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Abstract 

Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of 

thousands of cells simultaneously and study transcriptomic changes between cells. scRNA-seq 

datasets increasingly include multi-subject, multi-condition experiments to investigate cell-type-

specific differential states (DS) between conditions. This can be performed by first identifying the 

cell types in all the subjects and then by performing a DS analysis between the conditions within 

each cell type. Naïve single-cell DS analysis methods that treat cells statistically independent are 

subject to false positives in the presence of variation between biological replicates, an issue 

known as the pseudo-replicate bias. While several methods have already been introduced to carry 

out the statistical testing in multi-subject scRNA-seq analysis, comparisons that include all these 

methods are currently lacking. Here, we performed a comprehensive comparison of 18 methods 

for the identification of DS changes between conditions from multi-subject scRNA-seq data. Our 

results suggest that the pseudo-bulk methods performed generally best. Both pseudo-bulks and 

mixed models that model the subjects as a random effect were superior compared with the naive 

single-cell methods that do not model the subjects in any way. While the naive models achieved 

higher sensitivity than the pseudo-bulk methods and the mixed models, they were subject to a 

high number of false positives. In addition, accounting for subjects through latent variable 

modeling did not improve the performance of the naive methods. 
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1 Introduction 

Single-cell RNA-sequencing (scRNA-seq) can be used to quantify transcriptomes of thousands 

of single cells simultaneously. scRNA-seq experiments comprise multi-subject, multi-condition 

setups, in which each condition includes samples collected from multiple subjects, cell lines or 

other biological replicates, and the researchers want to investigate transcriptomic changes 

between the conditions. Obtaining a large enough number of samples is crucial to ensure that the 

discovered gene markers are prevalent in the subject groups or treatment conditions, and not 

only in single subjects or biological replicates. 

 

The analysis workflow of multi-subject, multi-condition scRNA-seq data involves steps that are 

the same as in any scRNA-seq analysis. Quality control is important to remove poor-quality cells, 

such as doublets, empty droplets and dead cells [1]. Normalization aims to make the gene 

expression profiles of different cells more comparable by decreasing the technical bias caused 

by the library size and other confounding factors [2].  In cell type identification, each cell is given 

an identity from the cell types that are present in the tissue. Data integration methods can be used 

to automate the identification of the same cell types across the samples [3,4].  

 

Once the cell types have been confidently identified from all the samples, the next step is to 

perform differential state (DS) analysis between two or more conditions within each cell type 

separately.  DS changes can be divided into several subtypes [5], including changes in the mean 

expression, which is commonly known as differential expression (DE). The other DS types model 

more subtle transcriptomic differences, such as the proportion of highly and lowly expressed cell 

populations. While virtually all methods have been designed to detect only changes in the average 

expression, single-cell method developers have recently started to pay attention to the other DS 

types as well [6,7].  

 

The classical statistical tests for DS testing in scRNA-seq data, such as the Wilcoxon rank-sum 

test, naively assume the samples are statistically independent. However, this is usually not the 

case in multi-subject scRNA-seq data, where cells from the same subject often have more similar 

gene expression profiles, which causes an error in the statistical testing known as the 

pseudoreplicate bias [8]. To alleviate the pseudoreplicate bias, two approaches currently exist. 

The first approach is to use mixed models that model subjects as a random effect. The second 

approach is the pseudo-bulk aggregation, which transforms scRNA-seq data into bulk-like data 

by aggregating gene counts within each cell type and subject. Both approaches have previously 

been shown to reduce the number of false positives [6,8–10]. 

