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Abstract

Background: Mapping of quantitative trait loci (QTL) associated with molecular phenotypes is a
powerful approach for identifying the genes and molecular mechanisms underlying human traits
and diseases. How the genetic architecture of molecular traits varies across human populations,
however, has been less explored. To better understand the genetics of gene regulation in East
Africans, we perform expression and splicing QTL mapping in whole blood from a cohort of 162
diverse Africans from Ethiopia and Tanzania. We assess replication of these QTLs in cohorts of
predominantly European ancestry and identify candidate genes under selection in human
populations.

Results: We find the gene regulatory architecture of African and non-African populations is
broadly shared, though there is a considerable amount of variation at individual loci across
populations. Comparing our analyses to an equivalently sized cohort of European Americans,
we find that QTL mapping in Africans improves the detection of expression QTLs and fine
mapping of causal variation. Integrating our QTL scans with signatures of selection, we find
several genes related to immunity and metabolism that are highly differentiated between
Africans and non-Africans, as well as a gene associated with pigmentation, TMEM216, with
evidence of population-specific selection in Nilo-Saharan speaking pastoralists.

Conclusion: Extending QTL-mapping studies beyond groups of European ancestry, particularly
to diverse indigenous populations, is vital for a complete understanding of the genetic
architecture of human traits and can reveal novel functional variation underlying human traits

and disease.

Key Words: Human African genomics; gene expression; eQTL; human diversity; natural

selection
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Gene regulation is a principal mechanism by which genetic variation contributes to phenotypic
variation, making its study essential for understanding human evolution and disease. Nearly a
half century ago, King and Wilson noted the high degree of conservation between the coding
regions of humans and chimpanzees, positing that non-coding variation and its effect on gene
regulation must account for much of the phenotypic divergence between these species [1]. The
genomics era has further underscored the importance of noncoding variation in human disease
and evolution: ~90% of the genotype-phenotype associations identified by genome-wide
association studies (GWAS) cannot be explained by coding variation [2,3], and similarly,
genomic regions harboring evidence of selection in humans are significantly more enriched for

variants altering expression than protein coding [4].

While GWAS and scans of selection can identify genomic regions of interest, they often lack the
resolution to identify the specific genes underlying traits or targeted by selection. To bridge this
gap, studies have aimed to identify genetic variation associated with fine-scale, molecular
phenotypes, through guantitative trait locus (QTL) mapping [5]. Combining these molecular QTL
maps with GWAS through colocalization, transcriptome-wide association studies, or Mendelian
randomization, continues to prove a fruitful approach for identifying genes causally linked to
traits and potential drug targets. Unfortunately, there is a persistent ancestry bias in human
genomics research, with nearly 80% of GWAS participants being of recent European ancestry
[6,7], as well as the majority of participants of molecular trait studies [8], greatly limiting our
ability to translate findings from GWAS to diverse populations, as well as discover population-

specific variation of interest [9].

Recent studies have sought to address the genomics gap between groups of European and
non-European ancestry, identifying novel GWAS associations and genetic variation contributing

to gene expression differences across populations [10-14]. However, most global populations
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79  continue to be understudied, particularly in sub-Saharan Africa. Africa is the birthplace of
80 anatomically modern humans and harbors the greatest levels of human genetic diversity across
81 continents. Africa is home to a large array of biomes and terrains, and indigenous Africans
82  continue to practice diverse cultural and subsistence strategies. Together, these environmental
83  pressures have driven remarkable adaptations to infectious disease [15], diet [16], and climate
84  [11,17], often in a population-specific manner. These adaptive variants can have important
85 implications for human health in Africa, and elsewhere [18], and Africa is therefore vital for our
86  understanding of human evolutionary history and health.
87
88 In this study, we probe the genetic architecture of gene regulation in whole blood from
89 indigenous East Africans by performing expression QTL (eQTL) and splicing QTL (sQTL)
90 mapping in a cohort of 162 individuals, representing nine ethnic groups, from Ethiopia and
91 Tanzania. We measure the degree to which African architecture is shared with that of non-
92  Africans, test whether Africans harbor functional variation absent from existing cohorts, and
93 investigate the demographic and genetic forces that may contribute to variation in gene
94  regulatory architecture. We test whether fine-mapping of QTL signals is improved in Africans
95 relative to an equivalently sized cohort of European Americans, and highlight individual genes
96  with improved fine-mapping in Africans. Finally, we measure the effect of selective forces on
97  shaping gene regulatory architecture and identify candidate genes under selection.
98
99 Results
100 Population Structure
101  The cohort for this study consists of 171 Ethiopian and Tanzanian individuals belonging
102  to nine ethnically and culturally diverse sub-Saharan groups, including the Cushitic speaking
103  Agaw and Weyto, the Semitic speaking Argoba and Amhara, the Omotic speaking Dizi, the Nilo-

104  Saharan speaking Mursi, and the Chabu who speak an unclassified language similar to Nilo-
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105 Saharan, and the Khoesan speaking Hadza and Sandawe (Figure 1A). These populations

106  practice a variety of subsistence strategies, including foraging (Hadza and Chabu currently,
107  Sandawe and Weyto formerly), with a diet diverse in foraged tubers, fruit, and hunted game;
108 pastoralism (Mursi), a lifestyle that revolves around cattle herding and a diet high in animal
109 proteins and fats; agriculturalism (Agaw, Amhara, and Argoba), a sedentary lifestyle with a diet
110  high in cultivated carbohydrates; and agropastoralism (Dizi), which relies on both crops and
111 livestock.

112

113 To investigate the genetic diversity and structure of these populations, a subset of 162

114  individuals were genotyped at approximately 4.5 million SNPs on the lllumina Omni5M Exome
115 array. These data were further imputed using a reference panel composed of the 1000

116  Genomes Project (1kGP) dataset [19] and a dataset of whole genome sequences (WGS) from
117 180 sub-Saharan African individuals (methods, unpublished). To place their genetic variation in
118 aglobal context, genotype data from the nine study populations were merged with 1kGP WGS
119 data from 20 individuals each of Yoruban (YRI), Northern and Western European (CEU), and
120 Han Chinese (CHB) ancestry (methods). Principal component analysis (PCA) of this merged
121  dataset recapitulates a primary separation between African and non-African individuals along
122  the first PC, explaining 3.8% of the variance. The second PC, explaining 1.8% of the variance,
123  further separates CEU and CHB individuals, as well as East Africans and the YRI (Figure 1B).
124  Higher PCs further separate variation in Africa; PC3 captures variation between the Hadza and
125  YRI, and PC4 between the Hadza and Chabu. Several groups cluster relatively nearer to CEU
126  Europeans along PC1, most notably the Ethiopian Agaw, Amhara, Argoba, and Weyto, which
127  are known to have moderate levels of Eurasian admixture [20,21]. Inferred ancestry

