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Abstract 

 

France has a population with extensive internal fine-structure; and while public imputation reference 
panels contain an abundance of European genomes, there include few French genomes. Intuitively, 
using a ‘study specific panel’ (SSP) for France would therefore likely be beneficial. To investigate, we 
imputed 550 French individuals using either the University of Michigan imputation server with the 
Haplotype Reference Consortium panel, or in-house using an SSP of 850 whole-genome sequenced 
French individuals. 

With approximate geo-localization of both our target and SSP individuals we are able to pinpoint 
different scenarios where SSP-based imputation would be preferred over server-based imputation or 
vice-versa. We could also show to a high degree of resolution how the proximity of the reference 
panel to a target individual determined the accuracy of both haplotype phasing and genotype 
imputation. 

Previous comparisons of different strategies have shown the benefits of combining public reference 
panels with SSPs. Getting the best out of both resources simultaneously is unfortunately impractical. 
We put forward a pragmatic solution where server-based and SSP-based imputation outcomes can 
be combined based on comparing posterior genotype probabilities. Such an approach can give a level 
of imputation accuracy markedly in excess of what could be achieved with either strategy alone. 

 

Keywords:  

Imputation, Phasing, Haplotype-Sharing, Fine Structure, Reference Panel 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.17.480829doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480829
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction 

Population-based genotype imputation remains a widely used technique for enriching datasets of 
genotyped or low-coverage sequenced individuals. Advances in software capabilities have been 
rapid, enormous haplotype reference panels have been assembled, and dedicated computation 
servers have been created at the University of Michigan1 and at the Sanger institute2.  

Numerous studies have compared the effectiveness of different imputation strategies. The important 
point of consensus being that imputation benefits from a reference panel that is both large and 
diverse2–6. Public reference panels widely used for imputation include the 1000 Genomes Project 
(1000G)7, the HRC panel2 and the TOPMED panel8. The size and variety of origin of the reference 
haplotypes in such panels aims to ensure accurate imputation of target-individuals from different 
populations. Many groups have published results underlying the importance of preferring ‘local 
reference panels’ or ‘study specific panels’ (SSPs) – the intuitive concept being that the best panel for 
imputation should contain reference haplotypes that closely resembles the target individuals. 
Furthermore as rarer genetic variants are often younger9,10, they are expected to be geographically 
clustered and hence only successfully imputed with geographically relevant reference haplotypes. 
Increased imputation accuracy coming from SSPs has been shown in populations such as the 
Netherlands11, Estonia12, Norway13, and Japan14. SSP imputation also improves the power of genome-
wide association studies (GWAS) involving both common and rare variants13,15–17. The benefits of 
using SSPs have been shown to be particularly evident in the context of isolated populations17–21.  

SSPs may often be relatively small and so the best approach may often be to combine an SSP with a 
large cosmopolitan reference panel. Though combining public and study specific reference panels is 
computationally feasible, it remains problematic for other practical reasons. Panels such as the HRC2 
or TOPMED8 are only fully available through online servers and hence it is not possible to merge their 
data with one’s in-house sequencing data. Hence, most published results cited above involving a 
combination of panels have merged an SSP with the freely available (but smaller in comparison) 
1000G.  

Leading population-based imputation software invoke haplotype copying models based on the Li-
Stephens model22. This model uses coalescent theory, capturing the idea that if two chromosomes 
(at a given position) are followed back in time, they will eventually coalesce, sharing a (most recent) 
common ancestor and this will translate into stretches of shared haplotypes between individuals. For 
two unrelated individuals, any given genomic region would likely contain many differences 
representing a very long coalescent time between the pair. But with a large enough sample of a 
population and in a given genomic region, each observed haplotype can be expected to have a 
shared lineage (and hence have a relatively recent common ancestor) with at least one other 
haplotype in the sample. Thus these two haplotypes would likely share a near identical haplotype 
(allowing for only a few very recent mutations) that would stretch far enough to contain multiple 
common genetic variants. Extending this idea across regions, a given chromosome from the sample 
can be described as a mosaic of small haplotype segments present in the pool of all other 
chromosomes in the sample. This concept is harnessed by imputation software; each target 
individual chromosome is modelled as a mosaic of reference panel haplotypes using genotyping 
information for the target individual on a set of common variants. Once a likely chain of copying 
haplotypes is estimated based on similarities for common genetic variants, missing genotypes can be 
inferred. Or more often, posterior probabilities of missing genotypes across many potential chains 
are estimated. Developments in imputation software have been driven by the need to make 
inference from larger and larger reference panels, but also to operate efficiently to find the best 
subsets of reference individuals for each chromosomal region. In particular, the PBWT23 algorithm 
has allowed for very rapid sub-selections of reference panel individuals to serve as region-specific 
reference haplotype pools. PBWT can be employed as a phasing and imputation software on its own 
but the algorithm has also been incorporated into other software such as EAGLE224, IMPUTE55 and 
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SHAPEIT425. With the concepts of the Li-Stephens model in mind, it is intuitive that imputation will be 
successful if the reference panel contains relevant haplotypes which closely match the target 
individual but also enough diversity to enable good haplotype matching across the target’s whole 
chromosome - i.e. there are no weak links in the chain. This can explain potentially counter-intuitive 
results such as the inclusion of the UK10K26 imputation panel improving the imputation of Italian27 
and even Chinese28 genomes. 

