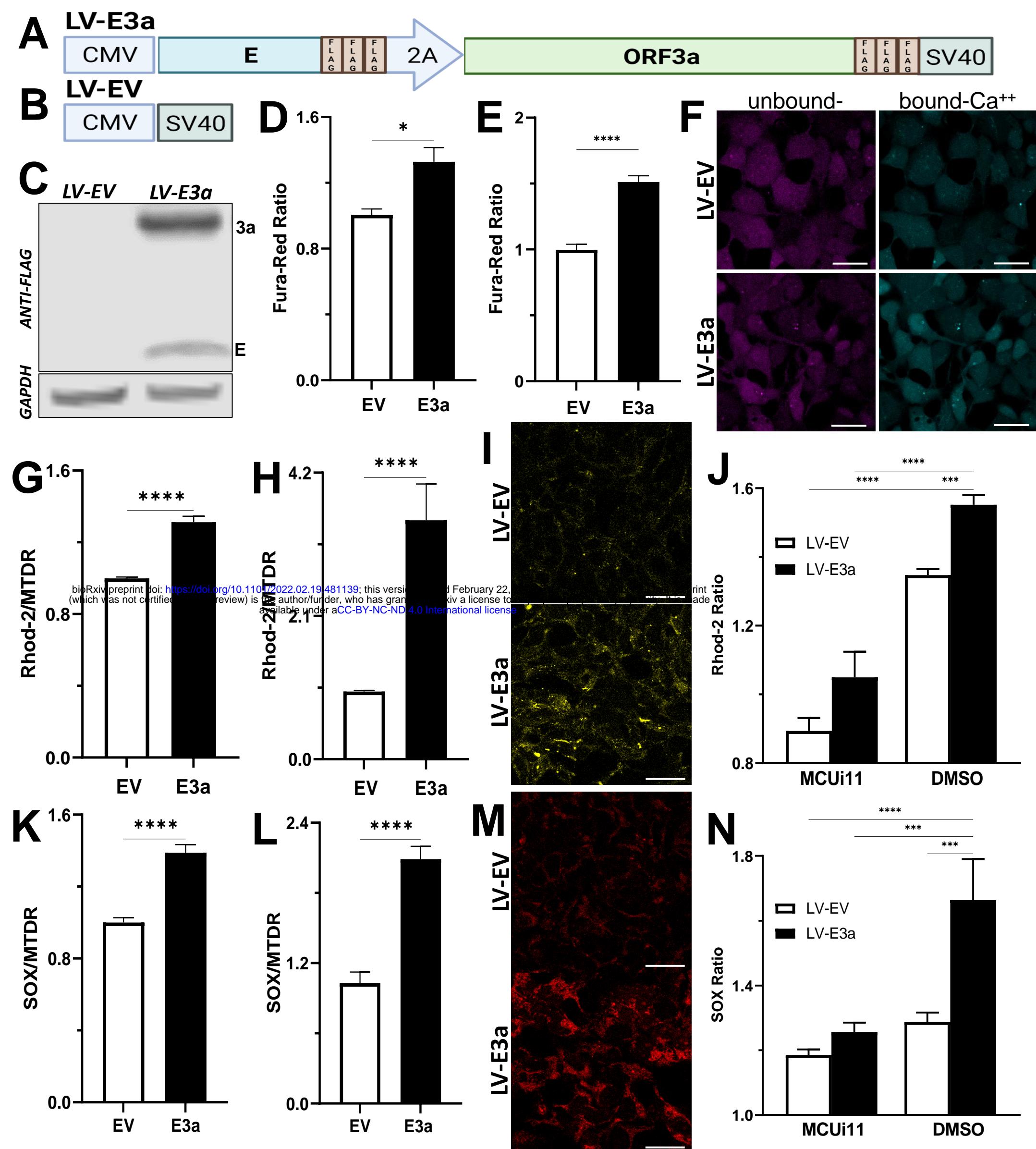
SARS-COV-2 VIROPORINS ACTIVATE THE NLRP3-INFLAMMASOME VIA THE MITOCHONDRIAL PERMEABILITY TRANSITION PORE