128 components from ADMIXTURE [22] also estimate components of non-African ancestry among
129 these Ethiopian groups, as well as admixture with Bantu-speaking populations of Western

130  African origin [19], represented by the YRI, in the Sandawe, Mursi, and Hadza (Figure 1C).
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131

132  Transcriptomic traits in Africans

133 To assess the contribution of genetic variation to transcriptomic trait variation, we performed
134  genome-wide QTL mapping for expression (eQTL) and splicing (sQTL) transcriptomic traits in
135 cis for expressed protein-coding and long-noncoding RNA genes; collectively we will refer to
136 eQTLs and sQTLs as transcriptomic QTLs (tQTLs). We first correct our phenotypes (expression
137  and splicing) for a number of covariates, including age, sex, delivery date, hidden covariates
138 inferred by PEER [23], and cell-type fractions inferred by CIBERSORT [24]. Cell-type

139 composition of whole blood is known to vary between individuals, and to be a source of

140  confounding in QTL studies [25]. To account for ancestry and relatedness, we generate a

141  genetic relatedness matrix (GRM) and perform tQTL mapping using the linear mixed model tool
142  GEMMA [26]. Testing all autosomal SNPs with minor allele frequency (MAF) greater than 0.05
143  and within 100kb of the target gene transcription start site (TSS) for eQTLs or within 100kb of
144  the target intron for sSQTLs, we identify 99,685 SNPs associated with the expression of 1,330
145 genes (eGenes) and 74,445 SNPs associated with splicing of 1,118 introns (sIntrons) in 776
146  genes (sGenes) at FDR < 0.05 (methods).

147

148  SNPs associated with expression (eSNPs) and splicing (sSSNPs) show a characteristic

149  enrichment near the transcription start site or intron boundary of their target gene, respectively
150 [27] (Figure 2A), and are enriched in a variety of functional categories, including transcription
151  start sites, enhancers, and splice sites, and are depleted in repressed chromatin regions. We
152  also find a significant overlap with chromatin QTLs (caQTLs) identified in lymphoblastoid cell
153 lines (LCLs, Figure 2B). Further, alleles associated with increased chromatin accessibility are
154  significantly more likely to be associated with increased expression (OR = 2.9, p = 8.2 x 10’
155  Fisher’s Exact Test) and slightly less likely to be associated with increased junction inclusion

156 (OR =0.82, p =0.03 Fisher's Exact Test), suggesting that regulatory mechanisms altering
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157 chromatin accessibility play a greater role in regulation of gene expression than splicing. When
158  we restrict to variants with a greater than 10% probability of being causal (methods), we find a
159 further enrichment in functional categories, particularly for caQTLs among eQTLs and splice
160 regions among sQTLs, indicating we are capturing true causal variation (Figure 2B).

161

162  Of the genes tested, 198 have both an eQTL and sQTL in our cohort, suggesting possible

163 shared genetic architecture between these transcriptomic traits. To evaluate whether eQTLs are
164  enriched for sQTLs overall, we first compute the 1T, statistic, which measures the estimated
165 fraction of sQTLs that are true positives in the eQTL scan. A m; value of 0.61 suggests that the
166  majority of sQTLs affect expression or are in LD with variants affecting expression (Figure S3),
167 though many of these fail to reach genome-wide significance. To further evaluate whether the
168 genome-wide significant eQTL and sQTL signals are driven by shared causal variants, we

169 estimated 90% credible sets for each set of QTLs, defined as the minimal set of variants which
170 have at least a 90% probability of containing the causal variant, using the probabilities estimated
171  above (methods). Overall we find overlapping credible sets for 114 of the genes with both a
172  significant eQTL and sQTL, which makes up about 9% (114/1,330) of all eGenes in our cohort,
173 comparable to the 12% overlap observed in GTEXx [28]. Taken together, this observation

174  suggests that splicing variants likely cause subtle but detectable changes in gene read counts,
175  but that the genetic variants driving genome-wide significant eQTLs and sQTLs are largely

176  independent.

177

178 Replication of tQTLs in non-Africans

179 To validate our tQTLS, and to assess sharing of molecular trait architecture between cohorts of
180 predominantly African vs. predominantly European ancestry, we compared our results to whole
181 blood analyses from the Genotype-Tissue Expression project (GTEX) v8, which is comprised of

182  85% European Americans [28]. For those QTLs tested in both cohorts, we find that both eQTLs
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183  and sQTLs identified in the African cohort show overall high reproducibility in GTEX, with 13
184  values for eQTLs and sQTLs of 0.88 and 0.90, respectively (Figure S4, methods). In addition to
185 Ty, effect sizes between our cohort and GTEXx also show overall strong concordance (Pearson’s
186 p =0.73 for eQTLs and 0.82 for sQTLs, Figure 3: Replication of tQTLs between East Africans
187 and GTEx v8). To assess whether the observed replication is significantly affected by the

188  different genome versions used between our study and GTEx v8, we also measured 1, of

189 eQTLs in GTEx v7, finding a 1, of 0.83 (Figure S4). Those tSNPs that fail to replicate in GTEx
190 (p > 0.01) show consistently lower MAF (Figure 3: Replication of tQTLs between East Africans
191 and GTEx v8); this failure to replicate includes the top eSNP in Africans for 308 genes and the
192  top sSNP for 220 introns in 185 genes, indicating widespread differences in power for detecting
193 tQTLs across ancestral groups.

194

195  We next investigate whether expression differences may affect replication between cohorts. Of
196 the 1,330 eGenes identified in Africans, the expression of 98 in GTEx v8 whole blood is too low
197  to be tested for eQTLs. These 98 genes are significantly enriched in two KEGG pathways,

198  “Hypertrophic cardiomyopathy” (FDR = 0.032) and “Dilated cardiomyopathy” (FDR = 0.038).
199 Investigating what may be driving broader expression differences for testable genes, we identify
200 those genes measured in Africans that fail to reach expression thresholds for testing in GTEX
201  whole blood and vice versa. Altogether 951 out of 12,377 genes measured in both cohorts and
202  tested for eQTLs in Africans were not tested in GTEX. These genes are enriched for a number
203  of biological processes related to sensory perception, including perception of smell (FDR = 2.85
204  x10°®), sound (FDR = 1.60 x 10°), mechanical stimulus (FDR = 5.60 x 10”°), and chemical

205  stimulus (FDR = 5.22 x 10'4). Similarly, 6,728 out of 18,168 tested for eQTLs in GTEx were not
206 tested in Africans and are enriched for several biological processes related to immunity,

22)’

207 including “complement activation, classical pathway” (FDR = 1.78 x 10™°), “humoral immune

208  response mediated by circulating immunoglobulin” (FDR = 7.32 x 10™®), and “B cell mediated
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209  immunity” (FDR = 2.02 x 10?). This observation suggests that disease status, sample collection,
210 and response to environmental factors, in addition to genetics, may account in part for

211  incongruent findings between eQTL cohorts.