Aside from choice of reference panel, an important consideration is the estimation of haplotypes - 
referred to herein simply as ‘phasing’. The accuracy of phasing has also been widely evaluated, with a 
parallel rapid development of competing software. Population based phasing software use broadly 
the same haplotype copying models as imputation software, only that two chains of mosaics have to 
be found simultaneously rather than a single one. An important difference is that when phasing, 
inference is often made between individuals in the study. Conversely when imputing, each target 
individual has missing genotypes imputed from their pre-phased data using only the reference panel. 
Older software versions such as IMPUTE23 and MaCH29 provide the possibility of phasing and 
imputing simultaneously. Avoiding pre-phasing has been shown to give small increases in imputation 
accuracy though this comes at a price of a huge increase in computation complexity30. Therefore, this 
approach is unlikely to be considered for imputation involving large target and/or reference panel 
sample sizes (such as those analysed here); and in particular is not possible on current imputation 
servers. 

Imputation accuracy has not been investigated in French populations. The French population has 
considerable internal diversity31,32 and does not have direct representations in panels such as 1000G, 
HRC, or TOPMED. Recently, 856 French individuals were whole-genome sequenced at 30-40×, this 
makes up the FranceGenRef panel (Labex GENMED http://www.genmed.fr/); an obvious candidate 
for an imputation panel for French genomes. However, as FranceGenRef is relatively small, it is 
unclear as to whether it will be competitive with a panel such as the HRC (38,821 individuals) for 
imputation. Furthermore, FranceGenRef does not include individuals from all corners of France and 
so may not be appropriate for imputing missing genotypes for all French genomes. In this study, we 
will evaluate potential approaches for both phasing and imputation of French data using either the 
Sanger and Michigan imputation servers or in-house phasing and imputation. We will also analyse 
the interplay of population structure within France and the impact that this can have on phasing and 
imputation accuracy.  
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Results 

Evaluating Imputation Servers 

Our study involves two French datasets: FrEx, a panel with exome data on 574 individuals recruited in 
six French cities and FranceGenRef (FGR) with whole genome sequence data on 856 individuals with 
ancestry in different French regions (Figure 1). The constitutions of both datasets are described fully 
in the Methods. To motivate the use of a French SSP for imputation of French genomes, an initial 
investigation of the performance of imputation servers for French individuals was performed. Our 
technique was to send sets of common variants extracted from FGR to two imputation servers 
(Michigan and Sanger) in order to be imputed with the HRC reference panel. We could then compare 
imputed genotypes to the sequence data in FGR. In order to assess imputation accuracy we 
calculated the imputation quality score (IQS)33 per individual, assuming that the true genotypes were 
those from the sequence data. We established that using the Michigan server and the list of positions 
on the UK Biobank imputation array provided the most accurate imputation (Supplementary 
Materials, Supplementary Figure 1). Furthermore, between the different imputation pipelines that 
we tested, there were always strong correlations between individual IQS statistics (Supplementary 
Figure 2); the same individuals were always imputed the best (or worst) across our sample. This 
suggested that underlying characteristic of each individual were determining their individual IQS 
score (relative to the rest of the sample). A likely cause would be fine-scale population stratification 
within the sample. To show this, we plotted individual’s IQS scores against their geographical location 
in France, and a striking pattern emerged (Figure 1); individuals from the North and West of France 
were imputed with greater accuracy (top deciles of individual IQS scores). The HRC panel contains 
many individuals of Northern European and Britannic ancestry, this likely explains the higher 
imputation accuracy for individuals from the North and West of France. This suggests that the 
internal population structure of France may have a strong influence on the quality of imputation that 
can be achieved with certain reference panels. Furthermore, using only a panel such as the HRC for 
imputation in France could lead to an unwanted confounding between imputation accuracy and 
internal population stratification. 

