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ABSTRACT

The critical cellular transitions that govern human pancreas development are largely
unknown. We performed large-scale single-cell RNA-sequencing (scRNA-Seq) to interrogate
human fetal pancreas development from 8-20 weeks post conception. We identified 103 distinct
cell types, including four novel endocrine progenitor subtypes displaying unique transcriptional
features and differentiation potency. Integration with single-nucleus Assay for Transposase
Accessible Chromatin Sequencing (snATAC-Seq) identified candidate regulators of human
endocrine cell fate and revealed development-specific regulatory annotation at diabetes risk loci.
Comparison of in vitro stem cell-derived and endogenous endocrine cells predicted aberrant
genetic programs leading to the generation of off-target cells. Finally, knock-out studies revealed
that the gene FEV regulates human endocrine differentiation. This work establishes a roadmap
of human pancreatic development, highlights previously unappreciated cellular diversity and
lineage dynamics, and provides a blueprint for understanding pancreatic disease and physiology,
as well as generating human stem cell-derived islet cells in vitro for regenerative medicine

purposes.
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INTRODUCTION

Type 1 diabetes (T1D) is a disease of the endocrine pancreas characterized by immune-
mediated destruction of insulin-producing beta cells. Beta cell replacement therapy holds great
promise for eliminating the need for exogenous insulin delivery and effectively curing the disease
(Melton, 2021; Migliorini et al., 2021). Several protocols have been devised to generate insulin-
secreting beta-like cells from human pluripotent stem cells (hPSCs) using stepwise differentiation
platforms that aim to mimic endogenous development by recapitulating key cell stages through
the carefully timed addition and withdrawal of defined combinations of signaling factors (Nostro
et al., 2015; Pagliuca et al., 2014; Rezania et al., 2014; Russ et al., 2015; Velazco-Cruz et al.,
2020; Veres et al., 2019). These protocols suffer, however, from the production of non-endocrine
cell types and a failure to match the transcriptional profiles and glucose responsiveness of primary
adult human islets. This may be due to a relative lack of understanding about human endocrine
development in vivo, as current protocols are based on knowledge of rodent development and
may therefore be missing key regulatory pathways and lineage steps unique to human
development. Indeed, multiple studies have identified discrepancies between mouse and human
pancreatic islets, including structural (Dolensek et al., 2015), transcriptomic (Baron et al., 2016),
and metabolic (MacDonald et al., 2011) differences. Therefore, gaining a deeper understanding
of human endocrine development is crucial for continued progress towards generating in vitro-

derived beta-like cells that recapitulate endogenous function.

In mice, all pancreatic epithelial cell types, including both exocrine and endocrine, are
generated from a domain of the gut tube that begins to express the transcription factor Pdx1
around E8.5 (Ohlsson et al., 1993). The initial pancreatic bud then branches extensively, forming
the tip and trunk regions of the finger-like projections that comprise the ductal epithelium as it
expands and begins regional specification (Shih et al., 2013). The hormone-expressing endocrine

cells, including insulin-producing beta cells, derive from endocrine progenitor (EP) cells that
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activate the expression of the transcription factor Neurog3 in a subset of ductal trunk cells
(Salisbury et al., 2014). During human development, NEUROGS3 is also a presumed marker of
EP cells (Salisbury et al., 2014). The expression of NEUROG3 in humans begins as early as 8
weeks post conception (w), peaks at 10-12 w, and then gradually decreases to very low levels by
35 w (Salisbury et al., 2014). While in murine pancreatic development the expression of Neurog3
in EPs occurs in two distinct waves, in human development it has been reported to occur in a
single wave, further highlighting differences between human and rodent pancreas development

(Villasenor et al. 2008; Jennings et al. 2015).

Heterotypic interactions between epithelial and non-epithelial cells are broadly important
for mammalian development, including in the pancreas, where they regulate expansion of
pancreatic epithelial progenitors as well as their subsequent differentiation (Bhushan et al., 2001;
Cleaver and Dor, 2012; Golosow and Grobstein, 1962; Landsman et al., 2011). In particular, islet
development depends on complex interactions between endocrine cells and multiple other cell
types, including neurons and endothelial cells (Borden et al., 2013; Cleaver and Dor, 2012;
Lammert et al., 2001). To fully understand human endocrine pancreas development in vivo and
then successfully mimic the process in vitro will require a comprehensive catalogue of not only
the endocrine cells, but also the non-epithelial pancreatic cell types, as well as signaling pathways

through which they act.

Murine single-cell RNA-sequencing (scRNA-Seq) studies performed by our laboratory and
others have uncovered EP subtypes downstream of the Neurog3-expressing population, and
some have catalogued the cell heterogeneity within other non-endocrine compartments as well
(Bastidas-Ponce et al., 2019; Byrnes et al., 2018; Yu et al., 2019b). Single-cell studies of human
pancreas have begun to reveal heterogeneity of human endocrine cells. For instance, scRNA-
Seq has been applied to cells generated by beta cell differentiation protocols in vitro and to adult

human islets, where previously unappreciated levels of cellular heterogeneity were described
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(Baron et al., 2016; Gongalves et al., 2021; Muraro et al., 2016; Petersen et al., 2017; Segerstolpe
etal., 2016; Veres et al., 2019; Xin et al., 2018; Yu et al., 2021). A study of human pancreas tissue
at 9 w used single-cell gPCR on a small number of sorted cells to detect the expression of 96
prospectively defined developmental genes and described a putative EP population as well as an
early differentiated endocrine cell population (Ramond et al., 2018). More recently, a paper
focusing on early pancreatic epithelial progenitors reported potential pathways that may be
broadly mediating interactions between mesenchymal and epithelial cells; however, the number
of endocrine cells investigated was limited (Goncgalves et al., 2021). Work focusing on human fetal
endocrinogenesis identified putative EP cell states in silico, although these states remain to be
confirmed in vivo and there was no investigation of how endocrine cells interact with other cell
types in the developing pancreas (Yu et al., 2021). Thus, a comprehensive characterization of the
full panoply of both epithelial and non-epithelial cell types in the developing human pancreas is
still lacking. Importantly, the field also still lacks an understanding at the single-cell level of how
cell composition and lineage trajectories of in vitro stem cell-derived beta cells compare to those

of endogenous developing human cells.

In the quest to characterize the relevant cell states of endocrine differentiation in vivo that
need to be recapitulated in vitro for cell replacement therapy approaches, the field also lacks an
understanding of the epigenetic mechanisms by which those endocrine cell states are established
and maintained. A study investigating in vitro generation of pancreatic progenitors identified
heterogeneity in global chromatin accessibility depending on which in vitro differentiation protocol
was used, highlighting the need for an in vivo comparator against which epigenetic data from in
vitro differentiation platforms can be benchmarked (Wesolowska-Andersen et al., 2020). Recent
studies using single-nucleus Assay for Transposase-Accessible Chromatin with Sequencing
(snATAC-Seq) have provided evidence of distinct epigenetic states across endocrine subclusters

in the adult islet (Chiou et al., 2021a). These studies also localized type 1 and type 2 diabetes-
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associated genetic risk variants to regions of accessible chromatin in adult islet cells and predicted
their regulatory function by interpreting their co-accessibility with target genes (Chiou et al.,
2021b, 2021a; Rai et al., 2020). Although a large number of diabetes genetic risk variants have
been discovered in Genome-Wide Association Studies (GWAS) (Mahajan et al., 2018; Pociot,
2017; Robertson et al., 2021), it is not clear which are operant during development, thereby
exhibiting regulatory functions in a cell-specific and/or developmental stage-specific manner.

In this study, we utilize large-scale scRNA-Seq to generate a comprehensive atlas of
human fetal pancreas tissue ranging from 8 to 20 w. We describe previously unappreciated levels
of cell heterogeneity within the endothelial, mesenchymal, exocrine, neuronal, immune, and
endocrine lineages of the human pancreas and identify putative signaling pathways active among
these lineages. Within the endocrine lineage, we identify four novel progenitor cell types, confirm
their existence in independent tissue samples, and reconstruct their lineage trajectories in silico.
By performing snATAC-Seq analysis on 12 w human fetal pancreatic tissue and performing a
multi-omic analysis integrating snATAC-Seq and scRNA-Seq data, we provide novel insights into
regulatory landscapes of single cells in the developing human endocrine pancreas. We also
leverage the snATAC-Seq data to identify a potential developmental-specific role of multiple
diabetes GWAS risk alleles. In addition, we compare the molecular profiles and cellular
trajectories of endogenous human fetal pancreatic endocrine cells to those generated in vitro from
human stem cells. Through genome editing of hPSCs, we identify the transcription factor FEV as
a regulator of human endocrine differentiation. This study will serve broadly as a resource for the
field of pancreatic development and will also provide the foundation for future improvements in
therapeutic strategies for generating replacement beta cells that more closely resemble their in

vivo counterparts both in identity and function.
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RESULTS
Interrogating the Developing Human Pancreas at Single-Cell Resolution

To characterize the cellular heterogeneity within the human fetal pancreas, we performed
droplet-based scRNA-Seq on 8 independent biological samples ranging from 8 to 20 w, a window
of human pancreatic development encompassing specification of endocrine progenitors (EPs),
differentiation into hormone-producing cell types, and islet morphogenesis (Jennings et al., 2015).
Each tissue sample was dissociated and subjected to red blood cell lysis to deplete erythrocytes.
Resulting single-cell suspensions were then used directly (“Total Pancreas”) or subjected to
magnetic bead-based selection to either enrich for EPCAM+ cells (“Epithelial(+)”), or deplete
CD45+ cells (“Immune(-)"), and then prepared for sequencing using the 10x Chromium Single-
Cell Gene Expression v3 platform (Figure 1A). Following sequencing and quality control
processing (see STAR methods), the resulting data were computationally merged into a final
dataset consisting of 114,873 cells, each of which was then classified as belonging to a “Broad
Group" based on the expression of established marker genes: Mesenchymal (COL3A1), Immune
(RAC2), Exocrine (CPAT), Endothelial (PECAMT1), Neuronal (SOX10), Endocrine (CHGA), and
Proliferating (TOP2A) (Figure 1B). Individual biological samples showed varying degrees of
contribution to all Broad Groups, with experimental enrichment or depletion affecting the overall
contribution as expected. For instance, samples subjected to positive selection for epithelial cells
showed enrichment of endocrine and exocrine populations and relatively fewer cells classified as
mesenchymal, immune, or endothelial (Figure S1A-B). Importantly, we observed high
concordance of technical and biological replicates based on Pearson correlation of Epithelial cells
(Figure S1C).

To further investigate the cellular heterogeneity within each Broad Group, we next applied
the clustering algorithm CellFindR (Rust et al., 2020; Yu et al., 2019a) to our dataset (see STAR
Methods). CellFindR iteratively increases Louvain clustering resolution based on the condition

that each cluster expresses a minimum of 10 genes with greater than 2-fold expression in
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comparison to all other clusters. Once this condition is broken, principal component analysis
(PCAs) are recalculated and each cluster is further sub-clustered following the same condition,
creating tiers of clusters with the nomenclature of the initial cluster represented by an integer and
subsequent sub-clusters followed by a period and an integer. CellFindR defines cell populations
that are biologically relevant and generates a clustering map with multi-tier hierarchy. Within the
merged datasets, CellFindR identified a total of 103 clusters in the developing human pancreas,
including 15 mesenchymal, 8 exocrine, 8 endocrine, 8 endothelial, 13 neuronal, 31 immune, and
20 proliferating clusters. This highlights the striking and previously undescribed cell heterogeneity

in the developing human pancreas (Figure 1C-1H).

Atlas of Cellular Heterogeneity and Cell-Cell Communication in Non-Endocrine Lineages
of the Fetal Pancreas

The importance of mesenchyme in guiding pancreatic organogenesis has been
demonstrated through mechanical removal and recombination experiments, as well as genetic
ablation studies (Attali et al., 2007; Golosow and Grobstein, 1962; Landsman et al., 2011). Recent
work has shed light on the functional heterogeneity within murine pancreatic mesenchyme, where
an Nkx2.5+ mesenchymal sub-population has been reported to establish a pro-endocrine niche
during pancreatic development (Cozzitorto et al., 2020). The full panoply of cell subtypes within
the human fetal pancreatic mesenchyme and their roles in heterotypic cellular signaling, however,
remain unknown. In this study, we employed CellFindR to identify 15 sub-clusters of
mesenchymal cells (Figure 1D, Figure 2A), including known cell types such as vascular smooth
muscle (Mature and Immature VSM, clusters 6.0 and 6.1, respectively), Pericytes (cluster 2) and
Mesothelial cells (cluster 7), annotated based on differential gene expression analysis. In addition,
several novel populations were identified that expressed modulators of WNT signaling, including
genes encoding Secreted Frizzled Related Protein 1 (SFRP1) (SFRP1"CEBPD+, cluster 1.0;

SFRP1" cluster 1.1) and SFRP2+ (cluster 0). We also discovered a heterogenous population of
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cells enriched for expression of C-C Motif Chemokine Ligand 2 (CCL2): CCL2"PRRX1+ (cluster
3.0), and CCL2"CCL21+ (cluster 3.2). In contrast to the other mesenchymal populations, the
mature VSM (0.35% of total mesenchymal cells at 8w; 2.9% at 10w) and CCL2"CCL21+ (0.18%
of total mesenchymal cells at 8w; 3% at 10w) populations expanded only after at 10w (Figure
S2A), suggesting that their maturation occurs later in development compared to the rest of the
mesenchymal compartment.

We next validated the existence of novel mesenchymal subpopulations by performing
multiplexed in situ hybridization (ISH) and immunofluorescence (IF) staining for SFRP1, SFRP2,
and CCL21 RNA and the broad mesenchymal protein marker VIMENTIN (VIM) at developmental
stage 18 w (Figure 2B-2C). SFRP1, SFRP2, and CCL21 were found to colocalize with VIM,
confirming their classification as mesenchymal. SFRP1 was detected in a broad population of
VIM+ mesenchymal cells, whereas SFRP2 was expressed in a restricted subset of VIM+ cells
that were also found to be positive for SFRP1 (Figure 2C), confirming the predictions of the
scRNA-Seq data (Figure 2B). In addition, CCL21 expression overlapped with a subset of VIM+
mesenchyme (Figure 2C). Collectively, these data confirmed the in vivo existence of
heterogeneous mesenchymal populations inferred by CellFindR.

