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Abstract. Since the integrative analysis of single-cell gene expression and chromatin accessibility mea-
surements is essential for revealing gene regulation at the single-cell resolution, integrating these two
measurements becomes one of the key challenges in computational biology. Because gene expression
and chromatin accessibility are measurements from different modalities, no common features can be
directly used to guide their integration. Current state-of-the-art methods assume that the number of
cell types across the measurements is the same. However, when cell-type heterogeneity exists, they
might not generate reliable results. Furthermore, current methods do not have an effective way to se-
lect the hyper-parameter under the unsupervised setting. Therefore, applying computational methods
to integrate single-cell gene expression and chromatin accessibility measurements remains difficult.
We introduce AIscEA – Alignment-based Integration of single-cell gene Expression and chromatin
Accessibility – a computational method that integrates single-cell gene expression and chromatin ac-
cessibility measurements using their biological consistency. AIscEA first defines a ranked similarity
score to quantify the biological consistency between cell types across measurements. AIscEA then uses
the ranked similarity score and a novel permutation test to identify the cell-type alignment across mea-
surements. For the aligned cell types, AIscEA further utilizes graph alignment to align the cells across
measurements. We compared AIscEA with the competing methods on several benchmark datasets and
demonstrated that AIscEA is more robust to hyper-parameters and can better handle the cell-type
heterogeneity problem. Furthermore, we demonstrate that AIscEA significantly outperforms the state-
of-the-art methods when integrating real-world SNARE-seq and scMultiome-seq datasets in terms of
integration accuracy.
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1 Introduction

Advances in single-cell high-throughput technologies have enabled us to profile gene expression and chromatin
accessibility at the single-cell resolution [1–11]. Integration of the single-cell gene expression and chromatin
accessibility measurements shed light on revealing gene regulation for specific cells [12–16]. However, the
heterogeneity among single cells presents challenges for such integration [15]. Single-cell gene expression and
single-cell chromatin accessibility measure the cells at the transcriptomic and epigenomic layers, respectively.
When both measurements are profiled independently, it is difficult to identify the cell-type or cell-cell cor-
respondences across the measurements since they exist in heterogeneous cellular modalities and lack any
shared features to integrate them. Single-cell dual-omics sequencing technologies [17, 18] have been devel-
oped to tackle this problem by simultaneously profiling gene expression and chromatin accessibility for the
same cells. However, most available single-cell gene expression and chromatin accessibility datasets are still
profiled independently. Therefore, a reliable computational method is needed to integrate these two kinds of
single-cell measurements from different modalities.

Several unsupervised integrative methods have been developed to integrate the single-cell gene expression
and chromatin accessibility measurements [19–27]. CoupleNMF [19] unitizes the non-negative matrix factor-
ization framework to integrate the single-cell gene expression and chromatin accessibility measurements at
the cell type level. Other state-of-the art methods focus on the integration at the cell-cell level. They assume
that single-cell gene expression and chromatin accessibility measurements share similar low-dimensional man-
ifolds and apply different computational methods to align the corresponding manifolds. MMD-MA aligns the
manifold of single-cell gene expression profile and the manifold of single-cell chromatin accessibility profile
by minimizing the maximum mean discrepancy between them [23]. UnionCom relies on the generalized un-
supervised manifold alignment and uses local and global properties of the cells to align the single-cell gene
expression and chromatin accessibility measurements [24]. SCOT applies the Gromov-Wasserstein-based op-
timal transport to align the manifolds [25], but Pamona unitizes the partial Gromov-Wasserstein optimal
transport to align the manifolds [26].

However, all current methods mentioned above suffer from two major problems. First, they are incapable
of handling the cell-type heterogeneity problem. Specifically, when the cell types in the single-cell gene ex-
pression profile differ from those in the single-cell chromatin accessibility profile, they may generate poor
alignment. CoupleNMF [19] would fail because it requires the two datasets have the same number of cell
types. Other methods assume that single-cell gene expression and chromatin accessibility share a similar
manifold, which might not hold when the cell types across datasets are different. MMD-MA [23], Union-
Com [24], and SCOT [25] methods that rely on such assumptions would enforce the alignment between two
different manifolds, which would lead to incorrect integration. Pamona [26] attempts to resolve the cell-
type heterogeneity predicament by estimating the number of the common cells across diverse measurements.
However, the performance of the proposed estimation has not been comprehensively tested [26]. Second, all
current methods’ performance highly relies on hyper-parameter selection. Under the unsupervised setting,
it is very challenging to find the optimal hyper-parameter for different datasets.

To overcome these limitations, we present AIscEA – Alignment-based Integration of single-cell gene
Expression and chromatin Accessibility – an unsupervised computational method that explicitly uses bio-
logical consistency between gene expression and chromatin accessibility to guide the across-modality integra-
tion. First, AIscEA defines a rank-based similarity score to quantify the biological consistency between cell
types in gene expression and chromatin accessibility profiles. Then, based on the rank-based similarity and a
novel designed permutation test, AIscEA identifies the domain-specific cell types and then finds correspond-
ing cell types shared across single-cell gene expression and chromatin accessibility profiles. Furthermore, for
these corresponding cell types across modalities, AIscEA applies a graph alignment method to elucidate the
cell-cell correspondence [28].

