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ABSTRACT

Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral polyneuropathy in
humans, and its different subtypes are linked to mutations in dozens of different genes. Mutations in
ganglioside-induced differentiation-associated protein 1 (GDAP1) cause two types of CMT,
demyelinating CMT4A and axonal CMT2K. The GDAPI-linked CMT genotypes are mainly
missense point mutations. Despite clinical profiling and in vivo studies on the mutations, the etiology
of GDAPI-linked CMT 1is poorly understood. Here, we describe the biochemical and structural
properties of the Finnish founding CMT2K mutation H123R as well as CMT2K-linked R120W, both
of which are autosomal dominant mutations. The disease variant proteins retain close to normal
structure and solution behaviour, but both present a large decrease in thermal stability. Using GDAP1
variant crystal structures, we identify a side chain interaction network between helices a3, a6, and
a7, which is affected by CMT mutations, as well as a hinge in the long helix a6, which is linked to
structural flexibility. Structural analysis of GDAP1 indicates that CMT may arise from disruption of
specific intra- and intermolecular interaction networks, leading to alterations in GDAP1 structure and

stability, and eventually, insufficient motor and sensory neuron function.
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INTRODUCTION

Inherited polyneuropathies are a genetically and clinically diverse group of neurodegenerative
diseases, which affect motor and sensory neurons in the peripheral nervous system (PNS) [1, 2].
Mutations in dozens of genes expressed in the PNS cause Charcot-Marie-Tooth syndrome (CMT).
Based on clinical findings, CMT can be classified into three forms: demyelinating, axonal, and
intermediate [3, 4]. The progress of CMT is linked to the hereditary pattern, whereby the autosomal
recessive form has an earlier onset and more severe symptoms than the autosomal dominant form [5-
7]. Understanding the molecular function of the proteins involved in the etiology of neuropathies is

vital in efforts towards treatment and diagnosis.

Ganglioside-induced differentiation-associated protein 1 (GDAP1) is an integral mitochondrial outer
membrane (MOM) protein, and the GDAPI gene is one of the most abundant in missense mutations
linked to CMT [8-10]. Both autosomal dominant and recessive modes of inheritance are found,
resulting in either autosomal recessive, or dominant demyelinating CMT4, autosomal dominant
axonal CMT?2 or intermediate CMTRIA types of CMT, with varying phenotype severity [11]. The
mutations R120W and H123R, which we focus on in this study, are both autosomal dominant
mutations causing the CMT2K subtype. Both phenotypes show typical slow development after onset,
and main symptoms include loss of sensation in limb extremities and muscle weakness. The clinical
profiling of the phenotypes has been described earlier in Spain and Finland [12-14]. GDAPI is
ubiquitously expressed in tissues, but most of the expression confines to neuronal tissues [9, 15]. In
the cell, GDAPI1 localizes as a tail-anchored MOM protein [16]. Structurally, GDAP1 resembles
glutathione S-transferases (GST), and it contains unique flexible loops [17, 18]. The most accurate
structural data thus far cover the dimeric core GST-like domain of human GDAPI, including the
GDAPI1-specific insertion [18]. The transmembrane helix and the GST-like domain are linked by a
hydrophobic domain and possibly a flexible linker loop.

GST superfamily members function in prokaryotic and eukaryotic metabolism through the utilization
of reduced glutathione to catalyse a range of chemically diverse reactions. GSTs often contribute to
mechanisms of neurodegenerative diseases [19, 20]. In comparison to many other enzyme
superfamilies, GSTs are unique in that sequence conservation appears to be driven by fold stability
instead of catalytic features, as reflected in the broad spectrum of GST substrates [21, 22]. While the
function of GDAP1 is not fully understood at the molecular level, it has been linked to multiple

mitochondrial events in neurons [23, 24], redox regulation, and signal transduction [25, 26].

In the Finnish population, the autosomal dominant founder mutation H123R accounts for as much as

20-30% of the local CMT cases [12, 27]. We carried out structural analysis of two selected autosomal
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dominant GDAP1 mutants, HI23R and R120W, using X-ray crystallography and complementary
biophysical and computational techniques. In addition, we used three cell culture models, rat dorsal
root ganglion (rDRG) neurons, human embryonic kidney 293 (HEK-293T) cells, and human skin

fibroblasts, to observe the oligomeric state of GDAP1 and the effects of the disease mutations therein.
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MATERIALS AND METHODS

Cloning

The GDAP1A295-358 and GDAP1A303-358 constructs used to produce soluble recombinant human
GDAPI in E. coli have been described [18]. Point mutations were generated in GDAP1A303-358 by
a site-directed mutagenesis protocol with Pfu polymerase [28]. An N-terminal Hiss-affinity tag and a
Tobacco Etch Virus (TEV) protease digestion site were included in each construct. The full-length
GDAPI1 coding sequence was subcloned into Gateway® (Invitrogen) vectors pEN-TTmcs and pSLIK -
HYGRO [29]. Point mutations were introduced as above. In addition to the GDAPI gene, the
tetracycline-responsive promoter element (tight-TRE) was added within the cloning site [30], and a
single N-terminal FLAG-tag was introduced into each construct [31]. All constructs were verified by

