

SIVAULT et al.

1 **Species richness and community structure of bats along a forest elevational transect in**
2 **Papua New Guinea**

3
4 Elise Sivault^{1,2*}, Pita K. Amick^{3,4,5}, Kyle N. Armstrong^{6,7}, Vojtech Novotny^{1,2}, Katerina Sam^{1,2}

5
6 ¹Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice,
7 Czech Republic, ²Biology Centre of the Czech Academy of Sciences, Institute of Entomology,
8 Branisovska 31, 370 05 Ceske Budejovice, Czech Republic, ³Biological Science Division,
9 University of Papua New Guinea, PO Box 320, Papua New Guinea, ⁴The New Guinea Binatang
10 Research Centre, PO Box 604, Madang, Papua New Guinea, ⁵Amick Environmental Consulting,
11 PO Box 1179 Mt Hagen, 511 Western Highlands Province, Papua New Guinea, ⁶ University of
12 Adelaide, North Terrace, Adelaide, South Australia 5005, ⁷ South Australian Museum, North
13 Terrace, Adelaide, South Australia 5000.

14 *Corresponding author: Elise Sivault, address: Branisovska 31, 370 05 Ceske Budejovice, Czech
15 Republic, email: sivault.e@gmail.com.

16 Running title: Bat richness and elevation

17 Received:_____; Revised:_____; Accepted:_____.

SIVAULT et al.

18 **ABSTRACT**

19 Over the past decades, elevational gradients have become a powerful tool with which to
20 understand the underlying cause(s) of biodiversity. The Mt. Wilhelm elevational transect is one
21 such example, having been used to study the birds, insects, and plants of Papua New Guinea
22 (PNG). However, a survey of mammals from this forest elevational transect was lacking. We thus
23 aimed to investigate patterns in the community structure and species richness of bats (Chiroptera)
24 along the transect, link the species to available regional data, and explain the observed patterns by
25 including environmental characteristics. Bat communities were surveyed between 200 m and a
26 timberline at 3,700 m a.s.l. at eight study sites separated by 500 m in elevation. We conducted
27 mist-netting and acoustic surveys to detect and identify species at each site. Regional data were
28 compiled to compare local with regional diversity. Finally, biotic (i.e., food availability, habitat
29 features) and abiotic (i.e., mean daily temperature, available land area) factors were included in
30 our analyses to disentangle the ecological drivers underlying bat diversity. Results revealed that
31 species richness decreases with ascending elevation and was best explained by a corresponding
32 decrease in both area and temperature. We also observed community turnover along the transect
33 at local and regional scales, along with the increase of species' elevational ranges. Consequently,
34 despite that the study was restricted to one mountain in PNG, it demonstrates how basic
35 inventory surveys can be used to address ecological questions in other similar and undisturbed
36 tropical mountains.

37 *Key words:* bat communities, species richness, tropical montane, elevational gradient, Papua New
38 Guinea.

SIVAULT et al.

39 **1. INTRODUCTION**

40

41 Mountains are considered important biodiversity hotspots due to the great richness of endemic
42 species that occur on them (Gradstein et al., 2008; Noroozi et al., 2018). They are also one of the
43 most anthropogenically threatened environments in the world (Davis & Shaw, 2001; Ricketts et
44 al., 2005). Consequently, elevational gradients are excellent systems for the study of biodiversity,
45 global change, and conservation perspectives. Often used in models as a proxy for climate
46 change, they allow us to study animal and plant responses to changes in biotic and abiotic factors
47 (McCain & Colwell, 2011). Additionally, they can reflect responses to land-use changes, which
48 often occur at low elevations (Becker et al., 2007). For these reasons, community studies, and
49 especially of patterns of species richness along elevational gradients, have remained popular for
50 many decades (Stevens et al., 2019). Several meta-analyses of terrestrial vertebrate groups have
51 emerged in recent times that demonstrate varying trends in species diversity according to
52 geographical location, largely because of their significant climatic differences (i.e., temperature,
53 humidity) (e.g., McCain, 2005, 2007b, 2009, 2010).

54 Among terrestrial vertebrate groups, bats are considered commonly in studies of
55 temperate (Piksa et al., 2013; Scherrer et al., 2019), South American, and African tropical
56 mountain ecosystems (Carvalho et al., 2019; Mongombe et al., 2019; Reardon & Schoeman,
57 2017). Two predominant patterns of bat species richness have been observed—a decrease with
58 elevation in most tropical regions, and a unimodal trend in temperate regions (McCain, 2007b;
59 McCain & Grytnes, 2010). The area hypothesis states that the amount of land area for each
60 elevational band (e.g., 100–200m) on a mountain will be positively related to the diversity
61 observed in that band (Terborgh, 1973), however, bats showed either no significant relationship
62 or a negative association between species richness and available area (McCain, 2007a). It has

SIVAULT et al.

63 been suggested that the highest bat species richness occurs in the elevational zone where water
64 and temperature are simultaneously high (i.e., low and mid-elevations in tropical and temperate
65 mountains respectively) (McCain, 2007b). Being small and volant, bats spend much of their
66 energy budget on flight and thermoregulation, which is dependent on ambient temperature and
67 therefore, limits their distribution in cold temperature regimes (Graham, 1983; McNab, 1982). In
68 addition, water availability and temperature indirectly influence food resource availability (e.g.,
69 through fruiting tree phenology, the abundance of arthropods), and vegetation (e.g., shrub
70 density), thereby influencing foraging behaviour and the availability of roosting sites
71 (Charbonnier et al., 2016; Moura et al., 2016). While abiotic factors (i.e., temperature, available
72 area within an elevation band) have been explored often in existing models, biotic factors as food
73 resources and habitat characteristics have been considered rarely.

74 In addition to species richness, the species composition of bat assemblages can vary along
75 an elevational gradient under different scenarios. It has been suggested that high-elevation bat
76 species are able to exist at all elevations because of broad physiological tolerance and ecological
77 requirements (e.g., Stevens, 1992). However, under a scenario of climate change, bat species are
78 acclimated to high mountain conditions because they are geographically, ecologically, and/or
79 physiologically constrained to high elevations (e.g., LaVal, 2004). Thus, species found only at
80 high elevations are likely to expand their ranges or be strictly constrained by recent events of
81 climate change.

82 Feeding specialization might be another factor affecting assemblage composition. Despite
83 that bat communities are typically dominated by insectivores, the relative species richness of
84 frugivorous and nectarivorous bats peaks in the tropics, especially in the Neotropics, Oceania,
85 and Australasia (Maas et al., 2016). However, patterns in the distribution of bat specialization
86 along elevational gradients have rarely been documented, despite plant and insect distributions

SIVAULT et al.

87 varying greatly. Fruiting trees are typically reported to decline in diversity and abundance with
88 increasing elevation (Loiselle & Blake, 1991) while insects follow various patterns (i.e., none,
89 peaking mid-elevation, decreasing, increasing) according to their group and/or localities
90 (Hodkinson, 2005). Consequently, elevation might act as a filter of bat feeding guilds and impact
91 the species composition of bat assemblages.

92 PNG bats represent seven percent of the world's bat diversity (Bonaccorso, 1998;
93 Mammal Diversity Database, 2021). From a total of 95 native species, PNG has at least 19
94 endemic bat species (Bonaccorso, 1998). In recent decades, this unique richness attracted new
95 research focused on viruses (Breed et al., 2010; Field et al., 2013), metabolism (McNab &
96 Bonaccorso, 2001), and the home range of single species (Bonaccorso et al., 2002; Winkelmann
97 et al., 2000, 2003). However, there is a lack of knowledge of bat community structure due to
98 limited specific focus within larger mammal studies (Helgen, 2007; Helgen et al., 2011). Much of
99 the effort for bat research in the past two decades has been as part of basic inventory surveys,
100 environmental impact assessments and monitoring for industry (Armstrong et al., 2020; Kale et
101 al., 2018; K.P. Aplin and K.N. Armstrong unpublished reports), university research (Bonaccorso
102 et al., 2002; Robson et al., 2012; Wiantoro, 2020) or else as part of biodiversity assessments for
103 conservation organizations (Armstrong et al., 2015a,b; Armstrong & Aplin, 2011, 2014). While
104 there is no central library of PNG bat echolocation calls, these studies have steadily accumulated
105 knowledge and resources that support both acoustics-based and genetics-based identification,
106 underpin recent species profile revisions in the IUCN Red List, and studies of taxonomic
107 resolution (e.g., Wiantoro, 2020). They also mark a shift towards a primary reliance on acoustics-
108 based detection and identification on field surveys, rather than trapping as was relied upon in the
109 past, though trapping is still the best means of surveying for small species in the Pteropodidae
110 and collecting material to allow robust acoustics-based identification.

SIVAULT et al.

111 As a part of the Bismarck Range, Mt. Wilhelm is the highest peak in PNG (4,509 m a.s.l.)
112 and offers a complete elevational transect in relatively intact tropical forests. Established study
113 transects have become well-studied for birds (Marki et al., 2016; Sam et al., 2017, 2019), insects
114 (Cesne et al., 2015; Finnie et al., 2021; Novotny et al., 2005; Orivel et al., 2018; Souto □ Vilarós
115 et al., 2020; Szczepański et al., 2018), and plants (Lofthus et al., 2020; Smith, 1977; Wolf et al.,
116 2020). Thus, given what previous efforts on other biota offer, the Mt. Wilhelm transect provided
117 an opportunity not found elsewhere in New Guinea to study bat communities. Consequently, the
118 present study aimed to: (a) document bat species richness patterns and community assemblages
119 with increasing elevation to determine whether elevation is a filter of specific bat species and/or
120 feeding guilds. We expected to see a steeply decreasing pattern in species richness, as it has been
121 typically observed on tropical wet mountains; (b) investigate which of the abiotic (i.e., mean
122 daily temperature, available land area) and biotic (i.e., habitat, food availability) factors drive bat
123 diversity patterns. We assumed that temperature will best explain the patterns as described in the
124 majority of past studies; (c) compare bat communities from the Mt. Wilhelm transect with the
125 regional data (compiled from Bonaccorso, 1998), as well as the bat elevation ranges to determine
126 whether some species are out of their previously recorded ranges. We expected that species we
127 detect in highlands will have wider environmental tolerance, thus they will occur also in the
128 lowlands, nevertheless, following the current scenario of climate change, we also expected to find
129 species strictly constraint to high elevations.

130

131 **2. METHODS**

132

133 **2.1 Study area**

SIVAULT et al.