We first validated the performance of AIscEA using SNARE-seq Human cell line mixtures data [17],
which jointly captured accessible chromatin regions and gene expression profiles within the same cells, and
therefore it provides cell-cell correspondence for benchmarking. The benchmarking results demonstrate that
AIscEA can resolve the cell-type heterogeneity problem and is more robust to hyper-parameters. Further-
more, we show that our AIscEA outperforms CoupleNMF [19] in terms of cell-type alignment. In addition, we
compared the performance of our method with state-of-the-art cell-cell integration methods MMD-MA [23],
UnionCom [24], SCOT [25], and Pamona [26] on real-world single-cell gene expression and chromatin ac-
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Fig. 1: Overview of AIscEA. (a) Input datasets of single-cell RNA-seq and single-cell ATAC-seq measurements. (b) Clustering and
cell-type identification. (c) Cell-type alignment using biological consistency and calculating the p-values by a novel permutation test.
(d) AIscEA finds cell-cell alignment using a graph alignment method for each pair of mapped clusters.

cessibility profiles. We applied them to integrate SNARE-seq profilings of neonatal mouse cerebral cor-
tex [17], adult mouse cerebral cortex [17], and two scMultiome-seq PBMC datasets from the healthy donors.
We demonstrate that AIscEA significantly outperforms other methods in terms of the average FOSCTTM
score [23], demonstrating its outperformance in identifying the cell-cell correspondence.

2 Methods

2.1 Method Overview

AIscEA is an alignment-based method that can identify the cell-type and cell-cell correspondence between
single-cell gene expression and chromatin accessibility measurements profiled from the same tissue. In contrast
to the current state-of-the-art methods [23–26], AIscEA does not rely on the assumption of similarity between
the manifolds of the entire single-cell gene expression and chromatin accessibility measurements. However,
AIscEA relies on biological consistency, which is the fact that the promoter regions of over-expressed genes
should be significantly accessible to guide the alignment between cell types and also between cells across
the measurements [29–33]. AIscEA quantifies such biological consistency using a rank-based similarity score
and further unitizes the similarity score to direct the cell-type and cell-cell alignments. As shown in Fig. 1,
AIscEA consists of three steps: (i) cell-type identification, (ii) cell-type alignment, and (iii) cell-cell alignment.
In the following, we will elaborate on the details of each step.

2.2 Cell-type Identification

We first identify cell types within single-cell gene expression and chromatin accessibility measurements
via commonly used clustering methods. For single-cell gene expression, we use the classical graph-based
clustering method [34–37] to identify n cell-types in C = {C1, C2, ...Cn}. For single-cell chromatin accessibility
measurement, we first use cisTopic [38] to extract regulatory topics and then use the extracted features
to cluster cells into m cell-types D = {D1, D2, ...Dm}. In practice, we use the Leiden clustering as the
default clustering method to identify cell types in both single-cell gene expression and chromatin accessibility
measurements.

Furthermore, for each cell-type Ci,∀i identified in the single-cell gene expression measurement, AIscEA
identifies the set of differential over-expressed genes GCi

= {g1, g2, ...}. AIscEA then ranks these genes by
their expression log 2 fold changes with respect to their expression in the rest of the cells in descending order.
We further use a function RCi

: GCi
→ Z+ to retrieve the ranking of a gene in GCi

. Similarly, for each cell-type
Dj ,∀j identified in the single-cell chromatin accessibility measurement, AIscEA identifies the significantly
accessible locations using the predictive distribution calculated by cisTopic [38]. Next, we identify the overlap
between these significantly accessible locations and the promoter regions of the expressed genes. AIscEA uses
HDj

= {g1, g2, ...} to present the set of genes, whose promoter regions overlap with the significantly accessible
locations in cell-type Dj .
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Fig. 2: (a) An illustration of computing the biological consistency between (b) a cell type in gene expression, (c) and a cell-type in
chromatin accessibility measurement. (d) An explanation of the proposed permutation test to calculate p-values for aligned cell types.

2.3 Cell-type Alignment

After cell-type identification, as explained in section 2.3, n and m cell types are obtained in the single-cell
gene expression and chromatin accessibility measurements, respectively. Although both measurements are
profiled from the same tissue, due to cellular heterogeneity, in general, the number of cell types m and n may
differ. Furthermore, the correspondence is unknown between n cell-types in the single-cell gene expression
measurements and m cell-types in the single-cell chromatin accessibility measurements.

We propose to use the biological consistency between gene expression and chromatin accessibility to find
the alignment of cell types across different modalities (as shown in Fig. 1). Furthermore, AIscEA adopts a
novel permutation test to find statistically significant biological consistency between the aligned cell types.
We will keep the aligned cell types that are statistically significant and filter out the rest, as shown in Fig. 1c.

