

1 **Pro-resolving lipid mediators within brain esterified lipid pools are reduced in female rats**
2 **chronically exposed to traffic-related air pollution or genetically susceptible to Alzheimer's**
3 **Disease phenotype**

4
5 Qing Shen¹, Nuanyi Liang¹, Kelley T. Patten², Yurika Otoki^{1,3}, Anthony E. Valenzuela²,
6 Christopher Wallis⁴, Keith J. Bein^{5,6}, Anthony S. Wexler^{4,6}, Pamela J. Lein^{2,7}, Ameer Y. Taha^{1,8*}

7
8 ¹Department of Food Science and Technology, College of Agriculture and Environmental
9 Sciences, University of California, Davis, CA, USA

10 ²Department of Molecular Biosciences, School of Veterinary Medicine, University of California,
11 Davis, CA, USA

12 ³Food and Biodynamic Laboratory, Graduate School of Agricultural Science, Tohoku University,
13 Sendai, Miyagi, Japan.

14 ⁴Air Quality Research Center, University of California, Davis, California, USA

15 ⁵Center for Health and the Environment, University of California, Davis, California, USA

16 ⁶Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering,
17 and Land, Air and Water Resources, University of California, Davis, California, USA

18 ⁷The MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA,
19 USA

20 ⁸West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA,
21 95616, USA.

22

23 * Corresponding author at: Ameer Y. Taha

24 RMI North, Department of Food Science and Technology, College of Agriculture and

25 Environmental Sciences, University of California, Davis, CA, USA

26 Phone: +1 530 752 7096; E-mail: ataha@ucdavis.edu

27

28 **Running title:** Air pollution and AD modify brain esterified lipid mediators

29 **Abstract:**

30 Traffic-related air pollution (TRAP) is a risk factor for Alzheimer's disease (AD) where
31 neuroinflammation underlies disease progression and pathogenesis. Unresolved inflammation in
32 AD is known to be exacerbated by brain deficits in unesterified pro-resolving lipid mediators
33 enzymatically synthesized from polyunsaturated fatty acids. Recently, we reported that in the
34 brain, unesterified pro-resolving lipid mediators which are bioactive, can also be supplied from
35 less bioactive esterified lipid pools such as neutral lipids (NLs) and phospholipids (PLs). It is not
36 known whether esterified pro-resolving lipid mediators are affected by AD pathology and
37 exacerbated by TRAP exposure. In the present study we addressed this data gap using TgF344-
38 AD male and female rats that express human AD risk genes and their wildtype littermates
39 exposed to filtered air (FA) or TRAP from 1 to 15 months of age. Esterified lipid mediators
40 within NLs and PLs were quantified by mass-spectrometry. We observed a significant reduction
41 in pro-resolving lipid mediators in both NLs and PLs of female TgF344-AD rats compared to
42 wildtype controls. TRAP exposure also reduced pro-resolving lipids in the female brain, mainly
43 in PL pools, but did not exacerbate changes observed in TgF344-AD rats. Minimal changes were
44 observed in males. Our findings indicate that AD genotype and chronic TRAP exposure result in
45 sex-specific deficits in brain esterified pro-resolving lipid mediators, the pool that supplies free
46 and bioactive lipid mediators. These data provide new information on lipid-mediated
47 mechanisms regulating impaired inflammation resolution in AD, and show for the first time that
48 chronic TRAP exposure targets the same lipid network implicated in AD.

49

50 **Keywords:**

51 oxylipin, Alzheimer's Disease, air pollution, rat brain, lipid mediator, phospholipid, neutral lipid,
52 mass-spectrometry, inflammatory resolution

53 **Abbreviations:**

54 AA: arachidonic acid
55 AD: Alzheimer's Disease
56 ALA: alpha-linolenic acid
57 ANOVA: analysis of variance
58 BHT: butylated hydroxytoluene
59 COX: cyclooxygenase
60 CYP: cytochrome P450
61 DGLA: dihomo-gamma-linoleic acid
62 DHA: docosahexaenoic acid
63 DiHETE: dihydroxy-eicosatetraenoic acid
64 DiHETrE: dihydroxy-eicosatrienoic acid
65 DiHOME: dihydroxy-octadecenoic acid
66 DiHPDA: dihydroxy-docosapentaenoic acid
67 EDTA: ethylenediaminetetraacetic acid
68 EPA: eicosapentaenoic acid
69 EpDPE: epoxy-docosapentaenoic acid
70 EpETE: epoxy-eicosatetraenoic acid
71 EpETrE: epoxy-eicosatrienoic acid
72 EpOME: epoxy-octadecenoic acid

73 FA: filtered air

74 HDoHE: hydroxy-docosahexaenoic acid

75 HEPE: hydroxy-eicosapentaenoic acid

76 HETE: hydroxy-eicosatetraenoic acid

77 HETrE: hydroxy-eicosatrienoic acid

78 HODE: hydroxy-octadecadienoic acid

79 HOTrE: hydroxy-octadecatrienoic acid

80 LA: linoleic acid

81 LOX: lipoxygenase

82 LT: leukotriene

83 LX: lipoxin

84 NO₂: nitrogen dioxide

85 NL: neutral lipid

86 oxo-ETE: oxo-eicosatetraenoic acid

87 oxo-ODE: oxo-octadecadienoic acid

88 PM: particulate matter

89 PG: prostaglandin

90 PGDH: hydroxy-prostaglandin dehydrogenasePL: phospholipid

91 PUFA: polyunsaturated fatty acid

92 sEH: soluble epoxide hydrolase

93 SPE: solid phase extraction

94 TPP: triphenyl phosphine

95 TRAP: traffic-related air pollution

96 TriHOME: trihydroxy-octadecenoic acid

97 TX: tromboxane

98 UPLC-MS/MS: ultra high-pressure liquid chromatography-tandem mass spectrometry

99 **1. Introduction**

100 Alzheimer's disease (AD), the main cause of age-related dementia, affects 6.2 million
101 Americans aged 65 or older [1], and is the fifth-leading cause of death among the elderly [2]. At
102 present there is no therapy for AD, which is why considerable efforts have been made to
103 understand modifiable risk factors such as environmental exposures (reviewed in [3]).

104 One environmental factor strongly associated with increased risk of AD is chronic exposure
105 to traffic-related air pollution (TRAP) [4, 5]. TRAP is a complex and heterogeneous mixture of
106 vehicle emissions, road dust and secondary air pollutants including gases and particles [6].
107 Evidence from epidemiological studies suggests that individuals who live less than 50 meters
108 from a major roadway have a 7% increased risk of dementia compared to individuals living 200
109 meters away [7]. Consistent with these observations, increased exposure to TRAP components
110 (i.e., ozone and particulate matter 2.5 (PM_{2.5}) [8], nitrogen dioxide (NO₂) and PM_{2.5} [9]) has been
111 shown to increase the risk of AD.

112 Both AD and TRAP exposure are associated with immune activation characterized by an
113 elevation in circulating and tissue (lung and brain) cytokines [10-12]. In vivo, the effects of
114 cytokines are mediated by short-lived bioactive lipid mediators (i.e. oxylipins) derived from the
115 oxidation of polyunsaturated fatty acids via cyclooxygenase (COX) [13, 14], lipoxygenase (LOX)
116 [15, 16], cytochrome P450 (CYP) [17], 15-hydroxyprostaglandin dehydrogenase (15-PGDH) [18]
117 and soluble epoxide hydrolase (sEH) enzymes [19-21]. Pro-inflammatory oxylipins are elevated
118 in the brain of transgenic animal models of AD [21, 22] and in post-mortem brain of patients
119 with AD pathology [15, 23, 24]. Similarly, TRAP exposure has been shown to increase the
120 concentration of pro-inflammatory oxylipins in human serum/plasma [25, 26].

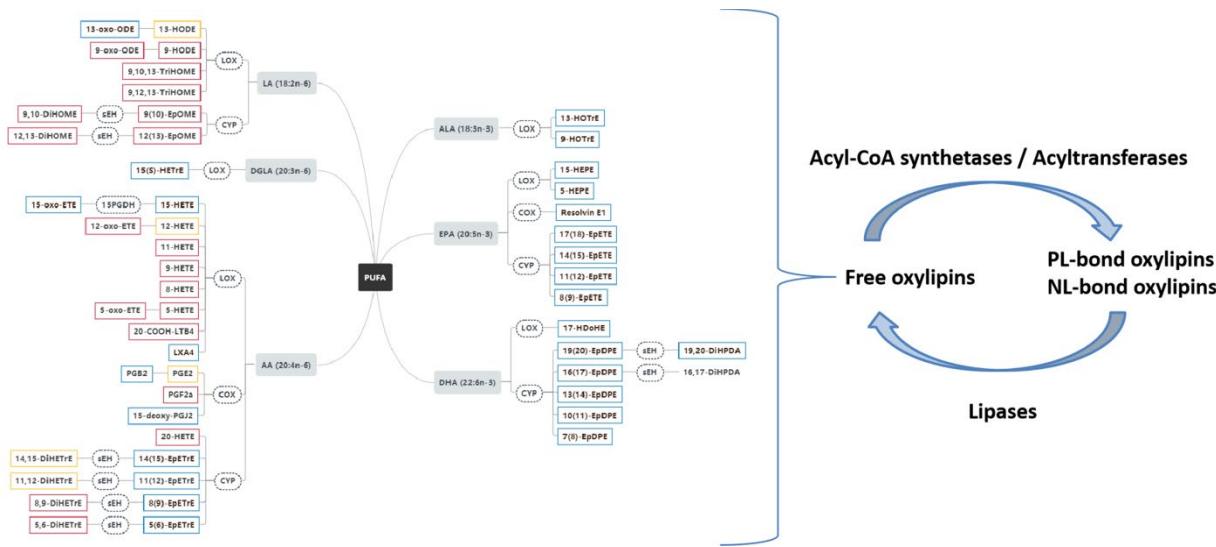
121 Oxylipins are also involved in inflammation resolution, the process of halting inflammation,
122 and repairing or replacing damaged cells [27]. Resolution pathways are impaired in AD, as
123 evidenced by the marked reduction of pro-resolving oxylipins of docosahexaenoic acid (DHA),
124 including 10,17S-docosatriene (neuroprotectin D1) and maresin 1, as well as arachidonic acid
125 (AA)-derived lipoxin A4 (LXA4) in cerebrospinal fluid, hippocampus, and entorhinal cortex of
126 AD patients compared to non-AD controls [24, 28, 29]. Brain concentrations of pro-resolving
127 DHA-derived neuroprotectin D1[30] and DHA-epoxides (epoxydocosapentaenoic acids,
128 EpDPEs)[31], as well as AA- derived epoxides (epoxyeicosatrienoic acids, EpETrEs) [21, 31, 32]
129 and 15-hydroxy-eicosatetraenoic acid (15-HETE) [22], were also shown to be lower in
130 transgenic mouse models of AD compared to genetically unaltered controls. It is not known
131 whether TRAP exposure alters these inflammation resolution oxylipin pathways in the brain.

132 To date, all studies have characterized lipid mediator disturbances in AD by measuring the
133 concentration of free (i.e., unesterified) oxylipins. Although oxylipins are enzymatically
134 synthesized in the brain by COX, LOX, 15-PGDH, CYP450 and sEH, they can also be released
135 from or sequestered (i.e. re-esterified) to the more abundant esterified lipid pool within the brain
136 as shown in the pathway illustrated in **Figure 1**. In this regard, we reported that approximately
137 90% of oxylipins in the rat brain are bound to phospholipids (PLs) and neutral lipids (NLs)
138 consisting of triacylglycerides and cholestryl esters [33, 34]. We also showed, *in vivo*, that
139 esterified oxylipins can both release or sequester free oxylipins through a turnover pathway that
140 regulates the bioavailability of the free oxylipin pool (**Figure 1**) [34]. Free oxylipins are
141 bioactive [35, 36], whereas oxylipins bound to PLs or NLs are inactive [37, 38].

