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Abstract 

When individual subjects are imaged with multiple modalities, biological 

information is present not only within each modality, but also between modalities – that 

is, in how modalities covary at the voxel level. Previous studies have shown that local 

covariance structures between modalities, or intermodal coupling (IMCo), can be 

summarized for two modalities, and that two-modality IMCo reveals otherwise 

undiscovered patterns in neurodevelopment and certain diseases. However, previous 

IMCo methods are based on the slopes of local weighted linear regression lines, which 

are inherently asymmetric and limited to the two-modality setting. Here, we present a 

generalization of IMCo estimation which uses local covariance decompositions to define 

a symmetric, voxel-wise coupling coefficient that is valid for two or more modalities. We 

use this method to study coupling between cerebral blood flow, amplitude of low 

frequency fluctuations, and local connectivity in 803 subjects ages 8 through 22. We 

demonstrate that coupling is spatially heterogeneous, varies with respect to age and 

sex in neurodevelopment, and reveals patterns that are not present in individual 

modalities. As availability of multi-modal data continues to increase, principal-

component-based IMCo (pIMCo) offers a powerful approach for summarizing 

relationships between multiple aspects of brain structure and function. An R package for 

estimating pIMCo is available at: https://github.com/hufengling/pIMCo. 
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Intermodal coupling; neurodevelopment; MRI; connectivity; resting state fMRI; 

cerebral blood flow 
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1 Introduction 

There is increased availability of multi-modality neuroimaging data on individual 

subjects, with each modality containing unique information about brain structure or 

function. Such data allow us to explore patterns in individual modalities as well as 

patterns in the relationships between modalities, which we call intermodal coupling 

(IMCo), at global, regional, or local resolutions (Baller et al., 2021; Gu et al., 2021; 

Honey et al., 2009; Shokri-Kojori et al., 2019; Tak et al., 2015; Uddin, 2013; Valcarcel et 

al., 2018a, 2018b; Vandekar et al., 2016). The progress made by these IMCo studies 

have transformed our understanding of the brain, and it suggests that advancements in 

the methodology for studying IMCo have the potential to further enable such insights. 

On the global scale, intermodal relationships have long been of interest. For 

example, structural connectivity (SC) and functional connectivity (FC) are strongly 

correlated in adults, but the relationship is less straightforward in children (Uddin, 2013). 

Gu et al. built on this global understanding of SC-FC coupling by exploring higher-

resolution regional relationships – they found SC-FC coupling to be strongest in visual 

and subcortical areas with high SC (Gu et al., 2021). 

In addition to structure-function relationships, regional relationships between 

metabolism and brain function have also been explored. In the study of energy 

utilization in the brain, Shokri-Kojori et al. showed that regional correspondence 

between cerebral glucose metabolism and fluctuations in blood oxygenation not only 

differed between brain networks in healthy patients but was also sensitive to differences 

between patients with acute or chronic alcohol use (Shokri-Kojori et al., 2019). Of note, 

these relationships were not identifiable by looking at individual modalities alone. 

Another regional study on metabolism-function coupling identified significant 

associations between cerebral blood flow (CBF) and strength of functional connectivity 

in default, frontoparietal, and primary sensory-motor networks. No significant 

association was found between CBF and functional connectivity strength in regions 

outside of these networks (Tak et al., 2015). 

On the sub-regional local scale, studies from our group on coupling between 

cortical thickness and sulcal depth have suggested the cortical sheet is generally 
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thinner in sulcal locations than in gyral locations and that this relationship was more 

spatially heterogeneous than previously described (Vandekar et al., 2016). A separate 

study exploring local IMCo between CBF and resting-state amplitude of low-frequency 

fluctuations (ALFF) showed that age-related declines in this measure of neurovascular 

coupling were most pronounced during mid-adolescence and were enriched in the 

dorsal attention network (Baller et al., 2021). There were also differences in CBF-ALFF 

coupling between males and females which were enriched in the frontoparietal network. 

In these local IMCo studies, each vertex-wise coupling value was defined as the 

slope of the weighted linear regression (WLR) best-fit line for that local neighborhood 

between two modalities. However, because this method of calculating IMCo is based on 

regression slopes, it does not take into account vertex-level correlation and also suffers 

from inherent asymmetry, where coupling values depend on which modality is defined 

as the independent variable in the WLR. This asymmetry necessitates arbitrary, yet 

influential, choices when it comes to analysis and limits straightforward interpretation. 

