

1 Structural insights into Charcot-Marie-Tooth disease-linked 2 mutations in human GDAP1

3 Aleksi Sutinen^{1,*}, Giang Thi Tuyet Nguyen^{1,*}, Arne Raasakka², Gopinath Muruganandam^{3,4},
4 Remy Loris^{3,4}, Emil Ylikallio^{5,6}, Henna Tyynismaa⁵, Luca Bartesaghi⁷, Salla Ruskamo¹, and
5 Petri Kursula^{1,2,#}

6

7 ¹Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland

8 ²Department of Biomedicine, University of Bergen, Norway

9 ³VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium

10 ⁴Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel,
11 Belgium

12 ⁵Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland

13 ⁶Clinical Neurosciences, Neurology, Helsinki University Hospital, Finland

14 ⁷Department of Neuroscience, Karolinska Institutet, Sweden

15

16 **Equal contribution*

17 *#Corresponding author email: petri.kursula@uib.no*

18

19 **Keywords:** Charcot-Marie-Tooth disease, GDAP1, GST superfamily, protein structure, neuropathy

20

21

22

23

24

25 **ABSTRACT**

26 Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral polyneuropathy in
27 humans, and its different subtypes are linked to mutations in dozens of different genes. Mutations in
28 ganglioside-induced differentiation-associated protein 1 (GDAP1) cause two types of CMT,
29 demyelinating CMT4A and axonal CMT2K. The GDAP1-linked CMT genotypes are mainly
30 missense point mutations. Despite clinical profiling and *in vivo* studies on the mutations, the etiology
31 of GDAP1-linked CMT is poorly understood. Here, we describe the biochemical and structural
32 properties of the Finnish founding CMT2K mutation H123R as well as CMT2K-linked R120W, both
33 of which are autosomal dominant mutations. The disease variant proteins retain close to normal
34 structure and solution behaviour, but both present a large decrease in thermal stability. Using GDAP1
35 variant crystal structures, we identify a side chain interaction network between helices α 3, α 6, and
36 α 7, which is affected by CMT mutations, as well as a hinge in the long helix α 6, which is linked to
37 structural flexibility. Structural analysis of GDAP1 indicates that CMT may arise from disruption of
38 specific intra- and intermolecular interaction networks, leading to alterations in GDAP1 structure and
39 stability, and eventually, insufficient motor and sensory neuron function.

40

41 INTRODUCTION

42 Inherited polyneuropathies are a genetically and clinically diverse group of neurodegenerative
43 diseases, which affect motor and sensory neurons in the peripheral nervous system (PNS) [1, 2].
44 Mutations in dozens of genes expressed in the PNS cause Charcot-Marie-Tooth syndrome (CMT).
45 Based on clinical findings, CMT can be classified into three forms: demyelinating, axonal, and
46 intermediate [3, 4]. The progress of CMT is linked to the hereditary pattern, whereby the autosomal
47 recessive form has an earlier onset and more severe symptoms than the autosomal dominant form [5-
48 7]. Understanding the molecular function of the proteins involved in the etiology of neuropathies is
49 vital in efforts towards treatment and diagnosis.

50 Ganglioside-induced differentiation-associated protein 1 (GDAP1) is an integral mitochondrial outer
51 membrane (MOM) protein, and the *GDAP1* gene is one of the most abundant in missense mutations
52 linked to CMT [8-10]. Both autosomal dominant and recessive modes of inheritance are found,
53 resulting in either autosomal recessive, or dominant demyelinating CMT4, autosomal dominant
54 axonal CMT2 or intermediate CMTRIA types of CMT, with varying phenotype severity [11]. The
55 mutations R120W and H123R, which we focus on in this study, are both autosomal dominant
56 mutations causing the CMT2K subtype. Both phenotypes show typical slow development after onset,
57 and main symptoms include loss of sensation in limb extremities and muscle weakness. The clinical
58 profiling of the phenotypes has been described earlier in Spain and Finland [12-14]. GDAP1 is
59 ubiquitously expressed in tissues, but most of the expression confines to neuronal tissues [9, 15]. In
60 the cell, GDAP1 localizes as a tail-anchored MOM protein [16]. Structurally, GDAP1 resembles
61 glutathione S-transferases (GST), and it contains unique flexible loops [17, 18]. The most accurate
62 structural data thus far cover the dimeric core GST-like domain of human GDAP1, including the
63 GDAP1-specific insertion [18]. The transmembrane helix and the GST-like domain are linked by a
64 hydrophobic domain and possibly a flexible linker loop.

65 GST superfamily members function in prokaryotic and eukaryotic metabolism through the utilization
66 of reduced glutathione to catalyse a range of chemically diverse reactions. GSTs often contribute to
67 mechanisms of neurodegenerative diseases [19, 20]. In comparison to many other enzyme
68 superfamilies, GSTs are unique in that sequence conservation appears to be driven by fold stability
69 instead of catalytic features, as reflected in the broad spectrum of GST substrates [21, 22]. While the
70 function of GDAP1 is not fully understood at the molecular level, it has been linked to multiple
71 mitochondrial events in neurons [23, 24], redox regulation, and signal transduction [25, 26].

72 In the Finnish population, the autosomal dominant founder mutation H123R accounts for as much as
73 20-30% of the local CMT cases [12, 27]. We carried out structural analysis of two selected autosomal

74 dominant GDAP1 mutants, H123R and R120W, using X-ray crystallography and complementary
75 biophysical and computational techniques. In addition, we used three cell culture models, rat dorsal
76 root ganglion (rDRG) neurons, human embryonic kidney 293 (HEK-293T) cells, and human skin
77 fibroblasts, to observe the oligomeric state of GDAP1 and the effects of the disease mutations therein.

78

79 MATERIALS AND METHODS

80 Cloning

81 The GDAP1 Δ 295-358 and GDAP1 Δ 303-358 constructs used to produce soluble recombinant human
82 GDAP1 in *E. coli* have been described [18]. Point mutations were generated in GDAP1 Δ 303-358 by
83 a site-directed mutagenesis protocol with *Pfu* polymerase [28]. An N-terminal His₆-affinity tag and a
84 Tobacco Etch Virus (TEV) protease digestion site were included in each construct. The full-length
85 GDAP1 coding sequence was subcloned into Gateway[®] (Invitrogen) vectors pEN-TTmcs and pSLIK-
86 HYGRO [29]. Point mutations were introduced as above. In addition to the *GDAP1* gene, the
87 tetracycline-responsive promoter element (tight-TRE) was added within the cloning site [30], and a
88 single N-terminal FLAG-tag was introduced into each construct [31]. All constructs were verified by
89 DNA sequencing.

90 Recombinant protein production

91 Soluble recombinant GDAP Δ 295-358 and GDAP1 Δ 303-358 were expressed in *E. coli* BL21(DE3)
92 strain using ZYM-5052 autoinduction medium (24 h, 220 rpm, +37 °C) [32]. The cells were re-
93 suspended in binding buffer (40 mM HEPES, 400 mM NaCl, 2% glycerol, and 25 mM imidazole (pH
94 7.5)), containing EDTA-free protease inhibitor tablet (Sigma), snap-frozen in liquid nitrogen and
95 stored at -70 °C. Lysis of the cells was done by sonication, and the lysate was clarified by
96 centrifugation (40 min, 16 000 rpm, +4 °C). Recombinant protein was captured on a Ni²⁺-NTA
97 HisPur[®] affinity resin by gravity flow (Thermo Fisher Scientific). Unbound proteins were washed
98 with binding buffer. The matrix was eluted with the same buffer, with imidazole at 250 mM. The
99 affinity tag was cleaved with TEV protease treatment in 25 mM HEPES, 300 mM NaCl, 2% glycerol,
100 1 mM TCEP in a dialysis tube (16 h, +4 °C). The His₆-tag and TEV protease were then removed by
101 another Ni²⁺-NTA affinity step. Size exclusion chromatography (SEC) was performed on a Superdex
102 75 10/300 GL increase column (Cytiva) using 25 mM HEPES (pH 7.5), 300 mM NaCl (SEC buffer)
103 as mobile phase.

104 For GDAP Δ 295-358, the Ni²⁺-NTA purification protocol was identical, but 40 mM HEPES, 400 mM
105 NaCl, 20 mM imidazole, pH 7.5 was used as lysis and Ni-NTA washing buffer, and 32 mM HEPES,
106 320 mM NaCl, 500 mM imidazole, pH 7.5 was used to elute bound proteins. EDTA-free protease
107 inhibitor cocktail (Roche) was included during cell freezing and lysis. TEV protease treatment was
108 performed in dialysis against 40 mM HEPES, 400 mM NaCl, pH 7.5 at +4 °C overnight, followed by
109 a second Ni²⁺-NTA affinity step. SEC was performed using a Superdex 200 16/60 HiLoad column
110 (Cytiva) with 20 mM HEPES, 300 mM NaCl, 1% (v/v) glycerol, 0.5 mM TCEP, pH 7.5 as mobile
111 phase.

112 SEC peak fractions were analyzed with SDS-PAGE, and Coomassie-stained bands were used for
113 protein identification using a Bruker UltrafileXtreme matrix-assisted laser desorption/time-of-flight
114 mass spectrometer (MALDI TOF-MS). Tryptic peptides extracted from the gel were identified by a
115 search in NBCI and SwissProt databases using BioTools2.2 (Bruker).

116 **Crystallization, data collection, and structure determination**

117 Mutant GDAP1 Δ 303-358 crystals were obtained using the sitting-drop vapor diffusion method at +4
118 °C. Proteins were mixed with mother liquor on crystallization plates using a Mosquito LCP nano-
119 dispenser (TTP Labtech). The protein concentration was 10-30 mg/ml in 75 nl, and 150 nl of reservoir
120 solution were added. H123R crystals were obtained in 0.15 M *DL*-malic acid, 20% (w/v) PEG3350.
121 R120W crystals were obtained in 0.1 M HEPES (pH 7.3) and 10% (w/v) PEG6000. Crystals were
122 briefly soaked in a mixture containing 10% PEG200, 10% PEG400, and 30% glycerol for cryo-
123 protection, before flash freezing in liquid N₂.

124 A novel crystal form of wild-type GDAP1 Δ 295-358 was obtained at +8 °C in 200 mM NH₄ formate,
125 25% PEG3350 in a drop containing 150 nl of 8.64 mg/ml protein and 150 nl of reservoir solution.
126 Cryoprotection was performed by adding 3 μ l of cryoprotectant solution (75% (v/v) reservoir solution
127 mixed with 25% (v/v) PEG200) directly into the crystallization drop, followed by crystal mounting
128 and flash freezing with liquid N₂.

