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Structural and functional brain networks are modular. Canonical functional systems, such as
the default mode network, are well-known modules of the human brain and have been implicated
in a large number of cognitive, behavioral and clinical processes. However, modules delineated in
structural brain networks inferred from tractography generally do not recapitulate canonical func-
tional systems. Neuroimaging evidence suggests that functional connectivity between regions in
the same systems is not always underpinned by anatomical connections. As such, direct structural
connectivity alone would be insufficient to characterize the functional modular organization of the
brain. Here, we demonstrate that augmenting structural brain networks with models of indirect
(polysynaptic) communication unveils a modular network architecture that more closely resembles
the brain’s established functional systems. We find that diffusion models of polysynaptic connectiv-
ity, particularly communicability, narrow the gap between the modular organization of structural
and functional brain networks by 20-60%, whereas routing models based on single efficient paths
do not improve mesoscopic structure-function correspondence. This suggests that functional mod-
ules emerge from the constraints imposed by local network structure that facilitates diffusive neural
communication. Our work establishes the importance of modeling polysynaptic communication to

understand the structural basis of functional systems.

INTRODUCTION

The human brain is a complex network of intercon-
nected neural elements [I], 2]. Using magnetic resonance
imaging (MRI), connectivity between brain areas can be
mapped in terms of structural links denoting anatomical
white matter connections, or functional links capturing
statistical patterns of co-activation over time [3]. Un-
derstanding the interplay between these two modalities
of brain connectivity, i.e., how physical connections con-
strain and facilitate synchronized interregional activity,
is a central challenge in modern neuroscience [4H6].

The presence of a modular architecture is a hallmark
of both structural and functional human brain networks
[7,[8]. Regions within the same module tend to be densely
and strongly interconnected, while connectivity between
regions in different modules is typically sparse and weak.
Modular structure provides a mesoscopic account of net-
work organization that is poised between local and global
topological properties [9]. A large body of knowledge,
comprising studies of both structural connectivity (SC)
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and functional connectivity (FC), indicates the brain’s
modular architecture plays an important role in develop-
ment [10], aging [IT] [12], learning [I3] and cognitive per-
formance [14, [15], as well as in a range of mental health
and neurodegenerative conditions [16].

Interestingly, however, there is a weak correspondence
between the modular organization of structural and func-
tional networks [0, @, [I7]. Structural modules are spa-
tially compact and contiguous. With the exception of
reports of homotopic modules located along the medial
wall [I§], structural modules are usually restricted to
a single hemisphere. This modular structure is conjec-
tured to reduce wiring costs associated with the cre-
ation and maintenance of long-range physical connec-
tions [19], while increasing network resilience by restrict-
ing the flow of pathological agents and maladaptive per-
turbations from their loci of origin [I6]. In contrast,
functional networks are characterized by spatially dis-
tributed modules, which often comprise distant and ho-
motopic regions [20, 2I]. Functional modules obtained
through community detection methods closely recapitu-
late canonical brain systems and intrinsic resting-state
networks identified through alternative data-driven tech-
niques [22] 23] and meta-analyses of task-evoked activ-
ity [24]. This functional modular architecture is thought
to promote segregated clusters of specialized information
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Network communication measure Description

Shortest path efficiency (SPE) Communication efficiency under the shortest path routing model. Communication

occurs via optimally efficient paths.

Navigation efficiency (NE) Communication efficiency under the navigation model. Communication occurs via

geometrically greedy paths.

Amount of information required for a random walker to travel via shortest paths.
Quantifies the accessibility of efficient paths in the network.

Search information (SI)

Weighted sum of all walk lengths between region pairs. Proposes communication

Communicability (CMY)

via diffusive broadcasting.

TABLE I. Summary of the four conceptualizations of neural communication investigated. Technical details are provided in the

Materials and Methods.

processing that correspond to specific cognitive domains
[7, 8, 22].

The mismatch between structural and functional mod-
ules is most evident for multimodal brain systems in-
volved in high-order cognition [6]. For instance, commu-
nity detection methods applied to structural networks fail
to identify the default mode or frontoparietal control net-
works, which can be retrieved following the application of
the same methods to functional networks [20]. An expla-
nation for this discordance comes from evidence that the
FC between regions within the same functional systems
is not entirely underpinned by direct anatomical con-
nections [25]. For example, neuroimaging studies report
weak to absent white matter connectivity between por-
tions of the parietal cortex and the precuneus involved in
the default mode network [26] 27]. As such, communica-
tion between certain functionally coupled—yet anatom-
ically unconnected—regions must rely on polysynaptic
signaling mediated by intermediate areas. SC alone
would therefore provide an incomplete account of the
mesoscale functional organization of the human brain [6].

Here, we hypothesize that network communication
models can narrow the gap between structural and func-
tional brain modules. This class of graph-theoretical
models describes polysynaptic interactions between
anatomically unconnected brain areas by modeling neu-
ral communication on top of SC [28] 29]. As such, these
models can be used to augment SC—which encodes only
direct anatomical connections—into communication ma-
trices (CMs) that estimate interactions between all re-
gions pairs in the brain [30]. Recent reports indicate that
modeling polysynaptic communication improves predic-
tions of FC [31], effective connectivity directionality [32],
and individual variation in human behavior and cogni-
tion [30]. Based on this, we hypothesize that community
detection applied to CMs will yield a modular architec-
ture that more closely recapitulates the organization of
the brain into canonical functional systems, compared to
the modular structure of SC.

Importantly, it remains unclear which conceptualiza-
tions of polysynaptic transmission best describe large-
scale neural signaling. While numerous putative network

communication models have been proposed [28], efforts
to systematically compare and biologically validate dif-
ferent approaches have been limited. Here, we consider
four popular measures of brain network communication,
selected to cover a wide range of previously explored
signaling strategies: i) shortest path efficiency [33] B4],
ii) navigation efficiency [35] B86], iii) search information
131} 37], and iv) communicability [38, [39] (Table [[). We
conjecture that determining which models best account
for the emergence of the brain’s mesoscopic functional or-
ganization will provide insight into the underlying mech-
anisms of large-scale neural signaling.