212

213  While tQTLs as a whole show strong replication using 1, we also investigate the degree to

214 which individual loci show evidence of shared causal variation. Estimating credible sets for all
215 eGenes and sintrons in GTEX v8 as described above, we find that 715/1262 (57%) of eGene
216 credible sets and 619/852 (73%) of sIintron credible sets in Africans overlap with credible sets in
217  GTEx v8. While the majority of tQTL credible sets overlap, the many non-overlapping sets

218  suggests many tQTL signals identified in Africans may be driven by independent causal

219 variants. To further evaluate this independence we remapped tQTLs in Africans, conditioning on
220 sets of independent tQTLs identified in GTEx by forward regression [28]. In cases where there
221  are no genome-wide significant eQTLs or sQTLs in GTEx (169 genes and 541 introns,

222  respectively) we instead condition on the lead eSNP or sSNP in GTEx. Using the original FDR
223  significance thresholds for calling eQTLs and sQTLs, we find that 362 (27%) of eGenes and 224
224  (20%) of sintrons remain significant after conditioning on GTEx SNPs, including the top variants
225  for 328 eGenes and 199 sintrons, suggesting widespread independent causal variation in

226  Africa.

227

228 Investigating what may be driving the independent signals in our cohort, we compare minor

229  allele frequency (MAF), linkage-disequilibrium (LD) structure, and effect size differences

230  between our cohort and GTEx v8 samples or European-ancestry proxies (CEU individuals from
231  the 1kGP, methods). For 8 genes, INPP5K, TMEM140, ACSM3, CNTNAP3, PPP1R14C,

232 PDZK1TP1, GPR56, and TRAMZ2, the top eSNP in Africans is untested in GTEx and has a MAF
233 < 0.01 (the threshold used by GTEX) in 1kGP EUR populations. Similarly, the top sSNPs for 4

234  genes, ADAMS, ICAM2, LINC00694, and MAPK1 are absent in GTEx and have a EUR MAF <
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235 0.01. Overall, however, we find that frequency differences between Africans and EUR are

236  similar between shared and independent tQTLs (Figure S6). To investigate the impact of LD
237  variation on tQTL replication, we estimate r* between tQTL lead SNPs and SNPs within 100kb
238 of lead SNPs in 1kGP CEU and YRI populations. We find that correlations between CEU and
239  YRIr? values do not differ significantly between shared and independent tQTLs (Figure S6).

240  Finally, comparing effect size variation, we find a significant reduction in effect size correlation
241  between Africans and GTEx among independent tQTLs relative to shared signals (Figure 3:

242  Replication of tQTLs between East Africans and GTEx v8, p < 2.2 x 10™°), which may reflect
243  true effect size variation, GXE effects [13,14,29], or possibly more subtle differences in MAF and
244  local LD between these cohorts [30].

245

246  Fine Mapping

247  In addition to assessing the replication of transcriptional QTLs in the larger GTEx v8 dataset, we
248  are interested in the relative power to detect and fine-map tQTLs between cohorts of

249  predominantly African versus European ancestry. To account for sample size differences

250 between our cohort and GTEX, we performed eQTL mapping in a size-matched sample of 162
251  European-American (EA) individuals from GTEXx v8 using FastQTL [31], with sex, sequencing
252  platform, PCR batch, the top 15 PEER factors, and top 5 genotype PCs as covariates. Testing
253  all SNPs with MAF > 0.05 within 100kb of the target TSS, we identify 1,029 eGenes in the 162
254  EAindividuals at FDR < 0.05, compared with 1,330 identified in Africans, of which 326 eGenes
255  are FDR-significant in both cohorts. Despite only 326 eGenes being shared, we find consistently
256  high replication in an independent whole blood meta-analysis [32]; eQTLs that are FDR-

257  significant in both cohorts reach a 1T; of 0.999, while eQTLs discovered only in Africans reach a
258 1M, 0f 0.958 and eQTLs discovered only in EAs reach a 1T, of 0.989. This observation suggests

259 that the greater number of eGenes in Africans is not driven by an increase in false positives,

10
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260 and that at similar sample sizes, Africans have an improved power to detect eQTLs compared
261  with individuals of European ancestry.

262

263  We next investigate the relative ability to fine-map eQTLs between our African cohort and the
264 162 EA individuals from GTEx v8. Considering eGenes that are FDR-significant in either cohort
265 (methods), we perform fine-mapping in both our African cohort and the 162 EAs using the

266  approach described above. Overall, most genes do not fine-map well at this modest sample
267  size, with 57% of genes having a credible set larger than 50 in both cohorts (Figure 4: Fine

268 mapping in East Africans vs. GTEx v8). Excluding these genes, we find that Africans have a
269  smaller credible set in 63% of cases (437/697, p = 2.06 x 10™** binomial test), with a median
270  credible set size of 25 in Africans vs 58 in EAs, and 23 genes fine-mapped to a single variant in
271  Africans vs. 13 in EAs. One possible explanation of the smaller credible sets in Africans is that
272  Africans simply have fewer SNPs tested per gene; however, we find the opposite, with 94% of
273  genes have fewer tested SNPs in EAs.

274

275  We further compare our credible sets in African eQTLs to credible sets estimated in the full

276  GTEx dataset. As expected, the majority of genes have smaller credible sets in GTEx due to the
277  considerably larger sample size (670 vs 162), though we do identify several examples of greatly
278  reduced credible sets in the African cohort. For 18 eGenes and 32 sGenes we are able to fine-
279  map the QTL signals to a single variant in Africans and find that these variants overlap a lead
280 GWAS association for 10 eGenes and 3 sGenes (supplement). We highlight rs883871 (Figure
281  4: Fine mapping in East Africans vs. GTEx v8), an eQTL for both THRA and NR1B1, which is
282  FDR-significant in GTEx whole blood but is not the lead eSNP. rs883871 is a strong chromatin
283  QTL in lymphoblastoid cell lines (LCLs) [33], overlaps the binding sites of numerous

284  transcription factors (TFs) in the LCL GM12787 [34], is predicted to disrupt a consensus motif

285  for the ETS family of TFs, which share a core ‘CCGGAA’ motif, and is the lead SNP for a

11
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286  Multiple Sclerosis GWAS association [35]; variants in ETS1 itself have been previously

287  associated with Multiple Sclerosis [36]. Given our modest sample size compared with GTEX, we
288  expect that mapping of tQTLs and other molecular traits in larger cohorts of genetically diverse
289  populations will further enhance fine-mapping of QTLs, and when combined with more diverse
290 GWAS studies, may identify novel causal genes underlying human traits and disease.