129 Diffraction data collection at 100 K was conducted at the PETRA III synchrotron source (DESY,
130 Hamburg, Germany), on the P11 beamline [33, 34] and the EMBL/DESY P13 beamline. Diffraction
131 data were processed and scaled using XDS [35]. Crystal structures of wild-type GDAP1 Δ 303-358
132 [18] were used as search models in molecular replacement (MR). MR, model refinement, and
133 structure validation were done using Phenix [36, 37] and CCP4 [38]. The models were refined using
134 Phenix.Refine [39] and rebuilt using COOT [40]. The structures were validated using MolProbity
135 [41]. The data processing and structure refinement statistics are in **Table I**, and the refined coordinates
136 and structure factors were deposited at the Protein Data Bank with entry codes 7Q6K (R120W), 7Q6J
137 (H123R), and 7YWD (new crystal form of wtGDAP1). The diffraction datasets for the mutants were
138 uploaded on Zenodo: <https://doi.org/10.5281/zenodo.4686880> (R120W) and
139 <https://doi.org/10.5281/zenodo.4686876> (H123R).

140

141

142

143

144 **Table 1. Crystallographic data processing and structure refinement.** Data for the highest-resolution shell
145 are shown in parentheses.

Protein	R120W GDAP1	H123R GDAP1	wtGDAP1
<i>Data collection</i>			
Beamline	P11/PETRA III	P11/PETRA III	P13
X-ray wavelength (Å)	1.0332	1.0332	1.0332
Space group	P2 ₁ 2 ₁ 2 ₁	P6 ₃ 22	P3 ₁ 21
Unit cell dimensions a, b, c (Å)	72.71 115.88 116.18	147.27 147.27 114.56	126.8 126.8 177.1
Resolution range (Å)	50 - 2.2 (2.3 - 2.2)	50 - 3.4 (3.5 - 3.4)	100 - 3.2 (3.39 - 3.20)
Completeness (%)	99.7 (98.8)	99.5 (98.6)	99.9 (99.9)
Redundancy	6.5 (6.7)	12.8 (12.6)	9.8 (9.9)
R _{meas} (%)	9.0 (191.3)	41.1 (339.8)	10.7 (387.4)
<I/σI>	12.8 (1.0)	6.7 (0.9)	16.0 (0.6)
CC _{1/2} (%)	99.9 (69.6)	99.6 (60.5)	100.0 (17.7)
Wilson B (Å ²)	49.4	104.5	129.4
<i>Structure refinement</i>			
R _{cryst} /R _{free} (%)	21.1/ 23.3	25.0 / 29.1	25.1 / 27.6
RMSD bond lengths (Å)	0.013	0.002	0.003
RMSD bond angles (°)	1.35	0.43	0.61
Molprobity score	1.17	0.91	2.01
Ramachandran favoured/ outliers (%)	95.89 / 0.6	95.90 / 0.82	95.4 / 1.6
PDB entry	7Q6K	7Q6J	7YWD

146

147 **Modelling, simulation, and bioinformatics**

148 A model for full-length GDAP1 was obtained from AlphaFold2 [42] and used for further analyses as
149 such. In addition, crystal structure-based models were prepared and analysed. Missing loops of the
150 wtGDAP1 crystal structure were built with YASARA [43], and the structure was minimized. The
151 model was further used as a starting point for SAXS data fitting (see below) as well as molecular
152 dynamics simulations.

153 MD simulations were run on a GDAP1 monomer, with all loops in place. The simulations were run
154 using GROMACS [44], with input file preparation on CHARMM-GUI [45]. The force field used was

155 CHARMM36m [46], with a cubic box with a 10 Å extension around the protein. Solvation was done
156 with the TIP3P water model in 0.15 M NaCl. Temperature (NVT) equilibration to 300 K and pressure
157 (NPT) equilibration, via isotropic pressure coupling, were carried out using the Berendsen thermostat.
158 Structural properties of GDAP1 were analysed with bioinformatics tools, including NAPS [47] for
159 centrality analyses and DynaMine [48] for prediction of flexibility. Stability effects of missense
160 mutations were predicted with CUPSAT [49]. Hydrophobic clusters were identified with
161 ProteinTools [50].

162 **Small-angle X-ray scattering**

163 The structure and oligomeric state of the GDAP1 R120W and H123R mutants were analysed with
164 SEC-coupled small-angle X-ray scattering (SAXS). SEC-SAXS experiments were performed on the
165 SWING beamline [51] (SOLEIL synchrotron, Saint Aubin, France). Samples were dialyzed against
166 fresh SEC buffer and centrifuged at >20000 g for 10 min at +4 °C to remove aggregates. 50 µl of
167 each protein sample at 8.5-10 mg/ml was injected onto a BioSEC3-300 column (Agilent) at a 0.2
168 ml/min flow rate. SAXS data were collected at +15 °C, over a q-range of 0.003–0.5 Å⁻¹
169 (q = 4π sin(θ)/λ, where 2θ is the scattering angle).

170 Further processing and modelling were done using ATSAS 3.0 [52]. Scattering curves were analysed
171 and particle dimensions determined using PRIMUS [53] and GNOM [54], respectively. Chain-like
172 *ab initio* models were generated using GASBOR [55]. In a complementary approach, different
173 GDAP1 dimer models were fitted against the experimental SAXS data using CRYSTAL [56].
174 SUPCOMB was used to superimpose SAXS models and crystal structures [57].

175 **Circular dichroism spectroscopy**

176 Synchrotron radiation circular dichroism (SRCD) spectra were collected from 0.5 mg/ml samples on
177 the AU-CD beamline at the ASTRID2 synchrotron source (ISA, Aarhus, Denmark). The samples
178 were prepared in a buffer containing 10 mM HEPES pH 7.5, 100 mM NaF. The samples were
179 equilibrated to room temperature and applied into 0.1-mm pathlength closed circular quartz cuvettes
180 (Suprasil, Hellma Analytics). SRCD spectra were recorded from 170 nm to 280 nm at +25 °C. Three
181 repeat scans per measurement were recorded and averaged. The CD spectra baselines were processed
182 and converted to molar ellipticity using CDToolX [58].

183 **Thermal stability**

184 Thermal unfolding of GDAP1 variants in SEC buffer was studied by nanoDSF using a Prometheus
185 NT.48 instrument (NanoTemper). Tryptophan fluorescence was excited at 280 nm, and emission was
186 recorded at 330 and 350 nm. The samples were heated from +20 to +90 °C with a heating rate of 1

187 °C/min, and changes in the fluorescence ratio (F350/F330) were monitored to determine apparent
188 melting points. The data were analyzed using Origin (OriginLab Corporation, Northampton, MA,
189 USA)

190 **Cell culture and Western blotting**

191 Human skin fibroblast cultures were established from skin biopsies of a healthy donor and a patient
192 with GDAP1 H123R mutation [12, 59]. Written consent for the use of patient material was obtained,
193 and the study was approved by the Coordinating Ethics Committee of the Helsinki and Uusimaa
194 Hospital District. The purification of rDRG sensory neurons, the generation of lentiviral particles,
195 and their use to overexpress the GDAP1 constructs were done as described [60] for MORC2. rDRGs
196 were matured into sensory neurons, and GDAP1 expression was induced by doxycycline-initiated
197 tight-TRE promotor expression using the Lentivirus system [30]

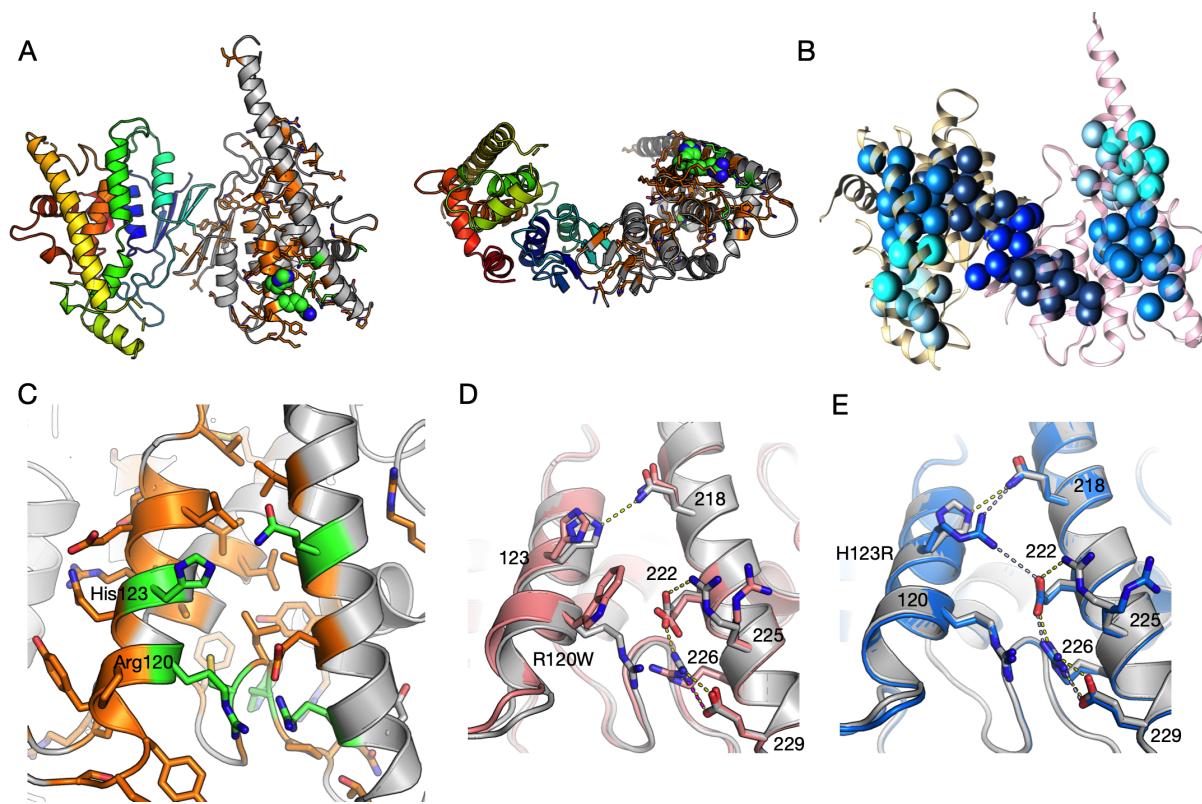
198 The protein fractions were isolated from the rDRG and fibroblast cells and membranes using 40 mM
199 HEPES pH 7.0, 400 mM NaCl, 1% n-Dodecyl-β-D-Maltopyranoside (DDM), and the supernatant
200 was clarified by centrifugation 45 000 rpm, +4 °C. The proteins were separated with 12% SDS-PAGE
201 under non-reducing conditions.

202 HEK293T-D10 cells were used to serve as endogenous control and to test the redox sensitivity of the
203 mammalian-derived GDAP1 samples. Proteins were isolated from total cell lysate and mitochondrial
204 fraction. The mitochondria were isolated from the cells using linear 15-50% (w/v) sucrose gradient
205 centrifugation. The protein was treated with similar lysis conditions as above, and SDS-PAGE was
206 performed with and without 192 mM β-mercaptoethanol.