DNA sequencing.
Recombinant protein production

Soluble recombinant GDAPA295-358 and GDAP1A303-358 were expressed in E. coli BL21(DE3)
strain using ZYM-5052 autoinduction medium (24 h, 220 rpm, +37 °C) [32]. The cells were re-
suspended in binding buffer (40 mM HEPES, 400 mM NaCl, 2% glycerol, and 25 mM imidazole (pH
7.5)), containing EDTA-free protease inhibitor tablet (Sigma), snap-frozen in liquid nitrogen and
stored at -70 °C. Lysis of the cells was done by sonication, and the lysate was clarified by
centrifugation (40 min, 16 000 rpm, +4 °C). Recombinant protein was captured on a Ni**-NTA
HisPur® affinity resin by gravity flow (Thermo Fisher Scientific). Unbound proteins were washed
with binding buffer. The matrix was eluted with the same buffer, with imidazole at 250 mM. The
affinity tag was cleaved with TEV protease treatment in 25 mM HEPES, 300 mM NaCl, 2% glycerol,
1 mM TCEP in a dialysis tube (16 h, +4 °C). The Hiss -tag and TEV protease were then removed by
another Ni*"-NTA affinity step. Size exclusion chromatography (SEC) was performed on a Superdex
75 10/300 GL increase column (Cytiva) using 25 mM HEPES (pH 7.5), 300 mM NaCl (SEC buffer)

as mobile phase.

For GDAPA295-358, the Ni**-NTA purification protocol was identical, but 40 mM HEPES, 400 mM
NaCl, 20 mM imidazole, pH 7.5 was used as lysis and Ni-NTA washing buffer, and 32 mM HEPES,
320 mM NaCl, 500 mM imidazole, pH 7.5 was used to elute bound proteins. EDTA-free protease
inhibitor cocktail (Roche) was included during cell freezing and lysis. TEV protease treatment was
performed in dialysis against 40 mM HEPES, 400 mM NaCl, pH 7.5 at +4 °C overnight, followed by
a second Ni>*-NTA affinity step. SEC was performed using a Superdex 200 16/60 HiLoad column
(Cytiva) with 20 mM HEPES, 300 mM NaCl, 1% (v/v) glycerol, 0.5 mM TCEP, pH 7.5 as mobile
phase.
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SEC peak fractions were analyzed with SDS-PAGE, and Coomassie-stained bands were used for
protein identification using a Bruker UltrafleXtreme matrix-assisted laser desorption/time-of-flight
mass spectrometer (MALDI TOF-MS). Tryptic peptides extracted from the gel were identified by a
search in NBCI and SwissProt databases using BioTools2.2 (Bruker).

Crystallization, data collection, and structure determination

Mutant GDAP1A303-358 crystals were obtained using the sitting-drop vapor diffusion method at +4
°C. Proteins were mixed with mother liquor on crystallization plates using a Mosquito LCP nano-
dispenser (TTP Labtech). The protein concentration was 10-30 mg/ml in 75 nl, and 150 nl of reservoir
solution were added. H123R crystals were obtained in 0.15 M DL-malic acid, 20% (w/v) PEG3350.
R120W crystals were obtained in 0.1 M HEPES (pH 7.3) and 10% (w/v) PEG6000. Crystals were
briefly soaked in a mixture containing 10% PEG200, 10% PEG400, and 30% glycerol for cryo-

protection, before flash freezing in liquid No.

A novel crystal form of wild-type GDAP1A295-358 was obtained at +8 °C in 200 mM NHj4 formate,
25% PEG3350 in a drop containing 150 nl of 8.64 mg/ml protein and 150 nl of reservoir solution.
Cryoprotection was performed by adding 3 ul of cryoprotectant solution (75% (v/v) reservoir solution
mixed with 25% (v/v) PEG200) directly into the crystallization drop, followed by crystal mounting
and flash freezing with liquid No.

Diffraction data collection at 100 K was conducted at the PETRA III synchrotron source (DESY,
Hamburg, Germany), on the P11 beamline [33, 34] and the EMBL/DESY P13 beamline. Diffraction
data were processed and scaled using XDS [35]. Crystal structures of wild-type GDAP1A303-358
[18] were used as search models in molecular replacement (MR). MR, model refinement, and
structure validation were done using Phenix [36, 37] and CCP4 [38]. The models were refined using
Phenix.Refine [39] and rebuilt using COOT [40]. The structures were validated using MolProbity
[41]. The data processing and structure refinement statistics are in Table I, and the refined coordinates
and structure factors were deposited at the Protein Data Bank with entry codes 7Q6K (R120W), 7Q6J
(H123R), and 7YWD (new crystal form of wtGDAP1). The diffraction datasets for the mutants were
uploaded on Zenodo: https://doi.org/10.5281/zenodo.4686880 (R120W) and
https://doi.org/10.5281/zenodo.4686876 (H123R).
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Table 1. Crystallographic data processing and structure refinement. Data for the highest-resolution shell
are shown in parentheses.

Protein R120W GDAPI H123R GDAPI1 wtGDAPI
Data collection
Beamline P11/PETRA III P11/PETRA III P13
X-ray wavelength (A) 1.0332 1.0332 1.0332
Space group P21212; P6322 P3:21
Unit cell dimensions a, b, ¢ (A) 7271 115.88 116.18 | 147.27 147.27 114.56 126.8 126.8 177.1
Resolution range (A) 50-22(23-22) 50-343.5-34) 100 - 3.2 (3.39-3.20)
Completeness (%) 99.7 (98.8) 99.5 (98.6) 99.9 (99.9)
Redundancy 6.5(6.7) 12.8 (12.6) 9.8(9.9)
Rineas (%0) 9.0 (191.3) 41.1 (339.8) 10.7 (387.4)
<l/ocl> 12.8 (1.0) 6.7 (0.9) 16.0 (0.6)
CCin (%) 99.9 (69.6) 99.6 (60.5) 100.0 (17.7)
Wilson B (A?) 494 104.5 129.4
Structure refinement
Reryst/Riree (%0) 21.1/23.3 25.0/29.1 25.1/27.6
RMSD bond lengths (A) 0.013 0.002 0.003
RMSD bond angles (°) 1.35 0.43 0.61
Molprobity score 1.17 0.91 2.01
Ramachandran favoured/ 95.89/0.6 95.90/0.82 95.4/1.6
outliers (%)
PDB entry 7Q6K 7Q6J 7YWD

Modelling, simulation, and bioinformatics

A model for full-length GDAP1 was obtained from AlphaFold2 [42] and used for further analyses as
such. In addition, crystal structure-based models were prepared and analysed. Missing loops of the
wtGDAP1 crystal structure were built with YASARA [43], and the structure was minimized. The
model was further used as a starting point for SAXS data fitting (see below) as well as molecular

dynamics simulations.