291

292  Signatures of Selection

293  Gene regulation is known or suspected to underlie many adaptive traits in humans, including
294  diet [16,37], immunity [38], and skin pigmentation [11], and transcriptomic traits show evidence
295  of both purifying and positive selection [13,14,39]. Consistent with previous tQTL studies we find
296  decreasing effect size with increasing MAF among eQTLs and sQTLSs, indicative of negative
297  selection against variants of large effects (Figure S7). To identify QTLs with evidence of positive
298  selection we measure genome-wide Fst between our broader African dataset and the 1kGP
299  European (EUR) individuals, with the expectation that selection for expression-altering alleles
300 will lead to increased differentiation at these loci. To assess whether tQTLs are enriched for
301 evidence of positive selection we identify the highest Fsr value for all SNPs in high LD (r* > 0.8)
302  with the top eQTL or sQTL and compare these values with null SNPs matched on MAF and the
303  number of SNPs in LD (methods). Overall, we do not find an enrichment of high Fst among

304 eQTLs or sQTLs, suggesting that selection has not driven significant frequency differentiation at
305 the majority of tQTLs (Figure S8).

306

307  We next investigate evidence of selection at individual loci. To account for the fact that the top
308 eSNP may not be the true causal SNP, we score an individual gene’s evidence of selection by
309 taking a weighted sum of each SNP’s Fst value multiplied by the probability of that SNP being
310 causal (methods). Considering loci with a score within the 99" percentile threshold of all SNP F-

311 st values as candidates, we identify 27 eGenes and 25 sGenes with evidence of selection

12
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312  (supplement). The most differentiated eGene is TTC26 (weighted Fsr = 0.59); a mutation in this
313 gene has been associated with abnormal cilia in model organisms and biliary ciliopathy in

314  human liver [40]. We also identified a strong signature of selection at TMEM154 (weighted Fst
315 =0.59, Figure 5A), a mostly uncharacterized gene that has been associated with Type Il

316 Diabetes Mellitus and beta cell function in humans and lentiviral infection in sheep [41,42].

317  Other highly differentiated loci include Platelet Factor 4 Variant 1 (PF4V1, Fst= 0.50), IL8 (Fst =
318  0.49), a major inductor of immune cell chemotaxis and activation [43], and CCR1 (Fst=0.43), a
319 chemokine receptor. Among the most differentiated sGenes we find several related to immunity
320 and metabolism, including NADSYN1 (weighted Fst = 0.50), a gene associated with vitamin D
321  concentration [44], BTN3AS3 (weighted Fst = 0.50), a butyrophilin gene implicated in activation of
322 T cells [45], and GANC (weighted Fst = 0.43), a member of the glycosyl hydrolase family 31,
323  which play a key role in glycogen metabolism [46].

324

325  Given our genetically and culturally diverse cohort we are also interested in tQTLs with evidence
326  of population-specific differentiation and selection. For each of the nine populations in the

327  African dataset we calculate a modified version of the d statistic [47], a summation of

328 normalized, pairwise Fst, which tests for variants that are highly differentiated in a focal

329  population versus other populations (methods). As above, we weight these d-statistics by the
330 probability of a SNP being causal to derive a 'd-score’ for each gene or intron. Genes with high
331  d-scores in populations with evidence of non-African admixture (i.e. Agaw, Amhara, Argoba,
332  and Weyto) are more genetically similar to EUR samples from the 1kGP, based on Fsr.

333  Conversely, populations with evidence of west-African admixture (i.e. the Hadza, Mursi, and
334  Sandawe) are more genetically similar to YRI samples at high d-score genes, suggesting that in
335 many cases the genetic differentiation at these loci is driven by population-specific patterns of
336  admixture. We therefore calculate the population branch statistic between (PBS) [48] between

337 individual populations in our study and 1kGP CEU and YRI populations. Considering genes with
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338 aweighted d and PBS score in the top 99.5" percentile as significant, we identify 22 eGenes
339 and 22 sGenes with significant evidence of population-specific selection (Figure 5: Population-
340  specific selection in East Africa. and B).

341

342  Among the top eGenes with evidence of population-specific selection is TMEM216 among the
343  Nilo-Saharan speaking Mursi pastoralists (Figure S9). This gene is located near a skin

344  pigmentation GWAS locus discovered in a cohort with the same sub-Saharan African

345  populations [11]. This association signal overlaps the UV-repair gene DDB1, as well as several
346  other genes expressed in melanocytes. Colocalization analyses show strong overlap between
347  the African TMEM216 eQTL and pigmentation GWAS signals (PP4 = 0.95, Figure 5C,

348 methods), suggesting possible shared causal variation between TMEM216 expression and
349  pigmentation variation. LD patterns around TMEM216 shows evidence of three independent
350 eQTLs segregating for this gene, tagged by rs7948623, rs11230664, and rs3741265. Two of
351 these SNPs, rs7948623, rs11230664, are also genome-wide significant GWAS SNPs for

352  pigmentation variation in Africans, while the third, rs3741265, is marginally significant (p < 10,
353  Figure 5C), All three SNPs show strong population-specific differentiation in Ethiopian Nilo-
354  Saharan groups, who have amongst the highest levels of skin melanin of any global population
355  (Figure S9). Previous analyses of these populations have shown evidence of a selective sweep
356  near this pigmentation GWAS locus, including high PBS and d values among GWAS variants
357  (Figure S10) and extreme negative Tajima’s D values overlapping the TMEM138/TMEM216
358 locus [11].