207 Proteins were transferred onto 0.22 µm nitrocellulose membranes with the semi-dry transfer protocol
208 in TurboBlot®-buffer (Bio-Rad Laboratories, Inc.). The membrane was blocked with Tris-buffered
209 saline, 20 mM Tris-HCl (pH 7.4), 100 mM NaCl, 0.1% v/v Tween-20 (TBST), 5% w/v casein (milk
210 powder) and incubated for 2 h at +4 °C. The primary antibody, rabbit anti-GDAP1 anti-serum [16]
211 was added at a 1:5000 dilution and incubated for 1 h at +4 °C, followed by the secondary antibody
212 for 1 h at +4 °C (anti-rabbit IgG-HRP, Promega 65-6120). The Pierce® enhanced chemiluminescence
213 substrate (Thermo-Fischer Scientific) was added, and the blot was illuminated using ChemiDoc
214 XRS+ (Bio-Rad). Tubulin was used as a loading control in all experiments.

215 **Immunofluorescence microscopy**

216 rDRG cells were fixed with 4% paraformaldehyde in phosphate buffered saline 8 mM Na₂HPO₄, 2
217 mM KH₂PO₄, 137 mM NaCl, 2.7 mM KCl (pH 7.4) (PBS) at +22 °C for 10 min and washed in PBS.
218 They were then incubated 1 h at +22 °C in a blocking solution (5% bovine serum albumin, 1% goat


219 serum, 0.3% Triton X-100 in PBS) and with primary antibodies overnight at +4 °C (primary Abs:
220 mouse anti-flag – Sigma F1804; rabbit anti-NF-145 – Millipore AB1987), followed by washing in
221 PBS. The secondary antibodies were incubated for 45 min at +22 °C (secondary Abs: anti-mouse
222 594, Invitrogen A11005; anti-rabbit 488, Invitrogen A11034). The cells were counterstained with
223 1:10000 4',6-diamidino-2-phenylindole (DAPI) in PBS for 5 min at +22 °C. The fixed samples were
224 mounted on cover slips with Vectashield, and images were acquired with a Zeiss LSM700 confocal
225 microscope (Carl Zeiss AG).

226

227 **RESULTS**

228 **Structural effects of CMT mutations H123R and R120W on GDAP1**

229 The CMT-linked missense mutations in GDAP1 are clustered within the vicinity of the hydrophobic
230 clusters of the N-terminal GST-like domain (GSTL-N), the C-terminal GST-like domain (GSTL-C),
231 and the dimer interface. The affected side chains are often polar or charged and orient towards the
232 solvent (**Fig. 1A**). They are also close to the hydrophobic clusters of GDAP1 (**Fig. 1B**). For example,
233 the α 6 helix, Lys188-Glu229, has 20 charged residues along the helix. The clustered mutations could
234 change the side chain interaction networks between helices α 3, α 6, and α 7, which further might affect
235 GDAP1 folding and stability. Here, we focused on two CMT-linked GDAP1 mutations on helix α 3
236 pointing towards α 6, R120W and H123R (**Fig. 1A**).

238 **Figure 1. Crystal structure of GDAP1 and effects of CMT mutations.** A. The overall structure of
239 the wtGDAP1 core domain dimer in two orientations, as published before [18]. The left monomer is
240 coloured with rainbow colours, while one on the right is gray and shows the positions of CMT
241 mutations, with side chains visible. The mutations linked to CMT2K are green, while the rest are
242 orange. Arg120 and His123 are shown as spheres. In the right-hand orientation, the mitochondrial
243 outer membrane would be below the dimer. B. Hydrophobic clusters in wtGDAP1. The orientation
244 is the same as the left panel of A, indicating that many CMT mutations lie in close vicinity of the
245 hydrophobic cores. C. Zoom in on helices α 3, α 6, and α 7. Colouring of CMT mutations is as in A;
246 side chains are shown only for CMT-linked positions. Note how the CMT-linked residues participate
247 in a large intramolecular network of interactions. D. Comparison of wtGDAP1 (gray) and R120W
248 (pink) crystal structures. E. Comparison of wtGDAP1 (gray) and H123R (blue). Hydrogen bonds are
249 shown as dashed lines.

250 We previously determined the crystal structure of wild-type GDAP1 Δ 303-358, which corresponds to
251 the GST-like core domain of GDAP1 in dimeric form, including the GDAP1-specific insertion [18].
252 Here, we expressed and purified the variants R120W and H123R, compared them to wild-type
253 GDAP1 (wtGDAP1) crystal and solution structures, and studied their folding and thermal stability.
254 The crystal of the R120W mutant variant had a new crystal form, while H123R had the same space
255 group as the wtGDAP1 structure, displaying a homodimer in the asymmetric unit. In the H123R
256 structure, the dimer in the crystal is covalently linked *via* a disulphide bond at Cys88, like the
257 wtGDAP1 protein [18]. The disulphide bridge *via* Cys88 also exists in the R120W structure, but the
258 dimer is formed *via* crystallographic symmetry.

259 Both Arg120 and His123 are on the α 3 helix, partially solvent-accessible (**Fig. 1C**). In both mutant
260 structures, as in wtGDAP1, the most flexible regions are in loops between β 3- β 4 at positions Leu71-
261 Ala77, and α 5- α 6 at positions Arg159-Ile186. The β 3- β 4 loop is more structurally ordered in the
262 mutants compared to wtGDAP1. The α 5- α 6 region corresponds to the GDAP1-specific insertion in
263 the GST superfamily [61]. In both mutant structures, the flexible loop between helices α 6- α 7 is similar
264 to wtGDAP1; the C α backbone is visible, but side chains have poor density.

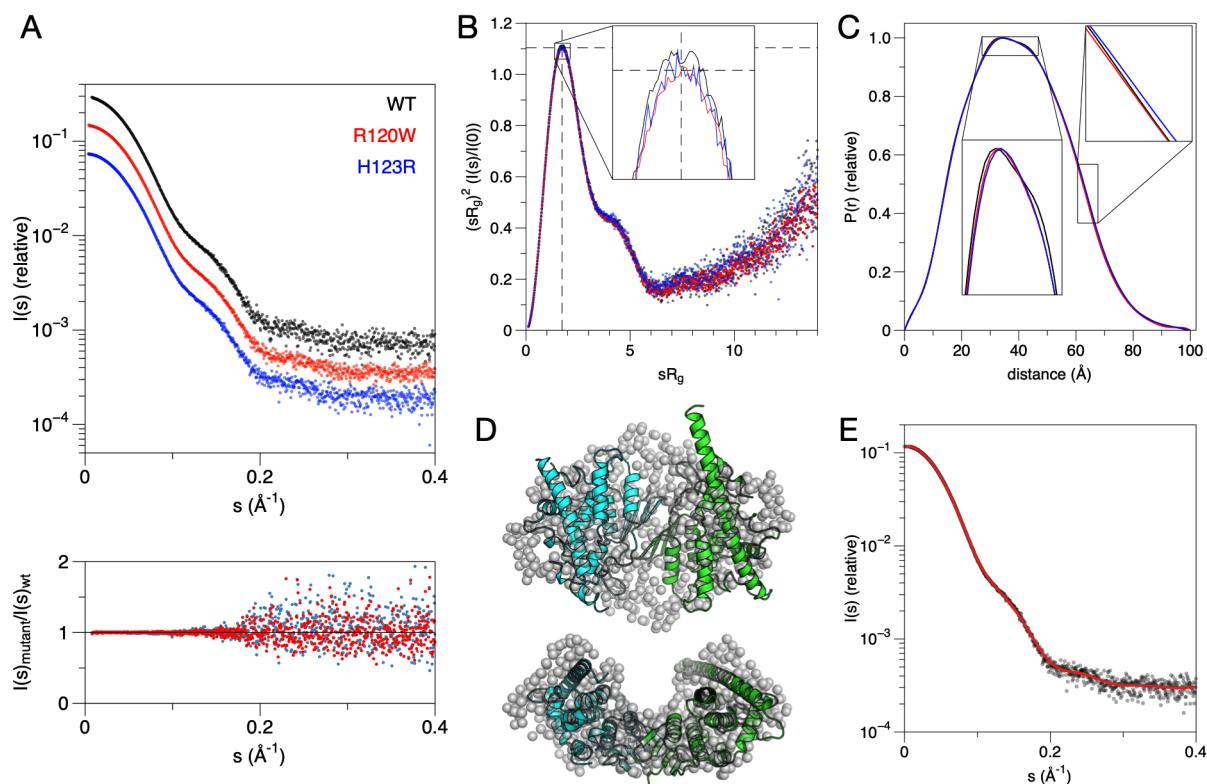
265 In the crystal state, the mutations do not cause major structural changes (**Fig. 1D,E, S2**). However,
266 intramolecular interactions are altered. In the H123R structure (**Fig. 1E**), the His123-Tyr124 π -orbital
267 interaction is disturbed in the mutant, while the interaction with the side chain of Gln218 is preserved.
268 The salt bridge network around Glu222 and Arg226 is conserved and now includes Arg123. In chain
269 B, the electron density for Arg123 is weak, indicating flexibility of the mutant residue.

270 Arg120 in wtGDAP1 forms a H-bond with the backbone carbonyl of Cys240, and it is part of a salt
271 bridge network involving Glu222, Arg226, and Glu229 (**Fig. 1C-E**). Intriguingly, Arg120 has a close
272 contact with Arg226 in wt-GDAP1, whereby the two Arg π systems stack, and the surrounding
273 Glu222 and Glu229 neutralize charges *via* salt bridges. Trp120, as a bulky side chain, causes steric
274 hindrance in the R120W mutant (**Figure 1D**), and the α 3 helix, carrying Trp120, moves outwards by
275 \sim 1 Å, and the contact with the neighbouring α 6 is weakened. The backbone interaction to Cys240 is
276 lost in the mutant, and the salt bridge network centered at Arg226 is disturbed as is the contact
277 between His123 and Gln218, which could be linked to loss of protein stability.

278 **The mutant proteins show unaltered conformation but lowered stability**

279 To compare the solution and crystal structures, SAXS analysis was performed on the H123R and
280 R120W mutants (**Fig. 2**). SEC-SAXS was employed to achieve better separation between monomer
281 and dimer fractions. Previously, we showed this equilibrium to be concentration-dependent; high
282 concentration favours the dimeric form [18]. The SEC-SAXS profiles show that the samples are

283 monodisperse with a same radius of gyration, R_g , across the peak (**Fig. S1**). The molecular weight
284 across the main peak showed that in both mutants, the peak contained a dimeric form similar to
285 wtGDAP1; accordingly, the scattering curves were essentially identical.


286 Further analysis revealed that the R_g values matched the ones for wtGDAP1 (**Table II**), indicating
287 similar solution conformation and oligomeric state. Both mutants possess a similar globular fold with
288 essentially the same level of flexibility as wtGDAP1, as demonstrated by dimensionless Kratky plots
289 (**Fig. 2B**). Distance distribution functions revealed that the particle dimensions in solution are nearly
290 identical between the mutants and wtGDAP1 (**Fig. 2C**). Hence, at the resolution of a SAXS
291 experiment, neither mutation caused large-scale conformational changes.