This measure for IMCo is also limited to only two modalities, so the study of coupling 

between more than two modalities using this method would require analysis of all 

pairwise couplings. As the number of total modalities increases, this approach can 

become challenging to interpret. Additionally, analysis of all pairwise couplings may not 

parsimoniously describe the overall degree of coupling across all modalities. 

In response to these limitations, we propose a principal component analysis 

(PCA) based method for estimating IMCo that uses local covariance decomposition to 

define symmetric voxel-wise coupling values valid for two or more modalities. This 

method reduces complex local covariance structures into a single value, thus providing 

an easily interpretable value that characterizes the strength of coupling in settings with 

two modalities. It also allows for simplified study of more complex local covariance 

structures in settings with more than two modalities. 

To demonstrate its sensitivity to biologically relevant patterns, we show that PCA-

based IMCo (pIMCo) uncovers differences in three-modality coupling between CBF, 

ALFF, and regional homogeneity (ReHo) with respect to age and sex in youth. We 

chose these modalities because local cortical coupling between vascular organization 
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and resting state fluctuations has been previously characterized. Additionally, while 

resting state fluctuations can be thought of as a more global property, regional 

homogeneity is more related to local connectivity. Thus, we were interested in 

understanding the coupling between cerebral blood flow and both long-range 

fluctuations and local connectivity. 

2 Methods 

2.1 Subjects 

We included 803 subjects (340 males) from ages 8-22 (mean = 15.6; sd = 3.3) 

from the Philadelphia Neurodevelopmental Cohort (PNC) (Satterthwaite et al., 2014). Of 

the 1,601 PNC subjects who underwent neuroimaging, health screening as well as 

automated and manual image quality screening were performed. We excluded subjects 

in the following order: low T1-weighted MRI quality (n = 61), low resting-state fMRI 

(rfMRI) quality (n = 450), and low arterial spin labeling (ASL) quality (n = 54). Of the 

remaining subjects, we then excluded those meeting any of the following health 

exclusion criteria (n = 205): history of psychoactive medication, history of inpatient 

psychiatric hospitalization, or history of medical disorders that could impact brain 

function. Finally, ASL scans for which high-quality partial volume correction could not be 

performed were excluded (n = 28). This resulted in the final set of 803 subjects used for 

this study. 

The Institutional Review Boards of the University of Pennsylvania and the 

Children’s Hospital of Pennsylvania approved all study procedures. All adult study 

subjects gave written informed consent; for subjects under the age of 18, parents or 

guardians provided written informed consent and subjects provided assent. Additional 

details of the PNC study have been previously described (Gur et al., 2020; Satterthwaite 

et al., 2014). 

2.2 Image acquisition 

All PNC imaging was acquired using a single 3T Siemens Tim Trio scanner with 

a 32-channel head coil. To minimize motion, subjects’ heads were stabilized using one 
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foam pad over each ear and one foam pad over the top of the head. Image acquisition 

procedures have been previously described (Gur et al., 2020; Satterthwaite et al., 

2014). 

T1-weighted structural images were used for alignment of all scans into a 

common space. T1-weighted images were acquired using a 3D-encoded magnetization-

prepared, rapid-acquisition gradient echo (MPRAGE) T1-weighted sequence with the 

following settings: �� = 1810 ms; �� = 3.51 ms; FoV = 180 × 240 mm; matrix size = 192 

x 256; number of slices = 160; slice thickness = 1 mm; inter-slice gap = 0 mm; 

resolution = 0.9375 × 0.9375 × 1 mm. Cerebral blood flow (CBF) was estimated from a 

pseudo-continuous arterial spin labeling (pcASL) sequence with a spin-echo echoplanar 

readout and the following settings: �� = 4000 ms; �� = 15 ms; FoV = 220 × 220 mm; 

matrix size = 96 x 96; number of slices = 20; slice thickness = 5 mm; inter-slice gap = 1 

mm; resolution = 2.3 x 2.3 x 6 mm; 80 volumes. Maps of amplitude of low frequency 

fluctuations (ALFF) and regional homogeneity (ReHo) were estimated from six minutes 

of task-free functional data from a blood-oxygen-level-dependent (BOLD) weighted 2D 

EPI sequence with the following settings: �� = 3000 ms; �� = 32 ms; FoV = 192 × 192 

mm; matrix size = 64 x 64; number of slices = 46; slice thickness = 3 mm; inter-slice gap 

= 0 mm; resolution = 3 mm isotropic; 124 volumes. Subjects were instructed to stay 

awake, keep their eyes open, fixate on a displayed fixation cross, and remain still. 