134 We surveyed bat communities along the elevational transect of Mt. Wilhelm in PNG between 200
135 m and 3,700 m a.s.l. at eight elevational study sites separated by 500 m elevational increments
136 (i.e., 200 m, 700 m, 1,200 m, 1,700 m, 2,200 m, 2,700 m, 3,200 m, and 3,700 m a.s.l. and ± 60 m
137 for each study site due to the rough terrain). The 30 km long elevational transect, which stretches
138 between $5^{\circ}44' S$, $145^{\circ}2' E$ and $5^{\circ}47' S$, $145^{\circ}03' E$, is located along the Bismarck Range's northern
139 slope (Figure 1). Vegetation types used here follow Paijmans (1975), i.e., lowland alluvial forest
140 (<500 m a.s.l.), foothill forest (501–1,500 m a.s.l.), lower montane forest (1,501–3,000 m a.s.l.),
141 and upper montane forest (>3,000 m a.s.l.) (Figure S1.1 in Appendix S1 in supporting
142 information). Mean daily temperature decreases linearly ($r = -0.9$) from 27.4°C at the 200 m a.s.l
143 to 8.37°C at the timberline (3,700 m a.s.l) (Table S3.2) (Sam et al., 2019). The average annual
144 precipitation is 3,288 mm (local meteorological station) in the lowlands, rising to 4,400 mm at
145 the forest edge, with a distinct condensation zone between 2,500 and 2,700 m a.s.l. (Sam et al.,
146 2019).

147

148 **2.2 Mist-netting and acoustic surveys**

149 The bat communities were surveyed by mist-netting and by acoustic surveys, during two
150 independent expeditions conducted in wet (February – April 2015) and dry seasons (June – July
151 2015).

152 We used portable ultrasonic bat call detectors (Wildlife Acoustics EM3+ and a Pettersson
153 Elektronik D240X connected to a Roland R-05 Wave/MP3 recorder) to record the calls of
154 echolocating bat species. We surveyed the bats at five points separated by 200 meters at each
155 elevation, visiting each of these points for 15 minutes daily (Table S2.1). The points were located
156 along the point-count track of 16 points (150 m apart) used in the previous study of bird
157 communities (Sam et al., 2019). Surveys were conducted for four days per site from February to

SIVAULT et al.

158 July 2015 after sunset (6 pm) but were only feasible for two days at 3,200 and 3,700 m.

159 Recordings were analysed by opening each WAV file in Adobe Audition version 22.0 and

160 inspecting the spectrograms for bat echolocation pulses. There were three different sampling rates

161 in the data set: 22.05 kHz, 44.1 kHz, and 256 kHz. The characteristic frequency of echolocation

162 pulses was determined after accounting for the sampling rate and was estimated from the power

163 spectrum. Identification of bat species was undertaken in two steps. First, 'echolocation call

164 types' were recognised from the recordings and defined based on a standardised naming scheme

165 that has been used in many published and unpublished surveys across Papua New Guinea and

166 Wallacea in recent years (Armstrong et al., 2020, 2015a, b; Armstrong & Aplin, 2011, 2014; Kale

167 et al., 2018) and second, bat species identifications were attributed to each echolocation call type

168 based on information from these and other surveys (annotated species list in Table S2.2 and

169 illustration of call types in Figure S2.2). This two-step approach, along with the provision of

170 illustrated examples of identified call types, provides transparency that allows for future

171 verification of species identifications, and retrospective correction of species names on the basis

172 of updated information. Nomenclature follows the current IUCN Red List profile for each species

173 (<https://www.iucnredlist.org/>).

174 We set a total of eight mist-nets (length x height: 15 x 3.5 m) in various habitat types per

175 study site, including understorey 'flyway' spaces along human tracks, across creeks, and forest

176 openings. We mist-netted five nights (12 hrs per night) per site in the wet season survey. During

177 the dry season, we revisited elevations from 200 to 2,700 m only, and we operated the mist nets

178 over four nights for five hours daily. Mist-nets were moved to a new spot after every two or three

179 nights. All mist-netted bats were identified to species using field guides by Bonaccorso (1998)

180 and Flannery (1995) as well as (Irwin, 2017; Parnaby, 2009) for *Nyctophilus timoriensis* and

181 *Nyctimene cyclotis* (Figure S2.1). However, morphologically similar *Paranyctimene raptor* and

SIVAUT ET AL.

182 *P. tenax* could have been misidentified in the field; they can occur in sympatry, as previously
183 observed by Bergmans (2001).

184

185 **2.3 Regional data and explanatory variables**

186 The regional data included only bat species described as present in Central Range and Sepik-
187 Ramu Basin in Bonaccorso (1998). We summarized each bat species' food preferences and
188 elevational ranges described in the book (Table S3.1). The elevational ranges attributed to the bat
189 species came from captures across the whole New Guinea. Nevertheless, it still reflects their
190 tolerance to elevation even though some bat species are not found across the entire PNG area
191 within their elevational range.

192 We used the log \square transformed available land area of elevational belts 200 m wide across
193 the whole New Guinea mainland as a proxy for the land area available for respective study sites
194 (e.g., 100–300 m a.s.l., for the 200 m a.s.l. study site; measured in GIS software ARCGIS 9,3 and
195 ERDAS ER Mapper 6). Indeed, an elevation belt of 200 m seems to perform the best as a proxy
196 of the available land area to explain species richness patterns, according to a recent publication
197 (Sam et al., 2019).

198 Temperature and humidity were recorded every hour for one year (April 2010–July 2011)
199 using a data logger (Comet R3120) placed in the forest interior of each study site. Mean annual
200 temperature decreased at a constant rate, while mean humidity remained high across the entire
201 transect (83.0%–97.4%) (Table S3.2). Thus, we used only mean daily temperature as a predictor
202 variable.

203 We used three variables related to habitat (Table S3.2), measured at each point (i.e., 16
204 points per elevational study site, 128 in total, Sam et al., 2019): (1) Average canopy height (using
205 a laser rangefinder; three measures/point), (2) Shrub density (using a vegetation board (Lilith,

SIVAULT et al.

206 2007; MacArthur & MacArthur, 1961), five measures/point, 1–3 m height), and (3) Canopy
207 openness (5 photos/point analysed with a Gap Light Analyzer; Frazer et al., 2001). These three
208 factors determine the vegetation structure at each site, which is the basis for the organization of
209 bat foraging guilds, defining flight spaces for foraging bats, and controlling the availability of
210 roost sites (Charbonnier et al., 2016; Denzinger & Schnitzler, 2013; López-González et al.,
211 2012).

212 In addition, we derived several predictors of food availability. Firstly, we used two food
213 variables for frugivorous-nectarivorous bats (Table S3.2), (1) species richness, and (2) abundance
214 of fruiting trees (Villemant et al., 2016). Trees were counted and identified in three random plots
215 of 20 x 20 m at each study site in the dry season of 2013. Further, we obtained the abundance and
216 richness of the fruiting trees targeted by bats at each elevation by using plant genera recognized
217 as having fruit or nectar consumed by pteropodid bats by the database of Aziz et al. (2021).

218 Moths (Lepidoptera) dominate the diet of most insectivorous species. We used the (1)
219 species richness and (2) abundance of Geometridae, one of the most important moth families
220 (Beck et al., 2017; Vestjens & Hall, 1977) as an indicator of Lepidoptera availability. The
221 specimens were collected using manual light trapping (May–August 2009; October–December
222 2009, January 2010) at all eight study sites of Mt. Wilhelm transect (Beck et al., 2017; Toko,
223 2011).

224

225 **2.4 Statistical analysis**

226 We used incidence data (i.e., presence/absence per sampling night) from the acoustic surveys as it
227 was not possible to separate the vocalizations of individual bats. Mist-netting data were also
228 converted to incidence data to facilitate comparison. We recorded the number of nights at a
229 particular elevation when a given species was present. We used sample-based rarefaction to

SIVAUT et al.

230 compare species richness by sampling days at each elevation (in EstimateS 9.1; Colwell, 2013)
231 for both methods. We extrapolated the sampling effort by doubling the number of sampling days.
232 Then, we used non-parametric estimators for incidence data (Jackknife1) to compare with the
233 richness observed along the transect using the software EstimateS 9.1 (Colwell, 2013).
234 Abundances (from mist-netting data) and total species richness (from both methods) were also
235 described for each of the three feeding guilds (frugivore-nectarivore, insectivore, frugivore-
236 nectarivore-insectivore).

237 We produced heatmaps using the Jaccard dissimilarity index to compare bat species
238 composition between sites using the "Vegan" library (Oksanen et al., 2013) in R software (R
239 Core Team, 2020). The first heatmap was run using incidence data from both mist-netting and
240 acoustic surveys. The second one was produced with regional data (i.e., bats from Central Range
241 and Sepik-Ramu basin). We calculated the mean elevation range for all species observed at each
242 elevation in this study and from regional data, then compared local and regional ranges.

243 Total species richness was used as the dependent variable in Poisson regressions with
244 combinations of five predictor variables (log-transformed): mean daily temperature, canopy
245 height, shrub density, canopy openness, and land area available within 200 m elevational belts
246 (Table S5.1). Similarly, species richness partitioned into feeding guilds was used as the
247 dependent variable with combinations of six variables: mean temperature, land area, fruiting tree
248 richness, and abundances, or moth species richness and abundances. The small size of our dataset
249 did not allow us to test habitat variables in partitioned richness and to include interactions in our
250 models. We used $\Delta AICc$ and Akaike weights (w_i) to interpret regression results and evaluate
251 models and their fits (Anderson & Burnham, 2002). Frugivore and nectarivore species were
252 assigned to one main feeding guild in our models: frugivore-nectarivore. Frugivore-nectarivore-

SIVAULT et al.

253 insectivore species (i.e., *Syconycteris australis*) was included into two guilds —the frugivore-
254 nectarivore and insectivore guilds (i.e., its presence was included in two datasets).

255

256 **3. RESULTS**

257

258 **3.1 Species richness pattern**

259 By mist-netting, we captured 701 individuals of 12 bat species (Table S2.1). We did not capture
260 any individuals above 2,700 m during the wet season and we were not able to resurvey elevations
261 above 2,700 m during the dry season due to logistical constraints. A total of 11 echolocation call
262 types were recognised from the recordings, each of which can be associated with one or more bat
263 species (Figure S2.2). From these, at least ten bat species in five families were recorded (i.e.,
264 confirmed) as being present on the survey (Table S2.1). In total, no less than 22 species were
265 observed in five months along the Mt. Wilhelm transect. This represents about 30 % of the
266 regional species pool according to Bonaccorso (1998). Species richness declined with increasing
267 elevation, regardless of the survey method used or the data sources (Figure 2).