292

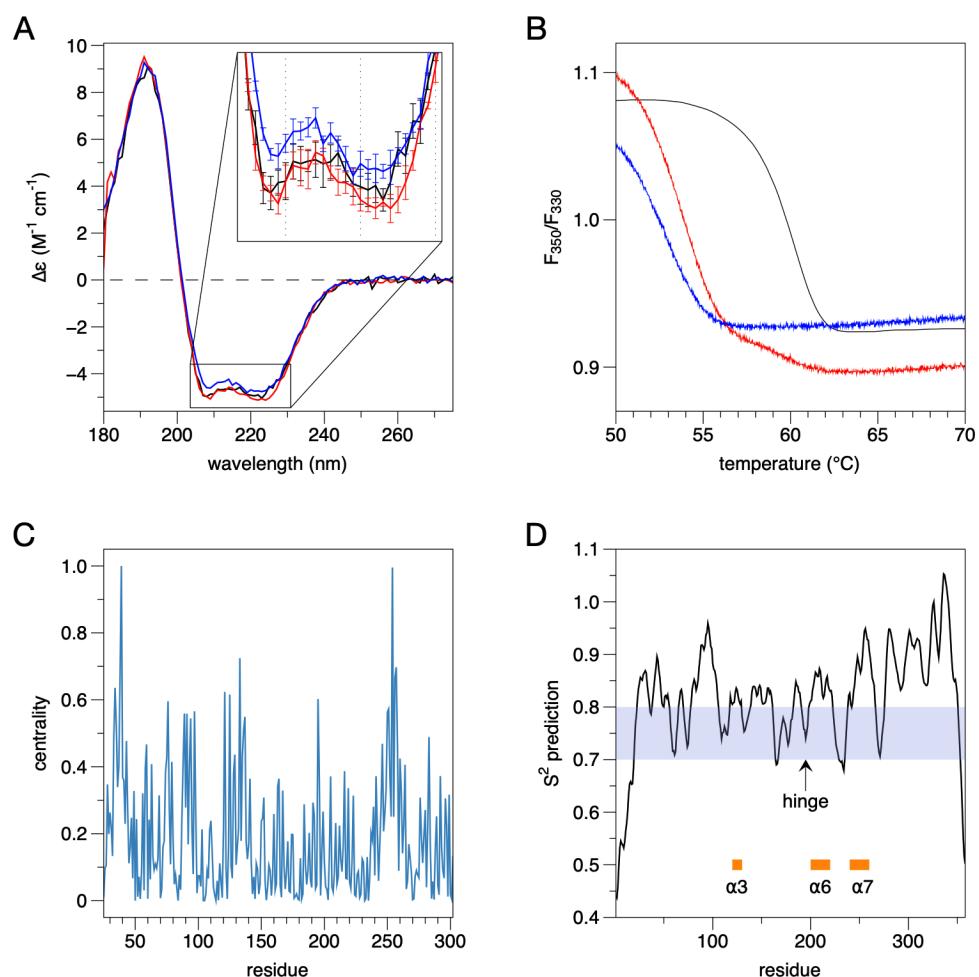
293 **Table 2. SAXS parameters.** The values for wtGDAP1 are from our previous study [18].

Construct	GDAP1 Δ 303-358 H123R	GDAP1 Δ 303-358 R120W	GDAP1 Δ 303-358 wt
R_g (Å) from $P(r)$	30.74 ± 0.05	30.64 ± 0.05	30.60 ± 0.11
R_g (Å) from Guinier plot	30.73	30.64	30.70 ± 0.03
D_{max} (Å)	99.9	99.95	99.00
Porod volume estimate, V_p (Å ³)	107157.00	107947	105,750
sRg limits	0.24-1.29	0.24-1.30	0.41-1.30
MW from consensus Bayesian assessment based on SAXS data (kDa)	74.3	74.3	72.4
Calculated monomeric MW from sequence (kDa)	35.1	35.1	35.2
SASBDB entry	XXX	XXX	SASDJV8

294

295

296 **Figure 2. SAXS analysis of the GDAP1 mutations.** A. Top: Scattering curves from synchrotron
297 SEC-SAXS. The curves are displaced in the y direction for clarity. Bottom: comparison of the mutant
298 data to wtGDAP1 indicates that the SAXS data are essentially identical. B. Dimensionless Kratky
299 plot shows clobular structure and same level of flexibility. The dashed lines crossing ($x=\sqrt{3}$, $y=1.1$)
300 reflects the theoretical maximum for a rigid globular particle. C. Distance distributions indicate
301 similar size and shape, with ver minor differences when zoomed in. D. *Ab initio* chain-like model
302 (gray spheres) overlaid with the crystal structure of wtGDAP1 [18]. Note how the long helix α 6 from
303 the extended conformation does not fit into the envelope. E. Fit of the *ab initio* model in panel D (red
304 line) to the SAXS data from wtGDAP1 (black dots).


305

306 The dimer-monomer equilibrium in GDAP1 is dynamic, and the dimeric form is favoured at high
307 concentrations [18]. At the concentrations and conditions used here, GDAP1 exists as a dimer, as
308 indicated by the SAXS data. Chain-like *ab initio* models confirmed the observation that both mutants
309 are nearly indistinguishable from dimeric wtGDAP1 (Fig. 2D,E). Thus, there is no indication of
310 effects on oligomeric status by the two mutations.

311 The SAXS data indicate a dimeric form for both mutants (Table II). The ambiguity between the two
312 mutants was estimated with AMBIMETER [62], and H123R and R120W have both similar levels of
313 globularity and stability. These observations are in line with the fairly minor conformational
314 differences in the crystal state, whereby R120W – as a more drastic replacement – led to a small
315 movement of the α 3 helix and loss of hydrogen bonding interactions. On the other hand, the only
316 fully monomeric GDAP1 mutant we studied earlier, Y29E/C88A, is more globular than any of the
317 dimeric forms [18].

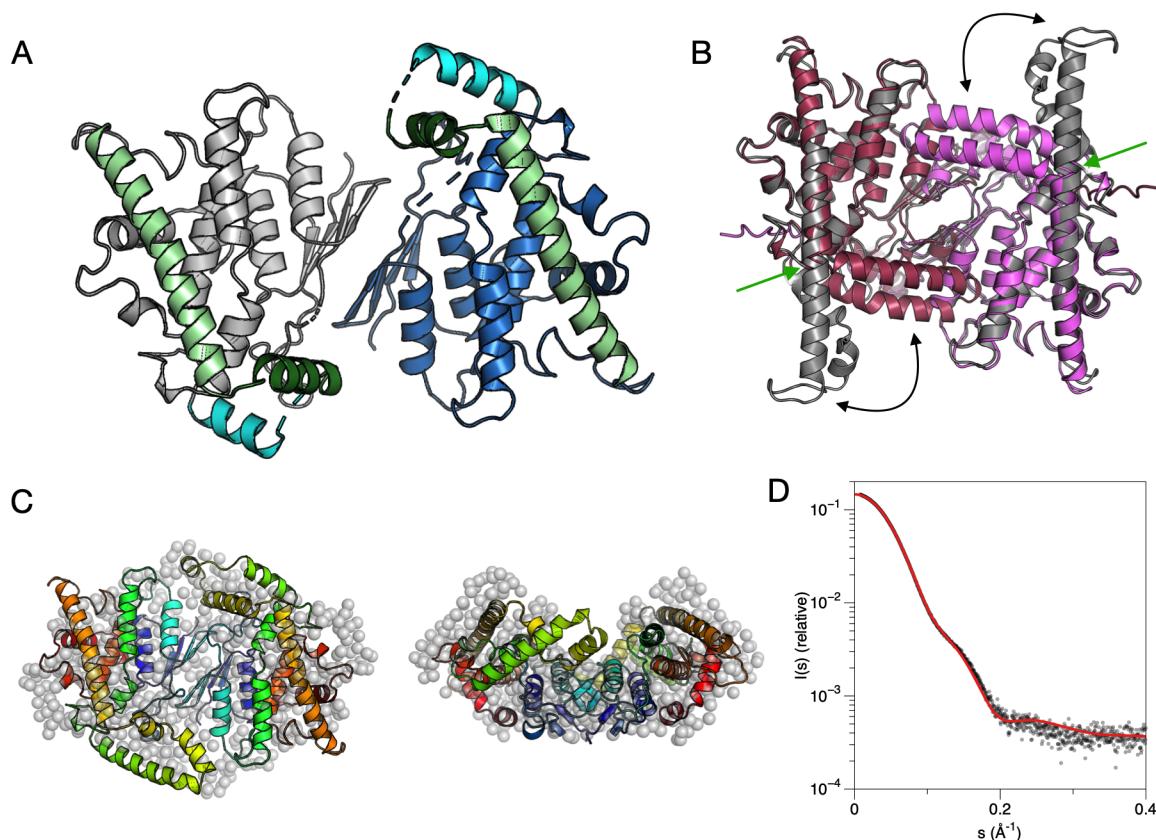
318 To further compare the molecules in solution and in the crystal, the crystal structure coordinates were
319 fitted against the SAXS scattering curve (**Fig. 2D**). Based on the analysis, it is obvious that both
320 mutants adopt the dimer form, having very similar folds in solution as the wtGDAP1. After building
321 in the loops, the dimer structure fits to the data better than the crystal structure (**Fig. S3**); hence, the
322 conformation observed in the crystal represents the solution structure, with the addition of the
323 GDAP1-specific flexible insertion.

324 Since the mutants presented similar solubility and folding as wtGDAP1, we tested whether the
325 mutations cause changes to GDAP1 stability or secondary structure content. To test for quantitative
326 differences in secondary structures, we measured SRCD spectra (**Fig. 3A**). The SRCD spectra of the
327 mutants overlay well with the wtGDAP1 CD spectrum, showing that the mutants on average have a
328 similar secondary structure composition in solution as wtGDAP1. The CD peak at 208 nm is weaker
329 for H123R, which may indicate minor differences in intramolecular interactions between α -helices,
330 as seen in the crystal structure. Once the GDAP1 dimer forms *via* the disulfide bond, the structure
331 becomes very stable, and it is challenging to dissociate the dimer [18]. Due to the high helical content
332 in GDAP1 and the similarity of the CD spectra, we can confirm that the mutations do not affect the
333 overall folding characteristics of GDAP1. Small differences in spectral shape may be caused by both
334 local stacking of amino acid side chains as well as interactions between secondary structure elements
335 [63, 64].

336

337 **Figure 3. Folding and stability of GDAP1.** A. SRCD spectra for wtGDAP1 (black), R120W (red),
 338 and H123R (blue). B. DSF stability assay. Colours as in A. C. Residue centrality, as defined by NAPS,
 339 identifies helix α_7 , around residue 250, as the most central part of the structure. D. DynaMine
 340 analysis. The location of the hinge in helix α_6 is indicated, as are helices α_3 , α_6 , and α_7 . The shaded
 341 region indicates context-dependent folding, while values above 0.8 predict rigid structure.