RESULTS

Structural and functional connectivity were mapped
for a sample for 1000 healthy adults participating in the
Human Connectome Project (HCP; Materials and Meth-
ods) [40]. Connectivity data from individual participants
were combined to generate the group-level structural and
functional networks comprising 200 cortical regions de-
fined in the Schaefer parcellation [41]. Following previous
network modeling work [42] [43], we confined our analyses
to intra-hemispheric networks (N = 100 regions for left
and right hemispheres) to avoid well-known limitations
in the mapping of cross-hemispheric fibers using tractog-
raphy [44]. Network communication models were used to
transform SC into communication matrices (CMs) cap-
turing both direct and indirect interregional interactions
under 4 putative models of polysynaptic signaling, thus
yielding 4 different CMs (Fig [Th; Materials and Meth-
ods).

A well-established division of cortical regions into 7
canonical functional systems (also known as intrinsic
resting-state networks) [22] was adopted as a reference
partition of mesoscale functional organization. This par-
tition has been consolidated as a reference frame for the
study of hierarchical cortical organization [45], [46], large-
scale neural dynamics [47], and brain-behavior relation-
ships [48] [49], with mounting evidence supporting the
cognitive and clinical relevance of these functional sys-


https://doi.org/10.1101/2022.02.18.480871
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.18.480871; this version posted February 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a b Empirical partitions
Structural connectivity (SC) Network N
communication models . . n=2 n=4 n=5
= _— > Communication matrices (CMs) .
Input matrix

Multi-resolution
community detection

2 - (K = 1000)
NE Sl CMY SC,CMor FC
NxN Putative
signaling conceptualization M Yk YK
c d
" oo - Peak similari AUC similari
Refefﬁ!;,ce fURCEO”a' Emp"'cfl 793""'0" Similarity matrix (S) Matched similarity matrix (S’) 8o y imilarity
artition (A— =
partition (A-H) -7 w 2 4 6 6 5 3 g2 1]
Partition < AT A =
(| similarity .é c B Module c B e
= p _matching H) 25
g E[] ] " E S
2 M H F F Eg
s H [ H I [
e *
7 canonical E:n iri:::al r:odu7les Match:d er:\ iric7al r:odules " e e
functional systems P! P Partition resolution
(Yeo et al., 2011)
AMI MMS=1%49,

FIG. 1. Methodology overview. (a) Network communication measures were used to model polysynaptic signaling on a group-
level structural brain network. Four putative conceptualisations of neural signaling were considered: shortest path efficiency
(SPE), navigation efficiency (NE), search information (SI) and communicability (CMY), resulting in a set of four communication
matrices (CMs). While structural connectivity is sparse and only encodes direct anatomical connections, CMs are complete
graphs and model both direct and polysynaptic interactions between regions. (b) Schematic of the multi-resolution community
detection routine. For a given input matrix, a range of 1000 resolution parameters v was selected to obtain partitions ranging
from 2 to N/2 modules. (c) Schematics of partition similarity measures. The functional systems delineated by Yeo and
colleagues [22] were adopted as the reference partition. Empirical and reference partitions were compared using the adjusted
mutual information (AMI) and the mean matched similarity (MMS) measures. MMS is computed based on a one-to-one
matching between reference and empirical modules. (d) The correspondence (MMS, AMI) between partitions was summarized
using the peak and area-under-the-curve (AUC) similarity computed across multiple partition resolutions.

tems [50} 51]. ity (MMS) (Fig ; Materials and Methods). The AMI

SC, FC, and CMs were partitioned into modules using quantifies the amount of information shared between two
a multi-resolution community detection routine [52H54] partitions, while correcting for agreements solely due to
based on the Louvain algorithm for modularity maxi-  chance [57]. The AMI provides a "global” assessment of
mization [55] (Fig[Tb; Materials and Methods). An im- partition similarly that does not capture the alignment
portant methodological challenge in the study of modu- between specific pairs of reference and empirical mod-
larity is the need to select a resolution of modular decom- ules. To investigate which specific functional systems

position. For any input network, the number of modules are best explained by structural modules, we developed
identified by the Louvain algorithm is expected to grow as @ DEW Ineasure called mean matched similarity (MMS).

a function of the resolution parameter . While a num- To comput(.e MMS, we first calculate a similari.ty matrix
ber of heuristics have been proposed to select -, there that quantifies 't}}e agreement betwee.n .all pairs Of' fe.f-
is no consensus on best practices and the choice of res-  erence and empirical modules. The similarity matrix is

olution remains arbitrary in most applications [56]. To used to perform. an explicit one—to—ope matchin_g of ref-
circumvent this issue, we considered modules obtained erence to emplrlcal modules by solving the assignment
for 1000 values sampled across a meaningful portion of problem. This process can be thought of as a reshuf-

the v parameter space. More specifically, we determined, ~ fling of the columns (or rows) of the similarity matrix
separately for each input matrix, the range of v values in order to maximize the sum of values along its main
resulting in partitions ranging from 2 to N/2 modules. diagonal, i.e., maximize the total similarity of reference
This yielded a multi-resolution set of partitions that al- ~ modules matched to empirical modules. Each entry along
lowed us to investigate the relation between structural ~ the main diagonal of the matched similarity matrix quan-
and functional modules in a ~-resolved manner. tifies how well an individual reference functional system

is captured by an empirical partition. MMS is defined as

Empirical titi btained for CMs, SC and FC A .
pincal partitions obrainec ot 5 an the mean of the matched matrix diagonal entries.

were then compared to the reference functional parti-
tion by means of two complementary measures: adjusted Finally, for each input matrix (SC, FC, or CMs), AMI
mutual information (AMI) and mean matched similar- and MMS were computed across increasingly finer par-
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titions by systematically varying the resolution parame-
ter v (Fig[I[d). To account for the inherent stochastic-
ity of the Louvain algorithm, each partition was com-
puted 100 times, resulting in a distribution of AMI and
MMS estimates for each value of v. We operationalize
resolution-resolved partition agreement as the peak and
area-under-the-curve (AUC) of the similarity measures.
The peak similarity is the optimal agreement between ref-
erence and empirical partition across all values of -y, while
the AUC similarity summarizes multi-resolution parti-
tion agreement into a single value.

