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ABSTRACT
Serial RNA-seq studies of bulk samples are widespread and provide an opportunity for improved

understanding of gene regulation during e.g., development or response to an incremental dose of a
pharmacotherapeutic. In addition, the widely popular single cell RNA-seq (scRNA-seq) data implicitly exhibit
serial characteristics because measured gene expression values recapitulate cellular transitions.
Unfortunately serial RNA-seq data continue to be analyzed by methods that ignore this ordinal structure and
yield results that are difficult to interpret. Here, we present Error Modelled Gene Expression Analysis
(EMOGEA), a principled framework for analyzing RNA-seq data that incorporates measurement uncertainty in
the analysis, while introducing a special formulation for modelling data that are acquired as a function of time
or other continuous variable. By incorporating uncertainties in the analysis, EMOGEA is specifically suited for
RNA-seq studies in which low-count transcripts with small fold-changes lead to significant biological effects.
Such transcripts include signaling mRNAs and non-coding RNAs (ncRNA) that are known to exhibit low levels
of expression. Through this approach, missing values are handled by associating with them disproportionately
large uncertainties which makes it particularly useful for single cell RNA-seq data. We demonstrate the utility
of this framework by extracting a cascade of gene expression waves from a well-designed RNA-seq study of
zebrafish embryogenesis and, a scRNA-seq study of mouse pre-implantation and provide unique biological
insights into the regulation of genes in each wave. For non-ordinal measurements, we show that EMOGEA
has a much higher rate of true positive calls and a vanishingly small rate for false negative discoveries
compared to common approaches. Finally, we provide an R package (https://github.com/itikadi/EMOGEA)

that is self-contained and easy to use.

MAIN TEXT
Next generation sequencing (NGS) has supplanted microarray hybridizations' as a method for the measuring

gene expression and identifying differential gene expression (DGE). This is because of both its increased
throughput and the larger dynamic range of signals that can be measured. Advances in microfluidics
technologies have further enabled NGS to be extended to measuring levels of DNA or RNA in single cells
rather than bulk sample homogenates, thereby significantly increasing throughput and resolution?. At the
inception of microarray technologies, a lot of effort was expended in characterizing the distributional properties
of the measurements®® along with developments of statistical methods to determine DGE™'°, When RNA

sequencing (RNA-seq) emerged, the same statistical methods were used to analyze the data following
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transformations that allowed their distributional characteristics to approximately resemble those of their
microarray counterparts. Subsequently, other methods were specifically developed to analyze RNA-seq data
treating their distributions as Negative Binomial (NB) or over-dispersed Poisson'"'? rather than transforming
them to mimic microarrays. Despite this better understanding of the distributional characteristics of RNA-seq
data, a number of limiting factors persists. First, there is a lack of methods that can incorporate measurement
uncertainty in determining DGE""'3-'® 5o as to decrease the rate at which false discoveries are made. Second,
time ordered data continue to be analyzed using the classical pairwise comparison approaches that ignore the
autocorrelations between successive samples or using splines and other smoothing-based approaches that

have limited biological interpretation.

Currently one of the most prominent approaches for handling measurement errors in the analysis of RNA-seq
data is to fit a general trend to the NB dispersions'"2'6, and use that fit as a surrogate for gene-specific
variation. Another alternative is to model gene-wise dispersions through empirical Bayes procedures'®'” that
borrow information from a set of self-consistent gene expression values under the null hypothesis of no overall
differential expression. These approaches do not, unfortunately, address the real question of true
measurement uncertainty, relying instead on the intra-sample data spread to infer the over-dispersion

parameter.

The impetus for accurately modelling measurement errors in RNA-seq is to produce a reliable list of genes
that are differentially expressed and minimize under- or over-estimation. A number of publications's18-2!
compare the performance of methods for RNA-seq data analysis using the false discovery rate (FDR) as a
standard marker of quality, conditioned on a traditional cut-off of two-fold differential expression. Schurch et
al.,?" have performed one such comprehensive comparison adjusting this two-fold differential gene expression
(DGE) cut-off in the context of replication levels. In their findings, it is clear that technical variability plays an
important role in FDR control and show that model performance increases with the number of replicates and
that the smaller the DGE cut-off the more replicates are needed to control the FDR. In reality there is a finite

number of replicates experimentalists can acquire due either to a limit in resources, sample availability or both.

We address these two critical shortcomings in RNA-seq (measurement errors and the analysis of serial data)
via the EMOGEA framework that fundamentally shifts the way these data are analyzed by combining
techniques for: (a) incorporating measurement error information into the pre-processing steps with, (b) a

special approach for modeling ordinal data.

RESULTS
We assume that measurement errors in RNA-seq arise from well-defined sources that can be quantified

through replication. We consider a cumulative response error where the total variance has additive
components that derive from these known sources®'3222% such that: c%otar = G%iol + G%ech + 62 In this
formulation %0t represents the total variance, o%io the biological variance, ?w«ch the experimental (technical)
variability while ¢2; is a random component that is assumed to be independent, identical and normally
distributed (iid normal). c?.ch represents a superset of factors that include batch differences, sample extraction

protocols, library preparation, sequencing and computational errors, while s is the true biological question
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for which the experiment is designed. We could reduce this formulation into 6%otal = 6%iol + 6%samp Where the
last term includes the smaller random error component that is usually modelled by methods estimating over-
dispersion. In the EMOGEA framework it would be clearly absurd to assume that the statistical characteristics
o%samp are iid normal given known correlations in gene expression. We demonstrate the utilization of this

approach with an application to data acquired under two distinct design strategies.