359

360 The top GWAS variant, rs7948623, overlaps an active enhancer in keratinocytes and

361 melanocytes and has been demonstrated to alter enhancer activity in melanocytes via luciferase
362  reporter assays [11]. rs7948623 is a significant eQTL for TMEMZ216 in our study but is not

363  significant in GTEx whole blood, though it is in ovary, nerve, and exposed skin. In addition,
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364  rs7948623 is a significant sSQTL for TMEM216 in multiple GTEX tissues, including exposed skin
365  (Figure 5C). A second group of TMEM216 eQTL and pigmentation GWAS variants are tagged
366 by rs11230664 and include the indel rs148172827, which overlaps an active melanocyte

367 enhancer, and shows significant correlation with TMEM216 expression in GTEXx exposed skin
368  (Figure 5C). We do not identify significant sQTLs in Africans for TMEM216, however the top
369 sSNP for TMEM216 in GTEx exposed skin, rs3741265 (p = 1.43 x 10°%%), is in high LD with the
370 top TMEM16 eQTL in Africans, rs7934229 (r* = 0.99). Both of these SNPs are moderately

371  associated with skin pigmentation in Africans (p < 5 x 10°®) but do not reach genome-wide

372  significance (Figure S11).

373

374  Discussion

375  This study extends our understanding of the genetic basis of human gene regulation, with the
376  inclusion of whole blood samples for 162 ethnically diverse sub-Saharan Africans from Ethiopia
377 and Tanzania. We find that variation underlying expression and splicing is broadly shared

378  between African and European cohorts, though there is considerable independent variation at
379 individual loci in Africans, often driven by variation in frequency and effect sizes of tQTLs. When
380 matched for sample size, Africans show improved fine mapping of molecular traits, facilitating
381 the identification of causal variants and candidate genes underlying GWAS traits. This diverse
382  cohort also allows for inference of tQTLs with evidence of local adaptation, identifying

383 TMEM216 as a target of selection in Nilo-Saharan speakers and a candidate gene that may
384  play a role in skin pigmentation.

385

386  We find that the majority of tQTLs replicate between Africans and GTEX v8, with 1T, values near
387 0.9 among both eQTLs and sQTLs, on par with the 0.919 value estimated between African

388  Americans in the GENOA cohort [49] and EUR populations from the Geuvadis project [12]. We

389 also observe strong effect size correlation between tQTLs in our study and GTEX v8.
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390 Investigating individual loci, however, we find that many genome-wide signals are driven by
391  distinct causal variation; 43% of eQTL and 27% of sQTL credible sets in Africans do not overlap
392 those in GTEx v8, and 27% of eGenes and 20% of sintrons have QTL signals that remain

393 significant after conditioning on all tGTLs in GTEX.

394

395 Investigating what may account for QTL differences between Africans and non-Africans, we find
396 that genes relating to sensory perception and immunity show differential expression between
397  our African cohort and the GTEXx cohorts, pathways known to vary across populations and

398 environments [50,51]. Additionally, the post-mortem nature of GTEx samples may contribute to
399  expression differences. An analysis of the effects of death on gene expression in GTEXx found
400 that immune genes in whole blood are significantly dysregulated following death, however this
401 change was characterized by an overall deactivation of immune genes, along with an overall
402 increase in NK cells and CD8 T-cells and a reduction in neutrophils [52]. In addition to

403  expression differences, we find an enrichment for low frequency variants in GTEx among non-
404  replicating tQTLs. However, the majority of tQTLs that are conditionally independent show

405 similar frequency differences with shared tQTLs, suggesting that frequency variation alone
406  cannot account for independent tQTLs. This issue of trans-ethnic GWAS replication is an

407  ongoing area of research [53,54], and non-replication may occur for many reasons including
408 frequency variation, differences in power, LD, or true differences in effect size, including G x E
409 effects. While we do not find a significant difference in local LD structure between shared and
410 independent QTL signals, we do find significant differences in estimated effect sizes. Using a
411  Bayesian approach to account for frequency and LD variation, Brown et al. also found eQTL
412  effect size differences between EUR and YRI individuals from Geuvadis [12], which become
413  more pronounced as genetic effects become weaker [55]. However for strong, genome-wide

414  significant effects, Zanetti and Weale demonstrated using simulations that most trans-ethnic
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415  differences in GWAS effect sizes can largely be accounted for by a combination of frequency
416  and LD variation, though they could not rule out effect size differences [30].

417

418 Beyond replication, we demonstrate that at comparable sample sizes, African cohorts have

419 improved sensitivity to detect tQTLs and improved ability to fine-map causal variants, compared
420  with cohorts of European ancestry. It is well established that non-African populations have more
421  extensive LD relative to Africans [56,57], resulting from the out-of-Africa bottleneck [58,59],

422  which likely accounts for the observed improvement in fine-mapping in African populations. As
423  to the increased sensitivity to detect tQTLs in Africans, one hypothesis is a higher false-positive
424  rate in the African cohort. However we find comparable replication of African-specific tQTLs in a
425 large, independent meta-analysis [32], suggesting that false positives do not account for the
426  observed improvement. Moreover, Quach et al. found a similar pattern of improved sensitivity to
427  detect eQTLs in individuals of self-reported African ancestry in an analysis of stimulated and
428  unstimulated monocytes from 200 Belgians, 100 of European and 100 of African ancestry [60].
429  Among African Belgians they found 13% more eQTLs in unstimulated monocytes, and 10%
430 more eQTLs across all conditions. While several other studies have mapped eQTLs across

431  multiple ancestry groups [12,14,61,62], variation in sample size precludes direct comparison of
432  sensitivities across ethnicities.

433

434  In addition to the inclusion in our study of ancestral groups not represented in existing reference
435  cohorts (e.g. the 1kGP), which enables the detection of novel regulatory variation, these

436  populations live in diverse climates and have distinct cultural and subsistence practices, which
437  may have driven unique local adaptations. Using an outlier approach based on the Fst based d
438 and PBS statistics [47,48], we identify population-specific differentiation of tQTLs among East
439  African populations. One notable example is the eQTL TMEM216 among the Mursi, which is

440 near a recently identified pigmentation locus specific to sub-Saharan Africans [11]. TMEM216,
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441  and the nearby TMEM138 gene, form an evolutionarily conserved cis-regulatory module vital for
442  ciliogenesis, and have been identified as causal genes underlying Joubert and Merkel

443  syndromes [63,64]. TMEM216 has not been previously associated with pigmentation variation,
444  though activation and suppression of primary cilia have been shown to inhibit and activate

445  melanogenesis, respectively, in a human skin model [65]. Consistent with this, we find that the
446  expression decreasing allele is associated with increased melanin levels for rs7948623,

447  rs11230664, and rs3741265, and is most common in the Mursi, a populations with darkly

448  pigmented skin (Figure S9)[11]. In addition, recurrent somatic mutations driving alternative

449  splicing of TMEM216 are significantly associated with melanoma in The Cancer Genome Atlas
450 (TCGA), suggesting possible tumor suppressor function for this gene [66]. While the strong

451  colocalization between the TMEM216 eQTL and pigmentation GWAS signals suggests

452 TMEM216 as a possible pigmentation gene, there are several haplotypes segregating in this
453  region, some of which carry tQTLs for other genes in GTEx (Figures S12 and S13). In addition,
454  several nearby genes show melanocyte-specific expression, or have been previously

455  associated with pigmentation in other organisms, complicating identification of the gene or

456  genes that are causally associated with pigmentation variation [11,67].