MD simulations were run on a GDAP1 monomer, with all loops in place. The simulations were run
using GROMACS [44], with input file preparation on CHARMM-GUI [45]. The force field used was
7
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CHARMM36m [46], with a cubic box with a 10 A extension around the protein. Solvation was done
with the TIP3P water model in 0.15 M NaCl. Temperature (NVT) equilibration to 300 K and pressure

(NPT) equilibration, via isotropic pressure coupling, were carried out using the Berendsen thermostat.

Structural properties of GDAP1 were analysed with bioinformatics tools, including NAPS [47] for
centrality analyses and DynaMine [48] for prediction of flexibility. Stability effects of missense
mutations were predicted with CUPSAT [49]. Hydrophobic clusters were identified with
ProteinTools [50].

Small-angle X-ray scattering

The structure and oligomeric state of the GDAP1 R120W and H123R mutants were analysed with
SEC-coupled small-angle X-ray scattering (SAXS). SEC-SAXS experiments were performed on the
SWING beamline [51] (SOLEIL synchrotron, Saint Aubin, France). Samples were dialyzed against
fresh SEC buffer and centrifuged at >20000 g for 10 min at +4 °C to remove aggregates. 50 ul of
each protein sample at 8.5-10 mg/ml was injected onto a BioSEC3-300 column (Agilent) at a 0.2
ml/min flow rate. SAXS data were collected at +15 °C, over a g-range of 0.003-0.5 A"
(q = 4= sin(0)/1, where 20 is the scattering angle).

Further processing and modelling were done using ATSAS 3.0 [52]. Scattering curves were analysed
and particle dimensions determined using PRIMUS [53] and GNOM [54], respectively. Chain-like
ab initio models were generated using GASBOR [55]. In a complementary approach, different
GDAP1 dimer models were fitted against the experimental SAXS data using CRYSOL [56].
SUPCOMB was used to superimpose SAXS models and crystal structures [57].

Circular dichroism spectroscopy

Synchrotron radiation circular dichroism (SRCD) spectra were collected from 0.5 mg/ml samples on
the AU-CD beamline at the ASTRID2 synchrotron source (ISA, Aarhus, Denmark). The samples
were prepared in a buffer containing 10 mM HEPES pH 7.5, 100 mM NaF. The samples were
equilibrated to room temperature and applied into 0.1-mm pathlength closed circular quartz cuvettes
(Suprasil, Hellma Analytics). SRCD spectra were recorded from 170 nm to 280 nm at +25 °C. Three
repeat scans per measurement were recorded and averaged. The CD spectra baselines were processed

and converted to molar ellipticity using CDToolX [58].
Thermal stability

Thermal unfolding of GDAP1 variants in SEC buffer was studied by nanoDSF using a Prometheus
NT.48 instrument (NanoTemper). Tryptophan fluorescence was excited at 280 nm, and emission was

recorded at 330 and 350 nm. The samples were heated from +20 to +90 °C with a heating rate of 1
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°C/min, and changes in the fluorescence ratio (F350/F330) were monitored to determine apparent
melting points. The data were analyzed using Origin (OriginLab Corporation, Northampton, MA,
USA)

Cell culture and Western blotting

Human skin fibroblast cultures were established from skin biopsies of a healthy donor and a patient
with GDAP1 H123R mutation [12, 59]. Written consent for the use of patient material was obtained,
and the study was approved by the Coordinating Ethics Committee of the Helsinki and Uusimaa
Hospital District. The purification of rDRG sensory neurons, the generation of lentiviral particles,
and their use to overexpress the GDAP1 constructs were done as described [60] for MORC2. rDRGs
were matured into sensory neurons, and GDAP1 expression was induced by doxycycline-initiated

tight-TRE promotor expression using the Lentivirus system [30]

The protein fractions were isolated from the rDRG and fibroblast cells and membranes using 40 mM
HEPES pH 7.0, 400 mM NaCl, 1% n-Dodecyl-B-D-Maltopyranoside (DDM), and the supernatant
was clarified by centrifugation 45 000 rpm, +4 °C. The proteins were separated with 12% SDS-PAGE

under non-reducing conditions.

HEK293T-D10 cells were used to serve as endogenous control and to test the redox sensitivity of the
mammalian-derived GDAP1 samples. Proteins were isolated from total cell lysate and mitochondrial
fraction. The mitochondria were isolated from the cells using linear 15-50% (w/v) sucrose gradient
centrifugation. The protein was treated with similar lysis conditions as above, and SDS-PAGE was

performed with and without 192 mM B-mercaptoethanol.

