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Abstract 27 

Background: Mapping of quantitative trait loci (QTL) associated with molecular phenotypes is a 28 

powerful approach for identifying the genes and molecular mechanisms underlying human traits 29 

and diseases. How the genetic architecture of molecular traits varies across human populations, 30 

however, has been less explored. To better understand the genetics of gene regulation in East 31 

Africans, we perform expression and splicing QTL mapping in whole blood from a cohort of 162 32 

diverse Africans from Ethiopia and Tanzania. We assess replication of these QTLs in cohorts of 33 

predominantly European ancestry and identify candidate genes under selection in human 34 

populations. 35 

Results: We find the gene regulatory architecture of African and non-African populations is 36 

broadly shared, though there is a considerable amount of variation at individual loci across 37 

populations. Comparing our analyses to an equivalently sized cohort of European Americans, 38 

we find that QTL mapping in Africans improves the detection of expression QTLs and fine 39 

mapping of causal variation. Integrating our QTL scans with signatures of selection, we find 40 

several genes related to immunity and metabolism that are highly differentiated between 41 

Africans and non-Africans, as well as a gene associated with pigmentation, TMEM216, with 42 

evidence of population-specific selection in Nilo-Saharan speaking pastoralists. 43 

Conclusion: Extending QTL-mapping studies beyond groups of European ancestry, particularly 44 

to diverse indigenous populations, is vital for a complete understanding of the genetic 45 

architecture of human traits and can reveal novel functional variation underlying human traits 46 

and disease. 47 

 48 

Key Words: Human African genomics; gene expression; eQTL; human diversity; natural 49 

selection 50 

 51 

Background 52 
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Gene regulation is a principal mechanism by which genetic variation contributes to phenotypic 53 

variation, making its study essential for understanding human evolution and disease. Nearly a 54 

half century ago, King and Wilson noted the high degree of conservation between the coding 55 

regions of humans and chimpanzees, positing that non-coding variation and its effect on gene 56 

regulation must account for much of the phenotypic divergence between these species [1]. The 57 

genomics era has further underscored the importance of noncoding variation in human disease 58 

and evolution: ~90% of the genotype-phenotype associations identified by genome-wide 59 

association studies (GWAS) cannot be explained by coding variation [2,3], and similarly, 60 

genomic regions harboring evidence of selection in humans are significantly more enriched for 61 

variants altering expression than protein coding [4]. 62 

 63 

While GWAS and scans of selection can identify genomic regions of interest, they often lack the 64 

resolution to identify the specific genes underlying traits or targeted by selection. To bridge this 65 

gap, studies have aimed to identify genetic variation associated with fine-scale, molecular 66 

phenotypes, through quantitative trait locus (QTL) mapping [5]. Combining these molecular QTL 67 

maps with GWAS through colocalization, transcriptome-wide association studies, or Mendelian 68 

randomization, continues to prove a fruitful approach for identifying genes causally linked to 69 

traits and potential drug targets. Unfortunately, there is a persistent ancestry bias in human 70 

genomics research, with nearly 80% of GWAS participants being of recent European ancestry 71 

[6,7], as well as the majority of participants of molecular trait studies [8], greatly limiting our 72 

ability to translate findings from GWAS to diverse populations, as well as discover population-73 

specific variation of interest [9]. 74 

 75 

Recent studies have sought to address the genomics gap between groups of European and 76 

non-European ancestry, identifying novel GWAS associations and genetic variation contributing 77 

to gene expression differences across populations [10–14]. However, most global populations 78 
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continue to be understudied, particularly in sub-Saharan Africa. Africa is the birthplace of 79 

anatomically modern humans and harbors the greatest levels of human genetic diversity across 80 

continents. Africa is home to a large array of biomes and terrains, and indigenous Africans 81 

continue to practice diverse cultural and subsistence strategies. Together, these environmental 82 

pressures have driven remarkable adaptations to infectious disease [15], diet [16], and climate 83 

[11,17], often in a population-specific manner. These adaptive variants can have important 84 

implications for human health in Africa, and elsewhere [18], and Africa is therefore vital for our 85 

understanding of human evolutionary history and health. 86 

 87 

In this study, we probe the genetic architecture of gene regulation in whole blood from 88 

indigenous East Africans by performing expression QTL (eQTL) and splicing QTL (sQTL) 89 

mapping in a cohort of 162 individuals, representing nine ethnic groups, from Ethiopia and 90 

Tanzania. We measure the degree to which African architecture is shared with that of non-91 

Africans, test whether Africans harbor functional variation absent from existing cohorts, and 92 

investigate the demographic and genetic forces that may contribute to variation in gene 93 

regulatory architecture. We test whether fine-mapping of QTL signals is improved in Africans 94 

relative to an equivalently sized cohort of European Americans, and highlight individual genes 95 

with improved fine-mapping in Africans. Finally, we measure the effect of selective forces on 96 

shaping gene regulatory architecture and identify candidate genes under selection. 97 

 98 

Results 99 

Population Structure 100 

The cohort for this study consists of 171 Ethiopian and Tanzanian individuals belonging 101 

to nine ethnically and culturally diverse sub-Saharan groups, including the Cushitic speaking 102 

Agaw and Weyto, the Semitic speaking Argoba and Amhara, the Omotic speaking Dizi, the Nilo-103 

Saharan speaking Mursi, and the Chabu who speak an unclassified language similar to Nilo-104 
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Saharan, and the Khoesan speaking Hadza and Sandawe (Figure 1A). These populations 105 

practice a variety of subsistence strategies, including foraging (Hadza and Chabu currently, 106 

Sandawe and Weyto formerly), with a diet diverse in foraged tubers, fruit, and hunted game; 107 

pastoralism (Mursi), a lifestyle that revolves around cattle herding and a diet high in animal 108 

proteins and fats; agriculturalism (Agaw, Amhara, and Argoba), a sedentary lifestyle with a diet 109 

high in cultivated carbohydrates; and agropastoralism (Dizi), which relies on both crops and 110 

livestock. 111 

 112 

To investigate the genetic diversity and structure of these populations, a subset of 162 113 

individuals were genotyped at approximately 4.5 million SNPs on the Illumina Omni5M Exome 114 

array. These data were further imputed using a reference panel composed of the 1000 115 

Genomes Project (1kGP) dataset [19] and a dataset of whole genome sequences (WGS) from 116 

180 sub-Saharan African individuals (methods, unpublished). To place their genetic variation in 117 

a global context, genotype data from the nine study populations were merged with 1kGP WGS 118 

data from 20 individuals each of Yoruban (YRI), Northern and Western European (CEU), and 119 

Han Chinese (CHB) ancestry (methods). Principal component analysis (PCA) of this merged 120 

dataset recapitulates a primary separation between African and non-African individuals along 121 

the first PC, explaining 3.8% of the variance. The second PC, explaining 1.8% of the variance, 122 

further separates CEU and CHB individuals, as well as East Africans and the YRI (Figure 1B). 123 

