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Abstract

When individual subjects are imaged with multiple modalities, biological
information is present not only within each modality, but also between modalities — that
is, in how modalities covary at the voxel level. Previous studies have shown that local
covariance structures between modalities, or intermodal coupling (IMCo), can be
summarized for two modalities, and that two-modality IMCo reveals otherwise
undiscovered patterns in neurodevelopment and certain diseases. However, previous
IMCo methods are based on the slopes of local weighted linear regression lines, which
are inherently asymmetric and limited to the two-modality setting. Here, we present a
generalization of IMCo estimation which uses local covariance decompositions to define
a symmetric, voxel-wise coupling coefficient that is valid for two or more modalities. We
use this method to study coupling between cerebral blood flow, amplitude of low
frequency fluctuations, and local connectivity in 803 subjects ages 8 through 22. We
demonstrate that coupling is spatially heterogeneous, varies with respect to age and
sex in neurodevelopment, and reveals patterns that are not present in individual
modalities. As availability of multi-modal data continues to increase, principal-
component-based IMCo (pIMCo) offers a powerful approach for summarizing
relationships between multiple aspects of brain structure and function. An R package for

estimating pIMCo is available at: https://github.com/hufengling/pIMCo.
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1 Introduction

There is increased availability of multi-modality neuroimaging data on individual
subjects, with each modality containing unique information about brain structure or
function. Such data allow us to explore patterns in individual modalities as well as
patterns in the relationships between modalities, which we call intermodal coupling
(IMCo), at global, regional, or local resolutions (Baller et al., 2021; Gu et al., 2021;
Honey et al., 2009; Shokri-Kojori et al., 2019; Tak et al., 2015; Uddin, 2013; Valcarcel et
al., 2018a, 2018b; Vandekar et al., 2016). The progress made by these IMCo studies
have transformed our understanding of the brain, and it suggests that advancements in

the methodology for studying IMCo have the potential to further enable such insights.

On the global scale, intermodal relationships have long been of interest. For
example, structural connectivity (SC) and functional connectivity (FC) are strongly
correlated in adults, but the relationship is less straightforward in children (Uddin, 2013).
Gu et al. built on this global understanding of SC-FC coupling by exploring higher-
resolution regional relationships — they found SC-FC coupling to be strongest in visual
and subcortical areas with high SC (Gu et al., 2021).

In addition to structure-function relationships, regional relationships between
metabolism and brain function have also been explored. In the study of energy
utilization in the brain, Shokri-Kojori et al. showed that regional correspondence
between cerebral glucose metabolism and fluctuations in blood oxygenation not only
differed between brain networks in healthy patients but was also sensitive to differences
between patients with acute or chronic alcohol use (Shokri-Kojori et al., 2019). Of note,
these relationships were not identifiable by looking at individual modalities alone.
Another regional study on metabolism-function coupling identified significant
associations between cerebral blood flow (CBF) and strength of functional connectivity
in default, frontoparietal, and primary sensory-motor networks. No significant
association was found between CBF and functional connectivity strength in regions
outside of these networks (Tak et al., 2015).

On the sub-regional local scale, studies from our group on coupling between
cortical thickness and sulcal depth have suggested the cortical sheet is generally
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thinner in sulcal locations than in gyral locations and that this relationship was more
spatially heterogeneous than previously described (\VVandekar et al., 2016). A separate
study exploring local IMCo between CBF and resting-state amplitude of low-frequency
fluctuations (ALFF) showed that age-related declines in this measure of neurovascular
coupling were most pronounced during mid-adolescence and were enriched in the
dorsal attention network (Baller et al., 2021). There were also differences in CBF-ALFF

coupling between males and females which were enriched in the frontoparietal network.

In these local IMCo studies, each vertex-wise coupling value was defined as the
slope of the weighted linear regression (WLR) best-fit line for that local neighborhood
between two modalities. However, because this method of calculating IMCo is based on
regression slopes, it does not take into account vertex-level correlation and also suffers
from inherent asymmetry, where coupling values depend on which modality is defined
as the independent variable in the WLR. This asymmetry necessitates arbitrary, yet
influential, choices when it comes to analysis and limits straightforward interpretation.
This measure for IMCo is also limited to only two modalities, so the study of coupling
between more than two modalities using this method would require analysis of all
pairwise couplings. As the number of total modalities increases, this approach can
become challenging to interpret. Additionally, analysis of all pairwise couplings may not

parsimoniously describe the overall degree of coupling across all modalities.