142 It is not known whether *esterified* oxylipins involved in inflammation or resolution are
143 altered in AD or by TRAP exposure. This knowledge gap is important to address because

144 changes in the esterified oxylipin pool might mechanistically explain why free pro-resolving
145 oxylipins are reduced in animal models of AD and in human post-mortem brain of subjects with
146 AD pathology. Also, knowing whether TRAP exposure targets the same pathways might help
147 understand convergent biochemical networks that underlie AD etiology.

148 The purpose of this study was three-fold. First, we aimed to test whether bound (i.e.
149 esterified) oxylipins involved in inflammation and inflammation resolution are altered by AD
150 phenotype in rats. Second, we wished to understand whether chronic TRAP exposure, a
151 significant risk factor for AD, also alters bound oxylipins in a manner similar to AD. Third,
152 because AD disproportionately affects more females than males [39, 40], we explored whether
153 females would be more impacted than males by the effects of AD and TRAP.


154 We hypothesized that AD genotype and TRAP exposure alter rat brain NL- and PL-bound
155 oxylipins in a sex-dependent manner. The TgF344-AD rat, a transgenic rat model of AD
156 expressing mutations in the human Swedish amyloid precursor protein (APPswe) and Δ exon 9
157 presenilin-1 (PS1 Δ E9), was used to test this hypothesis. The TgF344-AD rat develops cognitive
158 impairment and neuropathological features of AD including microglial activation, beta amyloid
159 plaques and neurofibrillary tangles in the brain, unlike other transgenic models of AD which
160 develop only a subset of these hallmark AD phenotypes [41]. TRAP exposure was recently
161 shown to promote AD phenotypes in the TgF344-AD rat and their WT littermates [42] Thus, in
162 this study, we exposed male and female TgF344 and wildtype littermate rats for 14 consecutive
163 months to filtered air (FA) or TRAP captured from a heavily trafficked freeway tunnel in
164 Northern California, to test whether AD genotype or chronic TRAP exposure alters esterified
165 oxylipins in the brain.

166

167 **Figure 1.** Pathway of detectable oxylipins that were measured in the present study. Frames
168 surrounding each oxylipin classify whether it is pro- or anti-inflammatory based on the literature:
169 1) oxylipins with red frames have pro-inflammatory effects; 2) oxylipins with blue frames have
170 anti-inflammatory / pro-resolving effects; and 3) oxylipins with yellow frames have both pro-
171 and anti-inflammatory effects. Esterified oxylipins within phospholipids (PL) or neutral lipids
172 (NL) pool can be released via lipase enzymes to generate free (unesterified) oxylipins. Free
173 oxylipins can also be sequestered into NL and PL pools via acyl-CoA synthetase and
174 acyltransferase enzymes. Both lipase-mediated release and acyl-CoA synthetase/acyltransferase-
175 mediated sequestration regulate the availability of free oxylipins. Abbreviations: PUFA,
176 polyunsaturated fatty acid; LA, linoleic acid; DGLA, dihomo-gamma-linoleic acid; AA,
177 arachidonic acid; ALA, alpha-linolenic acid; EPA, eicosapentaenoic acid; DHA,
178 docosahexaenoic acid; COX, cyclooxygenase; CYP, cytochrome P450; LOX, lipoxygenase; sEH,
179 soluble epoxide hydrolase; 15-PGDH, 15-hydroxyprostaglandin dehydrogenase; DiHETE,
180 dihydroxy-eicosatetraenoic acid; DiHETrE, dihydroxy-eicosatrienoic acid; DiHOME,
181 dihydroxy-octadecenoic acid; DiHPDA, dihydroxy-docosapentaenoic acid; EpDPE, epoxy-
182 docosapentaenoic acid; EpETE, epoxy-eicosatetraenoic acid; EpETrE, epoxy-eicosatrienoic acid;
183 EpOME, epoxy-octadecenoic acid; HDHE, hydroxy-docosahexaenoic acid; HEPE, hydroxy-
184 eicosapentaenoic acid; HETE, hydroxy-eicosatetraenoic acid; HETrE, hydroxy-eicosatrienoic
185 acid; HODE, hydroxy-octadecadienoic acid; HOTrE, hydroxy-octadecatrienoic acid; oxo-ETE,
186 oxo-eicosatetraenoic acid; oxo-ODE, oxo-octadecadienoic acid; TriHOME, trihydroxy-
187 octadecenoic acid; LX, lipoxin; PG, prostaglandin; LT, leukotriene.

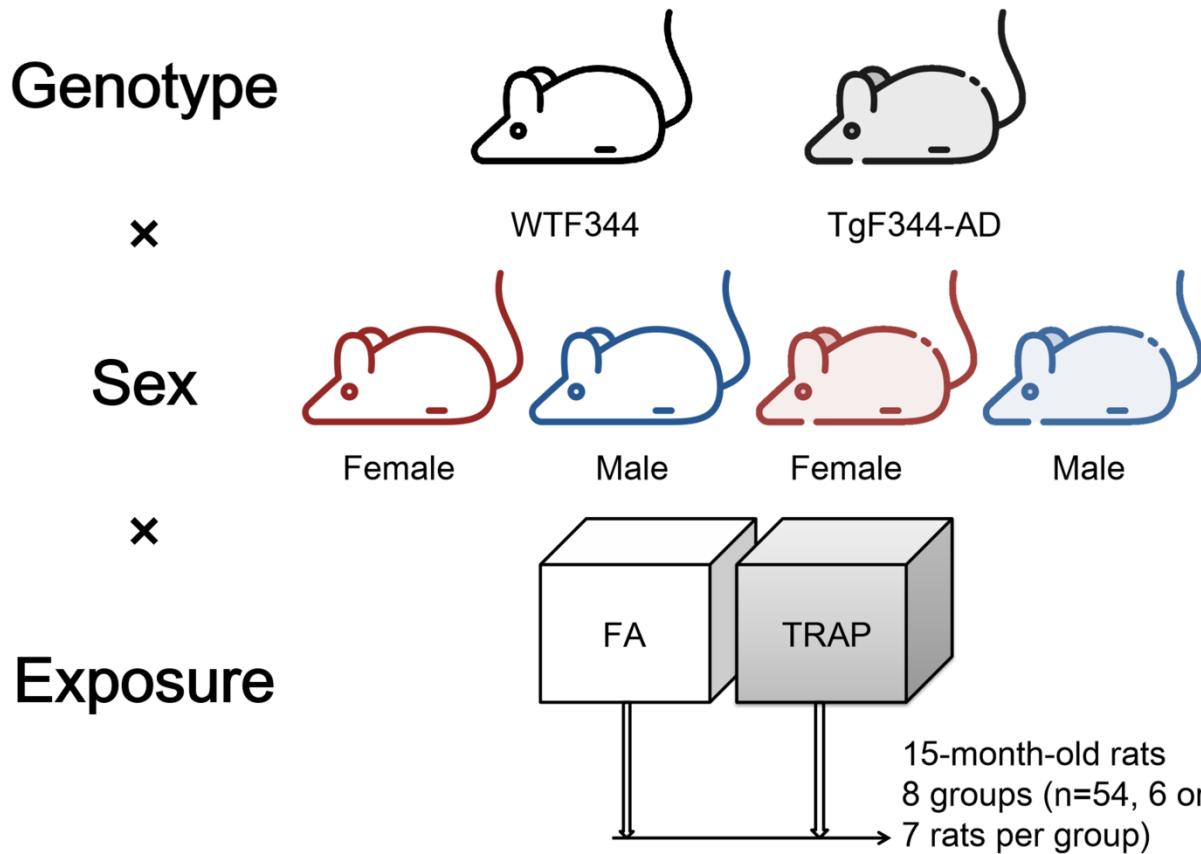
188

189
190

191 **2. Methods**

192 *2.1 Chemicals and reagents*

193 Ethylenediaminetetraacetic acid (EDTA; Cat #EDS-100G), butylated hydroxytoluene (BHT;
194 Cat #W218405-SAMPLE-K) and triphenyl phosphine (TPP; Cat #3T84409) were purchased
195 from Sigma-Aldrich (St. Louis, MO, USA).


196 Oxylipin standards were purchased from Cayman Chemical (Ann Arbor, MI, USA) or
197 Loradan Biomedical (Davis, CA, USA). Deuterated surrogate standards used for oxylipin
198 quantitation were obtained from Cayman Chemical. These include d11-11(12)-
199 epoxyeicosatrienoic acid (d11-11(12)-EpETrE, Cat # 10006413), d11-14,15-
200 dihydroxyeicosatrienoic acid (d11-14,15-DiHETrE, Cat # 1008040), d4-6-keto-Prostaglandin F1
201 alpha (d4-6-keto-PGF1a, Cat # 315210), d4-9-hydroxyoctadecadienoic acid (d4-9-HODE, Cat #
202 338410), d4-Leukotriene B4 (d4-LTB4, Cat # 320110), d4-Prostaglandin E2 (d4-PGE2, Cat #
203 314010), d4-Tromboxane B2 (d4-TXB2, Cat # 319030), d6-20-hydroxyeicosatetraenoic acid
204 (d6-20-HETE, Cat # 390030), and d8-5-hydroxyeicosatetraenoic acid (d8-5-HETE, Cat #
205 334230).

206 *2.2 Animals and traffic-related air pollution exposure*

207 Animal experiments were conducted according to the NIH Guide for the Care and Use of
208 Laboratory Animals and were approved by the UC Davis Institutional Animal Care and Use
209 Committee (IACUC). Male TgF344-AD transgenic rats expressing Swedish" mutant human APP
210 (APPsw) and Δ exon 9 mutant human presenilin-1 (PS1ΔE9) genes were obtained from Emory
211 University [41]. Female wildtype Fischer 344 (WTF344) rats were purchased from Charles River
212 Laboratories. Male TgF344-AD and female WTF344 rats were bred at UC Davis vivarium, and
213 the resulting offspring was genotyped [42]. On postnatal day 28 (approximately 1 month of age),

214 54 rats (27 males and 27 females consisting of TgF344-AD and WTF344 rats each) were
215 transferred to a tunnel facility situated near a heavily trafficked freeway tunnel system in
216 Northern California (see next paragraph for details) [43]. Half of the rats per genotype and per
217 sex were randomly assigned to the FA vs. TRAP groups and exposed continuously for up
218 to 14 months as previously described [42]. Thus, there were 8 groups in total as shown in the
219 overall study design depicted in **Figure 2** (n=54 rats in total, 8 groups, 6 or 7 rats per group). The
220 animals were euthanized at 15 months of age.

221 The tunnel facility was built to capture gaseous and particulate components of real-world
222 TRAP [44, 45]. It had a filtering system that provided FA to exposure chambers housing the FA
223 group or TRAP collected from the traffic tunnel and delivered unchanged in real-time to
224 exposure chambers housing the TRAP group. During the 14 month-long exposure period, total
225 particle numbers and mean 24 h PM_{2.5} levels in the TRAP chambers were 10-100 and ~62 fold
226 higher than in FA chambers, respectively [42]. At the end of the exposure period, rats were
227 transported to the UC Davis vivarium, where they were anesthetized with 2-3% isoflurane for a
228 single MRI/PET imaging session before being euthanized 23 days later with 4% isoflurane
229 (Southmedic Inc., Barrie ON) in medical-grade air/oxygen (2:1 v/v) mixture delivered at a rate of
230 1.5 L/min followed by exsanguination via perfusion of ice-cold saline as previously described
231 [42]. Brains were dissected and cut in half using a stainless-steel rat brain matrix (Zivic
232 Instruments, Pittsburgh, PA). The left hemisphere was microdissected to obtain brain regions for
233 cytokine assays. The right hemisphere was used for lipidomic measurements as detailed below.
234 Samples were immediately collected in centrifuge tubes, snap frozen in liquid nitrogen and
235 stored at -80 °C until they were analyzed.