Proteins were transferred onto 0.22 pm nitrocellulose membranes with the semi-dry transfer protocol
in TurboBlot®-buffer (Bio-Rad Laboratories, Inc.). The membrane was blocked with Tris-buffered
saline, 20 mM Tris-HCI (pH 7.4), 100 mM NaCl, 0.1% v/v Tween-20 (TBST), 5% w/v casein (milk
powder) and incubated for 2 h at +4 °C. The primary antibody, rabbit anti-GDAP1 anti-serum [16]
was added at a 1:5000 dilution and incubated for 1 h at +4 °C, followed by the secondary antibody
for 1 h at +4 °C (anti-rabbit IgG-HRP, Promega 65-6120). The Pierce® enhanced chemiluminescence
substrate (Thermo-Fischer Scientific) was added, and the blot was illuminated using ChemiDoc

XRS+ (Bio-Rad). Tubulin was used as a loading control in all experiments.
Immunofluorescence microscopy

rDRG cells were fixed with 4% paraformaldehyde in phosphate buffered saline 8 mM NayHPOu, 2
mM KH>POy4, 137 mM NaCl, 2.7 mM KCI (pH 7.4) (PBS) at +22 °C for 10 min and washed in PBS.

They were then incubated 1 h at +22 °C in a blocking solution (5% bovine serum albumin, 1% goat
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serum, 0.3% Triton X-100 in PBS) and with primary antibodies overnight at +4 °C (primary Abs:
mouse anti-flag — Sigma F1804; rabbit anti-NF-145 — Millipore AB1987), followed by washing in
PBS. The secondary antibodies were incubated for 45 min at +22 °C (secondary Abs: anti-mouse
594, Invitrogen A11005; anti-rabbit 488, Invitrogen A11034). The cells were counterstained with
1:10000 4',6-diamidino-2-phenylindole (DAPI) in PBS for 5 min at +22 °C. The fixed samples were
mounted on cover slips with Vectashield, and images were acquired with a Zeiss LSM700 confocal

microscope (Carl Zeiss AG).

10
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RESULTS

Structural effects of CMT mutations H123R and R120W on GDAP1

The CMT-linked missense mutations in GDAP1 are clustered within the vicinity of the hydrophobic
clusters of the N-terminal GST-like domain (GSTL-N), the C-terminal GST-like domain (GSTL-C),
and the dimer interface. The affected side chains are often polar or charged and orient towards the
solvent (Fig. 1A). They are also close to the hydrophobic clusters of GDAP1 (Fig. 1B). For example,
the a6 helix, Lys188-Glu229, has 20 charged residues along the helix. The clustered mutations could
change the side chain interaction networks between helices a3, a6, and a7, which further might affect
GDAPI1 folding and stability. Here, we focused on two CMT-linked GDAP1 mutations on helix a3
pointing towards a6, R120W and H123R (Fig. 1A).

Figure 1. Crystal structure of GDAP1 and effects of CMT mutations. A. The overall structure of
the wtGDAPI core domain dimer in two orientations, as published before [18]. The left monomer is
coloured with rainbow colours, while one on the right is gray and shows the positions of CMT
mutations, with side chains visible. The mutations linked to CMT2K are green, while the rest are
orange. Argl20 and His123 are shown as spheres. In the right-hand orientation, the mitochondrial
outer membrane would be below the dimer. B. Hydrophobic clusters in wtGDAP1. The orientation
is the same as the left panel of A, indicating that many CMT mutations lie in close vicinity of the
hydrophobic cores. C. Zoom in on helices a3, a6, and a7. Colouring of CMT mutations is as in A;
side chains are shown only for CMT-linked positions. Note how the CMT-linked residues participate
in a large intramolecular network of interactions. D. Comparison of wtGDAP1 (gray) and R120W
(pink) crystal structures. E. Comparison of wtGDAP1 (gray) and H123R (blue). Hydrogen bonds are
shown as dashed lines.

11
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We previously determined the crystal structure of wild-type GDAP1A303-358, which corresponds to
the GST-like core domain of GDAP1 in dimeric form, including the GDAP1-specific insertion [18].
Here, we expressed and purified the variants R120W and H123R, compared them to wild-type
GDAP1 (wtGDAPI) crystal and solution structures, and studied their folding and thermal stability.
The crystal of the R120W mutant variant had a new crystal form, while H123R had the same space
group as the wtGDAP1 structure, displaying a homodimer in the asymmetric unit. In the HI23R
structure, the dimer in the crystal is covalently linked via a disulphide bond at Cys88, like the
wtGDAP1 protein [18]. The disulphide bridge via Cys88 also exists in the R120W structure, but the

dimer is formed via crystallographic symmetry.

Both Argl20 and His123 are on the a3 helix, partially solvent-accessible (Fig. 1C). In both mutant
structures, as in wtGDAP1, the most flexible regions are in loops between [3-p4 at positions Leu71-
Ala77, and a5-a6 at positions Argl59-Ile186. The B3-B4 loop is more structurally ordered in the
mutants compared to wtGDAP1. The a5-a6 region corresponds to the GDAP1-specific insertion in
the GST superfamily [61]. In both mutant structures, the flexible loop between helices a6-a7 is similar

to wtGDAPI; the Ca backbone is visible, but side chains have poor density.

In the crystal state, the mutations do not cause major structural changes (Fig. 1D,E, S2). However,
intramolecular interactions are altered. In the H123R structure (Fig. 1E), the His123-Tyr124 n-orbital
interaction is disturbed in the mutant, while the interaction with the side chain of GIn218 is preserved.
The salt bridge network around Glu222 and Arg226 is conserved and now includes Argl123. In chain

B, the electron density for Argl23 is weak, indicating flexibility of the mutant residue.