Cell-type alignment by biological consistency The biological consistency AIscEA anchored on is the
fact that the promoter regions of over-expressed genes should be significantly accessible [29–33]. AIscEA
defines a ranked similarity score S to quantify such biological consistency between cell types. Mathematically,
the ranked similarity score S(Ci, Dj) between cell-type Ci in single-cell gene expression and cell-type Dj in
single-cell chromatin accessibility data can be computed by:

S(Ci, Dj) =
∑

g∈GCi
∩HDj

1

RCi
(g)2

, (1)

where GCi
is the set of differential over-expressed genes in cell-type Ci identified in the single-cell gene

expression measurements. HDj
is the set of genes whose promoter regions are significantly accessible in

cell-type Dj in single-cell chromatin accessibility measurements. GCi
∩ HDj

extracts all differentially over-
expressed genes whose promoter regions are significantly accessible. RCi : GCi → Z+ is the function that
takes a gene and returns the ranking of the gene in terms of its expression log 2 fold change. The larger the
log2 fold change of a gene expression is, the higher rank it has (the rank of the top gene is 1). Based on
the definition of S(Ci, Dj) in (1), we know that S(Ci, Dj) is large when 1) RCi

(g) is small, meaning the top
ranking genes’ promoter regions should be significantly accessible; 2) |GCi

∩HDj
| is large, meaning most of

the highly over-expressed genes should have significantly accessible promoter regions. Fig. 2(a-c) illustrates
a toy example of how S(Ci, Dj) is computed.

From (1), we compute the biological consistency between n cell-types in C = {C1, C2, ...Cn} and m
cell-types in D = {D1, D2, ...Dm}. Without loss of generality, we assume that n ≤ m (if n ≥ m, we can
add dummy cell-types in D to make n = m). Then the cell-type alignment across measurements can be
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obtained by maximizing the biological consistency between aligned cell types across measurements, which
can be formulated as a linear assignment problem:

max
X

:
n∑

i=1

m∑
j=1

S(Ci, Dj)Xij

s.t. X ∈ Ω,

(2)

where X is a binary assignment matrix, where Xij = 1 denotes that cell-type Ci corresponds to cell-type Dj .
The constraint set Ω = {X ∈ {0, 1}n×m : X1m = 1n, X

⊤1n ≤ 1m} enforces each cell-type in C is assigned
to one and only one cell-type in D. The linear assignment problem can be efficiently solved by the Hungarian
algorithm [39].

Resolving the cell-type heterogeneity problem via a novel permutation test. The set of cell types
C in single-cell gene expression could be different from the set of cell types D in the single-cell chromatin
accessibility data, which results in the cell-type heterogeneity problem. To elucidate the cell-type hetero-
geneity across measurements, we develop a novel permutation test to distinguish statistically significant
corresponding cell types across modalities and find the unique cell types within the measurements.

Before introducing the permutation test, let us first introduce some notations. Given an assignment
matrix Z ∈ Ω, we can obtain the corresponding ranked similarity scores for each alignment and collect them
in the set SZ = {S(Ci, Dj)|Zij = 1, ∀i, j}. We further sort the ranked similarity scores in SZ in descending
order and define a function ΦSZ

: SZ → Z+ that returns the ranking of a similarity score in SZ . We also
define ΦSZ

’s inverse function Φ−1
SZ

: Z+ → SZ that applies to a given ranking and returns the corresponding
similarity score.

The null hypothesis of our novel permutation test is that the ranked similarity score between the aligned
cell-types found by (2) are greater or equal to the ranked similarity scores of the randomly aligned cell
types. After solving (2), we obtain an optimal assignment X∗ and the corresponding similarity scores SX∗ =
{S(Ci, Dj)|X∗

ij = 1, ∀i, j}. For a specific alignment X∗
ij = 1, we can get the corresponding similarity score

S(Ci, Dj) and its ranking among all alignments by I = ΦSX∗ (S(Ci, Dj)). We then generate k random cell-
type alignments by uniformly sampling h = 1, 000 assignment matrices Z1, ..., Zh ∈ Ω from Ω. The null
distribution of the Ith ranking similarity score can be estimated by {Φ−1

SZ1
(I), ..., Φ−1

SZh
(I)} (where {Φ−1

SZl
(I)

is the Ith ranked similarity score in the random alignment ZL). By comparing S(Ci, Dj) with Φ−1
SZl

(I), l =

1, ..., h, we can calculate the p-value by 1− 1
h |{l|Φ

−1
SZl

(I) ≤ S(Ci, Dj)}|, where |·| is the cardinality of a set. For

the alignment X∗
ij = 1 whose corresponding p-value is significant (≤ 0.01), we consider it a true alignment.

For the alignment X∗
ij = 1 whose corresponding p-value is not significant (p-value¿0.01), we consider the

corresponding cell-types in this alignment may be considered unique cell-types within their measurement.
Fig. 2 (d) illustrates how the permutation is calculated.