236

237 **Figure 2.** Study design. A total of 54 male and female TgF344-AD and WTF344 rats were
238 randomly distributed to filtered air (FA) or traffic-related air pollution (TRAP) exposure
239 beginning at approximately one month of age (at postnatal day 28) until they were 15-months old
240 (total exposure period of 14 months). There were 8 groups in total, each composed of 6 or 7 rats
241 per group.
242

243 2.3 Brain lipid extraction

244 Brain total lipids were extracted from the right hemisphere using a modified Folch method
245 [46, 47]. Brains were weighed and transferred into new 2 mL centrifuge tubes pre-cooled and
246 maintained on dry ice. The average brain weight was ~800 mg. Three zirconia beads and
247 approximately 700 μ L solution of 1 mM Na₂EDTA and 0.9% NaCl dissolved in MilliQ water
248 (kept at 4 °C before use) were then added into each centrifuge tube containing the brain samples.
249 Because rat brain contains ~90% water [48], the total volume of the aqueous phase was

250 approximately ~1420 μ L (700 μ L added + ~720 μ L coming from the brain). The brain was
251 homogenized in a Bullet Blender (Next Advance Storm 24, Averill Park, NY, USA) for 30 s
252 twice, and the resulting homogenate was transferred into 8 mL glass tubes containing 4 mL
253 chloroform. The centrifuge tubes were then washed with 1 mL of 0.006% BHT methanol
254 solution (pre-cooled in a 4 °C fridge before use) and vortexed for 30 s. The mixture in the
255 centrifuge tubes was transferred into the above 8 mL glass tubes. This step was repeated one
256 more time to ensure that all lipids in the 2 mL centrifuge tubes were completely transferred to the
257 8 mL glass tubes. The 8 mL glass tubes containing brain total lipid extracts were vortexed and
258 centrifuged at 920 $\times g$ for 15 min at 0 °C in a Sorvall RT 6000 centrifuge (Bio Surplus, San
259 Diego, CA, USA). The bottom chloroform layer from each extraction was transferred into a new
260 8 mL glass tube. 4 mL chloroform were added to the remaining upper layer and the samples were
261 vortexed and centrifuged again at 920 $\times g$ for 15 min at 0 °C. The bottom chloroform layer was
262 transferred and combined with the first chloroform extract in the 8 mL glass tube.

263 The total brain lipid extract was dried under nitrogen and reconstituted in 8 mL of
264 chloroform/isopropanol (2:1 v/v). Samples were stored in a -80 °C freezer. Every 19 brain
265 samples were accompanied by an additional method blank consisting of 800 μ L of MilliQ water
266 (instead of 800 mg of rat brain), that underwent the same extraction procedures outlined above.

267 *2.4 Separation of neutral lipids (NL) and phospholipids (PL)*

268 Waters silica solid phase extraction (SPE) columns (Sep-Pak Silica, 1 cc, 100 mg, Waters
269 Corporation, Milford, MA; Cat #WAT023595) were used to separate NLs from polar lipids
270 including PLs and any residual free oxylipins that were not removed during Folch extraction [49].
271 Methanol (1.5 mL) and 2:1 v/v chloroform/isopropanol (1.5 mL) were loaded onto each silica
272 SPE column to activate and equilibrate the column. The column was loaded with 300 μ L of brain

273 total lipid extract (containing ~ 3 mg of total lipids) dissolved in chloroform/isopropanol (2:1
274 v/v), and eluted with 1.5 mL of chloroform/isopropanol (2:1 v/v). The eluent containing NLs was
275 collected in 2 mL centrifuge tubes. The column was then loaded with 1.5 mL of 95% methanol,
276 and the eluent containing polar lipids (e.g. phospholipids) was collected in another 2 mL
277 centrifuge tube.

278 The eluent containing polar lipids in 95% methanol was adjusted to 80% methanol by
279 adding 281 μ L of MilliQ water to the 1.5 mL extract. The entire mixture was loaded onto Waters
280 tC18 columns (Sep-Pak tC18, 1 cc, 100 mg, Waters Corporation, Milford, MA; Cat
281 #WAT036820) pre-rinsed with one column volume of methanol and 1.5 mL of 80% methanol.
282 The column was washed with 2 mL of 80% methanol to remove free fatty acids and free
283 oxylipins, followed by 2 mL methanol to elute PLs which were collected in 2 mL centrifuge
284 tubes and stored in -80 °C until further use. The efficiency of separation of PLs from free
285 oxylipins was confirmed using free oxylipin surrogate standards subjected to the same separation
286 method; here though, both the PL and free oxylipin fractions were collected and analyzed by
287 mass-spectrometry to measure recoveries. As shown in **Supplementary Table 1**, 97.8%-99.3%
288 of the free deuterated surrogate standards were recovered in the free fraction, suggesting that free
289 oxylipins were well-separated from PLs. The only exception was free d6-20-HETE which had a
290 recovery of 66.9% in the free fraction. This means that approximately 33% of free HETEs are
291 likely to co-elute with PLs, leading to overestimation of their concentrations in PLs.

292 *2.5 Hydrolysis of neutral lipid (NL) and phospholipid (PL)*

293 The collected NL and PL fractions were dried under nitrogen and dissolved in 200 μ L of
294 ice-cold extraction solvent containing 0.1 % acetic acid and 0.1% of BHT in methanol. Each
295 sample was spiked with 10 μ L of antioxidant solution containing 0.2 mg/mL BHT, EDTA and

296 TPP in water/methanol (1:1 v/v) and 10 μ L of surrogate mix standard solution containing 2 μ M
297 of d11-11(12)-EpETrE, d11-14,15-DiHETrE, d4-6-keto-PGF1a, d4-9-HODE, d4-LTB4, d4-
298 PGE2, d4-TXB2, d6-20-HETE, and d8-5-HETE in LC-MS grade methanol (i.e. 20 picomole per
299 sample). Then, 200 μ L of 0.25 M sodium hydroxide in water/methanol (1:1 v/v) was added to
300 each sample. The mixture was vortexed and heated for 30 minutes at 60°C on a heating block to
301 hydrolyze esterified oxylipins. After cooling it for 5 min, 25 μ L of acetic acid and 1575 μ L of
302 MilliQ water were added. The samples were vortexed and stored at -20 °C (for ~1 h) for further
303 purification of the hydrolyzed oxylipins by SPE as described in the following section.

304 *2.6 Oxylipin separation by SPE*

305 Free oxylipins were isolated using Waters Oasis HLB SPE columns (3 cc, 60 mg, 30 μ m
306 particle size; Waters Corporation, Milford, CA, USA; Cat #WAT094226) as previously
307 described [49]. The SPE columns were washed with one column volume of ethyl acetate and two
308 column volumes of methanol, and pre-conditioned with two column volumes of SPE buffer
309 containing 0.1% acetic acid and 5% methanol in MilliQ water. The hydrolyzed samples were
310 loaded onto the columns, which were then washed with two column volumes of SPE buffer and
311 dried under vacuum (\approx 15-20 psi) for 20 min. Oxylipins were then eluted from the columns with
312 0.5 mL methanol and 1.5 mL ethyl acetate, and collected in 2 mL centrifuge tubes. The samples
313 were dried under nitrogen, reconstituted in 100 μ L LCMS grade methanol, vortexed for 2 min,
314 and centrifuged at 15,871 $\times g$ (0°C; 5424 R Centrifuge; Eppendorf AG, Hamburg, Germany) for 2
315 min. The samples were transferred to centrifuge tubes containing a filter unit (Ultrafree-MC VV
316 Centrifugal Filter, 0.1 μ m; Millipore Sigma, Burlington, MA, USA; Cat # UFC30VV00) and
317 centrifuged at 15,871 $\times g$ (0°C) for 20 min. The filtered samples were transferred into 2 mL
318 amber LC-MS vials (Phenomenex, Torrance, CA, USA; Cat #AR0-3911-13) with pre-slit caps

319 (Phenomenex, Torrance, CA, USA; Cat #AR0-8972-13-B) and inserts (Waters Corporation,
320 Milford, CA, USA; Cat #WAT094171). Samples were stored in a -80 °C freezer for further ultra
321 high-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis.

322 *2.7 Oxylipins analysis by UPLC-MS/MS*

323 A total of 76 oxylipins were measured with UPLC-MS/MS, using an Agilent 1290 Infinity
324 UPLC system coupled to an Agilent 6460 Triple Quadropole mass-spectrometer (Agilent
325 Technologies, Santa Clara, CA, USA). The ULC was equipped with an Agilent ZORBAX
326 Eclipse Plus C18 column (2.1 × 150 mm, 1.8 µm particle size; Agilent Technologies, Santa Clara,
327 CA, USA; Cat #959759-902) to separate oxylipins. The column was kept at 45 °C. The system
328 was operated in a negative electrospray ionization mode with optimized dynamic Multiple
329 Reaction Monitoring (dMRM) conditions. Optimized MRM parameters for each oxylipin are
330 shown in **Supplementary Table 2**.

331 The temperature of the auto-sampler was set at 4 °C and the sample injection volume was
332 10 µL. Mobile phase A contained 0.1% acetic acid in MilliQ water and Mobile phase B
333 consisted of acetonitrile/methanol (80:15 v/v) containing 0.1% acetic acid. The mobile phase
334 gradient and pressure program was as follows: 1) 0-2 min, 35% B, 0.25 mL/min (this was
335 diverted into a waste bottle and not injected into the mass-spec); 2) 2-12 min, 35 to 85% B, 0.25
336 mL/min; 3) 12-15min, 85% B, 0.25 mL/min; 4) 15.1-17 min, 85% to 100% B, 0.4 mL/min; 5)
337 17.1-19 min, 100 to 35% B, 0.4 mL/min; and 6) 19-20 min, 35% A, 0.3 mL/min. The total run
338 time was 20 minutes.

339 *2.8 Data and statistical analysis*

340 Data were analyzed on GraphPad Prism v.8.02 (La Jolla, CA, USA) or SPSS 20.0 (SPSS
341 Inc., Chicago, IL, USA). Data are presented as mean ± standard deviation (SD). Missing

342 oxylipins values in 1, 2 or 3 subjects per group were imputed by dividing the lowest observable
343 concentration on the standard curve by the square root of 2. The number of imputed values for
344 each group are shown in **Supplementary Table 3**. The effects of sex, genotype and exposure on
345 brain NL and PL oxylipins were compared by three-way analysis of variance (ANOVA); the
346 effects of genotype and exposure on brain NL or PL oxylipins per sex were compared by one-
347 way ANOVA followed by Duncan's post-hoc test. Statistical significance was accepted at $p <$
348 0.05.

349 **3. Results**

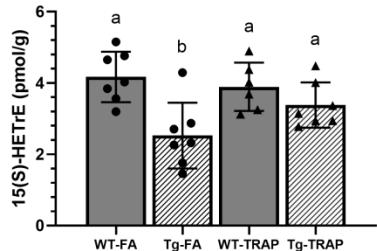
350 *3.1 Effects of AD genotype and TRAP exposure on NL-bound oxylipins in brain of 15-month-old*
351 *rats*

352 Three-way ANOVA showed that sex and AD genotype were the main factors affecting
353 oxylipins in NLs; in contrast, TRAP was not a main factor affecting oxylipins (**Supplementary**
354 **Table 4**).

355 Sex effects were statistically significant for dihomo-gamma-linoleic acid (DGLA)-derived
356 15(S)-hydroxy-eicosatrienoic acid (15(S)-HETrE), AA-derived 12-oxo-eicosatetraenoic acid
357 (12-oxo-ETE), 5(6)-EpETrE, and LXA4, eicosapentaenoic acid (EPA)-derived 11(12)-epoxy-
358 eicosatetraenoic acid (11(12)-EpETE) and Resolvin E1, and DHA-derived oxylipins including
359 19(20)-epoxy-docosapentaenoic acid (19(20)-EpDPE), 16(17)-EpDPE, 13(14)-EpDPE, 10(11)-
360 EpDPE, 7(8)-EpDPE, and 16,17-dihydroxy-docosapentaenoic acid (16,17-DiHPDA). All of
361 these oxylipins were significantly higher by 16% to 65% in brain NLs of females compared to
362 males.