 

Differential expression analysis in scRNA-seq data was first investigated in papers that did not 

address the issue of multi-subject setup [11,12]. Since then, a few papers have investigated the 

issue of multi-subject, multi-condition scRNA-seq differential expression analysis. However, there 

still remains a lack of consensus regarding the best approaches. The muscat simulator [6] was 

introduced to enable simulation of multi-subject, multi-condition data based on reference data, 

and it also allows to simulate other DS types with more subtle differences in addition to DE. The 

muscat R package also provides functions for several pseudo-bulk methods and mixed models. 
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A more recent paper by Zimmerman et al. [8] compared several off-the-shelf mixed models, 

pseudo-bulk methods and naïve methods that do not model the subjects in any way using a limited 

simulation setup. The simulation was based on plate-based data with dropouts and not droplet 

data, such as Chromium [13], which is currently the most popular scRNA-seq protocol and 

generally not considered zero-inflated [14]. The authors recommended a mixed model based on 

the MAST statistical test [15] (MAST_RE) that accounts for the subjects as a random effect and 

claimed it was superior compared with the pseudo-bulk methods. Another recent paper by Squair 

et al. [10] compared naïve methods, pseudo-bulk methods and one mixed model method 

(muscat_MM). Their comparison was not based on a simulation but a comparison between paired 

scRNA-seq and bulk RNA-seq data. The ground truth for the bulk data was defined using two of 

the bulk differential expression tests, which could cause significant bias to the results. The 

comparison did not consider the recently introduced MAST model (MAST_RE) [8] or NEBULA, 

which is another recently introduced mixed model specifically designed for the DS analysis of 

multi-subject scRNA-seq data [16]. 

 

To address the need for better understanding the relative performance of various naïve, pseudo-

bulk, and mixed model methods, we compared 18 different methods for DS analysis of multi-

subject scRNA-seq data. Our comparison included three mixed models (MAST_RE [8], 

muscat_MM [6] and NEBULA-LN [16]) that model subjects as a random effect, six pseudo-bulk 

methods (edgeR [17] and DESeq2 [18] with sum aggregation, Limma [19] and ROTS [20] with 

sum and mean aggregation), and five naïve methods (the popular Wilcoxon rank-sum test and 

four other methods from the Seurat R package [3]). Additionally, we tested four latent variable 

methods from the Seurat R package that can be used to account for variables such as batch 

effects in DS analysis. To compare the DS analysis methods, we first carried out a comprehensive 

simulation analysis based on two different simulation models. The performance was assessed 

using several gold standard performance metrics: area under the receiver operating characteristic 

curve (AUROC), sensitivity, specificity, and precision. Finally, we estimated the proportion of false 

positives by performing a mock comparison between random groups using real data. 

 

2 Materials and methods 

2.1 Methods for detecting differential states 

In total, we considered 18 DS analysis methods in our comparison (Table 1). These methods 

belong to two broad categories: pseudo-bulk methods and single-cell methods. The pseudo-bulk 

methods aggregate count values from each sample and cell type (cluster) to create data that can 

be analyzed using the same methods as bulk RNA-seq data, maintaining the same number of 

genes but reducing the number of cells to the number of samples in the gene expression matrix. 

Single-cell methods assume that the data have been normalized at the single-cell level, and the 

DS analysis is carried out using the normalized data directly. The single-cell methods can be 

further divided into two sub-categories: mixed models and naive methods. The mixed models 

model the subjects as a random effect, whereas the naive models assume that all the cells are 
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statistically independent and do not model the subjects in any way. In addition, we considered a 

third type of single-cell methods from the Seurat R package, the latent variable models, that test 

whether the difference in gene expression between the groups can be explained by the difference 

in one or multiple latent variables. These methods were designed to account for batch effects or 

other confounders in the data.  

 

The aggregation of the count values for pseudo-bulk methods can be performed using two 

approaches: cumulative summing of raw count values (sum) or averaging single cell normalized 

count values (mean). The sum aggregation is followed by bulk normalization, and it has achieved 

better performances in earlier studies than the mean aggregation [6]. A recent study by Thurman 

et al. [9] recommended the sum aggregation with DEseq2 for multi-subject DS analysis, which is 

a popular statistical test for bulk RNA-seq DE analysis [18]. We selected DEseq2 and three other 

statistical tests, Limma, edgeR and ROTS [17,19,20] as a representation of the pseudo-bulk 

methods. In addition to performing the pseudo-bulk aggregation for all four statistical tests by the 

sum aggregation, we also tested the mean aggregation for two of the statistical tests (ROTS and 

Limma) that can be used with any normalization method. The sum and mean aggregated pseudo-

bulk methods are denoted with _sum and _mean suffixes in the results, respectively. 