First, for pairwise comparative design strategies, we begin by determining the magnitude of 6%samp. We then
incorporate it into the pre-processing step prior to DGEA using limma’s empirical Bayes moderated t-statistic
or, exploratory data analyses using principal component analysis (PCA) or multi-dimensional scaling (MDS)

after ensuring that the data exhibit log-normal distributional characteristics.

Second, for time-ordered (ordinal) and single cell (sc)RNA-seq experiments, we employ a conceptually simple
strategy that uses the principles of bilinear decomposition with non-negativity constraints on the solution, while
implicitly incorporating measurement uncertainties in the model development. This approach is referred to as
multivariate curve resolution (MCR) and is implemented via weighted alternating least squares. Biologically,
the rationale for a bilinear model in ordinal experiments is straightforward and proceeds as follows. Assuming
time as the ordinal variable, and given a measurement of gene expression from samples taken successively
during this time, we can arrange the data in a matrix form, X, such that each row represents a gene while each
column an expression value for that gene over time. Using a simple multiple linear regression, we can
represent the measured data as:

X=TP+E (1)
where E, is the matrix of random errors while T and P are smaller matrices that characterize the biological
information in X. EMOGEA introduces the approach for determining T and P from RNA-seq data with the
constraint that the solution must be non-negative. This constraint is informed by the knowledge that whereas
the expression level of a gene can be zero, it can never be negative. A plot of the columns of the matrix P,
against time indicates how the expression of a class of genes cascades over the course of the experiment
while the matrix T indicates which genes exhibit the characteristics represented by P. A question that arises
is how to determine the size of T or P (corresponding to the number of independent components). There are
several established methods for making this determination including examination of standardized residual root
mean squares, lack-of-fit measures, Akaike Information Criterion (AIC) among others. Whereas these
approaches provide computationally validated solutions, in practice this cut-off for many biological data not
clear-cut. In EMOGEA we allow for the flexibility to determine the size of these smaller matrices sequentially
by specifying a set number of profiles and examining their graphical characteristics in relation to what is

expected biologically.

In practice the only measurements available is the so called "count" matrix X. To determine the values of either
T or P, we make an initial guess of either matrix and estimate the other from least squares and impose the
non-negativity constraint. We continue this procedure with the second matrix, applying the same constrains
and alternate the least squares estimation until a convergence criterion is met. We provide more algorithmic
details in the Methods section including the procedure for measurement error incorporation that allows

specifying disproportionately large uncertainties for missing values, in effect down-weighting their significance.
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We apply EMOGEA to three data types which we will categorize on the basis of the most common design
strategies for transcriptomics analyses: Time Course (TC), scRNA-seq and, case-control (CC). CC studies are
the most common strategies for transcriptomics studies and involve, in the simplest case, comparing two
conditions to determine differential gene expression. In these types of studies, there are two common
approaches for visualizing the effect of a treatment: exploratory analysis via methods such as principal
component analysis (PCA), multidimensional scaling (MDS) and others or; via analysis of differential
expression to identify genes that are expressed at statistically significant levels between the conditions. In
contrast, although TC experiments are more informative of the ultimate biological fate of a system, the
measurements are more complex and require specialized approaches for their analyses. Unfortunately, a
majority of existing methods for RNA-seq data analysis treat gene expressions at sequential time points as
repeated measurements and test DGE between conditions disregarding the ordinal aspect. They thus fail to

highlight how genes exhibit a cascade of expression profiles over time.

Modelling time course measurements

We demonstrate the utility of EMOGEA by applying it to a well-designed zebrafish embryogenesis data set
(see Methods) previously generated and described by White and collegues?®*. Here the authors monitored
mMRNA expression of the developing zebrafish at 18 time points, with 5 replicate measurements at each time,
covering 8 developmental stages. We analyzed the data by specifying 3, 4, 5 and 6 components (waves) which
we modelled, extracted temporal profiles and evaluated them for consistency by determining (visually) if they
differed sufficiently between each other. This type of sequential analysis is necessary because it is not possible
to know, a priori, how many underlying expression profiles (waves) would be present in a data set, but
alternative approaches exist for determining the number of components?®. In principle, one can add as many
components as there are samples, but degenerate solutions begin to emerge when the true number of unique
profiles has been reached and, if an absurd number of profiles is specified, the resulting ill-conditioned matrix

will be accompanied by non-convergence of the algorithm to which the user will be alerted.