In response to these limitations, we propose a principal component analysis
(PCA) based method for estimating IMCo that uses local covariance decomposition to
define symmetric voxel-wise coupling values valid for two or more modalities. This
method reduces complex local covariance structures into a single value, thus providing
an easily interpretable value that characterizes the strength of coupling in settings with
two modalities. It also allows for simplified study of more complex local covariance

structures in settings with more than two modalities.

To demonstrate its sensitivity to biologically relevant patterns, we show that PCA-
based IMCo (pIMCo) uncovers differences in three-modality coupling between CBF,
ALFF, and regional homogeneity (ReHo) with respect to age and sex in youth. We

chose these modalities because local cortical coupling between vascular organization
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and resting state fluctuations has been previously characterized. Additionally, while
resting state fluctuations can be thought of as a more global property, regional
homogeneity is more related to local connectivity. Thus, we were interested in
understanding the coupling between cerebral blood flow and both long-range

fluctuations and local connectivity.

2 Methods

2.1 Subjects

We included 803 subjects (340 males) from ages 8-22 (mean = 15.6; sd = 3.3)
from the Philadelphia Neurodevelopmental Cohort (PNC) (Satterthwaite et al., 2014). Of
the 1,601 PNC subjects who underwent neuroimaging, health screening as well as
automated and manual image quality screening were performed. We excluded subjects
in the following order: low T1-weighted MRI quality (n = 61), low resting-state fMRI
(rfMRI) quality (n = 450), and low arterial spin labeling (ASL) quality (n = 54). Of the
remaining subjects, we then excluded those meeting any of the following health
exclusion criteria (n = 205): history of psychoactive medication, history of inpatient
psychiatric hospitalization, or history of medical disorders that could impact brain
function. Finally, ASL scans for which high-quality partial volume correction could not be
performed were excluded (n = 28). This resulted in the final set of 803 subjects used for
this study.

The Institutional Review Boards of the University of Pennsylvania and the
Children’s Hospital of Pennsylvania approved all study procedures. All adult study
subjects gave written informed consent; for subjects under the age of 18, parents or
guardians provided written informed consent and subjects provided assent. Additional
details of the PNC study have been previously described (Gur et al., 2020; Satterthwaite
et al., 2014).

2.2 Image acquisition

All PNC imaging was acquired using a single 3T Siemens Tim Trio scanner with

a 32-channel head coil. To minimize motion, subjects’ heads were stabilized using one
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foam pad over each ear and one foam pad over the top of the head. Image acquisition
procedures have been previously described (Gur et al., 2020; Satterthwaite et al.,
2014).

T1-weighted structural images were used for alignment of all scans into a
common space. T1l-weighted images were acquired using a 3D-encoded magnetization-
prepared, rapid-acquisition gradient echo (MPRAGE) T1-weighted sequence with the
following settings: Tz = 1810 ms; T = 3.51 ms; FoV = 180 x 240 mm; matrix size = 192
X 256; number of slices = 160; slice thickness = 1 mm; inter-slice gap = 0 mm,;
resolution = 0.9375 x 0.9375 x 1 mm. Cerebral blood flow (CBF) was estimated from a
pseudo-continuous arterial spin labeling (pcASL) sequence with a spin-echo echoplanar
readout and the following settings: T = 4000 ms; Tz = 15 ms; FoV = 220 x 220 mm;
matrix size = 96 x 96; number of slices = 20; slice thickness = 5 mm; inter-slice gap = 1
mm; resolution = 2.3 x 2.3 x 6 mm; 80 volumes. Maps of amplitude of low frequency
fluctuations (ALFF) and regional homogeneity (ReHo) were estimated from six minutes
of task-free functional data from a blood-oxygen-level-dependent (BOLD) weighted 2D
EPI sequence with the following settings: T = 3000 ms; T = 32 ms; FoV = 192 x 192
mm; matrix size = 64 x 64; number of slices = 46; slice thickness = 3 mm; inter-slice gap
= 0 mm); resolution = 3 mm isotropic; 124 volumes. Subjects were instructed to stay

awake, keep their eyes open, fixate on a displayed fixation cross, and remain still.