Hyper-parameters selection scheme for the cell-type alignment Due to the heterogeneity between
the single-cell gene expression and chromatin accessibility measurements, the number of cell types n,m found
in both measurements typically differs (n ̸= m). The selection of n and m would influence the performance
of the cell-type alignment in AIscEA. Currently, under the unsupervised setting, there is no effective way
to select n and m. To fill the gap, we propose a heuristic approach to select them. AIscEA applies Leiden
clustering [35] to identify cell types using the resolution parameter. Therefore, we propose an effective scheme
to select the resolution parameter rather than the number of cell types as following.

Our heuristic approach sets the range for the resolution parameter re for single-cell gene expression
measurement re ∈ {0.1, 0.15, 0.2, ..., 1.5} and the resolution parameter rc for single-cell chromatin accessibility
measurement rc ∈ {0.1, 0.15, 0.2, ..., 1.5}. Then we screen different combinations of re and rc to compute the
alignment ratio defined as L = o

ne
+ o

mc
, where ne is the number of identified cell types in gene expression

measurement when the resolution parameter is set to re,mc is the number of identified cell types in chromatin
accessibility measurement when the resolution parameter is set to rc, and o is the number of aligned cell
types between ne and mc identified by the cell-type alignment method in AIscEA (as explained in Section
2.3). In the end, after screening all resolution parameters, we select the ones yielding the largest alignment
ratio L.
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Fig. 3: (a) The UMAP of the RNA-seq in SNARE-seq Human data. (b) The UMAP of the ATAC-seq in SNARE-seq Human data. (c)
The box plot of the average FOSCTTM over 10 SNARE-seq Human R5% data. (d) The box plot of the average FOSCTTM over 10
SNARE-seq Human R10% data. (e-f) The UMAPs of SNARE-seq Human Heterogeneity data that ATAC-seq has one more cell type
than RNA-seq. (g) The box plot of the average FOSCTTM over 10 SNARE-seq Human R5% data. (h) The box plot of the average
FOSCTTM over 10 SNARE-seq Human R10% data.

In the experiment Section 4.1, we empirically show that the proposed heuristic approach can select re and
rc that result in descent cell-type alignment results for all datasets in a completely unsupervised manner.

2.4 Cell-cell Alignment

Once we identify cell-types Ci and Dj are aligned together, we can further find the cell-cell correspondence
between the cells in Ci and Dj . AIscEA assumes that Ci and Dj consist of a set of cells Ci = {c1i , c2i , ...}
and Dj = {d1j , d2j , ...}, respectively. Since the gene expression of cells in Ci and the chromatin accessibility of
cells in Dj are considered as different measurements for cells of the same kind, we confidently assume that
their low-dimensional manifold is similar. Hence, a graph alignment method is employed to find the cell-cell
correspondence [28].

AIscEA constructs a symmetric k-nearest neighbor graph G1 = (V1, E1) to present the manifold of the
cells in the cluster Ci, where vertices in V1 = Ci = {c1i , c2i , ...} are cells in Ci. Similarly, we construct a
symmetric k-nearest neighbor graph G2 = (V2, E2) to present the manifold of the cells in Dj , where vertices
in V2 = Dj = {d1j , d2j , ...} are cells in Dj (details in the Supplementary Materials Section B). Therefore,
in the following, we can safely assume |V1| = |V2| = N . If |V1| ≠ |V2|, we can add dummy node to make
them equal as done in [28]. The manifold matching between cells in Ci and the cells in Dj can be achieved
by the graph alignment between G1 and G2. Mathematically, the graph alignment step in AIscEA can be
formulated [28] as:

max
P

: Tr(A⊤
1 PA2P

⊤) + λTr(PL)

s.t. P ∈ {P ∈ {0, 1}N×N , P⊤1N = 1N , P1N = 1N}.
(3)

A1 and A2 are the adjacency matrices for G1 and G2, respectively. P is constrained to be a permutation
matrix that enforces one-to-one mapping between cells in G1 and G2. L is the similarity matrix between cells
in V1 and V2 and Lkl estimates the biological consistency between cells cki and dlj . Lkl can be computed by
a ranked similarity score, which is similar to (1) (details in the Supplementary Materials). In the objective
function in (3), the first term Tr(A⊤

1 PA2P
⊤) computes the number of overlapping edges between G1 and

G2 (more overlapping edges imply that the manifolds represented by G1 and G2 are similar) and the second
term computes total similarity between the aligned cells. λ is a hyper-parameter that balances the trade-off
in the objective function (3). The optimization in (3) finds a one-to-one cell-cell alignment such that the
number of overlapping edges between G1 as well as G2 and the total similarity between the aligned cells
are maximized simultaneously. We propose applying the Frank-Wolfe [40] algorithm and the path-relinking
technique to solve (3) (details in Supplementary Materials Section B).
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Hyper-parameters for the cell-cell alignment There are two hyper-parameters that needs to be se-
lected for the cell-cell alignment used in AIscEA: k (the number of nearest neighbors when constructing the
symmetric k-nearest neighbor graph) and λ (the regularizer in Eq. 3). In the experiment section 4.1, we show
that the cell-cell alignment in AIscEA is robust to the selection of k and λ. Therefore, we set k and λ to
default values in practice.