Argl20 in wtGDAPI forms a H-bond with the backbone carbonyl of Cys240, and it is part of a salt
bridge network involving Glu222, Arg226, and Glu229 (Fig. 1C-E). Intriguingly, Arg120 has a close
contact with Arg226 in wt-GDAP1, whereby the two Arg m systems stack, and the surrounding
Glu222 and Glu229 neutralize charges via salt bridges. Trp120, as a bulky side chain, causes steric
hindrance in the R120W mutant (Figure 1D), and the a3 helix, carrying Trp120, moves outwards by
~1 A, and the contact with the neighbouring a6 is weakened. The backbone interaction to Cys240 is
lost in the mutant, and the salt bridge network centered at Arg226 is disturbed as is the contact

between His123 and GIn218, which could be linked to loss of protein stability.
The mutant proteins show unaltered conformation but lowered stability

To compare the solution and crystal structures, SAXS analysis was performed on the H123R and
R120W mutants (Fig. 2). SEC-SAXS was employed to achieve better separation between monomer
and dimer fractions. Previously, we showed this equilibrium to be concentration-dependent; high

concentration favours the dimeric form [18]. The SEC-SAXS profiles show that the samples are

12


https://doi.org/10.1101/2022.02.18.481076
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.18.481076; this version posted February 18, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

283  monodisperse with a same radius of gyration, Rg, across the peak (Fig. S1). The molecular weight
284  across the main peak showed that in both mutants, the peak contained a dimeric form similar to

285  wtGDAPI; accordingly, the scattering curves were essentially identical.

286  Further analysis revealed that the Ry values matched the ones for wtGDAP1 (Table II), indicating
287  similar solution conformation and oligomeric state. Both mutants possess a similar globular fold with
288  essentially the same level of flexibility as wtGDAP1, as demonstrated by dimensionless Kratky plots
289  (Fig. 2B). Distance distribution functions revealed that the particle dimensions in solution are nearly
290 identical between the mutants and wtGDAP1 (Fig. 2C). Hence, at the resolution of a SAXS

291  experiment, neither mutation caused large-scale conformational changes.
292

293  Table 2. SAXS parameters. The values for wtGDAP1 are from our previous study [18].

Construct GDAP1A303-358 GDAP1A303-358 GDAP1A303-358 wt
H123R R120W

R, (A) from P(r) 30.74 £ 0.05 30.64 £ 0.05 30.60+0.11

Rg (A) from Guinier plot | 30.73 30.64 30.70 +0.03

Dinax (A) 99.9 99.95 99.00

Porod volume estimate, | 757 g 107947 105,750

vy (A%)

sRg limits 0.24-1.29 0.24-1.30 0.41-1.30

MW from consensus

Bayesian assessment

based on SAXS data 743 743 724

(kDa)

Calculated monomeric

MW from sequence 35.1 35.1 352

(kDa)

SASBDB entry XXX XXX SASDJVS8

294
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Figure 2. SAXS analysis of the GDAP1 mutations. A. Top: Scattering curves from synchrotron
SEC-SAXS. The curves are diplaced in the y direction for clarity. Bottom: comparison of the mutant
data to wtGDAP1 indicates that the SAXS data are essentially identical. B. Dimensionless Kratky
plot shows clobular structure and same level of flexibility. The dashed lines crossing (x=V3, y=1.1)
reflects the theoretical maximum for a rigid globular particle. C. Distance distributions indicate
similar size and shape, with ver minor differences when zoomed in. D. Ab initio chain-like model
(gray spheres) overlaid with the crystal structure of wtGDAP1 [18]. Note how the long helix a6 from
the extended conformation does not fit into the envelope. E. Fit of the ab initio model in panel D (red
line) to the SAXS data from wtGDAP1 (black dots).

The dimer-monomer equilibrium in GDAPI is dynamic, and the dimeric form is favoured at high
concentrations [18]. At the concentrations and conditions used here, GDAP1 exists as a dimer, as
indicated by the SAXS data. Chain-like ab initio models confirmed the observation that both mutants
are nearly indistinguishable from dimeric wtGDAP1 (Fig. 2D,E). Thus, there is no indication of

effects on oligomeric status by the two mutations.

The SAXS data indicate a dimeric form for both mutants (Table II). The ambiguity between the two
mutants was estimated with AMBIMETER [62], and H123R and R120W have both similar levels of
globularity and stability. These observations are in line with the fairly minor conformational
differences in the crystal state, whereby R120W — as a more drastic replacement - led to a small
movement of the a3 helix and loss of hydrogen bonding interactions. On the other hand, the only
fully monomeric GDAP1 mutant we studied earlier, Y29E/C88A, is more globular than any of the

dimeric forms [18].
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To further compare the molecules in solution and in the crystal, the crystal structure coordinates were
fitted against the SAXS scattering curve (Fig. 2D). Based on the analysis, it is obvious that both
mutants adopt the dimer form, having very similar folds in solution as the wtGDAPI1. After building
in the loops, the dimer structure fits to the data better than the crystal structure (Fig. S3); hence, the
conformation observed in the crystal represents the solution structure, with the addition of the

GDAPI1-specific flexible insertion.