Higher PCs further separate variation in Africa; PC3 captures variation between the Hadza and 124 

YRI, and PC4 between the Hadza and Chabu. Several groups cluster relatively nearer to CEU 125 

Europeans along PC1, most notably the Ethiopian Agaw, Amhara, Argoba, and Weyto, which 126 

are known to have moderate levels of Eurasian admixture [20,21]. Inferred ancestry 127 

components from ADMIXTURE [22] also estimate components of non-African ancestry among 128 

these Ethiopian groups, as well as admixture with Bantu-speaking populations of Western 129 

African origin [19], represented by the YRI, in the Sandawe, Mursi, and Hadza (Figure 1C). 130 
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 131 

Transcriptomic traits in Africans 132 

To assess the contribution of genetic variation to transcriptomic trait variation, we performed 133 

genome-wide QTL mapping for expression (eQTL) and splicing (sQTL) transcriptomic traits in 134 

cis for expressed protein-coding and long-noncoding RNA genes; collectively we will refer to 135 

eQTLs and sQTLs as transcriptomic QTLs (tQTLs). We first correct our phenotypes (expression 136 

and splicing) for a number of covariates, including age, sex, delivery date, hidden covariates 137 

inferred by PEER [23], and cell-type fractions inferred by CIBERSORT [24]. Cell-type 138 

composition of whole blood is known to vary between individuals, and to be a source of 139 

confounding in QTL studies [25]. To account for ancestry and relatedness, we generate a 140 

genetic relatedness matrix (GRM) and perform tQTL mapping using the linear mixed model tool 141 

GEMMA [26]. Testing all autosomal SNPs with minor allele frequency (MAF) greater than 0.05 142 

and within 100kb of the target gene transcription start site (TSS) for eQTLs or within 100kb of 143 

the target intron for sQTLs, we identify 99,685 SNPs associated with the expression of 1,330 144 

genes (eGenes) and 74,445 SNPs associated with splicing of 1,118 introns (sIntrons) in 776 145 

genes (sGenes) at FDR < 0.05 (methods). 146 

 147 

SNPs associated with expression (eSNPs) and splicing (sSNPs) show a characteristic 148 

enrichment near the transcription start site or intron boundary of their target gene, respectively 149 

[27] (Figure 2A), and are enriched in a variety of functional categories, including transcription 150 

start sites, enhancers, and splice sites, and are depleted in repressed chromatin regions. We 151 

also find a significant overlap with chromatin QTLs (caQTLs) identified in lymphoblastoid cell 152 

lines (LCLs, Figure 2B). Further, alleles associated with increased chromatin accessibility are 153 

significantly more likely to be associated with increased expression (OR = 2.9, p = 8.2 x 10-37 154 

Fisher’s Exact Test) and slightly less likely to be associated with increased junction inclusion 155 

(OR = 0.82, p = 0.03 Fisher’s Exact Test), suggesting that regulatory mechanisms altering 156 
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chromatin accessibility play a greater role in regulation of gene expression than splicing. When 157 

we restrict to variants with a greater than 10% probability of being causal (methods), we find a 158 

further enrichment in functional categories, particularly for caQTLs among eQTLs and splice 159 

regions among sQTLs, indicating we are capturing true causal variation (Figure 2B). 160 

 161 

Of the genes tested, 198 have both an eQTL and sQTL in our cohort, suggesting possible 162 

shared genetic architecture between these transcriptomic traits. To evaluate whether eQTLs are 163 

enriched for sQTLs overall, we first compute the π1 statistic, which measures the estimated 164 

fraction of sQTLs that are true positives in the eQTL scan. A π1 value of 0.61 suggests that the 165 

majority of sQTLs affect expression or are in LD with variants affecting expression (Figure S3), 166 

though many of these fail to reach genome-wide significance. To further evaluate whether the 167 

genome-wide significant eQTL and sQTL signals are driven by shared causal variants, we 168 

estimated 90% credible sets for each set of QTLs, defined as the minimal set of variants which 169 

have at least a 90% probability of containing the causal variant, using the probabilities estimated 170 

above (methods). Overall we find overlapping credible sets for 114 of the genes with both a 171 

significant eQTL and sQTL, which makes up about 9% (114/1,330) of all eGenes in our cohort, 172 

comparable to the 12% overlap observed in GTEx [28]. Taken together, this observation 173 

suggests that splicing variants likely cause subtle but detectable changes in gene read counts, 174 

but that the genetic variants driving genome-wide significant eQTLs and sQTLs are largely 175 

independent. 176 

 177 

Replication of tQTLs in non-Africans 178 

To validate our tQTLs, and to assess sharing of molecular trait architecture between cohorts of 179 

predominantly African vs. predominantly European ancestry, we compared our results to whole 180 

blood analyses from the Genotype-Tissue Expression project (GTEx) v8, which is comprised of 181 

85% European Americans [28]. For those QTLs tested in both cohorts, we find that both eQTLs 182 
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and sQTLs identified in the African cohort show overall high reproducibility in GTEx, with π1 183 

values for eQTLs and sQTLs of 0.88 and 0.90, respectively (Figure S4, methods). In addition to 184 

π1, effect sizes between our cohort and GTEx also show overall strong concordance (Pearson’s 185 

� = 0.73 for eQTLs and 0.82 for sQTLs, Figure 3: Replication of tQTLs between East Africans 186 

and GTEx v8). To assess whether the observed replication is significantly affected by the 187 

different genome versions used between our study and GTEx v8, we also measured π1 of 188 

eQTLs in GTEx v7, finding a π1 of 0.83 (Figure S4). Those tSNPs that fail to replicate in GTEx 189 

(p > 0.01) show consistently lower MAF (Figure 3: Replication of tQTLs between East Africans 190 

and GTEx v8); this failure to replicate includes the top eSNP in Africans for 308 genes and the 191 

top sSNP for 220 introns in 185 genes, indicating widespread differences in power for detecting 192 

tQTLs across ancestral groups. 193 

 194 

We next investigate whether expression differences may affect replication between cohorts. Of 195 

the 1,330 eGenes identified in Africans, the expression of 98 in GTEx v8 whole blood is too low 196 

to be tested for eQTLs. These 98 genes are significantly enriched in two KEGG pathways, 197 

“Hypertrophic cardiomyopathy” (FDR = 0.032) and “Dilated cardiomyopathy” (FDR = 0.038). 198 