 

Mixed models that account for the subjects as a random effect are gathering increasing interest. 

We included three mixed models in our comparison: MAST_RE, muscat_MM, and NEBULA-LN. 

A recent paper by Zimmerman et al. [8] recommended for multi-subject DS analysis a MAST 

model (MAST_RE) [15] that models the subjects as a random effect. The muscat R package 

includes a mixed model (muscat_MM), which uses the lme4 linear mixed model with voom 

weights [6,21,22]. NEBULA-LN is a recently introduced negative binomial mixed model designed 

for fast, multi-subject DS analysis and estimation of co-expression between genes [16].  

 

Seurat is a popular R package for scRNA-seq data analysis, including a wide array of statistical 

tests for DS analysis [3,23]. These include naive methods that do not model the subject in any 

way, such as the Wilcoxon rank-sum test, as well as models that can be used with “latent 

variables” to account for different confounding factors during the statistical testing. The way in 

which the latent variable modeling is performed varies depending on the statistical test. The batch 

effect is the only confounder that is mentioned in the documentation, but the user can include an 

arbitrary number of latent variables in the FindVariables function. The four statistical tests of 

Seurat that support the use of latent variables are MAST, logistic regression, negative binomial 

generalized linear model (negbinom), and poisson generalized linear model (poisson). We 

included these four tests and their naive versions in our comparison. In addition, we included the 

Wilcoxon rank-sum test, which is the default method for DS analysis in Seurat. Other approaches 

for performing multi-subject DS analysis, such as mixed models with random effects or pseudo-

bulk methods, are not currently available in Seurat (version 4.1) 

 

 

 
Table 1. Details of the methods for the differential state analysis of scRNA-seq data compared in this study.  
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2.2 Simulation of scRNA-seq data 

Since it is in practice very difficult to ascertain which genes are differentially expressed between 

conditions in real scRNA-seq data, simulation is necessary to obtain an accurate benchmark. To 

simulate scRNA-seq data, we used two different approaches. The first approach is based on a 

reference-free negative binomial generative model presented in the original study of one of the 

benchmarked tools (NEBULA). This approach can simulate DE and non-DE genes by controlling 

the average fold-change between the groups but not other DS types. The second approach uses 

muscat, which is a recently introduced R package based on a reference-based negative binomial 

generative model that enables simulating multi-subject, multi-condition scRNA-seq data using 

real data as reference [6]. It can simulate genes of four different DS types and two non-DS types: 

changes in the mean expression (DE), the proportions of low and high expression components 

(DP), differential modality (DM), both proportions and modality (DB), equivalent expression (EE) 

and expression at low and high components by an equal proportion (EP). 

2.2.1 Simulation using a reference-free negative binomial generative model 

 

We performed a reference-free negative binomial generative model simulation using the approach 

from the original paper of one of the benchmarked tools (NEBULA-LN) [16]. This simulation 

allowed tuning the model parameters, including two overdispersion parameters (cell and sample) 
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that create random variation into the gene expression levels between cells and samples, and the 

average number of cells per sample. 

 

To generate gene expression data that included both non-DE and DE genes, we made changes 

to the original NEBULA simulation. As in the original simulation, we simulated non-DE genes by 

setting logFC=0. Additionally, we simulated DE genes with logFC between 0.5 and 2.0. In total, 

our simulation included 1280 datasets, each containing 100 DE genes and 1900 non-DE genes. 