K MCU = Mitochondrial calcium uniporter

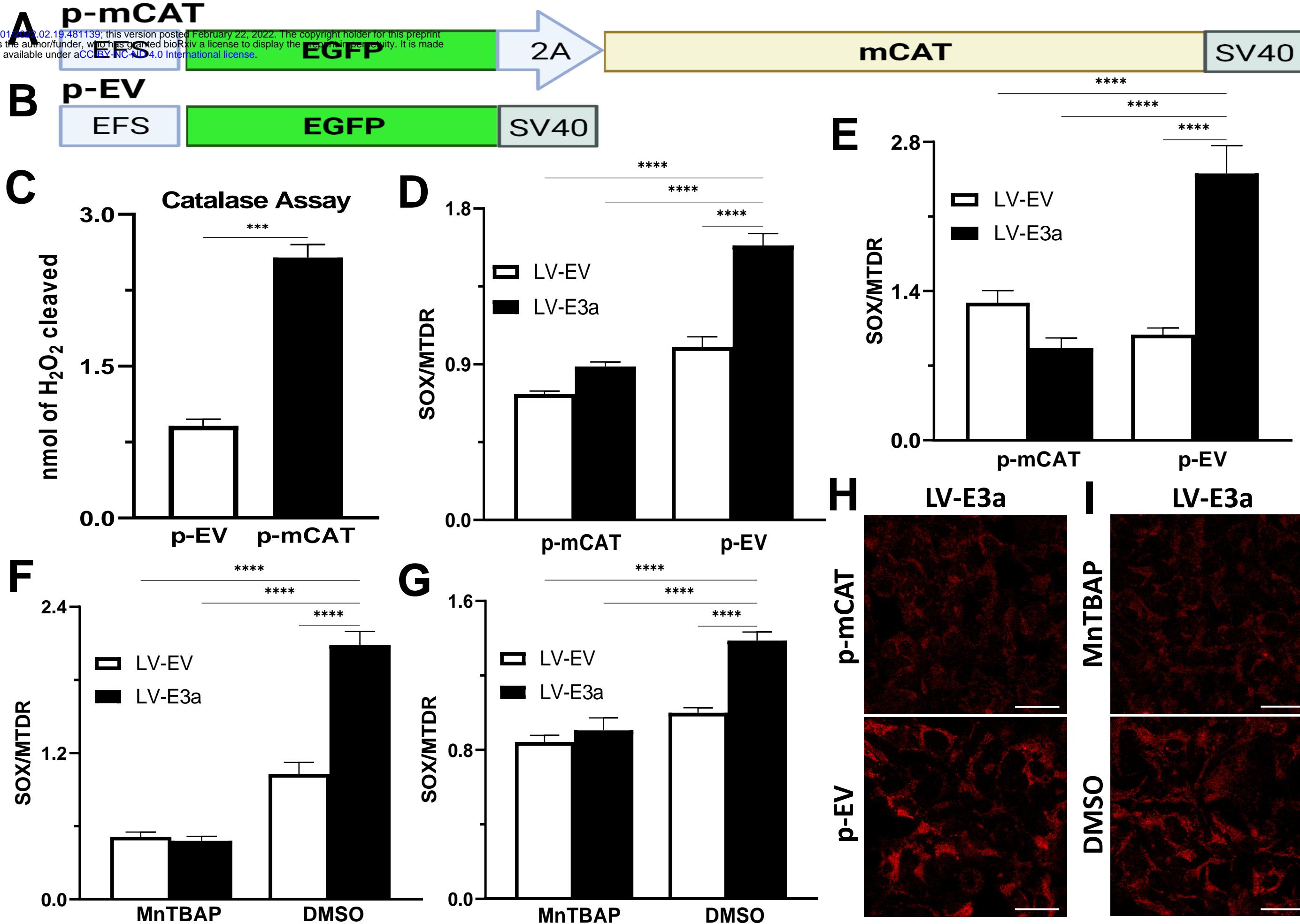
E mtDNA = Mitochondrial DNA

Y ROS = Reactive Oxygen Species

mtPTP = Mitochondrial permeability transition pore


TCA = Tricarboxylic Acid Cycle

D MCUi11 = MCU inhibitor 11


R mCAT = Mitochondrial-targeted catalase

U MnTBAP = Superoxide dismutase mimetic

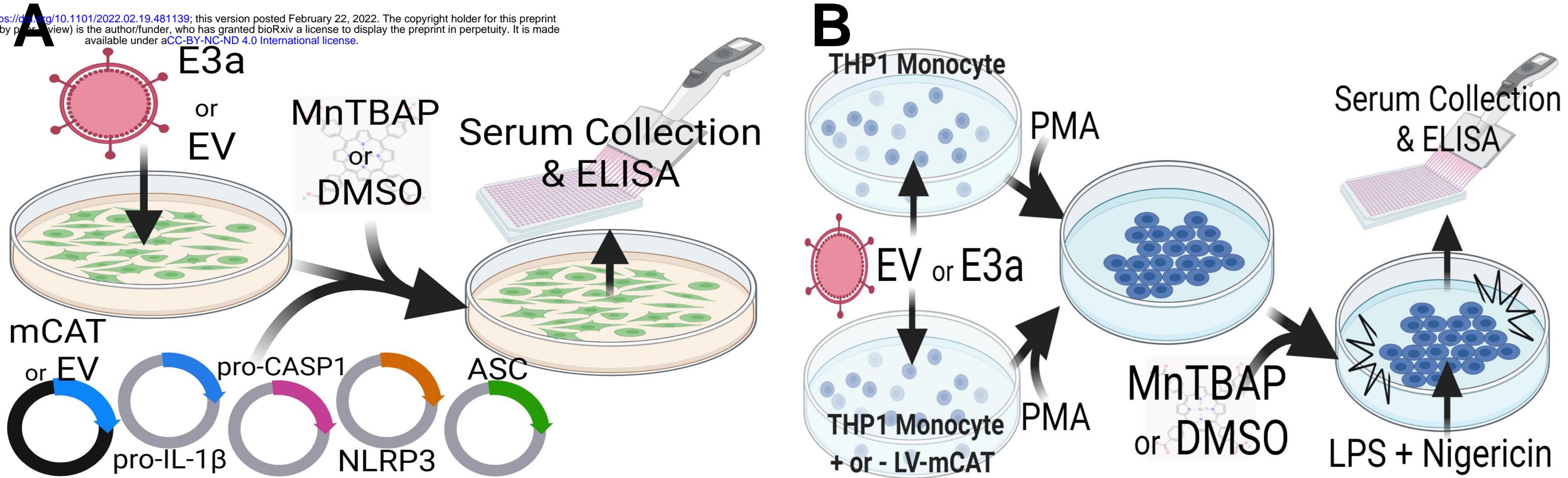

G NIM811 = N-methyl-4-isoleucine cyclosporin

Figure 1. Expression of 2-E+2-3a induces mROS production by elevating mitochondrial Ca⁺⁺ levels.

Figure 2. Expression of mCAT or treatment with the mROS scavenger MnTBAP antioxidant defenses blocks 2-E+2-3a induced mROS.

Figure 3. mROS and the mtPTP are required for activation of the NLRP3-I by the 2-E+2-3a viroporin