Investigating what may be driving broader expression differences for testable genes, we identify 199 

those genes measured in Africans that fail to reach expression thresholds for testing in GTEx 200 

whole blood and vice versa. Altogether 951 out of 12,377 genes measured in both cohorts and 201 

tested for eQTLs in Africans were not tested in GTEx. These genes are enriched for a number 202 

of biological processes related to sensory perception, including perception of smell (FDR = 2.85 203 

x 10-6), sound (FDR = 1.60 x 10-5), mechanical stimulus (FDR = 5.60 x 10-5), and chemical 204 

stimulus (FDR = 5.22 x 10-4). Similarly, 6,728 out of 18,168 tested for eQTLs in GTEx were not 205 

tested in Africans and are enriched for several biological processes related to immunity, 206 

including “complement activation, classical pathway” (FDR = 1.78 x 10-22), “humoral immune 207 

response mediated by circulating immunoglobulin” (FDR = 7.32 x 10-18), and “B cell mediated 208 
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immunity” (FDR = 2.02 x 10-2). This observation suggests that disease status, sample collection, 209 

and response to environmental factors, in addition to genetics, may account in part for 210 

incongruent findings between eQTL cohorts. 211 

 212 

While tQTLs as a whole show strong replication using π1, we also investigate the degree to 213 

which individual loci show evidence of shared causal variation. Estimating credible sets for all 214 

eGenes and sIntrons in GTEx v8 as described above, we find that 715/1262 (57%) of eGene 215 

credible sets and 619/852 (73%) of sIntron credible sets in Africans overlap with credible sets in 216 

GTEx v8. While the majority of tQTL credible sets overlap, the many non-overlapping sets 217 

suggests many tQTL signals identified in Africans may be driven by independent causal 218 

variants. To further evaluate this independence we remapped tQTLs in Africans, conditioning on 219 

sets of independent tQTLs identified in GTEx by forward regression [28]. In cases where there 220 

are no genome-wide significant eQTLs or sQTLs in GTEx (169 genes and 541 introns, 221 

respectively) we instead condition on the lead eSNP or sSNP in GTEx. Using the original FDR 222 

significance thresholds for calling eQTLs and sQTLs, we find that 362 (27%) of eGenes and 224 223 

(20%) of sIntrons remain significant after conditioning on GTEx SNPs, including the top variants 224 

for 328 eGenes and 199 sIntrons, suggesting widespread independent causal variation in 225 

Africa. 226 

 227 

Investigating what may be driving the independent signals in our cohort, we compare minor 228 

allele frequency (MAF), linkage-disequilibrium (LD) structure, and effect size differences 229 

between our cohort and GTEx v8 samples or European-ancestry proxies (CEU individuals from 230 

the 1kGP, methods). For 8 genes, INPP5K, TMEM140, ACSM3, CNTNAP3, PPP1R14C, 231 

PDZK1TP1, GPR56, and TRAM2, the top eSNP in Africans is untested in GTEx and has a MAF 232 

< 0.01 (the threshold used by GTEx) in 1kGP EUR populations. Similarly, the top sSNPs for 4 233 

genes, ADAM8, ICAM2, LINC00694, and MAPK1 are absent in GTEx and have a EUR MAF ≤ 234 
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0.01. Overall, however, we find that frequency differences between Africans and EUR are 235 

similar between shared and independent tQTLs (Figure S6). To investigate the impact of LD 236 

variation on tQTL replication, we estimate r2 between tQTL lead SNPs and SNPs within 100kb 237 

of lead SNPs in 1kGP CEU and YRI populations. We find that correlations between CEU and 238 

YRI r2 values do not differ significantly between shared and independent tQTLs (Figure S6). 239 

Finally, comparing effect size variation, we find a significant reduction in effect size correlation 240 

between Africans and GTEx among independent tQTLs relative to shared signals (Figure 3: 241 

Replication of tQTLs between East Africans and GTEx v8, p < 2.2 x 10-16), which may reflect 242 

true effect size variation, GxE effects [13,14,29], or possibly more subtle differences in MAF and 243 

local LD between these cohorts [30]. 244 

 245 

Fine Mapping 246 

In addition to assessing the replication of transcriptional QTLs in the larger GTEx v8 dataset, we 247 

are interested in the relative power to detect and fine-map tQTLs between cohorts of 248 

predominantly African versus European ancestry. To account for sample size differences 249 

between our cohort and GTEx, we performed eQTL mapping in a size-matched sample of 162 250 

European-American (EA) individuals from GTEx v8 using FastQTL [31], with sex, sequencing 251 

platform, PCR batch, the top 15 PEER factors, and top 5 genotype PCs as covariates. Testing 252 

all SNPs with MAF > 0.05 within 100kb of the target TSS, we identify 1,029 eGenes in the 162 253 

EA individuals at FDR < 0.05, compared with 1,330 identified in Africans, of which 326 eGenes 254 

are FDR-significant in both cohorts. Despite only 326 eGenes being shared, we find consistently 255 

high replication in an independent whole blood meta-analysis [32]; eQTLs that are FDR-256 

significant in both cohorts reach a π1 of 0.999, while eQTLs discovered only in Africans reach a 257 

π1 of 0.958 and eQTLs discovered only in EAs reach a π1  of 0.989. This observation suggests 258 

that the greater number of eGenes in Africans is not driven by an increase in false positives, 259 
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and that at similar sample sizes, Africans have an improved power to detect eQTLs compared 260 

with individuals of European ancestry.  261 

 262 

We next investigate the relative ability to fine-map eQTLs between our African cohort and the 263 

162 EA individuals from GTEx v8. Considering eGenes that are FDR-significant in either cohort 264 

(methods), we perform fine-mapping in both our African cohort and the 162 EAs using the 265 

approach described above. Overall, most genes do not fine-map well at this modest sample 266 

size, with 57% of genes having a credible set larger than 50 in both cohorts (Figure 4: Fine 267 

mapping in East Africans vs. GTEx v8). Excluding these genes, we find that Africans have a 268 

smaller credible set in 63% of cases (437/697, p = 2.06 x 10-11 binomial test), with a median 269 

credible set size of 25 in Africans vs 58 in EAs, and 23 genes fine-mapped to a single variant in 270 

Africans vs. 13 in EAs. One possible explanation of the smaller credible sets in Africans is that 271 

Africans simply have fewer SNPs tested per gene; however, we find the opposite, with 94% of 272 

genes have fewer tested SNPs in EAs. 273 

 274 

We further compare our credible sets in African eQTLs to credible sets estimated in the full 275 

GTEx dataset. As expected, the majority of genes have smaller credible sets in GTEx due to the 276 

considerably larger sample size (670 vs 162), though we do identify several examples of greatly 277 

reduced credible sets in the African cohort. For 18 eGenes and 32 sGenes we are able to fine-278 

map the QTL signals to a single variant in Africans and find that these variants overlap a lead 279 

GWAS association for 10 eGenes and 3 sGenes (supplement). We highlight rs883871 (Figure 280 

4: Fine mapping in East Africans vs. GTEx v8), an eQTL for both THRA and NR1B1, which is 281 