We simulated the 1280 datasets by adjusting five different parameters: the number of samples 

(6,8,10,12,14,16,18,20,30,40), the average number of cells per sample (100,500,1000,2000), the 

distribution for sampling the average number of cells (Poisson, negative binomial), cell 

overdispersion (0.05, 0.10, 0.20, 0.50), and sample overdispersion (0.1, 1, 10, 100). The average 

expression term in the generative model ranged from -4 to 2. 

2.2.2 Simulation using a reference-based negative binomial generative 

model 

 

In our simulation with muscat, we considered reference data from four studies (Kang [24], 

Kallionpää [25], Thurman [9] and Liu [26]), which are summarized in Table 2. The Kang dataset 

comprises peripheral blood mononuclear cells (PBMC) from lupus patients before and after 

treatment with interferon-β. The Kallionpää dataset includes PBMC cells from children that 

developed type I diabetes at a young age along with paired control samples. The Thurman dataset 

includes cells segregated from large and small airway surface epithelium of newborn cystic 

fibrosis (CF) and non-CF pigs. The Liu dataset includes PBMC cells from COVID-19 patients, 

patients with tropical infectious diseases, and healthy subjects. 

 

For each simulated dataset, we simulated three clusters with varying magnitudes of differences. 

10% of the genes in each cluster were assigned a differential distribution (2.5% for each of the 

four differential distributions DE, DP, DM and DB). The relative log-fold-change (logFC) values 

were set to 0.5, 1 and 1.25 for clusters 1, 2 and 3, respectively. Using Kang data as reference, 

four datasets were simulated: 20,000 cells and four replicates per condition, 20,000 cells and 

eight replicates per condition, 5,000 cells and four replicates per condition, 5,000 cells and eight 

replicates per condition. One dataset was simulated using Kallionpää data as reference: 7,500 

cells and four replicates per condition. Using Liu data as reference, three datasets were simulated: 

12,000 cells and six replicates per condition, 16,000 cells and eight replicates per condition, 

20,000 cells and ten replicates per condition. One dataset was simulated using Thurman data as 

reference: 20,000 cells and four replicates per condition. Additionally, to investigate the impact of 

the number of cells and the number of samples on the performance, we extended the muscat 

simulation for the Liu dataset so that it included more variation in the number of cells per sample 

(500, 1000, 2000, 4000) and the number of subjects (8, 12, 16, 20, 24, 28, 32, 36, 40). 

 

For Kang, Liu and Thurman reference data, we used the cell type annotation that was provided 

by the authors of the original studies in the muscat simulation. For Kallionpää data, we performed 
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Seurat integration (v 4.0.3) with the default parameter values and used the resulting clustering in 

the muscat simulation. 

2.2.3 Simulation of imbalanced distribution of cells across the samples 

In both simulations, the datasets contained an almost even distribution for the number of cells 

between subjects. However, this assumption is not valid in many real situations, and a recent 

paper by Zimmerman et al. [8] suggested that especially the performance of pseudo-bulk methods 

deteriorates when a dataset has an uneven distribution for the number of cells. Therefore, we 

also simulated clusters that had large variation in the number of cells between the samples. In 

the reference-free simulation, the random sampling of the number of cells was performed using 

two statistical distributions: Poisson for balanced distribution and negative binomial for 

imbalanced distribution. In the reference-based simulation, we randomly subsampled cells for all 

simulated datasets without replacement so that the proportion of remaining cells in the samples 

varied with even intervals from 0.20 to 1. The subsampling was performed for each of the clusters 

separately and the proportions of remaining cells were chosen randomly for the samples. 

 

 
Table 2. Details of the reference datasets used in the simulation using a reference-based negative binomial 

generative model.  