 

Figure 1. Geographical localities of the participants of FGR (diamonds) and FrEx (grey triangles). For 
individuals in FGR, positions were estimated as the mean latitude and longitude of the four birth-

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.17.480829doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480829
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

places of their four grand-parents. For FrEx, recruitment was centred around 6 cities in France (Brest, 
Nantes, Bordeaux. Rouen, Lille, Dijon). The individuals in FrEx are assumed to have origins close to 
their recruitment centre as information regarding the origins of each individual’s recent ancestors 
were used to select participants. Individual IQS scores in FGR from imputation using the Michigan 
server and the HRC panel are represented by colour. Individual IQS scores range from 0.9661 to 
0.9836 (scores closer to 1 represent greater imputation accuracy). IQS was measured on over 17 
million variants, a difference in 0.01 between two individuals’ IQS scores approximately represents a 
swing of 100,000 more or less correctly imputed genotypes. 

Testing different reference panels 

To test the impact of using different imputation reference panels in France, we enlisted data from 
the French Exome Project (FrEX). Here, 550 individuals were analysed (see Methods) who have 
whole-exome sequencing (WES) data and also genotype data from Illumina OmniExpressExome 
arrays. We took the array data for FrEx as a basis for imputation and used the WES data for 
calculating the accuracy of imputation (IQS scores). We sent the array data from FrEx to the Michigan 
imputation server to be imputed with the HRC panel using the phasing algorithm EAGLE2 and 
imputation software MINIMAC4. We were also able to effectively use the Michigan server to perform 
imputation of FrEx using the WGS data of our SSP. This was achieved through the docker provided by 
the Michigan server, allowing us to run their exact phasing and imputation pipeline using our WGS 
data from FGR as a reference panel whilst being required to send out our WGS panel overseas.  

When using the Michigan imputation server, the HRC clearly outperformed FGR (Figure 2, comparing 
far-left and far-right boxplots MICHIGAN:FGR:FGR against MICHIGAN:HRC:HRC, the notation of each 
strategy is Place:PRP:IRP where Place (MICHIGAN, SANGER or LOCAL) refers to where the imputation 
took place, PRP refers to the phasing reference panel, and IRP to the imputation reference panel). 
Results are split among the six French cities of FrEx. As the HRC panel contains many more individuals 
than FGR, far more variants can be imputed. The HRC was able to impute 12.6 million variants 
genome-wide with an RSQ score > 0.5 (the RSQ is the imputation quality score provided by 
MINIMAC4), compared to 5.2 million variants with an RSQ > 0.5 by FGR. This is due to the fact that 
our SSP only contains variants with an observed Minor Allele Count (MAC) ≥ 5 in FGR. The 
superiority of the public panel over the SSP contrasts against many of the results presented in our 
literature review where SSPs were regularly shown to be the most effective imputation panels. 
Possible explanations include the small size of FGR and that previous studies had often compared SSP 
imputation against imputation using the 1000G. But also, this could be partly due to the use of the 
imputation servers. Examining the described pipeline of the Michigan server, we observed that the 
phasing step could be working at a disadvantage to the SSP strategy. EAGLE2 is able to very 
efficiently take advantage of the HRC as a huge phasing reference panel (PRP). However, it has been 
shown to be less optimal for taking advantage of within-sample phasing19, relying more on 
comparing each haplotype separately to the PRP, which could have had an impact during both the 
phasing of FrEx and FGR when using the Michigan imputation server.  

We constructed our own phasing-imputation pipeline to assess the impact of using the imputation 
servers (description in Methods). To further investigate the impact of the pre-phasing step, we 
phased FrEx using SHAPEIT4 with either FGR or 1000G as a PRP. By using IMPUTE2 with the merge-
ref-panel option, we were able to use a combined reference panel of the 1000G and FGR without 
having to restrict to a common list of variants. When the PRP and IRP were FGR, the imputation 
quality was improved substantially by using our in-house imputation pipeline compared to the results 
achieved with the Michigan server via the docker (LOCAL:FGR:FGR against MICHIGAN:FGR:FGR). In 
the cities of Brest and Nantes, SSP-based imputation became competitive with the server-based 
approach using the HRC panel. These two cities lie in the regions that are most well represented by 
FGR. For all six cities, a marginal improvement in imputation accuracy was gained by including the 
1000G in the reference panel (LOCAL:FGR:FGR against LOCAL:FGR:FGR+1000G).  
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Figure 2: Individual IQS scores for individuals in FrEx for different pipelines. Results are split between 
the 6 cities of FrEx. Section A) depicts the different possible phasing and imputation strategies that 
were tested, running either on the Michigan server or locally (LOCAL) in our lab and with different 
combinations of phasing and imputation panels. Section B) gives boxplots of individual level IQS 
scores for each strategy. Of the 550 individuals analysed, 89 are from Bordeaux, 96 from Brest, 87 
from Dijon, 93 from Lille, 90 from Nantes, and 95 from Rouen. 

