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ABSTRACT 14 
Serial RNA-seq studies of bulk samples are widespread and provide an opportunity for improved 15 
understanding of gene regulation during e.g., development or response to an incremental dose of a 16 
pharmacotherapeutic.  In addition, the widely popular single cell RNA-seq (scRNA-seq) data implicitly exhibit 17 
serial characteristics because measured gene expression values recapitulate cellular transitions.  18 
Unfortunately serial RNA-seq data continue to be analyzed by methods that ignore this ordinal structure and 19 
yield results that are difficult to interpret.  Here, we present Error Modelled Gene Expression Analysis 20 
(EMOGEA), a principled framework for analyzing RNA-seq data that incorporates measurement uncertainty in 21 
the analysis, while introducing a special formulation for modelling data that are acquired as a function of time 22 
or other continuous variable.  By incorporating uncertainties in the analysis, EMOGEA is specifically suited for 23 
RNA-seq studies in which low-count transcripts with small fold-changes lead to significant biological effects.  24 
Such transcripts include signaling mRNAs and non-coding RNAs (ncRNA) that are known to exhibit low levels 25 
of expression.  Through this approach, missing values are handled by associating with them disproportionately 26 
large uncertainties which makes it particularly useful for single cell RNA-seq data.  We demonstrate the utility 27 
of this framework by extracting a cascade of gene expression waves from a well-designed RNA-seq study of 28 
zebrafish embryogenesis and, a scRNA-seq study of mouse pre-implantation and provide unique biological 29 
insights into the regulation of genes in each wave.  For non-ordinal measurements, we show that EMOGEA 30 
has a much higher rate of true positive calls and a vanishingly small rate for false negative discoveries 31 
compared to common approaches.  Finally, we provide an R package (https://github.com/itikadi/EMOGEA) 32 
that is self-contained and easy to use. 33 
 34 

MAIN TEXT 35 
Next generation sequencing (NGS) has supplanted microarray hybridizations1 as a method for the measuring 36 
gene expression and identifying differential gene expression (DGE). This is because of both its increased 37 
throughput and the larger dynamic range of signals that can be measured. Advances in microfluidics 38 
technologies have further enabled NGS to be extended to measuring levels of DNA or RNA in single cells 39 
rather than bulk sample homogenates, thereby significantly increasing throughput and resolution2. At the 40 
inception of microarray technologies, a lot of effort was expended in characterizing the distributional properties 41 
of the measurements3–6 along with developments of statistical methods to determine DGE7–10. When RNA 42 
sequencing (RNA-seq) emerged, the same statistical methods were used to analyze the data following 43 
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transformations that allowed their distributional characteristics to approximately resemble those of their 1 
microarray counterparts. Subsequently, other methods were specifically developed to analyze RNA-seq data 2 
treating their distributions as Negative Binomial (NB) or over-dispersed Poisson11,12 rather than transforming 3 
them to mimic microarrays. Despite this better understanding of the distributional characteristics of RNA-seq 4 
data, a number of limiting factors persists. First, there is a lack of methods that can incorporate measurement 5 
uncertainty in determining DGE11,13–15 so as to decrease the rate at which false discoveries are made. Second, 6 
time ordered data continue to be analyzed using the classical pairwise comparison approaches that ignore the 7 
autocorrelations between successive samples or using splines and other smoothing-based approaches that 8 
have limited biological interpretation.    9 
 10 
Currently one of the most prominent approaches for handling measurement errors in the analysis of RNA-seq 11 
data is to fit a general trend to the NB dispersions11,12,16, and use that fit as a surrogate for gene-specific 12 
variation. Another alternative is to model gene-wise dispersions through empirical Bayes procedures16,17 that 13 
borrow information from a set of self-consistent gene expression values under the null hypothesis of no overall 14 
differential expression. These approaches do not, unfortunately, address the real question of true 15 
measurement uncertainty, relying instead on the intra-sample data spread to infer the over-dispersion 16 
parameter.   17 
 18 
The impetus for accurately modelling measurement errors in RNA-seq is to produce a reliable list of genes 19 
that are differentially expressed and minimize under- or over-estimation. A number of publications13,18–21 20 
compare the performance of methods for RNA-seq data analysis using the false discovery rate (FDR) as a 21 
standard marker of quality, conditioned on a traditional cut-off of two-fold differential expression. Schurch et 22 
al.,21 have performed one such comprehensive comparison adjusting this two-fold differential gene expression 23 
(DGE) cut-off in the context of replication levels. In their findings, it is clear that technical variability plays an 24 
important role in FDR control and show that model performance increases with the number of replicates and 25 
that the smaller the DGE cut-off the more replicates are needed to control the FDR. In reality there is a finite 26 
number of replicates experimentalists can acquire due either to a limit in resources, sample availability or both.  27 
 28 
We address these two critical shortcomings in RNA-seq (measurement errors and the analysis of serial data) 29 
via the EMOGEA framework that fundamentally shifts the way these data are analyzed by combining 30 
techniques for: (a) incorporating measurement error information into the pre-processing steps with, (b) a 31 
special approach for modeling ordinal data.  32 
 33 

RESULTS 34 
We assume that measurement errors in RNA-seq arise from well-defined sources that can be quantified 35 
through replication. We consider a cumulative response error where the total variance has additive 36 

components that derive from these known sources3,13,22,23 such that: s2total = s2biol + s2tech + s2e. In this 37 

formulation s2total represents the total variance, s2biol the biological variance, s2tech the experimental (technical) 38 

variability while s2e is a random component that is assumed to be independent, identical and normally 39 

distributed (iid normal). s2tech represents a superset of factors that include batch differences, sample extraction 40 

protocols, library preparation, sequencing and computational errors, while s2biol is the true biological question 41 
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for which the experiment is designed. We could reduce this formulation into s2total = s2biol + s2samp where the 1 

last term includes the smaller random error component that is usually modelled by methods estimating over-2 
dispersion. In the EMOGEA framework it would be clearly absurd to assume that the statistical characteristics 3 

s2samp are iid normal given known correlations in gene expression. We demonstrate the utilization of this 4 

approach with an application to data acquired under two distinct design strategies.  5 
 6 

First, for pairwise comparative design strategies, we begin by determining the magnitude of s2samp. We then 7 

incorporate it into the pre-processing step prior to DGEA using limma’s empirical Bayes moderated t-statistic 8 
or, exploratory data analyses using principal component analysis (PCA) or multi-dimensional scaling (MDS) 9 
after ensuring that the data exhibit log-normal distributional characteristics.  10 
 11 
Second, for time-ordered (ordinal) and single cell (sc)RNA-seq experiments, we employ a conceptually simple 12 
strategy that uses the principles of bilinear decomposition with non-negativity constraints on the solution, while 13 
implicitly incorporating measurement uncertainties in the model development. This approach is referred to as 14 
multivariate curve resolution (MCR) and is implemented via weighted alternating least squares. Biologically, 15 
the rationale for a bilinear model in ordinal experiments is straightforward and proceeds as follows. Assuming 16 
time as the ordinal variable, and given a measurement of gene expression from samples taken successively 17 
during this time, we can arrange the data in a matrix form, X, such that each row represents a gene while each 18 
column an expression value for that gene over time. Using a simple multiple linear regression, we can 19 
represent the measured data as:  20 
X = TP + E (1) 21 
where E, is the matrix of random errors while T and P are smaller matrices that characterize the biological 22 
information in X. EMOGEA introduces the approach for determining T and P from RNA-seq data with the 23 
constraint that the solution must be non-negative. This constraint is informed by the knowledge that whereas 24 
the expression level of a gene can be zero, it can never be negative. A plot of the columns of the matrix P, 25 
against time indicates how the expression of a class of genes cascades over the course of the experiment 26 
while the matrix T indicates which genes exhibit the characteristics represented by P.  A question that arises 27 
is how to determine the size of T or P (corresponding to the number of independent components). There are 28 
several established methods for making this determination including examination of standardized residual root 29 
mean squares, lack-of-fit measures, Akaike Information Criterion (AIC) among others. Whereas these 30 
approaches provide computationally validated solutions, in practice this cut-off for many biological data not 31 
clear-cut. In EMOGEA we allow for the flexibility to determine the size of these smaller matrices sequentially 32 
by specifying a set number of profiles and examining their graphical characteristics in relation to what is 33 
expected biologically. 34 
 35 
In practice the only measurements available is the so called "count" matrix X. To determine the values of either 36 
T or P, we make an initial guess of either matrix and estimate the other from least squares and impose the 37 
non-negativity constraint. We continue this procedure with the second matrix, applying the same constrains 38 
and alternate the least squares estimation until a convergence criterion is met. We provide more algorithmic 39 
details in the Methods section including the procedure for measurement error incorporation that allows 40 
specifying disproportionately large uncertainties for missing values, in effect down-weighting their significance. 41 
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 1 
We apply EMOGEA to three data types which we will categorize on the basis of the most common design 2 
strategies for transcriptomics analyses: Time Course (TC), scRNA-seq and, case-control (CC). CC studies are 3 
the most common strategies for transcriptomics studies and involve, in the simplest case, comparing two 4 
conditions to determine differential gene expression. In these types of studies, there are two common 5 
approaches for visualizing the effect of a treatment: exploratory analysis via methods such as principal 6 
component analysis (PCA), multidimensional scaling (MDS) and others or; via analysis of differential 7 
expression to identify genes that are expressed at statistically significant levels between the conditions. In 8 
contrast, although TC experiments are more informative of the ultimate biological fate of a system, the 9 
measurements are more complex and require specialized approaches for their analyses. Unfortunately, a 10 
majority of existing methods for RNA-seq data analysis treat gene expressions at sequential time points as 11 
repeated measurements and test DGE between conditions disregarding the ordinal aspect. They thus fail to 12 
highlight how genes exhibit a cascade of expression profiles over time. 13 
 14 