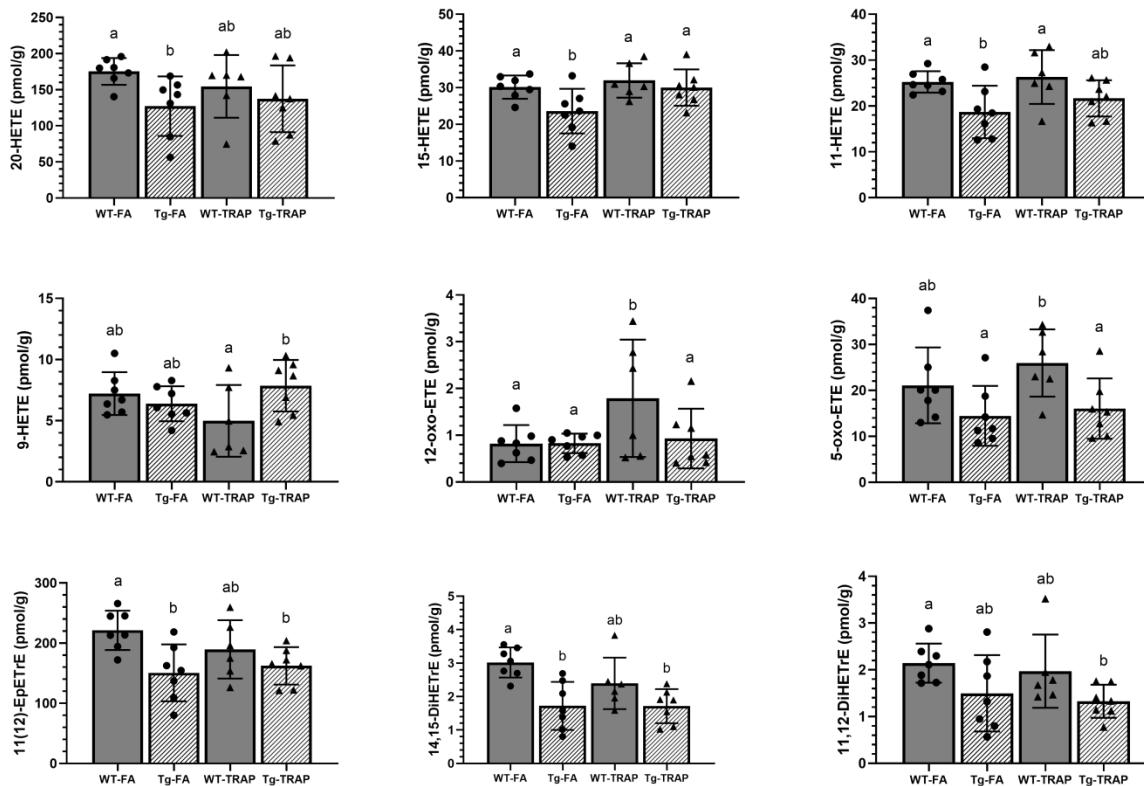
363 AD genotype significantly impacted DGLA-derived 15(S)-HETrE, AA-derived 15-HETE,
364 11-HETE, 11(12)-EpETrE, 14,15-DiHETrE, 11,12-DiHETrE, and 8,9-DiHETrE, EPA-derived

365 11(12)-EpETE, and DHA-derived 19(20)-EpDPE, 19,20-DiHPDA and 16,17-DiHPDA within
366 NLs ($p < 0.05$; **Supplementary Table 4**).

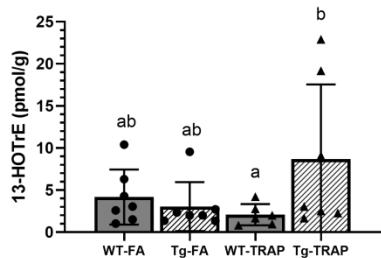

367 To better visualize AD-specific changes per sex, a one-way ANOVA was applied in male
368 and female wildtype and TgF344-AD rats exposed to FA or TRAP. The analysis revealed
369 significant changes in NL-bound oxylipins in TgF344-AD females exposed to either FA or
370 TRAP (**Figure 3**), and a few changes in males (**Supplementary Table 5**).

371 In females (**Figure 3**), DGLA-derived 15(S)-HETrE (**3-a**), AA-derived 20-HETE, 15-
372 HETE, 11-HETE, 11(12)-EpETrE and 14,15-DiHETrE (**3-b**), EPA-derived 17(18)-EpETE and
373 11(12)-EpETE (**3-d**), and DHA-derived 19(20)-EpDPE, 16(17)-EpDPE, 13(14)-EpDPE, 10(11)-
374 EpDPE, 7(8)-EpDPE and 19,20-DiHPDA (**3-e**), were significantly lower by 22%-43% in Tg-FA
375 rats compared to WT-FA controls ($p < 0.05$). The majority of these oxylipins (AA-derived
376 11(12)-EpETrE and 14,15-DiHETrE, and DHA-derived 19(20)-EpDPE, 16(17)-EpDPE, 13(14)-
377 EpDPE, 7(8)-EpDPE and 19,20-DiHPDA), as well as AA-derived 5-oxo-ETE and 11,12-
378 DiHETrE, and DHA-derived 16,17-DiHPDA, were also lower by 8%-43% in Tg-TRAP rats
379 compared to WT-FA or WT-TRAP, suggesting an AD-effect, independent of TRAP exposure on
380 these oxylipins. Alpha-linolenic acid (ALA)-derived 13-hydroxy-octadecatrienoic acid (13-
381 HOTrE) was 4-fold higher in Tg-TRAP compared to WT-TRAP (**Figure 3-c**, $p < 0.05$), but
382 neither groups differed significantly from WT-FA controls. Overall, the data suggest that AD-
383 genotype reduced multiple oxylipins in NLs of female rats, and that TRAP exposure did not
384 further exacerbate the effects of AD genotype on NL oxylipin concentrations.

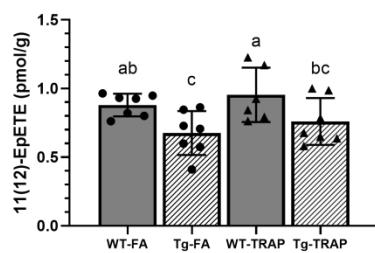
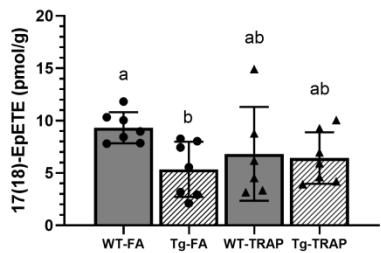
385 TRAP exposure minimally affected NL oxylipins in WT rats. The few observed changes
386 included a significant increase in AA-derived 12-oxo-ETE by ~2-fold in WT-TRAP rats


387 compared to WT-FA, Tg-FA and Tg-TRAP rats (**Figure 3-b**), and a significant 22% decrease in
388 DHA-derived 7(8)-EpDPE in WT-TRAP rats compared to WT-FA controls (**Figure 3-e**).

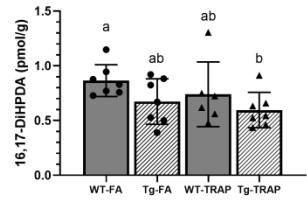
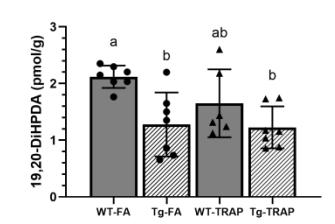
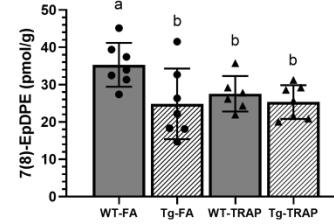
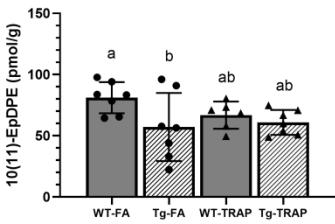
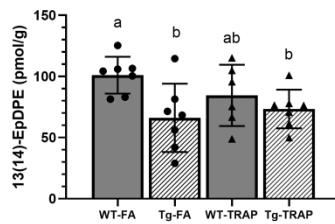
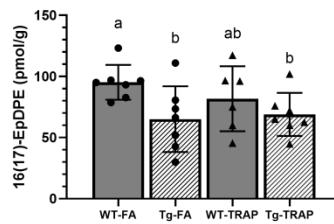
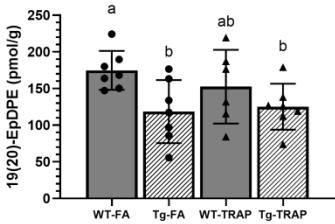
(a) DGLA-derived oxylipins


389

(b) AA-derived oxylipins



390

(c) ALA-derived oxylipins








391

(d) EPA-derived oxylipins

392

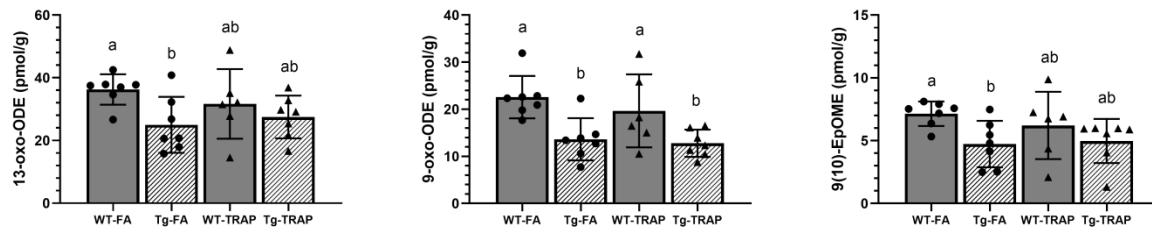
(e) DHA-derived oxylipins

393

394 **Figure 3.** Oxylipin concentrations in brain neutral lipids (NLs) of 15-month-old wildtype (WT)
395 or TgF344-AD (Tg) female rats exposed to filtered air (FA) or traffic-related air pollution (TRAP)
396 for 14 months (n=27). Bar graphs represent mean \pm SD of n = 7 WT-FA, n = 7 Tg-FA, n = 6
397 WT-TRAP, and n=7 Tg-TRAP. (a) dihomo-gamma-linoleic acid (DGLA)-derived oxylipins; (b)
398 arachidonic acid (AA)-derived oxylipins; (c) alpha-linolenic acid (ALA)-derived oxylipins; (d)
399 eicosapentaenoic acid (EPA)-derived oxylipins; (e) docosahexaenoic acid (DHA)-derived
400 oxylipins. Oxylipin abbreviations: DiHETE, dihydroxy-eicosatetraenoic acid; DiHETrE,
401 dihydroxy-eicosatrienoic acid; DiHOME, dihydroxy-octadecenoic acid; DiHPDA, dihydroxy-
402 docosapentaenoic acid; EpDPE, epoxy-docosapentaenoic acid; EpETE, epoxy-eicosatetraenoic
403 acid; EpETrE, epoxy-eicosatrienoic acid; EpOME, epoxy-octadecenoic acid; HDoHE, hydroxy-
404 docosahexaenoic acid; HEPE, hydroxy-eicosapentaenoic acid; HETE, hydroxy-eicosatetraenoic
405 acid; HETrE, hydroxy-eicosatrienoic acid; HODE, hydroxy-octadecadienoic acid; HOTrE,
406 hydroxy-octadecatrienoic acid; oxo-ETE, oxo-eicosatetraenoic acid; oxo-ODE, oxo-
407 octadecadienoic acid; TriHOME, trihydroxy-octadecenoic acid.
408