457

458  There are several limitations to our study, foremost being our modest sample size of 162

459  individuals, with current eQTL datasets reaching sample sizes an order of magnitude larger [49].
460  Many of the populations participating in this study live at considerable distances from medical or
461  scientific facilities, and all necessary tools and supplies must be transported to field sites,

462  greatly limiting the capacity for sample collection. Additionally, we are limited to studying blood
463 tissues among these populations. Generation of induced pluripotent stem cells (iPSC) may

464  allow for the study of gene regulation across developing tissues or differentiated cells within

465  diverse populations [68,69], but such approaches remain technically difficult. This study is also

466 restricted to steady state gene expression, which may miss cell-type- or dynamic, environment-
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467  specific genetic effects, which cannot be captured in bulk and/or steady-state tissues

468 [29,70,14,13,71,72]. Despite these limitations, this study makes important contributions to our
469 understanding of gene expression variation and the molecular basis of human adaptation in
470  sub-Saharan Africa.

471

472  Conclusion

473  We have presented a comprehensive analysis of transcriptomic variation in a cohort of

474  previously unstudied indigenous sub-Saharan Africans. We identify extensive novel regulatory
475  variation in Africans and show that the study of African populations improves the detection of
476  transcriptomic QTLs and fine mapping of causal variation. Studying diverse populations within
477  Africa also allows for the detection of genes targeted by population-specific selection, including
478 aevidence of selection on TMEM216 expression in the Mursi and strong colocalization between
479 TMEM216 eQTLs and a pigmentation GWAS locus.

480

481 Methods

482  Sample Collection

483  Phenotypic, genealogical, and biological data were collected from individuals belonging to nine
484  populations in Ethiopia and Tanzania. Prior to sample collection, IRB approval for this project
485  was obtained from the University of Pennsylvania. Written informed consent was obtained from
486  all participants and research/ethics approval and permits were obtained from the following

487  institutions prior to sample collection: the University of Addis Ababa and the Federal Democratic
488  Republic of Ethiopia Ministry of Science and Technology National Health Research Ethics

489 Review Committee; COSTECH, NIMR and Muhimbili University of Health and Allied Sciences in
490 Dar es Salaam, Tanzania. To obtain DNA and RNA data, whole blood was collected using

491  vacutainers and RNA was stabilized in the field using LeukoLOCK Total RNA Isolation System

492  (Ambion life Technologies). The Poly(A)Purist Kit (Ambion Life Technologies, CA) was used for

19


https://doi.org/10.1101/2022.02.16.480765
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.16.480765; this version posted February 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

493 mRNA selection, and Ampure XP magnetic beads (Beckman Coulter, CA) were used for size
494  selection after amplification.

495

496  Genotyping and imputation

497 A subset 162 individuals were genotyped as part of the 5M dataset using the lllumina Omni5M
498  SNP array, which includes approximately 4.5 million SNPs. The full 5M dataset was phased
499  using Beagle 4.0 [73] and the 1kGP reference panel [19]. These data were further imputed
500 using minimac3 [74] and a reference panel consisting of the 1kGP and 180 WGS from the

501  Tishkoff lab (unpublished).

502

503 PCA and ADMIXTURE

504  To identify related individuals, relatedness was inferred in the imputed 5M dataset using the
505 KING extension of plink 2.0 [75]. To place the genetic variation in this study within a global
506  context, the 5M imputed dataset was merged with the 1KGP. Individuals from the 162 in this
507  study with inferred relatedness more distant than third degree were then extracted from the
508 merged dataset (145 total), along with 20 individuals each from the YRI, CEU, and CHB

509 populations, restricting to unambiguous SNPs (i.e. excluding A/T and C/G) with MAF > 0.01 and
510  with imputation accuracy (r?) greater than 0.99 reported from minimac3. SNPs were LD-pruned
511  using plink v1.90 [76] and parameters ‘--indep-pairwise 50 10 0.1'. PCA was performed on this
512  dataset using smartpca from EIGENSOFT v6.1.4 [77], with ‘numoutlieriter’ set to 0.

513 ADMIXTURE [78] was run on the same dataset using parameters ‘--cv -j8 -B100 -s7'.

514

515 mRNA sequencing and molecular trait quantification

516  Samples were sequenced on an lllumina HiSeq to a median depth of 56,122,076 reads

517 (11,727,716 min., 228,660,534 max.). Prior to mapping, all reads aligned to rRNA genes with

518 BLAST [79] were removed. Remaining reads were mapped to the hgl9 genome with STAR
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519 v2.5.3a[80] and the GTEx GENCODE v19 gene annotations [81] using two-pass mapping.
520 Expression was quantified at the gene level using featureCounts v1.5.3 [82] as fragments per
521 gene, as well as using RSEM v1.2.31 [83] as transcripts per million (TPM). Splicing was

522  quantified using leafcutter [84] as fraction of intron exclusion reads per cluster (JPC).

523

524  Cell-type inference

525  Cell type fractions for each individual were inferred using CIBERSORT [24]. The LM22

526  signature gene file from Abbas et al. [85] was used to infer frequencies of 22 immune cell types
527  for a mixture file of TPM values for all 171 individuals with RNA-seq data. Quantile-

528 normalization was disabled and 1000 permutations were used.

529

530 Quantile normalization and hidden factor inference

531  Prior to hidden factor inference and QTL mapping, molecular phenotype matrices were first
532 filtered and quantile-normalized. For eQTL mapping, only IncCRNA and protein-coding genes
533  with more than 5 reads in at least 20 individuals and with mean TPM > 0.1 across all

534  populations were considered. For sQTL mapping, introns from IncRNA and protein-coding

535 genes with no more than 5 individuals with O reads were included. Furthermore, clusters were
536  required to have at least 20 reads in at least 100 individuals and have 0 reads in fewer than 10
537 individuals. These filtered phenotype matrices (TPM for eQTL mapping and JPC for sQTL) were
538 then quantile normalized using the two-stage procedure implemented by GTEX [28]. Briefly, the
539  distribution of the phenotypes per individual were first quantile normalized to the mean of the
540 phenotypes across individuals. Next, the distribution of each phenotype was quantile normalized
541  to the standard normal. Hidden covariates were inferred using PEER [23] for these quantile-
542  normalized phenotype matrices.