Modelling time course measurements 15 

We demonstrate the utility of EMOGEA by applying it to a well-designed zebrafish embryogenesis data set 16 
(see Methods) previously generated and described by White and collegues24. Here the authors monitored 17 
mRNA expression of the developing zebrafish at 18 time points, with 5 replicate measurements at each time, 18 
covering 8 developmental stages. We analyzed the data by specifying 3, 4, 5 and 6 components (waves) which 19 
we modelled, extracted temporal profiles and evaluated them for consistency by determining (visually) if they 20 
differed sufficiently between each other. This type of sequential analysis is necessary because it is not possible 21 
to know, a priori, how many underlying expression profiles (waves) would be present in a data set, but 22 
alternative approaches exist for determining the number of components25. In principle, one can add as many 23 
components as there are samples, but degenerate solutions begin to emerge when the true number of unique 24 
profiles has been reached and, if an absurd number of profiles is specified, the resulting ill-conditioned matrix 25 
will be accompanied by non-convergence of the algorithm to which the user will be alerted. 26 
 27 
The 6-component model of the zebrafish data and the extracted time profiles (normalized to unit length) are 28 
shown in Fig. 1b. These profiles are clearly very distinct from each other and represent groups of genes whose 29 
expression levels peak at different times during development. As an illustration, profiles I and II correspond to 30 
groups of genes at the very opposite ends of the gene expression spectra where one group peaks in 31 
expression towards the end of embryogenesis - in the larval stages (Profile II) - or is turned off soon after the 32 
embryos start development - at the cleavage stage (Profile I). In between these waves of gene expression, 33 
there are groups of genes whose expression levels peak at different developmental stages as shown in Profiles 34 
II to VI. Specifically, Profile III consists of genes peaking in expression during the early to mid-blastula stages, 35 
Profile IV and V consist of genes peaking at the late blastula and gastrula and, segmentation respectively. 36 
Finally, Profile VI consists of genes whose expression increases steadily with developmental time to 37 
pharyngula/hatching stage and then begins to slightly decrease in the final larval stage. We also show the 38 
empirical similarity between profiles modelled via EMOGEA and the expression levels of these groups of genes 39 
from the original data for genes correlated to Profiles I, V and VI in Fig. 1c. 40 
 41 
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In order to more closely examine the groups of genes exhibiting specific characteristic waves of expression 1 
depicted in each of these six profiles, we calculated the cosine similarity between the expression of each gene, 2 
and each considered profile. We then ranked them in order of their strength of similarity (from 1 to 0) and took 3 
the top 200 genes whose temporal expression was most similar to each of the profiles. These genes are shown 4 
in Supplementary Table 1 for each profile. We further performed functional analyses in order to relate the gene 5 
expression levels to biological activity using over-representation analysis (ORA)26(Supplementary Fig. 1). This 6 
enabled us to objectively highlight characteristic functional pathways of specific stages of zebrafish 7 
embryogenesis.  8 
 9 
Briefly, this analysis shows for instance, that Profile I comprises genes – such as mei427, moto28 and spo1129 10 
- involved in reproduction, gamete generation and germ cells development, consistent with their expression 11 
profile peaking in the zebrafish egg and zygote. Conversely, genes in Profile II are mainly cyp genes and sult 12 
superfamily members known to be highly expressed in the developed intestine and involved in the response 13 
to xenobiotics which is unsurprising since, at this stage, the zebrafish are free swimming and are introduced 14 
to environmental pollutants that require biotransformation to compounds that can be excreted more readily. 15 
Profile III chronologically follows Profile I and is characterized by intense cell replication (GO terms: 16 
chromosome segregation and reorganization), while Profile IV models the expression pattern of genes involved 17 
in endoderm development and embryo regionalization. This continues in Profile V with genes initiating 18 
segmentation and hatching. In the final developmental stages of the zebrafish (Profile VI) the peaking genes 19 
are those involved in extracellular structure organization (i.e. muscle development, cardiomyocyte 20 
differentiation). 21 
 22 
The results show that EMOGEA yields gene expression profiles that represent groups of genes with similar 23 
modulations in their expression during embryogenesis. The relevance of the group of genes comprised in 24 
these profiles is supported by the biological functional analysis via ORA.  This is an important and unique result 25 
that, unfortunately, cannot be obtained by methods that treat TC data as repeat measurements and analyze 26 
them for DGE. EMOGEA profiles highlight with clarity how the expression of different genes is modulated over 27 
time with a tractable biological interpretation. Although other methods such as DESeq2 have been extended 28 
to analyze time series data, they are still fundamentally based on pairwise comparisons, choosing for example 29 
a time point against which all other measurements are made.  30 
 31 