The 6-component model of the zebrafish data and the extracted time profiles (normalized to unit length) are
shown in Fig. 1b. These profiles are clearly very distinct from each other and represent groups of genes whose
expression levels peak at different times during development. As an illustration, profiles | and Il correspond to
groups of genes at the very opposite ends of the gene expression spectra where one group peaks in
expression towards the end of embryogenesis - in the larval stages (Profile Il) - or is turned off soon after the
embryos start development - at the cleavage stage (Profile ). In between these waves of gene expression,
there are groups of genes whose expression levels peak at different developmental stages as shown in Profiles
Il to VI. Specifically, Profile 11l consists of genes peaking in expression during the early to mid-blastula stages,
Profile IV and V consist of genes peaking at the late blastula and gastrula and, segmentation respectively.
Finally, Profile VI consists of genes whose expression increases steadily with developmental time to
pharyngula/hatching stage and then begins to slightly decrease in the final larval stage. We also show the
empirical similarity between profiles modelled via EMOGEA and the expression levels of these groups of genes

from the original data for genes correlated to Profiles |, V and VI in Fig. 1c.
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In order to more closely examine the groups of genes exhibiting specific characteristic waves of expression
depicted in each of these six profiles, we calculated the cosine similarity between the expression of each gene,
and each considered profile. We then ranked them in order of their strength of similarity (from 1 to 0) and took
the top 200 genes whose temporal expression was most similar to each of the profiles. These genes are shown
in Supplementary Table 1 for each profile. We further performed functional analyses in order to relate the gene
expression levels to biological activity using over-representation analysis (ORA)?*(Supplementary Fig. 1). This
enabled us to objectively highlight characteristic functional pathways of specific stages of zebrafish

embryogenesis.

Briefly, this analysis shows for instance, that Profile | comprises genes — such as mei4?”, moto?® and spo11%°
- involved in reproduction, gamete generation and germ cells development, consistent with their expression
profile peaking in the zebrafish egg and zygote. Conversely, genes in Profile || are mainly cyp genes and sult
superfamily members known to be highly expressed in the developed intestine and involved in the response
to xenobiotics which is unsurprising since, at this stage, the zebrafish are free swimming and are introduced
to environmental pollutants that require biotransformation to compounds that can be excreted more readily.
Profile Il chronologically follows Profile | and is characterized by intense cell replication (GO terms:
chromosome segregation and reorganization), while Profile IV models the expression pattern of genes involved
in endoderm development and embryo regionalization. This continues in Profile V with genes initiating
segmentation and hatching. In the final developmental stages of the zebrafish (Profile VI) the peaking genes
are those involved in extracellular structure organization (i.e. muscle development, cardiomyocyte

differentiation).

The results show that EMOGEA vyields gene expression profiles that represent groups of genes with similar
modulations in their expression during embryogenesis. The relevance of the group of genes comprised in
these profiles is supported by the biological functional analysis via ORA. This is an important and unique result
that, unfortunately, cannot be obtained by methods that treat TC data as repeat measurements and analyze
them for DGE. EMOGEA profiles highlight with clarity how the expression of different genes is modulated over
time with a tractable biological interpretation. Although other methods such as DESeq2 have been extended
to analyze time series data, they are still fundamentally based on pairwise comparisons, choosing for example

a time point against which all other measurements are made.

Modelling scRNA-seq data

Whereas, in principle, scRNA-seq data follow the design paradigm of case-control studies, they exhibit an
inherent ordinal structure because (unless under exceptional circumstances) cells are not typically arrested at
any stage of development, cell cycle or other transitions prior to sampling. Gene expression subsequently
reflects this ordinal, cellular characteristic and there are several methods for ordering cells in a "pseudo time"
to reflect this inherent structure. We used EMOGEA to model these data to reveal transcriptional profiles similar
to those of bulk RNA-seq. To illustrate this utility, we use scRNA-seq data from Deng et al.,*® (see Methods),
which were acquired to investigate allele-specific gene expression from cells dissociated from in vivo embryos

of mouse pre-implantation covering 10 developmental stages from oocyte to blastocyst.
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To employ our approach, we start by ordering the cells in pseudo time which we achieve by first performing
principal component analysis (PCA) and plotting the data projections in first two principal components (PCs).
We then determine the principal curve through the data cloud and obtain the orthogonal projections of the data
onto this principal curve. We subsequently order the cells according to the principal curve projections as shown
in Supplementary Fig. 2. Following this pseudo-temporal ordering, we analyzed the data by applying EMOGEA
following a similar protocol to that used in bulk TC RNA-seq and show the 4 most distinctive expression profiles
in Fig. 2b.

The profiles reveal genes that are well organized in their expression levels to coincide with the emergence of
new developmental stages. Particularly striking is the expression of genes shown in Profile |, which are turned
off when the mouse embryos reach the 4-cell stage and are essentially not expressed throughout its
development. Profile Il, on the other hand, distinguishes genes that are expressed only at mid 2-cell stage,
peak at the late 2-cell stage and begin to decrease their levels of expression in the late 4-cell and are back
down to baseline expression at the 8-cell stage and onwards. What is interesting is that these genes are also
not expressed at the zygote and early 2-cell stages. Profile Ill comprises genes that are expressed between
the 4-cell and 16-cell stages while Profile IV consists of the genes whose expression rises steadily as the

embryos develop.