FDR-significant in GTEx whole blood but is not the lead eSNP. rs883871 is a strong chromatin 282 

QTL in lymphoblastoid cell lines (LCLs) [33], overlaps the binding sites of numerous 283 

transcription factors (TFs) in the LCL GM12787 [34], is predicted to disrupt a consensus motif 284 

for the ETS family of TFs, which share a core ‘CCGGAA’ motif, and is the lead SNP for a 285 
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Multiple Sclerosis GWAS association [35]; variants in ETS1 itself have been previously 286 

associated with Multiple Sclerosis [36]. Given our modest sample size compared with GTEx, we 287 

expect that mapping of tQTLs and other molecular traits in larger cohorts of genetically diverse 288 

populations will further enhance fine-mapping of QTLs, and when combined with more diverse 289 

GWAS studies, may identify novel causal genes underlying human traits and disease. 290 

 291 

Signatures of Selection 292 

Gene regulation is known or suspected to underlie many adaptive traits in humans, including 293 

diet [16,37], immunity [38], and skin pigmentation [11], and transcriptomic traits show evidence 294 

of both purifying and positive selection [13,14,39]. Consistent with previous tQTL studies we find 295 

decreasing effect size with increasing MAF among eQTLs and sQTLs, indicative of negative 296 

selection against variants of large effects (Figure S7). To identify QTLs with evidence of positive 297 

selection we measure genome-wide FST between our broader African dataset and the 1kGP 298 

European (EUR) individuals, with the expectation that selection for expression-altering alleles 299 

will lead to increased differentiation at these loci. To assess whether tQTLs are enriched for 300 

evidence of positive selection we identify the highest FST value for all SNPs in high LD (r2 > 0.8) 301 

with the top eQTL or sQTL and compare these values with null SNPs matched on MAF and the 302 

number of SNPs in LD (methods). Overall, we do not find an enrichment of high FST among 303 

eQTLs or sQTLs, suggesting that selection has not driven significant frequency differentiation at 304 

the majority of tQTLs (Figure S8). 305 

 306 

We next investigate evidence of selection at individual loci. To account for the fact that the top 307 

eSNP may not be the true causal SNP, we score an individual gene’s evidence of selection by 308 

taking a weighted sum of each SNP’s FST value multiplied by the probability of that SNP being 309 

causal (methods). Considering loci with a score within the 99th percentile threshold of all SNP F-310 

ST values as candidates, we identify 27 eGenes and 25 sGenes with evidence of selection 311 
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(supplement). The most differentiated eGene is TTC26 (weighted FST = 0.59); a mutation in this 312 

gene has been associated with abnormal cilia in model organisms and biliary ciliopathy in 313 

human liver [40].  We also identified a strong signature of selection at TMEM154 (weighted FST 314 

= 0.59, Figure 5A), a mostly uncharacterized gene that has been associated with Type II 315 

Diabetes Mellitus and beta cell function in humans and lentiviral infection in sheep [41,42]. 316 

Other highly differentiated loci include Platelet Factor 4 Variant 1 (PF4V1, FST = 0.50), IL8 (FST = 317 

0.49), a major inductor of immune cell chemotaxis and activation [43], and CCR1 (FST = 0.43), a 318 

chemokine receptor. Among the most differentiated sGenes we find several related to immunity 319 

and metabolism, including NADSYN1 (weighted FST = 0.50), a gene associated with vitamin D 320 

concentration [44], BTN3A3 (weighted FST = 0.50), a butyrophilin gene implicated in activation of 321 

T cells [45], and GANC (weighted FST = 0.43), a member of the glycosyl hydrolase family 31, 322 

which play a key role in glycogen metabolism [46]. 323 

 324 

Given our genetically and culturally diverse cohort we are also interested in tQTLs with evidence 325 

of population-specific differentiation and selection. For each of the nine populations in the 326 

African dataset we calculate a modified version of the d statistic [47], a summation of 327 

normalized, pairwise FST, which tests for variants that are highly differentiated in a focal 328 

population versus other populations (methods). As above, we weight these d-statistics by the 329 

probability of a SNP being causal to derive a 'd-score’ for each gene or intron. Genes with high 330 

d-scores in populations with evidence of non-African admixture (i.e. Agaw, Amhara, Argoba, 331 

and Weyto) are more genetically similar to EUR samples from the 1kGP, based on FST. 332 

Conversely, populations with evidence of west-African admixture (i.e. the Hadza, Mursi, and 333 

Sandawe) are more genetically similar to YRI samples at high d-score genes, suggesting that in 334 

many cases the genetic differentiation at these loci is driven by population-specific patterns of 335 

admixture. We therefore calculate the population branch statistic between (PBS) [48] between 336 

individual populations in our study and 1kGP CEU and YRI populations. Considering genes with 337 
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a weighted d and PBS score in the top 99.5th percentile as significant, we identify 22 eGenes 338 

and 22 sGenes with significant evidence of population-specific selection (Figure 5: Population-339 

specific selection in East Africa. and B). 340 

 341 

Among the top eGenes with evidence of population-specific selection is TMEM216 among the 342 

Nilo-Saharan speaking Mursi pastoralists (Figure S9). This gene is located near a skin 343 

pigmentation GWAS locus discovered in a cohort with the same sub-Saharan African 344 

populations [11]. This association signal overlaps the UV-repair gene DDB1, as well as several 345 

other genes expressed in melanocytes. Colocalization analyses show strong overlap between 346 

the African TMEM216 eQTL and pigmentation GWAS signals (PP4 = 0.95, Figure 5C, 347 

methods), suggesting possible shared causal variation between TMEM216 expression and 348 

pigmentation variation. LD patterns around TMEM216 shows evidence of three independent 349 

eQTLs segregating for this gene, tagged by rs7948623, rs11230664, and rs3741265. Two of 350 

these SNPs, rs7948623, rs11230664, are also genome-wide significant GWAS SNPs for 351 

pigmentation variation in Africans, while the third, rs3741265, is marginally significant (p < 10-5, 352 

Figure 5C), All three SNPs show strong population-specific differentiation in Ethiopian Nilo-353 

Saharan groups, who have amongst the highest levels of skin melanin of any global population 354 

(Figure S9). Previous analyses of these populations have shown evidence of a selective sweep 355 

near this pigmentation GWAS locus, including high PBS and d values among GWAS variants 356 

(Figure S10) and extreme negative Tajima’s D values overlapping the TMEM138/TMEM216 357 

locus [11]. 358 

 359 

The top GWAS variant, rs7948623, overlaps an active enhancer in keratinocytes and 360 

melanocytes and has been demonstrated to alter enhancer activity in melanocytes via luciferase 361 

reporter assays [11]. rs7948623 is a significant eQTL for TMEM216 in our study but is not 362 

significant in GTEx whole blood, though it is in ovary, nerve, and exposed skin. In addition, 363 
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rs7948623 is a significant sQTL for TMEM216 in multiple GTEx tissues, including exposed skin 364 