Since the mutants presented similar solubility and folding as wtGDAP1, we tested whether the
mutations cause changes to GDAP1 stability or secondary structure content. To test for quantitative
differences in secondary structures, we measured SRCD spectra (Fig. 3A). The SRCD spectra of the
mutants overlay well with the wtGDAP1 CD spectrum, showing that the mutants on average have a
similar secondary structure composition in solution as wtGDAPI1. The CD peak at 208 nm is weaker
for H123R, which may indicate minor differences in intramolecular interactions between a-helices,
as seen in the crystal structure. Once the GDAP1 dimer forms via the disulfide bond, the structure
becomes very stable, and it is challenging to dissociate the dimer [18]. Due to the high helical content
in GDAPI and the similarity of the CD spectra, we can confirm that the mutations do not affect the
overall folding characteristics of GDAP1. Small differences in spectral shape may be caused by both
local stacking of amino acid side chains as well as interactions between secondary structure elements

[63, 64].
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Figure 3. Folding and stability of GDAP1. A. SRCD spectra for wtGDAP1 (black), R120W(red),
and H123R (blue). B. DSF stability assay. Colours as in A. C. Residue centrality, as defined by NAPS,
identifies helix a7, around residue 250, as the most central part of the structure. D. DynaMine
analysis. The location of the hinge in helix a6 is indicated, as are helixes a3, a6, and o7. The shaded
region indicates context-dependent folding, while values above 0.8 predict rigid structure.

To determine thermal stability, we studied the R120W and H123R variants using the Trp fluorescence
emission peak ratio at wavelengths 350/330 nm in nanoDSF. The wtGDAP1 protein is more stable
than the mutants (Fig. 3B). The apparent Tr, value for wtGDAPI, ~62 °C, was >5 °C higher than for
both mutants, suggesting that the effect of the mutations may be linked to an overall destabilization
of the fold. Considering the location of the mutations, a region of GDAPI is revealed, which is

important for protein stability.

To obtain further insight into effects of the mutations on GDAP1, we used a variety of bioinformatics
tools. Analyses of centrality (Fig. 3C) indicated that the core region of GDAP1, close to both Arg120
and His123, with helix a7 the most central element, is likely to be important for folding and stability.
Many other CMT mutations cluster into this area [ 18], affecting a number of residues in an interaction
network (Fig. 1A,C). Effects of point mutations on protein stability against temperature or chemicals

were predicted using CUPSAT [49]. Both R120W and H123R are predicted to be destabilizing in
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both respects, in line with the thermal stability data above. DynaMine analysis (Fig. 3D) of protein
flexibility based on sequence data further showed that the part of helix a6 at before residue 200 has
context-dependent rigidity, indicating that the unique a5-a6 loop in GDAP1 is structurally dynamic.

Flexibility of the a6 helix

A crystal structure was solved for wtGDAP1A295-358, and it presented a novel crystal form with 4
monomers in the asymmetric unit. One complete dimer was present in the asymmetric unit, in addition
to two half-dimers, which both homodimerise through crystallographic symmetry. As the resolution
of the structure was rather low, structural details were not analysed. However, in all 4 independent
protomers, helix a6 breaks in the middle around Asp200, and a helix at residues 189-198 is present
in electron density (Fig. 4A). Thus, the long a6 helix can adopt different conformations even in the
crystal state. The wtGDAP1 crystal structure published earlier (Fig. 1A) had an asymmetric dimer,
with one short and one long a6 helix [18]. These observations suggest that the GDAP1-specific

insertion is flexible also in solution.

=
e
N

I(s) (relative)

0 0.2 0.4

Figure 4. New crystal form of wtGDAP1. A. The new structure has the long a6 helix divided into
two (light and dark green). B. Comparison of modelled dimers based on the extended crystal form of
wtGDAP1 (gray) and AlphaFold2 (red/magenta). The double arrows indicate flexibility of the a5-a6
segment, while the green arrow identifies the hinge in the middle of a6. C. Superposition of the chain-
like model with the model based on the new crystal structure (cartoons). See further comparisons in
Fig. S3. D. Fit of the cartoon model from panel C to the wtGDAP1 SAXS data.

17


https://doi.org/10.1101/2022.02.18.481076
http://creativecommons.org/licenses/by-nc-nd/4.0/

376
377
378
379
380
381
382

383
384
385
386
387
388

389

390
391
392
393
394

395

396

397
398
399

400
401
402

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.18.481076; this version posted February 18, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

The new wtGDAP1 dimer structure was analysed with respect to the SAXS data, together with a
dimer built based on the AlphaFold2 model monomer. The AlphaFold2 model has the helix a6
divided into two and collapsed into a similar, but even more compact, conformation as seen in the
new wtGDAPI crystal (Fig. 4B). However, it is evident that the AlphaFold2 model is too compact,
while the extended conformation of helix a6 is too elongated (Fig. 4B, S3). An excellent fit to the
SAXS data was obtained using the dimer from the new wtGDAP1 crystal structure with built-in
missing loops (Fig. 4C,D, S3).

To further analyse the dynamics of GDAP1, the model based on the wtGDAPI1 crystal structure [18],
with all loops added, was subjected to MD simulations (Fig. 5). Throughout the simulation, the
GDAPI1-specific insertion is the most dynamic segment of the protein, but the long helix remains
extended. On the other hand, simulation of the AlphaFold2 model indicates stability of the bent
conformation. The simulations support the crystal structures of both conformations and give

additional proof about a hinge in the middle of helix a6.

(
W 0.8—_

o
o
|

E
\” ' § ‘§o.4a
/‘%{;‘1 5 ﬁn‘ ®
N » 5 =S
// !\(! [ o
‘\*4\ 027
UL

N EmE s e R
50 100 150 200 250 300
residue

Figure 5. MD simulation of GDAP1 monomer. A. The open (gray) and closed (red) conformations
of a GDAPI monomer, obtained from the extended crystal structure and the AlphaFold2 model,
respectively. B. RMS fluctuations of Ca atoms indicate relative rigidity of the AlphaFold2 model
(red) at the B2-B3 loop and the a5-a6 loop, compared to wtGDAP1 (black). The simulations were run
for 500 ns for the AlphaFold2 model and 350 ns for the open crystal structure model.