Modelling scRNA-seq data 32 

Whereas, in principle, scRNA-seq data follow the design paradigm of case-control studies, they exhibit an 33 
inherent ordinal structure because (unless under exceptional circumstances) cells are not typically arrested at 34 
any stage of development, cell cycle or other transitions prior to sampling. Gene expression subsequently 35 
reflects this ordinal, cellular characteristic and there are several methods for ordering cells in a "pseudo time" 36 
to reflect this inherent structure. We used EMOGEA to model these data to reveal transcriptional profiles similar 37 
to those of bulk RNA-seq. To illustrate this utility, we use scRNA-seq data from Deng et al.,30 (see Methods), 38 
which were acquired to investigate allele-specific gene expression from cells dissociated from in vivo embryos 39 
of mouse pre-implantation covering 10 developmental stages from oocyte to blastocyst.  40 
 41 
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To employ our approach, we start by ordering the cells in pseudo time which we achieve by first performing 1 
principal component analysis (PCA) and plotting the data projections in first two principal components (PCs). 2 
We then determine the principal curve through the data cloud and obtain the orthogonal projections of the data 3 
onto this principal curve. We subsequently order the cells according to the principal curve projections as shown 4 
in Supplementary Fig. 2. Following this pseudo-temporal ordering, we analyzed the data by applying EMOGEA 5 
following a similar protocol to that used in bulk TC RNA-seq and show the 4 most distinctive expression profiles 6 
in Fig. 2b.  7 
 8 
The profiles reveal genes that are well organized in their expression levels to coincide with the emergence of 9 
new developmental stages. Particularly striking is the expression of genes shown in Profile I, which are turned 10 
off when the mouse embryos reach the 4-cell stage and are essentially not expressed throughout its 11 
development. Profile II, on the other hand, distinguishes genes that are expressed only at mid 2-cell stage, 12 
peak at the late 2-cell stage and begin to decrease their levels of expression in the late 4-cell and are back 13 
down to baseline expression at the 8-cell stage and onwards. What is interesting is that these genes are also 14 
not expressed at the zygote and early 2-cell stages. Profile III comprises genes that are expressed between 15 
the 4-cell and 16-cell stages while Profile IV consists of the genes whose expression rises steadily as the 16 
embryos develop.  17 
 18 
To put the gene expression profiles into a context of mouse developmental biology, we selected some of the 19 
top genes in each profile (Supplementary Table 2), plotted their expression individually (Fig. 3c, and 20 
Supplementary Fig. 2b-c), and performed a cursory literature survey. The top gene in the list corresponding to 21 
Profile I, Gm4981, is reported31 to be part of the Dux locus which is structured as multiple repeats on the 22 
chromosome 10. This locus generates the earliest transcripts in the fertilized oocyte that subsequently initiate 23 
the transcription of the parental genomes, an event referred to as the embryonic genome activation (EGA) 24 
program31,32. EGA is a significant, temporally sensitive phase in normal mouse embryonic development and 25 
transcriptional events are well orchestrated. This is demonstrated by the expression of Gm4981 which peaks 26 
immediately after fertilization of the oocyte (Profile I) to initiate the EGA program where target genes such as 27 
members of the Zscan4 family, Gm family and Tdpoz family are highly transcribed (Profile II). Consistently, 28 
defects in the modulation of this critical phase of development have been correlated to phenotype defects of 29 
the morula and blastocyst stage. In subsequent profiles, we see that the temporal expression levels of Obox6, 30 
Sox15 and Hand1 show similarity to the trajectory of Profile III as they peak after the 4-cell state. First, Obox6 31 
is a member of the Obox family of transcription factors and has recently been reported33,34 to be preferentially 32 
expressed in the oocyte, zygote, early embryos, and embryonic stem cells, where it regulates pluripotent stem 33 
cell reprogramming. Second, Sox15 is a member of the SRY-related HMG-box (Sox) family of transcription 34 
factors which is highly expressed in mouse undifferentiated embryonic stem cells and is progressively 35 
repressed upon cell differentiation. Interestingly, Sox15 can interact with different protein partners, such as 36 
Pou5F1 (known as Oct3/4) and Fhl3 (four and a half LIM domains 3) to regulate the Foxk1 gene (forkhead box 37 
protein K1), which is essential for the cell cycle progression of myogenic progenitor cells35,36. Finally, Sox15 is 38 
also involved in the differentiation of the trophoblast giant cell by enhancing the transcriptional activity of 39 
Hand137, which is one of the top genes of Profile III. Profile IV mainly includes genes involved in metabolic 40 
processes, which become predominant in the final stages of organism development and in the adult animal. 41 
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Examples include members of the NADH dehydrogenase [ubiquinone] family (Nduf) which form the NADH 1 
dehydrogenase complex I of the mitochondrial electron transport chain, glyceraldehyde-3-phosphate 2 
dehydrogenase (Gapdh), and Hexa, the alpha subunit of the lysosomal enzyme beta-hexosaminidase. These 3 
findings are consistent from the point of view of the animal’s increased energy demands as it develops, which 4 
subsequently lead to up-regulated expression of genes involved in energy metabolism. 5 
 6 

Modelling ’case-control’ measurements 7 

Case-control studies are by far the most common study designs in omics measurements. To demonstrate the 8 
importance of EMOGEA for analyzing data from such studies we employ a common data set first published by 9 
Bottomly and collegues38 in which expression levels of over 36,000 genes from the striatum of two mouse 10 
strains were measured. After error weighting via EMOGEA, we show results from three types of analyses in 11 
Fig. 3.  12 
 13 
The first analysis represents differential expression analysis that focuses on low count signals. We selected 14 
500 least variable genes (corresponding to low count signals) and performed DGEA on their expression levels 15 
using limma’s empirical Bayes moderated t-statistic for the two contrasts under the null hypothesis, before and 16 
after error weighting through EMOGEA. The mean-difference plot is shown in Fig 3a, and evidently illustrates 17 
that at the lower levels of gene count, the number of genes determined to be differentially expressed is 18 
significantly smaller without error weighting. The genes called differentially expressed by both approaches are 19 
shown in Supplementary Table 3 and highlight an important finding. Whereas analysis of the original data 20 
identified 1718 differentially expressed genes, our analysis uncovered an additional 54 differentially expressed 21 
genes that had been disregarded due to their low count signals. This finding is particularly significant because 22 
in many biological applications, low count signals associated with signaling genes and non-coding RNAs can 23 
have important biological implications, but are often not detected using available methods for DGEA. 24 
 25 
The second analysis represents a popular approach to evaluating the results of a Case-Control experiment 26 
through exploratory analysis via methods such as principal component analysis (PCA), hierarchical clustering 27 
and multi-dimensional scaling (MDS) among others. Here we show, graphically, the separation between the 28 
two mice strains based on the expression levels of the least variable genes using PCA. In Fig. 3b, whereas 29 
the separation between the mouse strains is clear along PC2 from the EMOGEA analysis, this picture is less 30 
clear when measurement errors are not incorporated into the analysis. In many analyses PCA is performed 31 
either on the entire data set or on a pre-selected set of highly variable genes, an approach that implicitly 32 
focuses on the most dominant signals at the expense of the low intensity ones. 33 
 34 
Finally, the third analysis focuses on perhaps one of the most important but often overlooked aspect of DGEA 35 
which is the rate of true positive and false negative discoveries. These two parameters are highly influenced 36 
by the level of uncertainty in the measurements as has been shown in Schurch et al.,21 and Gierlinski et al.,39. 37 
We sought to show the impact of measurement error weighting on these parameters using yeast RNA-seq 38 
data derived from two conditions with up to 48 replicates per experiment. We refer to this data set as the 39 
Gerlinski data which has been described extensively in the literature21,39. The data are particularly useful for 40 
demonstrating the usefulness of EMOGEA given its extensive unprecedented level of replication. Once again, 41 
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we focus on low count signals to show the effectiveness of determining DGE from such measurements by 1 
generating from the original data, a pseudo-set of genes that are artificially “differentially expressed”. We 2 
achieved this by selecting from the expression measurements of wildtype samples, a set of 1000 genes with 3 
the lowest count levels. We subsequently selected form these, another 10% of the genes and inflated their 4 
counts to levels that exceeded the 95% limit of the data spread. This allowed us to obtain a dummy set of data 5 
that exhibited identical distributional characteristics to the original except for a known number of genes that 6 
were differentially expressed. We then analyzed these data using limma’s empirical Bayes moderated t-7 
statistic, before and after processing with EMOGEA, with the objective of recovering the artificially differentially 8 
expressed genes. To avoid bias, we generated 1000 dummy sets of these “differentially expressed genes” via 9 
bootstrapping low count genes from the original data and calculated the true positive rate (TPR) and false 10 
negative rate (FNR) following the approach proposed by Schurch and collegues21. TPR corresponds to the 11 
ratio of genes determined to be differentially expressed to the total number of differentially expressed genes 12 
while FNR is the ratio of genes determined not to be differentially expressed to the total number of differentially 13 
ex-pressed genes. 14 
 15 