Regarding the key comparison of imputation results between LOCAL:FGR:FGR and 
MICHIGAN:HRC:HRC, we found that the advantage brought by the HRC panel over FGR was 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.17.480829doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480829
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

particularly evident for rare variants (see Supplementary Figure 3 where the mean IQS scores per-
variant were compared in detail between these two strategies for different categories of MAF). Only 
in Brest and Nantes did the two pipelines perform similarly. However, this analysis does not tell the 
full story as IQS was calculated on only variants that can both be imputed by the HRC and our FGR. 
Indeed, this ignores the existence of potentially-population specific variants that cannot be imputed 
by panels such as 1000G or the HRC. In Supplementary Figure 4, we show the proportions of variants 
observed in FrEx that are also observed in the other three datasets (FGR, 1000G, HRC) pertinent to 
this study. For the rarer variations in FrEx, large proportions of variants are not observed in all three 
of FGR, 1000G, and HRC including many that are only observed in FrEx and FGR. This highlights the 
importance of including an SSP (ideally in conjunction with a public panel) in order to impute such 
population specific variants.  

Investigating haplotype sharing between target and reference individuals 

As Brest and Nantes are located in the regions that are the best represented in France by FGR, it is 
likely that the FrEx individuals from those two cities exhibit greater haplotype-sharing with FGR than 
FrEx individuals from the other four cities. Hence, we investigated the composition of the estimated 
haplotypes in FrEx to reveal where our imputation pipeline was most accurate. As imputation is 
haplotype based, the haplotype-estimation pre-phasing step clearly has an impact on the quality of 
imputation. We postulated that using an SSP as PRP could be particularly beneficial as haplotype 
estimation could be improved and imputation using the same SSP would thus be facilitated. This we 
demonstrated by comparing phasing-imputation run LOCAL:FGR:FGR against LOCAL:1000G:FGR. To 
approximate the accuracy of phasing, we applied the principal of phasing uncertainty. This involved 
repeatedly performing phasing using different random seeds and evaluating the stability of the final 
estimated haplotypes. Using such a method, we could have an approximation of the Switch Error 
Rate (SER) of the haplotypes constructed (see Methods). We refer to the two different phasing 
outputs involved in these two pipelines as FGR-PRP and 1000G-PRP. 

Individual phasing uncertainty statistics were strongly correlated with the eventual IQS scores 
(Supplementary Figure 5 - left panel) which demonstrates that the phasing uncertainty statistics 
calculated have likely captured a true approximation of the phasing quality. It was observed that the 
level of improvement in SER and IQS coming from using FGR as a phasing reference panel was 
noticeably higher for the two cities of Brest and Nantes compared to the other four cities of FrEx 
(Supplementary Figure 5 - right panel). 

Furthermore, we explicitly looked for regions of haplotype-sharing between FrEx individuals and FGR 
individuals by estimating IBD segments using RefinedIBD34. We clustered individuals in FGR based 
into 12 groups (see Methods) using finestructure35. These coincided with different geographical 
regions of France (Figure 3). We calculated the total IBD shared between each city in FrEx and each 
cluster of reference haplotypes in the two different phasing scenarios described above: FGR-PRP and 
1000G-PRP. Far greater total shared IBD was estimated between Individual’s from Brest and Nantes 
and FGR under FGR-PRP. What is more, the increase in detectable haplotype-sharing pertained 
largely to shared segments of length greater than 3cM between individuals of Brest and Nantes in 
FrEx and individuals in FGR from the regions of France close to Brest and Nantes. For the detection of 
shorter segments, the choice of PRP had less impact. 
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Figure 3.  

Left: Haplotype sharing between individuals from the different FrEx cities and individuals from FGR. 
Results are split by the 12 clusters of FGR detected with finestructure. The PRP used in the phasing 
step was either with 1000G (top panel 1000G-PRP) or FGR (bottom panel FGR-PRP) and IBD segments 
were split into long segments over 3 cM (A - left column) or small segments under 3 cM (B - right 
column).  

Right: A map of France showing the 12 haplotype-sharing clusters in FGR with the 6 cities of FrEx 
highlighted (grey triangles). Colours of each haplotype-sharing cluster correspond to those in the plot 
on the Left. 