GDAP1 mutant localization and oligomeric state in cells

To explore the two CMT-linked mutations, R120W and H123R, at the cellular level, we used three
different cell culture models, in which either endogenously expressed GDAP1 variants or inducible

systems to overexpress GDAP1 variants were utilized.

The localisation of R120W and H123R in neurons was compared to that of wtGDAP1 using rDRG
primary cell cultures. After protein induction, the neurites were immunostained and imaged using a

confocal microscope (Fig. 6). FLAG-tagged wtGDAP1 locates both in the cell body and axons of the
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sensory neurons. The localisation is not cytoplasmic or on the plasma membrane, and in accordance
with previous work, most likely mitochondrial. No clear difference in the immunostaining intensity
or cellular localization of R120W or H123R were observed compared to wtGDAPI1. None of the
mutations induced distinguishable morphological changes in sensory neurons, and no cell toxic

effects were observed (Fig. 6).
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Figure 6. Immunofluorescence analysis of GDAP1-overexpressing rat DRGs. The images were
taken with two magnifications from cells overexpressing wtGDAP1, H123R, R120W, or red
fluorescent protein (RFP). GDAPI1 staining was done with a-FLAG, and o-NF145 was used to
visualize neurons. DAPI staining shows the nucleus.

Dimeric GDAPI has been detectable from mammalian sources [65]. To further test whether GDAP1
preferably forms disulphide-linked dimers in cells, we performed Western blot analysis for protein
extracts under non-reducing conditions (Fig. S4). We used human fibroblast cultures established from

skin biopsies of a CMT2K patient carrying the HI23R GDAPI1 allele [12, 59]. Normal GDAP1
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genotype fibroblasts were used as control. Western blot analysis revealed that in the fibroblasts,
GDAP1 exists as monomers in both CMT2K patient-derived cells and healthy control samples (Fig.
S4).

In addition to the human fibroblasts, we analysed the rDRG sensory neurons overexpressing GDAP1
variants and HEK293T-D10 cells that endogenously express GDAP1 to explore the oligomeric state
of wtGDAPI1, R120W and H123R was explored. In all cells studied here, wtGDAPI1, as wells as both
mutant variants, was detected as a monomer after electrophoresis (Fig. S4). Hence, any dimer present
in the cells is not disulphide-linked. Of note, the mutation C88A did not make recombinant GDAP1
fully monomeric in our earlier study [18], indicating that the homodimer can form without the
disulphide bridge in vitro. The only GDAPI variant we have observed to be fully monomeric is the
double mutant Y29E/C88A [18], which disturbs both the hydrophobic interface and the disulphide
bridge. To conclude, the main form of GDAP1 in cells, at least in the absence of inducing factors, is

not a disulphide-linked dimer.
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DISCUSSION

Single-amino-acid substitutions can alter protein physicochemical properties, affecting protein
stability and function. From a clinical perspective, inherited neuropathies are generally well-
characterized at the level of the symptomatic spectrum and disease progression. A large variety of
CMT mutations are known and characterized clinically [66]. However, in many cases, the molecular
basis of these disorders cannot be adequately explained. The difficulty of understanding the
mechanism is due to both the vast number of the involved genes and their heterogeneous inheritance

patterns and phenotypes, as well as limited knowledge about molecular structure and function.

GDAPI is one of the genes associated with peripheral neuropathies caused by missense mutations.
We performed structural analyses for two human CMT2K-linked GDAP1 mutations on helix a3,
which revealed that apart from the mutated residue and its immediate surroundings, the overall fold
does not change. However, both mutations introduce changes in intramolecular networks and
differences in molecular properties, most notably in thermal stability. The structural analysis of
pathogenic CMT-linked GDAP1 variants shows that the mutations are close to the GDAPI1

hydrophobic cluster and mediate interactions between key helices of the structure.
CMT mutations in GDAP1 cluster into hotspots in 3D space

Currently, there at least 103 GDAPI mutations linked to CMT, out of which 68 are reported missense
mutations [67]. Both R120W and H123R are common mutations in European patients [7, 14, 68], and
H123R was identified as a major founder mutation in the Finnish population [12, 13]. Several GDAPI1
mutations have been studied using neurons and Schwann cells or yeast models [7, 10, 69, 70]. We
chose to investigate the Finnish H123R founder mutation, as well as R120W due to its well-
established clinical and molecular characterization and its location in the vicinity of His123, on helix

o3. Both mutations have been linked to the autosomal dominant form CMT2K.

The GDAPI crystal structure allows predicting the molecular basis for many of the known mutations
in the Human Gene Mutation Database (http://www.hgmd.cf.ac.uk/ac) and the Inherited Neuropathy
Variant Browser database (https://neuropathybrowser.zuchnerlab.net). A CMT-related mutation
cluster of GDAP1 (Fig. 1) mainly localizes on helices a3 and a6 and less on helices a7, a8, and their
connecting loops [18]. There are 68 known missense GDAP1 mutations, involving 39 residues. The
main cluster contains 27 residues that form a network of interactions, including salt bridges, hydrogen
bonds, and van der Waals contacts. These interactions provide extensive contacts between helices a3,
a6, and o7 (Fig. 1C). Centrality analyses of the GDAPI1 structure highlight this, indicating helix o7
as the most central segment of the GDAP1 structure. Notably, many mutations linked to CMT2K

21


https://doi.org/10.1101/2022.02.18.481076
http://creativecommons.org/licenses/by-nc-nd/4.0/

463
464

465
466
467
468
469
470
471
472

473
474
475
476
477

478

479
480
481
482
483
484
485
486
487

488
489
490
491
492

493

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.18.481076; this version posted February 18, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

map very close to each other in 3D space, suggesting an intramolecular network that gets disturbed

upon disease mutations, altering GDAPI1 structure or function.