To put the gene expression profiles into a context of mouse developmental biology, we selected some of the
top genes in each profile (Supplementary Table 2), plotted their expression individually (Fig. 3c, and
Supplementary Fig. 2b-c), and performed a cursory literature survey. The top gene in the list corresponding to
Profile I, Gm4981, is reported®' to be part of the Dux locus which is structured as multiple repeats on the
chromosome 10. This locus generates the earliest transcripts in the fertilized oocyte that subsequently initiate
the transcription of the parental genomes, an event referred to as the embryonic genome activation (EGA)
program®'-32, EGA is a significant, temporally sensitive phase in normal mouse embryonic development and
transcriptional events are well orchestrated. This is demonstrated by the expression of Gm4981 which peaks
immediately after fertilization of the oocyte (Profile ) to initiate the EGA program where target genes such as
members of the Zscan4 family, Gm family and Tdpoz family are highly transcribed (Profile II). Consistently,
defects in the modulation of this critical phase of development have been correlated to phenotype defects of
the morula and blastocyst stage. In subsequent profiles, we see that the temporal expression levels of Obox6,
Sox15 and Hand1 show similarity to the trajectory of Profile Il as they peak after the 4-cell state. First, Obox6
is a member of the Obox family of transcription factors and has recently been reported®3* to be preferentially
expressed in the oocyte, zygote, early embryos, and embryonic stem cells, where it regulates pluripotent stem
cell reprogramming. Second, Sox15 is a member of the SRY-related HMG-box (Sox) family of transcription
factors which is highly expressed in mouse undifferentiated embryonic stem cells and is progressively
repressed upon cell differentiation. Interestingly, Sox15 can interact with different protein partners, such as
Pou5F1 (known as Oct3/4) and Fhi3 (four and a half LIM domains 3) to regulate the Foxk1 gene (forkhead box
protein K1), which is essential for the cell cycle progression of myogenic progenitor cells®>. Finally, Sox15 is
also involved in the differentiation of the trophoblast giant cell by enhancing the transcriptional activity of
Hand1®’, which is one of the top genes of Profile . Profile IV mainly includes genes involved in metabolic

processes, which become predominant in the final stages of organism development and in the adult animal.
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Examples include members of the NADH dehydrogenase [ubiquinone] family (Nduf) which form the NADH
dehydrogenase complex | of the mitochondrial electron transport chain, glyceraldehyde-3-phosphate
dehydrogenase (Gapdh), and Hexa, the alpha subunit of the lysosomal enzyme beta-hexosaminidase. These
findings are consistent from the point of view of the animal’s increased energy demands as it develops, which

subsequently lead to up-regulated expression of genes involved in energy metabolism.

Modelling "case-control” measurements

Case-control studies are by far the most common study designs in omics measurements. To demonstrate the
importance of EMOGEA for analyzing data from such studies we employ a common data set first published by
Bottomly and collegues® in which expression levels of over 36,000 genes from the striatum of two mouse
strains were measured. After error weighting via EMOGEA, we show results from three types of analyses in
Fig. 3.

The first analysis represents differential expression analysis that focuses on low count signals. We selected
500 least variable genes (corresponding to low count signals) and performed DGEA on their expression levels
using limma’s empirical Bayes moderated t-statistic for the two contrasts under the null hypothesis, before and
after error weighting through EMOGEA. The mean-difference plot is shown in Fig 3a, and evidently illustrates
that at the lower levels of gene count, the number of genes determined to be differentially expressed is
significantly smaller without error weighting. The genes called differentially expressed by both approaches are
shown in Supplementary Table 3 and highlight an important finding. Whereas analysis of the original data
identified 1718 differentially expressed genes, our analysis uncovered an additional 54 differentially expressed
genes that had been disregarded due to their low count signals. This finding is particularly significant because
in many biological applications, low count signals associated with signaling genes and non-coding RNAs can

have important biological implications, but are often not detected using available methods for DGEA.

The second analysis represents a popular approach to evaluating the results of a Case-Control experiment
through exploratory analysis via methods such as principal component analysis (PCA), hierarchical clustering
and multi-dimensional scaling (MDS) among others. Here we show, graphically, the separation between the
two mice strains based on the expression levels of the least variable genes using PCA. In Fig. 3b, whereas
the separation between the mouse strains is clear along PC2 from the EMOGEA analysis, this picture is less
clear when measurement errors are not incorporated into the analysis. In many analyses PCA is performed
either on the entire data set or on a pre-selected set of highly variable genes, an approach that implicitly

focuses on the most dominant signals at the expense of the low intensity ones.

Finally, the third analysis focuses on perhaps one of the most important but often overlooked aspect of DGEA
which is the rate of true positive and false negative discoveries. These two parameters are highly influenced
by the level of uncertainty in the measurements as has been shown in Schurch et al.,>' and Gierlinski et al.,*®.
We sought to show the impact of measurement error weighting on these parameters using yeast RNA-seq
data derived from two conditions with up to 48 replicates per experiment. We refer to this data set as the
Gerlinski data which has been described extensively in the literature?'*°. The data are particularly useful for

demonstrating the usefulness of EMOGEA given its extensive unprecedented level of replication. Once again,
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we focus on low count signals to show the effectiveness of determining DGE from such measurements by
generating from the original data, a pseudo-set of genes that are artificially “differentially expressed”. We
achieved this by selecting from the expression measurements of wildtype samples, a set of 1000 genes with
the lowest count levels. We subsequently selected form these, another 10% of the genes and inflated their
counts to levels that exceeded the 95% limit of the data spread. This allowed us to obtain a dummy set of data
that exhibited identical distributional characteristics to the original except for a known number of genes that
were differentially expressed. We then analyzed these data using limma’s empirical Bayes moderated t-
statistic, before and after processing with EMOGEA, with the objective of recovering the artificially differentially
expressed genes. To avoid bias, we generated 1000 dummy sets of these “differentially expressed genes” via
bootstrapping low count genes from the original data and calculated the true positive rate (TPR) and false
negative rate (FNR) following the approach proposed by Schurch and collegues?'. TPR corresponds to the
ratio of genes determined to be differentially expressed to the total number of differentially expressed genes
while FNR is the ratio of genes determined not to be differentially expressed to the total number of differentially

ex-pressed genes.