342

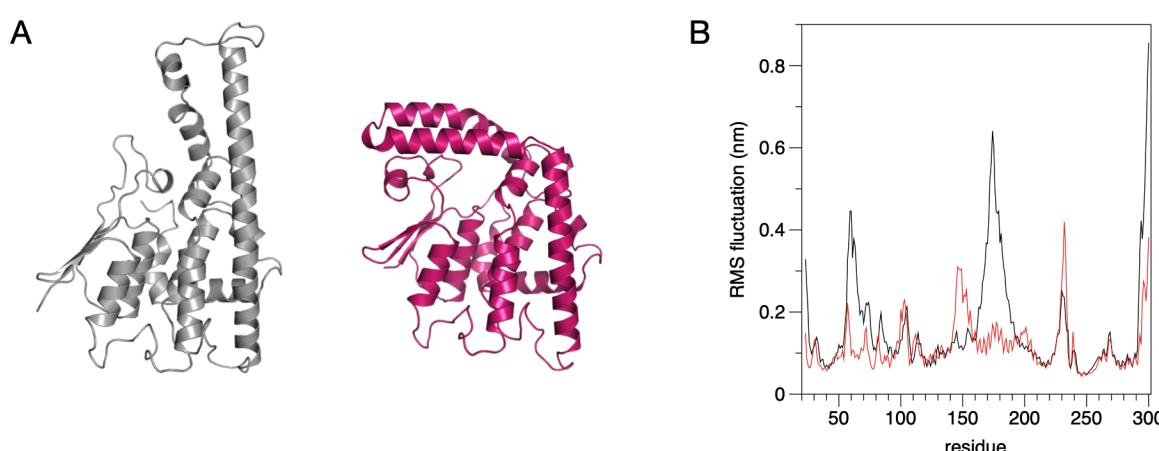

343 To determine thermal stability, we studied the R120W and H123R variants using the Trp fluorescence
 344 emission peak ratio at wavelengths 350/330 nm in nanoDSF. The wtGDAP1 protein is more stable
 345 than the mutants (Fig. 3B). The apparent T_m value for wtGDAP1, ~62 °C, was >5 °C higher than for
 346 both mutants, suggesting that the effect of the mutations may be linked to an overall destabilization
 347 of the fold. Considering the location of the mutations, a region of GDAP1 is revealed, which is
 348 important for protein stability.

349 To obtain further insight into effects of the mutations on GDAP1, we used a variety of bioinformatics
 350 tools. Analyses of centrality (Fig. 3C) indicated that the core region of GDAP1, close to both Arg120
 351 and His123, with helix α_7 the most central element, is likely to be important for folding and stability.
 352 Many other CMT mutations cluster into this area [18], affecting a number of residues in an interaction
 353 network (Fig. 1A,C). Effects of point mutations on protein stability against temperature or chemicals
 354 were predicted using CUPSAT [49]. Both R120W and H123R are predicted to be destabilizing in

355 both respects, in line with the thermal stability data above. DynaMine analysis (**Fig. 3D**) of protein
356 flexibility based on sequence data further showed that the part of helix α 6 at before residue 200 has
357 context-dependent rigidity, indicating that the unique α 5- α 6 loop in GDAP1 is structurally dynamic.

358 **Flexibility of the α 6 helix**

359 A crystal structure was solved for wtGDAP1 Δ 295-358, and it presented a novel crystal form with 4
360 monomers in the asymmetric unit. One complete dimer was present in the asymmetric unit, in addition
361 to two half-dimers, which both homodimerise through crystallographic symmetry. As the resolution
362 of the structure was rather low, structural details were not analysed. However, in all 4 independent
363 protomers, helix α 6 breaks in the middle around Asp200, and a helix at residues 189-198 is present
364 in electron density (**Fig. 4A**). Thus, the long α 6 helix can adopt different conformations even in the
365 crystal state. The wtGDAP1 crystal structure published earlier (**Fig. 1A**) had an asymmetric dimer,
366 with one short and one long α 6 helix [18]. These observations suggest that the GDAP1-specific
367 insertion is flexible also in solution.


368

369 **Figure 4. New crystal form of wtGDAP1.** A. The new structure has the long α 6 helix divided into
370 two (light and dark green). B. Comparison of modelled dimers based on the extended crystal form of
371 wtGDAP1 (gray) and AlphaFold2 (red/magenta). The double arrows indicate flexibility of the α 5- α 6
372 segment, while the green arrow identifies the hinge in the middle of α 6. C. Superposition of the chain-
373 like model with the model based on the new crystal structure (cartoons). See further comparisons in
374 Fig. S3. D. Fit of the cartoon model from panel C to the wtGDAP1 SAXS data.

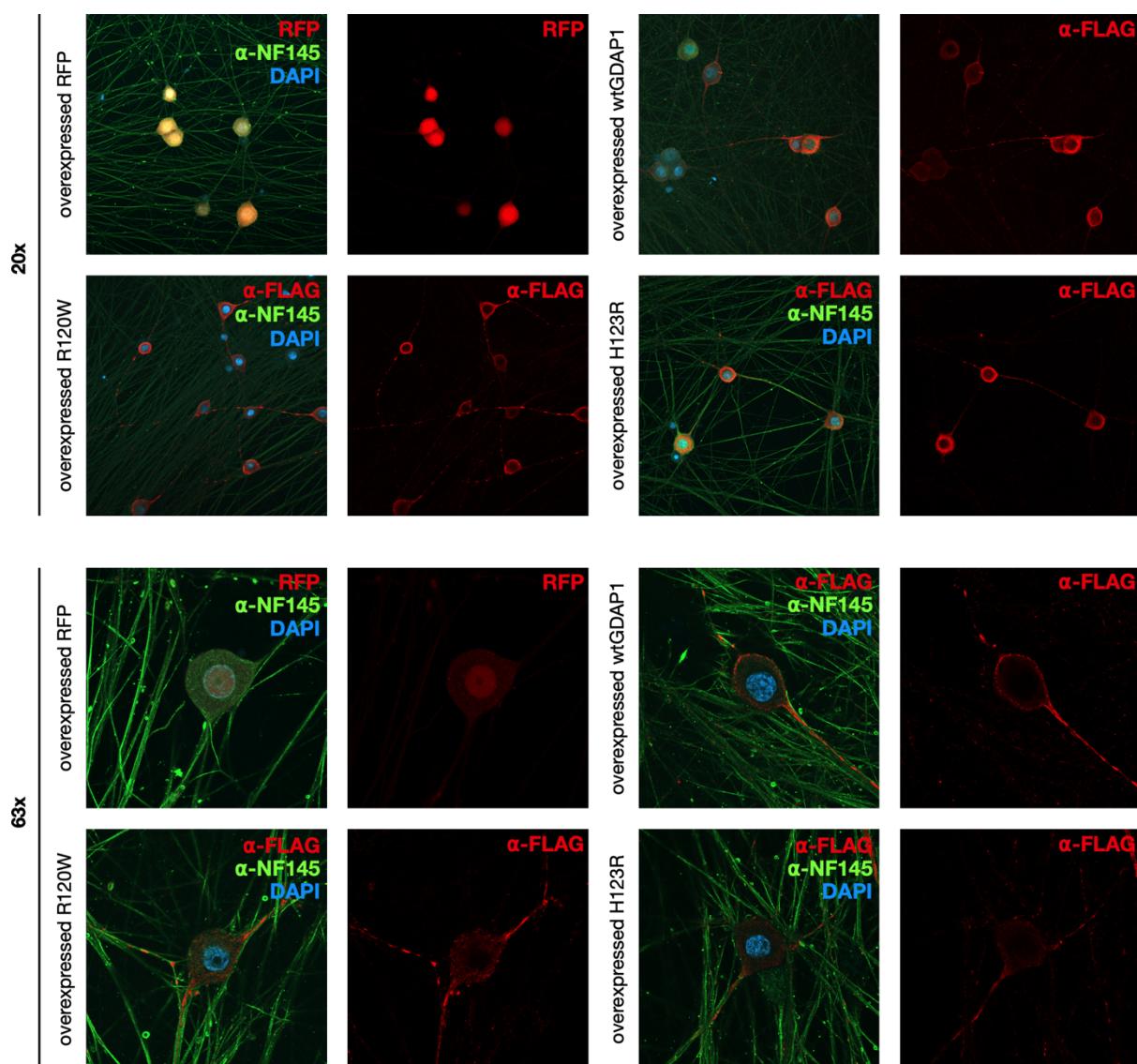
375

376 The new wtGDAP1 dimer structure was analysed with respect to the SAXS data, together with a
377 dimer built based on the AlphaFold2 model monomer. The AlphaFold2 model has the helix $\alpha 6$
378 divided into two and collapsed into a similar, but even more compact, conformation as seen in the
379 new wtGDAP1 crystal (**Fig. 4B**). However, it is evident that the AlphaFold2 model is too compact,
380 while the extended conformation of helix $\alpha 6$ is too elongated (**Fig. 4B, S3**). An excellent fit to the
381 SAXS data was obtained using the dimer from the new wtGDAP1 crystal structure with built-in
382 missing loops (**Fig. 4C,D, S3**).

383 To further analyse the dynamics of GDAP1, the model based on the wtGDAP1 crystal structure [18],
384 with all loops added, was subjected to MD simulations (**Fig. 5**). Throughout the simulation, the
385 GDAP1-specific insertion is the most dynamic segment of the protein, but the long helix remains
386 extended. On the other hand, simulation of the AlphaFold2 model indicates stability of the bent
387 conformation. The simulations support the crystal structures of both conformations and give
388 additional proof about a hinge in the middle of helix $\alpha 6$.

389

390 **Figure 5. MD simulation of GDAP1 monomer.** A. The open (gray) and closed (red) conformations
391 of a GDAP1 monomer, obtained from the extended crystal structure and the AlphaFold2 model,
392 respectively. B. RMS fluctuations of Ca atoms indicate relative rigidity of the AlphaFold2 model
393 (red) at the $\beta 2$ - $\beta 3$ loop and the $\alpha 5$ - $\alpha 6$ loop, compared to wtGDAP1 (black). The simulations were run
394 for 500 ns for the AlphaFold2 model and 350 ns for the open crystal structure model.


395

396 **GDAP1 mutant localization and oligomeric state in cells**

397 To explore the two CMT-linked mutations, R120W and H123R, at the cellular level, we used three
398 different cell culture models, in which either endogenously expressed GDAP1 variants or inducible
399 systems to overexpress GDAP1 variants were utilized.

400 The localisation of R120W and H123R in neurons was compared to that of wtGDAP1 using rDRG
401 primary cell cultures. After protein induction, the neurites were immunostained and imaged using a
402 confocal microscope (**Fig. 6**). FLAG-tagged wtGDAP1 locates both in the cell body and axons of the

403 sensory neurons. The localisation is not cytoplasmic or on the plasma membrane, and in accordance
404 with previous work, most likely mitochondrial. No clear difference in the immunostaining intensity
405 or cellular localization of R120W or H123R were observed compared to wtGDAP1. None of the
406 mutations induced distinguishable morphological changes in sensory neurons, and no cell toxic
407 effects were observed (Fig. 6).