To demonstrate the interplay of the estimation of shared IBD segments between the target and 
reference panel and imputation accuracy, we examined the imputation of rare variants (determined 
by minor allele frequency less than 0.01 in FrEx) for the FrEx individuals from Brest. Imputation 
accuracy was evaluated in two variant sets: those inside long IBD segments and those outside long 
IBD segments. Specifically, for each rare-variant, we tabulated the imputed dosages of heterozygous 
sites observed in the individuals of Brest inside and outside long IBD segments (>3cM) shared with 
Clusters 1 and 2 of FGR that cover the Finistere department where Brest is located. Histograms of 
these imputed dosages (which should be equal to 1 if the imputation has been successful at a 
heterozygous site) are presented in Supplementary Figure 6 for two imputation strategies: 
LOCAL:FGR:FGR and MICHIGAN:HRC:HRC. There was a clear higher proportion of correctly imputed 
genotypes for variants within IBD segments compared to variants outside IBD segments under the 
LOCAL:FGR:FGR imputation strategy but not under the MICHIGANC:HRC:HRC strategy. This shows 
how imputation using a local reference panel can be expected to improve accuracy, and in particular 
for the rare local variants that are expected to lie on long IBD segments. This is because rare variants 
are expected to be younger than common variants so if it is given that two individuals share a 
haplotype containing a rare allele, the haplotype is expected to also be relatively young and thus 
relatively long. 

 

 

 

 

Pragmatic imputation strategy for France 
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We have thus far demonstrated that by optimising certain stages of our phasing and imputation 
strategy we could achieve a comparable imputation quality using FGR compared to imputation 
servers that have access to the HRC panel. However, this was only the case for the individuals of 
Brest and Nantes in FrEx. Furthermore, it was also observed through analysing haplotype-sharing 
that even for Brest and Nantes the SSP imputation was not performing uniformly and that its 
accuracy would vary in different genetic regions. Ideally, a combined panel of FGR and HRC could be 
used. Without a straightforward path to this solution,  one possibility is to attempt to combine 
imputed data from two different imputation runs in the spirit of the PedPop method put forward by 
Saad & Wijsman36. This simply involves merging two or more imputation outputs such that all 
variants imputed by any of the strategies are present. For variants that are imputed by multiple 
imputation strategies, a simple ‘most confident vote’ selection is used (see Methods). We combined 
imputation using the MICHIGAN:HRC:HRC with our own LOCAL:FGR:FGR imputation in such a manner 
(see Methods) and the overall improvement to the imputation accuracy was substantial (Figure 4). 
This hybrid imputation coming from this combination is denoted as HYB.  

 

Figure 4 - Individual IQS scores for the hybrid (HYB) imputation strategy split by city in FrEx against 
the previously calculated scores for strategies LOCAL:FGR:FGR and MICHIGAN:HRC:HRC described in 
Figure 2.  
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To illustrate how the HYB method was improving the imputation, for each individual, IQS scores were 
calculated for two sets of variants: One set where there was agreement between the two imputation 
strategies regarding the most likely genotype (Accord), and a second where there was disagreement 
(Discord). The average percentages of genotypes in agreement for each individual for the six cities of 
FrEx were: Bordeaux 98.5%, Brest 98.7%, Dijon 98.5%, Lille 98.6%, Nantes 98.6%, and Rouen 98.6%. 
Overall, agreement between HRC and FGR imputation corresponded with the correct genotype being 
assigned the highest probability 98.5% of the time. Hence, agreement between HRC and FGR was a 
reliable indication of accurate imputation. Choosing the set of imputation probabilities with the 
greatest top probability in the case where the two imputation runs are in Accord will therefore 
produce a dosage closer to the true genotype for the majority of cases. This gave a significant boost 
to the IQS statistics (Figure 4, Supplementary Figure 7) and would also lead to an increase in power 
for prospective association tests. In Supplementary Figure 7, we also observe that this improvement 
afforded by the HYB strategy was present for both rare and common genetic variants. 

The two imputation runs were not in agreement (Discord) for 1.5% of all genotypes analysed 
(125,442 exonic variants). This corresponds to approximately 1800 genotypes per individual. In this 
set, the percentage of variants where HRC imputation was correct was the following for the different 
cities: Bordeaux 64%, Brest 59%, Dijon 66%, Lille 69%, Nantes 61%, and Rouen 67%. The hybrid 
imputation strategy chose the correct genotype more often than not (Bordeaux 68%, Brest 68%, 
Dijon 67%, Lille 70%, Nantes 68%, and Rouen 69%). Hence, the HYB strategy coped well with 
disagreement between the two pipelines. In Brest and Nantes, HYB even provided an improvement 
in imputation in the Discord set of variants (Supplementary Figure 7); both for rare and common 
variants. Therefore, a simple combination of in-house and server-based imputation could provide a 
pragmatic and most effective imputation strategy.  
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Discussion 