DISCUSSION 16 

These results demonstrate several factors. First, analysis of bulk time course RNA-seq data of zebrafish 17 
embryogenesis using the EMOGEA framework display clear well-orchestrated waves of gene modulation that 18 
recapitulate the biological cascades expected during development. We show via functional analysis of the 19 
genes that correspond to each wave, the biological relevance of each profile and select a few genes that 20 
correlate with each profile to demonstrate their transcriptional trajectories.  21 
 22 
Second, for scRNA-seq data we show again that this framework places the development of mouse embryos 23 
in the context of peaking gene expression at specific time points. With supporting biological inference from the 24 
literature, we show different sets of genes peaking in expression with a high degree of resolution to distinguish 25 
the zygotic, early, mid and late two-cell stages from each other. We use the method of principal curves to 26 
obtain a pseudo-temporal order and place the cells into their respective developmental continuum prior to 27 
applying multivariate curve resolution. Other methods for pseudo-time estimation are possible and we 28 
anticipate that this approach will be used to infer other non-branching cellular transitions exhibited by scRNA-29 
seq experiments such as cell cycle, stem-cell trans-differentiation during organogenesis, T-cell activation 30 
among others.     31 
 32 
Finally in relation to case-control studies we examine the question of highly variable (and therefore high count) 33 
genes and their influence on the results of DGE. Using a common data set, we show that the EMOGEA 34 
framework allows low count genes to model the biological question while approaches that ignore measurement 35 
error information are unable to differential expression from these low count signals. This has important 36 
consequences for studies involving non-coding RNAs and signaling genes that are generally expressed in low 37 
levels but have serious biological ramifications if they are differentially expressed.   38 
Moreover, we employ the concept of true positive and negative rates to illustrate the effect or error weighting 39 
on these parameters.  Schurch et al.,21 have shown that TPR should increase with the increasing number of 40 
replicates while the reverse is the case for the FNR. In. Fig 3c we show that the TPR after EMOGEA error 41 
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weighting reaches a mean TPR of 90% after 8 replicates and stabilizes thereafter, while DGEA obtained by 1 
limma alone reaches a mean TPR of 63% after 8 replicates and does not stabilize until after 12 replicates and, 2 
at a mean value of only 72%. Even more striking is the FNR which stabilizes to 1% for EMOGEA analysis after 3 
3 replicates. Surprisingly, the FNR for limma analysis alone starts out at 2% but rises as the number of 4 
replicates increases up to 4%.  Over all the bootstrap experiments, EMOGEA results appear to be much more 5 
consistent looking at the spread of the bootstrap TPR and FNR values. These result are reassuring because 6 
they are consistent with the observations we made when analyzing the Bottomly data set38 where EMOGEA 7 
identifies more differentially expressed genes in the low gene-count range. 8 
 9 

METHODS 10 

 11 

Practical Implementation and Data Sets 12 

 13 

Analysis of Zebrafish time course (TC) data 14 

 15 

Zebrafish data from White et. al.,24 were used to demonstrate the utility of EMOGEA for time course data 16 
analysis. The data consist of poly(A) RNA expression profiles of baseline zebrafish embryogenesis capturing 17 
18 time points covering 5 developmental processes. These were divided as: pre- and zygotic onset (covered 18 
by 4 time points); blastula/gastrula (covered by 4 time points); somitogenesis and prim (each covered by 3 19 
time points) and; hatching/larval stages (covered by 4 time points). At each time point, 5 biological replicates 20 
of cDNA libraries were prepared from a pool of 12 embryos and sequenced on Illumina HiSeq 2500. The 21 
resulting sequences were aligned to the GRCz10 reference genome using TopHat240 while gene counts were 22 
produced using HTSeq41. 23 
 24 
We utilized data available as the Supplementary files in White et al.,24, which comprised of pre-processed and 25 
quality checked data consisting of 32,110 gene transcripts for each of the 90 cDNA libraries sequenced. Error 26 
information was obtained from the replicates associated with each time point and applied EMOGEA-MCR with 27 
weighting, specifying an incremental number of profiles to be modelled. We determined that 6 profiles 28 
sufficiently modelled the data in a way that we could see significant difference in the modulation of gene 29 
expression in line with developmental time-points and stages.  30 
 31 
In order to determine which genes best matched the profiles, we computed a cosine similarity metric to assign 32 
a score between 0 and 1 (where a score of 1 is absolute similarity and 0 absolute dis-similarity) to identify 33 
which genes had expression profiles that were modulated in a similar temporal cascade as the EMOGEA 34 

profiles. This score was calculated as: 𝜃!,# =
$⃗!.'(⃗ "
||$⃗!.'(⃗ "||

, where 𝑦⃗# is the vector of expression profiles for gene j while 35 

𝑥! is profile i. It corresponds to the cosine of the angle between the two vectors and indicates the similarity of 36 
their approximate directionality. We then sorted the genes according to their (dis)similarities to the EMOGEA 37 
profiles and performed functional analyses on the topmost similar genes for each profile. 38 
 39 
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Analysis of single cell RNA-seq data 1 
 2 

Single cell (sc)RNA-seq data utilized in this manuscript were first described in Deng et al.,30 from a study in 3 
which the authors sought to understand the genome wide allelic expression patterns in single cells obtained 4 
from two strains of mouse pre-implantation embryos. These data are particularly interesting in demonstrating 5 
the utility of EMOGEA, not only because of their temporal design, but also because scRNA-seq data display 6 
inherent ordinal characteristics. F1 embryos derived from 4 to 8 week-old CAST/EiJ mice mated with C57BL/6J 7 
mice were obtained from which 268 individual cells were dissociated at pre-implantation developmental stages 8 
ranging from oocyte to blastocyst. The single cells were then transferred into hypotonic Smart-seq lysis buffer 9 
and subjected to the Smart-seq2 protocol for the generation of RNA-seq libraries. Single-end sequencing at 10 
46 to 59 bp of these libraries was then carried out on an Illumina HiSeq 2000. These data are available at the 11 
NCBI Gene Expression Omnibus (GEO, GSE45719). We accessed these data from GEO and mapped them 12 
to mm10 genome using STAR42 to yield a count matrix of dimension 22,431 transcripts x 268 cells. We 13 
subsequently estimated the pseudo-temporal order of the cells using principal curve and re-ordered each cell 14 
based on this order as shown in Supplementary Fig.1a. EMOGEA-MCR was used to obtain temporal profiles 15 
without weighting given that there were no replicate single cell data for this study. We similarly specified the 16 
number of profiles to be extracted incrementally and determined, for illustration purposes, that 4 profiles best 17 
described the developmental stages. Functional analysis was performed for genes whose expression profiles 18 
matched EMOGEA profiles as described for the bulk TC data. 19 
 20 

Analysis of Case-Control (CC) RNA-seq data 21 
 22 

We utilized two data sets to demonstrate EMOGEA applications to CC studies. The first data set is the Bottomly 23 
data available at the NCBI Gene Expression Omnibus (GEO, GSE26024) consisting of RNA-seq 24 
measurements acquired to detect DGE between the striata of C56BL/6 and DBA/2J inbred mouse strains. The 25 
study included 21 samples (10 from C56BL/6 strain and 11 from DBA/2J strain) from which cDNA libraries 26 
were prepared and sequenced on an Illumina GAIIx generating an average of 22 million short sequencing 27 
reads. We aligned the reads to the mouse mm10 reference genome, generating a count matrix (using 28 
HTSeq41) of dimension 36,536 gene transcripts x 21 striata for both strains. In principle this corresponds to 10 29 
biological replicates for the C56BL/6 strain and 11 biological replicates for the DBA/2J strain from which 30 
measurement errors could be calculated. Given the popularity of this data set, we used it to demonstrate the 31 
effects of EMOGEA analysis of the low intensity signals which were selected by choosing 1000 least variable 32 
genes.  33 
 34 
The second data set is the Gerlinski data comprising of 48 replicate RNA-seq measurements of wild type (WT) 35 

Saccharomyces cerevisiae and corresponding snf2 (Δsnf2) knock-out mutant cell line. Poly(A) RNAs were 36 

extracted and converted to cDNA libraries that were sequenced (50bp single-end in hepta replicate), on an 37 
Illumina HiSeq 2000. We aligned the data obtained from the European Nucleotide Archive repository (ENA, 38 
PRJEB5348) to the Ensembl v64 release of the S. cerevisiae genome annotation with STAR42 and generated 39 
the count matrix using HTSeq41 to give a count matrix consisting of 7,076 gene features x 672 libraries 40 
sequenced (48 x 7 per strain). 41 
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Theoretical Considerations (Online Methods) 1 
 2 