408

409 **Figure 6. Immunofluorescence analysis of GDAP1-overexpressing rat DRGs.** The images were
410 taken with two magnifications from cells overexpressing wtGDAP1, H123R, R120W, or red
411 fluorescent protein (RFP). GDAP1 staining was done with α -FLAG, and α -NF145 was used to
412 visualize neurons. DAPI staining shows the nucleus.

413

414 Dimeric GDAP1 has been detectable from mammalian sources [65]. To further test whether GDAP1
415 preferably forms disulphide-linked dimers in cells, we performed Western blot analysis for protein
416 extracts under non-reducing conditions (Fig. S4). We used human fibroblast cultures established from
417 skin biopsies of a CMT2K patient carrying the H123R GDAP1 allele [12, 59]. Normal GDAP1

418 genotype fibroblasts were used as control. Western blot analysis revealed that in the fibroblasts,
419 GDAP1 exists as monomers in both CMT2K patient-derived cells and healthy control samples (**Fig.**
420 **S4**).

421 In addition to the human fibroblasts, we analysed the rDRG sensory neurons overexpressing GDAP1
422 variants and HEK293T-D10 cells that endogenously express GDAP1 to explore the oligomeric state
423 of wtGDAP1, R120W and H123R was explored. In all cells studied here, wtGDAP1, as well as both
424 mutant variants, was detected as a monomer after electrophoresis (**Fig. S4**). Hence, any dimer present
425 in the cells is not disulphide-linked. Of note, the mutation C88A did not make recombinant GDAP1
426 fully monomeric in our earlier study [18], indicating that the homodimer can form without the
427 disulphide bridge *in vitro*. The only GDAP1 variant we have observed to be fully monomeric is the
428 double mutant Y29E/C88A [18], which disturbs both the hydrophobic interface and the disulphide
429 bridge. To conclude, the main form of GDAP1 in cells, at least in the absence of inducing factors, is
430 not a disulphide-linked dimer.

431 DISCUSSION

432 Single-amino-acid substitutions can alter protein physicochemical properties, affecting protein
433 stability and function. From a clinical perspective, inherited neuropathies are generally well-
434 characterized at the level of the symptomatic spectrum and disease progression. A large variety of
435 CMT mutations are known and characterized clinically [66]. However, in many cases, the molecular
436 basis of these disorders cannot be adequately explained. The difficulty of understanding the
437 mechanism is due to both the vast number of the involved genes and their heterogeneous inheritance
438 patterns and phenotypes, as well as limited knowledge about molecular structure and function.

439 *GDAP1* is one of the genes associated with peripheral neuropathies caused by missense mutations.
440 We performed structural analyses for two human CMT2K-linked *GDAP1* mutations on helix α 3,
441 which revealed that apart from the mutated residue and its immediate surroundings, the overall fold
442 does not change. However, both mutations introduce changes in intramolecular networks and
443 differences in molecular properties, most notably in thermal stability. The structural analysis of
444 pathogenic CMT-linked *GDAP1* variants shows that the mutations are close to the *GDAP1*
445 hydrophobic cluster and mediate interactions between key helices of the structure.

446 CMT mutations in *GDAP1* cluster into hotspots in 3D space

447 Currently, there are at least 103 *GDAP1* mutations linked to CMT, out of which 68 are reported missense
448 mutations [67]. Both R120W and H123R are common mutations in European patients [7, 14, 68], and
449 H123R was identified as a major founder mutation in the Finnish population [12, 13]. Several *GDAP1*
450 mutations have been studied using neurons and Schwann cells or yeast models [7, 10, 69, 70]. We
451 chose to investigate the Finnish H123R founder mutation, as well as R120W due to its well-
452 established clinical and molecular characterization and its location in the vicinity of His123, on helix
453 α 3. Both mutations have been linked to the autosomal dominant form CMT2K.

454 The *GDAP1* crystal structure allows predicting the molecular basis for many of the known mutations
455 in the Human Gene Mutation Database (<http://www.hgmd.cf.ac.uk/ac>) and the Inherited Neuropathy
456 Variant Browser database (<https://neuropathybrowser.zuchnerlab.net>). A CMT-related mutation
457 cluster of *GDAP1* (Fig. 1) mainly localizes on helices α 3 and α 6 and less on helices α 7, α 8, and their
458 connecting loops [18]. There are 68 known missense *GDAP1* mutations, involving 39 residues. The
459 main cluster contains 27 residues that form a network of interactions, including salt bridges, hydrogen
460 bonds, and van der Waals contacts. These interactions provide extensive contacts between helices α 3,
461 α 6, and α 7 (Fig. 1C). Centrality analyses of the *GDAP1* structure highlight this, indicating helix α 7
462 as the most central segment of the *GDAP1* structure. Notably, many mutations linked to CMT2K

463 map very close to each other in 3D space, suggesting an intramolecular network that gets disturbed
464 upon disease mutations, altering GDAP1 structure or function.

465 Mutating residues His123 and Arg120 does not break the GDAP1 fold, but rather may affect the
466 intramolecular residue interaction network and protein stability. The thermal stability of the mutant
467 proteins decreased compared to wtGDAP1, suggesting that especially the interaction between α 3- α 6
468 may be important. Predictions of $\Delta\Delta G$ using computational methods mainly agree with the
469 experiment, showing that both mutations are destabilising. Interestingly, the wedge between helices
470 α 5- α 6 contains a pattern of double tyrosines, double glutamates, double leucines, and double lysines,
471 which seem to pull the GSTL-C core together. The mutations in many cases are introduced into the
472 neighbouring positions of these double pairs, like in the case of H123R.

473 We have shown that hexadecanoic acid bound into a groove close to the CMT mutation cluster [18].
474 The R120W and H123R mutation sites are close to the α 6 helix and the main hydrophobic cluster
475 centered around α 7. As an interesting hotspot, Arg120 is the site for four different CMT mutations.
476 Mutations in such clusters and hotspots might affect residue interaction networks and thus decrease
477 protein stability.

478 **The cluster of interactions is sensitive towards CMT mutations**

479 Considering the interactions of both His123 and Arg120, as well as the networks between helices α 3,
480 α 6, and α 7, it becomes evident that several involved residues are targets of CMT mutations. An
481 example is Glu222, which is sandwiched between three Arg side chains (Arg120, Arg225, Arg226)
482 and Tyr124, and has van der Waals contacts to Leu239. Another example is Ala247; the conservative
483 mutation to valine is linked to disease [71]. Ala247 on helix α 7 is located in a tight space right below
484 His123 and Arg120 and part of the same interaction network. The apparently mild CMT mutation
485 A247V increases the side of the side chain and affects the local interactions. Cys240 from the α 6- α 7
486 loop also lies right below His123 and Arg120, and its mutation to Tyr in CMT [72, 73] will interfere
487 with the local interaction network at this residue cluster.

488 Taken together, although the CMT mutations in GDAP1 initially appear to be scattered throughout
489 the sequence, in the 3D structure, they are involved in close interaction networks, and these networks
490 are sensitive against changes in many different participating residues. This observation explains the
491 general loss of protein stability upon mutations in such networks and clusters and may hint at an
492 overall mechanism of GDAP1-linked CMT.

493 **The unique α 6 helix of GDAP1**

494 Helix α 6 is a dominant and unique feature of the GDAP1 structure, being part of the GDAP1-specific
495 insertion, together with its preceding loop, which is not visible in electron density. We used a
496 combination of crystal structures and computational models to get further insights into the GDAP1
497 helix α 6 and its dynamics. Our observation of the α 6 conformational flexibility may point out to
498 mechanically important functions, which could be linked to effects of CMT disease mutations on
499 or near the helix.

500 In the original wtGDAP1 structure [18], we saw breakdown of non-crystallographic symmetry, as the
501 α 6 helix was of different length between the two chains in the asymmetric unit. The shorter version
502 of the helix started around residue 200, which is the hinge region in our new wtGDAP1 crystal
503 structure, in which the helix continues in another direction in all four independent protomers in the
504 asymmetric unit. A break of the helix at the same position is predicted also by AlphaFold2; however,
505 the conformation of monomeric GDAP1 in the model is incompatible with the exact mode of
506 dimerization we observe in the crystal state, leading to steric clashes. Sequence-based analysis of
507 flexibility also points out the region around residues 190-200 as potentially flexible. The
508 conformational dynamics of the GDAP1-specific insertion, *via* a hinge around residue 200, could
509 play a role in its physiological functions and its interactions with other molecules, such as the
510 cytoskeleton, *in vivo*.

511 **GDAP1 is a dimer in solution but not disulphide-linked in cells**

512 GDAP1 has a unique dimer interface compared to canonical GSTs [18] and dynamic oligomerization
513 properties [18, 65, 74]. Our results show that GDAP1 dimerization mediated *via* a disulphide bond
514 can also be observed in the CMT mutant proteins *in vitro*. In the cellular environment, such a
515 disulphide bond could be formed *via* a folding catalyst or through changes in the redox environment.
516 The latter has been linked to GDAP1 function [75].

517 An interesting possibility for the dimeric function would be GDAP1 activation by a folding catalyst,
518 affecting interactions with a partner protein, suggesting that the GDAP1 function could be linked to
519 its oligomeric state. Many binding targets have been proposed for GDAP1, such as tubulin and other
520 cytoskeletal components [23, 70]. The GDAP1 disease mutations could, in addition to affecting
521 protein folding and stability, modulate protein-protein interactions. However, the details of molecular
522 interactions formed by GDAP1 remain unknown, and further studies should be focused on studying
523 GDAP1-cytoskeleton interactions and their links to GDAP1 oligomeric state.

524 **Conclusions**

525 We have presented a structural analysis of two CMT-linked mutations in GDAP1, R120W and
526 H123R. The effects of these mutations on protein structure were small, and it is likely that the

527 mutations affect dynamic properties, stability, and conformational changes of GDAP1 and/or its
528 interactions with additional binding partners. The cluster of CMT-related mutations in the 3D
529 structure of GDAP1 highlights a tightly interwound network of amino acid side chain interactions
530 that are likely essential for the normal function and structure of GDAP1. Such mutation clustering
531 essentiates the need for accurate structural studies of proteins targeted by disease mutations, and it
532 can be expected that most of the mutations in such a cluster similarly affect protein stability or
533 functional interaction networks. A major goal for the future will be structure solution of the full-
534 length GDAP1 protein, including the transmembrane domain, in addition to deciphering details of its
535 physiological function and molecular interactions.

536

537 **Acknowledgements**

538 This work was funded by the Academy of Finland, project number 24302881. The research leading
539 to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872, as
540 well as by iNEXT, grant number 653706, from the EU Framework Program for Research and
541 Innovation HORIZON 2020. We acknowledge the use of the Core Facility for Biophysics, Structural
542 Biology and Screening (BiSS) at the University of Bergen, which has received funding from the
543 Research Council of Norway (RCN) through the NORCRYST (grant number 245828) infrastructure
544 consortium. The availability of synchrotron beamtime and support on DESY, EMBL/DESY, ISA,
545 and SOLEIL are gratefully acknowledged. Furthermore, we wish to thank Dr. Roman Chrast for
546 project planning and organization.