Network communication models narrow the gap
between structural and functional modules

Figure [2p shows the AMI and number of modules ob-
tained for SC, FC, and 4 CMs, across a range of par-
tition resolution parameters. We first observed that, in
comparison to SC and CMs, FC led to markedly greater
agreement to reference functional systems. This is ex-
pected as both partitions are derived from functional
MRI and it corroborates previous studies on the mod-
ularity of functional brain networks [20]. We used the
spin null model [58] to create a set of 50000 spatially
rotated reference partitions and computed a surrogate
distribution of similarities between original and rotated
reference partitions. Apart from exceedingly small val-
ues of v, empirical modules significantly outperformed
the surrogates (non-parametric p-value < 0.05), indicat-
ing that the AMI observed for all input matrices cannot
be trivially explained by spatial autocorrelation in func-
tional cortical partitions [59, [60].

We found that all communication models outper-
formed SC when considering the best partitions obtained
via systematically sweeping over the v parameter space
(Fig [2b; peak AMI two-sample t-test p-values < 107*
[df=99] between SC and each model). The communica-
bility model resulted in the CM with the modular decom-
position most well aligned with functional modules, lead-
ing to an increase of 7.9% in peak AMI relative to SC (p-
value < 10716; Fig , light-colored bars). To contextu-
alize this improvement, we considered the peak AMI ob-
tained from FC and SC as upper and lower benchmarks,
respectively, for the correspondence to the reference. The
increase in peak AMI afforded by the communicability
model led to a narrowing of 20.5% of the gap between SC
and FC performances (Fig , dark-colored bars). Sum-
marizing multi-resolution AMI estimates using the AUC
(Fig ,e) resulted in top performances by the communi-
cability and search information models, both improving
on SC by approximately 11% (both p-values < 10716)
and narrowing the SC-FC gap by approximately 27%.
Navigation was the only model that led to a significant
decrease in SC’s AUC similarity to functional modules
(-2.3%; p-value < 1078).

Assessing partition agreement using MMS yielded
comparable findings (Fig . As expected, FC resulted

4

in the modular decompositions most well aligned with
functional reference systems, while all empirical parti-
tions significantly outperformed the spin null model for
most of the v parameter space (Fig ) Communicabil-
ity remained the best performing communication model,
contributing to significant improvements relative to SC
for both peak and AUC MMS (5.1% and 7.8%, respec-
tively; both p-values < 1078; Fig,e7 light-colored bars).
Once again, these improvements represented marked re-
ductions of the SC-FC performance gap for both peak
and AUC MMS (25.3% and 47.8%, respectively; Fig[3f,e,
dark-colored bars).

These results indicate that modules derived from CMs,
in particular for communicability, are more aligned with
canonical functional systems than modules derived from
SC. This was the case for both AMI (agnostic about mod-
ule matching) and MMS (explicit about module match-
ing) measures, as well as for peak (best 7 for each input
matrix) and AUC (summary across v range) operational-
izations of resolution-resolved partition similarity.

To further investigate these findings, we tested whether
any partition resolutions could be found for which net-
work communication models were detrimental to the
agreement with reference functional systems. To this
end, we computed two-sample t-tests comparing the per-
formances of SC and CMs at each v in the resolution pa-
rameter space (Fig. The resulting curves of t-statistics
revealed that the impact of modeling network communi-
cation was not constant across resolutions, with peaks
and troughs in model performance suggesting a complex,
multi-scale interplay between the brain’s SC, communi-
cation dynamics, and mesoscale functional organization
[6I]. In fact, despite their overall benefit, most mod-
els contributed to decreasing (negative t-statistics) the
agreement between SC and reference modules in at least
some position of the parameter space. Crucially however,
communicability was the only model that consistently
contributed to explaining reference functional systems,
with positive t-statistics across all resolutions of modu-
lar decomposition (with exceptions of marginal and brief
negative values for 7 indexes around 5 and 750). This
was the case even when considering the resolution that
optimized the similarity between SC modules and the ref-
erence (dashed dark blue lines in Fig 4t AMI: ¢t = 5.4, v
index = 492, Fig [ MMS: ¢ = 0.04, v index = 641, Fig
4).

Collectively, our results indicate that modeling polysy-
naptic communication on top of SC can help further ex-
plain the emergence of canonical functional systems from
the underlying substrate of anatomical connectivity. In
general, the benefits afforded by communication models
were more pronounced when synthesizing results across
community decomposition scales than when considering
specific resolutions of modular organization. Critically,
communicability—the top performing model across all
scenarios explored—augmented SC’s account of canoni-
cal functional systems across the entire resolution param-
eter space, suggesting that this communication model
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FIG. 2. (a) Top: Adjusted mutual information (AMI) between empirical and reference partitions across a range of 1000
increasing resolution parameters 7. For each v and for each input matrix, the average AMI (plus or minus one standard
deviation) from 100 repetitions of the Louvain algorithm is shown. Horizontal dashed line indicates the 95% percentile of AMI
expected under the null condition achieved by randomly rotating the reference partition. Vertical dashed lines mark the peak
AMI for each input matrix. Bottom: average (plus or minus one standard deviation) number of modules obtained for each
~. Partitions identified by the Louvain algorithm become finer-grained as  increases. We note that the horizontal axis refers
to the v index k£ = 1,...,1000 of the resolution parameter sample yielding partitions with 2 to N/2 modules. The portion
of the parameter space where this occurs is different for each input matrix, and thus the same ~ index maps onto different ~y
values for SC, FC and CMs. (b) Peak AMI. (c) Light-colored bars show the relative change in peak AMI between SC and
CMs. FC and SC were used as upper and lower benchmarks, respectively, of how well an empirical partition aligns with the
reference. Dark-colored bars show what percentage of the SC-FC peak AMI gap is closed by CMs. (d-e) Same as (b-c) for

the area-under-the-curve (AUC) AML

captures the formation of functional components at mul-
tiple scales of investigation.