3 Experimental Setup

3.1 Competing methods

AIscEA can identify cell-type alignment between scRNA-seq and scATAC-seq datasets, therefore, we compare
AIscEA’s performance on cell-type alignment with CoupleNMF [19], which is the state-of-the-art cell-type
alignment method. In addition, AIscEA is able to find cell-cell alignment, therefore, we compare AIscEA
with the current state-of-the-art cell-cell alignment methods MMD-MA [23], UnionCom [24], SCOT [25],
and Pamona [26].

3.2 Data

SNARE-seq Human [17] is a joint profiling of accessible chromatin and RNA of the mixture of human cell lines
BJ, H1, K562, and GM12878. We use SNARE-seq Human to benchmark the competing methods because it
provides the ground truth for both cell-type alignment and cell-cell alignment. Moreover, to evaluate different
methods on handling the cell-type heterogeneity problem, we generate SNARE-seq Human Heterogeneity
data by manually removing cells of BJ cell type from the scRNA-seq data in SNARE-seq Human. Fur-
thermore, To compare different methods’ robustness of hyper-parameter selection, we generate SNARE-seq
Human R5% and SNARE-seq Human R10%, where 5% of cells and 10% cells are randomly removed from
the original SNARE-seq Human. Furthermore, we generate SNARE-seq Human Heterogeneity R5% and
SNARE-seq Human Heterogeneity R10%, where 5% of cells and 10% cells were randomly removed from the
SNARE-seq Human Heterogeneity data.

Additionally, we compare all the competing methods on real-world datasets. We first benchmark our
method against all competing methods on two SNARE-seq real-world datasets: SNARE-seq Mouse 5k
(SNARE-seq of neonatal mouse cerebral cortex that contains 5k cells) and SNARE-seq Mouse 10k (SNARE-
seq of adult mouse cerebral cortex that has 10k cells). Then we apply all competing methods on two sc-
Multiome datasets [41, 42]: scMultiome PBMC 3k (scMultiome-seq PBMC of a healthy donor with 3k cells)
and scMultiome PBMC 12k (scMultiome-seq PBMC of a healthy donor with 12k cells). All these datasets
provide cell-cell correspondence information, which is used to evaluate the competing methods. More details
of these datasets can be found in Supplementary Materials Section C.1.

3.3 Metrics

We first introduce the metric we use for evaluating the cell-type alignment. When two cell types are aligned
between scRNA-seq and scATAC-seq, we expect the cells in scRNA-seq cell type to appear in the aligned
scATAC-seq cell type (for the existing cells). In other words, the two aligned cell types are expected to have a
larger number of overlapping cells. Therefore, we use the overlap coefficient to measure the overlap between
aligned cell types. Specifically, if cell-type Ci is aligned to cell-type Dj , the overlap coefficient between cells
in Ci and cells in Dj can be computed as:

O(Ci, Dj) =
|Ci ∩Dj |

min(|Ci|, |Dj |)
. (4)

Furthermore, we can compute the total number of the overlapped cells over all aligned cell types as:

U =
∑

(Ci,Dj)∈A

|Ci ∩Dj |, (5)

where A is the collection of all aligned cell types. Another metric we use to evaluate the cell-type alignment
is the average Silhouette score per cluster to measure cluster cohesion. We expect the cells in the same cell
types to be similar to other cells in their own cell type, but different from other cell types.
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cell types in the RNA-seq and ATAC-seq in SNARE-seq Human data identified by CoupleNMF.

For evaluating the cell-cell alignment, we use the average FOSCTTM score [23], which has been widely
used for evaluating single-cell multi-omics integration methods [23, 25, 26]. FOSCTTM stands for “fraction
of samples closer than the true match”, therefore, the lower the better. The details of how FOSCTTM is
computed are elaborated in Supplementary Materials Section D.1. Another metric is the cell coverage, which
is the number of cells that have been found correspondence across the scRNA-seq and scATAC-seq datasets.

3.4 Hyper-parameter selection

We select the hyper-parameter for AIscEA using the approaches described in Section 2.3 and Section 2.4. For
CoupleNMF [19], we set the number of cell-types based on the ground truth and for the rest of the hyper-
parameters, we use the suggested hyper-parameters. For MMD-MA [23], UnionCom [24], SCOT [25], and
Pamona [26], under the unsupervised setting, they do not have an effective way to find the optimal hyper-
parameters. In this paper, we use the following strategy to find the optimal hyper-parameters for them.
We performed a grid search to find the optimal hyper-parameters using SNARE-seq Human dataset. Then,
we use the optimal hyper-parameters found in SNARE-seq Human for real-world datasets (more details in
Supplementary Materials Section C.5 and C.6).