Methods for the analysis of RNA-seq data operate on a "count" matrix X of dimension n x m where Xi j is the 3 
number of reads assigned to transcript i in sequencing experiment j. Such matrices are produced by sequence 4 
alignment tools such as HTSeq41, featureCounts43, among others13,44,45. DGEA consists of: normalization of 5 
counts to remove systematic biases, estimation of parameters that describe the statistical model and, testing 6 
for differential expression or exploratory analysis using such methods as Principal Component Analysis (PCA) 7 
and Multi-Dimensional Scaling (MDS). Methods for gene expression analysis fall into categories distinguished 8 
by the statistic employed for testing differential expression. They include parametric t-test based methods e.g. 9 
Cuffdiff and Cuffdiff245,46; and generalized least squares methods assuming Normal (after transformation), 10 
Poisson or negative binomial distributions e.g. edgeR, DESeq, DESeq2, baySeq, EBSeq, limma-11 
voom11,13,17,47–49.  12 
 13 
In this study we consider DGEA methods that utilize generalized linear models for parameter estimation to 14 
describe the relationships between gene expression and experimental conditions. We do not consider the 15 
importance of calculating gene counts but, rather focus on the importance of measurement errors in estimating 16 
these parameters - particularly for lowly expressed genes. Moreover, we do not engage in comparative 17 
analyses of these methods as there are numerous comprehensive reviews and extensive systematic 18 
comparisons between DGEA methods elsewhere with recommendations for best practices both for differential 19 
expression data pre-processing13,39,50. 20 
 21 
Generalized linear models for DGEA are structured as follows. Considering a response yi which might be an 22 
experimental condition such as disease, the expression of genes measured by RNA-seq for each patient can 23 
be represented as: 24 

𝐸[(𝑌|𝑥!)] = 𝑔(β* + 𝑥!+β) (2) 25 

where E[Y] is the expected response, g the link-function, b0 the baseline, and b is a vector of parameters 26 

describing the relationship between the covariates, xi (normalized gene counts) and the response. Typically, 27 
the variance of the expected values is represented as: 28 

𝑉𝑎𝑟([(𝑌|𝑥!)]) = 𝑉𝑎𝑟3𝑔(β* + 𝑥!+β)4 (3) 29 

Numerous link functions can be used to describe the relationship between the response and predictors in Eqn. 30 
(2). Assuming identity link function for RNA-seq data, the maximum likelihood estimate of the parameters is 31 
obtained via ordinary least squares with an assumption that the variance, Eqn. (3), is identical, independent 32 

and normally distributed (iid normal) for all covariates. Eqn. (2) can subsequently be simplified as: 𝑦	 = 	𝑋β,  33 

and the least squares estimate for the parameters given as: β7 = (𝑋+𝑋),-𝑦. Zweiner et al.,51 have provided an 34 
expert evaluation of this, and other regression models, and shown that this solution is influenced by covariates 35 
that have high variance since they are not iid normal. In RNA-seq data, these covariates also correspond to 36 
gene transcripts with the high levels of expression. We have shown elsewhere22 using a simulated example 37 
that methods such as PCA also favor such covariates at the expense of low intensity ones. In that case we 38 
employed maximum likelihood PCA (MLPCA)52 to mitigate these effects by incorporating measurement errors 39 
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during the course of estimating principal components with demonstrable success. We take the same approach 1 
here.  2 
 3 
At its most basic form, MLPCA can be viewed as a superset of the classical PCA that is weighted by 4 
measurement errors that de-emphasize noisy measurements. It is however more sophisticated since it 5 
incorporates measurement errors of different structures ranging from the basic homoscedastic (iid normal) to 6 
more complex heteroscedastic noise with different correlation structures. Theoretical aspects of MLPCA are 7 
extensively covered in other references52,53 but we highlight two equations (Eqns. (5) and (6)) that show its 8 
fundamental differences and, hence, power. At the outset, it is important to declare that like PCA, MLPCA is a 9 
subspace estimation method that uses principles of maximum likelihood modelling to obtain a lower rank 10 
bilinear model for data in a high dimensional space. Subspace estimation methods reduce the dimensionality 11 
of data with a large number of features by transforming them to a new, a considerably smaller information-rich 12 

set that is devoid of noise. Using singular value decomposition (SVD) for example, a data matrix 𝑋.	$	0 can be 13 
represented as: 14 

𝑋8.	$	0 = 𝑇8.	$	1𝑃81	$	0+ + 𝐸.	$	0 (4) 15 

where 𝑃8	(loadings) describes the truncated set of new orthogonal axes and 𝑇8 , the sample coordinates in this 16 
new system. In conventional PCA, a new sample can be projected into the orthogonal subspace such that: 17 

𝑥;! = 𝑥!𝑃8𝑃8+` (5) 18 

while the maximum likelihood estimate of 𝑥! is given by a projection that is weighted by the errors in the 19 

measurements: 20 

𝑥2< = 𝑥!Σ!,->𝑃+?Σ!,-𝑃8@
,-
𝑃+?  (6) 21 

where Σ! is the n x n error covariance matrix corresponding to sample 𝑥!. If the diagonal elements of Σ! 22 

correspond to the variance of the features measured for sample 𝑥! and the off-diagonals are all zeros, then 23 
Eqn. (6) is equivalent to Eqn. (5) and satisfies the assumptions of iid normal variance for the covariates. For 24 
many analytical measurements, especially RNA-seq, it is difficult to imagine a scenario where this would be 25 
true knowing that measurement errors are proportional to expression levels while the expression of genes is, 26 
in general, correlated. 27 
 28 

Measurement Errors 29 

Sources of variance in quantitative biology experiments in general can be represented in a compact way as: 30 

σ+3 = σ4!563 + σ6!478913 + σ:9;3 + σ<5.13  	31 

							= 𝜎4!563 + σ=9<>3  (7) 32 

where σ+3  is the total variance, σ4!563  is the sample (biological) variance, σ6!478913  is the variance due to library 33 

preparation, σ:9;3  is the variance from sequencing and σ<5.13  is the computational variance addressed by 34 

Pimentel et al.,13 and Robert et al.,54. The last three terms on the right-hand side of Eqn. (7) can be combined 35 

and referred to as the technical uncertainty and represented as σ=9<>3 . The magnitude of this term can be 36 

estimated through replication, and must be smaller than σ4!563  in order to test biological (rather than technical) 37 

hypotheses adequately as has been addressed in Conesa et al.,55. Using replicate measurements, 𝜎=9<>3 	can 38 

be calculated for each sample as follows.  39 
 40 
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We assume that the mean of replicate measurements for each sample represents the true, 𝑥5, expression 1 

levels for each feature. Thus, the vector of measurement errors for each sample measurement, 𝑒! = 𝑥̅ − 𝑥!, 2 

where 𝑥̅ is the best estimate of 𝑥5	determined from replicate measurements. Of course, the more replicates 3 
one has the better the estimate. The error covariance matrix can then be used to characterize the statistical 4 
behavior of the vector of measurement errors and is defined as the outer product of the error vector such that: 5 

Σ = 𝐸[𝑒!𝑒!+]  6 

				= G
𝜎-,-3 ⋯ 𝜎-,03
⋮ ⋱ ⋮
𝜎0,-3 ⋯ 𝜎0,03

K (8) 7 

The diagonal elements of this matrix give the error variances associated with each feature and will therefore 8 
highlight any heteroscedasticity. For homoscedastic measurement errors, the off-diagonal elements, will be 9 

zeros (or approximately zero) while the values along the diagonals σ?,?3  will be the same. Off-diagonal elements 10 