Impact of network communication models on the
identification of individual functional systems

We investigated the extent to which modules obtained
for SC and CMs recapitulated specific functional systems
of the reference partition. Under our module matching
framework (Fig )7 diagonal entries of the matched sim-
ilarity matrix quantify the agreement between individual
reference and empirical modules.

Figure shows the AUC of the matched similarity
obtained for each reference functional system. We ob-
served considerable variation in the performance of com-
munication models depending on the functional system.
Modeling communication was most beneficial to the iden-
tification of the somatomotor, limbic and default mode
systems, for which all CMs outperformed SC. In con-
trast, all communication models were detrimental to the

characterization of the attention ventral network. For
the visual, attention dorsal, and control systems, results
were dependent on the choice of communication model,
with communicability once again featuring as the model
yielding the most robust benefits (Fig ) More specif-
ically, communicability modules improved the match to
somatomotor (20.3% increase in matched similarity rela-
tive to SC), limbic (+17.4%), attention dorsal (+7.0%),
visual (+6.5%), default mode (+5.2%) and frontoparietal
control (+1.2%) systems, while decreasing the match to
the attention ventral system (-17.8%).

To gain further insight into these results, we next
sought to visualize SC and CM partitions. Here, it is
important to reiterate that the benefits of modeling com-
munication were more pronounced when considering the
AUC across resolution parameters than for any individ-
ual . Visualizing the improved alignment to functional
systems afforded by CMs is therefore challenging, since
visualizing partitions requires the choice of a single mod-
ular scale. In addition, as seen in Fig [4] the choice of
~ influences the extent to which CMs increase or de-
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FIG. 3. (a) Top: Mean matched similarity (MMS) between empirical and reference partitions across a range of 1000 increasing
resolution parameters . For each v and for each input matrix, the average MMS (plus or minus one standard deviation) from
100 repetitions of the Louvain algorithm is shown. Horizontal dashed line indicates the 95% percentile of MMS expected under
the null condition achieved by randomly rotating the reference partition. Vertical dashed lines mark the peak MMS for each
input matrix. Bottom: average (plus or minus one standard deviation) number of modules obtained for each 7. Partitions
identified by the Louvain algorithm become finer-grained as 7 increases. (b) Peak MMS. (c¢) Light-colored bars show the
relative change in peak MMS between SC and CMs. FC and SC were used as upper and lower benchmarks, respectively, of
how well an empirical partition aligns with the reference. Dark-colored bars show what percentage of the SC-FC peak MMS
gap is closed by CMs. (d-e) Same as (b-c) for the area-under-the-curve (AUC) MMS.
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FIG. 4. Statistical comparison between modules obtained for SC and CMs considering the (a) AMI and (b) MMS similarity
measures. For each ~, a two-sample t-test was performed to compare the SC and CM distributions of partition similarity
obtained via 100 repetition of the Louvain algorithm. Positive (negative) ¢-statistics indicate that modeling network commu-
nication increased (decreased) the similarity between structural and functional modules. Horizontal dotted black lines mark
[t| = 2, denoting statistically significant differences at o = 5%. Vertical dashed lines mark the peak (a) AMI and (b) MMS for
each input matrix.
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FIG. 5. Impact of network communication models on the identification of individual functional systems. (a) AUC matched
similarity obtained for the 7 functional modules of the ground truth. (b) Relative change in AUC matched similarity between

SC and CMs.

crease the match to the functional reference. Having
noted these caveats, we investigated exemplar SC and
communicability partitions obtained for a representative
v index 492 (corresponding ~y values of 0.3484 and 0.5286,
for SC and communicability, respectively). This resolu-
tion maximized the AMI between the SC and reference
partitions (Figs , ), and was chosen to provide a par-
simonious comparison that does not inflate the benefits
of modeling network communication.

Figure [Bh,b illustrates the module matching process
that assigned SC and communicability modules to canon-
ical functional systems. Since the matching is strictly
one-to-one and the reference partition contains 7 func-
tional systems, 3 out of 10 SC modules and 2 out of
9 communicability modules remained unmatched. Fol-
lowing module matching, the communicability partition
better recapitulated the somatomotor (SM; 31.2% in-
crease in similarity), attention dorsal (AD; +35.4%), lim-
bic (LIM; 4+16.7%), control (CON; +58.3%) and default
mode (DMN; +70.0%) systems, while SC modules pro-
vided a better fit for the visual (VIS; -17.6%) and atten-
tion ventral (AV; -12.5%) systems (Fig[6f).

Figure [6ld shows the cortical maps obtained by pro-
jecting the functional reference, SC and communicability
partitions onto the cortical surface. We first observed
that, as with SC modules, the communicability parti-
tion remained contiguous in space, unable to unify dis-
tant parts of functional systems into spatially distributed
modules. For example, the medial (including precuneus
and posterior cingulate cortex) and temporal-parietal
components of the DMN were well characterized by the
communicability partition, but they were assigned to sep-
arate modules (CMY modules 8 and 6, respectively). As

such, instead of large-scale rearrangements, communica-
bility promoted local adjustments to the modular orga-
nization of SC. While spatially localized, these changes
were consequential, leading to a communicability parti-
tion that better recapitulated the individual canonical
systems of the reference (Fig 6¢). For instance, regions
in the central sulcus area were assigned to 3 adjacent
modules in the SC partition (SC modules 3, 4 and 6).
The polysynaptic interactions estimated by the commu-
nicability model reshaped the local modular organization
around the central sulcus, reassigning certain regions of
the adjacent SC modules into a new community (CMY
module 4) that more closely matched the boundaries of
the somatomotor system.

Control analyses

We performed control analyses to test whether the key
findings reported in the main text were robust to a range
of methodological choices. Specifically, we considered
variations in: (i) cortical parcellation (Schaefer N = 200
[main] vs. Glasser N = 360 [control]); (ii) pipeline of
fMRI time series pre-processing (global signal regression
[main] vs. no global signal regression [control]); (iii) null
models of modularity maximization for SC (Potts [main]
vs. Girvan-Newman [control]); and (iv) the definition of
the AUC similarity measures (computed across the entire
resolution parameter space [main] vs. computed across
the range of v values for which empirical partitions out-
performed the spin null model of spatially rotated refer-
ence partitions [control]).