(Figure 5C). A second group of TMEM216 eQTL and pigmentation GWAS variants are tagged 365 

by rs11230664 and include the indel rs148172827, which overlaps an active melanocyte 366 

enhancer, and shows significant correlation with TMEM216 expression in GTEx exposed skin 367 

(Figure 5C). We do not identify significant sQTLs in Africans for TMEM216, however the top 368 

sSNP for TMEM216 in GTEx exposed skin, rs3741265 (p = 1.43 x 10-322), is in high LD with the 369 

top TMEM16 eQTL in Africans, rs7934229 (r2 = 0.99). Both of these SNPs are moderately 370 

associated with skin pigmentation in Africans (p < 5 x 10-6) but do not reach genome-wide 371 

significance (Figure S11). 372 

 373 

Discussion 374 

This study extends our understanding of the genetic basis of human gene regulation, with the 375 

inclusion of whole blood samples for 162 ethnically diverse sub-Saharan Africans from Ethiopia 376 

and Tanzania. We find that variation underlying expression and splicing is broadly shared 377 

between African and European cohorts, though there is considerable independent variation at 378 

individual loci in Africans, often driven by variation in frequency and effect sizes of tQTLs. When 379 

matched for sample size, Africans show improved fine mapping of molecular traits, facilitating 380 

the identification of causal variants and candidate genes underlying GWAS traits. This diverse 381 

cohort also allows for inference of tQTLs with evidence of local adaptation, identifying 382 

TMEM216 as a target of selection in Nilo-Saharan speakers and a candidate gene that may 383 

play a role in skin pigmentation. 384 

 385 

We find that the majority of tQTLs replicate between Africans and GTEx v8, with π1 values near 386 

0.9 among both eQTLs and sQTLs, on par with the 0.919 value estimated between African 387 

Americans in the GENOA cohort [49] and EUR populations from the Geuvadis project [12]. We 388 

also observe strong effect size correlation between tQTLs in our study and GTEx v8. 389 
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Investigating individual loci, however, we find that many genome-wide signals are driven by 390 

distinct causal variation; 43% of eQTL and 27% of sQTL credible sets in Africans do not overlap 391 

those in GTEx v8, and 27% of eGenes and 20% of sIntrons have QTL signals that remain 392 

significant after conditioning on all tGTLs in GTEx.  393 

 394 

Investigating what may account for QTL differences between Africans and non-Africans, we find 395 

that genes relating to sensory perception and immunity show differential expression between 396 

our African cohort and the GTEx cohorts, pathways known to vary across populations and 397 

environments [50,51]. Additionally, the post-mortem nature of GTEx samples may contribute to 398 

expression differences. An analysis of the effects of death on gene expression in GTEx found 399 

that immune genes in whole blood are significantly dysregulated following death, however this 400 

change was characterized by an overall deactivation of immune genes, along with an overall 401 

increase in NK cells and CD8 T-cells and a reduction in neutrophils [52]. In addition to 402 

expression differences, we find an enrichment for low frequency variants in GTEx among non-403 

replicating tQTLs. However, the majority of tQTLs that are conditionally independent show 404 

similar frequency differences with shared tQTLs, suggesting that frequency variation alone 405 

cannot account for independent tQTLs. This issue of trans-ethnic GWAS replication is an 406 

ongoing area of research [53,54], and non-replication may occur for many reasons including 407 

frequency variation, differences in power, LD, or true differences in effect size, including G x E 408 

effects. While we do not find a significant difference in local LD structure between shared and 409 

independent QTL signals, we do find significant differences in estimated effect sizes. Using a 410 

Bayesian approach to account for frequency and LD variation, Brown et al. also found eQTL 411 

effect size differences between EUR and YRI individuals from Geuvadis [12], which become 412 

more pronounced as genetic effects become weaker [55]. However for strong, genome-wide 413 

significant effects, Zanetti and Weale demonstrated using simulations that most trans-ethnic 414 
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differences in GWAS effect sizes can largely be accounted for by a combination of frequency 415 

and LD variation, though they could not rule out effect size differences [30]. 416 

 417 

Beyond replication, we demonstrate that at comparable sample sizes, African cohorts have 418 

improved sensitivity to detect tQTLs and improved ability to fine-map causal variants, compared 419 

with cohorts of European ancestry. It is well established that non-African populations have more 420 

extensive LD relative to Africans [56,57], resulting from the out-of-Africa bottleneck [58,59], 421 

which likely accounts for the observed improvement in fine-mapping in African populations. As 422 

to the increased sensitivity to detect tQTLs in Africans, one hypothesis is a higher false-positive 423 

rate in the African cohort.  However we find comparable replication of African-specific tQTLs in a 424 

large, independent meta-analysis [32], suggesting that false positives do not account for the 425 

observed improvement. Moreover, Quach et al. found a similar pattern of improved sensitivity to 426 

detect eQTLs in individuals of self-reported African ancestry in an analysis of stimulated and 427 

unstimulated monocytes from 200 Belgians, 100 of European and 100 of African ancestry [60]. 428 

Among African Belgians they found 13% more eQTLs in unstimulated monocytes, and 10% 429 

more eQTLs across all conditions. While several other studies have mapped eQTLs across 430 

multiple ancestry groups [12,14,61,62], variation in sample size precludes direct comparison of 431 

sensitivities across ethnicities. 432 

 433 

In addition to the inclusion in our study of ancestral groups not represented in existing reference 434 

cohorts (e.g. the 1kGP), which enables the detection of novel regulatory variation, these 435 

populations live in diverse climates and have distinct cultural and subsistence practices, which 436 

may have driven unique local adaptations. Using an outlier approach based on the FST based d 437 

and PBS statistics [47,48], we identify population-specific differentiation of tQTLs among East 438 

African populations. One notable example is the eQTL TMEM216 among the Mursi, which is 439 

near a recently identified pigmentation locus specific to sub-Saharan Africans [11]. TMEM216, 440 
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and the nearby TMEM138 gene, form an evolutionarily conserved cis-regulatory module vital for 441 

ciliogenesis, and have been identified as causal genes underlying Joubert and Merkel 442 

syndromes [63,64]. TMEM216 has not been previously associated with pigmentation variation, 443 

though activation and suppression of primary cilia have been shown to inhibit and activate 444 

melanogenesis, respectively, in a human skin model [65]. Consistent with this, we find that the 445 

expression decreasing allele is associated with increased melanin levels for rs7948623, 446 

rs11230664, and rs3741265, and is most common in the Mursi, a populations with darkly 447 

pigmented skin (Figure S9)[11]. In addition, recurrent somatic mutations driving alternative 448 

splicing of TMEM216 are significantly associated with melanoma in The Cancer Genome Atlas 449 