DISCUSSION

These results demonstrate several factors. First, analysis of bulk time course RNA-seq data of zebrafish
embryogenesis using the EMOGEA framework display clear well-orchestrated waves of gene modulation that
recapitulate the biological cascades expected during development. We show via functional analysis of the
genes that correspond to each wave, the biological relevance of each profile and select a few genes that

correlate with each profile to demonstrate their transcriptional trajectories.

Second, for scRNA-seq data we show again that this framework places the development of mouse embryos
in the context of peaking gene expression at specific time points. With supporting biological inference from the
literature, we show different sets of genes peaking in expression with a high degree of resolution to distinguish
the zygotic, early, mid and late two-cell stages from each other. We use the method of principal curves to
obtain a pseudo-temporal order and place the cells into their respective developmental continuum prior to
applying multivariate curve resolution. Other methods for pseudo-time estimation are possible and we
anticipate that this approach will be used to infer other non-branching cellular transitions exhibited by scRNA-
seq experiments such as cell cycle, stem-cell trans-differentiation during organogenesis, T-cell activation

among others.

Finally in relation to case-control studies we examine the question of highly variable (and therefore high count)
genes and their influence on the results of DGE. Using a common data set, we show that the EMOGEA
framework allows low count genes to model the biological question while approaches that ignore measurement
error information are unable to differential expression from these low count signals. This has important
consequences for studies involving non-coding RNAs and signaling genes that are generally expressed in low
levels but have serious biological ramifications if they are differentially expressed.

Moreover, we employ the concept of true positive and negative rates to illustrate the effect or error weighting
on these parameters. Schurch et al.,?' have shown that TPR should increase with the increasing number of

replicates while the reverse is the case for the FNR. In. Fig 3c we show that the TPR after EMOGEA error
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weighting reaches a mean TPR of 90% after 8 replicates and stabilizes thereafter, while DGEA obtained by
limma alone reaches a mean TPR of 63% after 8 replicates and does not stabilize until after 12 replicates and,
at a mean value of only 72%. Even more striking is the FNR which stabilizes to 1% for EMOGEA analysis after
3 replicates. Surprisingly, the FNR for limma analysis alone starts out at 2% but rises as the number of
replicates increases up to 4%. Over all the bootstrap experiments, EMOGEA results appear to be much more
consistent looking at the spread of the bootstrap TPR and FNR values. These result are reassuring because
they are consistent with the observations we made when analyzing the Bottomly data set*® where EMOGEA

identifies more differentially expressed genes in the low gene-count range.

METHODS

Practical Implementation and Data Sets

Analysis of Zebrafish time course (TC) data

Zebrafish data from White et. al.,?* were used to demonstrate the utility of EMOGEA for time course data
analysis. The data consist of poly(A) RNA expression profiles of baseline zebrafish embryogenesis capturing
18 time points covering 5 developmental processes. These were divided as: pre- and zygotic onset (covered
by 4 time points); blastula/gastrula (covered by 4 time points); somitogenesis and prim (each covered by 3
time points) and; hatching/larval stages (covered by 4 time points). At each time point, 5 biological replicates
of cDNA libraries were prepared from a pool of 12 embryos and sequenced on lllumina HiSeq 2500. The
resulting sequences were aligned to the GRCz10 reference genome using TopHat2*® while gene counts were

produced using HTSeqg*".

We utilized data available as the Supplementary files in White et al.,?*, which comprised of pre-processed and
quality checked data consisting of 32,110 gene transcripts for each of the 90 cDNA libraries sequenced. Error
information was obtained from the replicates associated with each time point and applied EMOGEA-MCR with
weighting, specifying an incremental number of profiles to be modelled. We determined that 6 profiles
sufficiently modelled the data in a way that we could see significant difference in the modulation of gene

expression in line with developmental time-points and stages.

In order to determine which genes best matched the profiles, we computed a cosine similarity metric to assign
a score between 0 and 1 (where a score of 1 is absolute similarity and 0 absolute dis-similarity) to identify
which genes had expression profiles that were modulated in a similar temporal cascade as the EMOGEA
XY

%911’

profiles. This score was calculated as: §; ; = where y; is the vector of expression profiles for gene j while

X; is profile i. It corresponds to the cosine of the angle between the two vectors and indicates the similarity of
their approximate directionality. We then sorted the genes according to their (dis)similarities to the EMOGEA

profiles and performed functional analyses on the topmost similar genes for each profile.
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Analysis of single cell RNA-seq data

Single cell (sc)RNA-seq data utilized in this manuscript were first described in Deng et al.,*° from a study in
which the authors sought to understand the genome wide allelic expression patterns in single cells obtained
from two strains of mouse pre-implantation embryos. These data are particularly interesting in demonstrating
the utility of EMOGEA, not only because of their temporal design, but also because scRNA-seq data display
inherent ordinal characteristics. F1 embryos derived from 4 to 8 week-old CAST/EiJ mice mated with C57BL/6J
mice were obtained from which 268 individual cells were dissociated at pre-implantation developmental stages
ranging from oocyte to blastocyst. The single cells were then transferred into hypotonic Smart-seq lysis buffer
and subjected to the Smart-seq2 protocol for the generation of RNA-seq libraries. Single-end sequencing at
46 to 59 bp of these libraries was then carried out on an lllumina HiSeq 2000. These data are available at the
NCBI Gene Expression Omnibus (GEO, GSE45719). We accessed these data from GEO and mapped them
to mm10 genome using STAR*? to yield a count matrix of dimension 22,431 transcripts x 268 cells. We
subsequently estimated the pseudo-temporal order of the cells using principal curve and re-ordered each cell
based on this order as shown in Supplementary Fig.1a. EMOGEA-MCR was used to obtain temporal profiles
without weighting given that there were no replicate single cell data for this study. We similarly specified the
number of profiles to be extracted incrementally and determined, for illustration purposes, that 4 profiles best
described the developmental stages. Functional analysis was performed for genes whose expression profiles
matched EMOGEA profiles as described for the bulk TC data.