2.3 Image processing 

Image processing of T1-weighted structural images, pcASL scans, and rfMRI 

scans have been previously described (Baller et al., 2021; Gur et al., 2020). They are 

summarized here in brief. T1-weighted structural images were processed using tools 

from Advanced Normalization Tools (ANTs) (Tustison et al., 2014). pcASL and rfMRI 

scans were processed using an eXtensible Connectivity Pipeline (XCP) which included 

tools from FSL and AFNI (Ciric et al., 2018; Cox, 1996; Jenkinson et al., 2012). 

CBF was quantified from control-label pairs using the following equation: 

� � �������

����	
��
����

, 
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where f is CBF, �� is the difference in signal between control and label 

acquisitions, � is the longitudinal relaxation rate of blood, � is the labeling time, � is the 

post-labeling delay, 	 is the labeling efficiency, 
 is the blood-tissue-water partition 

coefficient, and �
 is approximated by the control image intensity. We set 	 � 0.85, 


 � 0.9�/��, � � 1.6�, � � 1.2�. Partial volume correction was performed using 

Bayesian Inference for Arterial Spin Labeling MRI (BASIL) (Chappell et al., 2011; 

Chappell et al., 2009). 

For rfMRI processing, the XCP pipeline included: 1) field inhomogeneity 

correction with FSL FUGUE, 2) removal of initial rfMRI volumes, 3) alignment of 

volumes within the time series to a selected reference volume using FSL MCFLIRT, 4) 

interpolation of intensity outliers with AFNI 3dDespike, and 5) demeaning and removal 

of linear or quadratic trends. Images were then denoised using a 36-parameter 

confound regression model that has been shown to minimize impact of motion artifact 

(Ciric et al., 2017). Finally, BOLD-weighted time series as well as artifactual model time 

series were filtered using a first-order Butterworth filter with a passband between 0.01 

and 0.08 Hertz. 

Voxel-wise ALFF was defined as the sum of frequency bins between 0.01 and 

0.08 Hertz using a Fourier transform of the time-domain signal (Yang et al., 2007). 

Voxel-wise ReHo was defined as Kendall’s coefficient of concordance computed over 

the rfMRI time series in each voxel’s 26-voxel local neighborhood (Zang et al., 2004). 

Voxel-wise maps were smoothed with a 6mm full width at half maximum (FWHM) kernel 

to improve signal-to-noise ratio. CBF, ALFF, and ReHo images were co-registered to 

the the T1-weighted structural image using boundary-based registration and then 

normalized to a custom adolescent template using the top-performing SyN registration 

provided by ANTs (Avants et al., 2011; Ciric et al., 2021; Greve and Fischl, 2009). 

Finally, a gray matter mask was generated as the intersection between a gray matter 

mask from T1-weighted images with 90% coverage over all subjects and overall 

coverage masks from registered pcASL and rfMRI scans. 
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2.4 Methodology for estimating pIMCo 

For each subject, we calculated voxel-wise coupling between CBF, ALFF, and 

ReHo images to produce one pIMCo image per subject. The full pIMCo estimation 

pipeline is summarized in Figure 1. First, we applied the gray matter mask to each of 

the three modalities. Then, within each masked modality, we globally scaled intensities 

to a mean of 0 and a variance of 1. This scaling is necessary because 

eigendecomposition is later performed on local covariance matrices; if modalities are 

defined on drastically different scales, decomposition outputs would reflect differences 

in scale between modalities rather than local covariance structures. Next, for each 

voxel, we extracted local neighborhoods from each of the three modalities and weighted 

voxels within these local neighborhoods proportional to a Gaussian kernel over their 