(TCGA), suggesting possible tumor suppressor function for this gene [66]. While the strong 450 

colocalization between the TMEM216 eQTL and pigmentation GWAS signals suggests 451 

TMEM216 as a possible pigmentation gene, there are several haplotypes segregating in this 452 

region, some of which carry tQTLs for other genes in GTEx (Figures S12 and S13). In addition, 453 

several nearby genes show melanocyte-specific expression, or have been previously 454 

associated with pigmentation in other organisms, complicating identification of the gene or 455 

genes that are causally associated with pigmentation variation [11,67]. 456 

 457 

There are several limitations to our study, foremost being our modest sample size of 162 458 

individuals, with current eQTL datasets reaching sample sizes an order of magnitude larger [49]. 459 

Many of the populations participating in this study live at considerable distances from medical or 460 

scientific facilities, and all necessary tools and supplies must be transported to field sites, 461 

greatly limiting the capacity for sample collection. Additionally, we are limited to studying blood 462 

tissues among these populations. Generation of induced pluripotent stem cells (iPSC) may 463 

allow for the study of gene regulation across developing tissues or differentiated cells within 464 

diverse populations [68,69], but such approaches remain technically difficult. This study is also 465 

restricted to steady state gene expression, which may miss cell-type- or dynamic, environment-466 
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specific genetic effects, which cannot be captured in bulk and/or steady-state tissues 467 

[29,70,14,13,71,72]. Despite these limitations, this study makes important contributions to our 468 

understanding of gene expression variation and the molecular basis of human adaptation in 469 

sub-Saharan Africa. 470 

 471 

Conclusion 472 

We have presented a comprehensive analysis of transcriptomic variation in a cohort of 473 

previously unstudied indigenous sub-Saharan Africans. We identify extensive novel regulatory 474 

variation in Africans and show that the study of African populations improves the detection of 475 

transcriptomic QTLs and fine mapping of causal variation. Studying diverse populations within 476 

Africa also allows for the detection of genes targeted by population-specific selection, including 477 

a evidence of selection on TMEM216 expression in the Mursi and strong colocalization between 478 

TMEM216 eQTLs and a pigmentation GWAS locus. 479 

 480 

Methods 481 

Sample Collection 482 

Phenotypic, genealogical, and biological data were collected from individuals belonging to nine 483 

populations in Ethiopia and Tanzania. Prior to sample collection, IRB approval for this project 484 

was obtained from the University of Pennsylvania. Written informed consent was obtained from 485 

all participants and research/ethics approval and permits were obtained from the following 486 

institutions prior to sample collection: the University of Addis Ababa and the Federal Democratic 487 

Republic of Ethiopia Ministry of Science and Technology National Health Research Ethics 488 

Review Committee; COSTECH, NIMR and Muhimbili University of Health and Allied Sciences in 489 

Dar es Salaam, Tanzania. To obtain DNA and RNA data, whole blood was collected using 490 

vacutainers and RNA was stabilized in the field using LeukoLOCK Total RNA Isolation System 491 

(Ambion life Technologies). The Poly(A)Purist Kit (Ambion Life Technologies, CA) was used for 492 
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mRNA selection, and Ampure XP magnetic beads (Beckman Coulter, CA) were used for size 493 

selection after amplification. 494 

 495 

Genotyping and imputation 496 

A subset 162 individuals were genotyped as part of the 5M dataset using the Illumina Omni5M 497 

SNP array, which includes approximately 4.5 million SNPs. The full 5M dataset was phased 498 

using Beagle 4.0 [73] and the 1kGP reference panel [19]. These data were further imputed 499 

using minimac3 [74] and a reference panel consisting of the 1kGP and 180 WGS from the 500 

Tishkoff lab (unpublished). 501 

 502 

PCA and ADMIXTURE 503 

To identify related individuals, relatedness was inferred in the imputed 5M dataset using the 504 

KING extension of plink 2.0 [75]. To place the genetic variation in this study within a global 505 

context, the 5M imputed dataset was merged with the 1KGP. Individuals from the 162 in this 506 

study with inferred relatedness more distant than third degree were then extracted from the 507 

merged dataset (145 total), along with 20 individuals each from the YRI, CEU, and CHB 508 

populations, restricting to unambiguous SNPs (i.e. excluding A/T and C/G) with MAF > 0.01 and 509 

with imputation accuracy (r2) greater than 0.99 reported from minimac3. SNPs were LD-pruned 510 

using plink v1.90 [76] and parameters ‘--indep-pairwise 50 10 0.1’. PCA was performed on this 511 

dataset using smartpca from EIGENSOFT v6.1.4 [77], with ‘numoutlieriter’ set to 0. 512 

ADMIXTURE [78] was run on the same dataset using parameters ‘--cv -j8 -B100 -s7’. 513 

 514 

mRNA sequencing and molecular trait quantification 515 

Samples were sequenced on an Illumina HiSeq to a median depth of 56,122,076 reads 516 

(11,727,716 min., 228,660,534 max.).  Prior to mapping, all reads aligned to rRNA genes with 517 

BLAST [79] were removed. Remaining reads were mapped to the hg19 genome with STAR 518 
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v2.5.3a [80] and the GTEx GENCODE v19 gene annotations [81] using two-pass mapping. 519 

Expression was quantified at the gene level using featureCounts v1.5.3 [82] as fragments per 520 

gene, as well as using RSEM v1.2.31 [83] as transcripts per million (TPM). Splicing was 521 

quantified using leafcutter [84] as fraction of intron exclusion reads per cluster (JPC). 522 

 523 

Cell-type inference 524 

Cell type fractions for each individual were inferred using CIBERSORT [24]. The LM22 525 

signature gene file from Abbas et al. [85] was used to infer frequencies of 22 immune cell types 526 

for a mixture file of TPM values for all 171 individuals with RNA-seq data. Quantile-527 

normalization was disabled and 1000 permutations were used. 528 

 529 

Quantile normalization and hidden factor inference 530 

Prior to hidden factor inference and QTL mapping, molecular phenotype matrices were first 531 

filtered and quantile-normalized. For eQTL mapping, only lncRNA and protein-coding genes 532 

with more than 5 reads in at least 20 individuals and with mean TPM > 0.1 across all 533 

populations were considered. For sQTL mapping, introns from lncRNA and protein-coding 534 

genes with no more than 5 individuals with 0 reads were included. Furthermore, clusters were 535 

required to have at least 20 reads in at least 100 individuals and have 0 reads in fewer than 10 536 

individuals. These filtered phenotype matrices (TPM for eQTL mapping and JPC for sQTL) were 537 

then quantile normalized using the two-stage procedure implemented by GTEx [28]. Briefly, the 538 

distribution of the phenotypes per individual were first quantile normalized to the mean of the 539 

phenotypes across individuals. Next, the distribution of each phenotype was quantile normalized 540 

to the standard normal. Hidden covariates were inferred using PEER [23] for these quantile-541 

normalized phenotype matrices. 542 

 543 

eQTL and sQTL mapping 544 
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Expression and splicing quantitative trait loci were mapped using a linear mixed modelling 545 

approach, using the quantile-normalized gene or intron fractions as phenotypes, while 546 

correcting for sex, age, cell-type composition, delivery date, latent PEER factors, and genetic 547 

relatedness. Mapping was performed for SNPs with MAF > 0.05, imputation r2 > 0.3, and within 548 