3.5 Computational resource

All experiments are processed on an Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz CPU with 62GB memory
and GPU computations on a single GeForce GTX 1080 Ti with VRAM of 11GB. If a method fails to run
on a large-scale dataset due to memory shortage, we report a memory error.

4 Results

4.1 Benchmarking using SNARE-seq human cell line mixtures

SNARE-seq human cell line mixtures provide the ground truth information for validating cell-type alignment
and cell-cell alignment. Therefore, we first use it to validate AIscEA’s hyper-parameter selection scheme
proposed in Section 2.3 for cell-type alignment. Furthermore, we use it to evaluate all methods’ robustness
to the choice of hyper-parameters for the cell-cell alignment. Last but not least, we use it to benchmark the
performance of the competing methods on handling the cell-type heterogeneity problem, as in real-world
datasets, the number of cell types may differ between two domains.
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Fig. 5: Screening the resolution parameters. Color bar denotes the number of overlapped cells identified by the cell-
type alignment. Dark blue implies the cell-type alignment has good performance. The size of the dots corresponds
to the alignment ratio defined in 2.3. Large size means the the alignment ratio is large. (a-b) Screening results for
SNARE-seq Human R5% and SNARE-seq Human R10%. (c-d) Screening results for Human Heterogeneity R5% and
SNARE-seq Human Heterogeneity R10%.

Validation of the hyper-parameter selection scheme for the cell-type alignment in AIscEA In
Section 2.3, we propose an approach to select the resolution hyper-parameters in the Leiden clustering in
AIscEA, which determine the number of cell types in scRNA-seq n, and the number of cell types in scATAC-
seq m for the cell-type alignment in AIscEA. This section uses the SNARE-seq Human cell line mixtures to
demonstrate that our unsupervised parameter selection scheme can select the resolution hyper-parameters
that result in promising cell-type alignment.

We applied the proposed scheme in 2.3 to SNARE-seq Human R5% data, SNARE-seq Human R10%
data, Human Heterogeneity R5% data, and SNARE-seq Human Heterogeneity R10% data (description of
these four data can be found in Section 3.2) and show the hyper-parameters screening results in Fig. 5. In
the Fig. 5, the size of each dot corresponds to its alignment ratios defined in 2.3. Larger size of the dots
means the corresponding alignment ratio is higher. The color of each dot for each pair of resolution values
indicates the number of overlapping cells identified by the cell-type alignment (computed as U defined in
Section3.3). Darker blue means more number of overlapping cells are identified by the cell-type alignment,
which means the performance of the cell-type alignment is more promising. As shown in Fig. 5, the large-size
dots always appear in dark blue color, demonstrating that the alignment ratio and the performance of the
cell-type alignment method is positively correlated. Therefore, we can use the alignment ratio to guide the
selection of the resolution hyper-parameters used in AIscEA in an unsupervised setting. In addition, we
noticed that many dots have the same size and color. Such observation implies that different combinations
of resolution parameters may yield equivalently good cell-type alignments. We have the same observation
from the screening results for more real-world datasets in the Supplementary Materials Fig. S2.

Benchmarking hyper-parameter robustness in the cell-cell alignment In this section, we com-
pare AIscEA with all competing cell-cell alignment methods in terms of their robustness to the choice of
hyper-parameters. Such robustness is of practical importance since the real-world application is completely
unsupervised; therefore, we do not have any prior knowledge to guide the hyper-parameter selection. If a
method is sensitive to hyper-parameters, its performance is unreliable for real-world applications.
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Table 1: The statistics of average FOSCTTM scores over the grid search of the hyper-parameter for each method
using SNARE-seq Human and Human Heterogeneity data.

SNARE-seq Human Human Heterogeneity
Method Minimum Mean Std. Minimum Mean Std.

AIscEA 0.150 0.162 0.001 0.152 0.156 0.007
SCOT 0.149 0.383 0.157 0.267 0.463 0.118
Pamona 0.227 0.402 0.130 0.159 0.463 0.170
MMD-MA 0.157 0.335 0.132 0.210 0.511 0.124
UnionCom 0.243 0.514 0.166 0.395 0.467 0.035

We applied all methods to the SNARE-seq Human data. We ran each method over an extensive grid search
of suggested hyper-parameters and showed the results for SNARE-seq Human in Table 1. Cell coverage for
AIscEA and all other methods are exactly 1, 047 cells. The grid search hyper-parameter tuning details are
elaborated in Supplementary Materials Section C.2. As shown in the table 1, AIscEA is competitive with
SCOT on achieving the smallest FOSCTTM score, which is superior to the rest of methods. However, AIscEA
has the smallest standard deviation, implying that AIscEA is more robust to the choice of hyper-parameters.

To further confirm the robustness of hyper-parameters for each method, we applied the optimal hyper-
parameters found on SNARE-seq Human to the datasets that are slightly different from SNARE-seq Human.
The goal is to check whether the optimal parameters on one dataset would still yield good results on a slightly
different dataset.