268 The non-parametric estimator “Jackknife 1” matched the species richness trends, but its
269 estimates were higher than the observed curves (Figure 3c, 3d). Specifically, it predicted
270 significantly higher than observed richness at 700 and 2,700 m in audio data and from 200 m to
271 2,200m in mist-netting data. The species accumulation curves have not reached the plateau
272 during the acoustic surveys at 700 and 2,700 m and by mist-netting at 700 m (Figure 3a, 3b). We
273 noticed a low plateau at 1,700 m in acoustic data and 1,200m in mist-netting data which matched
274 with the decreases observed at these elevations on the species richness trends (Figure 3c, 3d). On
275 the other hand, the rarefaction curves showed that we quickly reached the highest level of species
276 richness at high elevations (3,200–3,700 m) in both survey methods.

SIVAULT et al.

277 The mist-netting data did not reveal a clear pattern of abundances along the elevational
278 transect (Figure S4.1) while the acoustic data could not be used to estimate abundance. Fruit-
279 feeding bats were the most frequently captured (Figure S4.1) and *Syconycteris australis*
280 dominated the samples (Table S2.1). However, in terms of the number of species, the richness of
281 the frugivores-nectarivores and insectivores declined in a similar pattern along the transect
282 (Figure S4.1).

283 **3.2 Drivers of diversity**

284 We first modelled total species richness with the abiotic and habitat variables, followed by
285 partitioned species richness (i.e., frugivore-nectarivore, insectivore) with the abiotic and food
286 variables. Selected according to AICc, the model with the available land area as a single variable
287 performed better than any other combination (Table S5.1) when it included all species or only
288 insectivores, while temperature as a single variable performed better in frugivore species (Table
289 1). Despite strong correlations between canopy openness ($R>0.8$) and height ($R>0.8$) with area
290 and temperature (Figure S3.1), habitat (Figure S6.1) and any food variable (Figure S6.2 and S6.3)
291 did not significantly improve the model.

292 **3.3 Assemblages of bat communities**

293 The heatmap based on the Mt. Wilhelm data (Figure 4a) showed a rapid turnover of communities
294 along the elevation transect. We found high similarity between pairs of communities at the
295 extreme ends of the transect, between 200 and 700 m and between 3,200 and 3,700 m but also at
296 mid-elevation between 1,200 and 1,700 m. The latter pair of sites shared the only species (i.e.,
297 *Miniopterus australis*) found at 3,700 m with a total of two species at 3,200 m. However, using
298 regional data (Figure 4b), the heatmap revealed an increasing turnover of species with increasing
299 elevation. Communities also appeared similar between the closest sites (e.g., 200–700 m; 700–

SIVAULT et al.

300 1,200 m) except for the highlands. The elevational distribution of bats ends at 3,200 m in regional
301 data (Table S3.1) so that the highest elevation (3,700 m) could not share any species with other
302 sites.

303 In the regional data, the mean elevation range length of species is increasing with
304 increasing elevation, meaning that species occurring at one elevation tend to be also found at the
305 lowest ones (Figure 5). The same pattern was observed in our community samples except at
306 3,200 m where it decreased slightly. It means that one of the species recorded by us (i.e.,
307 *Miniopterus tristis/Pipistrellus collinus*) at 3,200 m was not detected in the lowlands, despite
308 occurring there in the regional data.

309 Our results confirmed the upper elevation reported in the literature for most of the species
310 at Mt. Wilhelm, with the exception of six species: *Hipposideros wollastoni*, *H. calcaratus*,
311 *Dobsonia minor*, *Nyctimene draconilla*, *Paranyctimene raptor*, *Miniopterus australis*
312 [= *Miniopterus* sp. 2 ‘small’]), that were observed at higher elevations (Figure S7.1).

313

314 **4. DISCUSSION**

315
316 Our study was the first detailed bat survey along a forest transect in PNG and revealed that Mt.
317 Wilhelm hosts at least one-third of the bat species richness expected in that region (Bonaccorso,
318 1998), representing thus an important diversity hotspot. Bat species richness decreased with
319 increasing elevation and the observed pattern was mainly driven by available land area or mean
320 daily temperature. Species turnover was continuous, with most of the bat species occurring in
321 lowlands and only a limited number reaching the higher elevations. However, while this pattern
322 was predictable based on the regional data, our observations at Mt. Wilhelm showed that some

SIVAULT et al.

323 bats were detected only at high elevations and seemed to be missing in the lower parts of their
324 typical ranges. This pattern might be real or affected by sampling effort issues. Extensive studies
325 are required to clarify this pattern and understand bat community structures in PNG.

326 **4.1 Species richness pattern**

327 PNG is home to a very high number of bat species (95 species) and, with 36 species, boasts the
328 second-highest diversity of Old World fruit bats (i.e., family Pteropodidae) in the world after
329 Indonesia (Aziz et al., 2021). However, it is also one of the most data deficient and poorly-
330 understood countries in terms of how the bat communities are structured with respect to their
331 ecological roles (Aziz et al., 2021). Mt. Wilhelm represents a high diversity of bats with at least
332 22 species out of the 62 expected in that region. Our data indicate that more species would be
333 revealed by a more intensive survey.

334 The decreasing species richness with increasing elevation followed the main trend found
335 in tropical mountains documented by McCain (2007). As expected, we confirmed differences
336 between results provided by the two sampling methods employed (Kuenzi & Morrison, 1998;
337 Larsen et al., 2007) whereby most of the species captured in the mist nets were frugivores and
338 nectarivores. Insectivorous bats possess specialized anatomical adaptations that enable
339 echolocation and thus, some species are able to detect and avoid the mist-nets (Francis, 1989;
340 Larsen et al., 2007). This likely explains why only two echolocating bat species were captured in
341 our study, in addition to being detected acoustically (Table S2.1 in Appendix S2). The rarefaction
342 curves showed that acoustic surveys would have to be longer than eight days and coupled with
343 all-night recordings from autonomous recorders in order to yield accurate numbers of species at
344 700 and 2,700 m. Furthermore, a recent study in the Neotropics revealed that the main centre of
345 activity in bat species is in rainforest canopies (Marques et al., 2016), which has already been

SIVAUT ET AL.

346 observed for birds in PNG (Chmel et al., 2016). However, since we did not survey bats at the
347 canopy level due to logistical challenges, we potentially missed bats flying above the treetops,
348 perhaps because our equipment could not detect the attenuated echolocation signals, or they were
349 simply less likely to reach our understorey mist nets (Kalko & Handley, 2001; Marques et al.,
350 2016). Our result underscored the tendency of insectivorous species to avoid mist-nets and the
351 necessity to employ both acoustic and capture methods in the forest canopy and understorey.

352 In terms of abundance, we captured more frugivore-nectarivore individuals in the
353 lowlands (i.e., 200–700 m) but we did not see significant differences in the capture rate from
354 1,200 to 2,200 m. This contrasts with studies in South American forests (Carvalho et al., 2019)
355 where frugivores declined greatly above 1000 m. At 3,200 to 3,700 m, the habitats along rivers
356 were mostly open (Figure S1.1 in Appendix S1), which made the captures more difficult. That is
357 perhaps why we did not catch any bats above 2,700 m. However, we have no independent way of
358 assessing catchability in the frugivorous species, in contrast with the insectivorous species for
359 which we can detect them acoustically even though they are not easily captured. Therefore, we
360 were unable to resolve whether frugivore-nectarivore are simply missing above 2,700 m due to
361 environmental filters (e.g., fruit production, temperature) or whether it is the result of apparent
362 mist-netting limitations.

363 **4.2 Drivers of diversity**

364 Despite using a range of factors including some rarely considered for bats (i.e., food availability,
365 habitat), our analysis revealed that available land area and mean daily temperature have the
366 strongest effect on bat species richness along the elevational transect. The area available in the
367 200 m elevational belt around the study site was the best predictor in the models including all the
368 species or insectivores only, followed closely by temperature in explanatory power. It followed

SIVAULT et al.

369 the long-known and very robust pattern of the species-area relationship (May, 1975; Rosenzweig,
370 1995), where the number of species increases with the size of the area.

371 Temperature was the best predictor of frugivorous species. As such, our data mirror those
372 from other studies conducted in tropical mountains where temperature was also reported to be a
373 strong correlate with bat diversity (McCain, 2007b). Temperature could affect distributions
374 through direct (e.g., physiology) or indirect effects (e.g., habitat, food resources) in different
375 ways between feeding guilds. Mean daily temperatures were 9.9 and 7.9 °C at 3,200 and 3,700 m
376 respectively, which is below the temperature tolerance of most bat species (Appel et al., 2019;
377 Turbill, 2008) and may explain why we did not capture any bats at these sites, and only recorded
378 two species above 2,700 m. Besides, temperature could influence bat species richness indirectly
379 through vegetation and food resources (Charbonnier et al., 2016; Moura et al., 2016). Indeed,
380 vegetation structure could be important for bats, indirectly related to food resources, but also for
381 roosting sites (Capaverde et al., 2018; Kunz, 1982; Perry et al., 2007). Roosting opportunities
382 depend on the number of trees of appropriate size and whether or not they contain cavities or
383 other structures appropriate for bats. Based on published data, 67 % of the species detected in Mt.
384 Wilhelm potentially use foliage or tree hollows (Table S8.1 in Appendix S8). In addition, insect
385 abundance, and fruit and nectar production are all predicted to be low at high elevations (Loiselle
386 & Blake, 1991; Terborgh, 1977). Studies suggest that the reduction in productivity with elevation
387 (McCain & Grytnes, 2010) has a more substantial impact on fruit resources (e.g., figs) than on
388 the other types of resources used by bats (e.g., insects) (Presley et al., 2012; Segar et al., 2017).
389 The distribution of moths from Mt. Wilhelm shows a mid-peak pattern (Beck et al., 2017; Toko,
390 2011), which does not seem to be followed by insectivorous bats. This is in contrast with patterns
391 in abundances of insectivorous birds of Mt. Wilhelm which peaked in abundance at mid-

SIVAULT et al.

392 elevations, where habitat complexity was the greatest and arthropod abundances were still
393 relatively high (Sam et al., 2020).

394 The inclusion of habitat features, fruiting tree and moth species richness, and abundances
395 in the model did not change the relative level of influence of temperature and area on species
396 richness. However, available area, as well as temperature, decrease linearly with increasing
397 elevation while bat diversity does not. The steepest drop-off in numbers was between 200 m and
398 1,200 m, and declining at a slower rate thereafter. It is thus likely that there are also other factors,
399 that we did not consider (e.g., seasonal food availability), modifying the response by bats.