2.3 Image processing

Image processing of T1-weighted structural images, pcASL scans, and rfMRI
scans have been previously described (Baller et al., 2021; Gur et al., 2020). They are
summarized here in brief. T1-weighted structural images were processed using tools
from Advanced Normalization Tools (ANTS) (Tustison et al., 2014). pcASL and rfMRI
scans were processed using an eXtensible Connectivity Pipeline (XCP) which included
tools from FSL and AFNI (Ciric et al., 2018; Cox, 1996; Jenkinson et al., 2012).

CBF was quantified from control-label pairs using the following equation:

f= AMARe“R
2Mga(1-e~TR)’
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where fis CBF, 4M is the difference in signal between control and label
acquisitions, R is the longitudinal relaxation rate of blood, 7 is the labeling time, w is the
post-labeling delay, « is the labeling efficiency, A is the blood-tissue-water partition
coefficient, and M, is approximated by the control image intensity. We set a = 0.85,
A=09g/mL, T = 1.6s, w = 1.2s. Partial volume correction was performed using
Bayesian Inference for Arterial Spin Labeling MRI (BASIL) (Chappell et al., 2011;
Chappell et al., 2009).

For rfMRI processing, the XCP pipeline included: 1) field inhomogeneity
correction with FSL FUGUE, 2) removal of initial rfMRI volumes, 3) alignment of
volumes within the time series to a selected reference volume using FSL MCFLIRT, 4)
interpolation of intensity outliers with AFNI 3dDespike, and 5) demeaning and removal
of linear or quadratic trends. Images were then denoised using a 36-parameter
confound regression model that has been shown to minimize impact of motion artifact
(Ciric et al., 2017). Finally, BOLD-weighted time series as well as artifactual model time
series were filtered using a first-order Butterworth filter with a passband between 0.01
and 0.08 Hertz.

Voxel-wise ALFF was defined as the sum of frequency bins between 0.01 and
0.08 Hertz using a Fourier transform of the time-domain signal (Yang et al., 2007).
Voxel-wise ReHo was defined as Kendall’s coefficient of concordance computed over
the rfMRI time series in each voxel's 26-voxel local neighborhood (Zang et al., 2004).
Voxel-wise maps were smoothed with a 6mm full width at half maximum (FWHM) kernel
to improve signal-to-noise ratio. CBF, ALFF, and ReHo images were co-registered to
the the T1-weighted structural image using boundary-based registration and then
normalized to a custom adolescent template using the top-performing SyN registration
provided by ANTs (Avants et al., 2011; Ciric et al., 2021; Greve and Fischl, 2009).
Finally, a gray matter mask was generated as the intersection between a gray matter
mask from T1-weighted images with 90% coverage over all subjects and overall

coverage masks from registered pcASL and rfMRI scans.


https://doi.org/10.1101/2022.02.19.481070
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.19.481070; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.4 Methodology for estimating pIMCo

For each subject, we calculated voxel-wise coupling between CBF, ALFF, and
ReHo images to produce one pIMCo image per subject. The full pIMCo estimation
pipeline is summarized in Figure 1. First, we applied the gray matter mask to each of
the three modalities. Then, within each masked modality, we globally scaled intensities
to a mean of 0 and a variance of 1. This scaling is necessary because
eigendecomposition is later performed on local covariance matrices; if modalities are
defined on drastically different scales, decomposition outputs would reflect differences
in scale between modalities rather than local covariance structures. Next, for each
voxel, we extracted local neighborhoods from each of the three modalities and weighted
voxels within these local neighborhoods proportional to a Gaussian kernel over their
Euclidean distances from the central voxel — in our study, we used FWHM = 3, which
corresponds to 7x7x7 voxel (14x14x14 mm) local neighborhoods and a standard
deviation of 1.62 mm for the Gaussian kernel. Then, we calculated the 3x3 weighted
covariance matrix between the neighborhoods, performed eigendecomposition on it,
and extracted the proportion of variance explained by the first eigenvalue. Once all the
voxel-wise proportional first eigenvalues were extracted, we scaled these values such
that their theoretical range was [0,1] and performed a logit transformation. While such a

transformation makes the coupling value more challenging to interpret, it emphasizes
extreme values of coupling and changes the domain of coupling values from [% 1] to

(—o0, ), where m is the total number of modalities, in order to improve expected
behavior with post-hoc voxel-wise statistical analyses. This resulted in our voxel-level
pIMCo image for that subject. For any particular voxel in that image, a large value
suggests that the voxel’s local covariance matrix across modalities could be well-
summarized in a single dimension while a small value suggests multiple dimensions

would be necessary to characterize the covariance structure.