Mutating residues His123 and Argl20 does not break the GDAP1 fold, but rather may affect the
intramolecular residue interaction network and protein stability. The thermal stability of the mutant
proteins decreased compared to wtGDAP1, suggesting that especially the interaction between a3-06
may be important. Predictions of AAG using computational methods mainly agree with the
experiment, showing that both mutations are destabilising. Interestingly, the wedge between helices
a5-06 contains a pattern of double tyrosines, double glutamates, double leucines, and double lysines,
which seem to pull the GSTL-C core together. The mutations in many cases are introduced into the

neighbouring positions of these double pairs, like in the case of H123R.

We have shown that hexadecanoic acid bound into a groove close to the CMT mutation cluster [18].
The R120W and H123R mutation sites are close to the a6 helix and the main hydrophobic cluster
centered around a7. As an interesting hotspot, Argl120 is the site for four different CMT mutations.
Mutations in such clusters and hotspots might affect residue interaction networks and thus decrease

protein stability.
The cluster of interactions is sensitive towards CMT mutations

Considering the interactions of both His123 and Arg120, as well as the networks between helices a3,
a6, and a7, it becomes evident that several involved residues are targets of CMT mutations. An
example is Glu222, which is sandwiched between three Arg side chains (Argl20, Arg225, Arg226)
and Tyr124, and has can der Waals contacts to Leu239. Another example is Ala247; the conservative
mutation to valine is linked to disease [71]. Ala247 on helix a7 is located in a tight space right below
His123 and Argl20 and part of the same interaction network. The apparently mild CMT mutation
A247V increases the side of the side chain and affects the local interactions. Cys240 from the a6-a7
loop also lies right below His123 and Arg120, and its mutation to Tyr in CMT [72, 73] will interfere

with the local interaction network at this residue cluster.

Taken together, although the CMT mutations in GDAPI initially appear to be scattered throughout
the sequence, in the 3D structure, they are involved in close interaction networks, and these networks
are sensitive against changes in many different participating residues. This observation explains the
general loss of protein stability upon mutations in such networks and clusters and may hint at an

overall mechanism of GDAP1-linked CMT.

The unique a6 helix of GDAP1
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Helix a6 is a dominant and unique feature of the GDAPI1 structure, being part of the GDAP1-specific
insertion, together with its preceding loop, which is not visible in electron density. We used a
combination of crystal structures and computational models to get further insights into the GDAPI
helix a6 and its dynamics. Our observation of the a6 conformational flexibility may point out to
mechanistically important functions, which could be linked to effects of CMT disease mutations on

or near the helix.

In the original wtGDAP1 structure [18], we saw breakdown of non-crystallographic symmetry, as the
a6 helix was of different length between the two chains in the asymmetric unit. The shorter version
of the helix started around residue 200, which is the hinge region in our new wtGDAPI1 crystal
structure, in which the helix continues in another direction in all four independent protomers in the
asymmetric unit. A break of the helix at the same position is predicted also by AlphaFold2; however,
the conformation of monomeric GDAP1 in the model is incompatible with the exact mode of
dimerization we observe in the crystal state, leading to steric clashes. Sequence-based analysis of
flexibility also points out the region around residues 190-200 as potentially flexible. The
conformational dynamics of the GDAP1-specific insertion, via a hinge around residue 200, could
play a role in its physiological functions and its interactions with other molecules, such as the

cytoskeleton, in vivo.
GDAP1 is a dimer in solution but not disulphide-linked in cells

GDAPI1 has a unique dimer interface compared to canonical GSTs [18] and dynamic oligomerization
properties [18, 65, 74]. Our results show that GDAP1 dimerization mediated via a disulphide bond
can also be observed in the CMT mutant proteins in vitro. In the cellular environment, such a
disulphide bond could be formed via a folding catalyst or through changes in the redox environment.

The latter has been linked to GDAP1 function [75].

An interesting possibility for the dimeric function would be GDAP1 activation by a folding catalyst,
affecting interactions with a partner protein, suggesting that the GDAP1 function could be linked to
its oligomeric state. Many binding targets have been proposed for GDAP1, such as tubulin and other
cytoskeletal components [23, 70]. The GDAP1 disease mutations could, in addition to affecting
protein folding and stability, modulate protein-protein interactions. However, the details of molecular
interactions formed by GDAP1 remain unknown, and further studies should be focused on studying

GDAPI1-cytoskeleton interactions and their links to GDAP1 oligomeric state.
Conclusions

We have presented a structural analysis of two CMT-linked mutations in GDAP1, R120W and

H123R. The effects of these mutations on protein structure were small, and it is likely that the
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mutations affect dynamic properties, stability, and conformational changes of GDAP1 and/or its
interactions with additional binding partners. The cluster of CMT-related mutations in the 3D
structure of GDAPI highlights a tightly interwound network of amino acid side chain interactions
that are likely essential for the normal function and structure of GDAP1. Such mutation clustering
essentiates the need for accurate structural studies of proteins targeted by disease mutations, and it
can be expected that most of the mutations in such a cluster similarly affect protein stability or
functional interaction networks. A major goal for the future will be structure solution of the full-
length GDAP1 protein, including the transmembrane domain, in addition to deciphering details of its

physiological function and molecular interactions.
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