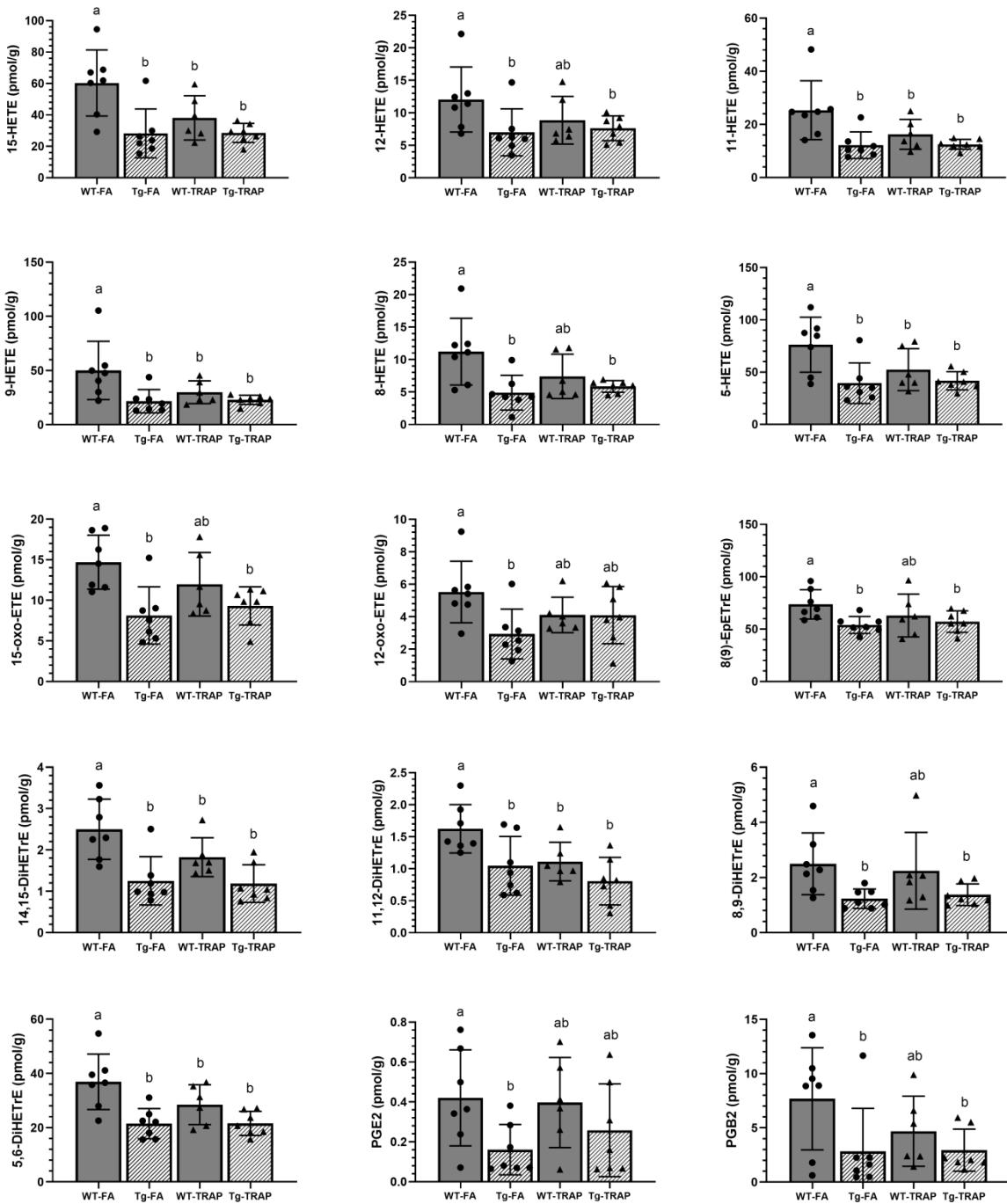
409 In males, no significant differences in brain NL-bound oxylipins of LA, DGLA, ALA, EPA
410 and DHA were observed (**Supplementary Table 5**); however, a few AA-derived oxylipins were
411 altered (**Supplementary Table 5**). 9-HETE was 40% lower in Tg-TRAP versus Tg-FA rats ($p <$
412 0.05), 8-HETE was lower by 45% in Tg-TRAP compared to WT-TRAP, and 15-deoxy-PGJ2
413 was 49% lower in Tg-TRAP than WT-FA ($p < 0.05$). These minimal changes are difficult to
414 interpret.

415 *3.2 Effects of AD genotype and TRAP exposure on PL-bound oxylipins in brain of 15-month-old*
416 *rats*

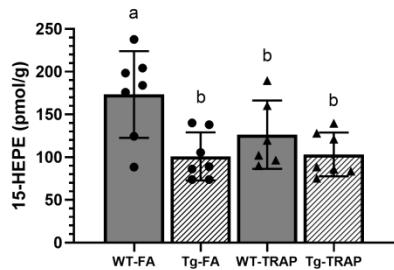

417 Three-way ANOVA showed significant main effects of sex, TRAP exposure and AD
418 genotype on brain PL oxylipins (**Supplementary Table 6**). Sex significantly altered LA-derived
419 13-oxo-octadecadienoic acid (13-oxo-ODE) and 12(13)-epoxy-octadecenoic acid (12(13)-
420 EpOME), which were higher by 21% and 19% in brain PLs of females than males, respectively
421 ($p < 0.05$). TRAP significantly altered PL-bound AA-derived 11,12-DiHETrE and LXA4, and
422 DHA-derived 19,20-DiHPDA ($p < 0.05$). Genotype significantly altered AA-derived 20-HETE,

423 8-HETE, 8(9)-EpETrE, 14,15-DiHETrE, 11,12-DiHETrE and 8,9-DiHETrE, and DHA-derived
424 19,20-DiHPDA ($p < 0.05$).

425 A one-way ANOVA followed by Duncan's post-hoc test was used to examine the effects of
426 genotype and exposure within female and male rats. **Supplementary Table 7** shows all oxylipin
427 concentration values in brain PLs of males and females. As shown, there were no significant
428 effects of AD genotype or TRAP exposure in males. However, significant changes were
429 observed in females as depicted in **Figure 4**. AD genotype was associated with significant
430 changes in PL-bound oxylipins. Compared to WT-FA controls, the Tg-FA group had
431 significantly lower concentrations of LA-derived 13-oxo-ODE, 9-oxo-ODE and 9(10)-EpOME
432 (by 31%-40%, **Figure 4-a**), AA-derived HETEs, 15-oxo-ETE, 12-oxo-ETE, 8(9)-EpETrE,
433 DiHETrEs, PGE2 and PGB2 (by 27%-63%, **Figure 4-b**), EPA-derived 15-hydroxy-
434 eicosapentaenoic acid (15-HEPE) (by ~42%, **Figure 4-c**), and DHA-derived 17-hydroxy-
435 docosahexaenoic acid (17-HDoHE), 19(20)-EpDPE, 19,20-DiHPDA and 16,17-DiHPDA (by
436 24%-42%, **Figure 4-d**). Similar reductions in PL-bound oxylipins were observed in Tg-TRAP
437 rats compared to WT-FA controls.

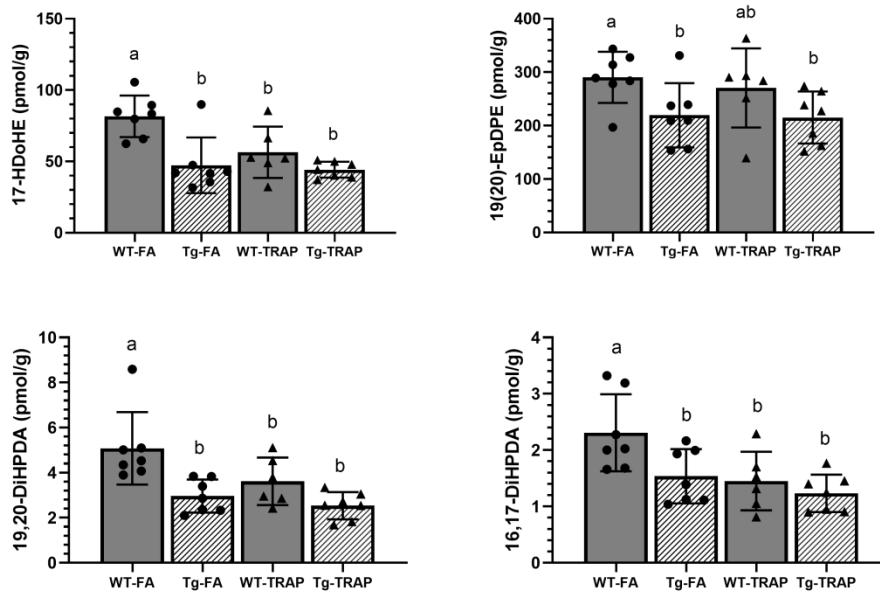

438 TRAP exposure alone resulted in significant reductions in AA, EPA and DHA-derived PL-
439 bound oxylipins in wildtype rats. Compared to WT-FA controls, WT-TRAP rats showed
440 significant reductions in AA-derived 15-HETE, 11-HETE, 9-HETE, 5-HETE, 14,15-DiHETrE,
441 11,12-DiHETrE and 5,6-DiHETrE by 23%-40% (**Figure 4-b**, $p < 0.05$), EPA-derived 15-HEPE
442 by 27% (**Figure 4-c**, $p < 0.05$), and DHA-derived 17-HDoHEE, 19,20-DiHPDA and 16,17-
443 DiHPDA by 29% to 37 % (**Figure 4-d**, $p < 0.05$).

(a) LA-derived oxylipins



444

(b) AA-derived oxylipins



(c) EPA-derived oxylipins

446

(d) DHA-derived oxylipins

447

448 **Figure 4.** Oxylipins concentrations in brain phospholipids (PLs) of 15-month-old wildtype (WT)
449 or TgF344-AD (Tg) female rats exposed to filtered air (FA) or traffic-related air pollution
450 (TRAP) for 14 months (n=27). Bar graphs represent mean \pm SD of n = 7 WT-FA, n = 7 Tg-FA, n
451 = 6 WT-TRAP, and n=7 Tg-TRAP. (a) linoleic acid (LA)-derived oxylipins, (b) arachidonic acid
452 (AA)-derived oxylipins, (c) eicosapentaenoic acid (EPA)-derived oxylipins, (d)
453 docosahexaenoic acid (DHA)-derived oxylipins. Oxylipin abbreviations: DiHETE, dihydroxy-
454 eicosatetraenoic acid; DiHETrE, dihydroxy-eicosatrienoic acid; DiHOME, dihydroxy-
455 octadecenoic acid; DiHPDA, dihydroxy-docosapentaenoic acid; EpDPE, epoxy-
456 docosapentaenoic acid; EpETE, epoxy-eicosatetraenoic acid; EpETrE, epoxy-eicosatrienoic acid;
457 EpOME, epoxy-octadecenoic acid; HDoHE, hydroxy-docosahexaenoic acid; HEPE, hydroxy-
458 eicosapentaenoic acid; HETE, hydroxy-eicosatetraenoic acid; HETrE, hydroxy-eicosatrienoic
459 acid; HODE, hydroxy-octadecadienoic acid; HOTrE, hydroxy-octadecatrienoic acid; oxo-ETE,

460 oxo-eicosatetraenoic acid; oxo-ODE, oxo-octadecadienoic acid; TriHOME, trihydroxy-
461 octadecenoic acid; PG: Prostaglandin.
462

463 **Summary of findings:**

464 More pro-resolving than pro-inflammatory oxylipins were changed in AD and TRAP-
465 exposed female rats. Of the 20 significantly altered oxylipins in brain NLs of female TgF344-AD
466 rats or WT/ TgF344-AD female rats exposed to TRAP, 75% (or 15 oxylipins) have pro-resolving
467 effects in vivo (**Figure 3 or Supplementary Table 5**). Similarly, in PLs, of the 23 significantly
468 altered oxylipin , 61% (14 oxylipins) are considered pro-resolving (**Figure 4 or Supplementary**
469 **Table 7**). Specifically, the following anti-inflammatory oxylipins were significantly lower in
470 female brain NLs of TgF344-AD rats by 23%-42% relative to WT controls: DGLA-derived
471 15(S)-HETrE, AA-derived 11(12)-EpETrE, EPA-derived 17(18)-EpETE and 11(12)-EpETE, and
472 DHA-derived 16(17)-EpDPE, 13(14)-EpDPE, 10(11)-EpDPE and 7(8)-EpDPE). In PLs, the
473 following species were reduced in TgF344-AD rats relative to WT controls by 27%-63%: LA-
474 derived 13-oxo-ODE, AA-derived 15-oxo-ETE, 8(9)-EpETrE and PGB2, EPA-derived 15-HEPE,
475 and DHA-derived 17-HDoHE.