To understand how mesenchymal cell subtypes may be communicating with one another
via cell-cell signaling, we employed the computational package CellChat, which infers cellular
communication within complex scRNA-Seq datasets (Jin et al., 2021). Signaling pathways scored
as significantly active between mesenchymal subtypes included the FGF, EGF and COLLAGEN
pathways. We focused on the PDGF signaling pathway, as it has been shown to be important for
mesenchymal development in multiple other organs, including metanephric organs and the
gastrointestinal tract (Wagner et al., 2007); (Karlsson et al., 2000). We found that the immature
and mature VSM cell populations scored highest as producers of PDGF ligands (“Senders"), while
multiple clusters were denoted as “Receiver” populations (Figure 2D). In particular, the PDGFA-

PDGFRB ligand-receptor pair was predicted to have the highest relative contribution to
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mesenchymal PDGF signaling, followed by PDGFA-PDGFRA (Figure 2E). To better understand
the contribution of each ligand-receptor pair, we analyzed the dominant Senders and Receivers
for each pair separately. For the PDGFA-PDGFRB ligand-receptor pair, we found that the
dominant sources of PDGFA ligand were predicted to be the immature and mature VSM clusters,
and the dominant receiver through the PDGFRB receptor was predicted to be pericytes (Figure
2F). This result is similar to PDGF signaling in the retina, where pericytes are recruited to
developing endothelium through PDGF signaling to aid in formation of the blood-retinal barrier
(Park et al., 2017). When analyzing the PDGFA-PDGFRA ligand receptor pair, we found that the
dominant receivers of the PDGFA ligand through the PDGFRA receptor were predicted to be the
SFRP-expressing clusters (SFRP1"CEBPD+, SFRP1", and SFRP2+) (Figure 2G). Currently, the
effects of PDGFA-PDGFRA signaling in these populations are unknown and warrant further
studies.

Endothelial cell-derived signals are essential for proper formation of the murine pancreas
(Lammert et al., 2001, 2003). The murine pancreas is surrounded by vasculature by as early as
E10.5, with arterial and venous specification occurring at E11 (Azizoglu et al., 2016). In human
fetal pancreas tissue, CD31+ blood vessels are present as early as 7 w (Roost et al., 2014).
Previous studies demonstrated phenotypic (Henderson and Moss, 1985) and functional (Azizoglu
et al., 2016; Zanone et al., 2008) heterogeneity within endothelial populations. However,
transcriptional heterogeneity among endothelial cells in the human fetal pancreas has not yet
been investigated at the single cell level. Thus, we next focused on the endothelial compartment
of our single-cell dataset to better understand its developmental role in pancreatic organogenesis.
CellFindR identified eight clusters within the endothelial Broad Group, with five main subtypes
(Figure 1E). This included RGCC+ capillaries (cluster 0), NR2F2+/ACKR1+ venous cells (cluster
2), PRND+/IGFBP3+ angiogenic tip cells (cluster 1), proliferating cells (clusters 4.0 and 4.1), and
a heterogeneous population of GJA5+ arterial cells (GJA5+/HPGD+; cluster 3.0; GJA5+; cluster

3.1; GJA5+/SERPINE2", cluster 3.2) (Figure 2H). We detected no major shifts in prevalence of
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these populations across the developmental time points within our dataset, suggesting that
pancreatic endothelial specialization is already established at 8 w (data not shown).

To validate our CellFindR inferences, we performed ISH for arterial marker GJAS
(Buschmann et al., 2010), capillary/venous marker PLVAP (Guo et al., 2016) and venous marker
ACKR1, along with antibody staining for pan-endothelial marker CD31 in 18 w fetal tissue (Figure
21-2K). In vivo analysis revealed mutually exclusive GJA5+ arterial and ACKR7+ venous blood
vessels that co-localized with CD31+ (Figure 2I). We also observed PLVAP+/CD31+
capillary/venous cells that did not colocalize with GJAS probe (Figure 2K). Taken together, these
data explore and confirm endothelial cellular heterogeneity in the developing fetal pancreas.

When investigating cellular communication among pancreatic endothelial populations, we
found that NOTCH signaling scored among the highest pathways in our CellChat analysis.
NOTCH signaling has previously been shown to be a critical regulator of endothelial specification
(Akil et al., 2021) but its role in fetal pancreatic endothelium has yet to be described. We found
that the arterial populations 1, 2, and 3 scored the highest as “Senders” of NOTCH ligands, while
the Arterial_1 and Angiogenic Tip Cell populations scored the highest as “Receivers” (Figure 2L).
When assessing the contribution of each ligand-receptor pair, we observed that the
JAGGED1(JAG1)-NOTCH4 pair was predicted to make the highest contribution to NOTCH
signaling within our endothelial dataset (Figure 2M). NOTCH ligand JAG1 has been implicated
as a pro-angiogenic molecule that is capable of counteracting the anti-angiogenic effects of Delta-
Like Canonical Notch Ligand 4 (DLL4)-NOTCH signaling in mice (Benedito et al., 2009). Within
our dataset, the arterial populations were scored highest as “Senders” of the JAG1 ligand, with
both the Angiogenic Tip cell and Arterial_1 population predicted as “Receivers” (Figure 2N).
These data suggest that pancreatic arterial cells may maintain angiogenic tip cell fate through
NOTCH signaling mediated by the pro-angiogenic molecule JAG1.

Heterogeneity was also discovered within the remaining Broad Groups. In the exocrine

compartment, for instance, we observed CFTR-expressing ductal cells (clusters 2.0, 2.1.0 and


https://doi.org/10.1101/2022.02.17.480942
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.17.480942; this version posted February 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.1.1) (Hyde et al., 1997). In addition, three sub-clusters of acinar cells appeared to represent a
continuum of maturation states, characterized by varying degrees of expression of digestive
enzymes (clusters 1, 3.0, and 3.1) (Figure S2B). We annotated Exocrine clusters 0.0 and 0.1 as
pre-acinar and pre-ductal cells, respectively, based on their displaying gene expression profiles
most highly correlated to acinar and ductal cells, respectively (data not shown); these may
represent tip and trunk cells that eventually give rise to the differentiated exocrine tissue (Zhou et
al., 2007). In the Neuronal Broad Group, we identified clusters representing myelinating Schwann
Cells (clusters 0.0, 0.1, and 0.2), as well as peripheral nerve subtypes expressing various
neurotransmitters such as VIP, NPY and NOS1 (clusters 1.0.0, 1.0.1, 1.1.0, 1.1.1 and 1.2) and
proliferating neuronal cells (clusters 2.0.0, 2.0.1, 2.1.0, 2.1.1, 2.2) (Figure S2C). In the Immune
Broad Group, we identified 16 lymphoid lineage populations, including T cells, B cells, and NK
cells. We also identified 15 myeloid lineage populations, including neutrophils, monocytes,
macrophages, and mast cells (Figure S2D). The proportion of myeloid and lymphoid lineage cells
remained relatively stable from 8 w to 12 w, while a substantial increase in the proportion of
lymphoid cells was observed at 16 w, possibly due to the infiltration of blood B cells (data not
shown).

Next, we deployed the CellChat algorithm (Jin et al., 2021) to interrogate the incoming
and outgoing signaling pathways active among all subtypes of each Broad Group (Figure S2E-
S2F). The Midkine (MK), pleiotrophin (PTN), and RESISTIN pathways were the top 3 most highly
scored both for the incoming and the outgoing signaling. Previous studies in mice revealed the
fundamental function of VEGF signaling in islet vascularization and vessel architecture (Azizoglu
et al., 2016; Zanone et al., 2008) CellChat predicted that in the developing human fetal pancreata,
VEGF signaling was strictly sensed by endothelial cells (receivers), and secreted by epithelial
cells and VEGF signaling cross talk was also observed between pancreatic mesenchyme,
epithelium (senders) and endothelial cells (receivers), suggesting that mesenchymal and

epithelial cells promote vascular modeling through the secretion of VEGF in the fetal human
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pancreas, paralleling murine development. In addition, mesenchymal cells were found to produce
a variety of paracrine factors, including WNT and FGF ligands (Figure S2F), which are critical for
endothelial or epithelial development (Ye et al., 2005). CXCL signaling secreted from the
endothelial Broad Group was predicted to act on a wide range of immune cell types, including
monocytes, macrophages, and DCs (Figure S2E-S2F). Taken together, these coordinated
signaling interactions across cell types attest to the significance of cell-to-cell communication in
human fetal pancreas organogenesis and provide a framework for future studies involving

heterotypic cellular signaling in the human fetal pancreas.

Discovery and Characterization of Novel Human Endocrine Progenitor Cell Populations

Diabetes mellitus is one of the most common endocrine disorders worldwide, affecting
hundreds of millions of individuals across the globe (Saeedi et al., 2019). Mapping the cellular
and molecular landscape during human endocrine development is a critical step for improving
stem cell-derived therapies for diabetes. CellFindR permitted the identification of four hormone-
expressing endocrine clusters in the human fetal pancreas, distinguished by the expression of
INS in beta cells (cluster 0; 6,700 cells), GCG in alpha cells (cluster 1; 3,388 cells), SST in delta
cells (cluster 3; 1,554 cells), and GHRL in epsilon cells (cluster 4; 909 cells) (Figure 3A-B).

CellFindR also annotated a remaining fifth endocrine cluster, cluster 2, which we classified
as a putative endocrine progenitor (EP) cell population based on its specific expression of
NEUROGS3 and lack of hormone expression (Figure 3A-3B). CellFindR further sub-clustered
cluster 2 into four sub-clusters: 2.0.0 (453 cells), 2.0.1 (450 cells), 2.1.0 (421 cells), and 2.1.1
(356 cells), resulting in a final endocrine dataset comprised of eight clusters (Figure 1H, Figure
3A). These results reveal heterogeneity within the progenitor pool of the human pancreatic
endocrine compartment.

To test the hypothesis that the four subclusters of cluster 2 indeed represented biologically

distinct endocrine progenitor states, we utilized the R package Slingshot (Street et al., 2018) to
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perform lineage reconstruction and pseudotemporal ordering of all endocrine cells from all
developmental timepoints (Figure 3C). Lineage reconstruction revealed a bifurcated trajectory in
which cells from cluster 2.1.0 were ordered at the beginning of pseudotime; we henceforth refer
to this cluster as the Common Endocrine Progenitor (CEP) population. Cluster 2.1.1 (henceforth
referred to as the Pre-Alpha/Pre-Epsilon population) followed the cEP cluster in pseudotime and
itself served as a further bifurcation point, leading to either the Alpha Cell or Epsilon Cell clusters
(Figure 3A, 3C). Along an alternative branch, cEP cells were followed in pseudotime by cluster
2.0.1, which expressed the highest levels of the gene FEV (Figure 3C, 3E), a transcription factor
we and others previously identified as a marker of a novel EP cell state during murine endocrine
development (Bastidas-Ponce et al., 2019; Byrnes et al., 2018; Yu et al., 2019b). This highly FEV-
expressing cluster, henceforth referred to as the FEV High population, was followed in
pseudotime by cluster 2.0.0 (henceforth referred to as the Pre-Beta population), terminating at
the Beta Cell cluster. The reconstruction by Slingshot positioned the FEV High population as a
progenitor of delta cells, as well as beta cells (Figure 3C). Additionally, Pearson correlation
analysis among the endocrine populations revealed high correlation of the EP populations cEP,
Pre-Alpha/Pre-Epsilon, and FEV High with one another, while the Pre-Beta population was
closest correlated with the Beta population (Figure S3B). These data predict that the lineage
trajectories in human endocrine development are distinct from those reported in mouse and
human development (Bastidas-Ponce et al., 2019; Byrnes et al., 2018; Yu et al., 2019b, 2021)
To assess how each of these distinct endocrine cell states varied across developmental
time, we quantified their population dynamics across developmental time. Each of the four EP
populations was present in every biological scRNA-seq sample, across all timepoints sampled
(Figure S3A). The relative proportion of each of the EP populations was highest at 8 w (cEP,
12.8%; Pre-Alpha/Pre-Epsilon, 11.0%; FEV High, 12.4%; Pre-Beta, 10.2% of all endocrine cells),
then decreased as developmental time progressed to reach their lowest levels at 20 w (cEP,

2.2%; Pre-Alpha/Pre-Epsilon, 1.6%; FEV High, 1.8%; Pre-Beta, 2.1% of total endocrine cells)
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(Figure 3D), consistent with the model that they represent progenitor populations. In contrast, the
proportion of beta cells in the developing pancreas steadily increased across developmental time
(24% of all endocrine cells at 8 w; 60% at 20 w). The proportion of alpha, delta and epsilon cells
remained relatively stable from 10 to 20 w at proportions approximating those reported in human
adult islets (Da Silva Xavier, 2018). These data are consistent with a model whereby the pool of
more differentiated endocrine cells increases over developmental time at the expense of a
dwindling progenitor pool. These data further support the hypothesis that the four endocrine cell

subclusters represent novel endocrine progenitor populations in the human fetal pancreas.

Transcriptional Regulation of Human Pancreatic Endocrine Development

To identify the transcriptional features that distinguish each endocrine cell population, we
performed a series of analyses. First, we conducted differential gene expression analysis across
all eight endocrine clusters by comparing each cluster against all other clusters, resulting in a total
of 858 genes with at least 0.5 log2 fold change in expression (Figure S3C). Of these 858
differentially expressed genes (DEGs), the majority were most highly expressed by the EP
populations (643 genes). Pre-Beta (n = 73 genes) and FEV High (n = 163 genes) clusters
expressed genes associated with neuronal development (TUB1A1, NNAT by Pre-Beta; FEV by
FEV High) (Aiken et al., 2017; Kanno et al., 2019; Krueger and Deneris, 2008), while the cEP
cluster expressed genes (n = 239) associated with mRNA processing and chromatin remodeling
(SRSF3, RBMX) (Ajiro et al., 2016; Zhou et al., 2019), potentially representing dynamic priming
of gene expression needed for endocrine differentiation. Pre-Alpha/Pre-Epsilon cells also
expressed genes (n = 168) associated with neuronal development and RNA processing (Figure
S3C). Pathway analysis of the differentially-expressed genes corroborated these findings,
revealing that enriched pathways included those annotated as being involved in neuronal

development (Pre-Alpha/Pre-Epsilon) and endocrine function (Pre-Beta) (Figure S3D).
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Among hormone-producing cells, DEGs expressed by the Beta Cell population (n = 27
genes) included genes poorly characterized in beta cells (LMO2, ASPH), as well as known
markers of beta cell identity (INS) (Wang et al., 2007) and function (IAPP, SLC30A8, PCSK1)
(Pound et al., 2009); (Taylor et al., 2020); (Ramzy et al., 2020) (Figure 3E). Alpha Cells (n = 37
genes) expressed both known alpha cell-related genes, (IRX2, TTR), as well as genes whose
function in alpha cells is not well characterized, such as EDN3, SPINT2, and CDNK1C. Delta
Cells (n = 23 genes) highly expressed markers of delta cell identity (SST) and genes encoding
peptides with known endocrine function (NPW, CRH) (Mondal et al., 2006); (Childs et al., 1995)
(Figure 3E). Of the four hormone-expressing cell types, Epsilon Cells had the highest number of
DEGs detected (n = 127 genes), including genes associated with epsilon cell identity and function
(GHRL), and genes involved in cellular signaling (FGF12, FGF1) (Figure 3E). The enriched
pathways in the hormone-expressing populations included Insulin Processing (Beta Cells),
Retinoic Acid Signaling (Alpha Cells) and ATF-2 Transcription Factor Network signaling (Epsilon
Cells) (Figure S3D). Together, these data describe differentially expressed transcriptional
programs and enriched signaling pathways within each human pancreatic endocrine population.