To evaluate different methods in this scenario, we generated 10 SNARE-seq Human R5% data and 10
SNARE-seq Human R10% datasets (description of the data is in 3.2). Then we applied each method to
them using their optimal set of hyper-parameters (in Supplementary Materials Table S1). Cell coverage for
AIscEA and competing methods in these experiments is the number of shared cells between two domains for
all methods. Fig. 3 c and d exhibit the box plots of the average FOSCTTM scores obtained by each method
over 10 SNARE-seq Human R5% data and 10 SNARE-seq Human R10%, respectively. Clearly, our method
shows the smallest variance on both figures. We further found that the mean of the average FOSCTTM scores
achieved by AIscEA is significantly smaller than the rest of the methods. All these results demonstrate that
AIscEA is more robust to the choice of hyper-parameters than all other competing methods.

Benchmarking in solving the cell-type heterogeneity problem Next, we benchmark all methods on
their ability to resolve the cell-type heterogeneity problem. In a real-world application, we may not have any
prior knowledge of whether the single-cell RNA-seq measurement and the single-cell ATAC-seq measurement
have the same cell types. If we cannot distinguish the cell types that have correspondence and other cell
types that have not, the alignment between the two measurements would be misleading.

To simulate the cell-type heterogeneity problem, we generated the SNARE-seq Human Heterogeneity
data (description of the data is in 3.2). We first ran each competing method over an extensive grid of
suggested set of hyper-parameters and showed the results for SNARE-seq Human Heterogeneity in Table 1.
AIscEA can identify the heterogeneous cell type, exclude it, and map the shared cell types between two
domains. Cell coverage for AIscEA in this experiment consists of the number of cells in all three shared
clusters. As shown, AIscEA achieved the smallest average FOSCTTM score with the smallest standard
deviation, indicating AIscEA is the best method to handle the cell-type heterogeneity problem.

Furthermore, we applied each method using its optimal hyper-parameters found on SNARE-seq Hu-
man Heterogeneity data (shown in Supplementary Materials Table S.1) to 10 Human Heterogeneity R5%
data and 10 SNARE-seq Human Heterogeneity R10% data (description in 3.2). Fig. 3e and f show the com-
parison results. Apparently, AIscEA achieved the smallest average FOSCTTM score and was more robust
to its hyper-parameters. All above experiments demonstrate that AIscEA is the best method to resolve the
cell-type heterogeneity problem.

4.2 Comparison of the cell-type alignment

In this section, we compare AIscEA with CoupleNMF [19] in terms of cell-type alignment. We applied both
methods to SNARE-seq Human, SNARE-seq Mouse 5k, SNARE-seq Mouse 10k, scMultiome-seq PBMC 3k
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Fig. 6: (a-b) The UMAPs of the RNA-seq and ATAC-seq of SNARE-seq Mouse 5k. Aligned cell types identified by AIscEA are shown
in the same color, but grey color shows filtered out cell types by AIscEA. Each color indicates a specific aligned cell type across the
measurements. (c) The bar plots of the average FOSCTTM scores for all methods. The shorter the bar the better the method performs.
The number shows on the bar is the cell coverage for the method. (d-e) The UMAPs of the RNA-seq and ATAC-seq of SNARE-seq
Mouse 10k. The color coding scheme is the same as (a-b). (f) The bar plots of the average FOSCTTM scores for all methods along
with cell coverage for SNARE-seq Mouse 10k. (g-h) The UMAPs of the RNA-seq and ATAC-seq of scMultiome PBMC 3k. The color
coding scheme is the same as (a-b). (i) The bar plots of the average FOSCTTM scores for all methods along with cell coverage for
scMultiome PBMC 3k. (j-k) The UMAPs of the RNA-seq and ATAC-seq of scMultiome PBMC 12k. The color coding scheme is the
same as (a-b). (l) The bar plots of the average FOSCTTM scores for all methods along with cell coverage for scMultiome PBMC 12k.

and scMultiome-seq PBMC 12k, except SNARE-seq Human Heterogeneity because CoupleNMF requires the
scRNA-seq and scATAC-seq data share the same number of cell types. CoupleNMF only generated results
for two datasets with small number of cells, which are SNARE-seq Human and scMultiome-seq PBMC 3k.
For the rest of the datasets, CoupleNMF failed and ran out of memory (memory error).

In Fig. 4, we illustrate the comparison between AIscEA and CoupleNMF on SNARE-seq Human. The
same comparison for scMultiome-seq PBMC 3k is shown in Supplemantary Materials
Fig. S.1(e-h). As shown in Fig. 4, for AIscEA, the cells in the aligned cell types in both scRNA-seq and
scATAC-seq are well isolated. However, for CoupleNMF, the cells in the aligned cell types are mixed together.
We further evaluated the performance of both methods in terms of overlapping coefficient (defined in (4))
and the Silhouette score shown in Table 2. Clearly, AIscEA achieves much higher overlapping coefficients and
Silhouette scores, which demonstrates that AIscEA outperform CoupleNMF in terms of cell-type alignment.