476 In TRAP-exposed WT female rats, anti-inflammatory DHA-derived 7(8)-EpDPE was
477 significantly lower by 22% in brain NLs pool compared to WT-FA controls, and in PLs, WT-
478 TRAP females exhibited significant reductions 23%-37% in pro-resolving AA-derived 15-HETE
479 and 5,6-DiHETrE, EPA-derived 15-HEPE, and DHA-derived 17-HDoHEE and 19,20-DiHPDA.

480 **4. Discussion**

481 The main finding of this study is that AD genotype or TRAP exposure for 14 months
482 reduced the concentration of esterified lipid mediators in the brain of 15-month old female rats.
483 Most of the changes were seen in pro-resolving lipid mediators. The effects of AD genotype

484 were seen in both NL and PL pools, whereas the effects of TRAP exposure were mainly seen in
485 PLs. Changes were mainly seen in females but not males, suggesting sex-specific effects.
486 Together, our findings reflect a sex-dependent deficit in PL- and/or NL-bound pro-resolving
487 lipid mediators in rats genetically pre-disposed to AD or exposed to TRAP for 14 months.

488 Prior studies have shown a reduction in free pro-resolving lipid mediators in the brain of
489 transgenic mouse models of AD (DHA-derived EpDPEs [31] and AA-derived EpETrEs [21, 31,
490 32]) and in the post-mortem brain of AD patients (resolvin D5, maresin 1 and protectin D1 [24,
491 28], and LXA4 [50]), reflecting impaired resolution pathways. Our present findings point to
492 marked reductions in esterified lipid precursors to free pro-resolving lipid mediators, in TgF344-
493 AD and TRAP-exposed WT female rats. As noted earlier, free oxylipins are bioactive, whereas
494 esterified oxylipins have minimal bioactivity. Thus, a deficit in the esterified oxylipin pool,
495 which serves as a major source of free oxylipins [34], may explain why free pro-resolving
496 oxylipins are reduced in AD, where inflammation resolution is impaired. In this study, we also
497 extend these findings to TRAP exposure, a significant risk factor for AD dementia [4, 5].

498 The observed reduction in esterified pro-resolving lipid mediators in AD and TRAP-
499 exposed rats may be attributed to changes in brain oxylipin turnover, involving the release of
500 bound oxylipins and re-esterification of free oxylipins. Oxylipin release is enabled by lipase
501 enzymes [51], whereas re-esterification is enzymatically facilitated by the acylation of free
502 oxylipins via fatty acyl-CoA synthetases [52] and esterification of acylated oxylipins (i.e.
503 oxylipin-CoA) into NLs or PLs by one of 9 sn-glycerol-3-phosphate acyltransferase isoforms in
504 the brain (also known as lysophosphatidic acid acyltransferases) [53]. Thus, a decrease in
505 esterified oxylipins could be due to an increase in lipase-mediated release, decreased acyl-CoA

506 synthetase/ transferase-mediated esterification or a combination of both of these pathways as
507 shown in **Figure 1**.

508 There is limited information on the specific lipase, acyl-CoA synthetase and acyltransferase
509 isoforms involved in brain oxylipin turnover. Brain lipase enzymes, including calcium-dependent
510 phospholipase A2, have been shown to be upregulated in transgenic models of AD and in
511 humans with AD dementia [28, 54], although it is not known whether these isoforms release
512 bound oxylipins. Klett et al. showed that recombinant acyl-Co synthetase 4 preferentially
513 incorporates AA-derived epoxides into PLs in vitro [52], potentially implicating this particular
514 isoform in the observed reduction in PL-bound AA-epoxides. To our knowledge, acyltransferase
515 enzymes involvement in oxylipin turnover have not been studied. Identifying the specific lipase,
516 acyl-CoA synthetase and acyltransferase isoforms involved in pro-resolving oxylipin turnover in
517 AD and TRAP-exposed rats may inform on new targets that control the bioavailability of free
518 pro-resolving lipid mediators in the brain.

519 If indeed lipase-mediated release of oxylipins is increased, and their esterification decreased
520 as we propose above, one would expect an increase in free pro-resolving mediators in AD and
521 TRAP-exposed brains. Although literature on brain lipidomic changes following TRAP exposure
522 is lacking, in AD, marked reductions (not increases) in free pro-resolving lipid mediators were
523 observed in transgenic mouse models and human brain [19, 24, 28, 30, 50]. This could be due to
524 increased degradation of free pro-resolving lipid mediators upon synthesis, as supported by
525 studies showing elevated levels of sEH in transgenic mouse models of AD [21]; sEH converts
526 CYP-derived pro-resolving AA and DHA epoxides into less active fatty acid diols [55]. We did
527 not measure free pro-resolving oxylipins in this study, because their concentrations change by up
528 to 150-fold due to post-mortem ischemia and brain dissection compared to esterified oxylipins,

529 which only change by 27-112% [34, 56]. Thus, accurately capturing changes in the free oxylipin
530 pool ought to be conducted after head-focused microwave irradiation, to stop post-mortem
531 changes in free oxylipin metabolism.

532 It is also unlikely that the observed reductions in esterified oxylipin concentrations in AD
533 and TRAP-exposed rats were due to decreases in free oxylipin synthesis via LOX, COX, CYP,
534 15-PDGH and sEH, a process which would decrease the availability of free oxylipins available
535 for esterification into NLs and PLs. This is because some of these enzymes (12/15-LOX, 5-LOX
536 and sEH) were shown to increase in both animal model of AD [21, 32] and in human AD post-
537 mortem brain [15, 16], suggesting increased capacity to make free pro-resolving oxylipins. The
538 fact that the pro-resolving free lipids are reportedly reduced in AD suggests that they are
539 degraded faster than they are synthesized or released from esterified oxylipin pools.

540 Most of the reductions caused by AD or TRAP exposure were observed in pro-resolving
541 lipid mediators, with only a few reductions seen in pro-inflammatory lipid mediators. Pro-
542 inflammatory lipid mediators that changed include LA-derived 9-oxo-ODE and 9(10)-EpOME
543 and AA-derived DiHETrEs, which were reduced by 34-51% in PLs pool of female TgF344-AD
544 rats, and AA-derived HETEs and epoxyketones (oxo-ETEs) were reduced by 26%-57% in both
545 NLs and PLs of female TgF344-AD rats or TRAP-exposed WT rats. This is both an interesting
546 and peculiar finding, because it suggests that AD and TRAP exposure almost selectively impact
547 pro-resolving lipid pathways versus pro-inflammatory pathways. These observations may be in
548 response to pro-inflammatory cytokines shown to be elevated in the brain, heart and plasma of
549 AD transgenic and TRAP-exposed rats (brain data are currently under peer review whereas heart
550 and plasma data are reported here: [43]). Our findings demonstrate a deliberate attempt by the

551 brain to resolve AD- or TRAP-induced inflammation, likely by utilizing the esterified pro-
552 resolving lipid pool to generate more free pro-resolving lipid mediators.

553 TRAP exposure reduced esterified oxylipin concentrations in the brains of WT female rats
554 similar to what we observed in TgF344-AD female rats, suggesting that both environmental and
555 genetic predispositions to AD target the same lipid esterification pathways. A notable distinction,
556 however, is that AD genotype reduced pro-resolving lipids in both NLs and PLs, whereas TRAP
557 exposure reduced them almost exclusively within PLs. It is not entirely clear why different lipid
558 pools are affected by the two conditions, when neuroinflammation plays a role in both. It is
559 possible that prolonged exposure to TRAP might alter NL-bound oxylipins. If so, this would
560 mean that PL-bound oxylipins are more vulnerable to the effects of brain inflammation than NL-
561 bound oxylipins. In other words, the brain might utilize PL-bound oxylipins first before utilizing
562 NL-bound oxylipins. This remains to be confirmed with longer exposure studies.

563 There were no additive effects between AD genotype and TRAP exposure, meaning that
564 TRAP exposure did not further exacerbate the deficits in esterified oxylipin concentrations in
565 AD transgenic rats, compared to FA exposure. This could be because both AD genes and TRAP
566 act on a common target (e.g. enzyme or receptor), that release esterified oxylipins or re-esterify
567 free oxylipins. The net effect, based on this study, is a reduction in esterified pro-resolving
568 oxylipins. However, further studies are needed to understand the molecular mechanisms
569 involved.

570 Interestingly, two pro-inflammatory oxylipins were significantly increased in brain NLs of
571 AD and TRAP-exposed rats. AA-derived 9-HETE was 58% higher in Tg-TRAP females than
572 WT-TRAP females, and AA-derived 12-oxo-ODE was 2-fold higher in WT-TRAP females than
573 WT-FA females. This is consistent with studies showing increased free HETEs in AD transgenic

574 mouse brains [22] and human post-mortem brain [15, 23], possibly due to increased
575 esterification as a mechanism to deactivate their pro-inflammatory free form.

576 The effects of AD-genotype and TRAP were mainly seen in female rats, suggesting greater
577 vulnerability of females to AD and TRAP exposure. This is consistent with epidemiological data
578 showing that the risk of AD is about twice greater in females than in males [39, 57]. TRAP
579 exposure may also contribute to sex vulnerabilities to dementia as a recent study found that,
580 compared to men, women had a significantly higher risk for cognitive function decline
581 associated with increased exposure to air pollution (i.e., PM₁₀, PM_{2.5-10}, and NO₂) [58]. This is
582 mechanistically aligned with findings of this study showing sex-specific changes in esterified
583 lipid mediators, and with our previous study showing that TRAP-exposed females had more
584 amyloid plaque deposition compared to TRAP-exposed males at early ages [42].

585 One limitation of this study is that unesterified oxylipins were not measured. This is
586 because they are more affected by the effects of post-mortem ischemia compared to esterified
587 oxylipins as discussed above [34, 56]. High-energy microwave-irradiation is necessary to
588 prevent the artefacts of post-mortem ischemia on the free oxylipin pool, and should be
589 considered in future studies (Reviewed in [59]). Another limitation is that the animals were
590 moved from the exposure tunnel to the UC Davis main campus vivarium for 23 days (for
591 MRI/PET imaging) prior to euthanasia. This exposure-free period is unlikely to change the
592 outcome of the present study as it is known that PM and various dust elements accumulate and
593 reside in the brain for a few months post-exposure [60-63]. A third limitation is that we did not
594 assess vulnerabilities in esterified oxylipins in different brain regions and at earlier time-points.
595 Doing so would allow us to track age-dependent changes in resolution pathways and to see

596 whether they start in brain structures known to be involved in AD pathogenesis (e.g.
597 hippocampus).

598 In summary, the present study found significant reductions in pro-resolving lipid mediators
599 in brain esterified lipid pools of female rats expressing an AD phenotype or exposed to TRAP.
600 Esterified oxylipins within PLs and NLs were impacted by AD, whereas PL-bound oxylipins
601 were impacted by TRAP exposure. Our study shows disturbances in major lipid pools regulating
602 the in vivo availability of free pro-resolving lipid mediators in brain. This may explain why
603 inflammation resolution pathways are impaired in AD, and why chronic TRAP exposure
604 increases the risk of AD dementia (i.e. by impairing resolution pathways involving esterified
605 lipids). Targeting pro-resolving oxylipin release or esterification may have therapeutic benefits
606 in AD caused by genetic vulnerabilities or chronic TRAP exposure.

607

608 **Acknowledgements:**

609 This work was funded by the Alzheimer's Association (2018-AARGD-591676) and the
610 National Institutes of Health (R21 ES026515, R21 ES025570, P30 ES023513, and P30
611 AG010129). KTP was supported by NIH-funded predoctoral training programs awarded to the
612 University of California, Davis (T32 MH112507 and T32 ES007059).

613

614 **Conflicts of interest:**

615 The authors declare no conflict of interest.

616

617 **Supplementary information:**

618 **Supplementary Table 1.** Percentage of free surrogates in phospholipids (PL) and free lipids
619 fractions (n=3). Data are expressed as mean \pm SD.