Euclidean distances from the central voxel – in our study, we used FWHM = 3, which 

corresponds to 7x7x7 voxel (14x14x14 mm) local neighborhoods and a standard 

deviation of 1.62 mm for the Gaussian kernel. Then, we calculated the 3x3 weighted 

covariance matrix between the neighborhoods, performed eigendecomposition on it, 

and extracted the proportion of variance explained by the first eigenvalue. Once all the 

voxel-wise proportional first eigenvalues were extracted, we scaled these values such 

that their theoretical range was �0,1� and performed a logit transformation. While such a 

transformation makes the coupling value more challenging to interpret, it emphasizes 

extreme values of coupling and changes the domain of coupling values from � 

�
, 1� to 

��∞,∞ , where � is the total number of modalities, in order to improve expected 

behavior with post-hoc voxel-wise statistical analyses. This resulted in our voxel-level 

pIMCo image for that subject. For any particular voxel in that image, a large value 

suggests that the voxel’s local covariance matrix across modalities could be well-

summarized in a single dimension while a small value suggests multiple dimensions 

would be necessary to characterize the covariance structure. 

For reference, in the three-modality setting, coupling values of -2, 0, and 2 

correspond to the first eigenvector explaining 41%, 67%, and 92% of the total variance 

in that local neighborhood, respectively. In the two-modality setting, coupling values of -
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2, 0, and 2 correspond to the first eigenvector explaining 56%, 75%, and 94% of the 

total variance in that local neighborhood, respectively. 

 

Figure 1: Step-by-step diagram of pIMCo estimation pipeline as described in the 
Methods. Coupling images are generated from intermodal images for each subject 
individually. pIMCo estimation is performed at each voxel location across subject-
specific images. 

2.5 Voxel-wise statistical analysis 

We created descriptive coupling maps by taking the means and variances across 

all 803 subjects’ pIMCo values at each voxel location in volumetric space. We then 
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projected these mean and variance images to the cortical surface using PySurfer for 

visualization of spatial heterogeneity and cortical patterns (Waskom et al., 2020). 

To investigate the biological relevance of pIMCo, we used linear regression at 

each voxel to explore whether coupling was associated with age or sex. In all linear 

regressions, we controlled for in-scanner motion for both ASL and rfMRI scans. To 

account for multiple comparisons in these voxel-level tests, we controlled the false 

discovery rate at 5% (Benjamini and Hochberg, 1995). Then, we created binary 

thresholded masks indicating which voxels displayed a significant effect for each of age 

and sex. For this and following analyses, we performed identical modeling of each of 

the three modalities individually to explore whether age and sex effects were present 

and corresponded to the observed associations with pIMCo. 

2.6 Spin testing 

To visualize the extent of voxels where coupling was associated with age and 

sex, we counted the proportion of voxels with statistically significant age or sex effects 

in each of the Yeo 7 functional networks on the cortex as well as in subcortical regions 

in the Automated Anatomical Labeling (AAL) atlas (Thomas Yeo et al., 2011; Tzourio-

Mazoyer et al., 2002). 

Next, we tested whether the proportion of significant voxels in each functional 

network was enriched when compared to the proportion of significant voxels overall. 

Because there is an underlying spatial distribution of significant voxels, we used the 

spin test (Alexander-Bloch et al., 2018). Briefly, the spin test is a permutation-inspired 

testing procedure that rotates the FreeSurfer sphere randomly to create an underlying 

null distribution that preserves spatial patterns. The null hypothesis is that there is no 

spatial enrichment of significant p-values in the specified functional network compared 

to across the cortex overall. In our study, we estimated the null distribution over 2,000 

permutations – for each permutation, we recorded the Jaccard similarity index between 

the thresholded p-value map and each of the Yeo 7 networks. Finally, for each network, 

we calculated the p-value as the proportion of null Jaccard similarity indices equal to or 

greater than the observed Jaccard similarity index. 
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2.7 Code and data availibility 

An R package for calculating pIMCo images is available at: 

https://github.com/hufengling/pIMCo. All code for analysis is available at: 

https://github.com/hufengling/IMCo_analyses. The following software and packages 

were used for pre-processing, pIMCo calculation, or analysis – R Core Team (2021); 

Wickham (2019); Xie (2021a); Xie (2021b); Allaire et al. (2021); Xie (2016); Wickham et 

al. (2019); Muschelli (2021a); Avants (2020); Kandel et al. (2020); Müller (2020); Fischl 

(2012); Schäfer (2021); Jenkinson et al. (2012); Muschelli et al. (2015); Ren (2021); 

Muschelli (2021b); Yushkevich et al. (2006). 

PNC data are publicly available in raw format at 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2. 