We next set out to focus specifically on differentially-expressed transcription factors (TFs),
as they are critical regulators of cell fate determination (Conrad et al., 2014; Jennings et al., 2015).
We identified 108 TFs that were differentially expressed across the endocrine lineage (Figure
S3C). cEP cells displayed highest expression of NEUROGS3 targets NKX2-2, NEUROD1, and
INSM1 (Breslin et al., 2007; Churchill et al., 2017; Gasa et al., 2008), as well as TFs involved in
Hippo-YAP signaling (TEAD2) and Notch signaling (RBPJ and HES6), consistent with previous
evidence in mice that Notch activity is critical for maintenance of endocrine progenitor cell fate
(Murtaugh et al., 2003) (Figure S3C). The cross-inhibitory interactions between Pax4 and Arx
promote the acquisition of beta cell or alpha cell fate during murine endocrine development
(Collombat et al., 2003). Similarly, we found that the FEV High and Pre-Beta EP populations

expressed high levels of PAX4, whereas the Pre-Alpha/Pre-Epsilon EP cluster showed elevated
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levels of ARX expression during human pancreas development. Expression of the TF NKX6.1, a
crucial regulator of beta cell fate (Schaffer et al., 2013), was enriched in the FEV High and Pre-
Beta populations. Moreover, the highest expression of beta cell regulators PDX1 (Gao et al.,
2014), MNX1 (Pan et al., 2015), and PAX6 (Swisa et al., 2017) appeared in the Pre-Beta but not
in the FEV High EP cells, suggesting that these genes may play a functional role in beta cell fate
restriction. We also identified TFs that were specifically expressed in a specific EP cell type, such
as TOX3 (ceP), SIM1 (Pre-Beta), and POU2F2 (Pre-Alpha/Pre-Epsilon) (Figure S3C). These
results provide a rich dataset of transcription factors that warrant further study in developing
human endocrine cells.

We next aimed to compare the gene expression profiles among the four sub-clustered EP
populations to identify which genes had driven their distinction by CellFindR. Pairwise comparison
of Pre-Beta vs. FEV High cells revealed higher expression of genes associated with beta cell
maturation and function (MAFB, PCSK1N, GNAS) in the Pre-Beta cluster, while the FEV High
cluster showed higher expression of genes such as FEV and HES6 (Figure S3E). Comparison
of the cEP vs. Pre-Alpha/Pre-Epsilon clusters uncovered higher expression in cEP cells of genes
such as SOX4, which cooperates with Neurog3 to regulate endocrine induction in the murine
pancreas (Xu et al., 2015). In contrast, Pre-Alpha/Pre-Epsilon cells more highly expressed genes
associated with differentiated endocrine cells, such as ARX, ISL1 and GHRL. The results from
these pairwise comparisons corroborate our hypothesis, based on lineage reconstruction, that the
EP populations represent distinct cell states that are pre-committed to one or more hormone-
producing cell fates. Taken together, these data have enabled the construction of a model of
human endocrine lineage specification and the identification of novel genes governing cell fate

decisions during human fetal development.

Elucidating Active Regulons Governing Endocrine Cell Fate
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To identify TFs that show functional evidence of characteristic downstream activity within
distinct cell populations, we utilized the R package SCENIC (Single Cell rEgulatory Network
Inference and Clustering). This method scores TF activity based on the collective expression of
a given TF and its direct gene targets (together referred to as a “regulon”), thus identifying at
single-cell resolution the gene regulatory networks (GRNs) that are likely to govern human
endocrine cell fate decisions (Aibar et al., 2017). SCENIC analysis identified a total of 256 active
regulons across the eight endocrine populations, with hierarchical clustering grouping the
hormone-expressing populations as most similar to one another and the EP populations most
similar to one another based on regulon activity (Figure S3F). Specifically, highly scored regulons
consisted of known regulators governing endocrine differentiation, such as the MAF family of TFs
(MAF, Beta cells; MAFG, Alpha cells), NKX6.1 (Pre-Beta), and ISL1 (Delta) (Figure 3F).
Importantly, SCENIC also determined active regulons not present in our original TF list generated
by DE analysis. These active regulons included those involved in WNT signaling (TCF4, Beta
cells; TCF12, cEP) as well as the ETS family of TFs (ETS1, Epsilon; ETS2, Pre-Beta). We found
that the activity score of the FEV regulon was the highest in the FEV High population, pointing to
a potential functional role of the TF FEV in regulating beta cell fate. Taken together, our data

predict “active” TFs (regulons) governing human pancreatic endocrine development.

Cell-Cell Communication Among Human Endocrine Cells

Heterotypic cellular signaling, mediated by factors such as WNT, FGF and EGF, is
essential for the proper formation of epithelial cells in the murine pancreas (Bhushan et al., 2001;
Miettinen et al., 2000; Sharon et al., 2019). We further analyzed the signaling pathways identified
by CellChat to determine which might play a role in human endocrinogenesis. We observed little
evidence of cellular signaling incoming to the endocrine compartment through the WNT, FGF, or
EGF signaling pathways (Figure S2D). However, ACTIVIN signaling was specifically activated in

the epithelium, including the four EP populations in the Endocrine Broad Group, as well as the
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Pre-Acinar, Pre-Ductal and proliferating exocrine populations in the Exocrine Broad Group
(Figure S2D). Given the role of Activin signaling in guiding pancreatic morphogenesis and
endocrine differentiation in mice (Zhang et al., 2004), we next investigated which ACTIVIN ligand-
receptor pair contributed to signaling within the fetal human pancreas. We found that interaction
between INHBA (an ACTIVIN ligand) and ACVR1B/ACVR2B (ACTIVIN receptors) was the sole
ligand-receptor pair identified as significant (Figure 3G). Unexpectedly, among all 103 cell types
in the developing human pancreata, the Mature VSM cluster within the mesenchymal
compartment was identified as serving as the sole source of INHBA ligand, suggesting that
Mature VSM plays a role in human fetal endocrine differentiation (Figure S2E, 3G). Our results
predict that pancreatic endocrinogenesis in humans depends on signal input from the

mesenchymal niche environment.

Confirmation of Novel Endocrine Progenitor Populations /n Vivo

To confirm the findings of EP cell heterogeneity that had emerged from the scRNA-Seq
data, we first set out to identify genes or combinations of genes that could serve as specific
markers of each of the four EP populations. Manual curation of top differentially-expressed genes
across EP cells identified Sushi Domain Containing 2 (SUSD2), LIM Homeobox Transcription
Factor 1 Beta (LMX1B), Peripherin (PRPH), and Aristaless-Related Homeobox (ARX) as highly
enriched in the cEP, FEV High, Pre-Beta, and Pre-Alpha/Pre-Epsilon EP populations, respectively
(Figure 4A-4B). Among these four genes, SUSD2 has previously been broadly described to label
NEUROGS3 expressing EP cells in the developing human pancreas (Liu et al., 2014; Ramond et
al.,, 2017). ARX is an important regulator of alpha cell fate (Itoh et al., 2010) that has not been
described to mark human Pre-Alpha/Pre-Epsilon EP cells. LMX1B and PRPH are novel markers
labeling sequential progenitor states during human beta cell development.

Once markers of each of the four novel EP subtypes had been identified, we next validated

the existence of each EP cell state in vivo by performing multiplexed in situ hybridization (ISH)
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and immunofluorescence (IF) staining on independent human fetal pancreata at 8, 12, and 18 w.
ISH was performed for each putative marker gene alongside the pan-EP marker NEUROG3 and
combined with IF staining for the pan-differentiated endocrine cell marker CHGA. When staining
tissues to validate the presence of the cEP population, we found five unique cell states based on
their expression with the combination SUSD2/NEUROG3/CHGA (Figure 4C-4D). As predicted
by our scRNA-Seq analysis, we detected putative CcEP cells, characterized as
SUSD2*NEUROGS3*CHGA" (23.7% at 8w, 9.8% at 12w, 2.1% at 18w) (Figure 4C-4D). The same
experimental and quantification approaches were adopted to validate the existence of the other
three EP types. Thus, we observed the presence of LMX1B*NEUROGS3" (putative FEV High EP
cells; 20.2% at 8w, 16.7% at 12 w, 3.6% at 18 w), PRPH NEUROG3" (putative Pre-Beta EP cells;
12.6% at8w, 9.3% at 12w, 2.5% at 18 w), and ARX"NEUROG3" (putative Pre-Alpha/Pre-Epsilon
EP cells; 2.2% at 8 w, 4.9% at 12 w, 1.1% at 18 w) cells that were also negative for CHGA (Figure
4E-4J). All four EP populations were detected in nine independent biological samples of pancreas
tissue.

To assess the exclusivity of the four putative endocrine progenitor populations, we next
performed multiplexed ISH staining at 8w to detect markers of all four EP cell types
simultaneously; we found the expression of genes predicted to specifically mark each EP
population indeed showed mutual exclusivity in situ (Figure S4A). Moreover, the relative
prevalence of all four EP populations decreased over developmental time (Figure 4D, F, H, J),
consistent with the characterization of these populations as progenitor populations. Collectively,
these results confirmed the presence of the novel EP subtypes in the developing human pancreas
as predicted by computational analysis of the scRNA-seq data.

Our CellFindR inferences identified FEV as a marker for both FEV High and Pre-Beta EP
populations (Figure 4A). Given that we previously had identified Fev as a marker of endocrine
progenitor cells in the murine pancreas (Byrnes et al., 2018; Yu et al., 2019b), we assessed the

dynamics of FEV expression in the human fetal pancreas. Consistent with our scRNA-Seq data,
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the percentage of FEV'*NEUROG3" double positive cells (marking FEV High or Pre-Beta EP cells)
decreased over developmental time (13.4% at 8 w, 5.9% at 12 w, 2.8% at 18 w) (Figure S4B).
We also observed a significant rise in FEV'CHGA™ double positive cells in 18 w tissue compared
to 12 w and in 12 w tissue compared to 8w (Figure S4B). Further investigation revealed that FEV
expression localized to GCG-expressing alpha cells, but not INS-expressing beta cells, at 18 w
(Figure S4C). This observation agrees with previously published reports that in adult human
islets, FEV is exclusively expressed in the alpha cells (Camunas-Soler et al., 2020; Muraro et al.,
2016; Segerstolpe et al.,, 2016). Along the beta cell lineage trajectory, FEV expression was
detected in the FEV High and Pre-Beta populations, but absent in differentiated beta cells
themselves. In contrast, along the alpha cell lineage, FEV was expressed in differentiated alpha
cells themselves but not in their progenitors (Figure 4A-4B, S4D). These results demonstrate
regulation of FEV expression during human endocrine development and suggest a dynamic and

lineage-specific role in regulating alpha vs. beta cell fate and/or function.

Single-nucleus ATAC-Seq of Human Fetal Endocrine Cells Reveals Dynamic Chromatin
Accessibility

Recent advances in single-cell technologies have allowed for the integration of multi-omic
single-cell data, leading to new insights into developmental biology (Buenrostro et al., 2018; Lake
et al.,, 2018; Ranzoni et al., 2021). We set out to gain an understanding of the epigenetic
mechanisms upstream of gene expression that are important in governing cell identity during
endocrine development. To this end, we performed snATAC-Seq on human fetal pancreas using
the 10x Genomics Chromium Next GEM Single Cell ATAC v1.1 platform. To increase the
resolution for endocrine cell types, we enriched for EPCAM+ epithelial cells in 12-week fetal
pancreas, a particularly active time of cell expansion and diversification (Figure 5A). Filtering,
dimensional reduction, initial clustering, and analysis steps were performed with the R package

ArchR(Granja et al., 2020), resulting in a final dataset comprising 6,010 nuclei with a median of
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31,835 fragments captured per nucleus (data not shown). Among these nuclei, 1,754 were
classified as belonging to endocrine cells (Figure 5A) based on the Gene Score Matrix
(accessibility of gene body plus promoter) of CHGA.

Next, we integrated our endocrine snATAC-Seq and scRNA-Seq datasets to perform
multi-omic analysis in the same cell types. Each cell in the shATAC-Seq dataset was correlated
with its most similar counterpart in the scRNA-Seq dataset by correlating the Gene Score Matrix
with the scRNA-Seq expression matrix (RNA transcript counts) on a per-cell basis (Figure 5A).
Once these highly correlated pairs were found, the snATAC-Seq data from each cell were
associated with the corresponding cell type label and RNA expression matrix. Of note, transfer of
a cell label was not forced if the inferred gene score from snATAC-Seq data did not correlate with
gene expression in any of the cells within the scRNA-Seq dataset. Our integration analyses
allowed the identification of eight endocrine populations in the snATAC-Seq dataset, including the
four newly identified EP populations (cEP, FEV High, Pre-Beta, and Pre-Alpha/Pre-Epsilon) and
four hormone-expressing populations (Figure S5A). The Gene Score of the EP marker genes
identified by scRNA-Seq analysis showed high concordance with their corresponding RNA
expression levels (Figure S5B), confirming the existence of EP cell states using single nucleus
chromatin accessibility analysis. Due to the low numbers of nuclei within each individual EP
subpopulation, we merged all four of the EP populations into one single cluster, resulting in a final
dataset of 5 clusters, consisting of Alpha (373 nuclei), Beta (608 nuclei), Delta (273 nuclei),
Epsilon (160 nuclei), and pooled Endocrine Progenitor cells (340 nuclei) (Figure 5B). These data

provide further confirmation of the discovery by scRNA-seq of four EP cell states, using an

orthogonal method of snATAC-Seq.
To identify regions of accessible chromatin in the various cell types, we used the peak
calling algorithm MACS2(Zhang et al., 2008). Among the 190,995 peaks aggregated across all

five populations, 40,635 peaks were differentially accessible on a per-cluster basis (data not
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shown). As expected, the local chromatin of hormone genes INS, GCG, SST, and GHRL
exhibited differential accessibility across all populations (Figure 5C). To calculate motif deviations
(predicted TF activity) on a per-cell basis across all endocrine cells, we used chromVAR(Schep
et al., 2017) and then correlated the deviation scores with the integrated RNA expression matrix
to identify “positive” TFs for which expression was highly correlated with motif accessibility. This
analysis identified a list of 49 “positive” TFs (Figure S5C), including known regulators of endocrine
differentiation such as NEUROG3, MAFA, TCF family TFs (TCF3, TCF4, TCF12, TCF15) and
PDX1, as well as TFs that warrant further functional studies, such as PLAGL1 and CUX1. We
then compared the 49 “positive” TFs from this multi-omic analysis with the 253 “active” TFs
previously inferred by SCENIC analysis. We found that 21 of the TFs were overlapping, including
MAFA, TCF4, and RFX5, suggesting critical regulatory roles in the developing human pancreas
(data not shown).

To identify transcription factors across the endocrine lineages that might be governing cell
fate decisions, we performed lineage trajectory inference among the snATAC-Seq endocrine
populations and applied the same “positive” TFs determination method as above along each
lineage (Figure 5D). We observed robust changes in chromatin accessibility across the Beta,
Alpha, Delta, and Epsilon trajectories, and identified “positive” TFs that may drive the specification
of each hormone-expressing endocrine cell population (e.g., PLAGL1 in the Beta lineage). Taken
together, our multi-omic analyses identified TFs with potential functions in orchestrating chromatin

accessibility and mediating endocrine differentiation.