400 **4.3 Assemblages of bat communities**

401 According to regional data, species turnover kept increasing from similar communities in the
402 lowest study sites (200–700 m) to more dissimilar ones in the highest sites (2,200–3,200 m).
403 Nevertheless, the communities of bats found at the highest sites were just a subset of bats from
404 the lowlands, suggesting that the vast majority of the bat species found in this region are not
405 restricted to mountainous areas. However, potential identification issues and unresolved
406 taxonomy might affect the understanding of species elevational distributions, especially in this
407 long-standing regional dataset (Bonaccorso, 1998).

408 Our study is the first bat survey conducted at the highest peak of PNG. We detected bats
409 at the 3700 m elevation band—never before recorded in PNG (Amick et al., 2021)—and
410 observed wider bat ranges than the ones described previously for the region (Bonaccorso, 1998).
411 These range extensions are most likely due to low sampling effort for bats at high elevations in
412 PNG in the past, rather than any recent range expansions. In Mt. Wilhelm surveys, we found bat
413 species at high elevations that were missing from the lowlands (*M. tristis*/*P. collinus*, *H.*
414 *wollastoni*, *O. secundus*), which have been encountered more commonly at mid-high elevations.

SIVAULT et al.

415 Globally, previous studies showed that the majority of bats found in highlands are primarily
416 lowland species that occasionally commute to higher elevations when conditions become
417 favourable (Alberdi et al., 2015; Michaelsen, 2010) or use these environments as commuting
418 routes. Indeed, as previously mentioned, most bats are limited by direct and/or indirect effects of
419 temperature, and life at high elevations could present an energetic challenge, especially for
420 pregnant and lactating females (Kunz et al., 1995). In our sampling, low canopy openness in the
421 lowlands could affect our ability to detect echolocation signals from bats flying over the canopy.
422 Moreover, changes in call structure at high elevations have already been observed for one bat
423 species (i.e., *Tadarida brasiliensis*) in a previous study (Gillam et al., 2009). Nevertheless, under
424 a scenario of climate change, these bat species (i.e., *M. tristis*/*P. collinus*, *H. wollastoni*, *O.*
425 *secundus*) may have been recently constrained to high elevations because of spatial elements
426 and/or their ecology and/or physiology. However, we are unable to resolve whether we likely
427 missed these species in the lowlands because of the use of methods that have a greater bias
428 towards the detection of species below the canopy or whether these bat species spanning only in
429 high elevations are the consequences of acclimations to climate change. Extensive surveys with a
430 greater level of effort might help to answer this question.

431

432 **5. CONCLUSION**

433

434 Mt. Wilhelm provides habitat for a globally significant bat fauna whose species richness follows
435 the typical decreasing pattern with elevation found in other tropical mountains. Available land
436 area and mean daily temperature explained the vast majority of this pattern, however, we suspect
437 that additional factors (i.e., seasonal food availability) could improve the models. Bat

SIVAULT et al.

438 communities also varied gradually along the elevational transect, as we describe for the first time
439 for PNG. The fact that six species in this study were recorded above their typical elevational
440 range (Table S2.1 in Appendix S2), including some detected above the previously described
441 maximal distribution for PNG, might be the result of climate change or basic survey issues and
442 lack of good quality historical data. A greater level of effort would shed light on this, which is
443 potentially important, as the bats of PNG remain largely understudied. This study highlights how
444 the results of basic inventory surveys that employ a comprehensive, multi-method effort for bat
445 sampling can be used to address ecological questions that might help with impact assessments.

SIVAULT et al.

446 **TABLE LEGENDS**

447 Table 1: Akaike's second-order information criterion (AICc) for single-predictor models of
448 observed bat species richness along the Mt. Wilhelm elevational transect, estimated for all bat
449 observations and the observations partitioned into two feeding guilds. The bold text underlines
450 the model which performed better than any possible combination. Note that only single-predictor
451 models are shown here, while combinations of all the explanatory variables are available in Table
452 S5.1 in Appendix S5.

SIVAUT et al.

453 **TABLE**

454 Table 1.

<i>All bats</i>	– log(L)	Akaike weight (w_l)	AIC _c	ΔAIC _c
Area	14.55	0.458	35.5	0.00
Temperature	15.32	0.212	37	1.54
Canopy height	16.31	0.079	39	3.52
Shrub density	18.79	0.007	44	8.49
Canopy openness	18.85	0.006	44.1	8.61
<i>Frugivores-nectarivores</i>	– log(L)	Akaike weight (w_l)	AIC _c	ΔAIC _c
Temperature	9.31	0.552	25	0.00
Area	9.95	0.289	26.3	1.29
Fruiting tree abundances	15.65	0.001	37.7	12.67
Fruiting tree richness	16.54	0.000	39.5	14.46
<i>Insectivores</i>	– log(L)	Akaike weight (w_l)	AIC _c	ΔAIC _c
Area	13.99	0.482	34.4	0.00
Temperature	14.42	0.312	35.3	0.87
Moth abundances	17.67	0.012	41.7	7.36
Moth richness	17.74	0.011	41.9	7.5

SIVAULT et al.

455 **FIGURE LEGENDS**

456 Figure 1: Map of the Mt. Wilhelm elevational gradient (source: Google earth; QGIS 3.12.2) and
457 its location in Papua New Guinea (insert with red square).

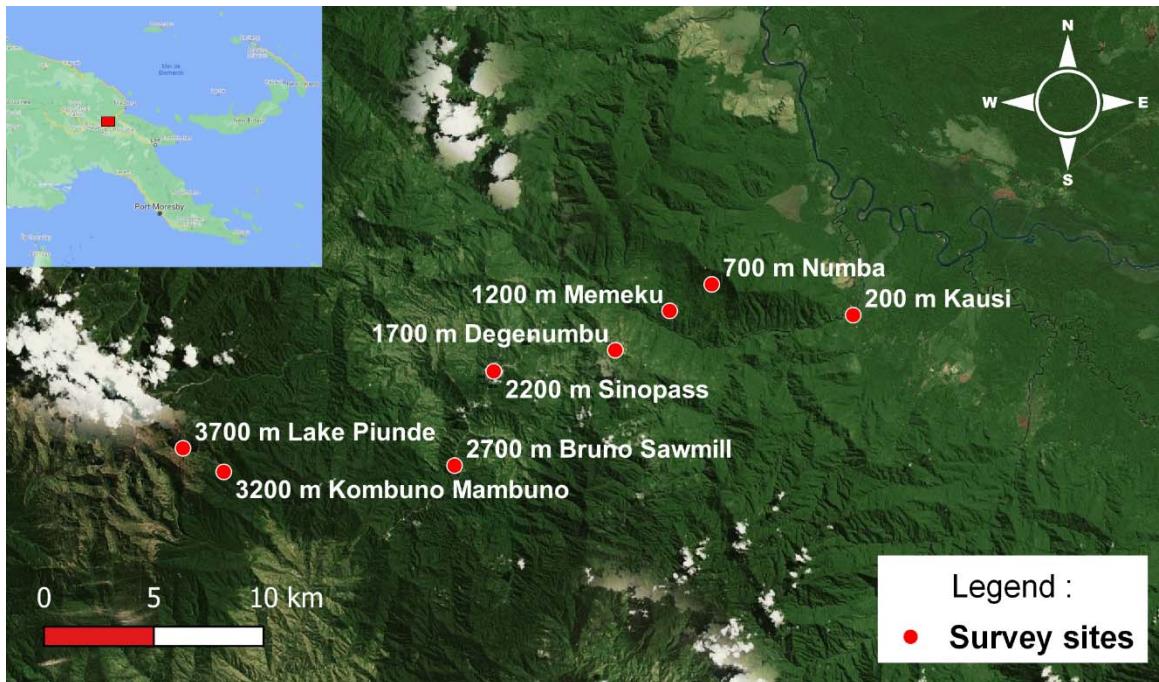
458

459 Figure 2: Bat species richness recorded from mist-netting captures, acoustic records, and both
460 methods combined, at eight study sites of Mt. Wilhelm elevational transect in Papua New
461 Guinea. Regional species richness according to Bonaccorso (1998).

462

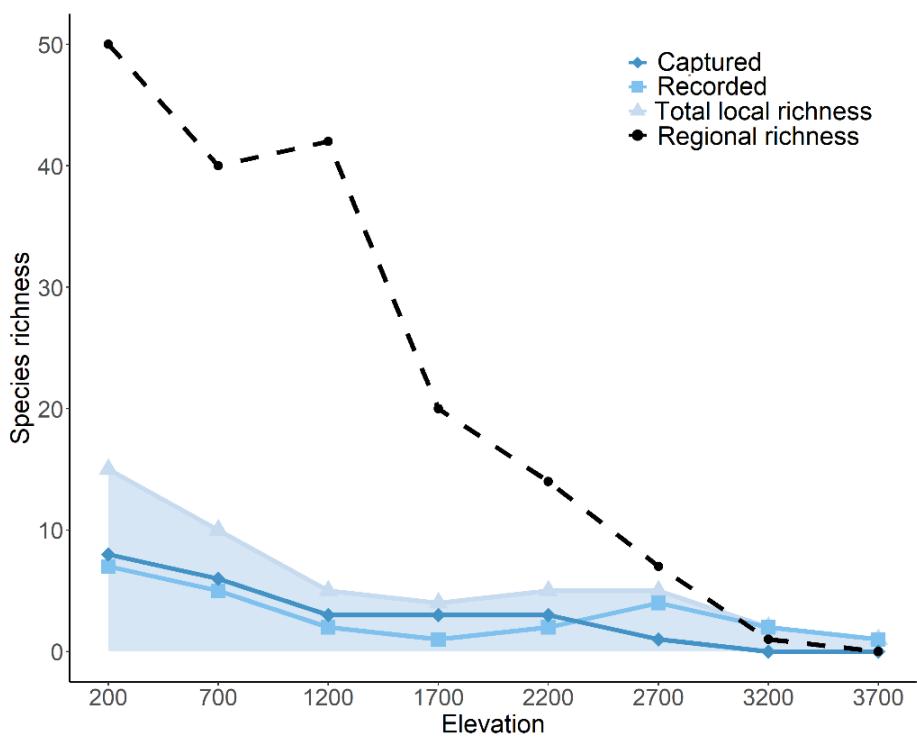
463 Figure 3: Rarefaction curves of observed and extrapolated (dashed lines) (days x2) number of bat
464 species according to the number of recording (a) or mist-netting days (b) along the elevational
465 transect of Mt. Wilhelm in Papua New Guinea. Observed, estimated (Jackknife1) species richness
466 using audio (c) or mist-nets (d) along elevational transect of the Mt Wilhelm.