For reference, in the three-modality setting, coupling values of -2, 0, and 2
correspond to the first eigenvector explaining 41%, 67%, and 92% of the total variance

in that local neighborhood, respectively. In the two-modality setting, coupling values of -
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2, 0, and 2 correspond to the first eigenvector explaining 56%, 75%, and 94% of the
total variance in that local neighborhood, respectively.
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Figure 1: Step-by-step diagram of pIMCo estimation pipeline as described in the
Methods. Coupling images are generated from intermodal images for each subject
individually. pIMCo estimation is performed at each voxel location across subject-
specific images.

2.5 Voxel-wise statistical analysis

We created descriptive coupling maps by taking the means and variances across

all 803 subjects’ pIMCo values at each voxel location in volumetric space. We then
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projected these mean and variance images to the cortical surface using PySurfer for

visualization of spatial heterogeneity and cortical patterns (\Waskom et al., 2020).

To investigate the biological relevance of pIMCo, we used linear regression at
each voxel to explore whether coupling was associated with age or sex. In all linear
regressions, we controlled for in-scanner motion for both ASL and rfMRI scans. To
account for multiple comparisons in these voxel-level tests, we controlled the false
discovery rate at 5% (Benjamini and Hochberg, 1995). Then, we created binary
thresholded masks indicating which voxels displayed a significant effect for each of age
and sex. For this and following analyses, we performed identical modeling of each of
the three modalities individually to explore whether age and sex effects were present

and corresponded to the observed associations with pIMCo.

2.6 Spin testing

To visualize the extent of voxels where coupling was associated with age and
sex, we counted the proportion of voxels with statistically significant age or sex effects
in each of the Yeo 7 functional networks on the cortex as well as in subcortical regions
in the Automated Anatomical Labeling (AAL) atlas (Thomas Yeo et al., 2011; Tzourio-
Mazoyer et al., 2002).

Next, we tested whether the proportion of significant voxels in each functional
network was enriched when compared to the proportion of significant voxels overall.
Because there is an underlying spatial distribution of significant voxels, we used the
spin test (Alexander-Bloch et al., 2018). Briefly, the spin test is a permutation-inspired
testing procedure that rotates the FreeSurfer sphere randomly to create an underlying
null distribution that preserves spatial patterns. The null hypothesis is that there is no
spatial enrichment of significant p-values in the specified functional network compared
to across the cortex overall. In our study, we estimated the null distribution over 2,000
permutations — for each permutation, we recorded the Jaccard similarity index between
the thresholded p-value map and each of the Yeo 7 networks. Finally, for each network,
we calculated the p-value as the proportion of null Jaccard similarity indices equal to or

greater than the observed Jaccard similarity index.
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2.7 Code and data availibility

An R package for calculating pIMCo images is available at:
https://github.com/hufengling/pIMCo. All code for analysis is available at:
https://github.com/hufengling/IMCo_analyses. The following software and packages
were used for pre-processing, pIMCo calculation, or analysis — R Core Team (2021);
Wickham (2019); Xie (2021a); Xie (2021Db); Allaire et al. (2021); Xie (2016); Wickham et
al. (2019); Muschelli (2021a); Avants (2020); Kandel et al. (2020); Muller (2020); Fischl
(2012); Schéfer (2021); Jenkinson et al. (2012); Muschelli et al. (2015); Ren (2021);
Muschelli (2021b); Yushkevich et al. (2006).

PNC data are publicly available in raw format at

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2.