 Kang Kallionpää Liu Thurman 

Number of 
replicates in 
simulation 

8, 16 12 12, 16, 20 8 

Tissue type PBMC PBMC PBMC airway surface 
epithelium 

Conditions IFN-β-treated vs. 
non-treated 

T1D cases vs. 
matched controls 

COVID-19 vs. 
healthy controls 

CF vs. non-CF 

Organism human human human pig 

Number of 
control samples 
in original 
dataset 

8 4 13 4 

Reference [24] [25] [26] [9] 
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2.3 Performance evaluation 

We performed Receiver Operating Characteristic (ROC) curve analysis on the simulation results 

using pROC R package [27]. As the predictor we used the p-values and as the response the 

ground truth provided by the simulation on which genes had differential states. Since the methods 

had different gene filtering strategies (see Table 1), we only considered genes that were included 

by all methods.  

 

While the AUROC is useful for assessing the performance so that the evaluation is not 

constrained to a specific p-value threshold, and it can be interpreted as measuring the accuracy 

of ranking positive genes higher than negatives, it is possible to achieve a perfect AUROC score 

with statistically insignificant p-values. To assess the ability of the methods to provide well-

calibrated p-values, we also calculated the sensitivity, specificity and precision of the methods 

using the false discovery rate (FDR) of 0.05 as a cut-off. Before adjusting the p-values for multiple 

comparisons, we excluded the genes that were not included by all the methods (see Table 1). 

2.4 Mock comparison using real data to estimate the proportion of 

false positives 

To estimate the proportion of false positives, we performed a mock analysis using a real scRNA-

seq dataset that includes PBMCs from healthy subjects, patients with flu or COVID-19 [26]. We 

took the 13 healthy control samples and used the metadata stored in the publicly available Seurat 

object (GEO accession GSE161918) to extract B cells that were labeled as singlets and had at 

maximum 10% mitochondrial reads. We randomly assigned one of the two mock groups for each 

sample and performed statistical testing between the mock groups using each of the 18 methods 

to determine the DS genes. A gene was considered significant if FDR ≤ 0.05. Before adjusting 

the p-values for multiple comparisons, we excluded the genes that were not included by all the 

methods (see Table 1). We performed the random mock group assignment 30 times using 

different random seeds. 

 

3 Results 

3.1 Simulation based on a reference-free negative binomial 

generative model 

We simulated data based on a reference-free negative binomial generative model from the 

original paper of the NEBULA method (see Section 2.2.2). To benchmark the methods in a way 

that is not limited to a single p-value cutoff, we calculated the AUROC for each method and cluster 

(see Section 2.3). The AUROC values were, on average, highest for the pseudo-bulk methods, 
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followed by the naïve and latent variable methods (Fig. 1a). The number of cells and samples did 

not have a noticeable impact on the superiority of the method types. (Supplementary Fig. 1). 

 

In addition to the AUROC, we calculated the sensitivity, specificity and precision using FDR of 

0.05 as a cutoff to define the positives and negatives. Overall, the sensitivity was higher for the 

naive methods and the latent methods compared to the pseudo-bulk methods and the mixed 

models (Fig. 1b), and it increased when the number of samples increased with all the methods, 

as expected (Supplementary Fig. 2). However, the pseudo-bulk methods generally provided 

significantly better precision and specificity compared to all other method types (Fig. 1c-d, 

Supplementary Fig. 3-4). With Limma and ROTS we also tested the effect of the aggregation 

method on the results, suggesting systematically better performance of the sum over the mean 

aggregation (Fig. 1, Supplementary Fig. 1-4). Supplementary Figures 5-22 show the results 

of Supplementary Figures 1-4 for each method separately.  

 

Finally, we investigated how the imbalance in the number of cells between the samples affected 

the performance, which indicated that in these data the differences were relatively small for all 

methods (Supplementary Fig. 23). 

 

 

Figure 1. Results of the simulation based on a reference-free negative binomial generative model. Each 

boxplot shows values for 1280 simulated datasets with varying data properties. 

3.2 Simulation based on a reference-based negative binomial 

generative model 

We used muscat R package to simulate scRNA-seq data using data from four different studies 

(Kang, Kallionpää, Thurman, Liu; see Section 2.2.2), to study the effects of different DS types, 

including changes in the mean expression (DE), changes in the proportions of low and high 

expression-state components (DP), changes in modality (DM), and changes in both proportions 

and modality (DB). In total, 54 cell populations (clusters) were used in the benchmarking.  