Identification of Development-specific Type 2 Diabetes GWAS Risk Loci

In contrast to Type 1 Diabetes (T1D) were the majority of genetic association signals exert
their effect through the immune system (Kim et al., 2021), there is compelling evidence
fromphysiology (De Franco, 2020; Dimas et al., 2014) and epigenomics (Thurner et al., 2018) that

pancreatic islets are a key tissue mediating a large proportion of the genetic risk for type 2
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diabetes (T2D). T2D is a complex disease with multiple associated genetic risk loci identified
through genome-wide association studies (GWAS) have identified >700 signals (Mahajan et al.,
2018), the majority of which signals are located in non-coding regions of the genome with a
presumed regulatory function (Mahajan et al., 2018). Gene discovery efforts for monogenic forms
of diabetes attest to the importance of transcription factors involved in pancreatic development
for normal glucose homeostasis (De Franco, 2020). Since gene regulation is highly context-
specific, we hypothesized that defects in islet cell development could emerge earlier in the cell
lineage in progenitor cells and that some of the regions of chromatin more accessible during
development would overlap with T2D risk loci. Therefore, a comparison between human fetal
endocrine and adult islet cells would present a unique opportunity to identify signals specific to
endocrine development.

We compared chromatin accessibility in cells from our 12 w fetal endocrine dataset with
snATAC-Seq data from adult human islets (Chiou et al., 2021b), focusing on differences between
(a) adult vs. fetal beta cells and (b) adult hormone-positive cells vs. fetal EPs. We identified
146,589 differentially accessible peaks between adult and fetal beta cells, with the majority of
peaks accessible in fetal beta cells (129,937 peaks) compared to adult (16,652 peaks). Next, we
investigated whether T2D-risk alleles in fine-mapped credible sets at 380 loci (Mahajan et al.,
2018) were differentially accessible in fetal vs. adult beta cells. We identified 34 loci that were
enriched within the differential peaks in fetal beta cells including known development-specific
endocrine regulatory genes such as NEUROGS3 (Figure 5E-5F). We also identified loci containing
genes not annotated to have a functional role in endocrine development, such as LRFN2, a gene
involved in neurite outgrowth in the brain (Li et al., 2018) where fine-mapping has previously
resolved the casual variant to a single SNP (Mahajan et al., 2018) (Figure 5G). A similar analysis
comparing adult hormone-positive cells (11,242 differentially accessible peaks) vs. fetal EPs
(98,334 differentially accessible peaks) identified significant peaks at 27 T2D loci (Figure S5E),

including the monogenic diabetes gene HNF1B (Raile et al., 2008) and WDR72, a gene involved
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in endocytic vesicle trafficking mediated enamel mineralization (Katsura et al., 2014) that has no
reported function in endocrine development or function (Figure S5F-G). These results provide a
framework for identifying cell-type, developmental-stage specific T2D genetic risk loci, thus
generating mechanistic insights into the regulatory mechanisms of T2D-associated SNPs in the

context of human pancreas development.

Benchmarking In Vitro Stem Cell-derived Endocrine Cells against /In Vivo Human Fetal
Endocrine Differentiation

Taken together, our analyses thus far permitted the construction of a cellular and
transcriptional roadmap of human fetal endocrine differentiation, elucidating cellular
heterogeneity, inferred lineage relationships, and candidate cell fate regulators. This presented
an opportunity to benchmark in vitro beta cell directed differentiation protocols against human
fetal development in vivo. Current in vitro protocols for generating stem cell-derived beta-like cells
entail the differentiation of hPSCs through a step-wise process, first to definitive endoderm, then
to primitive gut tube, then the pancreatic progenitor stage, followed by an endocrine progenitor
stage, and finally terminating in insulin-expressing beta-like cells (BLCs) (Figure 6A) (Millman et
al., 2016; Pagliuca et al., 2014; Veres et al., 2019). We performed a comparative analysis of a
recently published scRNA-Seq dataset generated at high temporal resolution of hPSCs
undergoing directed differentiation to beta-like cells, specifically at the endocrine progenitor (stage
5) and beta-like cell (stage 6) stages (Veres et al., 2019), against our fetal endocrine scRNA-Seq

dataset.

First, we sought to determine whether the cellular populations generated in vitro are
analogous to the populations we observed during human fetal development (Figure 3A). Veres
et al. identified nine stem cell (sc)-derived endocrine populations that arise during the 7 days of

culture at the endocrine progenitor stage (stage 5): Neurog3+ progenitors (sc_Neurog3 Early,
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Mid, and Late), differentiated cell types (sc_Alpha, sc_Beta, and sc_SST_HHEX (Delta)), as well
as three populations that presumably represent mis-differentiated cell types (sc_Enterochromaffin
(sc_EC), sc_Phox2a, and sc_FEV_High_ISL1_Low) (Figure 6B). We utilized the supervised cell
type classifier scPred (Alquicira-Hernandez et al., 2019) to train a prediction model using our
human fetal endocrine scRNA-Seq dataset as the reference and then apply this classifier to the
stage 5 endocrine cells (Figure 6B). The scPred classifier annotated the stage 5 sc_Beta and
sc_Alpha populations as largely beta (78%) and alpha (65%) in identity, respectively, while the
sc_SST_HHEX population was annotated as a mixture of alpha, beta, epsilon and delta cells,
with the highest proportion (28%) of cells annotated as delta identity (Figure 6C). scPred
classified the sc_Neurog3_Early cluster largely (80%) as the cEP population found in the fetal
pancreas, while the sc_Neurog3_Mid cluster was classified as a mixture of mostly cEP (43%) and
FEV High (32%) progenitors and sc_Neurog3_Late was largely classified as either the FEV High
(37%) or Pre-Beta (39%) (Figure 6B-6C, Figure S6A). Similarly, Pearson correlation of all shared
genes between the fetal and in vitro clusters confirmed that the four in vitro endocrine progenitors
showed highest correlation with the fetal progenitors (Figure 6D). These results indicate that the
transcriptional profiles of endocrine progenitor cell types found in vitro are largely similar to those
of endocrine progenitor cell types found during human fetal development. The sc_EC and
sc_Phox2a populations, which represent mis-differentiated cell types, were largely classified as
the Pre-Beta (71% and 56%, respectively), likely due to the shared transcriptional networks found
between pancreatic endocrine cells and enteroendocrine cells of the gut (Griin et al., 2015; Haber
et al., 2017; Lavergne et al., 2020). The sc_FEV_High_ISL1_Low population had no clear
classification, indicating that it does not appear to correspond to a pancreatic endocrine
population present in vivo and instead likely represents an artifact of the in vitro culture platform.
Taken together, our work demonstrates key similarities of in vitro derived human EPs and BLCs
to normal development, as well as identifies the generation of cell types not found in normal

development
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When re-examining in vitro lineage relationships within the framework of the trained cell
type classifier, we observed that beta cell differentiation in vitro occurs in a manner largely similar
to endogenous human fetal development (Figure 6E). Veres et al. showed that stage 5
sc_Neurog3_Late endocrine cells can give rise not only to sc_Beta cells, but also to sc_EC cells,
which resemble serotonin-secreting cells found in the gut (Veres et al., 2019). As the sc_EC
population constitutes a large portion of the cells produced at the completion of the directed
differentiation protocol (Figure 6B, Figure S6B), understanding transcriptional mechanisms that
regulate their formation would aid in driving the progenitors at the previous endocrine progenitor
stage to differentiate into beta cells over this unwanted population. To identify such mechanisms,
we performed differential gene expression analysis among cell types along the beta cell lineage
in vivo (cEP, FEV High, Pre-Beta, Beta) and in vitro (sc_Neurog3_Early, sc_Neurog3_Late,
sc_Beta), as well as the sc_EC population (Figure 6F). This analysis resulted in 1,298 DEGs with
at least 0.5 logFC in expression among all populations, 98 of which are TFs. TFs enriched in the
sc_EC population included MNX1, while those enriched in the sc_Neurog3 Late population
included IRX2, FEV, and ASCL2. The fetal Pre-Beta and FEV High populations showed higher
expression levels of beta cell-related TFs such as PAX6, PEG3, and MEIS2 (Figure 6F). The
fetal beta population was enriched for MAFA and PLAGL1, while the sc_Beta population was
enriched for expression of ONECUT2, ISL1, FOXO1 and MAFB. In future work, inducing the
expression of beta cell lineage genes in the in vitro terminal progenitor population
(sc_Neurog3_Late) may reduce or prevent the formation of these undesired, mis-differentiated

cell types and improve overall efficiency of BLC generation in vitro.

We next set out to determine the transcriptional differences between hormone-producing
endocrine cells generated in vitro vs. in vivo by comparing in vitro-derived endocrine cells at the
final stage of differentiation, stage 6, to their fetal counterparts. Data generated by Veres et al. on

stage 6 cells were sampled weekly from the same differentiation flask (week 0 — week 5). Our
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fetal cell type classifier classified the sc_Beta and sc_Alpha hormone-expressing cell types largely
as their fetal counterparts, while the sc_Neurog3 and sc_EC populations were again classified as
fetal endocrine progenitor populations cEP (sc_Neurog3) and FEV High/Pre-Beta (sc_EC)
(Figure S6B). In vitro beta cells sampled at the beginning of stage 6 (weeks 0 and 1) were
correlated most highly with the fetal Pre-Beta population as opposed to fetal Beta cells, confirming
that early stage 6 beta cells more closely resemble progenitors than differentiated beta cells and
that maturation from a progenitor to a more fetal state indeed occurs over time in culture (Figure
S6C). Differential gene expression analysis between in vitro and fetal beta cells revealed
enrichment of genes such as MEG3, PLAGL1, INS, and MAFA in the fetal beta cell population
compared to its in vitro counterpart, with ISH staining against MEG3 (You et al., 2016) further
confirming this observation (Figure S6D-S6E). Although in vitro beta cells showed higher
expression of beta cell maturation genes HOPX and IAPP (Augsornworawat et al., 2020; Hrvatin
et al., 2014), they also showed higher expression of beta cell progenitor markers such as FEV
and PAX4 (Byrnes et al., 2018), as well as neuronal-associated genes such as DDC (Figure
S6D). Thus, in vitro-derived beta cells more closely resemble fetal beta cell progenitors in the first
3 weeks of stage 6 culture before gradually more closely resembling fetal beta cells, expanding
upon a previous report stating that they are more fetal-like than adult (Hrvatin et al., 2014). These
results highlight the value of our dataset comprising intermediate progenitor populations at single-
cell resolution in enabling the more precise mapping of in vitro-derived populations to their

endogenous counterparts.

Next, we compared in vitro-derived alpha cells to their fetal counterparts and found high
concordance between the two populations, irrespective of the week in culture (correlation
coefficient > 0.88 at all timepoints) (Figure S6C). Differential gene expression analysis between
the two alpha cell populations again revealed the enrichment of neuronal associated genes in the

in vitro condition, but we observed similar expression of key alpha cell-related genes such as
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ARX, IRX2, GCG, TTR and FOXAZ2 between the in vitro and alpha fetal cells (Figure S6F). These
results suggest that in vitro-derived alpha cells closely resemble fetal alpha cells in expression of
key alpha cell fate regulators, despite the fact that the differentiation protocol was optimized for

the generation of beta cells (Pagliuca et al., 2014; Veres et al., 2019).

A Functional Role for FEV in Regulating Human Endocrine Differentiation

Our analysis of the developing human endocrine pancreas identified FEV as an enriched
marker of two of the EP populations within the beta cell lineage (FEV High, Pre-Beta) (Figure 4A,
Figure S3C). Previous genetic ablation studies in the developing murine pancreas demonstrated
that global knockout of the transcription factor Fev leads to reduced insulin production and
secretion, as well as impaired glucose tolerance in adult mice (Ohta et al., 2011). The role of FEV
in regulating human pancreas endocrine development, however, is still unknown. We set out to
interrogate whether FEV is simply a marker of pre-beta cell populations or it itself has a functional
role in endocrine development in human cells. To evaluate whether our in vitro stem cell
differentiation platform could serve as a model for assessing FEV function in human endocrine
development, we first asked whether the dynamics of FEV expression in vitro recapitulated those
in vivo. FEV mRNA expression was first detected during the pancreatic endocrine progenitor
stage (stage 4) and peaked during the endocrine progenitor stage (stage 5) (Figure S7A) during
the differentiation. As in human fetal beta cell differentiation, FEV expression co-localized with
NEUROGS3 at the endocrine progenitor stage (Figure S7B). These results indicated that FEV was
expressed in human endocrine progenitor cells in vitro and that the stem cell differentiation
platform could be used to evaluate the function of FEV in human EPs.

To determine the consequences of loss of FEV during differentiation to the beta cell
lineage, we established a clonally-derived FEV knockout (FEV-KO) hESC line using the CRISPR-
Cas9 system (Figure 7A) and subjected this line, alongside a WT (non-edited) control line, to

directed differentiation to the beta cell lineage. As measured by flow cytometry, KO of FEV did
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not lead to any significant change in the maintenance of pluripotency as judged by staining for
NANOG/OCT3/4 or in the efficiency of generating target cells at stages 1 through 5 of the
differentiation, including the proportion of SOX17+/FOXA2+ cells at the end of stage 1, of PDX1+
cells at the end of stage 3, or of PDX1+/NKX6.1+ cells at the end of stage 4 or 5 (data not
shown). However, early in the beta cell stage (stage 6, day 4), flow cytometric analysis revealed
a significant reduction in the number of BLCs as measured by co-expression of both C-PEPTIDE
(C-PEP, a proxy for INS) and NKX6.1, a key transcription factor of beta cells (7.9 £ 2.3%; Mean
+ SEM) in the FEV-KO group vs. (22.7 + 8.5%; Mean + SEM) in the WT group (Figure 7B, Figure
S7C). These results suggest that FEV expression is not required for pancreatic specification or
induction to the endocrine lineage, but plays a critical role later in beta cell fate specification.

To understand the transcriptional changes upon KO of FEV, we performed bulk RNA-
Sequencing (RNA-Seq) on FEV-KO and WT cells from three independent, paired differentiations
at the BLC stage (Stage 6, day 10). As expected, we observed very few genes (< 10 genes per
timepoint) differentially expressed between WT and KO conditions at the end of stages 1 and 4,
time points before peak FEV expression (data not shown). In contrast, at Stage 6, day 10,
differential gene expression analysis between the WT and KO cells at the BLC stage resulted in
1,837 genes with at least 0.5 logFC change in expression (964 genes in WT, 873 genes in KO)
(Figure 7C). Pathway analysis of the DEGs identified enrichment of pathways related to beta cell
function, such as insulin secretion and calcium signaling in the WT condition, while the KO
condition displayed enriched pathways such as cell cycle and extracellular matrix organization
(Figure 7D). Among the DEGs were known direct targets of Fev in the murine pancreas and
brain, including SLC6A4, GCK, LMX1B and DDC, confirming the efficacy of our CRISPR-
generated KO line (Figure S7D) (Ohta et al., 2011; Wyler et al., 2016).