For each of these scenarios, we recomputed the entire
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FIG. 6. Comparison of SC and communicability partitions obtained for v index 492 (corresponding to the peak AMI between
the SC and reference partitions). Similarity and matched similarity matrices for the (a) SC and (b) communicability partitions.
Each matrix entry is the Jaccard index between a pair of reference (rows) and SC (columns) modules. A one-to-one matching
between reference and empirical modules is performed by reordering the columns of the similarity matrix with the goal of
maximizing the sum of the main matrix diagonal. The red dashed square delineated the 7-by-7 matrix of matched modules, while
empirical modules outside the square remained unmatched. (c) Diagonal entries of the matched similarity matrices representing
the alignment to individual reference functional systems. (d) Cortical maps of the reference, SC and communicability partitions.
The colour keys show the pairings obtained from the module matching routine.

multi-scale community detection routine for SC, FC and
CM input matrices. Following the analyses performed in
Figures 2] and [3] we derived the peak and AUC of the
AMI and MMS to the reference partition. Figures [S2|
(AMI) and [S3| (MMS) summarize the impact of model-
ing network communication in relation to the empirical
partitions obtained for SC and FC. Our findings were
consistent across all control analyses. Modeling commu-
nicability on top of SC reliably improved the alignment
to reference functional systems (4-15% increased similar-
ity) and narrowed the gap between SC and FC empirical
partitions (6-60% reduction of the gap). The only excep-
tion was the peak MMS for the Glasser parcellation, for
which no significant difference between communicability
and SC was observed. We also note that for a number of
scenarios the search information model performed com-
parably to communicability.

DISCUSSION

We provide multiple lines of evidence suggesting that
network communication models can help explain the
emergence of canonical functional systems from anatom-

ical connectivity. Structural connectivity (SC) matrices
inferred from tractography encode direct anatomical con-
nections between pairs of regions and are typically sparse,
given that most regional pairs are not directly connected.
Pairs of regions that are not directly connected must com-
municate polysynaptically—via one or more intermedi-
ary regions. A network communication model determines
a strategy to guide polysynaptic signal propagation. Un-
der a given model, the ease of communication between
each pair of regions can be encoded in the communica-
tion matrix (CM), which is derived from SC using ana-
lytical transformations. Whereas SC is typically sparse,
the CM is dense and reveals information about all pairs
of regions, not just those that are directly connected.

A growing body of evidence supports that CMs can ex-
plain a greater portion of variation in FC than SC alone.
Previous studies along these lines have focussed mostly
on the global scale [30, BI]—FC between regions pairs
across the whole brain—and local scale [62, [63]—FC pro-
files of individual regions. Here, we add to this literature
by considering how network communication models can
uncover mesoscopic relationships between brain structure
and function.

We found that, in comparison to SC, the modular
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structure of CMs more closely recapitulates the mesoscale
functional organization of the brain into intrinsic resting-
state networks.  Therefore, by taking into account
polysynaptic communication, we approximate structural
modules—primarily influenced by neuroanatomical prox-
imity [7]—to functional modules—reflecting patterns of
interregional co-activity implicated in specific cognitive
domains [24]. Our results provide insight into how the
interplay between anatomical wiring, neural communica-
tion dynamics, and the emergence of specialized compo-
nents of information processing.

Importantly, which brain network communication
models most accurately and parsimoniously describe bio-
logical signaling remains an open question [28]. We con-
sidered four previously explored candidate models, cho-
sen to cover a range of putative neural signaling strate-
gies. Shortest path and navigation are routing models
that propose where communication between two regions
takes place via a single, highly efficient path. While ad-
vantageous from the perspectives of transmission delays
and metabolic costs, efficient routing hinges on the as-
sumption that individual nodes have knowledge about
the network beyond their immediate vicinity, a require-
ment that might not be realistic for decentralized systems
such as the brain [64]. In contrast, search information
and communicability stem from a diffusive conceptual-
ization of network communication. Signal propagation
through diffusion does presuppose the same knowledge
assumptions, but it typically entails longer transmission
delays and higher energy expenditure [65].

Of the communication models investigated, communi-
cability resulted in partitions with the highest correspon-
dence to functional canonical systems—a finding that
was observed across most resolutions of modular decom-
position and individual reference systems (with the ex-
ception of the ventral attention network). Critically, par-
tition of the communicability CM yielded modules that
better recapitulated canonical functional systems than
partitions identified in the SC matrix. Taking into ac-
count results obtained from different similarity measures,
cortical parcellations, fMRI preprocessing pipelines, and
modularity maximization models, we found that com-
municability generally accounts for 20 to 60% of the gap
between SC and FC partitions.

Communicability is a diffusion-based model whereby
information is “broadcast” along all possible sets of con-
nections that link two regions [38], [66], contrasting with
other models predicated on a single communication path
that is selectively accessed. This type of diffusive com-
munication may be better suited to integrate information
between near-by regions, since broadcast strength dimin-
ishes as a function of topological distance [2]. This aligns
with the observation that communicability’s increased
match to functional systems was the result of spatially
localized adjustments to the SC’s modular structure, in-
stead of the unification of distant regions into spatially
distributed modules. Therefore, we conjecture that the
benefit of diffusive models stems from a more compre-
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hensive utilization of local network topology—instead of
utilization of direct connections alone or single efficient
paths—in the communication between regions in close
topological proximity, which in turn promoted function-
ally meaningful refinements of modular boundaries.

Our findings are in close agreement with previous work
investigating systems-level brain network communica-
tion. Betzel and colleagues reported that detecting com-
munities using a diffusion random walk model accounted
for unimodal functional systems such as the visual and
somatomotor networks [61]. Using a graph matching ap-
proach, Osmanlioglu and colleagues found that commu-
nicability, in comparison to other communication models,
provided the most accurate description of systems-level
FC [67]. We extend these efforts through a direct com-
parison of structural, functional and communication par-
titions identified using modularity maximization. More
broadly, our work also intersects with theoretical and
computational research on the use of random walks to
identify communities in complex networks [68].