620 **Supplementary Table 2.** Retention time, parent ion, product ion, and internal standards used in
621 neutral lipids (NL) and phospholipids (PL) of the 76 quantified oxylipins in rat brain samples.

622 **Supplementary Table 3.** Number of imputed oxylipins values in each group of 15-month-old
623 rats that were missing 1, 2, or 3 values.

624 **Supplementary Table 4.** Three-way ANOVA *p* value results of brain oxylipins in neutral lipids
625 fraction of 15-month-old rats (n=54)

626 **Supplementary Table 5.** Oxylipins concentrations in brain neutral lipids of 15-month-old rats
627 (n=54). Data within female or male groups are analyzed by one-way ANOVA followed by
628 Duncan's post-hoc test. Data are expressed as mean \pm SD. WT: wildtype gene; Tg: Alzheimer's
629 Disease transgenic gene; TRAP: traffic-related air pollution exposure; FA: filtered air exposure.

630 **Supplementary Table 6.** Three-way ANOVA *p* value results of brain oxylipins in phospholipids
631 fraction of 15-month-old rats (n=54)

632 **Supplementary Table 7.** Oxylipins concentrations in phospholipids fraction of 15-month-old
633 rats (n=54). Data within female or male groups are analyzed by one-way ANOVA followed by
634 Duncan's post-hoc test. Data are expressed as mean \pm SD. WT: wildtype gene; Tg: Alzheimer's
635 Disease transgenic gene; TRAP: traffic-related air pollution exposure; FA: filtered air exposure.

636

637 **References:**

638 [1] 2021 Alzheimer's disease facts and figures, *Alzheimer's & dementia : the journal of the Alzheimer's*
639 *Association*, 17 (2021) 327-406.

640 [2] K.D. Kochanek, J. Xu, E. Arias, Mortality in the United States, 2019, NCHS data brief, (2020) 1-8.

641 [3] R.H. Mir, G. Sawhney, F.H. Pottoo, R. Mohi-Ud-Din, S. Madishetti, S.M. Jachak, Z. Ahmed, M.H.
642 Masoodi, Role of environmental pollutants in Alzheimer's disease: a review, *Environmental Science and*
643 *Pollution Research*, 27 (2020) 44724-44742.

644 [4] P. Fu, K.K.L. Yung, Air Pollution and Alzheimer's Disease: A Systematic Review and Meta-Analysis,
645 *Journal of Alzheimer's disease : JAD*, 77 (2020) 701-714.

646 [5] R. Peters, N. Ee, J. Peters, A. Booth, I. Mudway, K.J. Anstey, Air Pollution and Dementia: A Systematic
647 Review, *Journal of Alzheimer's Disease*, 70 (2019) S145-S163.

648 [6] C.J. Matz, M. Egyed, R. Hocking, S. Seenundun, N. Charman, N. Edmonds, Human health effects of
649 traffic-related air pollution (TRAP): a scoping review protocol, *Systematic Reviews*, 8 (2019) 223.

650 [7] H. Chen, J.C. Kwong, R. Copes, K. Tu, P.J. Villeneuve, A. van Donkelaar, P. Hystad, R.V. Martin, B.J.
651 Murray, B. Jessiman, A.S. Wilton, A. Kopp, R.T. Burnett, Living near major roads and the incidence of
652 dementia, Parkinson's disease, and multiple sclerosis: a population-based cohort study, *The Lancet*, 389
653 (2017) 718-726.

654 [8] C.R. Jung, Y.T. Lin, B.F. Hwang, Ozone, particulate matter, and newly diagnosed Alzheimer's disease:
655 a population-based cohort study in Taiwan, *Journal of Alzheimer's disease : JAD*, 44 (2015) 573-584.

656 [9] I.M. Carey, H.R. Anderson, R.W. Atkinson, S.D. Beavers, D.G. Cook, D.P. Strachan, D. Dajnak, J.
657 Gulliver, F.J. Kelly, Are noise and air pollution related to the incidence of dementia? A cohort study in
658 London, England, *BMJ open*, 8 (2018) e022404.

659 [10] V.K. Singh, P. Guthikonda, Circulating cytokines in Alzheimer's disease, *Journal of Psychiatric*
660 *Research*, 31 (1997) 657-660.

661 [11] O. Gruzieva, S.K. Merid, A. Gref, A. Gajulapuri, N. Lemonnier, S. Ballereau, B. Gigante, J. Kere, C.
662 Auffray, E. Melén, G. Pershagen, Exposure to Traffic-Related Air Pollution and Serum Inflammatory
663 Cytokines in Children, *Environmental health perspectives*, 125 (2017) 067007.

664 [12] L.K. Fonken, X. Xu, Z.M. Weil, G. Chen, Q. Sun, S. Rajagopalan, R.J. Nelson, Air pollution impairs
665 cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and
666 morphology, *Molecular Psychiatry*, 16 (2011) 987-995.

667 [13] K. Yasojima, C. Schwab, E.G. McGeer, P.L. McGeer, Distribution of cyclooxygenase-1 and
668 cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs, *Brain Res*, 830 (1999) 226-
669 236.

670 [14] G.M. Pasinetti, P.S. Aisen, Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer's
671 disease brain, *Neuroscience*, 87 (1998) 319-324.

672 [15] D. Praticò, V. Zhukareva, Y. Yao, K. Uryu, C.D. Funk, J.A. Lawson, J.Q. Trojanowski, V.M.Y. Lee, 12/15-
673 Lipoxygenase Is Increased in Alzheimer's Disease: Possible Involvement in Brain Oxidative Stress, *The*
674 *American Journal of Pathology*, 164 (2004) 1655-1662.

675 [16] M.D. Ikonomovic, E.E. Abrahamson, T. Uz, H. Manev, S.T. Dekosky, Increased 5-lipoxygenase
676 immunoreactivity in the hippocampus of patients with Alzheimer's disease, *The journal of*
677 *histochemistry and cytochemistry : official journal of the Histochemistry Society*, 56 (2008) 1065-1073.

678 [17] P. Sarkar, J. Narayanan, D.R. Harder, Differential effect of amyloid β on the cytochrome P450
679 epoxyxygenase activity in rat brain, *Neuroscience*, 194 (2011) 241-249.

680 [18] Y.J. Koh, M.-k. Shin, E. Vázquez-Rosa, C. Cintrón-Pérez, K. Franke, E. Miller, P. Sridharan, S. Barker, S.
681 Fink, H. Li, D. Dawson, H. Fujioka, M. Flanagan, J. Ready, S. Markowitz, A. Pieper, 15-
682 Hydroxyprostaglandin Dehydrogenase Inhibition Protects a Mouse Model of Alzheimer's Disease,
683 *Biological Psychiatry*, 89 (2021) S309.

684 [19] A. Ghosh, M.M. Comerota, D. Wan, F. Chen, N.E. Propson, S.H. Hwang, B.D. Hammock, H. Zheng, An
685 epoxide hydrolase inhibitor reduces neuroinflammation in a mouse model of Alzheimer's disease,
686 *Science translational medicine*, 12 (2020).

687 [20] C. Griñán-Ferré, S. Codony, E. Pujol, J. Yang, R. Leiva, C. Escolano, D. Puigoriol-Illamola, J. Companys-
688 Alemany, R. Corpas, C. Sanfeliu, B. Pérez, M.I. Loza, J. Brea, C. Morisseau, B.D. Hammock, S. Vázquez, M.
689 Pallàs, C. Galdeano, *Pharmacological Inhibition of Soluble Epoxide Hydrolase as a New Therapy for*
690 *Alzheimer's Disease, Neurotherapeutics : the journal of the American Society for Experimental*
691 *NeuroTherapeutics*, 17 (2020) 1825-1835.

692 [21] C.P. Sun, X.Y. Zhang, J.J. Zhou, X.K. Huo, Z.L. Yu, C. Morisseau, B.D. Hammock, X.C. Ma, *Inhibition of*
693 *sEH via stabilizing the level of EETs alleviated Alzheimer's disease through GSK3 β signaling pathway,*
694 *Food and chemical toxicology : an international journal published for the British Industrial Biological*
695 *Research Association*, 156 (2021) 112516.

696 [22] Y. Tajima, M. Ishikawa, K. Maekawa, M. Murayama, Y. Senoo, T. Nishimaki-Mogami, H. Nakanishi, K.
697 Ikeda, M. Arita, R. Taguchi, A. Okuno, R. Mikawa, S. Niida, O. Takikawa, Y. Saito, *Lipidomic analysis of*
698 *brain tissues and plasma in a mouse model expressing mutated human amyloid precursor protein/tau*
699 *for Alzheimer's disease, Lipids in Health and Disease*, 12 (2013) 68.

700 [23] Y. Yao, C.M. Clark, J.Q. Trojanowski, V.M.-Y. Lee, D. Praticò, *Elevation of 12/15 lipoxygenase*
701 *products in AD and mild cognitive impairment, Annals of Neurology*, 58 (2005) 623-626.

702 [24] M. Zhu, X. Wang, E. Hjorth, R.A. Colas, L. Schroeder, A.C. Granholm, C.N. Serhan, M. Schultzberg,
703 *Pro-Resolving Lipid Mediators Improve Neuronal Survival and Increase A β 42 Phagocytosis, Mol*
704 *Neurobiol*, 53 (2016) 2733-2749.

705 [25] T. Wang, Y. Han, H. Li, Y. Wang, T. Xue, X. Chen, W. Chen, Y. Fan, X. Qiu, J. Gong, Y. Xu, J. Wang, W.
706 Li, T. Zhu, *Changes in bioactive lipid mediators in response to short-term exposure to ambient air*
707 *particulate matter: A targeted lipidomic analysis of oxylipin signaling pathways, Environment*
708 *International*, 147 (2021) 106314.

709 [26] S. Gouveia-Figueira, M. Karimpour, J.A. Bosson, A. Blomberg, J. Unosson, M. Sehlstedt, J. Pourazar, T.
710 Sandström, A.F. Behndig, M.L. Nording, *Mass spectrometry profiling reveals altered plasma levels of*
711 *monohydroxy fatty acids and related lipids in healthy humans after controlled exposure to biodiesel*
712 *exhaust, Analytica Chimica Acta*, 1018 (2018) 62-69.

713 [27] C.N. Serhan, N. Chiang, T.E. Van Dyke, *Resolving inflammation: dual anti-inflammatory and pro-*
714 *resolution lipid mediators, Nature Reviews Immunology*, 8 (2008) 349-361.

715 [28] W.J. Lukiw, J.-G. Cui, V.L. Marcheselli, M. Bodker, A. Botkjaer, K. Gotlinger, C.N. Serhan, N.G. Bazan,
716 *A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease,*
717 *J Clin Invest*, 115 (2005) 2774-2783.

718 [29] Y. Wang, F. Li, H. Zhuang, L. Li, X. Chen, J. Zhang, *Effects of plant polyphenols and alpha-tocopherol*
719 *on lipid oxidation, microbiological characteristics, and biogenic amines formation in dry-cured bacons, J*
720 *Food Sci*, 80 (2015) C547-555.

721 [30] Y. Zhao, F. Calon, C. Julien, J.W. Winkler, N.A. Petasis, W.J. Lukiw, N.G. Bazan, *Docosahexaenoic*
722 *Acid-Derived Neuroprotectin D1 Induces Neuronal Survival via Secretase- and PPAR γ -Mediated*
723 *Mechanisms in Alzheimer's Disease Models, PLOS ONE*, 6 (2011) e15816.

724 [31] A. Ghosh, M.M. Comerota, D. Wan, F. Chen, N.E. Propson, S.H. Hwang, B.D. Hammock, H. Zheng, An
725 epoxide hydrolase inhibitor reduces neuroinflammation in a mouse model of Alzheimer's disease,
726 *Science translational medicine*, 12 (2020).

727 [32] W. Chen, M. Wang, M. Zhu, W. Xiong, X. Qin, X. Zhu, *14,15-Epoxyeicosatrienoic Acid Alleviates*
728 *Pathology in a Mouse Model of Alzheimer's Disease, The Journal of Neuroscience*, 40 (2020) 8188-8203.