3 Results 

3.1 Coupling varies across the cortical surface and is increased in 
discrete regions, bilaterally 

We calculated voxel-wise mean and variance maps of coupling values to 

characterize spatial patterns in CBF-ALFF-ReHo coupling and visualized these on the 

cortical surface. Throughout the cortical surface, all voxels, on average, showed strong 

coupling, and voxels with stronger average coupling also tended to have higher 

variance between subjects (Pearson correlation = 0.69). The average voxel-wise mean 

coupling value was 0.99 (sd = 0.37; range = �0.27,3.30�). The average voxel-wise 

variance was 0.91 (sd = 0.20; range = �0.45,2.64�). 

Visual comparison of voxel-wise descriptive maps with the Desikan-Killiany 

cortical atlas (Desikan et al., 2006) suggested that coupling is especially strong in the 

following regions, bilaterally: superior frontal gyrus, paracentral gyrus, caudal anterior 

cingulate, posterior cingulate, isthmus cingulate, pericalcarine, lateral occipital, and 

insula (Figure 2). Comparing to the Yeo 7 functional networks, areas of strong coupling 

are observed primarily in the frontoparietal (p = 0.0125) and default networks (p = 

0.039; Figure 3). 
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These voxel-wise descriptive maps of coupling showed unique information when 

compared to the descriptive maps of each of the individual modalities (Supplementary 

Figure S1). 

 

Figure 2: Coupling values are spatially heterogeneous across the cortical surface. A) 
Voxel-wise means across subjects of cortical coupling values between CBF, ALFF, and 
ReHo. Larger values indicate stronger coupling. B) Voxel-wise variances across 
subjects of cortical coupling values between CBF, ALFF, and ReHo. 
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Figure 3: Proportion of voxels in AAL subcortical regions and Yeo 7 cortical networks 
that showed significant coupling-age and coupling-sex associations when in-scanner 
motion was included as a covariate (FDR corrected p < 0.05). Spin test was performed 
for all Yeo 7 networks; significant p-values are reported (p < 0.05). 

3.2 CBF-ALFF-ReHo coupling evolves with age throughout gray matter 
structures 

Linear associations between strength of coupling and age were present in 

subcortical structures and cortical networks (Figure 3; corrected p < 0.05). Figure 4 

shows an example of such an association between coupling and age as well as 

individual modalities and age at one voxel in the default network. In subcortical 

structures, age-related changes in CBF-ALFF-ReHo coupling occurred primarily in the 

caudate and pallidum, though such changes were also common in the hippocampus, 

putamen, and thalamus. 

In cortical networks, coupling and age associations were rare in all networks 

except the frontoparietal and default networks (Figure 5). These two networks were also 

 

o 
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the networks in which the average strength of coupling across subjects appeared to be 

highest (Figure 2). Spin testing between functional networks and age-related changes in 

coupling showed enrichment of coupling and age associations in the frontoparietal (p = 

0.013) and default networks (p = 0.039). 

Figure 4: Example of associations between individual modalities and age as well as 
associations between coupling and age at a single voxel in the default network. Each 
point represents the value at that voxel for one subject. Best-fit lines from univariate 
linear regression are shown. 

 in 
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Figure 5: A) Thresholded maps of voxels with significant coupling associations with age 
after FDR correction at 0.05. B) Thresholded maps of voxels with significant coupling 
associations with sex after FDR correction at 0.05. 

3.3 CBF-ALFF-ReHo coupling varies between males and females, 
primarily in subcortical regions 

Associations between CBF-ALFF-ReHo coupling and sex were present primarily 

in the hippocampus and thalamus (Figure 3; corrected p < 0.05). Sex differences in 

coupling were rare in other subcortical structures and all functional networks – only 1% 

to 3% of voxels in these regions showed coupling and sex associations (Figure 5). Spin 

testing between functional networks and sex-related changes in coupling revealed 

enrichment of coupling and sex associations in the frontoparietal network (p = 0.012), 

despite the small proportion of the frontoparietal network that exhibited coupling 

associations with sex. 