Many factors affect the accuracy of phasing and imputation, though most focus has been put on the 
size and composition of the haplotype reference panel. Furthermore, imputation has shifted from an 
operation performed in-house using publically available data and free academic software to an 
operation that is increasingly performed at distance using publically accessible imputation servers. 
The main motivations for using external imputation servers is their convenience and the access they 
provide to the largest (and hence most powerful for imputation) public reference panels. However, 
certain compromises currently have to be made if one decides to use an imputation server. 
Importantly, there is not the possibility to combine an SSP with public reference panels, and there is 
less control of haplotype phasing. In this study we have shown that such considerations can make a 
significant difference for imputation quality. Hence, the optimisation of an imputation strategy goes 
far beyond simply choosing the largest available reference panel. If an SSP is to be used, we suggest 
that at this current time it is still preferable to perform phasing and imputation in-house rather than 
turning to online imputation servers.  

We decided that, for this study, it was not necessary to test the very recently developed TOPMED 
server. This was for two reasons, firstly the TOPMED panel is aligned to genomic build 38 and it was 
beyond the scope of this study to re-call the FranceGenRef and FrEx datasets that are both aligned to 
build 37. Secondly, whilst the TOPMED reference panel is significantly larger than the HRC, it contains 
a comparable number of individuals of European ancestry. The TOPMED panel has been shown to 
greatly outperform the HRC for imputation of individuals of Latin American and African ancestry8 but 
would not provide such a significant improvement in accuracy compared to the HRC for French 
individuals.  

It would have been possible to gain permission from the European Phenome-Genome Archive to 
download a part of the HRC panel (https://ega-archive.org/studies/EGAS00001001710). This option 
was used in one simulation study19, where this subset of the HRC was combined with an SSP for 
evaluation of imputation in an isolated population. Using this subset of the HRC has recently been 
shown to be effective for imputation in conjunction with SSPs by Quick et al.37  We decided not to 
pursue this avenue in this study for two reasons. Firstly, having to download this subset of the HRC 
and then perform imputation using IMPUTE2 and the merge-ref-panel option is very computationally 
heavy, requires a lot of storage space, and requires the submission of a specific request for the HRC 
subset. Hence, this is a strategy that may not be suitable for all researchers and so is not a realistic 
recommendation to make. Secondly, in this study we wished to focus on the pros and cons of the 
choice of using the relatively easy server-based approach against in-house imputation. Hence, to test 
the HRC we preferred to access it through the server; furthermore, this allowed us to test the HRC 
panel in its entirety.  

Our results chime with previous results regarding the benefits of local reference haplotypes11,12,14–

16,18,20. However, by including the complete HRC panel in our study, we showed certain limitations to 
SSP-based imputation. This was possible by investigating the fine genetic structure in France and its 
impact on the imputation of French genomes. Our SSP was successful in improving imputation 
beyond the possibilities of the HRC panel but only for target individuals that were from the regions 
that were densely covered in FGR (Brest and Nantes). In the other four cities, the HRC clearly 
afforded higher accuracy. We note that evaluating imputation accuracy per-individual rather than 
the more commonly used per-variant calculation was important in uncovering such patterns. Indeed, 
imputation in France using only the HRC led to a clear gradient of imputation quality in FGR. This 
further motivates the use of local reference haplotypes to avoid the potential of introduced bias as 
panels such as the HRC will likely provide stronger imputation for individuals from the North and 
West of France. 
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We have also demonstrated that the benefits to SSP-based imputation coincided with the sharing of 
haplotypes between the target and reference individuals. This highlights the importance of 
optimising haplotype estimation, an area we have concentrated on in this study. Indeed, the 
imputation of rare-variants would likely benefit noticeably from greater accuracy in the phasing of 
the SSP. Further improvements to phasing performance could also be sought either through read-
based phasing algorithms38 or through consensus based phasing39,40. Another promising approach is 
to replace array based genotyping with low-pass sequencing41,42.    

The FGR panel used here contained 850 individuals. The largest prospective SSP for France, the 
POPGEN project of the French medical genomics initiative43,44 will contain roughly 4,000 individuals. 
Joining the dots, the significant improvements to the estimated SER and IQS for the individuals of 
Brest and Nantes would suggest that imputation could be highly accurate for individuals from across 
France using this novel reference panel. Particularly as we observed that the HRC panel performed 
less well for individuals from towards the South of France, an area that will be well represented in 
POPGEN.  However, there may still be room to incorporate imputed variants from imputation servers 
due to the undeniable power of huge public reference panels for imputation; in particular, for rare 
variants. Rare variants that arrived recently in the population can be expected to have a high level of 
IBD-sharing45 lying within long shared segments. Such variants should be expected to be well 
imputed using an SSP. This does not hold for older variants that are observed to be rare due to many 
generations of purifying natural selection46; for such variants, the breadth provided by large 
cosmopolitan panels may provide the best imputation. The POPGEN dataset will cover the whole of 
France but realistically may not provide a significantly denser coverage than what is given by FGR for 
the regions of Bretagne and Pays-de-la-Loire (the regions that surround Brest and Nantes, 
respectively). Combining panels allows for a greater number of overall variants to be imputed as 
panels will not have coinciding lists of observed variants; each will have a set of variants only 
observed in that panel. Without the current possibility to combine an SSP with the full HRC or 
TOPMED, we have put forward a simple pragmatic approach for combining in-house and server-
based imputation in order to give the more complete and accurate imputation. 
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Methods 