729 [33] A.Y. Taha, M. Hennebelle, J. Yang, D. Zamora, S.I. Rapoport, B.D. Hammock, C.E. Ramsden,
730 *Regulation of rat plasma and cerebral cortex oxylipin concentrations with increasing levels of dietary*
731 *linoleic acid, Prostaglandins Leukot Essent Fatty Acids*, 138 (2018) 71-80.

732 [34] Y. Otoki, A.H. Metherel, T. Pedersen, J. Yang, B.D. Hammock, R.P. Bazinet, J.W. Newman, A.Y. Taha,
733 Acute Hypercapnia/Ischemia Alters the Esterification of Arachidonic Acid and Docosahexaenoic Acid
734 Epoxide Metabolites in Rat Brain Neutral Lipids, *Lipids*, 55 (2020) 7-22.

735 [35] J.S.B. Shaik, M. Ahmad, W. Li, M.E. Rose, L.M. Foley, T.K. Hitchens, S.H. Graham, S.H. Hwang, B.D.
736 Hammock, S.M. Poloyac, Soluble epoxide hydrolase inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-
737 cyclohexyloxy]-benzoic acid is neuroprotective in rat model of ischemic stroke, *Am J Physiol Heart Circ
738 Physiol*, 305 (2013) H1605-H1613.

739 [36] S.K. Orr, S. Palumbo, F. Bosetti, H.T. Mount, J.X. Kang, C.E. Greenwood, D.W.L. Ma, C.N. Serhan, R.P.
740 Bazinet, Unesterified docosahexaenoic acid is protective in neuroinflammation, *Journal of
741 Neurochemistry*, 127 (2013) 378-393.

742 [37] H. Obinata, T. Hattori, S. Nakane, K. Tatei, T. Izumi, Identification of 9-Hydroxyoctadecadienoic Acid
743 and Other Oxidized Free Fatty Acids as Ligands of the G Protein-coupled Receptor G2A *, *J Biol Chem*,
744 280 (2005) 40676-40683.

745 [38] J.L. Lahvic, M. Ammerman, P. Li, M.C. Blair, E.R. Stillman, E.M. Fast, A.L. Robertson, C. Christodoulou,
746 J.R. Perlin, S. Yang, N. Chiang, P.C. Norris, M.L. Daily, S.E. Redfield, I.T. Chan, M. Chatrizeh, M.E. Chase, O.
747 Weis, Y. Zhou, C.N. Serhan, L.I. Zon, Specific oxylipins enhance vertebrate hematopoiesis via the
748 receptor GPR132, *Proceedings of the National Academy of Sciences*, 115 (2018) 9252-9257.

749 [39] K. Andersen, L.J. Launer, M.E. Dewey, L. Letenneur, A. Ott, J.R. Copeland, J.F. Dartigues, P. Kragh-
750 Sorensen, M. Baldereschi, C. Brayne, A. Lobo, J.M. Martinez-Lage, T. Stijnen, A. Hofman, Gender
751 differences in the incidence of AD and vascular dementia: The EURODEM Studies. *EURODEM Incidence
752 Research Group, Neurology*, 53 (1999) 1992-1997.

753 [40] R.M. Cohen, K. Rezai-Zadeh, T.M. Weitz, A. Rentsendorj, D. Gate, I. Spivak, Y. Bholat, V. Vasilevko,
754 C.G. Glabe, J.J. Breunig, P. Rakic, H. Davtyan, M.G. Agadjanyan, V. Kepe, J.R. Barrio, S. Bannykh, C.A.
755 Szekely, R.N. Pechnick, T. Town, A Transgenic Alzheimer Rat with Plaques, Tau Pathology, Behavioral
756 Impairment, Oligomeric A β , and Frank Neuronal Loss, *The Journal of Neuroscience*, 33 (2013) 6245-6256.

757 [41] R.M. Cohen, K. Rezai-Zadeh, T.M. Weitz, A. Rentsendorj, D. Gate, I. Spivak, Y. Bholat, V. Vasilevko,
758 C.G. Glabe, J.J. Breunig, P. Rakic, H. Davtyan, M.G. Agadjanyan, V. Kepe, J.R. Barrio, S. Bannykh, C.A.
759 Szekely, R.N. Pechnick, T. Town, A transgenic Alzheimer rat with plaques, tau pathology, behavioral
760 impairment, oligomeric a β , and frank neuronal loss, *J Neurosci*, 33 (2013) 6245-6256.

761 [42] K.T. Patten, A.E. Valenzuela, C. Wallis, E.L. Berg, J.L. Silverman, K.J. Bein, A.S. Wexler, P.J. Lein, The
762 Effects of Chronic Exposure to Ambient Traffic-Related Air Pollution on Alzheimer's Disease
763 Phenotypes in Wildtype and Genetically Predisposed Male and Female Rats, *Environmental health
764 perspectives*, 129 (2021) 057005.

765 [43] S. Edwards, G. Zhao, J. Tran, K.T. Patten, A. Valenzuela, C. Wallis, K.J. Bein, A.S. Wexler, P.J. Lein, X.
766 Rao, Pathological Cardiopulmonary Evaluation of Rats Chronically Exposed to Traffic-Related Air
767 Pollution, *Environmental health perspectives*, 128 (2020) 127003.

768 [44] E.L. Berg, L.R. Pedersen, M.C. Pride, S.P. Petkova, K.T. Patten, A.E. Valenzuela, C. Wallis, K.J. Bein, A.
769 Wexler, P.J. Lein, J.L. Silverman, Developmental exposure to near roadway pollution produces behavioral
770 phenotypes relevant to neurodevelopmental disorders in juvenile rats, *Translational Psychiatry*, 10
771 (2020) 289.

772 [45] K.T. Patten, E.A. González, A. Valenzuela, E. Berg, C. Wallis, J.R. Garbow, J.L. Silverman, K.J. Bein, A.S.
773 Wexler, P.J. Lein, Effects of early life exposure to traffic-related air pollution on brain development in
774 juvenile Sprague-Dawley rats, *Translational Psychiatry*, 10 (2020) 166.

775 [46] J. Folch, M. Lees, G.S. Stanley, A simple method for the isolation and purification of total lipides
776 from animal tissues, *J Biol Chem*, 226 (1957) 497-509.

777 [47] Y. Otoki, S. Kato, K. Nakagawa, D.J. Harvey, L.-W. Jin, B.N. Dugger, A.Y. Taha, Lipidomic Analysis of
778 Postmortem Prefrontal Cortex Phospholipids Reveals Changes in Choline Plasmalogen Containing

779 Docosahexaenoic Acid and Stearic Acid Between Cases With and Without Alzheimer's Disease,
780 NeuroMolecular Medicine, 23 (2021) 161-175.

781 [48] J.E. Rice, R.C. Vannucci, J.B. Brierley, The influence of immaturity on hypoxic-ischemic brain damage
782 in the rat, Annals of Neurology, 9 (1981) 131-141.

783 [49] Q. Shen, Z. Zhang, S. Emami, J. Chen, J.M. Leite Nobrega de Moura Bell, A.Y. Taha, Triacylglycerols
784 are preferentially oxidized over free fatty acids in heated soybean oil, npj Science of Food, 5 (2021) 7.

785 [50] X. Wang, M. Zhu, E. Hjorth, V. Cortés-Toro, H. Eyjolfsdottir, C. Graff, I. Nennesmo, J. Palmlad, M.
786 Eriksdotter, K. Sambamurti, J.M. Fitzgerald, C.N. Serhan, A.C. Granholm, M. Schultzberg, Resolution of
787 inflammation is altered in Alzheimer's disease, Alzheimer's & dementia : the journal of the Alzheimer's
788 Association, 11 (2015) 40-50.e41-42.

789 [51] P. Chaitidis, T. Schewe, M. Sutherland, H. Kühn, S. Nigam, 15-Lipoxygenation of phospholipids may
790 precede the sn-2 cleavage by phospholipases A2: reaction specificities of secretory and cytosolic
791 phospholipases A2 towards native and 15-lipoxygenated arachidonoyl phospholipids, FEBS Letters, 434
792 (1998) 437-441.

793 [52] E.L. Klett, S. Chen, A. Yechoor, F.B. Lih, R.A. Coleman, Long-chain acyl-CoA synthetase isoforms
794 differ in preferences for eicosanoid species and long-chain fatty acids, J Lipid Res, 58 (2017) 884-894.

795 [53] R.M. Bradley, R.E. Duncan, The lysophosphatidic acid acyltransferases (acylglycerophosphate
796 acyltransferases) family: one reaction, five enzymes, many roles, Current opinion in lipidology, 29 (2018)
797 110-115.

798 [54] G. Esposito, G. Giovacchini, J.S. Liow, A.K. Bhattacharjee, D. Greenstein, M. Schapiro, M. Hallett, P.
799 Herscovitch, W.C. Eckelman, R.E. Carson, S.I. Rapoport, Imaging neuroinflammation in Alzheimer's
800 disease with radiolabeled arachidonic acid and PET, J Nucl Med, 49 (2008) 1414-1421.

801 [55] D. Stefanovski, P.-a.B. Shih, B.D. Hammock, R.M. Watanabe, J.H. Youn, Assessment of soluble
802 epoxide hydrolase activity in vivo: A metabolomic approach, Prostaglandins & Other Lipid Mediators,
803 148 (2020) 106410.

804 [56] M. Hennebelle, A.H. Metherel, A.P. Kitson, Y. Otoki, J. Yang, K.S.S. Lee, B.D. Hammock, R.P. Bazinet,
805 A.Y. Taha, Brain oxylipin concentrations following hypercapnia/ischemia: effects of brain dissection and
806 dissection time, J Lipid Res, 60 (2019) 671-682.

807 [57] A. Ott, M.M.B. Breteler, F.v. Harskamp, T. Stijnen, A. Hofman, Incidence and Risk of Dementia: The
808 Rotterdam study, American Journal of Epidemiology, 147 (1998) 574-580.

809 [58] H. Kim, J. Noh, Y. Noh, S.S. Oh, S.-B. Koh, C. Kim, Gender Difference in the Effects of Outdoor Air
810 Pollution on Cognitive Function Among Elderly in Korea, Frontiers in Public Health, 7 (2019).

811 [59] E.J. Murphy, Brain fixation for analysis of brain lipid-mediators of signal transduction and brain
812 eicosanoids requires head-focused microwave irradiation: an historical perspective, Prostaglandins
813 Other Lipid Mediat, 91 (2010) 63-67.

814 [60] K.T. Patten, E.A. Gonzalez, A. Valenzuela, E. Berg, C. Wallis, J.R. Garbow, J.L. Silverman, K.J. Bein, A.S.
815 Wexler, P.J. Lein, Effects of early life exposure to traffic-related air pollution on brain development in
816 juvenile Sprague-Dawley rats, Transl Psychiatry, 10 (2020) 166.

817 [61] P. Leffler, L. Gerhardsson, D. Brune, G.F. Nordberg, Lung retention of antimony and arsenic in
818 hamsters after the intratracheal instillation of industrial dust, Scand J Work Environ Health, 10 (1984)
819 245-251.

820 [62] E.V. Parkhomchuk, D.G. Gulevich, A.I. Taratayko, A.M. Baklanov, A.V. Selivanova, T.A. Trubitsyna, I.V.
821 Voronova, P.N. Kalinkin, A.G. Okunev, S.A. Rastigeev, V.A. Reznikov, V.S. Semeykina, K.A. Sashkina, V.V.
822 Parkhomchuk, Ultrasensitive detection of inhaled organic aerosol particles by accelerator mass
823 spectrometry, Chemosphere, 159 (2016) 80-88.

824 [63] E.V. Parkhomchuk, E.A. Prokopyeva, D.G. Gulevich, A.I. Taratayko, A.M. Baklanov, P.N. Kalinkin, S.A.
825 Rastigeev, D.V. Kuleshov, K.A. Sashkina, V.V. Parkhomchuk, Ultrafine organic aerosol particles inhaled by

826 mice at low doses remain in lungs more than half a year, J Labelled Comp Radiopharm, 62 (2019) 785-
827 793.
828