3 Results

3.1 Coupling varies across the cortical surface and is increased in
discrete regions, bilaterally

We calculated voxel-wise mean and variance maps of coupling values to
characterize spatial patterns in CBF-ALFF-ReHo coupling and visualized these on the
cortical surface. Throughout the cortical surface, all voxels, on average, showed strong
coupling, and voxels with stronger average coupling also tended to have higher
variance between subjects (Pearson correlation = 0.69). The average voxel-wise mean
coupling value was 0.99 (sd = 0.37; range =[0.27,3.30]). The average voxel-wise
variance was 0.91 (sd = 0.20; range = [0.45,2.64]).

Visual comparison of voxel-wise descriptive maps with the Desikan-Killiany
cortical atlas (Desikan et al., 2006) suggested that coupling is especially strong in the
following regions, bilaterally: superior frontal gyrus, paracentral gyrus, caudal anterior
cingulate, posterior cingulate, isthmus cingulate, pericalcarine, lateral occipital, and
insula (Figure 2). Comparing to the Yeo 7 functional networks, areas of strong coupling
are observed primarily in the frontoparietal (p = 0.0125) and default networks (p =
0.039; Figure 3).
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These voxel-wise descriptive maps of coupling showed unique information when
compared to the descriptive maps of each of the individual modalities (Supplementary

Figure S1).

EGD 0.507 1.00 1.52 2.03 254 3.04 3.55 DOD 0.377 0.755 1.13 1.51 189 226 264
Figure 2: Coupling values are spatially heterogeneous across the cortical surface. A)
Voxel-wise means across subjects of cortical coupling values between CBF, ALFF, and

ReHo. Larger values indicate stronger coupling. B) Voxel-wise variances across
subjects of cortical coupling values between CBF, ALFF, and ReHo.
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Figure 3: Proportion of voxels in AAL subcortical regions and Yeo 7 cortical networks
that showed significant coupling-age and coupling-sex associations when in-scanner
motion was included as a covariate (FDR corrected p < 0.05). Spin test was performed
for all Yeo 7 networks; significant p-values are reported (p < 0.05).

3.2 CBF-ALFF-ReHo coupling evolves with age throughout gray matter
structures

Linear associations between strength of coupling and age were present in
subcortical structures and cortical networks (Figure 3; corrected p < 0.05). Figure 4
shows an example of such an association between coupling and age as well as
individual modalities and age at one voxel in the default network. In subcortical
structures, age-related changes in CBF-ALFF-ReHo coupling occurred primarily in the
caudate and pallidum, though such changes were also common in the hippocampus,

putamen, and thalamus.

In cortical networks, coupling and age associations were rare in all networks

except the frontoparietal and default networks (Figure 5). These two networks were also
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the networks in which the average strength of coupling across subjects appeared to be
highest (Figure 2). Spin testing between functional networks and age-related changes in
coupling showed enrichment of coupling and age associations in the frontoparietal (p =
0.013) and default networks (p = 0.039).
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Figure 4: Example of associations between individual modalities and age as well as
associations between coupling and age at a single voxel in the default network. Each
point represents the value at that voxel for one subject. Best-fit lines from univariate
linear regression are shown.
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Figure 5: A) Thresholded maps of voxels with significant coupling associations with age
after FDR correction at 0.05. B) Thresholded maps of voxels with significant coupling
associations with sex after FDR correction at 0.05.

3.3 CBF-ALFF-ReHo coupling varies between males and females,
primarily in subcortical regions

Associations between CBF-ALFF-ReHo coupling and sex were present primarily
in the hippocampus and thalamus (Figure 3; corrected p < 0.05). Sex differences in
coupling were rare in other subcortical structures and all functional networks — only 1%
to 3% of voxels in these regions showed coupling and sex associations (Figure 5). Spin
testing between functional networks and sex-related changes in coupling revealed
enrichment of coupling and sex associations in the frontoparietal network (p = 0.012),
despite the small proportion of the frontoparietal network that exhibited coupling

associations with sex.