 

We first calculated the AUROC for each method and cluster and grouped the results by the DS 

type (Fig. 2a). These results indicate that the DS type did not have a notable impact on the ranking 

of the methods. Unsurprisingly, the performance scores for the DE type were consistently higher 

than for the three other DS types, which contained more subtle transcriptomic differences 

between the groups than the DE genes. The pseudo-bulk methods and the naive methods 

achieved higher performance than the latent models and the mixed models. The latent models 

were clearly the weakest-performing models. The mixed models had considerable variation 

between their performances: MAST_RE achieved slightly better overall performance compared 

with NEBULA-LN, whereas muscat_MM was inferior with all four data types. Again, the pseudo-

bulk aggregation by summing performed generally better than the mean aggregation.  
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In addition to the AUROC, we calculated the sensitivity, specificity and precision using FDR of 

0.05 as a cutoff to define the positives and negatives (Fig. 2b). The results suggested that the 

naive methods provided the best sensitivity among the method types, followed by the latent 

variable models. However, their specificity and precision were worse compared to the pseudo-

bulk methods and the mixed models (Fig. 2c-d). In other words, the pseudo-bulk methods and 

the mixed models were able to effectively minimize the number of false positives, whereas a 

significant proportion of the findings, generally 25%, found by the naive methods and the latent 

variable models were false. Overall, the precision and specificity were higher for the pseudo-bulk 

methods than the mixed models. The overall results remained similar when investigating the 

impact of the number of cells and samples on the performance (Supplementary Figures 24-56). 

 

To take a closer look at the two best-performing mixed models (NEBULA-LN and MAST_RE) and 

the four pseudo-bulk methods that use the sum aggregation, we studied the genes that behaved 

differently between the six methods (Fig. 3). We defined a metric called overlap, which was 

calculated by counting in each group how many pseudo-bulk normalized data points (samples) 

were within the range of the values of the other group after which we divided the counts by the 

number of samples in one group, and then took their average. When investigating the overlaps of 

the gene-wise distributions between the sample groups, the false positives of the pseudo-bulk 

methods had a small overlap (from 0 to 35%) compared to true negatives (on average above 

50%), suggesting that the false positives of the pseudo-bulk methods occurred due to errors in 

normalization or simulation (Fig. 3a). The false positives of the mixed models did not show such 

a trend, but their overlap values were similar to those of the true negatives (Fig. 3a). The fold-

changes indicated that the false positives of the pseudo-bulk methods also had a higher fold-

change than the mixed models or the true negatives and they were comparable to the true 

positives (Fig. 3b). However, the false positives of the pseudo-bulk methods had generally lower 

average expression than the mixed models or the true positives (Fig. 3c-d). 

 

Finally, we investigated how the imbalance of the number of cells affected the performance 

(Supplementary Fig. 57). In general, the AUROC values of the methods were slightly lower in 

the imbalanced datasets, but especially the sensitivity of the methods decreased in the 

imbalanced datasets.  

 

 
Figure 2. Results of the simulation based on a reference-based negative binomial generative model. Each box 

plot includes performance values for 54 cell populations (clusters). The rows signify the four different differential states: 

changes in both proportions and modality (DB), changes in the mean expression (DE), differential modality (DM), and 

changes in the proportions of low and high expression-state components (DP). The columns group the results by the 

four different performance metrics: Area Under the Receiver Operating Characteristic (AUROC) curve, sensitivity, 

specificity, and precision. Seurat_poisson_latent was left out from the results due to its high failure rate for the 

simulation. 