543

544  eQTL and sQTL mapping
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545  Expression and splicing quantitative trait loci were mapped using a linear mixed modelling

546  approach, using the quantile-normalized gene or intron fractions as phenotypes, while

547  correcting for sex, age, cell-type composition, delivery date, latent PEER factors, and genetic
548  relatedness. Mapping was performed for SNPs with MAF > 0.05, imputation r* > 0.3, and within
549  100kb of the target phenotype (gene TSS for eQTLs and intron for sQTLs) using GEMMA [26]
550 and a genetic relatedness matrix (GRM) generated from all biallelic SNPs across the imputed,
551 162 individual genotype dataset. tQTL mapping was repeated across a range of PEER factors:
552 0-5, 10, 15, 20, 25, and 30 factors for eQTL mapping, and 0-10 factors for sQTL mapping, and
553 the number of factors maximizing the number of eQTLs or sQTLs discovered were chosen for
554  downstream analysis.

555

556  To identify significant QTLs, tested SNPs for each phenotype were first FDR corrected using
557  Benjamini-Hochberg (BH), yielding single-corrected p-values (P’) for each tested SNP-

558  phenotype pair. The minimum P’ per phenotype were again FDR-corrected using BH, yielding
559  double-corrected p-values (P”) per phenotype, and phenotypes with P” < 0.05 were considered
560 significant. To identify significant SNPs, a threshold was set equal to the lowest P’ for the

561 phenotype with highest significant P, and all SNPs with P’ lower than this threshold were

562 deemed significant.

563

564  Credible Sets

565  For each gene or intron of interest, Approximate Bayes Factors were calculated for each tested
566  SNP using the function ‘approx.bf.estimates’ from the coloc package [86], or the function

567 ‘approx.bf.p’ in cases where effect size or standard error information was not available. The

568  posterior probability of each SNP n being causal (PP,) was then taken as:

ABE,

PP, = o
" ¥, ABF,
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569  Similar to The Wellcome Trust Case Control Consortium et al. [87], where ABE, is the

570  Approximate Bayes Factor of SNP n, and p indexes all tested SNPs for a given feature of

571 interest. A 90% credible set was then defined as the minimal number of SNPs whose sum of
572  posterior probabilities was > 0.9.

573

574  Functional Enrichment

575  All SNPs in the imputed genotype dataset of 162 individuals were annotated for functional
576  consequences using the Variant Effect Predictor (VEP) [88] with parameters ‘--per_gene --
577 most_severe'. In addition, SNPs were overlapped with 15 state ChromHMM tracks for PBMCs
578 (E062) from the Roadmap Epigenomics Consortium [67], transcription factor binding sites for
579  lymphoblastoid cell lines (LCLs, GM12878) from ENCODE[34], and chromatin QTLs from

580 Tehranchi et al. [33]. To test for enrichment, each FDR-significant eQTL or sQTL was matched
581 on MAF and distance to nearest TSS or intron boundary, respectively, and the log-ratio of tQTL
582  SNPs to matched background SNPs overlapping each functional category was taken as an
583  enrichment score. This was repeated 10,000 times, producing an empirical distribution of

584  enrichment scores for each functional category.

585

586  Replication with GTEx v8

587  All SNPs and intron boundaries were converted to hg38 coordinates using liftOver [89]. For
588 eQTLs, those hg19 SNPs that successfully mapped to locations in hg38 (81,928/82,144) and
589 genes with Ensembl IDs shared between GENCODE v19 and GENCODE v26 (1,291/1,330)
590 were considered (96,903/99,685 of possible eQTLSs). Of these, 77,238 eQTLs were tested in
591 GTEx v8 and could be compared. For sQTLs, SNPs and Ensembl IDs were required to

592  successfully map between versions (49,706/49,794 and 772/776, respectively), and intron

593  boundaries were required to map between GENCODE versions (738/1,118). Of these, 55,046
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594  sQTLs were tested in GTEXx. The fraction of true positives for successfully mapped tQTLs in
595 GTEx, 1, was estimated using the R package gvalue [90].

596

597 Conditional tQTL mapping

598 To identify tQTLs in the African cohort that are independent of GTEx v8 tQTLs, we performed
599 eQTL and sQTL scans conditioning on independent GTEx eQTLs and sQTLs identified via step-
600  wise regression [91]. In cases where there are no significant tQTLs in GTEx we instead use the
601 top variant per feature. To account for these variants, we residualize the quantile-normalized
602 feature matrices used in the original QTL mapping against the genotypes of independent GTEXx
603  QTLs. We then perform identical eQTL and sQTL scans, and consider genes and introns with
604  variants that pass the original FDR threshold as independent.

605

606 LD variation across populations

607 To compare LD structure between East Africans and Europeans at tQTL loci, LD was estimated
608  (using r’) between lead SNPs for eQTLs and sQTLs and all tested SNPs in the East African and
609 1kGP EUR samples, restricting to those variants polymorphic in both, resulting in an r* vector
610 per group (East Africans and EUR) per locus (eGenes and sintrons). For each tQTL locus, we
611 estimated the Pearson correlation p between the East African and EUR r? vectors, and the

612  distribution of these p values was compared for tQTLs shared between East Africans and GTEX
613 andindependent tQTLs.

614

615 eQTL mapping in 162 European-Americans from GTEx v8

616 eQTL mapping was performed on 162 individuals of European ancestry from GTEX v8 using
617  FastQTL [31] with 10,000 permutations for all SNPs with MAF > 0.05 and within 100kb of the

618 target TSS. Covariates included the top 15 PEER factors, top 5 genotype PCs, sex, platform,
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619 and PCR batch. Significance was evaluated using the hierarchical Benjamini-Hochberg

620 procedure used for African samples.