3.4 plIMCo provides a consistent estimator of local coupling compared to
WLR-based IMCo

In 2016, Vandekar et al. introduced a method to study IMCo relationships at the
single voxel level based on local weighted linear regression (WLR) slopes (Vandekar et
al., 2016). Because this method relies on estimating WLR slopes between modalities, it
is inherently limited to the two-modality setting, cannot account for statistical relationship
between modalities, and requires specification of one modality as the independent
variable, leading to asymmetry. These limitations are demonstrated by a two-modality
example in Figure 6. We see that, if ALFF is defined as the independent variable, the
WLR coupling value is 0.25, indicating little coupling, but if CBF is defined as the
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independent variable, the WLR coupling value is 1.25, indicating five times as much
coupling. Thus, when using WLR-based IMCo, two possible coupling values exist at
every voxel, and there isno guarantee analyses will show comparable findings between
the two. Additionally, these WLR coupling values only describe the trend of the
relationship between ALFF and CBF, but do not account for the statistical strength of

that relationship.

In contrast, the pIMCo coupling value is 2.13 and does not require specification
of which modality is treated as the independent variable, leading to a symmetric and
consistent definition of coupling. This pIMCo value does not describe the effect size of
the relationship between ALFF and CBF and instead describes the strength and shape
of the relationship — a high value of coupling suggests that the shape of data from that
neighborhood looks like a long ellipsoid, while a low value of coupling suggests that the
shape is more spherical.

4
ALFF

Figure 6: Two-modality example showing pIMCo results in comparison to WLR-based
IMCo results. Blue line represents coupling value from WLR-based IMCo if ALFF is
defined as the independent variable (slope = 0.25). Orange line represents coupling
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value from WLR-based IMCo if CBF is defined as the independent variable (slope =
1.25). Black line and ellipse represent PCA results; no reference specification is needed
(coupling value = 2.13). Larger dot sizes correspond to increased weights in the WLR
and weighted PCA.

4 Discussion

As growing emphasis is placed on the acquisition of multi-modal data, new
methodologies are necessary to enable these analyses. In this manuscript, we
introduce pIMCo, a generalized approach to estimating local IMCo that can be applied
to two or more modalities, can be interpreted as a direct summary of local covariance
matrices, and is symmetric (Figure 6). Our method can be used with any combination of
volumetric images to produce single-subject, voxel-resolution coupling images which
can then be analyzed using standard techniques. We applied our proposed method to
show significant coupling between cerebral blood flow, resting state fluctuations, and
local connectivity throughout the brain. We then used voxel-level analyses to

characterize how coupling varies in neurodevelopment.

4.1 Coupling of cerebral blood flow, resting state fluctuations, and local
connectivity vary with age and sex

We found that CBF-ALFF-ReHo coupling was spatially heterogeneous and
varied with age and sex in neurodevelopment in both subcortical structures and
functional networks.These findings, which uncover otherwise undetectable intermodal

interactions, are unique to those from individual modality analyses.

We noticed that regions with higher CBF-ALFF-ReHo coupling across subjects
also tended to have higher variance in coupling. This suggests that these regions may
be biologically interesting in the context of CBF-ALFF-ReHo coupling and important
regions for future exploration, since they appear to demonstrate pronounced differences
in coupling phenotypes between subjects and could be associated with other variables

of interest, such as clinical phenotypes.

Spin testing showed that the high proportion of coupling-age associations in the
frontoparietal and default networks were enriched when compared to the cortex overall.
This suggests that in neurodevelopment, there is change in not only blood flow, resting
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state fluctuations, and local connectivity individually, but also in the strength of
interaction among these features. These findings are consistent with and fortify the
literature demonstrating the importance of frontoparietal and default networks as
regions for change in neurodevelopment (Baller et al., 2021; Chai et al., 2017; Fair et
al., 2008; Lin et al., 2019). Outside of neurodevelopment, our findings are consistent
with previous work showing that coupling between CBF and functional connectivity
strength is stronger in frontoparietal and default networks than regions outside these
networks (Tak et al., 2015). In subcortical structures, high proportions of coupling
associations with age seen in the caudate, pallidum, hippocampus, and thalamus
suggest that modulation of vascular, resting state fluctuations, and local connectivity
coupling may be necessary in the development of movement, memory, and

fundamental brain activities.