3.4 pIMCo provides a consistent estimator of local coupling compared to 
WLR-based IMCo 

In 2016, Vandekar et al. introduced a method to study IMCo relationships at the 

single voxel level based on local weighted linear regression (WLR) slopes (Vandekar et 

al., 2016). Because this method relies on estimating WLR slopes between modalities, it 

is inherently limited to the two-modality setting, cannot account for statistical relationship 

between modalities, and requires specification of one modality as the independent 

variable, leading to asymmetry. These limitations are demonstrated by a two-modality 

example in Figure 6. We see that, if ALFF is defined as the independent variable, the 

WLR coupling value is 0.25, indicating little coupling, but if CBF is defined as the 
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independent variable, the WLR coupling value is 1.25, indicating five times as much 

coupling. Thus, when using WLR-based IMCo, two possible coupling values exist at 

every voxel, and there isno guarantee analyses will show comparable findings between 

the two. Additionally, these WLR coupling values only describe the trend of the 

relationship between ALFF and CBF, but do not account for the statistical strength of 

that relationship. 

In contrast, the pIMCo coupling value is 2.13 and does not require specification 

of which modality is treated as the independent variable, leading to a symmetric and 

consistent definition of coupling. This pIMCo value does not describe the effect size of 

the relationship between ALFF and CBF and instead describes the strength and shape 

of the relationship – a high value of coupling suggests that the shape of data from that 

neighborhood looks like a long ellipsoid, while a low value of coupling suggests that the 

shape is more spherical. 

 

Figure 6: Two-modality example showing pIMCo results in comparison to WLR-based 
IMCo results. Blue line represents coupling value from WLR-based IMCo if ALFF is 
defined as the independent variable (slope = 0.25). Orange line represents coupling 
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value from WLR-based IMCo if CBF is defined as the independent variable (slope = 
1.25). Black line and ellipse represent PCA results; no reference specification is needed 
(coupling value = 2.13). Larger dot sizes correspond to increased weights in the WLR 
and weighted PCA. 

4 Discussion 

As growing emphasis is placed on the acquisition of multi-modal data, new 

methodologies are necessary to enable these analyses. In this manuscript, we 

introduce pIMCo, a generalized approach to estimating local IMCo that can be applied 

to two or more modalities, can be interpreted as a direct summary of local covariance 

matrices, and is symmetric (Figure 6). Our method can be used with any combination of 

volumetric images to produce single-subject, voxel-resolution coupling images which 

can then be analyzed using standard techniques. We applied our proposed method to 

show significant coupling between cerebral blood flow, resting state fluctuations, and 

local connectivity throughout the brain. We then used voxel-level analyses to 

characterize how coupling varies in neurodevelopment. 

4.1 Coupling of cerebral blood flow, resting state fluctuations, and local 
connectivity vary with age and sex 

We found that CBF-ALFF-ReHo coupling was spatially heterogeneous and 

varied with age and sex in neurodevelopment in both subcortical structures and 

functional networks.These findings, which uncover otherwise undetectable intermodal 

interactions, are unique to those from individual modality analyses. 

We noticed that regions with higher CBF-ALFF-ReHo coupling across subjects 

also tended to have higher variance in coupling. This suggests that these regions may 

be biologically interesting in the context of CBF-ALFF-ReHo coupling and important 

regions for future exploration, since they appear to demonstrate pronounced differences 

in coupling phenotypes between subjects and could be associated with other variables 

of interest, such as clinical phenotypes. 

Spin testing showed that the high proportion of coupling-age associations in the 

frontoparietal and default networks were enriched when compared to the cortex overall. 

This suggests that in neurodevelopment, there is change in not only blood flow, resting 
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state fluctuations, and local connectivity individually, but also in the strength of 

interaction among these features. These findings are consistent with and fortify the 

literature demonstrating the importance of frontoparietal and default networks as 

regions for change in neurodevelopment (Baller et al., 2021; Chai et al., 2017; Fair et 

al., 2008; Lin et al., 2019). Outside of neurodevelopment, our findings are consistent 

with previous work showing that coupling between CBF and functional connectivity 

strength is stronger in frontoparietal and default networks than regions outside these 

networks (Tak et al., 2015). In subcortical structures, high proportions of coupling 

associations with age seen in the caudate, pallidum, hippocampus, and thalamus 

suggest that modulation of vascular, resting state fluctuations, and local connectivity 

coupling may be necessary in the development of movement, memory, and 

fundamental brain activities. 