467


468 Figure 4: Heatmap of Jaccard dissimilarity index of local (mist-netted and acoustic data
469 combined) bat communities found at Mt. Wilhelm (a) and potential bat communities based on the
470 regional distribution of bats in Papua New Guinea (b).

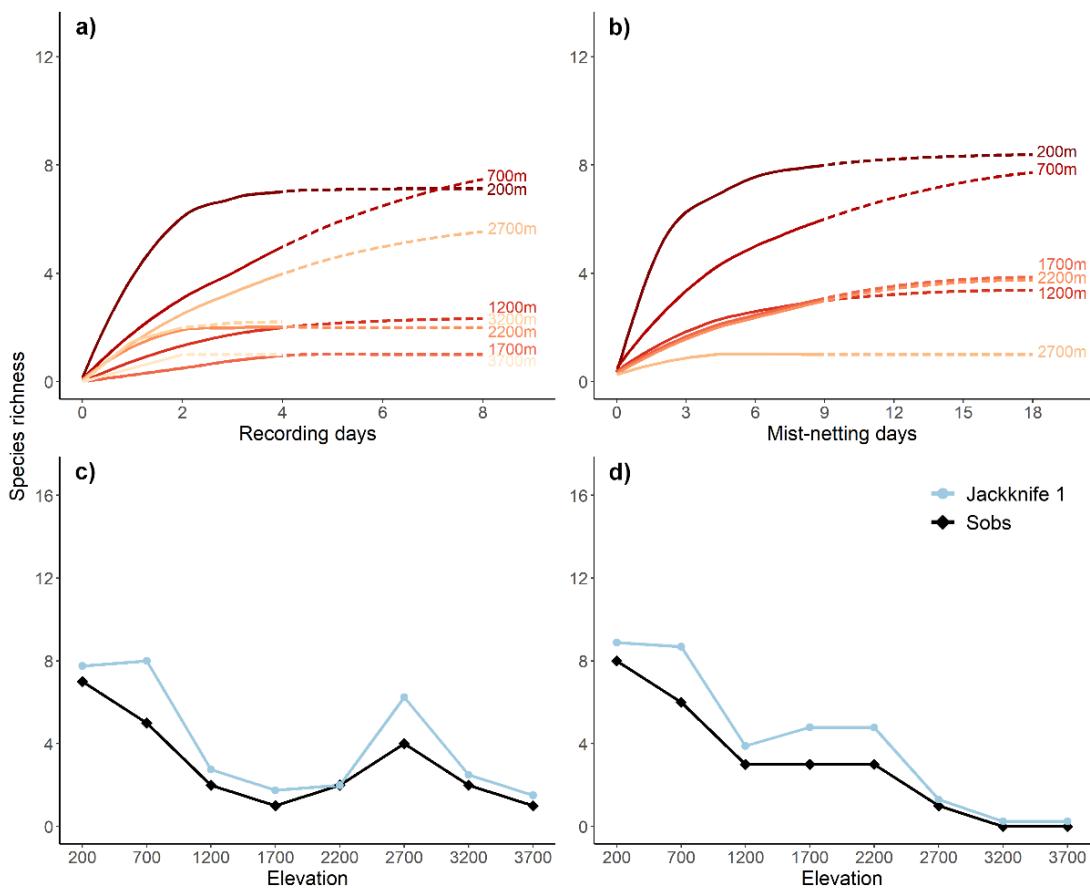
471

472 Figure 5: The elevation range for all bat species occurring at each surveyed elevation calculated
473 from Mt. Wilhelm and regional data. Note that only one species is recorded at 3200 m and none
474 at 3700m in the regional data, while we recorded two and one bat species at 3200 and 3700 m
475 respectively (Amick et al., 2021).

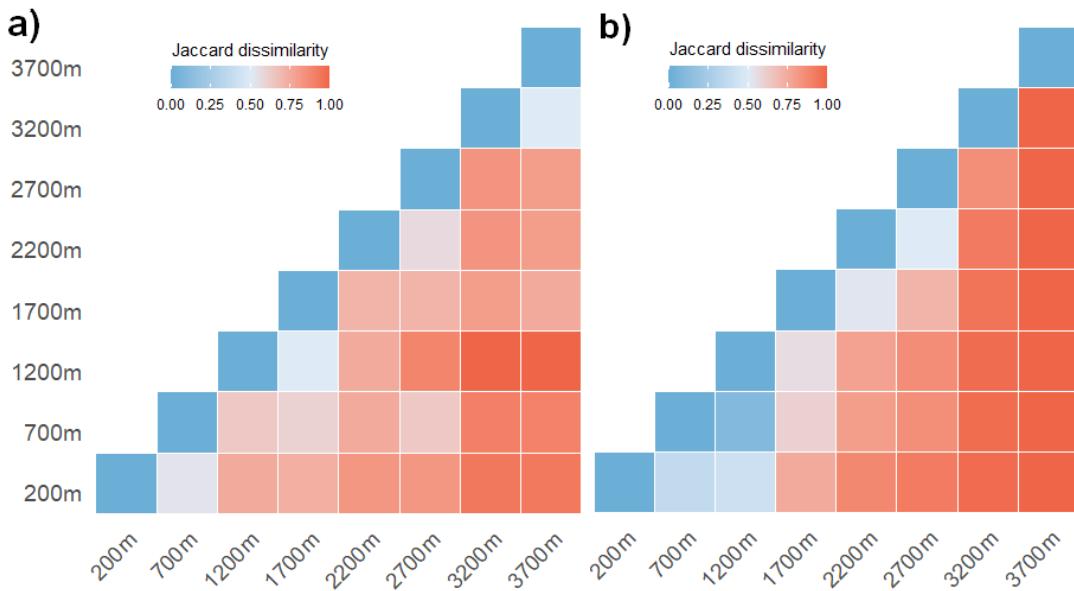

SIVAUT et al.

476 **FIGURES**

477

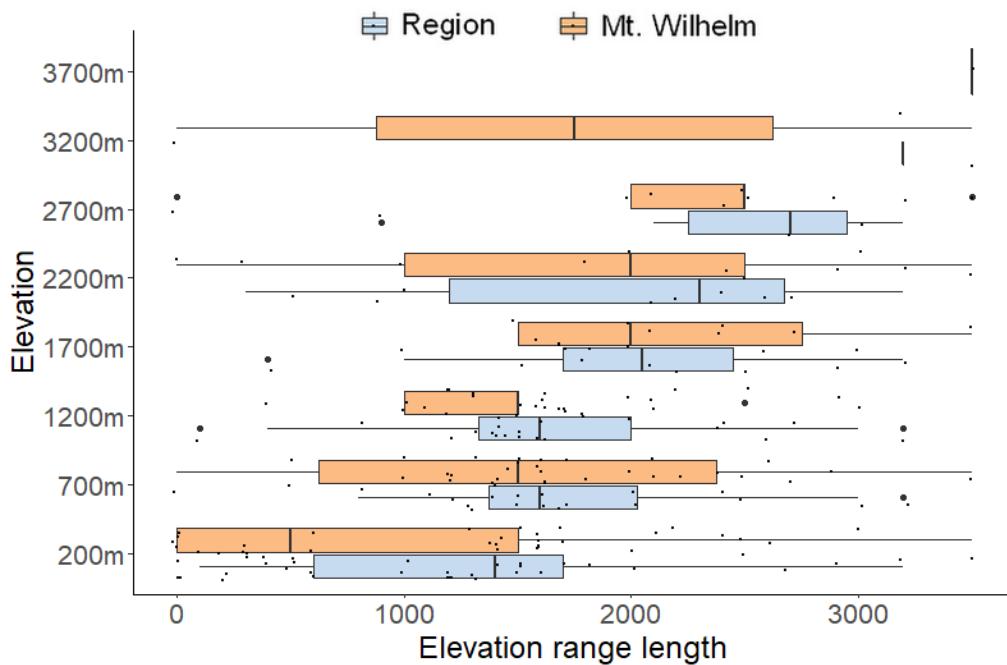

478 Figure 1.

479


480 Figure 2.

SIVAUT et al.

481


482 Figure 3.

483

484 Figure 4.

SIVAUT et al.

485

486 Figure 5.

SIVAULT et al.

487 **ACKNOWLEDGMENTS**

488

489 We thank the landowners of Mt Wilhelm elevational transect and villagers from Bruno Sawmill,
490 Sinopass, Degenumbu, Memeku, Numba, and Kausi for assistance and access to the sites. We
491 also thank P. Toko who shared his database on moth species along Mt Wilhelm elevational
492 transect, and L. Sam and R. Hazel who shared data on the richness of fruiting trees. Binatang
493 Research Centre helped with logistical support and research permits. We acknowledge ERC StG
494 BABE 805189 and GAJU n.04-048/2019/P for financial support. Bat sampling was conducted
495 under research permit 11800056119.

496

497 **AUTHORS CONTRIBUTIONS**

498

499 PKA conducted the fieldwork, recorded bat calls, and mist-netted the bats, KNA performed bat
500 call identifications, ES performed data analyses, extracted data from literature and wrote the first
501 draft of the manuscript, KS designed and funded the study and helped with the analyses, PKA,
502 KNA, KS, and VN contributed significantly to revisions.

503

504 **DATA AVAILABILITY STATEMENT**

505

506 The data used for analysis are available in Table S2.1 in Appendix S2 and Tables S3.1, S3.2 in
507 Appendix S3.

SIVAULT et al.