Finally, our results corroborate previous reports on
the utility of communicability to investigate a range of
diverse neuroscience questions [39]. Examples include
studies on the impact of stroke lesions [69], effects of
neurodegeneration [70], simulations of neural gain fluctu-
ations [71], and pharmacogenetic manipulation of brain
regions [72]. More generally, we add to mounting em-
pirical evidence challenging the notion that communica-
tion in brain networks occurs exclusively via topologi-
cal shortest paths [30} B [73], an assumption built into
many popular graph measures in network neuroscience
(e.g., betweenness centrality or global efficiency).

Technical considerations and alternative approaches
to link structural and functional modules

SC is sparse while CMs and FC are fully connected.
Two different modularity maximization null models are
typically used in these cases—the standard Girvan-
Newman model for sparse, and the Potts model for dense
matrices [9]. To ensure that changes in partition similar-
ity did not result from different definitions of modular-
ity maximization [74], we repeated our analyses using
both null models to identify communities in SC. Relat-
edly, we note that it is unlikely that the communicability
CM improves on SC trivially due to its higher connec-
tion density, since, while all CMs are full graphs, only
communicability led to consistent benefits.

While we focussed on network communication, a num-
ber of alternative approaches have been used to investi-
gate the relationship between structural and functional
modules. Modularity maximization null models that
correct for wiring cost have been shown to yield struc-
tural partitions that accurately recapitulate spatially dis-
tributed functional systems, such as the frontoparietal
control network [75]. In a recent paper, Puxeddu and
colleagues introduced a multi-layer community detection
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framework that facilitates the comparison of partitions
obtained from different input networks [76]. Using this
approach, the authors found that the relationship be-
tween SC and FC partitions is influenced by the resolu-
tion in which modular organization is investigated.

Other examples include the use of biophysical mod-
els of neural dynamics [47], hierarchical clustering [77],
multivariate statistical techniques [I7], and block mod-
els capable of identifying non-assortative modular struc-
tures [(8, [79]. Our work complements these efforts from
the perspective of network communication. The CMs
explored here can be readily integrated to advanced sta-
tistical and community detection methods to investigate
synergies between these parallel lines of research.

Limitations and future directions

Following previous work on brain network model-
ing [42, [43], our analyses were performed on intra-
hemispheric networks. Poor reconstruction of cross-
hemispheric fibers is a well-documented issue in trac-
tography [44] with important implications for structure-
function analyses [80, [81]. We also note that canonical
functional systems are spatially distributed both within
as well as homotopically between hemispheres. In the
absence of reliable cross-hemispheric SC, restricting our
analyses to single hemispheres mitigated the possibility of
confounding intra- and inter-hemispheric partition simi-
larity. More broadly, variations in SC mapping methods
can impact the computation of network communication
models [82H84] and future work is necessary to replicate
our findings in alternative reconstructions of structural
brain networks.

We adopted the 7 resting-state networks defined by
Yeo and colleagues as the reference partition for the
mesoscale functional organization of the human brain
[22]. In the last decade, this partition has become firmly
established as a functional taxonomy of cortical regions
[45H51]. Nonetheless, the choice of this—or any alterna-
tive [20]—functional reference is inevitably an oversimpli-
fication, as brain function is context-dependent, subject-
specific, and unfolds at multiple spatial and temporal
scales. Understanding how structure mediates the emer-
gence of functional components in a wider range of sce-
narios is an important direction for future work.

A limitation of our one-to-one matching approach is
that it penalizes cases where a partition accurately clus-
ters together the regions of a functional system but splits
them into one or more modules (see Fig 6). Partition sim-
ilarity measures is an active topic of technical research
[56] and developments in this area could provide more
suitable alternatives to the quantification of the match
between structural and functional modules.
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Conclusion

In summary, we demonstrated that taking into account
polysynaptic interactions via models of network commu-
nication can narrow the gap between the mesoscopic or-
ganization of structural and functional connectivity. Our
work provides new insights into systems-level properties
of brain networks and contributes to the understanding
of large-scale neural communication.

MATERIALS AND METHODS
Brain connectivity mapping
Structural connectivity

Minimally preprocessed high-resolution diffusion-
weighted MRI from the HCP were used to map structural
brain networks for 1000 healthy young adults. Acquisi-
tion and preprocessing details of diffusion MRI data are
described in [85], [86]. For each participant, whole-brain
white matter tractograms were mapped using a prob-
abilistic tractography pipeline implemented in MRtrix3
[87) (multi-shell multi-tissue constrained spherical decon-
volution [88], iIFOD2 tracking algorithm [89], anatomi-
cally constrained tractography [90], 5M streamlines; fur-
ther details in [91]). Cortical gray matter regions were
delineated according to the Schaefer (N = 200; main
text) [4I] and Glasser (N = 360; control analysis) [92]
parcellations. The connection weight between a pair of
gray matter regions was defined as the number of stream-
lines connecting them divided by the product of their
surface areas. Connections with fewer than 5 streamlines
were discarded to attenuate the high false positive rate
of probabilistic tractography [84]. Individual structural
networks were combined into a group-consensus SC ma-
trix that preserved the average connection density across
participants (41% and 21% for the Schaefer and Glasser
parcellations, respectively) [93].

Functional connectivity

Minimally preprocessed ICA-FIX resting-state func-
tional MRI data for the same 1000 participants were
acquired from the HCP. For each participant, four (2
sessions on separate days with both right-to-left and left-
to-right phase encodings) 14 minutes and 33 second scans
(0.72s TR) were collected. Details on resting-state pro-
tocol and preprocessing are provided in [85 94]. FC was
computed according to two different pipelines. In the
first pipeline (main text), voxel-level blood-oxygen-level-
dependent (BOLD) time series were linearly detrended,
band-pass filtered, and standardized [95]. Next, four
nuisance variables were regressed out: the global signal
(GS), the GS squared, the GS derivative, and the squared
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GS derivative [96]. In the second pipeline (control analy-
sis), no further preprocessing was performed to the mini-
mally preprocessed ICA-FIX data from the HCP. In both
pipelines, the time series of voxels within the same gray
matter region were averaged and FC was computed as the
Pearson correlation between regional time series. Group-
level FC matrices were computed by averaging a total of
4,000 matrices (4 per subject for 1000 subjects) for the
Schaefer and Glasser parcellations.