547

548

549 **References**

- 550 1. Fontés M. Charcot Marie Tooth Disease. A Single Disorder? International Journal of Molecular Sciences. 551 2018;19(12). doi: 10.3390/ijms19123807.
- 552 2. Rossor AM, Tomaselli PJ, Reilly MM. Recent advances in the genetic neuropathies. Current Opinion in 553 Neurology. 2016;29(5):537-48. doi: 10.1097/WCO.0000000000000373.
- 554 3. DiVincenzo C, Elzinga CD, Medeiros AC, Karbassi I, Jones JR, Evans MC, et al. The allelic spectrum of 555 Charcot-Marie-Tooth disease in over 17,000 individuals with neuropathy. Mol Genet Genomic Med. 556 2014;2(6):522-9. Epub 20140821. doi: 10.1002/mgg3.106.
- 557 4. Szigeti K, Lupski JR. Charcot–Marie–Tooth disease. European Journal of Human Genetics. 558 2009;17(6):703-10. doi: 10.1038/ejhg.2009.31.
- 559 5. Cassereau J, Chevrollier A, Gueguen N, Desquiret V, Verny C, Nicolas G, et al. Mitochondrial 560 dysfunction and pathophysiology of Charcot-Marie-Tooth disease involving GDAP1 mutations. 561 Experimental neurology. 2011;227(1):31-41. doi: 10.1016/j.expneurol.2010.09.006.
- 562 6. Mai P-T, Le D-T, Nguyen T-T, Le Gia H-L, Nguyen Le T-H, Le M, et al. Novel GDAP1 Mutation in a 563 Vietnamese Family with Charcot-Marie-Tooth Disease. BioMed research international. 564 2019;2019:7132494. doi: 10.1155/2019/7132494.
- 565 7. Zimon M, Baets J, Fabrizi GM, Jaakkola E, Kabzinska D, Pilch J, et al. Dominant GDAP1 mutations 566 cause predominantly mild CMT phenotypes. Neurology. 2011;77(6):540-8. doi: 10.1212/WNL.0b013e318228fc70.
- 567 8. Baxter RV, Ben Othmane K, Rochelle JM, Stajich JE, Hulette C, Dew-Knight S, et al. Ganglioside- 568 induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. 569 Nature genetics. 2002;30(1):21-2. doi: 10.1038/ng796.
- 570 9. Cuesta A, Pedrola L, Sevilla T, Garcia-Planells J, Chumillas MJ, Mayordomo F, et al. The gene encoding 571 ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 572 4A disease. Nat Genet. 2002;30(1):22-5. Epub 20011217. doi: 10.1038/ng798.
- 573 10. Rzepnickowska W, Kochanski A. A role for the GDAP1 gene in the molecular pathogenesis of 574 CharcotMarieTooth disease. Acta neurobiologiae experimentalis. 2018;78(1):1-13.
- 575 11. Reilly MM. Classification and diagnosis of the inherited neuropathies. Annals of Indian Academy of 576 Neurology. 2009;12(2):80-8. doi: 10.4103/0972-2327.53075.
- 577 12. Auranen M, Ylikallio E, Toppila J, Somer M, Kiuru-Enari S, Tyynismaa H. Dominant GDAP1 founder 578 mutation is a common cause of axonal Charcot-Marie-Tooth disease in Finland. Neurogenetics. 579 2013;14(2):123-32. Epub 20130303. doi: 10.1007/s10048-013-0358-9.
- 580 13. Lehtilahti M, Kallio M, Majamaa K, Karppa M. Phenotype of Patients With Charcot-Marie-Tooth With 581 the p.His123Arg Mutation in GDAP1 in Northern Finland. Neurol Genet. 2021;7(6):e629. Epub 582 20211005. doi: 10.1212/NXG.0000000000000629.
- 583 14. Sivera R, Espinos C, Vilchez JJ, Mas F, Martinez-Rubio D, Chumillas MJ, et al. Phenotypical features of 584 the p.R120W mutation in the GDAP1 gene causing autosomal dominant Charcot-Marie-Tooth disease. J 585 Peripher Nerv Syst. 2010;15(4):334-44. doi: 10.1111/j.1529-8027.2010.00286.x.
- 586 15. Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al. Analysis of the human 587 tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. 588 Molecular & cellular proteomics : MCP. 2014;13(2):397-406. doi: 10.1074/mcp.M113.035600.
- 589 16. Niemann A, Ruegg M, La Padula V, Schenone A, Suter U. Ganglioside-induced differentiation associated 590 protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. 591 The Journal of cell biology. 2005;170(7):1067-78. doi: 10.1083/jcb.200507087.
- 592 17. Googins MR, Woghiren-Afegbua AO, Calderon M, St. Croix CM, Kiselyov KI, VanDemark AP. 593 Structural and functional divergence of GDAP1 from the glutathione S-transferase superfamily. The 594 FASEB Journal. 2020;34:7192-207. doi: 10.1096/fj.202000110R.
- 595 18. Nguyen GTT, Sutinen A, Raasakka A, Muruganandam G, Loris R, Kursula P. Structure of the Complete 596 Dimeric Human GDAP1 Core Domain Provides Insights into Ligand Binding and Clustering of Disease 597 Mutations. Frontiers in Molecular Biosciences. 2020;7:631232. doi: 10.3389/fmolb.2020.631232.
- 598 19. Allocati N, Masulli M, Di Ilio C, Federici L. Glutathione transferases: substrates, inhibitors and pro- 599 drugs in cancer and neurodegenerative diseases. Oncogenesis. 2018;7(1):1-15. doi: 10.1038/s41389-017- 600 0025-3.
- 601 20. Mannervik B, Alin P, Guthenberg C, Jensson H, Tahir MK, Warholm M, et al. Identification of three 602 classes of cytosolic glutathione transferase common to several mammalian species: correlation between 603

604 structural data and enzymatic properties. *Proceedings of the National Academy of Sciences of the United*

605 States of America. 1985;82(21):7202-6. doi: 10.1073/pnas.82.21.7202.

606 21. Pandey T, Chhetri G, Chinta R, Kumar B, Singh DB, Tripathi T, et al. Functional classification and

607 biochemical characterization of a novel rho class glutathione S-transferase in *Synechocystis* PCC 6803.

608 *FEBS Open Bio.* 2015;5:1-7. doi: 10.1016/j.fob.2014.11.006.

609 22. Pflugmacher S, Wiegand C, Werner S, Schröder H, Kankaanpää H. Activity and substrate specificity of

610 cytosolic and microsomal glutathione S-transferase in Australian black tiger prawns (*Penaeus monodon*)

611 after exposure to cyanobacterial toxins. *Environmental Toxicology.* 2005;20(3):301-7. doi:

612 <https://doi.org/10.1002/tox.20121>.

613 23. Cantarero L, Juárez-Escoto E, Civera-Tregón A, Rodríguez-Sanz M, Roldán M, Benítez R, et al.

614 Mitochondria-lysosome membrane contacts are defective in GDAP1-related Charcot-Marie-Tooth

615 disease. *Human Molecular Genetics.* 2021;29(22):3589-605. doi: 10.1093/hmg/ddaa243.

616 24. Pla-Martin D, Rueda CB, Estela A, Sanchez-Piris M, Gonzalez-Sanchez P, Traba J, et al. Silencing of the

617 Charcot-Marie-Tooth disease-associated gene GDAP1 induces abnormal mitochondrial distribution and

618 affects Ca²⁺ homeostasis by reducing store-operated Ca²⁺ entry. *Neurobiology of disease.* 2013;55:140-51. doi: 10.1016/j.nbd.2013.03.010.

619 25. Binięda K, Rzepnickowska W, Kolakowski D, Kaminska J, Szczepankiewicz AA, Nieznańska H, et al.

620 Mutations in GDAP1 Influence Structure and Function of the Trans-Golgi Network. *International Journal*

621 *of Molecular Sciences.* 2021;22(2). doi: 10.3390/ijms22020914.

622 26. Civera-Tregon A, Dominguez L, Martinez-Valero P, Serrano C, Vallmitjana A, Benitez R, et al.

623 Mitochondria and calcium defects correlate with axonal dysfunction in GDAP1-related Charcot-Marie-

624 Tooth mouse model. *Neurobiol Dis.* 2021;152:105300. Epub 20210211. doi: 10.1016/j.nbd.2021.105300.

625 27. Marttila M, Kytovuori L, Helisalmi S, Kallio M, Laitinen M, Hiltunen M, et al. Molecular Epidemiology

626 of Charcot-Marie-Tooth Disease in Northern Ostrobothnia, Finland: A Population-Based Study.

627 *Neuroepidemiology.* 2017;49(1-2):34-9. doi: 10.1159/000478860.

628 28. Shenoy AR, Visweswariah SS. Site-directed mutagenesis using a single mutagenic oligonucleotide and

629 DpnI digestion of template DNA. *Analytical biochemistry.* 2003;319(2):335-6. doi: 10.1016/s0003-

630 2697(03)00286-0.

631 29. Shin K-J, Wall EA, Zavzavadjian JR, Santat LA, Liu J, Hwang J-I, et al. A single lentiviral vector platform

632 for microRNA-based conditional RNA interference and coordinated transgene expression. *Proceedings*

633 *of the National Academy of Sciences of the United States of America.* 2006;103(37):13759-64. doi:

634 10.1073/pnas.0606179103.

635 30. Backman CM, Zhang Y, Hoffer BJ, Tomac AC. Tetracycline-inducible expression systems for the

636 generation of transgenic animals: a comparison of various inducible systems carried in a single vector. *J*

637 *Neurosci Methods.* 2004;139(2):257-62. doi: 10.1016/j.jneumeth.2004.05.012.

638 31. Hopp TP, Prickett KS, Price VL, Libby RT, March CJ, Cerretti DP, et al. A Short Polypeptide Marker

639 Sequence Useful for Recombinant Protein Identification and Purification. *Bio/Technology.* 1988;6:1204-

640 10. doi: 10.1038/nbt1088-1204.

641 32. Studier FW. Protein production by auto-induction in high density shaking cultures. *Protein expression*

642 and purification. 2005;41(1):207-34. doi: 10.1016/j.pep.2005.01.016.

643 33. Burkhardt A, Pakendorf T, Reime B, Meyer J, Fischer P, Stübe N, et al. Status of the crystallography

644 beamlines at PETRA III. *The European Physical Journal Plus.* 2016;131(3):56. doi: 10.1140/epjp/i2016-

645 16056-0.

646 34. Meents A, Reime B, Stuebe N, Fischer P, Warmer M, Goerres D, et al., editors. Development of an in-

647 vacuum x-ray microscope with cryogenic sample cooling for beamline P11 at PETRA III. *SPIE Optical*

648 *Engineering + Applications; 2013 2013-9-26. San Diego, California, United States.*

649 35. Kabsch W. XDS. *Acta crystallographica Section D, Biological crystallography.* 2010;66(Pt 2):125-32.

650 doi: 10.1107/S0907444909047337.

651 36. Adams PD, Afonine PV, Bunkóczki G, Chen VB, Echols N, Headd JJ, et al. The Phenix software for

652 automated determination of macromolecular structures. *Methods (San Diego, Calif).* 2011;55(1):94-106.