Analysis of Case-Control (CC) RNA-seq data

We utilized two data sets to demonstrate EMOGEA applications to CC studies. The first data set is the Bottomly
data available at the NCBI Gene Expression Omnibus (GEO, GSE26024) consisting of RNA-seq
measurements acquired to detect DGE between the striata of C56BL/6 and DBA/2J inbred mouse strains. The
study included 21 samples (10 from C56BL/6 strain and 11 from DBA/2J strain) from which cDNA libraries
were prepared and sequenced on an lllumina GAllx generating an average of 22 million short sequencing
reads. We aligned the reads to the mouse mm10 reference genome, generating a count matrix (using
HTSeq*") of dimension 36,536 gene transcripts x 21 striata for both strains. In principle this corresponds to 10
biological replicates for the C56BL/6 strain and 11 biological replicates for the DBA/2J strain from which
measurement errors could be calculated. Given the popularity of this data set, we used it to demonstrate the
effects of EMOGEA analysis of the low intensity signals which were selected by choosing 1000 least variable

genes.

The second data set is the Gerlinski data comprising of 48 replicate RNA-seq measurements of wild type (WT)
Saccharomyces cerevisiae and corresponding snf2 (Asnf2) knock-out mutant cell line. Poly(A) RNAs were
extracted and converted to cDNA libraries that were sequenced (50bp single-end in hepta replicate), on an
lllumina HiSeq 2000. We aligned the data obtained from the European Nucleotide Archive repository (ENA,
PRJEB5348) to the Ensembl v64 release of the S. cerevisiae genome annotation with STAR*? and generated
the count matrix using HTSeq*' to give a count matrix consisting of 7,076 gene features x 672 libraries

sequenced (48 x 7 per strain).
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Theoretical Considerations (Online Methods)

Methods for the analysis of RNA-seq data operate on a "count" matrix X of dimension n x m where Xj; is the
number of reads assigned to transcript j in sequencing experiment j. Such matrices are produced by sequence
alignment tools such as HTSeq*!, featureCounts*3, among others'34445. DGEA consists of: normalization of
counts to remove systematic biases, estimation of parameters that describe the statistical model and, testing
for differential expression or exploratory analysis using such methods as Principal Component Analysis (PCA)
and Multi-Dimensional Scaling (MDS). Methods for gene expression analysis fall into categories distinguished
by the statistic employed for testing differential expression. They include parametric t-test based methods e.g.
Cuffdiff and Cuffdiff24546; and generalized least squares methods assuming Normal (after transformation),

Poisson or negative binomial distributions e.g. edgeR, DESeq, DESeq2, baySeq, EBSeq, limma-
V00m11,‘|3,17,47—49_

In this study we consider DGEA methods that utilize generalized linear models for parameter estimation to
describe the relationships between gene expression and experimental conditions. We do not consider the
importance of calculating gene counts but, rather focus on the importance of measurement errors in estimating
these parameters - particularly for lowly expressed genes. Moreover, we do not engage in comparative
analyses of these methods as there are numerous comprehensive reviews and extensive systematic
comparisons between DGEA methods elsewhere with recommendations for best practices both for differential

expression data pre-processing'239:5,

Generalized linear models for DGEA are structured as follows. Considering a response yi; which might be an
experimental condition such as disease, the expression of genes measured by RNA-seq for each patient can
be represented as:

E[(YIx)] = g(Bo + x{ B) 2)
where E[Y] is the expected response, g the link-function, fo the baseline, and g is a vector of parameters
describing the relationship between the covariates, x; (normalized gene counts) and the response. Typically,

the variance of the expected values is represented as:

Var([(v1x)]D) = Var(g(B, + xT)) (3)
Numerous link functions can be used to describe the relationship between the response and predictors in Egn.
(2). Assuming identity link function for RNA-seq data, the maximum likelihood estimate of the parameters is
obtained via ordinary least squares with an assumption that the variance, Eqn. (3), is identical, independent
and normally distributed (jiid normal) for all covariates. Eqn. (2) can subsequently be simplified as: y = X,
and the least squares estimate for the parameters given as: § = (X"X)~'y. Zweiner et al.,%" have provided an
expert evaluation of this, and other regression models, and shown that this solution is influenced by covariates
that have high variance since they are not iid normal. In RNA-seq data, these covariates also correspond to
gene transcripts with the high levels of expression. We have shown elsewhere?? using a simulated example
that methods such as PCA also favor such covariates at the expense of low intensity ones. In that case we

employed maximum likelihood PCA (MLPCA)?*? to mitigate these effects by incorporating measurement errors
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during the course of estimating principal components with demonstrable success. We take the same approach

here.