High proportions of coupling associations with sex in the hippocampus and
thalamus suggest that male-female differences in memory and related cognitive
functions between males and females could be explained in part by the strength of
regional brain metabolism as measured by cerebral blood flow, resting state
fluctuations, and local connectivity coupling. In the cortex, the rarity of coupling-sex
associations suggests that this coupling may not play a role in explaining cortical sex-
based differences or that this relationship is more complex than our analyses could
uncover. These cortical findings are of interest when compared to previous work
showing a high proportion of the cortex had significant associations between sex and
CBF-ALFF coupling (Baller et al., 2021). Together, these studies demonstrate that
three-modality coupling identifies unique relationships when compared to two-modality

coupling.

Notably, despite low coupling-sex signal in the frontoparietal network, spin testing
showed enrichment of coupling associations with sex in this network. Since spin testing
is a spatial permutation test that uses the coupling-sex association thresholded p-value
map to generate data under the null, this significant finding is likely due to a combination
of overall rare coupling-sex associations in the cortex and the particular spatial

distribution of these associations within the frontoparietal network. This finding
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highlights potential shortcomings of using the spin test for enrichment analysis.
Additionally, statistical analysis of enrichment in subcortical structures is not yet

possible, so more methods development is needed in this area.

4.2 Limitations and Future Directions

pIMCo is designed to summarize a complex local covariance structure, which
necessarily leads to outputs that cannot fully characterize the intricacies of coupling.
This is especially true in settings with more than two modalities — the covariance
structure becomes even more complex and more information is lost when it is
summarized. As such, high coupling values can result from many different covariance

features, and it is challenging to understand the basis of these high values.

The symmetric nature of pIMCo is conducive to more consistent interpretation
when compared to slope-based IMCo, since pIMCo does not depend on reference
modality specification. However, while slope is an biologically intuitive measure that can
be interpreted as capturing the directionality and effect size of a relationship, the
generalizable nature of the pIMCo value makes it challenging to interpret biologically,
especially when used on more than two modalities. Instead, it is most accurately
interpreted in statistical terms — as a measure of the proportion of variance explained by
the first eigenvector, as a measure of how well the local covariance structure could be
summarized in one dimension, or as a measure of how ellipsoidal the neighborhood is
instead of spherical. This is shown in Figure 6, where the WLR coupling value estimates
that, on average, a 1 unit increase in CBF corresponds to a 1.25 unit increase in ALFF,
while the pIMCo coupling value describes the ratio of the ellipse’s major axis to minor
axis and suggests the statistical strength of the relationship between ALFF and CBF is

strong.

Next, since PCA functions as a linear dimension reduction technique, it is most
effective at summarizing data whose shape is roughly ellipsoid. However, it is unlikely
that such an assumption holds for all voxels and all combinations of different modalities.
For example, in a two-dimensional neighborhood, it could be possible that there is a
strong quadratic relationship between modalities, but the data is not well-summarized

by one eigenvalue and its corresponding eigenvector. In such cases, an IMCo
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technique based on manifold learning concepts could be a useful improvement that

picks up on otherwise undetected intermodal relationships.

Finally, pIMCo is designed to estimate coupling in cross-sectional multi-modality
datasets. However, there is also rich covariance information in longitudinal datasets with
one or multiple modalities. Future implementations of pIMCo suitable for longitudinal
data could investigate whether IMCo changes over time in neurodevelopment or
disease, and if so, whether such changes may be useful in identifying biomarkers for

clinical phenotypes.

5 Conclusion

pIMCo offers a novel perspective for summarizing the overall covariance
structure between more than two modalities as well as a generalized, symmetric
approach for describing coupling in the two-modality setting. Here, we applied this
method to the analysis of coupling between cerebral blood flow, resting state
fluctuations, and local connectivity images. This analysis revealed patterns in
neurodevelopment with respect to age and sex that differed from those present in any
individual modality. As multi-modal data becomes more common, we hope that pIMCo
will serve as a tool for capturing complex intermodal relationships and enable more
sophisticated descriptive analyses, improved prediction efforts, and novel
methodological advances, among others.
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Figure S1: A) Voxel-wise means across subjects of cortical CBF. B) Voxel-wise
variances across subjects of cortical CBF. C) Voxel-wise means across subjects of
cortical ALFF. D) Voxel-wise variances across subjects of cortical ALFF. E) Voxel-wise
means across subjects of cortical ReHo. F) Voxel-wise variances across subjects of
cortical ReHo.
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