100kb of the target phenotype (gene TSS for eQTLs and intron for sQTLs) using GEMMA [26] 549 

and a genetic relatedness matrix (GRM) generated from all biallelic SNPs across the imputed, 550 

162 individual genotype dataset. tQTL mapping was repeated across a range of PEER factors: 551 

0-5, 10, 15, 20, 25, and 30 factors for eQTL mapping, and 0-10 factors for sQTL mapping, and 552 

the number of factors maximizing the number of eQTLs or sQTLs discovered were chosen for 553 

downstream analysis. 554 

 555 

To identify significant QTLs, tested SNPs for each phenotype were first FDR corrected using 556 

Benjamini-Hochberg (BH), yielding single-corrected p-values (P’) for each tested SNP-557 

phenotype pair. The minimum P’ per phenotype were again FDR-corrected using BH, yielding 558 

double-corrected p-values (P’’) per phenotype, and phenotypes with P’’ < 0.05 were considered 559 

significant. To identify significant SNPs, a threshold was set equal to the lowest P’ for the 560 

phenotype with highest significant P’’, and all SNPs with P’ lower than this threshold were 561 

deemed significant. 562 

 563 

Credible Sets 564 

For each gene or intron of interest, Approximate Bayes Factors were calculated for each tested 565 

SNP using the function ‘approx.bf.estimates’ from the coloc package [86], or the function 566 

‘approx.bf.p’ in cases where effect size or standard error information was not available. The 567 

posterior probability of each SNP n being causal (PPn) was then taken as: 568 

��� �  ����∑ �����

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.16.480765doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.16.480765
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23

Similar to The Wellcome Trust Case Control Consortium et al. [87], where ���� is the 569 

Approximate Bayes Factor of SNP 	, and 
 indexes all tested SNPs for a given feature of 570 

interest. A 90% credible set was then defined as the minimal number of SNPs whose sum of 571 

posterior probabilities was > 0.9. 572 

 573 

Functional Enrichment 574 

All SNPs in the imputed genotype dataset of 162 individuals were annotated for functional 575 

consequences using the Variant Effect Predictor (VEP) [88] with parameters ‘--per_gene --576 

most_severe’. In addition, SNPs were overlapped with 15 state ChromHMM tracks for PBMCs 577 

(E062) from the Roadmap Epigenomics Consortium [67], transcription factor binding sites for 578 

lymphoblastoid cell lines (LCLs, GM12878) from ENCODE[34], and chromatin QTLs from 579 

Tehranchi et al. [33]. To test for enrichment, each FDR-significant eQTL or sQTL was matched 580 

on MAF and distance to nearest TSS or intron boundary, respectively, and the log-ratio of tQTL 581 

SNPs to matched background SNPs overlapping each functional category was taken as an 582 

enrichment score. This was repeated 10,000 times, producing an empirical distribution of 583 

enrichment scores for each functional category. 584 

 585 

Replication with GTEx v8 586 

All SNPs and intron boundaries were converted to hg38 coordinates using liftOver [89]. For 587 

eQTLs, those hg19 SNPs that successfully mapped to locations in hg38 (81,928/82,144) and 588 

genes with Ensembl IDs shared between GENCODE v19 and GENCODE v26 (1,291/1,330) 589 

were considered (96,903/99,685 of possible eQTLs). Of these, 77,238 eQTLs were tested in 590 

GTEx v8 and could be compared. For sQTLs, SNPs and Ensembl IDs were required to 591 

successfully map between versions (49,706/49,794 and 772/776, respectively), and intron 592 

boundaries were required to map between GENCODE versions (738/1,118). Of these, 55,046 593 
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sQTLs were tested in GTEx. The fraction of true positives for successfully mapped tQTLs in 594 

GTEx, π1, was estimated using the R package qvalue [90].  595 

 596 

Conditional tQTL mapping 597 

To identify tQTLs in the African cohort that are independent of GTEx v8 tQTLs, we performed 598 

eQTL and sQTL scans conditioning on independent GTEx eQTLs and sQTLs identified via step-599 

wise regression [91]. In cases where there are no significant tQTLs in GTEx we instead use the 600 

top variant per feature. To account for these variants, we residualize the quantile-normalized 601 

feature matrices used in the original QTL mapping against the genotypes of independent GTEx 602 

QTLs. We then perform identical eQTL and sQTL scans, and consider genes and introns with 603 

variants that pass the original FDR threshold as independent. 604 

 605 

LD variation across populations 606 

To compare LD structure between East Africans and Europeans at tQTL loci, LD was estimated 607 

(using r2) between lead SNPs for eQTLs and sQTLs and all tested SNPs in the East African and 608 

1kGP EUR samples, restricting to those variants polymorphic in both, resulting in an r2 vector 609 

per group (East Africans and EUR) per locus (eGenes and sIntrons). For each tQTL locus, we 610 

estimated the Pearson correlation � between the East African and EUR r2 vectors, and the 611 

distribution of these � values was compared for tQTLs shared between East Africans and GTEx 612 

and independent tQTLs. 613 

 614 

eQTL mapping in 162 European-Americans from GTEx v8 615 

eQTL mapping was performed on 162 individuals of European ancestry from GTEx v8 using 616 

FastQTL [31] with 10,000 permutations for all SNPs with MAF > 0.05 and within 100kb of the 617 

target TSS. Covariates included the top 15 PEER factors, top 5 genotype PCs, sex, platform, 618 
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and PCR batch. Significance was evaluated using the hierarchical Benjamini-Hochberg 619 

procedure used for African samples. 620 

 621 

Scans of selection 622 

To test for genetic differentiation between our African dataset and Europeans, all individuals 623 

belonging to the 9 populations in our study were extracted from the full 5M dataset (664 total) 624 

and allele frequencies were combined with frequency information for EUR populations from the 625 