At its most basic form, MLPCA can be viewed as a superset of the classical PCA that is weighted by
measurement errors that de-emphasize noisy measurements. It is however more sophisticated since it
incorporates measurement errors of different structures ranging from the basic homoscedastic (iid normal) to
more complex heteroscedastic noise with different correlation structures. Theoretical aspects of MLPCA are
extensively covered in other references®>53 but we highlight two equations (Egns. (5) and (6)) that show its
fundamental differences and, hence, power. At the outset, it is important to declare that like PCA, MLPCA is a
subspace estimation method that uses principles of maximum likelihood modelling to obtain a lower rank
bilinear model for data in a high dimensional space. Subspace estimation methods reduce the dimensionality
of data with a large number of features by transforming them to a new, a considerably smaller information-rich
set that is devoid of noise. Using singular value decomposition (SVD) for example, a data matrix X,, ,,, can be
represented as:

Xixn =TnxpPxn + Emxn (4)
where P (loadings) describes the truncated set of new orthogonal axes and T, the sample coordinates in this
new system. In conventional PCA, a new sample can be projected into the orthogonal subspace such that:

% = x;PPT (5)
while the maximum likelihood estimate of x; is given by a projection that is weighted by the errors in the
measurements:

% = x 2 (PTE ) PT (6)
where X, is the n x n error covariance matrix corresponding to sample x;. If the diagonal elements of %,
correspond to the variance of the features measured for sample x; and the off-diagonals are all zeros, then
Eqn. (6) is equivalent to Eqn. (5) and satisfies the assumptions of iid normal variance for the covariates. For
many analytical measurements, especially RNA-seq, it is difficult to imagine a scenario where this would be
true knowing that measurement errors are proportional to expression levels while the expression of genes is,

in general, correlated.

Measurement Errors
Sources of variance in quantitative biology experiments in general can be represented in a compact way as:
0% = Opio1 + Ofipprep + O2eq + OZomp

= Opiol + Otecn (7)
where o7 is the total variance, o},,, is the sample (biological) variance, o7, is the variance due to library
preparation, oZ,, is the variance from sequencing and o%,,,, is the computational variance addressed by
Pimentel et al.,"® and Robert et al.,5*. The last three terms on the right-hand side of Egn. (7) can be combined
and referred to as the technical uncertainty and represented as o¢%,.,. The magnitude of this term can be
estimated through replication, and must be smaller than o?,,, in order to test biological (rather than technical)
hypotheses adequately as has been addressed in Conesa et al.,%®. Using replicate measurements, o2, can

be calculated for each sample as follows.
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We assume that the mean of replicate measurements for each sample represents the true, x,, expression
levels for each feature. Thus, the vector of measurement errors for each sample measurement, e; = ¥ — x;,
where x is the best estimate of x, determined from replicate measurements. Of course, the more replicates
one has the better the estimate. The error covariance matrix can then be used to characterize the statistical
behavior of the vector of measurement errors and is defined as the outer product of the error vector such that:
I =Elee/]

0'12’1 “es alz,n
= : -~ (8)

Tpa = Onn

The diagonal elements of this matrix give the error variances associated with each feature and will therefore
highlight any heteroscedasticity. For homoscedastic measurement errors, the off-diagonal elements, will be
zeros (or approximately zero) while the values along the diagonals o7, will be the same. Off-diagonal elements

indicate the covariance of the measurement errors at features j and k.

Modelling Time Course Data with associated Measurement Errors

Given that many biological processes exist in a state of constant flux, time-ordered (ordinal) experiments
provide key insights into the dynamics of cellular transitions as a result of: extraneous signals; developmental
processes; and intrinsic, cyclic events such as cell cycle. Temporal RNA-seq data raise several experimental
and computational challenges because the measurements exhibit complex properties that affect analysis and
interpretations. Although many methods have been developed to analyze RNA-seq data from experiments
designed under the ‘case-control’ setup, there have been relatively few computational developments for
analyzing ordinal data. Most of the available methods perform a pairwise comparison of each time point to the
first one, or to the same time point of a second time series/treatment, which ignores temporal dependencies
and/biological insight that might propagate from one experimental time point to the next. There are several

comparative studies®® for methods of analysis of time course data.

Our approach is conceptually simple and has been successfully used to model temporal DNA microarray data®’
and metabolomics by both magnetic resonance and mass spectrometry®®. We model RNA-seq data using the
principles of bilinear modelling similar to Egn. (4), with an approach that imposes alternative constraints to the
solution of the first two lower rank matrices that comprise the right-hand side of the equation. This approach is
unlike PCA which determines the solutions to Eqn. (4) by imposing the constraint that successive factors in
the decomposition must (a) account for the largest amount of residual variance, and (b) be orthogonal to all of
the factors determined to that point. Our approach, more generally referred to as multivariate curve resolution
via alternating least squares (MCR-ALS), imposes a simple requirement of non-negativity in the elements of T
and P. We and others® % have extensively covered the theoretical bases of MCR-ALS and it's weighted
alternative (MCR-wALS).