Network communication models

Network communication models were computed using
the Brain Connectivity Toolbox [97]. Computations were
carried out separately for left and right intra-hemispheric
networks. Let W € RY*N be the matrix of structural
connectivity weights between N regions, where W;; = 0
and W;; > 0 denote, respectively, the absence and pres-
ence of a connection between regions ¢ and j. We define a
matrix of structural connectivity lengths L = —log, (V)
[98]. While W measures the strength and reliability
of anatomical connections supporting communication, L
quantifies the distance or travel cost between regions [30].
The transformation of connection weights into lengths is
necessary to the computation of network communication
models that seek to minimize the cost of communication
between regions.

Shortest path efficiency

Let A* denote the matrix of shortest path lengths,
where AY; = Ly + ... + Ly; is the sum of connection
lengths traversed along the shortest path between regions
i and j. The shortest path efficiency CM was defined as
SPE =1/A* [34].

Navigation efficiency

Navigation implements a greedy routing strategy based
on a measure of nodal distance. Following previous work,
we used the Euclidean distance between region centroids
to identify navigation paths [36]. Starting from a source
region %, navigation progresses to i’s neighbor that is clos-
est in distance to a target region j. This simple rule is
repeated until j is reached (successful navigation) or a
region is revisited (failed navigation). Successful naviga-
tion path lengths are defined as A;; = Liju+. .. + Ly, ie.,
the sum of connection lengths traversed along the navi-
gation path from ¢ to j, whereas failed navigation yields
A;; = oco. The navigation efficiency CM was defined as
NE =1/A.
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Search information

Search information measures the accessibility of ef-
ficient communication paths in a network [37]. It is
computed based on the probability of a random walker
serendipitously traveling between two regions via their
shortest path. An unbiased random walker travels from
region p to region ¢ with probability Ty, = Wyq/sp, where
sp is the (outgoing) strength of i. The probability of the
random walker travelling from i to j along their shortest
path {3, u, ...,v, j} is given by P;; = T, X. .. xT,;. Search
information is typically defined as SI;; = —log2(P;;) [31],
with higher values of SI;; indicating that efficient routes
from i to j are less accessible. However, community de-
tection requires matrices that encode the propensity of
region pairs to belong to the same module. We therefore
defined the search information CM as ST = 1/S1.

Communicability

Communicability is defined as a weighted sum of the
total number of walks between two nodes [38]. Formally,

the CMY;; = > ° W;J”/n! = ¢"ii. Weighted connec-
tivity matrices are typically normalized prior to the com-
putation of communicability to attenuate the influence of
high strength nodes, such t.hat Wi = Wi;/(\/5iy/5;) and
s; is the strength of node i [99].

Multi-resolution community detection
Modularity maximization

or a given resolution parameter v and input matrix A,
community detection was computed as follows. First, A
was symmetrized (certain CMs can be asymmetric [32]),
z-scored, and shifted by the absolute magnitude of the
minimum z-scored entry, thus ensuring that all matrix
entries are non-negative. These steps avoid the need for
special modularity maximization null models to handle
the negative connection weights of FC and contribute
towards a comparable range of v values across input ma-
trices. The Brain Connectivity Toolbox implementation
of the Louvain algorithm was then used to maximize the
modularity statistic

Q= Z(Aij — vP;j)0ij,

j

where P;; is the expected weight of the ij connection
under a null model P, and 0;; = 1 if 7 and j are assigned
to the same module and o;; = 0 otherwise.

The choice of P is typically influenced by the proper-
ties of A. Previous work indicates that the Potts (also
known as uniform) model [I00] P = 1V*¥ is suitable for
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dense matrices, such as FC and CMs, in which connec-
tion weights are not independent from each other [I01].
On the other hand, sparse matrices such as SC are typi-
cally clustered using the Girvan—Newman (also known as
configuration) model P;; = 5°2, where s; is the strength
of node i, and m is the total number of connections in
the network [102, 103]. The definition of P also has
implications to the interpretation of modules uncovered
with modularity maximization [9] [74]. Under the Gir-
van—Newman model, two nodes tend to be assigned to the
same module if they are more strongly connected than ex-
pected based on their combined connectivity to the rest
of the network. Meanwhile, the Potts model presupposes
that every node pair is connected with the same weight,
leading to partitions in which within-module connectiv-
ity is, on average, larger than . In order to compare the
modular organization of SC, FC and CMs on an equal
footing, in the main text, we used the Potts model to
perform community detection for all input matrices. For
completeness, we performed control analyses in which we
used the Girvan—Newman model to cluster SC.

Two-pass multi-resolution routine. Following previ-
ous work [62H54], the multi-resolution community de-
tection for an input matrix A was implemented as fol-
lows. In the first pass of the routine, we sampled 100
values of the resolution parameter {v{,...,9iy}, such
that y{ = min(A4a>0) and iy, = max(A). For each 7},
modularity maximization was performed using the Potts
model as described above. We identified the v} and ~.
that resulted in, respectively, the first partition with at
least 2 modules and the last partition with fewer than
(N/2) 4+ 1 modules.

In the second pass of the routine, we sampled 1000
values {v1,...,7%%000}, Where 42 = vl and 73,50 = 7.
By construction, for each 42, this resulted in partitions
ranging from 2 to N/2 modules. In order to take into
account the inherent stochasticity of the Louvain algo-
rithm, we computed a set of 100 partitions for each ~3.
This routine was computed separately for left and right
intra-hemispheric networks.

In both passes, values of v were sampled linearly for
FC and logarithmically for SC and the CMs, in order to
provide good coverage of the weight distribution of each
input matrix. Figure [SI] shows a visualization of the v
sampling of the two-pass routine for each input matrix.
The horizontal axes of Figures 2a, 3a and 4a,b refer to the
index k of the v? sample. Note that the same 7 index
k maps onto different values of + used for each input
matrix.