The two sequencing datasets used in this study, FrEx and FGR were prepared using VCFprocessor47 
using in-house settings (described in Supplementary Material). Individual were selected for 
FranceGenRef using strict criteria on ancestral places of birth. Specifically, individual were only 
sequenced if their four grand-parents were known to have all been born near to one another. The 
exact criterion was that all pairs of grand-parents would be born within no more than 30 km of each 
other. By taking the barycentre of the co-ordinates of all 4 grand-parents, we approximated the 
ancestral location of each individual in FGR. 862 individuals were recruited from three sources, 458 
from the GAZEL cohort (www.gazel.inserm.fr/en)48,49, 354 from the PREGO cohort (www.vacarme-
project.org), and 50 blood donors from the Finistere region. All individuals signed informed consent 
for genetic studies at the time they were enrolled and had their blood collected. The recruitment is 
described in full elsewhere [reference to another FranceGenRef paper submitted at the same time?]. 
The FrEx data analysed here comprises 557 (out of 574) individuals who are those who have both 
genotyping (Illumina OmniExpressExome arrays) and WES data. A total of 824,279 variants are found 
in the WES data after QC. Our SSP was built with 856 individuals with WGS data from FGR. Individuals 
were excluded from both FrEx (7 removed) and FGR (6 removed) for our study due to either the 
individuals being present in both panels, to close relatedness with other individuals, or due to quality 
control measures (see supplementary materials). We kept only variants with a minor allele count 
above 5 for the creation of an imputation panel. For both datasets, we have approximated 
geographical locations for each individual. Individuals included in the FREX project are 574 healthy 
individuals sampled in 6 different regions of France around 6 cities (Bordeaux, Nantes, Brest, Rouen, 
Lille and Dijon). These individuals are either blood donors with grand-parents born in Finistere or 
Pays de la Loire (Brest and Nantes samples), or unaffected spouses of individuals affected by 
Alzheimer's disease (Rouen and Lille samples) or individuals from two different cohorts (3 cities 
Dijon50 for the Dijon samples and PAQUID51 for the Bordeaux samples). 

Imputation quality was measured using IQS33 calculated per-individual across various sets of genetic 
variants. This imputation score measures the concordance between the truth set and the posterior 
imputation probabilities whilst taking into account the expected level of concordance by chance. 
When splitting results by minor allele frequencies (MAFs), we used the naive MAF estimates from 
FrEx and results are shown either for rare variants (MAF < 0.01) or non-rare variants (MAF ≥ 0.01). 
IQS was calculated on a set of 125,442 exonic variants across the 22 autosomal chromosomes that 
could be imputed with the constructed imputation panel of FGR (i.e. variants that passed the quality 
control measures in FGR and thus had a minor allele count superior to 5). To describe an imputation 
strategy, we use the following notation: Place:PRP:IRP where Place refers to the location of the 
imputation (either Michigan imputation server, the Sanger server, or in-house at LOCAL), PRP refers 
to the phasing reference panel, and IRP refers to the imputation reference panel.  

In order to use FGR as a reference panel for our-in house LOCAL pipeline, it was phased using 
SHAPEIT425 and the ‘sequencing’ option to optimise the algorithm for WGS data. Furthermore, in an 
effort to improve the phasing performance of SHAPEIT4, we specified the following iteration 
programme: ‘8b,1p,1b,1p,1b,1p,1b,1p,15m’. Conversely, when using the Michigan imputation server 
with the FGR panel for the Michigan:FGR:FGR strategy, the phasing of FGR was performed using the 
Michigan server and the phasing-only functionality. 