 

 

Figure 3. Analysis of the genes that were differently detected between the pseudo-bulk methods and two top-

performing mixed models in the negative binomial simulation. (a) Average overlap was calculated by counting in 

each group how many pseudo-bulk (pb) normalized data points (samples) were within the range of the values of the 

other group, divided by the number of samples in the group, and then taking their average. (b) Absolute value of the 

log2-transformed fold-change calculated between the pseudo-bulk normalized gene expression values of the two 
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groups. We added a pseudo-count value of 1 to each mean expression when calculating their fold change. (c) Average 

pseudo-bulk normalized gene expression. The pseudo-bulk normalization was performed using the normalization that 

was used for Limma and ROTS (see Table 1). (d) Average single-cell (sc) normalized gene expression. The single-

cell normalization was performed using the normalization method that muscat simulator uses. To make the boxplots 

more readable, we removed the outliers for (b-d).  

 

3.3 Mock comparison with real data 

To further estimate the proportion of false positives for each method in a real experimental setting, 

we carried out a mock comparison by randomly dividing 13 healthy subjects from a COVID-19 

study into two mock groups. The results suggest that the naive methods that did not account for 

subjects in any way and the latent methods were subject to a high number of false positives (Fig. 

4). By contrast, the pseudo-bulk methods and the mixed models generally produced small 

numbers of false positives. This is in accordance with the simulation results in Section 3.1. The 

logistic regression model of Seurat, which models the subjects as a latent variable, did not find 

any false positives, but this is likely due to the method’s inability to produce any findings for some 

data types, like the negative binomial simulation (see Section 3.1). 

 
Figure 4. Mock analysis using real data to estimate the proportion of false positives. The mock analysis was 

performed by segregating good-quality B cells from a COVID-19 dataset [26] that consists of 13 healthy control subjects  

and by randomly assigning one of the two mock groups for each subject. The assumption is that no genes with 

differential states should be found between the random mock groups. The random sampling was repeated 30 times. 

Seurat_poisson_latent was left out from the results due to its high failure rate (29/30) for the mock data. The dashed 

vertical line at 5% denotes the expected maximum proportion of false positives with an FDR threshold of 0.05. 

4 Discussion 

 

Finding differential states between conditions from scRNA-seq data involves performing statistical 

testing between two or more groups of cells for each cell type separately. scRNA-seq experiments 

increasingly include multiple subjects or biological replicates to confirm that the transcriptomic 

changes are prevalent in groups and not only in single subjects. This requires specialized tools 

due to the hierarchical structure of the data. Cells from the same subject often have more similar 

gene expression profiles, which violates the statistical independence assumption of the basic 

statistical tests. 

 

This issue has been already addressed in recently published papers that have proposed new, 

improved methods for the DS analysis of multi-subject scRNA-seq data [6,8,9,16]. The two 

approaches that currently seem most promising are the pseudo-bulk methods that aggregate 

counts from each cluster and sample, and the mixed models that model the subjects as a random 

effect. They have both been demonstrated to decrease the number of false positives compared 

to naïve single-cell DS analysis methods [8,10]. However, no attempts have yet been made to 

compare these tools in the same work. 
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In this paper, we compared 18 tools for the DS analysis of multi-subject scRNA-seq data. These 

methods included both pseudo-bulk methods and mixed models, but also naive single-cell 

methods that do not model the subjects in any way, as well as methods that model the subjects 

as a latent variable. Our benchmarking framework included both simulated and real data. For the 

simulation, we considered both a reference-free negative binomial generative model and a 

reference-based negative binomial generative model. The reference-free generative model 

simulated genes with changes in the mean expression (DE). The reference-based negative 

binomial generative model simulation was performed using the muscat R package, which is 

currently the only simulator that can simulate multi-subject scRNA-seq data with four different DS 

types. Finally, we performed a mock comparison using 13 healthy control subjects from a large 

COVID-19 dataset [26], which enabled us to estimate the proportion of false positives for each 

method. 