508 **REFERENCES**

509 Alberdi, A., Aihartza, J., Aizpurua, O., Salsamendi, E., Brigham, R. M., & Garin, I. (2015).
510 Living above the treeline: Roosting ecology of the alpine bat *Plecotus macrobullaris*.
511 *European Journal of Wildlife Research*, 61(1), 17–25. <https://doi.org/10.1007/s10344-014-0862-8>

513 Amick, P. K., Sam, K., Drumo, G., Toko, P. S., & Novotny, V. (2021). Bats can reach 3626 m
514 a.s.l. in Papua New Guinea: Altitudinal range extensions for six rainforest bat species.
515 *Mammalia*. <https://doi.org/10.1515/mammalia-2020-0169>

516 Anderson, D. R., & Burnham, K. P. (2002). Avoiding Pitfalls When Using Information-Theoretic
517 Methods. *The Journal of Wildlife Management*, 66(3), 912–918.
518 <https://doi.org/10.2307/3803155>

519 Appel, G., López-Baucells, A., Magnusson, W. E., & Bobrowiec, P. E. D. (2019). Temperature,
520 rainfall, and moonlight intensity effects on activity of tropical insectivorous bats. *Journal
521 of Mammalogy*, 100(6), 1889–1900. <https://doi.org/10.1093/jmammal/gyz140>

522 Armstrong, K. N., & Aplin, K. P. (2011). Chapter 19. Bats of the Muller Range, Papua New
523 Guinea. In S. J. Richard & B. G. Gamui (Eds.), *Rapid Biological Assessments of the
524 Nakanai Mountains and the upper Strickland Basin: Surveying the biodiversity of Papua
525 New Guinea's sublime karst environments*. (RAP Bulletin of Biological Assessment 60,
526 pp. 222–234). Conservation International.

527 Armstrong, K. N., & Aplin, K. P. (2014). Chapter 7. A survey of bats (Chiroptera) in the Baiyer
528 River Wildlife Sanctuary, Western Highlands Province, Papua New Guinea. In S. J.
529 Richard (Ed.), *A rapid biodiversity assessment of the Baiyer River region, Western
530 Highlands Province, Papua New Guinea*. (A report to the Mul Baiyer Lumusa District
531 Administration, pp. 111–113).

SIVAULT et al.

532 Armstrong, K. N., Aplin, K. P., & Lamaris, J. S. (2015a). Chapter 10. Bats. In S. J. Richard & N.
533 Whitmore (Eds.), *A rapid biodiversity assessment of Papua New Guinea's Hindenburg
534 Wall region*. (pp. 166–180). Wildlife Conservation Society Papua New Guinea Program.

535 Armstrong, K. N., Mani, A., & Nagombi, E. (2020). Chapter 4. Bats. In S. J. Richards (Ed.),
536 *Results of the third PMA3 Biodiversity Monitoring Survey of the PNG LNG Upstream
537 Project Area, 8 August-2 September 2019*. (pp. 147–181). ExxonMobil PNG Limited.

538 Armstrong, K. N., Novera, J., & Aplin, K. P. (2015b). Acoustic survey of the echolocating bats of
539 Manus Island and Mussau Island, Papua New Guinea. In N. Whitmore (Ed.), *A Rapid
540 Biodiversity Survey of Papua New Guinea's Manus and Mussau Islands*. (pp. 69–85).
541 Wildlife Conservation Society Papua New Guinea Program.

542 Aziz, S. A., McConkey, K. R., Tanalgo, K., Sritongchuay, T., Low, M.-R., Yong, J. Y.,
543 Mildenstein, T. L., Nuevo-Diego, C. E., Lim, V.-C., & Racey, P. A. (2021). The Critical
544 Importance of Old World Fruit Bats for Healthy Ecosystems and Economies. *Frontiers in
545 Ecology and Evolution*, 9. <https://doi.org/10.3389/fevo.2021.641411>

546 Beck, J., McCain, C. M., Axmacher, J. C., Ashton, L. A., Bärtschi, F., Brehm, G., Choi, S.-W.,
547 Cizek, O., Colwell, R. K., Fiedler, K., Francois, C. L., Highland, S., Holloway, J. D.,
548 Intachat, J., Kadlec, T., Kitching, R. L., Maunsell, S. C., Merckx, T., Nakamura, A., ...
549 Novotny, V. (2017). Elevational species richness gradients in a hyperdiverse insect taxon:
550 A global meta-study on geometrid moths. *Global Ecology and Biogeography*, 26(4), 412–
551 424. <https://doi.org/10.1111/geb.12548>

552 Becker, A., Körner, C., Brun, J.-J., Guisan, A., & Tappeiner, U. (2007). Ecological and Land Use
553 Studies Along Elevational Gradients. *Mountain Research and Development*, 27(1), 58–65.
554 [https://doi.org/10.1659/0276-4741\(2007\)27\[58:EALUSA\]2.0.CO;2](https://doi.org/10.1659/0276-4741(2007)27[58:EALUSA]2.0.CO;2)

SIVAULT et al.

555 Bergmans, W. (2001). Notes on distribution and taxonomy of australasian bats. I. Pteropodinae
556 and Nyctimeninae (Mammalia, Megachiroptera, Pteropodidae). *Beaufortia*, 51(8), 119–
557 152.

558 Bonaccorso, F. J. (1998). *Bats of Papua New Guinea* (R. A. Mittermeier, W. R. Konstant, & C.
559 G. Burg, Eds.; CI Tropical Field Guide Series). Conservation International.

560 Bonaccorso, F. J., Winkelmann, J. R., Dumont, E. R., & Thibault, K. (2002). Home Range of
561 Dobsonia minor (Pteropodidae): A Solitary, Foliage-roosting Fruit Bat in Papua New
562 Guinea. *Biotropica*, 34(1), 127–135. <https://doi.org/10.1111/j.1744-7429.2002.tb00248.x>

563 Breed, A. C., Yu, M., Barr, J. A., Crameri, G., Thalmann, C. M., & Wang, L.-F. (2010).
564 Prevalence of Henipavirus and Rubulavirus Antibodies in Pteropid Bats, Papua New
565 Guinea. *Emerging Infectious Diseases*, 16(12), 1997–1999.
566 <https://doi.org/10.3201/eid1612.100879>

567 Capaverde, U. D., Pereira, L. G. do A., Tavares, V. da C., Magnusson, W. E., Baccaro, F. B., &
568 Bobrowiec, P. E. D. (2018). Subtle changes in elevation shift bat-assemblage structure in
569 Central Amazonia. *Biotropica*, 50(4), 674–683. <https://doi.org/10.1111/btp.12546>

570 Carvalho, W. D. de, Martins, M. A., Esbérard, C. E. L., & Palmeirim, J. M. (2019). Traits that
571 allow bats of tropical lowland origin to conquer mountains: Bat assemblages along
572 elevational gradients in the South American Atlantic Forest. *Journal of Biogeography*,
573 46(2), 316–331. <https://doi.org/10.1111/jbi.13506>

574 Cesne, M. L., Wilson, S. W., & Soulier-Perkins, A. (2015). Elevational gradient of Hemiptera
575 (Heteroptera, Auchenorrhyncha) on a tropical mountain in Papua New Guinea. *PeerJ*, 3,
576 e978. <https://doi.org/10.7717/peerj.978>

577 Charbonnier, Y. M., Barbaro, L., Barnagaud, J.-Y., Ampoorter, E., Nezan, J., Verheyen, K., &
578 Jactel, H. (2016). Bat and bird diversity along independent gradients of latitude and tree

SIVAULT et al.

579 composition in European forests. *Oecologia*, 182(2), 529–537.

580 <https://doi.org/10.1007/s00442-016-3671-9>

581 Chmel, K., Riegert, J., Paul, L., & Novotný, V. (2016). Vertical stratification of an avian

582 community in New Guinean tropical rainforest. *Population Ecology*, 58(4), 535–547.

583 <https://doi.org/10.1007/s10144-016-0561-2>

584 Colwell, R. K. (2013). *EstimateS, Version 9.1: Statistical estimation of species richness and*

585 *shared species from samples*. <http://purl.oclc.org/estimates>

586 Davis, M. B., & Shaw, R. G. (2001). Range Shifts and Adaptive Responses to Quaternary

587 Climate Change. *Science*, 292(5517), 673–679.

588 <https://doi.org/10.1126/science.292.5517.673>

589 Denzinger, A., & Schnitzler, H.-U. (2013). Bat guilds, a concept to classify the highly diverse

590 foraging and echolocation behaviors of microchiropteran bats. *Frontiers in Physiology*, 4.

591 <https://doi.org/10.3389/fphys.2013.00164>

592 Field, H., de Jong, C. E., Halpin, K., & Smith, C. S. (2013). Henipaviruses and Fruit Bats, Papua

593 New Guinea. *Emerging Infectious Diseases*, 19(4), 670–671.

594 <https://doi.org/10.3201/eid1904.111912>

595 Finnie, S., Sam, K., Leponce, M., Basset, Y., Drew, D., Schutze, M. K., Dahl, C., Damag, M.,

596 Dilu, M., Gewa, B., Kaupa, B., Keltim, M., Koane, B., Kua, J., Lilip, R., Mogia, M.,

597 Philip, F., Ray, B., Sam, L., ... Novotny, V. (2021). Assemblages of fruit flies (Diptera:

598 Tephritidae) along an elevational gradient in the rainforests of Papua New Guinea. *Insect*

599 *Conservation and Diversity*, 14(3), 348–355. <https://doi.org/10.1111/icad.12456>

600 Flannery, T. F. (1995). *Mammals of New Guinea* (The Australian Museum). Robert Brown and

601 Associates.

SIVAULT et al.

602 Francis, C. M. (1989). A Comparison of Mist Nets and Two Designs of Harp Traps for Capturing
603 Bats. *Journal of Mammalogy*, 70(4), 865–870. JSTOR. <https://doi.org/10.2307/1381730>

604 Frazer, G. W., Fournier, R. A., Trofymow, J. A., & Hall, R. J. (2001). A comparison of digital
605 and film fisheye photography for analysis of forest canopy structure and gap light
606 transmission. *Agricultural and Forest Meteorology*, 109(4), 249–263.
607 [https://doi.org/10.1016/S0168-1923\(01\)00274-X](https://doi.org/10.1016/S0168-1923(01)00274-X)

608 Gillam, E. H., McCracken, G. F., Westbrook, J. K., Lee, Y.-F., Jensen, M. L., & Balsley, B. B.
609 (2009). Bats aloft: Variability in echolocation call structure at high altitudes. *Behavioral
610 Ecology and Sociobiology*, 64(1), 69–79. <https://doi.org/10.1007/s00265-009-0819-1>

611 Gradstein, S. R., Homeier, J., & Gansert, D. (Eds.). (2008). *The tropical mountain forest*.
612 Universitätsverlag Göttingen. <https://doi.org/10.17875/gup2008-702>

613 Graham, G. L. (1983). Changes in Bat Species Diversity along an Elevational Gradient up the
614 Peruvian Andes. *Journal of Mammalogy*, 64(4), 559–571.
615 <https://doi.org/10.2307/1380511>

616 Helgen, K. M. (2007). The mammal fauna of the Kaijende Highlands, Enga Province, Papua New
617 Guinea. In *A Rapid Biodiversity Assessment of the Kaijende Highlands, Enga Province,*
618 *Papua New Guinea*. Conservation international.