1KGP, restricting to SNPs polymorphic in both datasets. FST was estimated using the Hudson 626 

estimator [92], and SNPs within the top 99th percentile (FST > 0.36) were considered outliers. To 627 

test for overall enrichment of FST outliers among tQTLs, we use an approach similar to Quach et 628 

al. [13] The maximum FST value of SNPs in LD with lead tQTL SNPs (r2 > 0.8) was found, and 629 

the fraction of outliers among these maximum FST values was calculated. To generate a null 630 

expectation, each lead tSNP was matched with a random SNP, matching on MAF (bins of 0.05) 631 

and number of SNPs in LD (bins of [0], [1], [2], (2,5], (5,10], (10,20], (20,50], and >50). The 632 

maximum FST of SNPs in LD with these matched SNPs was found, and the fraction of outliers 633 

among these matched maximum FST SNPs calculated. This procedure was repeated 10,000 634 

times, generating a null distribution of expected number of outlier SNPs. 635 

 636 

To identify individual eGenes and sGenes with evidence of selection, weighted FST scores were 637 

generated for each eGene and sIntron. For each feature of interest (gene or intron), the 638 

posterior probability of each tested SNP was calculated using the approach used to define 639 

credible sets, and for each feature a weighted FST score was calculated as: 640 

������� � � ���  ����
�

 

Where ��� is the posterior probability of SNP 
 being causal and ����  is the FST of SNP 
. Scores 641 

higher than the 99th percentile of genome-wide FST values were considered significant. 642 
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 643 

To detect population-specific selection, we use an adapted, polarized version of the d statistic 644 

for each SNP: 645 


� � �� ������

����� � ���������
��
��

���
���

� 
Where 
� and 
� are the allele frequencies in populations � and �, respectively, ������

 is an 646 

indicator function that returns 1 if 
� � 
� and -1 otherwise, ����� is the FST between focal 647 

population � and population �, and �������� and �
������� are the expected value and standard 648 

deviation of FST between populations � and � across all SNPs. We implement this polarization 649 

procedure because SNP frequencies that are at an intermediate frequency in the focal 650 

population, but strongly differentiated in others, can show up as strong 
� outliers in the focal 651 

population due to the symmetry of FST. To identify individual eGenes and sGenes with evidence 652 

of population-specific selection, we generate weighted 
� scores as described above for FST. 653 

 654 

Due to differential levels of admixture across populations, some 
� outlier loci show genetic 655 

similarity with non-African and west-African populations, suggesting that these loci are uniquely 656 

differentiated in the focal population due to admixture. To eliminate candidates that may be 657 

driven by admixture, we also calculate the population-branch statistic (PBSi) [93] between each 658 

focal population � and the CEU (a proxy for non-Africans) and the YRI (a proxy for sub-Saharan 659 

Africans): 660 

���� �  ��,
�� � ��,
�� � �
��,
��2  

Where ��,� � � log�1 � ����,�! and ����,� is FST calculated between populations � and �. We 661 

then go on to create a weighted ���� statistic per gene or intron as above. Candidates of 662 
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selection are then defined as those features with a weighted 
� and ����  score above the 99.5th 663 

percentile of genome-wide 
� and ����  SNP-wise statistics. 664 
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Figures 937 

Figure 1: Global and genetic structure of study populations 938 

A) Locations of East African populations sampled in this study across Ethiopia and Tanzania. B) 939 

Principal Component Analysis of genetic data across 162 East Africans, combined with 20 West 940 

African Yoruba (YRI), 20 European Americans (CEU), and 20 Han Chinese (CHB) from the 941 

1000 Genomes Project. C) ADMIXTURE analysis of East African, YRI, CEU, and CHB 942 

populations. 943 

 944 

Figure 2: Genomic context of tQTLs 945 

A) Enrichment of top eQTLs near the transcription start site (TSS) of their target gene. B) 946 

Enrichment of top sQTLs near the intron boundary of their target intron. Densities of sQTLs are 947 

separated depending on whether they’re upstream of the target intron (5’ distance), within the 948 

intron (intron fraction), or downstream of the intron (3’ distance). C) Enrichment of tQTLs across 949 

functional categories, stratified by FDR significance and posterior probability (PP) of being 950 

causal. Categories include chromatin accessibility QTLs (caQTL) in LCLs from Tehranchi et al. 951 

[33]; transcription factor binding sites (TFBS) for 140 transcription factors in GM12878 LCLs 952 

[34]; transcription start sites (TSS), enhancers (Enh), Polycomb-repressed chromatin (ReprPC), 953 

transcribed (Tx), and heterochromatin (Het) annotations from ChromHMM in GM12878 LCLs 954 

[34]; and 3’ UTR, 5’ UTR, intron, splice site, synonymous, missense, and start gain/loss or stop 955 

gain/loss annotations from Variant Effect Predictor (VEP) [88]. 956 

 957 

Figure 3: Replication of tQTLs between East Africans and GTEx v8 958 

A) Minor allele frequency distribution in GTEx v8 of FDR-significant tQTLs identified in East 959 

Africans, colored by whether they have a p-value less than 0.01 in GTEx v8. B) Comparison 960 

effect sizes of tQTLs identified in East Africans. Lines show the best fit regression line between 961 
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East Africans and GTEx v8 effect sizes, colored by whether the tQTL is shared (i.e. is no longer 962 

significant after conditioning) or is independent (remains significant after conditioning). 963 

 964 

Figure 4: Fine mapping in East Africans vs. GTEx v8 965 

A) Credible set (CS) sizes for eGenes identified in 162 East Africans (Afr) or a subset of 162 966 

European Americans from GTEx v8 (EA162). Points are colored by the fraction of SNPs in the 967 

smaller credible set A that are shared with the larger set B, 1 indicating that the smaller set is a 968 

subset of the larger set, and 0 indicating the smaller set shares no SNPs with the larger set. B) 969 

Locus plot of NR1D1 eQTLs identified in 162 East Africans (Afr) or the full GTEx v8 cohort (v8). 970 

P-values are overlaid with African (YRI) and European-American (CEU) recombination rates, 971 

GENCODE v19 [81] gene models from the UCSC genome browser [94] 972 

(http://genome.ucsc.edu) and inferred ChromHMM[95] states for GM12878 [34]. The top SNP in 973 

Africans, rs883871, disrupts a nucleotide for the core motif of ETS-family transcription factors 974 

(motif of ETS1 shown). 975 

 976 

Figure 5: Population-specific selection in East Africa. 977 

A) Gene scores for the d-statistics plotted against the population branch statistics (PBS) for 978 

each population. PBS is calculated for each focal population versus the CEU and YRI 979 

populations from the 1000 Genomes Project. Genes with a score above the 99.5th percentile of 980 

genome-wide statistics for d and PBS are highlighted in red. B) Comparison of pigmentation 981 

GWAS p-values from Crawford et al. [11] against eQTL p-values from our study (East Africa), 982 

GTEx v8 Whole Blood, or GTEx v8 Sun-exposed skin (lower leg), in the style of LocusCompare 983 

[96]. Variants are colored by their degree of LD with three top pigmentation GWAS variants, 984 

rs7948623, rs11230664, and rs2512809. Colocalization probabilities from coloc [86] (PP4) are 985 

indicated for each eQTL group. 986 

 987 
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