To determine whether KO of FEV had affected the expression of regulators of beta cell
fate, we analyzed the intersection of genes identified by bulk RNA-Seq as being enriched in either

the WT or KO beta-like cells with genes identified by scRNA-Seq as being differentially expressed
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across the beta lineage populations during development. This analysis revealed that FEV ablation
resulted in down-regulation of fate regulators enriched in FEV high and Pre-Beta cells, including
NKX2.2, NEUROD1, and PAX6 (Figure 7E), as well as regulators of beta cell maturation and
function such as INS, MNX1, and IAPP (Figure 7F). In addition, the KO of FEV also led to the
reduction in alpha, delta- and epsilon-associated genes such as GCG, IRX1, TTR, and SST
(Figure S7G-S7H). To verify these findings, we performed IF staining of hormone markers on the
WT and FEV-KO cell clusters at the beta-like cell stage (stage 6, day 12) and observed a
significant decrease in the proportion of SST+ or C-PEP+ hormonal cells in KO versus WT cells.
The ratios of SST'C-PEP* and GCG'C-PEP* double positive bi-hormonal cells were also
significantly reduced in the KO condition (Figure 7G). Taken together, these data indicate that
FEV is not simply a marker of pre-beta EP cells but indeed also plays a role in regulating

endocrine cell specification in the developing human pancreas.
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DISCUSSION

In this study, we have comprehensively characterized the transcriptome of human fetal
pancreas at six developmental time points ranging from 8 w to 20 w at single-cell resolution. We
have identified previously unappreciated levels of heterogeneity within the various pancreatic cell
types, including 15 mesenchymal, 8 exocrine, 8 endocrine, 8 endothelial, 13 neuronal, 31
immune, and 20 proliferating clusters. This resource provides a cellular and gene regulatory
roadmap of early human fetal pancreas organogenesis and lays the groundwork for the
interrogation of the functional significance of each of these cell types. We confirmed the presence
of representative subpopulations in the endothelial and mesenchymal lineages by in situ
hybridization in fetal tissue. Future studies are warranted to validate other newly described
populations and assess their presence or absence at earlier or later developmental time points

not covered by this study.

By computational inference we have observed active cell-cell communication between
Broad Groups in the developing human pancreas. In particular, analysis using CellChat inferred
NOTCH-JAG and PDGF-PDGFR as potentially functional ligand-receptor pairs within the
endothelial lineage and the mesenchymal lineage, respectively. By systematically interrogating
the signaling interactions between the Endocrine and other Broad Groups, we have also identified
ACTIVIN as a ligand that is expressed solely by the mature VSM cells and is predicted to act
specifically on the endocrine progenitor populations. Given these data and previous evidence that
non-epithelial cells such as endothelial, neuronal, and mesenchymal play important roles in
guiding the development of the murine pancreatic epithelium (Attali et al., 2007; Bhushan et al.,
2001; Borden et al., 2013; Cozzitorto et al., 2020; Lammert et al., 2001), the signaling pathways
identified here warrant future functional confirmation by methods such as genetic or small
molecule-mediated loss- and gain-of-function experiments in human pancreatic tissue ex vivo or

using hPSC-derived pancreatic cells in vitro.
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Our detailed investigation of the human fetal endocrine compartment identified four novel
progenitor populations that each express unique marker genes. Multiplexed ISH/IF staining
confirmed the existence of these populations across multiple developmental time points and in
independent biological samples in vivo. Recently, an independent study identified endocrine
subpopulations, several of which (termed EP2, EP3, EP4) appear analogous to the ones we have
described here, providing additional evidence of their existence in vivo (Yu et al., 2021). In
addition, the high concordance among our in silico replicates gave us high confidence that these
represent bona fide cellular populations in tissue (Figure S1C). The CellFindR clustering
algorithm was critical in the discovery of these EP populations, as initial analyses utilizing
standard clustering methods failed to distinguish these populations from one another and instead
annotated all four as belonging to a single EP cluster. Of note, no evidence of heterogeneity was
found within each differentiated hormone-producing endocrine cell type, a topic that is debated in
the adult human pancreas (Baron et al., 2016; Blodgett et al., 2016; Mawla and Huising, 2019).
Given the sensitivity of the clustering algorithm CellFindR in identifying cellular heterogeneity, it
is likely that these heterogeneous populations do not exist in the fetal endocrine pancreas during
the developmental time points covered by this study, although it is possible that they were too
rare to detect or that they only arise later in development. Additionally, by adopting a variety of
computational methods, we have inferred the gene regulatory networks and differentially
expressed genes among endocrine populations. These insights serve to significantly improve our

understanding of human pancreatic endocrine development at the cellular and molecular levels.

The endocrine cell lineage predictions constructed for human cells in this study provide a
contrasting account of endocrine differentiation when compared to murine development. Unlike
in the mouse pancreas, where multipotent intermediate progenitors give rise to all endocrine cell
types (Bastidas-Ponce et al., 2019; Byrnes et al., 2018; Yu et al., 2019b), our data presented here

predict that three of the four human EP populations act as fate-committed progenitors that are
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either uni- or bi-potent with respect to a specific hormone-expressing cell type. This differentiation
potency is reflected in the genes expressed in these populations, as transcriptional analysis
revealed gradual increase of expression of differentiated endocrine cell related genes as the EPs
began to become more fate restricted. The alpha and beta lineage predictions presented here are
consistent with a recent study that utilized mitochondrial genome variants within adult alpha and
beta cells as endogenous lineage tracing markers at single-cell resolution and concluded that
human alpha and beta cells arise from separate progenitor populations (Lin et al., 2021).
Prediction of the delta lineage presented here, however, is less clear. In particular, the FEV High
and Delta clusters were not connected in the UMAP and may have been “forced” into the same
lineage by the computational reconstruction (Figure 3A-3B). Of note, our lineage analysis of
human endocrine differentiation differs from a recently published study using single-cell
sequencing and lineage reconstruction of fetal endocrine cells (Yu et al., 2021). Future studies at
early developmental time points might resolve this issue by increasing the cell number of captured
endocrine progenitors, increasing the chances of detecting potentially rare and/or transient, pre-
delta progenitor cells. In the future, applying state-of-the-art methods for lineage barcoding to
human pancreas tissue ex vivo could represent an exciting approach for experimental validation

of predictions generated in silico.

The lineage predictions based on scRNA-seq data are consistent with those generated by
snATAC-seq analysis, which has validated the existence of each of the four novel EP subtypes
by an orthogonal method. Furthermore, the multi-omic approach described in this study
represents a unique resource for identifying candidate regulators of endocrine cell fate
specification in the human fetal pancreas. By overlapping the “active” regulons identified by
SCENIC analysis and motif enrichment/RNA expression correlation analysis (“positive” TFs), we
have gained a clearer picture of the TFs most likely to be relevant to endocrine differentiation and

maturation. For instance, the TCF family of TFs (TCF4, TCF12, TCF3), which are known
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regulators of endocrine differentiation (Jacquemin et al., 2000), were identified by both analyses
as TFs that are potentially mediating gene expression and chromatin accessibility in endocrine
cells. Additionally, these analyses also identified TFs with unknown endocrine development
function, such as CUX7 and POU2F2. As such, the data presented here should serve as a

resource for the field with broad utility in identifying cell fate regulators in future studies.

Identification of the effector transcripts or genes through which disease associated
variants influence risk is a critical first step towards biological inference and thus clinical
translation. The context-specificity of gene regulation presents an additional challenge. Single-
cell resolution of both gene expression and chromatin accessibility in human adult islets has
recently demonstrated the importance of cell state, cell type and the potential of co-accessibility
analysis between promoters and cis-regulatory elements to identify effector genes at T2D-risk loci
(Chiou et al., 2019, 2021b; Rai et al., 2020). Here, we have extended this to include the influence
of developmental stage by performing a comparative analysis of human adult vs. fetal endocrine
cells to uncover enrichment of T2D genetic risk loci, permitting the assessment of regions of DNA
harboring T2D-risk alleles that are accessible during development and may therefore affect the
expression of developmental genes. As expected, our analysis identified fetal enrichment of risk
loci of known regulators of endocrine differentiation such as NEUROGS3. We also identified,
however, fetal enrichment in genes with no known function in endocrine development, such as
LRFN2. One intriguing observation from our analysis is the potential for further context specificity
on gene regulation at the PROXT locus. There are two independent signals at this locus: the first
has been fine mapped to a single variant (rs340874), and the second has two SNPs (rs79687284
and rs17712208) in the credible set (Mahajan et al., 2020). An evaluation of these variants on
transcriptional activity in both human HepG2 hepatocytes and EndoC-BH1 beta cell models using
in vitro reporter assays demonstrated effects in both liver and beta cells for rs340874; at the

second signal, however, only one of the two variants (rs17712208) influenced activity in beta cells
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and neither in HepG2 cells (Mahajan et al., 2020). Our data now raise the intriguing possibility
that the rs79687284 variant could alter activity earlier in development, thus expanding the
complexity of the regulatory impact at this locus. These analyses therefore provide a framework
for the identification of development-specific disease risk loci and a rich opportunity for further

study of their function in islet biology.

Despite tremendous progress in recent decades in devising methods to generate beta-
like cells in vitro from hPSCs, these protocols still suffer from the generation of unwanted cell
types. A previous study aimed to assign hPSC-derived endocrine cell identification by referring to
adult islets cells, but was constrained by the absence of endocrine progenitors in adult tissue
(Krentz et al., 2018). By performing computational comparison of endogenous in vivo vs. in vitro
endocrine development, we observed that the EP cell types made in vitro are similar to those
present in vivo. That said, the generation of mis-differentiated cell types such as the stem cell-
derived enterochromaffin (sc_EC) population demonstrates that there remains significant room
for improvement of the differentiation protocol with respect to purity and efficiency. Given the
similarities between pancreas and intestinal endocrine development, the generation of the
enterochromaffin population is likely due to the mis-expression of key genes that then tips the
balance towards an enteroendocrine fate. Future work will focus on modulating the expression,
ideally in a temporally constrained fashion, of key genes that are currently aberrantly expressed
in order to generate more pure and functionally mature beta cell populations. Additionally, our
data have important implications for the generation of in vitro-derived islet cells, as our in vivo
developmental roadmap can now be used for the refined production of non-beta endocrine cells,

including human alpha (Peterson et al., 2020; Rezania et al., 2011) and delta cells.

Lastly, the results of our FEV gene ablation study demonstrate how the generation of a
detailed in vivo roadmap of endocrine differentiation can successfully be combined with in vitro

genome editing techniques to discover important regulators of human endocrine development.
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We verified that FEV not only marks beta cell progenitors in the developing fetal pancreas, but
itself also plays a functional role in human endocrine differentiation in vitro. Further investigation
of FEV through the use of TF binding studies will provide insight as to how it regulates endocrine
differentiation or function. Applying this approach to other genes of interest is a promising
approach for understanding additional, uncharacterized regulators of human endocrine

differentiation.

In summary, we provide here a comprehensive, single-cell, multi-omic roadmap of human
fetal pancreatic endocrine development. This study represents a critical step towards generating

bona fide beta cells in vitro for therapeutic use.

Limitations of Study

Due to constraints on access to human fetal tissue, our study is necessarily limited to a
window of pancreatic development after which endocrine development has already been initiated,
and before full maturation of fetal hormone-expressing cell types has occurred. Future work
utilizing techniques such as laser capture microdissection or other methods may permit a bridging
of the gap between the latest timepoints possible in our study (20 w) and other work that has
performed single-cell transcriptional analysis of adult human pancreas tissue. As with any
computational methods that rely on inference of lineage relationships, our work on lineage
reconstruction of fetal endocrine development should be interpreted with caution, as classical

experimental lineage tracing techniques are not possible in human tissue.

The snATAC-Seq analysis in this study was performed on human tissue from a single
timepoint and, despite enrichment of epithelial cells, suffers from low cell numbers within several
endocrine subgroups, which prevents the robust interpretation of lineage relationships based on

chromatin accessibility. Performing snATAC-Seq on additional samples and timepoints would
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provide a better understanding of the epigenetic mechanisms regulating human pancreatic

endocrine development.


https://doi.org/10.1101/2022.02.17.480942
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.17.480942; this version posted February 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Methods
RESOURCE AVAILABILITY
Lead Contact
Further information and requests for resources and reagents should be directed to the Lead
Contact, Julie Sneddon (Julie.Sneddon@ucsf.edu).
Materials Availability
All unique/stable reagents generated in this study are available from the Lead Contact with a
completed Materials Transfer Agreement.
Data and Code Availability
Scripts used in this study will be made available at GitHub.
Raw single-cell sequencing data of human fetal pancreas samples will be made available in
dbGaP, and raw and processed data of the FEV WT and KO bulk RNA sequencing will be made
available in GEO.
EXPERIMENTAL SUBJECT DETAILS

Informed consent was obtained for all human tissue collection, and protocols were
approved by the Human Research Protection Program Committee at UCSF. Human fetal dorsal
pancreas tissue was obtained from post-mortem fetuses at 8 to 20 weeks post conception (w)
through two sources: University of Washington Birth Defects Research Laboratory (BDRL) and
Advanced Bioscience Resources, Inc. (ABR). Identifiers were maintained at the source only, and
the investigators received only de-identified specimens. After isolation, tissue was shipped
overnight (O/N) on ice in RPMI medium. A portion of tissue was fixed in 4% paraformaldehyde
OIN at 4 °C, washed three times with 1 x phosphate-buffered saline (PBS), and cryopreserved in
30% sucrose solution at 4 °C for O/N in preparation for embedding in optimal cutting temperature
(OCT) compound. Sections measuring 10 um in thickness were cut using a cryostat and stored
at -80°C for immunofluorescence staining or in situ hybridization, as described below.

Adult human islets were isolated from cadaveric donor tissue by the UCSF Islet Production
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Core with permission from the UCSF ethical committee. Consented cadaver donor pancreata
were provided by the nationally recognized organization UNOS via local organ procurement
agencies. The identifiers were maintained only at the source, and the investigators received de-

identified specimens.
METHODS DETAILS

Processing of pancreas tissue scRNA-Seq and snATAC-Seq

To isolate cells for single-cell RNA-Sequencing, human fetal pancreas tissue was minced
with scalpels and transferred to dissociation buffer containing Liberase TM and 0.1 mg/mL Dnase
| for 30-55 minutes at 37°C on a Thermomixer at 1000 rpm. Enzyme was quenched with 1X HBSS
containing 5mM EDTA and 10% FBS. The resulting cell suspension was filtered through a 30 um
strainer. All tissues were subject to removal of red blood cells (RBCs) using immunomagnetic
negative selection with the EasySep RBC Depletion kit (STEMCELL Technologies, 18170). 12 w
samples were further subjected to EasySep™ Human EpCAM Positive Selection Kit Il
(STEMCELL Technologies, 18356) to positively select for epithelial cells. Tissues at 19 w and 20
w were subjected to EasySep™ Human CD45 Depletion Kit Il (STEMCELL Technologies, 18259)
to remove CD45+ immune cells. Cell viability was measured for all samples using a MoxiFlow
(Orflo) to confirm greater than 90% viability.