619 Helgen, K. M., Opiang, M. D., & Thomas, W. H. (2011). The mammal fauna of Wanakipa,
620 Southern Highlands Province, Papua New Guinea. In *Rapid Assessment Program Bulletin
621 of Biological Assessment* (pp. 246–258).
622 <http://repository.si.edu/xmlui/handle/10088/16737>

623 Hodkinson, I. D. (2005). Terrestrial insects along elevation gradients: Species and community
624 responses to altitude. *Biological Reviews*, 80(3), 489–513.
625 <https://doi.org/10.1017/S1464793105006767>

SIVAULT et al.

626 Irwin, N. (2017). A new tube-nosed fruit bat from New Guinea, *Nyctimene wrightae* sp. Nov., a
627 re-diagnosis of *N. certans* and *N. cyclotis* (Pteropodidae: Chiroptera), and a review of
628 their conservation status. *Records of the Australian Museum*, 69(69), 73–100.
629 <https://doi.org/10.3853/j.2201-4349.69.2017.1654>

630 Kale, E., Armstrong, K. N., & Amick, P. K. (2018). Chapter 1.6. Mammals of the Wau Creek
631 proposed Wildlife Management Area, Gulf Province, Papua New Guinea, pp. 125-151;
632 Chapter 2.6. Mammals of the Uro Creek catchment, Gulf Province, Papua New Guinea,
633 pp. 245-270; and Chapter 3.6. Mammals of the Lake Kutubu Wildlife Management Area,
634 Southern Highlands Province, Papua New Guinea, pp. 353-378. In S. J. Richards (Ed.),
635 *Rapid biological assessments of Wau Creek, Uro Creek and Lake Kutubu: Documenting*
636 *biodiversity values to promote forest conservation in the Kikori River Basin, Papua New*
637 *Guinea*. ExxonMobil PNG Limited.

638 Kalko, E. K. V., & Handley, C. O. (2001). Neotropical bats in the canopy: Diversity, community
639 structure, and implications for conservation. In K. E. Linsenmair, A. J. Davis, B. Fiala, &
640 M. R. Speight (Eds.), *Tropical Forest Canopies: Ecology and Management* (Vol. 69, pp.
641 319–333). Springer Netherlands. https://doi.org/10.1007/978-94-017-3606-0_26

642 Kuenzi, A. J., & Morrison, M. L. (1998). Detection of Bats by Mist-Nets and Ultrasonic Sensors.
643 *Wildlife Society Bulletin (1973-2006)*, 26(2), 307–311. JSTOR.

644 Kunz, T. H. (1982). Roosting Ecology of Bats. In T. H. Kunz (Ed.), *Ecology of Bats* (pp. 1–55).
645 Springer US. https://doi.org/10.1007/978-1-4613-3421-7_1

646 Kunz, T. H., Whitaker, J. O., & Wadanoli, M. D. (1995). Dietary energetics of the insectivorous
647 Mexican free-tailed bat (*Tadarida brasiliensis*) during pregnancy and lactation. *Oecologia*,
648 101(4), 407–415. <https://doi.org/10.1007/BF00329419>

SIVAULT et al.

649 Larsen, R. J., Boegler, K. A., Genoways, H. H., Masefield, W. P., Kirsch, R. A., & Pedersen, S.
650 C. (2007). Mist netting bias, species accumulation curves, and the rediscovery of two bats
651 on Montserrat (Lesser Antilles). *Acta Chiropterologica*, 9(2), 423–435.
652 [https://doi.org/10.3161/1733-5329\(2007\)9\[423:MNBSAC\]2.0.CO;2](https://doi.org/10.3161/1733-5329(2007)9[423:MNBSAC]2.0.CO;2)
653 LaVal, R. K. (2004). Impact of Global Warming and Locally Changing Climate on Tropical
654 Cloud Forest Bats. *Journal of Mammalogy*, 85(2), 237–244.
655 <https://doi.org/10.1644/BWG-016>
656 Lilith, M. (2007). *Do pet cats (Felis catus) have an impact on species richness and abundance of
657 native mammals in low-density Western Australian suburbia?* [Unpublished PhD
658 Dissertation]. Murdoch University.
659 Lofthus, Ø., Newman, M. F., Jimbo, T., & Poulsen, A. D. (2020). The Pleuranthodium
660 (Zingiberaceae) of Mount Wilhelm, Papua New Guinea. *Blumea - Biodiversity, Evolution
661 and Biogeography of Plants*, 65(2), 95–101.
662 <https://doi.org/10.3767/blumea.2020.65.02.01>
663 Loiselle, B. A., & Blake, J. G. (1991). Temporal Variation in Birds and Fruits Along an
664 Elevational Gradient in Costa Rica. *Ecology*, 72(1), 180–193.
665 <https://doi.org/10.2307/1938913>
666 López-González, C., Presley, S. J., Lozano, A., Stevens, R. D., & Higgins, C. L. (2012).
667 Metacommunity analysis of Mexican bats: Environmentally mediated structure in an area
668 of high geographic and environmental complexity. *Journal of Biogeography*, 39(1), 177–
669 192. <https://doi.org/10.1111/j.1365-2699.2011.02590.x>
670 Maas, B., Karp, D. S., Bumrungsri, S., Darras, K., Gonthier, D., Huang, J. C.-C., Lindell, C. A.,
671 Maine, J. J., Mestre, L., Michel, N. L., Morrison, E. B., Perfecto, I., Philpott, S. M.,
672 Şekercioğlu, Ç. H., Silva, R. M., Taylor, P. J., Tscharntke, T., Van Bael, S. A., Whelan,

SIVAULT et al.

673 C. J., & Williams-Guillén, K. (2016). Bird and bat predation services in tropical forests
674 and agroforestry landscapes. *Biological Reviews*, 91(4), 1081–1101.
675 <https://doi.org/10.1111/brv.12211>

676 MacArthur, R. H., & MacArthur, J. W. (1961). On Bird Species Diversity. *Ecology*, 42(3), 594–
677 598. <https://doi.org/10.2307/1932254>

678 Mammal Diversity Database. (2021). *Mammal Diversity Database (Version 1.5)*.
679 <https://zenodo.org/record/4139818#.X6Kw6ohKiUk>

680 Marki, P. Z., Sam, K., Koane, B., Kristensen, J. B., Kennedy, J. D., & Jønsson, K. A. (2016).
681 New and noteworthy bird records from the Mt. Wilhelm elevational gradient, Papua New
682 Guinea. *Bulletin of the British Ornithologists' Club*, 136, 263–271.

683 Marques, J. T., Pereira, M. J. R., & Palmeirim, J. M. (2016). Patterns in the use of rainforest
684 vertical space by Neotropical aerial insectivorous bats: All the action is up in the canopy.
685 *Ecography*, 39(5), 476–486. <https://doi.org/10.1111/ecog.01453>

686 May, R. M. (1975). Patterns of species abundance and diversity. *Ecology and Evolution of
687 Communities*, 81–120.

688 McCain, C. M. (2005). Elevational Gradients in Diversity of Small Mammals. *Ecology*, 86(2),
689 366–372. <https://doi.org/10.1890/03-3147>

690 McCain, C. M. (2007a). Area and Mammalian Elevational Diversity. *Ecology*, 88(1), 76–86.
691 [https://doi.org/10.1890/0012-9658\(2007\)88\[76:AAMED\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2007)88[76:AAMED]2.0.CO;2)

692 McCain, C. M. (2007b). Could temperature and water availability drive elevational species
693 richness patterns? A global case study for bats. *Global Ecology and Biogeography*, 16(1),
694 1–13. <https://doi.org/10.1111/j.1466-8238.2006.00263.x>

695 McCain, C. M. (2009). Global analysis of bird elevational diversity. *Global Ecology and
696 Biogeography*, 18(3), 346–360. <https://doi.org/10.1111/j.1466-8238.2008.00443.x>

SIVAULT et al.

697 McCain, C. M. (2010). Global analysis of reptile elevational diversity. *Global Ecology and*
698 *Biogeography*, 19(4), 541–553. <https://doi.org/10.1111/j.1466-8238.2010.00528.x>

699 McCain, C. M., & Colwell, R. K. (2011). Assessing the threat to montane biodiversity from
700 discordant shifts in temperature and precipitation in a changing climate. *Ecology Letters*,
701 14(12), 1236–1245. <https://doi.org/10.1111/j.1461-0248.2011.01695.x>

702 McCain, C. M., & Grytnes, J.-A. (2010). Elevational Gradients in Species Richness. In
703 *Encyclopedia of Life Sciences (ELS)* (John Wiley&Sons). [https://novel-](https://novel-coronavirus.onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0022548)
704 [coronavirus.onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0022548](https://novel-coronavirus.onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0022548)

705 McNab, B. K. (1982). Evolutionary Alternatives in the Physiological Ecology of Bats. In T. H.
706 Kunz (Ed.), *Ecology of Bats* (pp. 151–200). Springer US. https://doi.org/10.1007/978-1-4613-3421-7_4

707 708 McNab, B. K., & Bonaccorso, F. J. (2001). The metabolism of New Guinean pteropodid bats.
709 *Journal of Comparative Physiology B*, 171(3), 201–214.
710 <https://doi.org/10.1007/s003600000163>

711 712 Michaelsen, T. C. (2010). Steep Altitudinal Gradients Can Benefit Lowland Bats. *Folia
Zoologica*, 59(3), 203–205. <https://doi.org/10.25225/fozo.v59.i3.a5.2010>

713 714 Mongombe, A. M., Fils, E.-M. B., & Tamesse, J. L. (2019). Diversity and altitudinal distribution
715 of bats (Mammalia: Chiroptera) on Mount Cameroon. *Tropical Zoology*, 32(4), 166–187.
<https://doi.org/10.1080/03946975.2019.1680077>

716 717 Moura, M. R., Villalobos, F., Costa, G. C., & Garcia, P. C. A. (2016). Disentangling the Role of
718 Climate, Topography and Vegetation in Species Richness Gradients. *PLoS ONE*, 11(3).
<https://doi.org/10.1371/journal.pone.0152468>

719 720 Noroozi, J., Talebi, A., Doostmohammadi, M., Rumpf, S. B., Linder, H. P., & Schneeweiss, G.
M. (2018). Hotspots within a global biodiversity hotspot—Areas of endemism are

SIVAULT et al.

721 associated with high mountain ranges. *Scientific Reports*, 8(1), 1–10.