indicate the covariance of the measurement errors at features j and k. 11 
 12 

Modelling Time Course Data with associated Measurement Errors 13 
 14 

Given that many biological processes exist in a state of constant flux, time-ordered (ordinal) experiments 15 
provide key insights into the dynamics of cellular transitions as a result of: extraneous signals; developmental 16 
processes; and intrinsic, cyclic events such as cell cycle. Temporal RNA-seq data raise several experimental 17 
and computational challenges because the measurements exhibit complex properties that affect analysis and 18 
interpretations. Although many methods have been developed to analyze RNA-seq data from experiments 19 
designed under the ‘case-control’ setup, there have been relatively few computational developments for 20 
analyzing ordinal data. Most of the available methods perform a pairwise comparison of each time point to the 21 
first one, or to the same time point of a second time series/treatment, which ignores temporal dependencies 22 
and/biological insight that might propagate from one experimental time point to the next. There are several 23 
comparative studies56 for methods of analysis of time course data.  24 
 25 
Our approach is conceptually simple and has been successfully used to model temporal DNA microarray data57 26 
and metabolomics by both magnetic resonance and mass spectrometry58. We model RNA-seq data using the 27 
principles of bilinear modelling similar to Eqn. (4), with an approach that imposes alternative constraints to the 28 
solution of the first two lower rank matrices that comprise the right-hand side of the equation. This approach is 29 
unlike PCA which determines the solutions to Eqn. (4) by imposing the constraint that successive factors in 30 
the decomposition must (a) account for the largest amount of residual variance, and (b) be orthogonal to all of 31 
the factors determined to that point. Our approach, more generally referred to as multivariate curve resolution 32 
via alternating least squares (MCR-ALS), imposes a simple requirement of non-negativity in the elements of T 33 
and P. We and others57–60 have extensively covered the theoretical bases of MCR-ALS and it’s weighted 34 
alternative (MCR-wALS).  35 
 36 
In brief, it is assumed that the expression matrix X can be decomposed into two linear matrices of lower rank, 37 
T and P similar to Eqn. (4). Without knowledge of either T or P, an initial guess of the expected number of 38 

components is made along with random positive numbers representing one of either 𝑇8.$1, or 𝑃81$0. 39 
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Alternatively, a random set of vectors can be chosen from the count matrix, X, to represent 𝑇8  or 𝑃8. Once initial 1 

estimates are made, it is straightforward to determine the unknown via least squares, setting all negative 2 

values in the solution to zero. Suppose an initial estimate of 𝑇8  was made, the least squares estimate of 𝑃8  is 3 

simply 𝑃87, which is normalized to unit length and all its negative values set to zero. Subsequently using these 4 

values, 𝑇87 is estimated via least squares and its values constrained to be non-negative. This procedure is then 5 
repeated until some self-consistency criterion is met.  6 
 7 
The weighted alternative to MCR is equally intuitive with the only addition being that measurement errors are 8 

incorporated in the estimation of matrices 𝑃8 and 𝑇8. In cases where there was no measurement of gene 9 

expression (missing value) we assign an error of 9999, a disproportionately large error that downweighs the 10 
significance of the missing value. Considering the first half of the alternating LS procedure given X, which has 11 

an arbitrary error structure, and 𝑃8 , which is assumed to be known with certainty, we solve for 𝑇87. van Huffel et 12 

al.,61 show that the LS solution to 𝑋 = TNPN can be solved (conceptually) by first augmenting X with 𝑃8 row-wise 13 
and finding the optimal p-dimensional subspace of the augmented matrix. In this case, it is clear that this 14 

subspace is defined by the p rows of 𝑃8, which are assumed to be known exactly. This problem can be simplified 15 
by determining the optimal representation of X in this subspace. Given measurement errors in X determined 16 

via replication, the estimate of X in the subspace of 𝑃8 is then given by the maximum likelihood projection of X 17 

into the subspace of 𝑃8 similar to Eqn. (6).  18 
 19 

In the second half of the alternating LS procedure the estimate of X in the subspace of 𝑇7  is determined via 20 

column wise maximum likelihood projection X into the space of 𝑇7 such that: 21 

𝑥;.# =	𝑇7>𝑇7+ψ,-Q 𝑇7@
,-
𝑇7+   ψ,-Q 𝑥.# (9) 22 

where 𝑥@<  is the jth column of X and 𝜓 is the corresponding error covariance matrix, obtained as in Eqn. (7). The 23 

estimates for 𝑃8 and 𝑇8  are determined, once again, via alternating LS using 𝑋7 instead of X. As before, this 24 
process is repeated several times until a convergence criterion is minimized.  25 
 26 
In this work, we set a maximum number of iterations to 200 while maximizing the self-consistency of \tilde{P} 27 

by minimizing the mean square error of estimation, that is, ((Σ(𝑃09A − 𝑃56B)3)/(𝑁 − 1)-/3 where Pold and Pnew 28 

are the subsequent profile vectors, and N is the number of points that constitute 𝑃8. We then plot the vectors of 29 
P as a function of the ordinal variable to visualized how gene expression evolves over this variable. 30 
 31 

Graphical Output 32 

Figure panels have been generated using Adobe Illustrator 22.1; scientific illustrations were created with the 33 
online web-based software BioRender (https://biorender.com/) and iStock (www.istockphoto.com/). 34 

TABLE AND FIGURE LEGENDS 35 

1. Graphical Abstract: Graphical representation of EMOGEA indicating the incorporation of 36 
measurement errors in modeling RNA-seq data to generate superior results in exploratory analysis, 37 
differential gene expression analyses and, scRNA-seq and Time Course analyses. 38 
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2. Figure 1: Results of the zebrafish embryogenesis RNA-seq data showing: (A) the developmental 1 
stages at which RNA-seq data were acquired spanning 0 hours post fertilization (hpf) to 5 days post-2 
fertilization (dpf), and the embryonic stages represented by each time point; (B) the 6 profiles extracted 3 
by MCR via EMOGEA showing a cascade of temporal transcriptional events that peak at different 4 
critical developmental stages; (C) normalized expression levels of the genes whose temporal 5 
expression pattern best matches select profile I,V and VI is shown. 6 

3. Figure 2: Results of scRNA-seq data analysis showing: (A) the developmental stages at which 7 
scRNA-seq data were acquired from zygotic embryo to blastocyst stages; (B) the 4 profiles extracted 8 
by MCR via EMOGEA showing a cascade of gene expression waves whose peaks at different 9 
developmental stages. The profile in panel (I) represents genes that have high expression in the 10 
zygotic stage but decrease in expression to baseline starting at the 4-cell stage. Panel (IV) shows 11 
genes with the opposite profile where expression starts out at baseline but increases to a maximum 12 
in the late blastocyst stage; (C), normalized expression levels of the genes whose temporal expression 13 
pattern best matches select profiles is shown in panels (I) to (IV) and whose function in described in 14 
the text. 15 

4. Figure 3: Analysis of case control studies showing: (A) differential expression analysis of least variable 16 
genes from Bottomly data set using limma before and after error weighting via EMOGEA, with similar 17 
adjusted \textit{p-value} cutoffs for differential expression; (B) exploratory analysis via PCA and 18 
EMOGEA of the least variable genes indicating that, without error weighting, it is not possible to 19 
distinguish the two mouse strains from transcripts with low expression levels and;  (C) bootstrap 20 
estimates of the true positive rate (TPR) and true negative rate (TNR) for DGEA of the Gerlinski data 21 
using limma with and without error weighting via EMOGEA. 22 

 23 

SUPPLEMENTARY FIGURES 24 

 25 
Fig. S1: Over Representation Analysis (ORA)26 was used to determine whether known biological 26 
processes were over-represented in the top 200 genes associated with each of the zebrafish 27 
embryogenesis profiles derived from EMOGEA. We show in bold-face representative biological 28 
processes for each profile. 29 
Fig. S2: Panel (A) shows pseudo-temporal order of cells along the first principal curve with the position 30 
of the developmental trajectory occupied by each embryonic stage. Panel (B) shows the expression 31 
profile for a class of genes whose expression peaks between mid 2-cell and 4-cel stages similar to 32 
profile (II) in Figure 2. Panel (C) shows those genes whose expression continues to increase as the 33 
embryos develop from the zygotic to the late blastocyst stages similar to profile IV in Figure 2. 34 
 35 

  36 
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CODE AND DATA AVAILABILITY 1 

The source code and EMOGEA R package are available at: https://github.com/itikadi/EMOGEA. Specific 2 
code used to generate the results presented here and the processed data are available on Mendeley’s 3 
public data repository via this link.  4 

AUTHOR CONTRIBUTIONS 5 

T. K. K. Conceptualized the study, developed the models, analyzed all the data. T. 6 
K. K. and F.T. developed the R package and wrote the vignette. J.B. performed 7 
all the biological interpretation of the data, prepared and organized all Figures in 8 
the Manuscript. T. K. K. and J. B. wrote the manuscript. All authors discussed 9 
the results and the manuscript. 10 