 

The results indicated that the naive methods were indeed subject to a higher rate of false positives 

than the pseudo-bulk methods and the mixed models. This conclusion is supported by all our 

analyses. While the naive models generally provided higher sensitivity, this benefit was negated 

by the lower precision and specificity. In other words, the naive models reported a lot of findings, 

but a large proportion of these were false positives. Although the AUROC results suggested that 

the p-values of the naive methods accurately ranked the positives before the negatives, the main 

issue was that the p-values were poorly calibrated. With FDR of 0.05 as a cutoff to define the 

positives and negatives, the methods can be expected to find at most 5% false positives from all 

positives. The naive methods found high proportions of false positives, up to 40% in the mock 

comparison and the simulations. In the simulation, the precision values of the pseudo-bulk 

methods were in better accordance with the FDR cut-off than the precision values of the mixed 

models.  

 

We observed notable variation in the performances of the mixed models. Of the three mixed 

models that we considered in our comparison, MAST_RE and NEBULA-LN achieved 

considerably better overall performance than muscat_MM. However, the performances of the 

pseudo-bulk methods were mostly similar. Our results suggested that the pseudo-bulk 

aggregation by calculating the mean of single-cell normalized data provided inferior performance 

compared to the sum approach that cumulatively sums the count values and then uses bulk RNA-

seq normalization. This is in line with at least one previous study that found that the sum 

aggregation outperformed the mean aggregation [6].  

 

We investigated how the number of cells and samples affected the performance of the methods. 

An earlier study [8] found that the pseudo-bulks performed worse than the mixed models when 

the number of samples was small. The same paper also suggested that the pseudo-bulks would 

perform worse than the best mixed model (MAST_RE) when the samples have an uneven 

distribution for the number of cells. However, we were unable to validate these findings.  

 

  

The popular Seurat pipeline includes four statistical tests that allows to incorporate several latent 

variables in the models. The latent models test if the observed differential expression change 
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between the conditions can be explained by the difference in one or several variables. According 

to the package manual, this is recommended if the data contains batch effects in the DS analysis, 

but no instructions are provided for any other variables. As of Seurat v4.1, using latent variables 

is currently still the only way to account for the subjects in the DS analysis with Seurat. Our results 

strongly suggest against their use in the DS analysis when the subject is included as a latent 

variable. The latent models performed generally even worse than their naive counterparts. A 

recent study came to the same conclusion when they used ComBat to correct the data for the 

subject effect prior to the DS analysis [8,28]. However, the latent models might still be appropriate 

when modeling batch effects or other variables as latent variables.  

 

To conclude, we performed a comprehensive comparison to benchmark 18 methods for DS 

analysis of multi-subject scRNA-seq data. Our results suggest that the pseudo-bulk methods and 

the mixed models that model subjects as a random effect were superior compared to the naive 

single-cell methods that do not model the subjects in any way. We also recommend not to perform 

DS analysis using Seurat’s statistical tests so that the subjects are modeled as a latent variable. 

Overall, the pseudo-bulk methods outperformed the mixed models. If the user wants to achieve 

high specificity and precision at the risk of losing some true positives, we recommend the pseudo-

bulk ROTS with the sum aggregation. If sensitivity is more important than the false positive results, 

we recommend the pseudo-bulk methods Limma, DESeq2, or edgeR combined with the sum 

aggregation. We recommend that scRNA-seq analysis pipeline developers should begin to 

include pseudo-bulk methods and mixed models in their pipelines. To facilitate DS analysis of 

multi-subject scRNA-seq data, the codes that implement all the methods in this paper are freely 

available online (https://github.com/elolab/multisubjectDSanalysis).  

 

Key Points 

• Naive single-cell DS analysis methods are subject to high proportions of false positives 

when analysing data with multiple biological replicates 

• Latent variable models are not effective in reducing false discoveries when accounting 

for biological replicates 

• Pseudo-bulk methods and mixed models that account for biological replicates as a 

random effect are effective in reducing false discoveries 

• Overall, our results suggest that pseudo-bulk methods outperform mixed models 
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