Partition similarity measures

The correspondence between the functional reference
and an empirical partition was assessed by the adjusted
mutual information and the mean matched similarity.
Similarities were computed separately for left- and right-
hemispheric partitions and averaged.
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Adjusted mutual information

Consider two disjoint partitions of N regions U =
{U1,...,Ur} with R modules and V' = {V4,..., Vo } with
C modules. The mutual information between U and V is
defined as

R C i
MI(U,V)zZZpUV(iJ)IOgm’

where py (i) = |U;|/N is the probability that a ran-
dom region belongs to module U; in partition U, and
puv (i, ) = (|U;NV;|)/N is the probability that a random
region belongs to module U; in partition U and module
V; in partition V. The mutual information quantifies the
similarity between U and V as the amount of informa-
tion shared between the partitions. If MI(U,V) = 0, no
information is shared between U and V', and thus knowl-
edge of U provides no insight into V' (and vice-versa).
Meanwhile, if MI(U,V) = 1, knowledge of U provides
complete insight into V. However, for two random U
and V, MI(U,V) tends to grow as a function of R and
C, thus overestimating the similarity between partitions
with large numbers of modules.

The adjusted mutual information is a variation of the
mutual information that corrects similarity solely due to
chance [57]. It is defined as

MI(U,V) —E(MI(U,V))
max(H(U),H(V)) — E(MI(U,V))’

AMI(U,V) =

where H(U) = 721321 pu (i) logpy (i) is the entropy
of partition U, and E(MI(U,V)) is the expected value of
the mutual information between U and V derived from a
hypergeometric distribution (see [57] for further details).
The AMI is 1 for identical U and V' and 0 when the mu-
tual information between them equals the value expected
due to chance alone. The code used to compute AMI is
available at [104].

One-to-one module matching

First, we computed the similarity matrix § € R7*",
where S;; = |U; N V;|/|U; U V| is the Jaccard index
between reference module U; and empirical module V,
1€{1,....,7},and j € {1, ...,n}. The one-to-one matching
of U and V modules was performed using the Munkres
(Hungarian) algorithm for the linear assignment problem
[105] applied to the dissimilarity matrix D =1 —S. The
algorithm identifies the reordering of rows (if n < 7) or
columns (otherwise) of D that minimizes the sum of the
main diagonal of the reordered dissimilarity matrix D'
We define the matched similarity matrix as ' =1—D'.
To summarize the similarity between U and V into a
single value, we defined the mean matched similarity
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as MMS = 1/n." | S;;. The code implementing the
Munkres (Hungarian) algorithm is available at [106].

Spin null model

Using an implementation of the spin test for cortical
parcellations [59], we performed 50000 random spherical
rotations of the reference functional partition. We com-
puted the similarity between the original reference and
the spatially rotated ones, yielding a null similarity dis-
tribution. An empirical partition was considered to out-
perform the spin null model if its similarity to the original
reference exceeded the 95th percentile of null similarity
distribution (non-parametric statistical significance test
at o = 5%), marked by the horizontal dotted black lines
in Figures 2 and 3. We note that this null model is partic-
ularly stringent, as surrogate partitions always have the
same number of modules as the reference. Evidence that
an empirical partition passes the spin test indicates that
its similarity to the reference is not trivially explained by
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spatial autocorrelations inherent to cortical maps [58}, 60].
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FIG. S1. Samples of the v parameter space used in the two-pass multi-resolution community detection routine. Histograms
show the distribution of the z-scored input matrices. Matrices were z-scored to result in samples drawn across comparable
ranges of parameter space. Blue lines mark the 100 parameter values {711, A 'y%oo} used in the first pass of the routine. We
identified the . and ~} that resulted in, respectively, the first partition with at least 2 modules and the last partition with
fewer than (N/2) 4+ 1 modules. Red lines mark the 1000 parameter values {7i,...,Viooo}, Where 4% = v4 and ~ioeo = Ve-
The resolution parameter space was sampled logarithmically to account for the skewed distribution of input matrices, with the
exception of FC (panel b), for which v values were sampled linearly.
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FIG. S2. Control analyses using the AMI partition similarity measure. To facilitate the comparison of control analyses to the
results presented in the main text, panel (a) recapitulates the results shown in Fig. [2b,c,d,e (respectively, left to right). The main
text analysis was conducted considering (i) the Schaefer 200 parcellation, (ii) fMRI data pre-processed to regress out the mean
global signal and other nuisance variables, (iii) SC matrices clustered using the Potts null model for modularity maximization,
and (iv) the AUC summary of multi-resolution partition similarity computed across the entire resolution parameter space. In
each control analysis, we tested the robustness of our results to changes in one of these four factors, while the other factors
remained unaltered. (b) Control analysis using the Glasser parcellation. (c¢) Control analysis using the ICA FIX minimally
preprocessed fMRI data from the Human Connectome Project, with no additional processing steps. (d) Control analysis using
the Girvan-Newman null model for the modularity maximization of SC matrices. (e) Control analysis in which the AUC
summary of multi-resolution partition similarity was computed considering only the sections of the parameter space for which
empirical partitions outperformed the spin null model.
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FIG. S3. Control analyses using the MMS partition similarity measure. To facilitate the comparison of control analyses to the
results presented in the main text, panel (a) recapitulates the results shown in Fig. [3p,c,d,e (respectively, left to right). The main
text analysis was conducted considering (i) the Schaefer 200 parcellation, (ii) fMRI data pre-processed to regress out the mean
global signal and other nuisance variables, (iii) SC matrices clustered using the Potts null model for modularity maximization,
and (iv) the AUC summary of multi-resolution partition similarity computed across the entire resolution parameter space. In
each control analysis, we tested the robustness of our results to changes in one of these four factors, while the other factors
remained unaltered. (b) Control analysis using the Glasser parcellation. (c) Control analysis using the ICA FIX minimally
preprocessed fMRI data from the Human Connectome Project, with no additional processing steps. (d) Control analysis using
the Girvan-Newman null model for the modularity maximization of SC matrices. (e) Control analysis in which the AUC
summary of multi-resolution partition similarity was computed considering only the sections of the parameter space for which
empirical partitions outperformed the spin null model.
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