653 doi: 10.1016/j.ymeth.2011.07.005.

654 37. Liebschner D, Afonine PV, Baker ML, Bunkóczki G, Chen VB, Croll TI, et al. Macromolecular structure

655 determination using X-rays, neutrons and electrons: recent developments in it Phenix. *Acta*

656 *Crystallographica Section D.* 2019;75(10):861-77. doi: 10.1107/S2059798319011471.

657 38. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. Overview of the CCP4 suite

658 and current developments. *Acta Crystallographica Section D, Biological Crystallography.* 2011;67(Pt

659 4):235-42. doi: 10.1107/S0907444910045749.

661 39. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, et al. Towards
662 automated crystallographic structure refinement with *it phenix.refine*. *Acta Crystallographica Section D*.
663 2012;68(4):352–67. doi: 10.1107/S0907444912001308.

664 40. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. *Acta crystallographica*
665 *Section D, Biological crystallography*. 2010;66(Pt 4):486–501. doi: 10.1107/S0907444910007493.

666 41. Chen VB, Arendall WBr, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: all-atom
667 structure validation for macromolecular crystallography. *Acta crystallographica Section D, Biological*
668 *crystallography*. 2010;66(Pt 1):12–21. doi: 10.1107/S0907444909042073.

669 42. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein
670 structure prediction with AlphaFold. *Nature*. 2021;596(7873):583–9. Epub 20210715. doi:
671 10.1038/s41586-021-03819-2.

672 43. Krieger E, Vriend G. New ways to boost molecular dynamics simulations. *Journal of Computational*
673 *Chemistry*. 2015;36(13):996–1007. doi: 10.1002/jcc.23899.

674 44. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. Gromacs: High performance molecular
675 simulations through multi-level parallelism from laptops to supercomputers. *SoftwareX*. 2015;1–2:19–25.
676 doi: 10.1016/j.softx.2015.06.001.

677 45. Jo S, Cheng X, Lee J, Kim S, Park SJ, Patel DS, et al. CHARMM-GUI 10 years for biomolecular modeling
678 and simulation. *J Comput Chem*. 2017;38(15):1114–24. Epub 20161114. doi: 10.1002/jcc.24660.

679 46. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, et al. CHARMM36m: an improved force
680 field for folded and intrinsically disordered proteins. *Nat Methods*. 2017;14(1):71–3. Epub 20161107. doi:
681 10.1038/nmeth.4067.

682 47. Chakrabarty B, Parekh N. NAPS: Network Analysis of Protein Structures. *Nucleic Acids Res*.
683 2016;44(W1):W375–82. Epub 20160505. doi: 10.1093/nar/gkw383.

684 48. Cilia E, Pancsa R, Tompa P, Lenaerts T, Vranken WF. The DynaMine webserver: predicting protein
685 dynamics from sequence. *Nucleic Acids Res*. 2014;42(Web Server issue):W264–70. Epub 20140411. doi:
686 10.1093/nar/gku270.

687 49. Parthiban V, Gromiha MM, Schomburg D. CUPSAT: prediction of protein stability upon point mutations.
688 *Nucleic Acids Res*. 2006;34(Web Server issue):W239–42. doi: 10.1093/nar/gkl190.

689 50. Ferruz N, Schmidt S, Hocker B. ProteinTools: a toolkit to analyze protein structures. *Nucleic Acids Res*.
690 2021;49(W1):W559–W66. doi: 10.1093/nar/gkab375.

691 51. Thureau A, Roblin P, Pérez J. BioSAXS on the SWING beamline at Synchrotron SOLEIL. *J Appl*
692 *Crystallogr*. 2021;54:1698–710.

693 52. Manalastas-Cantos K, Konarev PV, Hajizadeh NR, Kikhney AG, Petoukhov MV, Molodenskiy DS, et al.
694 ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. *J Appl*
695 *Crystallogr*. 2021;54(Pt 1):343–55. Epub 20210201. doi: 10.1107/S1600576720013412.

696 53. Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI. PRIMUS: a Windows PC-based system
697 for small-angle scattering data analysis. *Journal of Applied Crystallography*. 2003;36(5):1277–82. doi:
698 10.1107/S0021889803012779.

699 54. Svergun DI. Determination of the regularization parameter in indirect-transform methods using perceptual
700 criteria. *Journal of Applied Crystallography*. 1992;25(4):495–503. doi: 10.1107/S0021889892001663.

701 55. Svergun DI, Petoukhov MV, Koch MHJ. Determination of domain structure of proteins from x-ray
702 solution scattering. *Biophys J*. 2001;80:2946–53. doi: 10.1016/S0006-3495(01)76260-1.

703 56. Svergun DI, Barberato C, Koch MH. CRYSTOL - A program to evaluate X-ray solution scattering of
704 biological macromolecules from atomic coordinates. *J Appl Crystallogr: International Union of*
705 *Crystallography*; 1995. p. 768–73.

706 57. Kozin MB, Svergun DI. Automated matching of high- and low-resolution structural models. *Journal of*
707 *Applied Crystallography*. 2001;34(1):33–41. doi: 10.1107/S002188980014126.

708 58. Miles AJ, Wallace BA. CDtoolX, a downloadable software package for processing and analyses of
709 circular dichroism spectroscopic data. *Protein science : a publication of the Protein Society*.
710 2018;27(9):1717–22. doi: 10.1002/pro.3474.

711 59. Ylikallio E, Johari M, Konovalova S, Moilanen JS, Kiuru-Enari S, Auranen M, et al. Targeted next-
712 generation sequencing reveals further genetic heterogeneity in axonal Charcot-Marie-Tooth neuropathy
713 and a mutation in HSPB1. *Eur J Hum Genet*. 2014;22(4):522–7. Epub 20130821. doi:
714 10.1038/ejhg.2013.190.

715 60. Sancho P, Bartesaghi L, Miossec O, Garcia-Garcia F, Ramirez-Jimenez L, Siddell A, et al. Characterization of molecular mechanisms underlying the axonal Charcot-Marie-Tooth neuropathy
716 caused by MORC2 mutations. *Hum Mol Genet*. 2019;28(10):1629–44. doi: 10.1093/hmg/ddz006.

717

718 61. Sheehan D, Meade G, Foley VM, Dowd CA. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. *The Biochemical journal*. 2001;360(Pt 1):1-16. doi: 10.1042/0264-6021:3600001.

719 62. Petoukhov MV, Svergun DI. Ambiguity assessment of small-angle scattering curves from monodisperse systems. *Acta Crystallographica Section D*. 2015;71(5):1051–8. doi: 10.1107/S1399004715002576.

720 63. Cowieson NP, Miles AJ, Robin G, Forwood JK, Kobe B, Martin JL, et al. Evaluating protein:protein complex formation using synchrotron radiation circular dichroism spectroscopy. *Proteins*. 2008;70(4):1142-6. doi: 10.1002/prot.21631.

721 64. Zhu J, Dong Z, Lei S, Cao L, Yang B, Li W, et al. Design of aromatic helical polymers for STM visualization: imaging of single and double helices with a pattern of pi-pi stacking. *Angew Chem Int Ed Engl*. 2015;54(10):3097-101. Epub 20150128. doi: 10.1002/anie.201410975.

722 65. Pedrola L, Espert A, Wu X, Claramunt R, Shy ME, Palau F. GDAP1, the protein causing Charcot-Marie-Tooth disease type 4A, is expressed in neurons and is associated with mitochondria. *Hum Mol Genet*. 2005;14(8):1087-94. Epub 20050316. doi: 10.1093/hmg/ddi121.

723 66. Rossor AM, Polke JM, Houlden H, Reilly MM. Clinical implications of genetic advances in Charcot-Marie-Tooth disease. *Nature reviews Neurology*. 2013;9(10):562-71. doi: 10.1038/nrneurol.2013.179.

724 67. Figueiredo FB, Silva WA, Jr., Giuliatti S, Tomaselli PJ, Lourenco CM, Gouvea SP, et al. GDAP1 mutations are frequent among Brazilian patients with autosomal recessive axonal Charcot-Marie-Tooth disease. *Neuromuscul Disord*. 2021;31(6):505-11. Epub 20210320. doi: 10.1016/j.nmd.2021.03.005.

725 68. Sivera R, Frasquet M, Lupo V, Garcia-Sobrino T, Blanco-Arias P, Pardo J, et al. Distribution and genotype-phenotype correlation of GDAP1 mutations in Spain. *Sci Rep*. 2017;7(1):6677. Epub 20170727. doi: 10.1038/s41598-017-06894-6.

726 69. Cassereau J, Chevrollier A, Codron P, Goizet C, Gueguen N, Verny C, et al. Oxidative stress contributes differentially to the pathophysiology of Charcot-Marie-Tooth disease type 2K. *Experimental neurology*. 2020;323:113069. doi: 10.1016/j.expneurol.2019.113069.

727 70. Estela A, Pla-Martin D, Sanchez-Piris M, Sesaki H, Palau F. Charcot-Marie-Tooth-related gene GDAP1 complements cell cycle delay at G2/M phase in *Saccharomyces cerevisiae* *fis1* gene-defective cells. *J Biol Chem*. 2011;286(42):36777-86. Epub 20110902. doi: 10.1074/jbc.M111.260042.

728 71. Yoshimura A, Yuan JH, Hashiguchi A, Hiramatsu Y, Ando M, Higuchi Y, et al. Clinical and mutational spectrum of Japanese patients with Charcot-Marie-Tooth disease caused by GDAP1 variants. *Clin Genet*. 2017;92(3):274-80. Epub 20170419. doi: 10.1111/cge.13002.

729 72. Cassereau J, Chevrollier A, Codron P, Goizet C, Gueguen N, Verny C, et al. Oxidative stress contributes differentially to the pathophysiology of Charcot-Marie-Tooth disease type 2K. *Exp Neurol*. 2020;323:113069. Epub 20191023. doi: 10.1016/j.expneurol.2019.113069.

730 73. Cassereau J, Chevrollier A, Gueguen N, Malinge MC, Letournel F, Nicolas G, et al. Mitochondrial complex I deficiency in GDAP1-related autosomal dominant Charcot-Marie-Tooth disease (CMT2K). *Neurogenetics*. 2009;10(2):145-50. Epub 20081217. doi: 10.1007/s10048-008-0166-9.

731 74. Huber N, Bienossek C, Wagner KM, Elsasser H-P, Suter U, Berger I, et al. Glutathione-conjugating and membrane-remodeling activity of GDAP1 relies on amphipathic C-terminal domain. *Scientific reports*. 2016;6:36930. doi: 10.1038/srep36930.

732 75. Miressi F, Benslimane N, Favreau F, Rassat M, Richard L, Bourthoumieu S, et al. GDAP1 Involvement in Mitochondrial Function and Oxidative Stress, Investigated in a Charcot-Marie-Tooth Model of hiPSCs-Derived Motor Neurons. *Biomedicines*. 2021;9(8). Epub 20210802. doi: 10.3390/biomedicines9080945.

761