To isolate nuclei for single-nuclei ATAC-Sequencing, 12 w human fetal pancreatic tissue
was placed in a dissociation buffer containing Liberase TM and 0.1 mg/mL Dnase | at 37 °C.
Dissociated cells were filtered through a 30 um strainer and further enriched for EpCAM+
epithelial cells using the EasySep™ Human EpCAM Positive Selection Kit Il. Nuclei from EpCAM+
cells were isolated following 10x Genomics protocol CG000169, Rev D. In brief, EpCAM+ cells
were resuspended in PBS + 0.04% BSA and centrifuged at 1000 rpm and 4°C for 5 min. Chilled
Lysis Buffer was added to the cell pellet, which was then incubated on ice for 3.5 min. After lysis,

chilled Wash Buffer was added, cells were centrifuged at 1200 rpm, and isolated nuclei were
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suspended in 1X Nuclei Buffer. After isolation, nuclei were manually counted with a
hemocytometer; quality was assessed under a 63x bright field microscope to ensure that the
periphery of isolated nuclei appeared smooth.
Single-cell capture and sequencing

For scRNA-Seq of human fetal tissue, we utilized the Chromium Single Cell 3’ Reagent
Version 3.1 Kit (10x Genomics). For non-enriched human fetal samples, we loaded 25,000 cells
each onto two lanes of the 10x chip, resulting in a total of 50,000 cells loaded per sample. For
enriched human fetal samples, including EpCAM+ cells from two 12 w samples, EpCAM+ cells
and CD45- cells from one 19 w sample, and CD45- cells from one 20 w sample, 25,000 cells from
each enrichment condition were loaded onto a single lane of the 10x chip. Gel Bead-In EMulsions
(GEMs) were generated and subjected to reverse transcription for RNA barcoding before cleanup
and cDNA amplification. Libraries were then prepared with the Chromium Single Cell 3’ Reagent
Version 3.1 Kit according to the manufacturer’s instructions. Each resulting library was sequenced
on the Novaseq 6000 platform (lllumina) with the following parameters: Read 1 — 28 cycles, Index
1i7 — 8 cycles, Index 2 i5 — 0 cycles, Read 2 — 91 cycles.

For snATAC-Seq of 12w human fetal tissue, we utilized Chromium Next GEM Single Cell
ATAC Library & Gel Bead Kit v1.1 (10x Genomics). 7,166 nuclei were loaded onto one lane of a
10x chip. Transposition, GEM generation and barcoding, cleanup and library construction were
performed according to the manufacturer’s protocol. The library was then sequenced on the
Novaseq 6000 platform (lllumina) with the following parameters: Read1- 50 cycles, Index1 — 8
cycles, Index 2 — 16 cycles, Read 2 — 49 cycles.
Human fetal single-cell RNA-Sequencing analysis

To assemble the transcriptomic profiles of individual cells, we utilized CellRanger versions
v3.0-4.0 with default settings to demultiplex, aligned reads to the human genome (GRCh38,
supplied by 10x Genomics), and quantified unique molecular identifiers (UMIs). The resulting

gene-barcode matrices were then analyzed and aggregated with the R package Seurat v3.1.2
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(Stuart et al., 2019). Each sample was subjected to filtering to exclude cells expressing fewer than
200 genes and genes expressed in fewer than three cells. Technical replicates (two 10x lanes of
the same biological sample) were merged using the MergeSeurat() function. High-quality cells
were retained by filtering on the number of expressed genes and mitochondrial content. Each
sample was normalized with NormalizeData(), and variable genes were identified with the
FindVariableFeatures() function using 2,000 genes and the “vst” selection method. Integration
anchors were found across all samples with the FindIntegrationAnchors() with 30 principal
components and 2,000 genes. The samples were then integrated using the IntegrateData()
function. The data was then scaled with ScaleData() function and principal component analysis
(PCA) was performed, with 30 principal components selected based on the ElbowPlot().
Dimensionality reduction and initial clustering was performed with the FindNeighbors(),
FindClusters() and RunUMAP() functions using 30 principal components and a resolution
parameter of 2.0. The resulting Louvain clusters were then manually annotated into “Broad
Groups” of known biological cell types using canonical marker genes. Cluster 17 from the initial
clustering was removed, as it had no distinguishable marker genes and expressed low levels of
features.
Cell clustering with CellFindR

To further sub-cluster the Broad Groups, we applied a novel clustering package, CellFindR

(https://github.com/kevyu27/CellFindR) (Yu et al., 2019a), to each Big Group individually. Each

Broad Group was subsetted, PCA and UMAP were recalculated, and the top level resolution was
found with the res() function. Iterative sub-clustering was performed on each top level cluster with
the sub_clustering() function. Clusters that were deemed non-biological (i.e. COL3A7+/hormone+
doublets) were manually removed from the endocrine data set, including a sub-cluster of
INS/CELA3A-high cells that displayed a low number of features and counts, likely representing
empty droplets containing ambient RNAs known to contaminate scRNA-Seq datasets of the

pancreas (Nieuwenhuis et al., 2020).
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Single cell differential gene expression analysis

Marker genes were identified with Seurat’s FindAllMarkers() function and visualized with
FeaturePlot(), VInPlot() and DoHeatmap() functions. Pairwise volcano plots were created by
utilizing the FindMarkers() function and plotting the results as a volcano plot from the

EnhancedVolcano package

(https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html). Transcription
factors were identified through comparison to AnimalTFDB3.0 database (Hu et al., 2019).
Cell-cell communication analysis

To infer cell-cell communication within our human fetal pancreas dataset, we utilized the

R package CellChat (https://github.com/sqgjin/CellChat). For each analysis, we used normalized

counts and cell-type specific labeling as input. We then followed the ‘Inference and analysis of
cell-cell communication using CellChat’ vignette.
Pseudotemporal ordering analysis of scRNA-Seq data

For trajectory and pseudotime analyses, we utilized the R package Slingshot

(https://github.com/kstreet13/slingshot) (Street et al., 2018). Seurat-based UMAP dimensional

reduction and CellFindR clustering were used as input for the merged human fetal endocrine
analysis. Lineage reconstruction was performed with the slingshot() function, with the cEP
population (Cluster 3.1.0) designated as the beginning of pseudotime.
Pathway analysis

Pathway analysis and calculation of associated p values were performed using the
ConsensusPathDB  overrepresentation analysis for pathway based sets category
(http://cpdb.molgen.mpg.de).
Gene regulatory network analysis

For gene regulatory network (GRN) analysis, we utilized the R package SCENIC (Single-

Cell rEgulatory Network Inference and Clustering; https://github.com/aertslab/SCENIC) (Aibar et

al., 2017) and the PYTHON package GRNBoost (https://github.com/aertslab/GRNBoost) (Aibar
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et al.,, 2017) The 500bp-upstream and tss-centered-10kb human RcisTarget database were
selected for analysis, and RNA counts from the merged human fetal endocrine pancreas dataset
were utilized as input. Genes were retained only if they had at least 6 UMI counts, were detected
in at least 1% of cells, and were available in the RcisTarget database. To distinguish potential
activation from repression, we calculated the correlation with the runCorrelation() function. The
resulting filtered expression matrix and identified transcription factors were analyzed with
GRNBoost for GRN inference. Finally, the GRNs were built and scored with the SCENIC functions
runSCENIC_1_coexNetwork2modules(), runSCENIC_2_createRegulons(), and
runSCENIC_3_scoreCells. The resulting scaled regulon activity AUC scores were displayed via
heatmaps with the R package ComplexHeatmaps function.
Initial shnATAC-Seq analysis

To assemble the chromatin profiles of individual cells, we utilized Cell Ranger ATAC v1.1
with default settings to demultiplex, align reads to the human genome (using the pre-built GRCh38
human genome supplied by 10x Genomics), and generate single-cell accessibility counts. The
resulting files were then analyzed using the R package ArchR v0.9.5 (Granja et al., 2020). Arrow
files were created from the fragment file from the CellRanger output with the createArrowFiles()
function and an ArchR project created with the ArchRProject() function. Doublets were filtered out
using the addDoubletScores() and filterDoublets() functions, resulting in a dataset comprising
6,010 nuclei. Dimensional reduction was calculated with the addlterativeLSI() function using the
following settings: iterations = 2, resolution = 0.5, sampleCells = 2500, n.start = 10, varFeatures
= 25000, dimsToUse = 1:30. Clustering was performed with addClusters() with method = Seurat
and resolution = 0.1. UMAP was calculated with addUMAP() and clusters were annotated as
“Broad Groups” based on marker gene expression (see above in Initial single-cell RNA-
Sequencing analysis).

The endocrine cluster was then subsetted and dimensional reduction was calculated with

the addlterativeLSI() function with the following settings: iterations = 2, resolution = 0.3,
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sampleCells = 1500, n.start = 10, varFeatures = 25000, dimsToUse = 2:10. UMAP was calculated
with addUMAP() with default settings. Unconstrained integration with scRNA-Seq data was then
performed using the final scRNA-Seq endocrine dataset (Fig. 2a) as input with the
addIntegrationMatrix() function, transferring cluster labels and a pseudo-RNA-Seq profile. To
maintain the robustness of the analysis, the endocrine progenitor (EP) clusters were collapsed
into a single EP cluster, resulting in a final dataset comprising 5 clusters and 1,754 cells.
snATAC-Seq peak calling

To call peaks in the snATAC-Seq dataset, group coverages were added to the ArchR
project with addGroupCoverages() and peaks called with Macs2 with the
addReproduciblePeakSet() function with a cutoff of 0.1. The peak set was then added to the
project with addPeakMatrix(). Marker peaks were identified with the getMarkerFeatures() function
using the PeakMatrix and peaks with a false discovery rate (FDR) less than or equal to 0.1 and
log2 fold-change of 0.5 or greater were visualized with markerHeatmap().
Motif analysis

To perform motif enrichment in regions of open chromatin, we first added motif annotations
with the addMotifAnnotations() function, using “cisbp” as the motif set. To visualize motif deviation
at single-cell resolution, we utilized ChromVAR (Schep et al., 2017) within the ArchR package.
Background peaks were added with addBgdPeaks() and per-cell deviations calculated with
addDeviationsMatrix(). Deviation scores were then visualized with the plotEmbedding() function.

To calculate “positive” transcription factors (TFs showing both motif enrichment and RNA
expression), deviant motifs were first accessed with seGroupMotif(). The motif deviation scores
and RNA expression profiles were then correlated with the correlateMatrices() function and
filtered based on a threshold of correlation greater than 0.5, adjusted p-value less than 0.01 and
a maximum inter-cluster difference in deviation z-score that is in the top quartile.

Pseudotemporal ordering analysis of snATAC-Seq data
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To order cells in pseudotime, we first increased the clustering resolution, as ArchR does
not allow for ordering of trajectories with fewer than 3 clusters. Clustering was performed with the
addClusters() function with a resolution setting of 1.0. Alpha, Beta, Delta and Epsilon trajectories
were then manually chosen by clusters; the cells along those trajectories were then ordered by
pseudotime with the addTrajectory() function. The trajectories were then visualized with
plotTrajectory().

To assess positive transcription factors across pseudotime, we accessed motif enrichment
and RNA expression across pseudotime with getTrajectory(), using the motif matrix and gene
integration matrix, respectively. We then correlated these trajectories with cutoffs of correlation =
0.5 and variance quartile cutoff = 0.8 for both the motif matrix and gene integration matrix.

T2D GWAS enrichment analysis

Datasets for adult islet samples were accessed from GEO (GSE160472, Chiou et al.,
2021) and analyzed together with our fetal pancreas sample. Combinatorial barcoding (CB) data
were processed with the ENCODE ATAC-seq pipeline (v1.9.3) by aligning to the genome
reference GRCh38. Cell barcoding information contained in the read names was added as CB
tags in the bam files with a customized script. Only mapped reads with MAPQ score > 30 were
retained. Cell type annotation of adult islet cells were applied from the metadata file provided on
GEO. ArchR (v1.0.1) was used as a platform for the downstream analysis, including clustering,
peak calling (MACS2, v2.2.7.1) and wilcoxon testing for differential peaks. T2D loci were
prioritized (percentage of SNPs > 20%) based on the overlapping between significant peaks (FDR
< 0.05 & abs(Log2FC) > 1) and the SNPs in the 99% genetic credible interval for 380 distinct T2D
association signals ((Mahajan et al., 2018) with GRCh37 coordinates mapped to GRCh38 by
LiftOver).

Analysis of scRNA-Seq data from in vitro-differentiated stem cell-derived cells
Processed counts and cell metadata were downloaded from GEO accession number

GSE103412 for Stage 5 (EP stage) and stage 6 (beta cell stage) cells (Veres et al., 2019). Counts
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and meta data were read into R and Seurat objects were created with associated metadata. Data
were normalized with NormalizeData() and variable features found with FindVariableFeatures().
Data were scaled and PCAs calculated with ScaleData() and RunPCA(), then data were clustered
with FindNeighbors(), FindClusters() and data reduced with RunUMAP().

Endocrine cell types were classified with the R package scPred (Alquicira-Hernandez et
al., 2019). First, the features used for classification were calculated on the human fetal CellFindR
endocrine clusters with getFeatureSpace(). The classifier was then trained with trainModel(), with
‘mda” as the model. The classifier was then applied to the stage 5 and stage 6 datasets with
ScPredict().

For in vitro and in vivo differential gene expression analysis, datasets were combined with
the MergeSeurat() function and differential gene expression calculated as stated above.
Multiplexed in situ hybridization and immunofluorescence

Human fetal pancreas tissue was fixed in 4% paraformaldehyde (PFA) overnight (O/N) at
4 °C. hESC-derived clusters were fixed with 4% PFA for 20 min at room temperature (RT). Post-
fixed tissues and clusters were washed three times with 1x phosphate-buffered saline (PBS),
cryopreserved in 30% sucrose solution at 4 °C O/N, and embedded in optimal cutting temperature
(OCT) compound. Sections measuring 10 um in thickness were cut using a cryostat and stored
at -80 °C for in situ hybridization and immunofluorescence, as described below.