4.3 Comparison of cell-cell alignment using real-world data

We compared AIscEA with competing cell-cell alignment methods MMD-MA [23], UnionCom [24], SCOT [25],
and Pamona [26] on both real-world SNARE-seq data and real-world scMultiome-seq data. We selected
hyper-parameters for each method following the strategy we described in. Section 3.4.
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Table 2: Cell-type alignment comparison.

Method SNARE-seq Human scMultiome-seq PBMC 3k

AIscEA Overlap coef: 0.911 Overlap coef: 0.884
Silhouette score: 0.618 Silhouette score: 0.463

CoupleNMF Overlap coef: 0.202 Overlap coef: 0.398
Silhouette score: 0.146 Silhouette score: 0.032

CoupleNMF failed to run on other datasets due to memory error.

AIscEA outperforms current methods on the real-world SNARE-seq data. We applied all com-
peting cell-cell alignment methods on SNARE-seq Mouse 5k and SNARE-seq Mouse 10k (description in 3.2).
We compared their performance in terms of the average FOSCTTM score and cell coverage (description in
Section 3.3).

Fig. 6 a and b illustrate the cell-type alignment identified by AIscEA for SNARE-seq Mouse 5k. And
Fig. 6c shows the comparison between different methods in terms of the average FOSCTTM score and cell
coverage. An shown, AIscEA achieves the lowest average FOSCTTM score, which is much smaller than the
rest of the methods. The cell coverage of AIscEA is slightly smaller than the other methods (4966 cells out of
5081 cells, only around 2% of cells are missed by AIscEA). But considering both average FOSCTTM score
and cell coverage, it is obvious that AIscEA significantly outperforms all the current methods.

Fig. 6 d and e illustrate the cell-type alignment identified by AIscEA for SNARE-seq Mouse 10k. Fig. 6f
shows the comparison between different methods in terms of the average FOSCTTM score and cell coverage.
An shown, AIscEA achieves the lowest average FOSCTTM score, which is much smaller than the rest of the
methods. The cell coverage of AIscEA is slightly smaller than the other methods (9773 cells out of 10,309
cells, only around 5% of cells are missed by AIscEA). But considering both average FOSCTTM score and
cell coverage, AIscEA significantly outperforms all the current methods.

AIscEA outperforms the current methods on the real-world scMultiome-seq data. We applied
all competing cell-cell alignment methods on scMultiome-seq PBMC 3k and scMultiome-seq PBMC 12k
(description in Section 3.2). We compared their performance in terms of the average FOSCTTM score and
cell coverage (description in Section 3.3).

Fig. 6 g and h illustrate the cell-type alignment identified by AIscEA for scMultiome-seq PBMC 3k. Fig. 6i
shows the comparison between different methods in terms of the average FOSCTTM score and cell coverage.
As illustrated, AIscEA attained the lowest average FOSCTTM score, which is much smaller than the rest
of the methods. Considering both the average FOSCTTM score and cell coverage, AIscEA significantly
outperforms all the current methods.

Fig. 6 j and k illustrate the cell-type alignment identified by AIscEA for scMultiome-seq PBMC 12k.
Fig. 6l shows the comparison between different methods in terms of the average FOSCTTM score and
cell coverage. AIscEA yielded the lowest average FOSCTTM score with a large margin. Although The cell
coverage of AIscEA can be smaller than the other methods, considering both average FOSCTTM score and
cell coverage, AIscEA outperforms all the current methods.

5 Conclusion

In this study, we proposed AIscEA, an unsupervised computational method for integrating single-cell gene ex-
pression and chromatin accessibility measurements. Unlike other approaches, AIscEA relies on the biological
consistency between the two measurements to guide the integration. We compared AIscEA with the state-
of-the-art methods on the SNARE-seq human cell line mixtures benchmark datasets [17] and demonstrated
that AIscEA can effectively select hyper-parameters as well as better handle the cell-type heterogeneity
problem. Furthermore, we showed that AIscEA significantly outperforms previous methods when applying
to the real-world mouse SNARE-seq and scMultiome-seq datasets.

Several innovations developed in this work contributed to the performance of AIscEA. First, the ranked
similarity score enables us to compare the cell types across measurements. The ranked similarity score is the
key to estimating the similarity between cell types from different modalities. Second, the novel permutation
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test can distinguish the true cell-type alignment if the corresponding ranked similarity score is significantly
larger than the random ranked similarity score in the background. Last but not least, the graph alignment
method uses the symmetric k nearest neighbor graph to characterize the low-dimensional manifold. It is a
notable advantage that AIscEA can identify cell types that appear only in one domain and exclude them
from the cell-cell alignment in further analysis.

Our future direction is to recruit more cells in the integration. We believe AIscEA is the milestone for
the integration of single-cell gene expression and chromatin accessibility measurements. Furthermore, it also
provides a stepping stone for integrating other single-cell measurements.
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