722 <https://doi.org/10.1038/s41598-018-28504-9>

723 Novotny, V., Miller, S. E., Basset, Y., Cizek, L., Darrow, K., Kaupa, B., Kua, J., & Weiblen, G.

724 D. (2005). An altitudinal comparison of caterpillar (Lepidoptera) assemblages on Ficus

725 trees in Papua New Guinea. *Journal of Biogeography*, 32(8), 1303–1314.

726 <https://doi.org/10.1111/j.1365-2699.2005.01225.x>

727 Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'hara, R. B., Simpson, G.

728 L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2013). Package ‘vegan’.

729 *Community Ecology Package*, 2(9), 1–295. CRAN.

730 Orivel, J., Klimes, P., Novotny, V., & Leponce, M. (2018). Resource use and food preferences in

731 understory ant communities along a complete elevational gradient in Papua New Guinea.

732 *Biotropica*, 50(4), 641–648. <https://doi.org/10.1111/btp.12539>

733 Paijmans, K. (1975). No. 35 Explanatory Notes to the Vegetation Map of Papua New Guinea.

734 *CSIRO Land Research Surveys*, 1, 1–45. <https://doi.org/10.1071/lrs35>

735 Parnaby, H. E. (2009). A taxonomic review of Australian Greater Long-eared Bats previously

736 known as *Nyctophilus timoriensis* (Chiroptera:Vespertilionidae) and some associated

737 taxa. *Australian Zoologist*, 35(1), 39–81. <https://doi.org/10.7882/AZ.2009.005>

738 Perry, R. W., Thill, R. E., & Leslie, D. M. (2007). Selection of roosting habitat by forest bats in a

739 diverse forested landscape. *Forest Ecology and Management*, 238(1), 156–166.

740 <https://doi.org/10.1016/j.foreco.2006.10.008>

741 Piksa, K., Nowak, J., Źmihorski, M., & Bogdanowicz, W. (2013). Nonlinear Distribution Pattern

742 of Hibernating Bats in Caves along an Elevational Gradient in Mountain (Carpathians,

743 Southern Poland). *PLOS ONE*, 8(7), e68066.

744 <https://doi.org/10.1371/journal.pone.0068066>

SIVAULT et al.

745 Presley, S. J., Cisneros, L. M., Patterson, B. D., & Willig, M. R. (2012). Vertebrate
746 metacommunity structure along an extensive elevational gradient in the tropics: A
747 comparison of bats, rodents and birds. *Global Ecology and Biogeography*, 21(10), 968–
748 976. <https://doi.org/10.1111/j.1466-8238.2011.00738.x>

749 R Core Team. (2020). *R: A language and environment for statistical computing*. R Foundation
750 for Statistical computing. <https://www.R-project.org/>

751 Reardon, S., & Schoeman, M. C. (2017). Species richness, functional diversity and assemblage
752 structure of insectivorous bats along an elevational gradient in tropical West Africa. *Acta
753 Chiropterologica*, 19(2), 273–285. <https://doi.org/10.3161/15081109ACC2017.19.2.005>

754 Ricketts, T. H., Dinerstein, E., Boucher, T., Brooks, T. M., Butchart, S. H. M., Hoffmann, M.,
755 Lamoreux, J. F., Morrison, J., Parr, M., Pilgrim, J. D., Rodrigues, A. S. L., Sechrest, W.,
756 Wallace, G. E., Berlin, K., Bielby, J., Burgess, N. D., Church, D. R., Cox, N., Knox, D.,
757 ... Wikramanayake, E. (2005). Pinpointing and preventing imminent extinctions.
758 *Proceedings of the National Academy of Sciences*, 102(51), 18497–18501.
759 <https://doi.org/10.1073/pnas.0509060102>

760 Robson, S. K. A., Inkster, T. E., & Krockenberger, A. K. (2012). *Bats of the YUS Conservation
761 Area, Papua New Guinea: Result 5 Task 3.2*. [Report]. James Cook University.
762 <https://researchonline.jcu.edu.au/23089/>

763 Rosenzweig, M. L. (1995). *Species Diversity in Space and Time*. Cambridge University Press.

764 Sam, K., Koane, B., Bardos, D. C., Jeppy, S., & Novotny, V. (2019). Species richness of birds
765 along a complete rain forest elevational gradient in the tropics: Habitat complexity and
766 food resources matter. *Journal of Biogeography*, 46(2), 279–290.
767 <https://doi.org/10.1111/jbi.13482>

SIVAULT et al.

768 Sam, K., Koane, B., Jeppy, S., Sykorova, J., & Novotny, V. (2017). Diet of land birds along an
769 elevational gradient in Papua New Guinea. *Scientific Reports*, 7(1), 1–10.
770 <https://doi.org/10.1038/srep44018>

771 Sam, K., Koane, B., Sam, L., Mrazova, A., Segar, S., Volf, M., Moos, M., Simek, P., Sisol, M.,
772 & Novotny, V. (2020). Insect herbivory and herbivores of Ficus species along a rain
773 forest elevational gradient in Papua New Guinea. *Biotropica*, 52(2), 263–276.
774 <https://doi.org/10.1111/btp.12741>

775 Scherrer, D., Christe, P., & Guisan, A. (2019). Modelling bat distributions and diversity in a
776 mountain landscape using focal predictors in ensemble of small models. *Diversity and
777 Distributions*, 25(5), 770–782. <https://doi.org/10.1111/ddi.12893>

778 Segar, S. T., Volf, M., Zima Jnr, J., Isua, B., Sisol, M., Sam, L., Sam, K., Souto-Vilarós, D., &
779 Novotny, V. (2017). Speciation in a keystone plant genus is driven by elevation: A case
780 study in New Guinean Ficus. *Journal of Evolutionary Biology*, 30(3), 512–523.
781 <https://doi.org/10.1111/jeb.13020>

782 Smith, J. M. B. (1977). Origins and ecology of the tropicalalpine flora of Mt Wilhelm, New
783 Guinea. *Biological Journal of the Linnean Society*, 9(2), 87–131.
784 <https://doi.org/10.1111/j.1095-8312.1977.tb00262.x>

785 Souto-Vilarós, D., Houadria, M., Michalek, J., Sisol, M., Isua, B., Kuyaiva, T., Weiblen, G. D.,
786 Novotny, V., & Segar, S. T. (2020). Contrasting patterns of fig wasp communities along
787 Mt. Wilhelm, Papua New Guinea. *Biotropica*, 52(2), 323–334.
788 <https://doi.org/10.1111/btp.12763>

789 Stevens, G. C. (1992). The Elevational Gradient in Altitudinal Range: An Extension of
790 Rapoport's Latitudinal Rule to Altitude. *The American Naturalist*, 140(6), 893–911.
791 <https://doi.org/10.1086/285447>

SIVAULT et al.

792 Stevens, R. D., Rowe, R. J., & Badgley, C. (2019). Gradients of mammalian biodiversity through
793 space and time. *Journal of Mammalogy*, 100(3), 1069–1086.
794 <https://doi.org/10.1093/jmammal/gyz024>

795 Szczepański, W. T., Vondráček, D., Seidel, M., Wardhaugh, C., & Fikáček, M. (2018). High
796 diversity of Cetioctyon beetles (Coleoptera: Hydrophilidae) along an elevational gradient
797 on Mt. Wilhelm, New Guinea, with new records from the Bird's Head Peninsula.
798 *Arthropod Systematics & Phylogeny*, 76(2), 323–347.

799 Terborgh, J. (1973). Chance, Habitat and Dispersal in the Distribution of Birds in the West
800 Indies. *Evolution*, 27(2), 338–349. <https://doi.org/10.2307/2406973>

801 Terborgh, J. (1977). Bird Species Diversity on an Andean Elevational Gradient. *Ecology*, 58(5),
802 1007–1019.

803 Toko, P. S. (2011). *Community structure and species composition of geometrid moths*
804 (*Lepidoptera:Geometridae*) along an altitudinal rainforest gradient in Papua New
805 Guinea. [Unpublished MSc Dissertation].

806 Turbill, C. (2008). Winter activity of Australian tree-roosting bats: Influence of temperature and
807 climatic patterns. *Journal of Zoology*, 276(3), 285–290. <https://doi.org/10.1111/j.1469-7998.2008.00487.x>

808 Vestjens, W. J. M., & Hall, L. S. (1977). Stomach Contents of Forty-Two Species of Bats From
809 the Australasian Region. *Wildlife Research*, 4(1), 25–35.
810 <https://doi.org/10.1071/wr9770025>

811 Villemant, C., Robillard, T., Legendre, F., & Leponce, M. (Eds.). (2016). *Insects of Mount
812 Wilhelm, Papua New Guinea* (Muséum national d'Histoire naturelle).

813 Volf, M., Laitila, J., Kim, J., Sam, L., Sam, K., Isua, B., Sisol, M., Wardhaugh, C., Vejmelka, F.,
814 Miller, S., Weiblen, G., Salminen, J.-P., Novotný, V., & Segar, S. (2020). Compound
815

SIVAULT et al.

816 Specific Trends of Chemical Defences in *Ficus* Along an Elevational Gradient Reflect a
817 Complex Selective Landscape. *Journal of Chemical Ecology*.
818 <https://doi.org/10.1007/s10886-020-01173-7>
819 Wiantoro, S. (2020). *Cryptic diversity and rapid radiation of Indo-Australasian bent-winged bats*
820 (*Miniopterus Bonaparte*, 1837). [PhD Dissertation]. The University of Adelaide.
821 Retrieved from <https://hdl.handle.net/2440/130098>
822 Winkelmann, J. R., Bonaccorso, F. J., Goedeke, E. E., & Ballock, L. J. (2003). Home Range and
823 Territoriality in the Least Blossom Bat, *Macroglossus minimus*, in Papua New Guinea.
824 *Journal of Mammalogy*, 84(2), 561–570. [https://doi.org/10.1644/1545-1542\(2003\)084<0561:HRATIT>2.0.CO;2](https://doi.org/10.1644/1545-1542(2003)084<0561:HRATIT>2.0.CO;2)
825 Winkelmann, J. R., Bonaccorso, F. J., & Strickler, T. L. (2000). Home Range of the Southern
826 Blossom Bat, *Syconycteris Australis*, in Papua New Guinea. *Journal of Mammalogy*,
827 81(2), 408–414. [https://doi.org/10.1644/1545-1542\(2000\)081<0408:HROTSB>2.0.CO;2](https://doi.org/10.1644/1545-1542(2000)081<0408:HROTSB>2.0.CO;2)
828
829