After removal from -80 °C storage and incubation at RT for 30 minutes, cryosections were
washed with 1 x PBS to remove OCT, and sequentially treated with hydrogen peroxide and
proteinase lll. Tissues were then hybridized with probe mixes for 2 hours at 40 °C. Inventoried or
customized probes were purchased from Advanced Cell Diagnostics, Inc. Probes against SUSD2
(42673), PRPH (410231-C2), FEV (471421-C3), NEUROG3 (050798-C4), LMX1B (582661),
MEG3 (400821), ARX (486711-C2), SFRP1 (428381-C4), SFRP2 (476341-C3), CCL21 (474371-
C2), GJAS (471431-C2), PLVAP (437461), and ACKR1 (515131) were used according to the

manufacturer’s instructions for the RNAScope multiplex fluorescent detection V2 kit (Advanced
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Cell Diagnostics, Inc, 323110). To validate probe specificity, negative control probe (DapB) and
positive control probe (POLR2A/PPIB/UBC) were included in each experiment. Hybridization
signals were amplified via sequential hybridization of amplifier AMP1, AMP2, and AMP3 and
fluorophores Opal 570 (1:1500, PerkinElmer, FP1488001KT), Opal 650 (1:1500, PerkinElmer,
FP1496001KT), Opal 690 (1:1500, PerkinElmer, FP1497001KT). Following signal amplification
of the target probes, sections were either stained with DAPI and mounted for imaging, or
continued with standard immunofluorescence (IF) procedure. For IF, sections were incubated in
1 x blocking buffer (0.1% PBST containing 5% normal donkey serum) for 1 hr at RT then stained
O/N at 4° C using the following primary antibodies diluted in blocking buffer: Chromogranin A
(1:200, Abcam, ab15160), Glucagon (1:200, Cell Signaling, 2760S), Insulin (1:200, DAKO,
A0564), Somatostatin (1:200, Santa Cruz Biotechnology, sc-7819), SMA (1:200, Abcam,
ab21027), PECAM (1:100, Dako, M0823). The next day, sections were washed in 1X PBS three
times and incubated with species-specific Alexa Fluor 488-, 555-, 594-, or 647- conjugated
secondary antibodies (1:500) and DAPI in the blocking buffer for 1 hour at RT. Stained slides
were mounted with ProLong Gold Antifade Mountant (ThermoFisher SCIENTIFIC, P36930) and
stored at 4 °C prior to imaging.
Image acquisition

Optical sectioning images were acquired with a Leica confocal laser scanning SP8
microscope equipped with white light sources. Z-sections were captured for each imaging area
with 10 steps x 1 mm thickness.
Genetic engineering to generate the FEV-KO hESC line

The HUES8 human embryonic stem cell (hESC) line was grown on Matrigel (Corning,
354230)-coated tissue culture plates in mTeSR1 (STEMCELL Technologies). Media was
changed to mTeSR1 + 10 uM Rock inhibitor Y-27632 for 2 hours prior to nucleofection. Cells were
dissociated into a single-cell suspension using TrypLE Express (Gibco, 11588846). A FEV-KO

gRNA (5-CTGATCAACATGTACCTGCC-3’) was designed using Benchling software and
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purchased from Dharmacon. To carry out the nucleofection, 160uM tracrRNA and 160uM FEV-
KO gRNA were mixed together to make the RNA-complex and incubated for 30 min. in a 37 °C
cell culture incubator. Purified Cas9-NLS protein (QB3 UC Berkeley MacroLab) was added to the
RNA-complex, gently mixed to make the RNP (ribonucleoprotein), and incubated at 37 °C. After
15 min., dissociated cells were resuspended in P3 buffer (Lonza, V4XP-3032). Cell suspension
and RNP were mixed and inserted into the Lonza 4D-Nucelofector (Lonza, AAF-1002B) and
nucleofected in the P3 buffer. Nucleofected cells were transferred to mTeSR1 supplemented with
Rock inhibitor, then seeded onto Matrigel-coated T75 tissue culture flasks (ThermoFisher
Scientific, 159910).
Validation of FEV-KO and -WT hESC lines

Cells were sorted with FACS and clonally plated onto Matrigel-coated 96 well plates and
grown in mTeSR1 supplemented with Rock inhibitor Y-27632. Clonal colonies were hand-picked
under a colony-picking microscope under sterile conditions and each colony was transferred into
one well of a 96-well plate, then successively passed onto larger plate formats. To determine the
efficiency of genomic editing of each colony, genomic DNA from each colony was harvested with
QuickExtract DNA Extraction (Lucigen, QE09050) and then used for PCR amplification. The
following forward and reverse primers targeting the FEV-KO editing site were used to produce a
491-bp amplicon: 5-CCGTCTTCTCCTCCTTGTCACC? and 5-
CTCGGCCACAGAGTACTCCAC-3'. PCR polymerase capable of handling GC-rich amplicons
was used (PrimeSTAR GXL Premix, Clontech). The resulting DNA amplicon, along with a wildtype
DNA amplicon, were sent to Quintara Biosciences for Sanger sequencing. The chromatographs
of each sequencing run were used for TIDE (Tracking of Indels by Decomposition) analysis
(https://tide.deskgen.com) and the cutting efficiency of hESCs nucleofected with FEV-KO gRNA
was then determined. The FEV-KO hESC clonal line used in had a 1-bp deletion in one allele
and a 1-bp insertion in the second allele, leading to a homozygous mutation in the FEV locus.

Human embryonic stem cell culture and differentiation to the beta cell lineage
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FEV-KO and -WT hESC lines were maintained as clusters in suspension in mTeSR1
(STEMCELL Technologies) in 500 mL spinner flasks (Corning, VWR) on a magnetic stir plate
(Dura-Mag) within a 37 °C incubator at 5% CO2, 100% humidity, and a rotation rate of 60 rpm.
Cells were screened for mycoplasma contamination using the MycoProbe Mycoplasma Detection
Kit (R&D Systems), according to the manufacturer’s instructions. Beta-like cells were generated
as previously described (Millman et al., 2016; Pagliuca et al., 2014). In brief, single hESCs were
seeded into a spinner flask at a density of 1e6 cells/mL in mTeSR1 media containing 10 uM Rock
inhibitor Y-27632 (STEMCELL Technologies) to allow formation of clusters. Differentiation was

initiated 72 h later and was achieved in a step-wise fashion using the following growth factors

and/or small molecules: Stage 1 ( Day 1-3) medium : 500 mL MCDB 131 (Corning, 15-100-CV)

+ 0.22 g glucose (MilliporeSigma, G7528) + 1.23 g sodium bicarbonate (MilliporeSigma, S5761)
+ 10 g fatty-acid free bovine serum albumin (FAF-BSA) (Lampire Biological Laboratories,
7500812) + 10 pL Insulin-Transferrin-Selenium-Ethanolamine (ITS-X) (Invitrogen, 51500056) + 5

mL GlutaMAX (Invitrogen, 35050079) + 5 mL Penicillin-Streptomycin (P/S) solution (Corning, 30-

002-Cl). Stage 2 ( Day 4-6) medium: 500 mL MCDB 131 + 0.22 g glucose + 0.615 g sodium

bicarbonate + 10 g FAF-BSA + 10 pL ITS-X + 5 mL GlutaMAX + 0.022 g vitamin C

(MilliporeSigma, A4544) + 5 mL P/S. Stage 3 ( Day 7-8) / 4 ( Day 9-13) medium: 500 mL MCDB

131 + 0.22 g glucose + 0.615 g sodium bicarbonate + 10 g FAF-BSA + 2.5 mL ITS-X + 5 mL

GlutaMAX + 0.022 g vitamin C + 5 mL P/S. Stage 5 ( Day 14-20) medium:500 mL MCDB 131 +

1.8 g glucose + 0.877 g sodium bicarbonate + 10 g FAF-BSA + 2.5 mL ITS-X + 5 mL GlutaMAX

+0.022 mg vitamin C + 5 mL P/S + 5 mg heparin (MilliporeSigma, H3149). Stage 6 ( Day 21-31)

medium: 500 mL CMRL 1066 supplemented (Corning, 99-603-CV) + 10% Fetal Bovine Serum

(FBS) (Corning, MT-35-011-CV) + 5 mL P/S.
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Flow cytometric analysis of stem cell-derived cells

Stem cell-derived clusters at various stages of differentiation were washed in PBS
(Corning, 21-040-CV) and dissociated with Accumax™ (Innovative Cell Technologies Inc,
AM105) at 37 °C for the following times at each stage: 5 minutes (pluripotency), 5-7 minutes (End
Stage 1), 7-9 minutes (End Stage 3), 9-11 minutes (End Stage 4), 11-13 minutes (End Stage 5),
12-15 minutes (Stage 6). Cells were then fixed with 4% PFA for 10 minutes at RT and spun down
at 1,200 rpm for 5 minutes and resuspended in PBS. Cells were filtered through a 37 ym cell
strainer (Corning, 352235) on ice, washed with 1X Permeabilization Buffer (00-8333-56,
Invitrogen™) and spun down at 1200 rpm for 5 minutes at 4° C. Cells were stained with flow
antibodies, then diluted in CAS Blocking Buffer (Invitrogen, 8120) containing 0.2% Triton-X, 5%
NDS, and 1% bovine serum albumin (BSA) O/N at 4° C. The following morning, cells were washed
with Permeabilization Buffer, spun down at 1,500 rpm for 5 minutes at 4° C, resuspended in FACS
buffer (PBS, 1% FBS and 2mM EDTA), and analyzed on an LSR-Il flow cytometer (BD
Biosciences). At the end of each differentiation stage, FEV-KO or -WT hESC-derived cells were
subjected to flow cytometric analyses, as described above. Data was analyzed with FlowJo
software (Tree Star Inc.)
Quantitative RT-PCR

hESCs were collected from various stages of directed differentiation and subjected to RNA
extraction using the RNeasy Mini Kit (QIAGEN 74106). Reverse transcription was performed with
the Clontech RT- PCR kit. RT-PCR was run on a 7900HT Fast Real-Time PCR instrument
(Applied Biosystems) with Tagman probes for FEV (assay ID: Hs00232733_m1) and GAPDH
(assay ID: Hs02758991_g1) in triplicate. Expression of FEV was normalized to GAPDH.
Bulk-RNA sequencing

FEV-KO and -WT clusters were collected from four independent batches of stem cell
differentiation at Stage 6 day 10 (S6D10). 2e6 cells were lysed in 350 ul RLT buffer (QIAGEN,

79216) and stored at -80 °C before RNA extraction. RNA was purified with RNeasy Mini Kit
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(QIAGEN, 74106). Samples with a RNA Integrity Number (RIN) greater than 9 were advanced to
library construction using poly-A enrichment. Sequencing was conducted on a NovaSeq 6000
PE150 platform with the following parameters: Read 1 - 150 cycles, Index 1 i7 - 8 cycles, Index 2
i5 - 8 cycles, Read 2 - 150cycles. The resulting files were mapped to the reference genome
(GRCh38) with STAR (v2.6.1d) and counts were generated with FeatureCounts (v1.26.0-p3).
Differentially expressed genes were calculated with the DESeq2 (v1.26.0) workflow (Love et al.,
2014). .
QUANTIFICATION AND STATISTICAL ANALYSIS

To analyze the population dynamics in vivo of each novel endocrine progenitor population
over developmental time, nine samples of human fetal tissue from 8w (n = 3), 12w (n = 3), and
18w (n = 3) were stained using multiplexed in situ hybridization and immunofluorescence. For
each biological sample, images from five areas were taken at random and processed with the
maximum intensity z-projection function with the Imaged software package. Adjustments to
brightness and contrast were applied equally across images in a given series. The number of
cells corresponding to each cell state was manually counted in each biological sample from the
five image areas using the Image J plug-in Cell Counter. The proportion of each cell state present
was then calculated using the sum of cells corresponding to all cell states as the denominator,
and cells that scored positive for a given cell state as the numerator. Data were presented as
Mean £ SEM (n = 3). Graphs were generated in GraphPad software (Prism 8). When assessing
the proportional changes of FEV+NEUROG3+ progenitor cells over developmental time, an
unpaired t-test was used to determine the statistical significance of the difference between the
ratio of FEV+NEUROGS3+ progenitor cells at 8w and at 12w, as well as the ratio difference
between 12w and 18w.

To assess differences between stem cell-derived cells from FEV-KO vs. -WT hESCs, data
were quantified from flow cytometric analyses. At the early beta-like cell stage (Stage 6, day 4),

the proportion of C-PEP+/NKX6-1+ double positive cells in FEV-KO or -WT cells was analyzed
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from three independent batches of differentiation. Statistical significance of difference between
the two groups was determined using the paired t-test in GraphPad software (Prism 8). Data were
presented as Mean + SEM. To quantify the proportional changes of hormone-producing cells
upon FEV knockout, immunofluorescence images of FEV-KO and -WT clusters from two
independent batches of differentiation were manually counted using Imaged software, and
differences in cell proportion between WT and FEV-KO were assessed with an unpaired t-test in

GraphPad software (Prism 8).
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Figure 1: Large-scale single-cell RNA-Sequencing identifies striking cellular heterogeneity
within the human fetal pancreas. (A) Overview of experimental approach. Eight samples of
human fetal pancreas tissue ranging from 8 to 20 weeks post-conception (w) were dissociated
and subjected to red blood cell lysis (“RBC(-)") to deplete erythrocytes. Resulting single-cell
suspensions were then used directly (“Total Pancreas”), or subjected to either magnetic bead-
based enrichment for EPCAM+ cells (“Epithelial(+)”), or depletion of CD45+ cells (“lImmune(-)”),
followed by single-cell RNA-Sequencing (scRNA-Seq). The 19 w-Epithelial(+) and 19 w-Immune(-
) cells were from the same tissue sample, and the 12w-1, 12w-2 and 12w-3-Epithelial(+) samples
are three independent biological replicates. (B) UMAP visualization of the merged scRNA-Seq
dataset from all nine conditions, derived from eight biological specimens at six developmental
timepoints. Each cell is color-coded according to the Broad Group to which it belongs. Expression
of marker genes COL3A1, RAC2, CPA1, PECAM1, SOX10, and CHGA are displayed in feature
plots to the right. (C)-(H) lterative clustering performed using the CellFindR algorithm revealed
three layers of heterogeneity within each Broad Group, with Tier 1, 2, and 3 populations arranged
in the inner, middle, and outer circles, respectively. Clustering hierarchies depict cellular
populations within the Broad Groups of (C) immune; (D) mesenchymal; (E) endothelial; (F)
neuronal; (G) exocrine; and (H) endocrine cells. All 103 terminal Tier 3 populations identified by

CellFindR are colored to match the UMAPs in Figure 2 and Figure S2.
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Figure S1: CellFindR clustering and Broad Group proportional representation in the human
fetal pancreas, parsed by individual sample. (A) Split UMAP visualization shows contribution
of each sample to the overall merged dataset, with cells colored according to their Broad Group
identity. The number of cells contributing to the merged data set is listed on each UMAP. (B) Bar
graph depicting the proportional representation of each Broad Group in each of the individual
scRNA-Seq samples. (C) Heatmap depicting Pearson correlation of all Epithelial cells (Exocrine

and Endocrine Broad Groups) across fetal scRNA Seq samples.
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Figure 2: Identification of cell heterogeneity and cell-cell communication within the
mesenchymal and endothelial lineages of the fetal human pancreas. (A) UMAP visualization
of the cell populations comprising the human fetal pancreatic mesenchyme. (B) Feature plots
depicting expression of SFRP1, SFRP2, CCL21, and ACTAZ2 across the mesenchymal
subpopulations. (C) 18 w human fetal tissue stained with an antibody against Vimentin (VIM;
green) and ISH mRNA probes against SFRP1 (cyan), SFRP2 (magenta), CCL21 (red),
counterstained with DAPI (blue) to detect nuclei. Aqua, White, and Yellow arrowheads mark
presumptive SFRP1+VIM+ SFRP1"/SFRP1"CEBPD+ cells, SFRP2+VIM+ SFRP2+ cells and
CCL21+VIM+ CCL2"CCL21+ cells, respectively. Dashed insets represent magnified regions. (D)
Heatmap depicting predicted activity of the PDGF signaling pathway among the populations
comprising the mesenchymal compartment. (E) Comparison of the predicted relative contribution
of both significant PDGF signaling ligand receptor pairs, PDGFA-PDGFRB and PDGFA-
PDGFRA, within the mesenchymal compartment as a whole. (F), (G) Circle plots depicting
signaling mediated by PDGFA-PDGFRB (F) and PDGFA-PDGFRA (G) ligand-receptor pairs
between cellular populations within the mesenchymal compartment. Line thickness is proportional
to signaling strength, and line colors represent which population is the predicted “Sender” of the
signal; colors match populations in (A). (H) UMAP visualization of the populations detected within
the human fetal pancreatic endothelial Broad Group. () Feature plots depicting expression of
GJAS, PLVAP, and ACKR1 in the endothelial compartment. (J), (K) 18 w human fetal tissue
stained with antibodies against pan-endothelial marker CD31 (gray) and pan-endocrine marker
CHGA (green), along with ISH mRNA probes against (J) GJAS (yellow) and ACKR1 (magenta)
or (K) GJAS (yellow) and PLVAP (magenta); nuclei are counterstained with DAPI (blue). Aqua,
white, and yellow arrowheads mark presumptive GJA5+CD31+ Arterial cells, ACKR1+CD31+
Venous cells and PLVAP+CD31+ Capillary/Venous cells, respectively. Dashed insets represent
magnified regions. (L) Heatmap depicting predicted activity of the NOTCH signaling pathway

among the various endothelial populations comprising the endothelial compartment. (M)
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Comparison of the predicted relative contribution of each significant NOTCH signaling ligand-
receptor pair within the endothelial compartment as a whole. (N) Circle plot depicting the
communication between endothelial populations with respect to JAG1-NOTCH4 signaling. Line
thickness is proportional to signaling strength, and line colors represent which population is the