COMPETING INTERESTS 11 

The authors declare no competing interests. 12 

 13 
 14 
 15 
REFERENCES 16 
1. Lowe, R., Shirley, N., Bleackley, M., Dolan, S. & Shafee, T. Transcriptomics technologies. PLoS 17 

Comput. Biol. 13, e1005457–e1005457 (2017). 18 
2. Eberwine, J., Sul, J.-Y., Bartfai, T. & Kim, J. The promise of single-cell sequencing. Nat. Methods 11, 19 

25–27 (2014). 20 
3. Karakach, T. K., Flight, R. M. & Wentzell, P. D. Bootstrap method for the estimation of measurement 21 

uncertainty in spotted dual-color DNA microarrays. Anal. Bioanal. Chem. 389, 2125–2141 (2007). 22 
4. Rocke, D. M. Design and analysis of experiments with high throughput biological assay data. Sem. 23 

Cell Dev. Biol. 15, 703–713 (2004). 24 
5. Purohit, P. V, Rocke, D. M., Viant, M. R. & Woodruff, D. L. Discrimination Models Using Variance-25 

Stabilizing Transformation of Metabolomic NMR Data. Omis 8, 118–130 (2004). 26 
6. Tibshirani, R. A simple method for assessing sample sizes in microarray experiments. BMC 27 

Bioinformatics 7, 106 (2006). 28 
7. Bar-Joseph, Z. Analyzing time series gene expression data. Bioinformatics 20, 2493–2503 (2004). 29 
8. Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing 30 

radiation response. Proc. Natl. Acad. Sci. U. S. A. 98, 5116–5121 (2001). 31 
9. Ritchie, M. E. et al. Empirical array quality weights in the analysis of microarray data. BMC 32 

Bioinformatics 7, 261 (2006). 33 
10. Smyth, G. K. et al. A simple method for assessing sample sizes in microarray experiments. BMC 34 

Bioinformatics 7, 106 (2011). 35 
11. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, 36 

R106–R106 (2010). 37 
12. Zhou, Y.-H., Xia, K. & Wright, F. A. A powerful and flexible approach to the analysis of RNA sequence 38 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.18.481000doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481000
http://creativecommons.org/licenses/by/4.0/


count data. Bioinformatics 27, 2672–2678 (2011). 1 
13. Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of RNA-seq 2 

incorporating quantification uncertainty. Nat. Methods 14, 687–690 (2017). 3 
14. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq 4 

data with DESeq2. Genome Biol. 15, 550 (2014). 5 
15. Glaus, P., Honkela, A. & Rattray, M. Identifying differentially expressed transcripts from RNA-seq 6 

data with biological variation. Bioinformatics 28, 1721–1728 (2012). 7 
16. Robinson, M. D. & Smyth, G. K. Moderated statistical tests for assessing differences in tag 8 

abundance. Bioinformatics 23, 2881–2887 (2007). 9 
17. Hardcastle, T. J. & Kelly, K. A. baySeq: Empirical Bayesian methods for identifying differential 10 

expression in sequence count data. BMC Bioinformatics 11, 422 (2010). 11 
18. Soneson, C. & Delorenzi, M. A comparison of methods for differential expression analysis of RNA-12 

seq data. BMC Bioinformatics 14, 91 (2013). 13 
19. Schadt, E. E. et al. An integrative genomics approach to infer causal associations between gene 14 

expression and disease. Nat Genet 37, 710–717 (2005). 15 
20. Sun, Z. & Zhu, Y. Systematic comparison of RNA-Seq normalization methods using measurement 16 

error models. Bioinformatics 28, 2584–2591 (2012). 17 
21. Schurch, N. J. et al. How many biological replicates are needed in an RNA-seq experiment and which 18 

differential expression tool should you use? RNA 22, 839–851 (2016). 19 
22. Karakach, T. K., Wentzell, P. D. & Walter, J. A. Characterization of the measurement error structure 20 

in 1D 1H NMR data for metabolomics studies. Anal. Chim. Acta 636, 163–174 (2009). 21 
23. Rocke, D. M. & Durbin, B. A model for measurement error for gene expression arrays. J Comput Biol 22 

8, 557–569 (2001). 23 
24. White, R. J. et al. A high-resolution mRNA expression time course of embryonic development in 24 

zebrafish. Elife 6, e30860 (2017). 25 
25. Maydeu-Olivares, A. & García-Forero, C. Goodness-of-Fit Testing. in (eds. Peterson, P., Baker, E. & 26 

McGaw, B. B. T.-I. E. of E. (Third E.) 190–196 (Elsevier, 2010). doi:https://doi.org/10.1016/B978-0-27 
08-044894-7.01333-6. 28 

26. Boyle, E. I. et al. GO::TermFinder—open source software for accessing Gene Ontology information 29 
and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 30 
20, 3710–3715 (2004). 31 

27. Crespo, D. et al. Endocrine and local signaling interact to regulate spermatogenesis in zebrafish: 32 
Follicle-stimulating hormone, retinoic acid and androgens. Dev. 146, (2019). 33 

28. Kawasaki, T., Siegfried, K. R. & Sakai, N. Differentiation of zebrafish spermatogonial stem cells to 34 
functional sperm in culture. Dev. 143, 566–574 (2016). 35 

29. Blokhina, Y. P., Nguyen, A. D., Draper, B. W. & Burgess, S. M. The telomere bouquet is a hub where 36 
meiotic double-strand breaks, synapsis, and stable homolog juxtaposition are coordinated in the 37 
zebrafish, Danio rerio. PLoS Genet. 15, (2019). 38 

30. Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-Cell RNA-Seq Reveals Dynamic, 39 
Random Monoallelic Gene Expression in Mammalian Cells. Science (80-. ). 343, 193 LP – 196 40 
(2014). 41 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.18.481000doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481000
http://creativecommons.org/licenses/by/4.0/


31. De Iaco, A., Verp, S., Offner, S., Grun, D. & Trono, D. DUX is a non-essential synchronizer of zygotic 1 
genome activation. Development 147, dev177725 (2020). 2 

32. De Iaco, A. et al. DUX-family transcription factors regulate zygotic genome activation in placental 3 
mammals. Nat. Genet. 49, 941–945 (2017). 4 

33. Rajkovic, A., Yan, C., Yan, W., Klysik, M. & Matzuk, M. M. Obox, a Family of Homeobox Genes 5 
Preferentially Expressed in Germ Cells. Genomics 79, 711–717 (2002). 6 

34. Schiebinger, G. et al. Optimal-Transport Analysis of Single-Cell Gene Expression Identifies 7 
Developmental Trajectories in Reprogramming. Cell 176, 928-943.e22 (2019). 8 

35. Meeson, A. P. et al. Sox15 and Fhl3 transcriptionally coactivate Foxk1 and regulate myogenic 9 
progenitor cells. EMBO J. 26, 1902–1912 (2007). 10 

36. Maruyama, M., Ichisaka, T., Nakagawa, M. & Yamanaka, S. Differential Roles for Sox15 and Sox2 in 11 
Transcriptional Control in Mouse Embryonic Stem Cells * . J. Biol. Chem. 280, 24371–24379 (2005). 12 

37. Yamada, K. et al. Sox15 enhances trophoblast giant cell differentiation induced by Hand1 in mouse 13 
placenta. Differentiation 74, 212–221 (2006). 14 

38. Bottomly, D. et al. Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-15 
Seq and microarrays. PLoS One 6, (2011). 16 

39. Gierliński, M. et al. Statistical models for RNA-seq data derived from a two-condition 48-replicate 17 
experiment. Bioinformatics 31, 3625–3630 (2015). 18 

40. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions 19 
and gene fusions. Genome Biol. 14, R36–R36 (2013). 20 

41. Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput 21 
sequencing data. Bioinformatics (2015) doi:10.1093/bioinformatics/btu638. 22 

42. Dobin, A. & Gingeras, T. R. Mapping RNA-seq Reads with STAR. Curr. Protoc. Bioinforma. 51, 23 
11.14.1-11.14.19 (2015). 24 

43. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning 25 
sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). 26 

44. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware 27 
quantification of transcript expression. Nat. Methods 14, 417–419 (2017). 28 

45. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with 29 
TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012). 30 

46. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated 31 
transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010). 32 

47. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential 33 
expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). 34 

48. Smyth, G. K. limma: Linear Models for Microarray Data BT  - Bioinformatics and Computational 35 
Biology Solutions Using R and Bioconductor. in (eds. Gentleman, R., Carey, V. J., Huber, W., Irizarry, 36 
R. A. & Dudoit, S.) 397–420 (Springer New York, 2005). doi:10.1007/0-387-29362-0_23. 37 

49. Leng, N. et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. 38 
Bioinformatics 29, 1035–1043 (2013). 39 

50. Rapaport, F. et al. Comprehensive evaluation of differential gene expression analysis methods for 40 
RNA-seq data. Genome Biol. 14, R95–R95 (2013). 41 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.18.481000doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481000
http://creativecommons.org/licenses/by/4.0/


51. Zwiener, I., Frisch, B. & Binder, H. Transforming RNA-Seq data to improve the performance of 1 
prognostic gene signatures. PLoS One 9, e85150–e85150 (2014). 2 

52. Wentzell, P. D., Andrews, D. T., Hamilton, D. C., Faber, K. & Kowalski, B. R. Maximum likelihood 3 
principal component analysis. J. Chemmom. 11, 339–366 (1997). 4 

53. Wentzell, P. D. & Lohnes, M. T. Maximum likelihood principal component analysis with correlated 5 
measurement errors: theoretical and practicalconsiderations. Chemom. Intell. Lab. Syst. 45, 65–85 6 
(1999). 7 

54. Robert, C. & Watson, M. Errors in RNA-Seq quantification affect genes of relevance to human 8 
disease. Genome Biol. 16, 177 (2015). 9 

55. Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016). 10 
56. Spies, D., Renz, P. F., Beyer, T. A. & Ciaudo, C. Comparative analysis of differential gene expression 11 

tools for RNA sequencing time course data. Brief. Bioinform. 20, 288–298 (2019). 12 
57. Wentzell, P. D. et al. Multivariate curve resolution of time course microarray data. BMC Bioinformatics 13 

7, 343 (2006). 14 
58. Soanes, K. H. et al. Molecular characterization of zebrafish embryogenesis via DNA microarrays and 15 

multiplatform time course metabolomics studies. J. Proteome Res. 10, 5102–5117 (2011). 16 
59. Tauler, R. & Kowalski, B. Multivariate curve resolution applied to spectral data from multiple runs of 17 

an industrial process. Anal. Chem. 65, 2040–2047 (1993). 18 
60. Karakach, T. K., Knight, R., Lenz, E. M., Viant, M. R. & Walter, J. A. Multivariate curve resolution of 19 

time course 1H NMR metabolomics data. Magn. Reson. Chem. 47, S105–S117 (2009). 20 
61. van Huffel, S. The total least squares problem: Computational aspects and Analysis. SIAM (SIAM, 21 

1991). 22 
 23 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.18.481000doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481000
http://creativecommons.org/licenses/by/4.0/


24 
hpf

2 
dpf

3 
dpf

5 
dpf

0 
hpf

2.25 
hpf

4.3 
hpf

6 
hpf

16 
hpf

0.75 
hpf

1
cells

2
cells

128
cells

Dome 1-4 
som

1000
cells

14-19 
som

Long 
pec

Protruding 
mouth

Day 5

4 
dpf

pre-ZGA

Somitogenesis
Prim-stages

Hatching/Larval

50%
epiboly

75%
epiboly

Shield Prim
5

20-25
som

Day 4Prim
15

Prim
25

Blastula/Gastrula 

30 
hpf

36 
hpf

19 
hpf

10.3
hpf

8 
hpf

5.25
hpf

3
hpf

A

B

(VI)(IV) (V)

(I) (II) (III)

N
or

m
al

iz
ed

 E
xp

re
ss

io
n 

Le
ve

ls

Pseudo TimePseudo Time Pseudo Time

Pseudo TimePseudo Time Pseudo Time

N
or

m
al

iz
ed

 E
xp

re
ss

io
n 

Le
ve

ls

30

0.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.0

0.1

0.2

0.3

0 10 20 300 10 20 300 10 20 30

0 10 20 30 0 10 20 30 0 10 20

Figure 1

Blastula
Cleavage

Gastrula

Hatching
Larval

Pharyngula
Segmentation

Zygote

C

0.0

0.1

0.2

0 10 20 30

0.3

0.00

0.05

0.10

0.15

0 10 20 30

0.20

0.25mei4
moto

spo11

0.0

0.1

0.2

0 10 20 30
Time (hrpf)

N
or

m
al

iz
ed

 E
xp

re
ss

io
n 

Le
ve

ls 0.3

0.00

0.05

0.10

0.15

foxc1a
wnt3a
shha
ripply1
fgf8a

0 10 20 30
Time (hrpf)

0.20

0.25

0.00

0.05

0.10

0.15

0 10 20 30

junbb
tcf7l2
elavl3

0.00

0.05

0.10

0.15

0 10 20 30
Time (hrpf)

N
or

m
al

iz
ed

 E
xp

re
ss

io
n 

Le
ve

ls

N
or

m
al

iz
ed

 E
xp

re
ss

io
n 

Le
ve

ls

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.18.481000doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481000
http://creativecommons.org/licenses/by/4.0/


Figure 2

A

B
Early 2cell
Mid 2 cell
Late 2 cell
4 cell
8 cell
16 cell
Early blast
Mid blast
Late blast

Zygote

C

zygote 16-cell
(morula) 

32-cell
(early 

blastocyst)

64-cell
(mid 

blastocyst) 

>100-cell
(late 

blastocyst) 

4-cell 8-cell2-cell

(I) (II)

(III) (IV)

0.000

0.025

0.050

0.075

0.100

0 100 200 0 100 200

0 100 200 0 100 200

0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.04

0.08

0.12

Pseudo Time Pseudo Time

0.0

0.1

0.2

0.3

0 100 200

Pseudo Time Pseudo Time

Gm4981

Pax2
Tox

Zscan4c
Zscan4e
Zscan4b
Zscan4f
Zfp353

−0.1

0.0

0.1

0.2

Obox6

Sox15
Hand1

0.00

0.05

0.10

Ndufb8
Ndufs6
Ndufc2

0.075

0.000

0.025

0.050

0 100 200

0 100 200 0 100 200

0.100

0.3
0.4

0.15

Pseudo Time Pseudo Time

Pseudo Time Pseudo Time

N
or

m
al

iz
ed

 E
xp

re
ss

io
n 

Le
ve

ls

N
or

m
al

iz
ed

 E
xp

re
ss

io
n 

Le
ve

ls

N
or

m
al

iz
ed

 E
xp

re
ss

io
n 

Le
ve

ls

N
or

m
al

iz
ed

 E
xp

re
ss

io
n 

Le
ve

ls

N
or

m
al

iz
ed

 E
xp

re
ss

io
n 

Le
ve

ls

N
or

m
al

iz
ed

 E
xp

re
ss

io
n 

Le
ve

ls

N
or

m
al

iz
ed

 E
xp

re
ss

io
n 

Le
ve

ls

N
or

m
al

iz
ed

 E
xp

re
ss

io
n 

Le
ve

ls

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.18.481000doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481000
http://creativecommons.org/licenses/by/4.0/


A

B

PC
2

PC
2

PC1PC1

EMOGEAPCA

C57BL/6J
DBA/2J 0.00

0.25

0.50

0.75

n replicates

va
lu

e

n replicates

FNR

TPR

LIMMA EMOGEA

0.00

0.25

0.50

0.75

va
lu

e

Figure 3

NS
Up

Average log(expression)

lo
g(

fo
ld

 c
ha

ng
e)

C

1.001.00

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.18.481000doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481000
http://creativecommons.org/licenses/by/4.0/


Or
de

r

Expression

Exploratory Analysis 

Differential Expression

Ti
m

e 
Co

ur
se

 A
na

lys
is

High

Low

Er
ro

r

C
ou

nt

Genes Samples
Genes Samples

EMOGEA

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.18.481000doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481000
http://creativecommons.org/licenses/by/4.0/