In brief, it is assumed that the expression matrix X can be decomposed into two linear matrices of lower rank,

T and P similar to Eqn. (4). Without knowledge of either T or P, an initial guess of the expected number of

components is made along with random positive numbers representing one of either T,,,,, or B,.,.

xXp
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Alternatively, a random set of vectors can be chosen from the count matrix, X, to represent T or P. Once initial
estimates are made, it is straightforward to determine the unknown via least squares, setting all negative

values in the solution to zero. Suppose an initial estimate of T was made, the least squares estimate of P is
simply ﬁ, which is normalized to unit length and all its negative values set to zero. Subsequently using these

values, T is estimated via least squares and its values constrained to be non-negative. This procedure is then

repeated until some self-consistency criterion is met.

The weighted alternative to MCR is equally intuitive with the only addition being that measurement errors are
incorporated in the estimation of matrices P and T. In cases where there was no measurement of gene
expression (missing value) we assign an error of 9999, a disproportionately large error that downweighs the
significance of the missing value. Considering the first half of the alternating LS procedure given X, which has
an arbitrary error structure, and P , which is assumed to be known with certainty, we solve for 7. van Huffel et
al.,%" show that the LS solution to X = TP can be solved (conceptually) by first augmenting X with P row-wise
and finding the optimal p-dimensional subspace of the augmented matrix. In this case, it is clear that this
subspace is defined by the p rows of P, which are assumed to be known exactly. This problem can be simplified
by determining the optimal representation of X in this subspace. Given measurement errors in X determined
via replication, the estimate of X in the subspace of P is then given by the maximum likelihood projection of X

into the subspace of P similar to Eqn. (6).

In the second half of the alternating LS procedure the estimate of X in the subspace of T is determined via
column wise maximum likelihood projection X into the space of T such that:

;= T(ETGT)TT gl ©)
where %, is the j" column of X and 1 is the corresponding error covariance matrix, obtained as in Eqn. (7). The

estimates for P and T are determined, once again, via alternating LS using X instead of X. As before, this

process is repeated several times until a convergence criterion is minimized.

In this work, we set a maximum number of iterations to 200 while maximizing the self-consistency of \tilde{P}
by minimizing the mean square error of estimation, that is, ((Z(P™¢" — P°'4)2)/(N — 1)%/? where P°“ and P
are the subsequent profile vectors, and N is the number of points that constitute P. We then plot the vectors of

P as a function of the ordinal variable to visualized how gene expression evolves over this variable.

Graphical Output

Figure panels have been generated using Adobe lllustrator 22.1; scientific illustrations were created with the
online web-based software BioRender (https://biorender.com/) and iStock (www.istockphoto.com/).

TABLE AND FIGURE LEGENDS

1. Graphical Abstract: Graphical representation of EMOGEA indicating the incorporation of

measurement errors in modeling RNA-seq data to generate superior results in exploratory analysis,

differential gene expression analyses and, scRNA-seq and Time Course analyses.
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Figure 1: Results of the zebrafish embryogenesis RNA-seq data showing: (A) the developmental
stages at which RNA-seq data were acquired spanning 0 hours post fertilization (hpf) to 5 days post-
fertilization (dpf), and the embryonic stages represented by each time point; (B) the 6 profiles extracted
by MCR via EMOGEA showing a cascade of temporal transcriptional events that peak at different
critical developmental stages; (C) normalized expression levels of the genes whose temporal
expression pattern best matches select profile I,V and VI is shown.

Figure 2: Results of scRNA-seq data analysis showing: (A) the developmental stages at which
scRNA-seq data were acquired from zygotic embryo to blastocyst stages; (B) the 4 profiles extracted
by MCR via EMOGEA showing a cascade of gene expression waves whose peaks at different
developmental stages. The profile in panel (I) represents genes that have high expression in the
zygotic stage but decrease in expression to baseline starting at the 4-cell stage. Panel (IV) shows
genes with the opposite profile where expression starts out at baseline but increases to a maximum
in the late blastocyst stage; (C), normalized expression levels of the genes whose temporal expression
pattern best matches select profiles is shown in panels (1) to (IV) and whose function in described in
the text.

Figure 3: Analysis of case control studies showing: (A) differential expression analysis of least variable
genes from Bottomly data set using limma before and after error weighting via EMOGEA, with similar
adjusted \textit{p-value} cutoffs for differential expression; (B) exploratory analysis via PCA and
EMOGEA of the least variable genes indicating that, without error weighting, it is not possible to
distinguish the two mouse strains from transcripts with low expression levels and; (C) bootstrap
estimates of the true positive rate (TPR) and true negative rate (TNR) for DGEA of the Gerlinski data
using limma with and without error weighting via EMOGEA.

SUPPLEMENTARY FIGURES

Fig. S1: Over Representation Analysis (ORA)?*® was used to determine whether known biological
processes were over-represented in the top 200 genes associated with each of the zebrafish
embryogenesis profiles derived from EMOGEA. We show in bold-face representative biological
processes for each profile.

Fig. S2: Panel (A) shows pseudo-temporal order of cells along the first principal curve with the position
of the developmental trajectory occupied by each embryonic stage. Panel (B) shows the expression
profile for a class of genes whose expression peaks between mid 2-cell and 4-cel stages similar to
profile (I1) in Figure 2. Panel (C) shows those genes whose expression continues to increase as the

embryos develop from the zygotic to the late blastocyst stages similar to profile 1V in Figure 2.
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CoDE AND DATA AVAILABILITY

The source code and EMOGEA R package are available at: https://github.com/itikadi/EMOGEA. Specific
code used to generate the results presented here and the processed data are available on Mendeley’s
public data repository via this link.
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