“Sender” of the signal; colors match populations in (H). Scale bars are 25 um throughout.
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Figure S2: Novel populations discovered within the exocrine, neuronal, and immune
compartments, and predicted intercellular communication between all Broad Group cell
subtypes. (A)-(C) UMAP visualization of cell populations identified by CellFindR within the (A)
exocrine, (B) neuronal, and (C) immune broad groups within the human fetal pancreas. (D)-(E)
Predicted paracrine signaling pathways that mediate cell-cell communications between different
Broad Groups, as inferred by CellChat analysis. (D) Plot of incoming signaling patterns depicts
the predicted cell source of each paracrine ligand identified as significant. (E) Plot of outgoing
signaling patterns plot reveals cell specificity of paracrine signaling receptors predicted to be
significant. Bar graphs at the top of (D) and (E) represent the aggregate signaling for each cluster
across all signaling pathways; bar graphs on the right represent the aggregate signaling strength

of each signaling pathway across all clusters.
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Figure 3: Discovery of four novel putative progenitor populations and unique lineage
dynamics in the developing human endocrine pancreas. (A) UMAP visualization of sub-
clustered endocrine populations identified in the merged dataset as shown in Figure 1B (inset).
(B) Feature plots show expression of known markers of endocrine cell types, including NEUROG3
to mark endocrine progenitors, INS to mark beta cells, GCG to mark alpha cells, SST to mark
delta cells, and GHRL to mark epsilon cells. (C) Pseudotime reconstruction of endocrine lineage
trajectories assembled using Slingshot, with the centroid of each cluster along the lineage
depicted with a circle. (D) Line graph showing the representation of each endocrine cell population
as a proportion of the total number of endocrine cells, across developmental time. (E) Heatmap
depicting expression levels of the top 5 differentially-expressed genes per endocrine cluster. (F)
Heatmap depicting the scaled regulon activity of the top SCENIC regulons per cluster. (G) Chord
diagram depicting predicted INHBA-ACVR1B/ACVR2B signaling among the human fetal
pancreas dataset. Cell populations in the heatmaps in (E) and (F) are colored to match clusters

in (A).
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Figure S3: Transcriptomic and population analysis of human fetal endocrine cells. (A) Split
UMAP visualization shows the contribution of each individual sample to the merged endocrine
scRNA-seq dataset, with the number of cells listed and each cell colored according to its
endocrine cluster identity. (B) Heatmap depicting the Pearson correlation between pairs of cell
populations, based on the top 1,000 most highly variable genes among the endocrine clusters.
(C) Heatmaps depicting expression levels of all differentially expressed genes among endocrine
cells of the human fetal pancreas (left). All differentially expressed transcription factors are
depicted in the heatmap on the right. (D) Pathway analysis of all genes with a log2-fold change
in expression of at least 0.5 between a single endocrine cell population and all other endocrine
cell populations of the human fetal pancreas. For each significant pathway, the clusters in which
that pathway is active is colored to match the color in panel (A). (E) Volcano plots depicting
pairwise comparisons of gene expression in Common Endocrine Progenitor (cEP) vs. Pre-
Alpha/Pre-Epsilon cells (left panel) and Pre-Beta vs. FEV High cells (right panel). Genes with a
log2-fold change of at least 0.5 are highlighted. (F) Heatmap depicting the regulon activity score
of all 256 regulons identified as significant by SCENIC analysis. Clusters in (F) are annotated by

their cluster color as shown in (A).
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Figure 4: In vivo confirmation of novel endocrine progenitor cell populations. (A) Violin plot
depicting expression of endocrine progenitor (EP) marker genes. (B) Model showing predicted
lineage relationships among developing human endocrine cells, along with genes that mark each
population. (C) (E) (G) (I) 8 w human fetal tissues were stained with an antibody against the
differentiated endocrine cell marker CHGA (green), along with probes against NEUROGS3 (cyan),
and putative EP cell markers (red) (C) SUSD2; (E) LMX1B; (G) PRPH,; (I) ARX for detection by in
situ hybridization (ISH). Nuclei were counterstained with DAPI (blue). Scale bars, 10 um. Pink,
Purple, Aqua, and Blue arrowheads mark presumptive SUSD2+NEUROG3+CHGA- cEP,
presumptive LMX1B+NEUROG3+CHGA+ FEV High EPs, presumptive
PRPH+NEUROG3+CHGA+ Pre-Beta EPs, and presumptive ARX+NEUROG3+CHGA+ Pre-
Alpha/Pre-Epsilon EPs, respectively. (D) (F) (H) (J) Quantification of staining as performed in (C),
(E), (G), (I) extended across a time course of 8, 12, and 18 w. Y-axis represents the proportion of
cells positive for at least one of the makers. Graphs are presented as mean + SEM (n=3 biological

replicates).
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Figure S4: Confirmation in vivo of novel putative endocrine progenitor populations in the
developing human pancreas. (A) Multiplexed staining of 8 w human fetal tissue with four probes
against novel endocrine progenitor markers: SUSD2 (red), PRPH (grey), LMX1B (cyan), and ARX
(yellow); nuclei were counterstained with DAPI (blue). Regions of interest (ROIs) 1, 2, 3, and 4
highlight cells expressing single marker genes distinguishing Pre-Beta EP, cEP, Pre-Alpha/Pre-
Epsilon EP, and FEV High EP cells, respectively. Dashed lines indicate epithelial border in the
tissue. Scale bars, 10 um. (B) Dynamics of cell states assessed by staining for
FEV/NEUROG3/CHGA, across developmental time. The relative proportion of FEV+CHGA+ cells
significantly increased as development progressed. **, P-value < 0.01; graphs are presented as
mean = SEM (n=3 biological samples); significance was calculated using an unpaired t-test. (C)
Multiplexed ISH/IF staining for FEV (magenta), INS (green), and GCG (grey) on 18 w tissue. An
islet is circled with a dashed line. Scale bar, 25 um. (D) Diagram summarizing expression of FEV

in endocrine progenitors and GCG+ alpha cells.
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Figure 5. Single-nucleus ATAC-Seq reveals chromatin accessibility dynamics and type 2
diabetes genetic risk loci in the developing human endocrine pancreas. (A) Schematic of
workflow for single-nucleus ATAC-Seq (snATAC-Seq) performed on EPCAM+ enriched cells from
12w human fetal pancreas. (B) UMAP of endocrine snATAC-Seq data reveals populations of
hormone-expressing cells (alpha, beta, delta, and epsilon cells) as well as endocrine progenitors
(collapsed here into a single population; for endocrine progenitors broken down into 4
subpopulations see Extended Figure 5A). (C) Feature plots showing ATAC gene scores (left) and
corresponding RNA expression values (right) from integration of snATAC-Seq/scRNA-Seq data.
(D) Heatmaps depicting gene expression levels (left heatmap) and motif enrichment scores (right
heatmap) of positive transcription factors (those with correlated gene expression and motif
enrichment) along the beta cell lineage. Motif deviation scores for selected transcription factors
are displayed at single-cell resolution in the feature plots to the right. (E) T2D-risk loci enriched in
differentially accessible peaks of fetal beta cells vs. adult beta cells. Scatter size correlates with
the number of SNPs in the genetic credible interval. (F), (G) Track plots displaying accessibility
of the NEUROG3 and LRFNZ2 loci in fetal (top) vs. adult (bottom) beta cells. Differential peaks,
T2D risk variants in the genetic credible interval, and the T2D risk variants overlapping with

differential peaks were highlighted.
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Figure S5. Identification of “positive” transcription factors across endocrine lineages
using multi-omic analysis. (A) UMAP displaying snATAC-Seq endocrine cells annotated via
unconstrained integration with the scRNA-Seq dataset from Figure 2. In contrast to Figure 5B,
here the EP subpopulations are individually labeled and not pooled. (B) ATAC gene scores (left)
and corresponding RNA expression values (right) of endocrine progenitor markers as defined in
Figure 2C. (C) Plot depicting TFs scored as “positive” in all endocrine cells by correlation of
chromVAR deviation and gene expression (n = 49 genes). (D) Lineage reconstruction based on
snATAC-Seq data. (E) T2D-risk loci enriched in differentially accessible peaks of fetal EP cells as
compared to all adult hormone+ cells. (F), (G) Track plots displaying accessibility of the HNF1B

and WDRY72 loci among fetal EPs (top) vs. adult hormone-expressing cells.
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Figure 6: Transcriptional comparison of in vitro stem cell-derived endocrine cells with their
endogenous in vivo counterparts. (A) Diagram depicting stages of in vitro beta cell
differentiation. (B) Classifying in vitro stem cell-derived endocrine cells using our fetal endocrine
dataset as a reference. UMAP of stem cell-derived endocrine cells generated at Stage 5 with
annotation by Veres et al. (left) versus by cell-based classifier scPred (right) according to similarity
to endogenous human fetal endocrine cells. (C) Proportions of each cluster from the Veres et al.
dataset that are either unassigned (gray) or annotated as corresponding to a fetal endocrine cell
type. (D) Heatmap depicting the Pearson correlation between in vitro stem cell-derived Stage 5
cells and fetal endocrine cells in vivo based on all shared genes. (E) Model showing inferred
lineage relationships among fetal vs. in vitro stem cell-derived endocrine progenitor cells. (F) Dot
plot depicting expression of transcription factors differentially expressed between in vitro and in

vivo datasets.
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Figure S6: Transcriptional comparison of in vitro stem cell-derived vs. fetal endocrine
cells. (A) Feature plots of in vitro stem cell-derived Stage 5 cells (Figure 6B) depicting scPred
probability scores for the cEP, Pre-Alpha/Pre-Epsilon, FEV High and Pre-Beta human fetal
clusters. (B) UMAP of cells generated at Stage 6 of the stem cell differentiation protocol, with
annotation by Veres et al. (top) or by cell-based classifier scPred (bottom) based on cell type
similarity to human fetal endocrine cells. (C) Heatmap depicting the Pearson correlation between
cells generated at Stage 6 in vitro and fetal endocrine cell types, based on all shared genes. Stage
6 cell types are named according to the duration (number of weeks) that they were cultured in
Stage 6. (D) Dot plot depicting differentially expressed genes between fetal beta cells and Stage
6 stem cell-derived beta-like cells (Fetal Beta and S6 sc_Beta, respectively). (E) Dual in situ
hybridization/immunofluorescence staining for MEG3 mRNA and INS protein, with DAPI staining
nuclei, in 18 w human fetal tissue (top) and stem cell-derived clusters (Stage 6 day 12) (bottom).
Scale bar, 25um. (F) Violin plots depicting the expression of known regulators of alpha cells in

fetal and in vitro stem cell-derived Stage 6 alpha-like cells.
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Figure 7: Loss of FEV diminishes differentiation of human stem cells to pancreatic
endocrine cells in vitro. (A) Schematic for the generation of a FEV knockout (KO) human
embryonic stem cell (hESC) line using CRISPR-Cas9 mediated gene editing. A WT (non-edited)
line was used as a control. (B) Quantification of flow cytometry data from three independent paired
differentiations of FEV-KO vs. un-edited WT control hESC towards the early beta-like cell stage
(Stage 6, day 4). Efficiency of generating beta cells was quantified using staining for C-PEPTIDE
and NKX6.1. Data presented as mean + SEM (n = 3 independent batches of paired
differentiation). *, p-value < 0.05, paired t-test. (C) Volcano plot depicting the genes differentially
expressed between the FEV-KO vs. WT beta-like cells (BLCs) at Stage 6, day 10 of the directed
differentiation, as assessed by bulk RNA-Sequencing. Red dots depict genes with a log 2-fold
change (FC) of at least 0.5. (D) Pathway analysis of the genes differentially expressed between
FEV-KO vs. WT cells at Stage 6, day 10. (E) Five-way Venn diagram showing intersection of
differentially-expressed genes (DEGs) (defined as log2 FC > 0.5) specific to any one of the fetal
beta lineage cell populations (i.e., FEV High, Pre-Beta, and Beta) along with DEGs identified in a
comparison of WT vs. KO BLCs. (F) Heatmap depicting the expression levels of representative
fetal beta lineage genes in paired differentiations of FEV-KO and WT cells. (G) Representative
staining of WT and FEV-KO BLCs (Stage 6, day 12) for SST (green), GCG (red), C-PEP (gray),
and DAPI (blue) (left panels). Scale bars: 100 um. Right panel: Quantification of aggregate
immunofluorescence staining data across two batches of differentiation (N=1770 WT cells,
N=2300 FEV-KO cells). Each dot represents the cell ratio quantified in one cluster, graphs are

represented as mean + SEM; n.s., not significant; ** P < 0.01; unpaired t-test.
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Figure S7: FEV marks endocrine progenitor cells in vitro, and its loss results in impaired
endocrine development. (A) Beta-like cells (BLCs) were generated from pluripotent (Pluri)
human embryonic stem cells (hESCs) using a six stage differentiation protocol. FEV mRNA
expression was measured throughout the differentiation by gqRT-PCR Tagman analysis. Adult
human islets are included as control. (B) Dual in situ hybridization (ISH) and immunofluorescence
(IF) staining of a cluster of in vitro hESC-derived endocrine stage cells (Stage 5, day 5) cells to
detect FEV mRNA (yellow) and NEUROG3 mRNA (cyan) along with CHGA protein (magenta).
Nuclei were counterstained with DAPI (blue). Scale bar: 25um. Yellow arrowheads indicate
FEV+/NEUROGS3+ double-positive putative endocrine progenitors. (C) Representative flow
cytometry analysis for beta cell lineage markers NKX6-1 and C-PEPTIDE (C-PEP) at the early
BLC stage (Stage 6, day 4). (D) Heat map showing gene expression levels of known targets of
FEV in FEV-KO and WT cells at the BLC stage (Stage 6, day 10). (E) Four-way Venn diagram
depicting the overlap among DEGs (defined as log2 FC > 0.5) distinguishing fetal alpha lineage
cell populations and those identified from a comparison of in WT vs. FEV-KO BLCs. (F) Four-way
Venn diagram depicting the overlap among DEGs distinguishing fetal delta or epsilon cell
populations and those distinguishing WT vs. KO BLCs. (G) Heatmap depicting the expression
levels of fetal alpha lineage genes and (H) the expression levels of fetal delta and epsilon lineage

genes in paired differentiations of WT and KO cells at the BLC stage (Stage 6, day 10).
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