FrEx was phased with SHAPEIT4 and imputed using IMPUTE2. The choice of IMPUTE2 may seem 
questionable given the availability of more recent version such as IMPUTE55 as well as competing 
software such as MINIMAC4 or BEAGLE552. IMPUTE2 was chosen purely due to the availability of the 
merge-ref-panel option, allowing for a combined panel of the 1000G and FGR to be used. The 
importance of this option is demonstrated by the observation that 0.54% of all variants in the SSP we 
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constructed from FGR are not present in the 1000 Genomes Projects. Without this cross-imputation 
option, these SSP-specific variants would be lost. Given that software cited above rely on similar 
methodology and have similar performances5 (with more recent versions admittedly bringing 
incremental improvements), we felt that this was a suitably choice for putting forward an imputation 
strategy involving a SSP. The improvements that have been made to imputation software beyond 
IMPUTE2 are concerned with the ability to leverage vast reference panels such as the HRC or 
TOPMED. Our imputation strategy LOCAL:FGR:FGR+1000G involves a combined reference panel of 
only 6708 haplotypes and so it is reasonable to employ IMPUTE2 in this scenario. However, using 
IMPUTE2 with a combination of the HRC and our SSP would encounter excessive runtime. 

To approximate Switch Error Rate (SER) without knowing the true phase in FrEx, we simply ran 
SHAPEIT4 21 times using 21 different random seeds. Across the 21 repetitions, and for each pair of 
adjacent heterozygous genotypes, we assumed that the phase configuration assigned by the majority 
of random seeds was the correct phase; this allowed us to estimate SER in each seed before finally 
calculating an average SER across all 21 replicates.  

IBD segments in FGR were estimated using RefinedIBD34. The resultant matrix of IBD sharing between 
individuals was then treated as matrix of ‘chunk lengths’ and supplied to finestructure35 to establish 
12 groups of individuals likely having similar genetic backgrounds. As described in Bycroft et al.53, 
using a chunk-length matrix necessitated the estimation of the ‘c-factor’ parameter from within the 
sample, for which we followed the instructions given in the supplementary material of Bycroft et 
al.53. The choice of 12 groups was made by inspection and in order to give a set of easily interpretable 
groups. Up until 12 groups, each cluster identified corresponded to over 10 individuals and to specific 
geographical region. Beyond 12, groups become small and lacked easily interpretable links to 
geographical regions. We note that finestructure was unable to distinguish the individuals in 
FranceGenRef from the North and the East of France. We attribute this to the fact that we don’t have 
a sufficient sample size in these regions and that, as observed by the Eigen decomposition of the IBD 
sharing matrix (see Supplementary Figure 8), the most evident sources of variation in the data come 
from the proximity of individuals to the source populations of the Brittany region and the Pays-de-la-
Loire region. As FranceGenRef does not represent a fair sampling of the French population, it is not 
surprising that the finestructure analysis largely reflects only the variation in the West of France; 
where we have by far the most individuals. However, the clusters presented here are still relevant for 
the West of France and are instructive in showing the potential for extensive fine-structure in the 
French population. 

To combine the imputation pipelines for the HYB imputation. We simply compared the maximal 
probabilities for each pair of genotype from the pipelines MICHIGAN:HRC:HRC and LOCAL:FGR:FGR. 
For example, if the posterior imputation probabilities for a genotype of a given individual are 𝐼𝐴 =
(0.95,0.05,0.00) & 𝐼𝐵 = (0.85,0.15,0.00) from imputation strategies A and B, respectively, then only 
the posterior probabilities 𝐼𝐴 will be retained as they are the most certain. The concept that the more 
certain a set of genotype probabilities the more accurate the imputation is well known and 
underpins the calculation of most imputation quality metrics54. Inspection suggested that when the 
two maximal probabilities were very close, little could be gained by selecting the trio with the highest 
probability. Furthermore, due to the differences in imputation software (MINIMAC4 against 

IMPUTE2), we often saw that the maximal probability of LOCAL:FGR:FGR (denoted as 𝑃𝑚𝑎𝑥
𝐹𝐺𝑅) was 

larger than the its counterpart 𝑃𝑚𝑎𝑥
𝐻𝑅𝐶  but only by an order of 10-2. We found that an effective 

combination method was to select the imputation trio of posterior probabilities from LOCAL:FGR:FGR 
if and only if 𝑃𝑚𝑎𝑥

𝐹𝐺𝑅 > 𝑃𝑚𝑎𝑥
𝐻𝑅𝐶 + 0.05, hence minorly giving priority to HRC when the 𝑃𝑚𝑎𝑥

𝐹𝐺𝑅 and 𝑃𝑚𝑎𝑥
𝐻𝑅𝐶  

were very close. This rule was used to form the HYB imputation presented in the Results section. 
Variants were split into groups denoted as Accord and Discord, based on whether 𝑃𝑚𝑎𝑥

𝐹𝐺𝑅 and 𝑃𝑚𝑎𝑥
𝐻𝑅𝐶  

indicated the same genotype or not.  
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