High proportions of coupling associations with sex in the hippocampus and 

thalamus suggest that male-female differences in memory and related cognitive 

functions between males and females could be explained in part by the strength of 

regional brain metabolism as measured by cerebral blood flow, resting state 

fluctuations, and local connectivity coupling. In the cortex, the rarity of coupling-sex 

associations suggests that this coupling may not play a role in explaining cortical sex-

based differences or that this relationship is more complex than our analyses could 

uncover. These cortical findings are of interest when compared to previous work 

showing a high proportion of the cortex had significant associations between sex and 

CBF-ALFF coupling (Baller et al., 2021). Together, these studies demonstrate that 

three-modality coupling identifies unique relationships when compared to two-modality 

coupling. 

Notably, despite low coupling-sex signal in the frontoparietal network, spin testing 

showed enrichment of coupling associations with sex in this network. Since spin testing 

is a spatial permutation test that uses the coupling-sex association thresholded p-value 

map to generate data under the null, this significant finding is likely due to a combination 

of overall rare coupling-sex associations in the cortex and the particular spatial 

distribution of these associations within the frontoparietal network. This finding 
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highlights potential shortcomings of using the spin test for enrichment analysis. 

Additionally, statistical analysis of enrichment in subcortical structures is not yet 

possible, so more methods development is needed in this area. 

4.2 Limitations and Future Directions 

pIMCo is designed to summarize a complex local covariance structure, which 

necessarily leads to outputs that cannot fully characterize the intricacies of coupling. 

This is especially true in settings with more than two modalities – the covariance 

structure becomes even more complex and more information is lost when it is 

summarized. As such, high coupling values can result from many different covariance 

features, and it is challenging to understand the basis of these high values. 

The symmetric nature of pIMCo is conducive to more consistent interpretation 

when compared to slope-based IMCo, since pIMCo does not depend on reference 

modality specification. However, while slope is an biologically intuitive measure that can 

be interpreted as capturing the directionality and effect size of a relationship, the 

generalizable nature of the pIMCo value makes it challenging to interpret biologically, 

especially when used on more than two modalities. Instead, it is most accurately 

interpreted in statistical terms – as a measure of the proportion of variance explained by 

the first eigenvector, as a measure of how well the local covariance structure could be 

summarized in one dimension, or as a measure of how ellipsoidal the neighborhood is 

instead of spherical. This is shown in Figure 6, where the WLR coupling value estimates 

that, on average, a 1 unit increase in CBF corresponds to a 1.25 unit increase in ALFF, 

while the pIMCo coupling value describes the ratio of the ellipse’s major axis to minor 

axis and suggests the statistical strength of the relationship between ALFF and CBF is 

strong. 

Next, since PCA functions as a linear dimension reduction technique, it is most 

effective at summarizing data whose shape is roughly ellipsoid. However, it is unlikely 

that such an assumption holds for all voxels and all combinations of different modalities. 

For example, in a two-dimensional neighborhood, it could be possible that there is a 

strong quadratic relationship between modalities, but the data is not well-summarized 

by one eigenvalue and its corresponding eigenvector. In such cases, an IMCo 
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technique based on manifold learning concepts could be a useful improvement that 

picks up on otherwise undetected intermodal relationships. 

Finally, pIMCo is designed to estimate coupling in cross-sectional multi-modality 

datasets. However, there is also rich covariance information in longitudinal datasets with 

one or multiple modalities. Future implementations of pIMCo suitable for longitudinal 

data could investigate whether IMCo changes over time in neurodevelopment or 

disease, and if so, whether such changes may be useful in identifying biomarkers for 

clinical phenotypes. 

5 Conclusion 

pIMCo offers a novel perspective for summarizing the overall covariance 

structure between more than two modalities as well as a generalized, symmetric 

approach for describing coupling in the two-modality setting. Here, we applied this 

method to the analysis of coupling between cerebral blood flow, resting state 

fluctuations, and local connectivity images. This analysis revealed patterns in 

neurodevelopment with respect to age and sex that differed from those present in any 

individual modality. As multi-modal data becomes more common, we hope that pIMCo 

will serve as a tool for capturing complex intermodal relationships and enable more 

sophisticated descriptive analyses, improved prediction efforts, and novel 

methodological advances, among others. 
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6 Supplementary Materials 

 

Figure S1: A) Voxel-wise means across subjects of cortical CBF. B) Voxel-wise 
variances across subjects of cortical CBF. C) Voxel-wise means across subjects of 
cortical ALFF. D) Voxel-wise variances across subjects of cortical ALFF. E) Voxel-wise 
means across subjects of cortical ReHo. F) Voxel-wise variances across subjects of 
cortical ReHo. 
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