621

622  Scans of selection

623  To test for genetic differentiation between our African dataset and Europeans, all individuals
624  belonging to the 9 populations in our study were extracted from the full 5M dataset (664 total)
625 and allele frequencies were combined with frequency information for EUR populations from the
626  1KGP, restricting to SNPs polymorphic in both datasets. Fsr was estimated using the Hudson
627  estimator [92], and SNPs within the top 99" percentile (Fsr > 0.36) were considered outliers. To
628 test for overall enrichment of Fsr outliers among tQTLs, we use an approach similar to Quach et
629 al. [13] The maximum Fsrvalue of SNPs in LD with lead tQTL SNPs (> > 0.8) was found, and
630 the fraction of outliers among these maximum Fsr values was calculated. To generate a null
631  expectation, each lead tSNP was matched with a random SNP, matching on MAF (bins of 0.05)
632  and number of SNPs in LD (bins of [0], [1], [2], (2,5], (5,10], (10,20], (20,50], and >50). The

633 maximum Fst of SNPs in LD with these matched SNPs was found, and the fraction of outliers
634  among these matched maximum Fst SNPs calculated. This procedure was repeated 10,000
635 times, generating a null distribution of expected number of outlier SNPs.

636

637  To identify individual eGenes and sGenes with evidence of selection, weighted Fst scores were
638 generated for each eGene and sintron. For each feature of interest (gene or intron), the

639  posterior probability of each tested SNP was calculated using the approach used to define

640 credible sets, and for each feature a weighted Fst score was calculated as:
For = ) PR FL
p

641  Where PP, is the posterior probability of SNP p being causal and FE. is the Fst of SNP p. Scores

642  higher than the 99" percentile of genome-wide Fsr values were considered significant.
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To detect population-specific selection, we use an adapted, polarized version of the d statistic
for each SNP:
Fst — E[Fg
d; = 2 lpep; =

sd|Fg

Jj#i
Where p; and p; are the allele frequencies in populations i and j, respectively, Ipizp}. is an
indicator function that returns 1 if p; > p; and -1 otherwise, FS’; is the Fst between focal

population i and population j, and E[F;}| and sd|F;]] are the expected value and standard
deviation of Fst between populations i and j across all SNPs. We implement this polarization
procedure because SNP frequencies that are at an intermediate frequency in the focal
population, but strongly differentiated in others, can show up as strong d; outliers in the focal
population due to the symmetry of Fst. To identify individual eGenes and sGenes with evidence

of population-specific selection, we generate weighted d; scores as described above for Fsr.

Due to differential levels of admixture across populations, some d; outlier loci show genetic
similarity with non-African and west-African populations, suggesting that these loci are uniquely
differentiated in the focal population due to admixture. To eliminate candidates that may be
driven by admixture, we also calculate the population-branch statistic (PBS;) [93] between each

focal population i and the CEU (a proxy for non-Africans) and the YRI (a proxy for sub-Saharan

Africans):
Ti,YRI + Ti,CEU _ TYRI,CEU
PBS, =
2
Where T4F = —log(1 — F") and F&” is FST calculated between populations A and B. We

then go on to create a weighted PBS; statistic per gene or intron as above. Candidates of
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663  selection are then defined as those features with a weighted d; and PBS; score above the 99.5"
664  percentile of genome-wide d; and PBS; SNP-wise statistics.
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Figures

Figure 1. Global and genetic structure of study populations

A) Locations of East African populations sampled in this study across Ethiopia and Tanzania. B)
Principal Component Analysis of genetic data across 162 East Africans, combined with 20 West
African Yoruba (YRI), 20 European Americans (CEU), and 20 Han Chinese (CHB) from the
1000 Genomes Project. C) ADMIXTURE analysis of East African, YRI, CEU, and CHB

populations.

Figure 2: Genomic context of tQTLs

A) Enrichment of top eQTLs near the transcription start site (TSS) of their target gene. B)
Enrichment of top sQTLs near the intron boundary of their target intron. Densities of sQTLs are
separated depending on whether they're upstream of the target intron (5’ distance), within the
intron (intron fraction), or downstream of the intron (3’ distance). C) Enrichment of tQTLs across
functional categories, stratified by FDR significance and posterior probability (PP) of being
causal. Categories include chromatin accessibility QTLs (caQTL) in LCLs from Tehranchi et al.
[33]; transcription factor binding sites (TFBS) for 140 transcription factors in GM12878 LCLs
[34]; transcription start sites (TSS), enhancers (Enh), Polycomb-repressed chromatin (ReprPC),
transcribed (Tx), and heterochromatin (Het) annotations from ChromHMM in GM12878 LCLs
[34]; and 3' UTR, 5’ UTR, intron, splice site, synonymous, missense, and start gain/loss or stop

gain/loss annotations from Variant Effect Predictor (VEP) [88].

Figure 3: Replication of tQTLs between East Africans and GTEx v8
A) Minor allele frequency distribution in GTEx v8 of FDR-significant tQTLs identified in East
Africans, colored by whether they have a p-value less than 0.01 in GTEx v8. B) Comparison

effect sizes of tQTLs identified in East Africans. Lines show the best fit regression line between
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962 East Africans and GTEXx v8 effect sizes, colored by whether the tQTL is shared (i.e. is no longer
963  significant after conditioning) or is independent (remains significant after conditioning).

964

965 Figure 4: Fine mapping in East Africans vs. GTEx v8

966 A) Credible set (CS) sizes for eGenes identified in 162 East Africans (Afr) or a subset of 162
967  European Americans from GTEx v8 (EA162). Points are colored by the fraction of SNPs in the
968 smaller credible set A that are shared with the larger set B, 1 indicating that the smaller set is a
969  subset of the larger set, and 0 indicating the smaller set shares no SNPs with the larger set. B)
970  Locus plot of NR1D1 eQTLs identified in 162 East Africans (Afr) or the full GTEx v8 cohort (v8).
971  P-values are overlaid with African (YRI) and European-American (CEU) recombination rates,
972 GENCODE v19 [81] gene models from the UCSC genome browser [94]

973  (http://genome.ucsc.edu) and inferred ChromHMM[95] states for GM12878 [34]. The top SNP in
974  Africans, rs883871, disrupts a nucleotide for the core motif of ETS-family transcription factors
975  (motif of ETS1 shown).

976

977  Figure 5: Population-specific selection in East Africa.

978 A) Gene scores for the d-statistics plotted against the population branch statistics (PBS) for
979 each population. PBS is calculated for each focal population versus the CEU and YRI

980 populations from the 1000 Genomes Project. Genes with a score above the 99.5™ percentile of
981 genome-wide statistics for d and PBS are highlighted in red. B) Comparison of pigmentation
982 GWAS p-values from Crawford et al. [11] against eQTL p-values from our study (East Africa),
983 GTEx v8 Whole Blood, or GTEx v8 Sun-exposed skin (lower leg), in the style of LocusCompare
984  [96]. Variants are colored by their degree of LD with three top pigmentation GWAS variants,
985 rs7948623, rs11230664, and rs2512809. Colocalization probabilities from coloc [86] (PP4) are
986 indicated for each eQTL group.

987
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