

1 **Title**

2 Autophagy promotes organelle clearance and organized cell separation of living root cap
3 cells in *Arabidopsis thaliana*

4

5 **Running title**

6 Role of autophagy in root cap

7

8 **Authors**

9 Tatsuaki Goh^{1,§,*}, Kaoru Sakamoto^{1,§}, Pengfei Wang², Saki Kozono¹, Koki Ueno¹,
10 Shunsuke Miyashima¹, Koichi Toyokura³, Hidehiro Fukaki³, Byung-Ho Kang², Keiji
11 Nakajima^{1,*}

12

13 **Affiliations**

14 ¹Graduate School of Science and Technology, Nara Institute of Science and Technology,
15 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.

16 ²School of Life Sciences, Centre for Cell & Developmental Biology and State Key
17 Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New
18 Territories, Hong Kong, China.

19 ³Department of Biology, Graduate School of Science, Kobe University, Rokkodai, Kobe
20 657-8501, Japan

21 §These authors contributed equally.

22

23 ***Corresponding authors:**

24 Tatsuaki Goh <goh@bs.naist.jp> and Keiji Nakajima <k-nakaji@bs.naist.jp>

25

26 **Keywords**

27 *Arabidopsis thaliana*, amyloplast, autophagy, cell separation, root cap

28

29 **Summary statement**

30 Time-lapse microscope imaging revealed spatiotemporal dynamics of intracellular
31 reorganization associated with functional transition and cell separation in the *Arabidopsis*
32 root cap and the roles of autophagy in this process.

33

34

35 **Abstract**

36 The root cap is a multi-layered tissue covering the tip of a plant root that directs root
37 growth through its unique functions such as gravity-sensing and rhizosphere interaction.
38 To prevent damages from the soil environment, cells in the root cap continuously turn
39 over through balanced cell division and cell detachment at the inner and the outer cell
40 layers, respectively. Upon displacement toward the outermost layer, columella cells at
41 the central root cap domain functionally transition from gravity-sensing cells to secretory
42 cells, but the mechanisms underlying this drastic cell fate transition are largely unknown.
43 By using live-cell tracking microscopy, we here show that organelles in the outermost
44 cell layer undergo dramatic rearrangements, and at least a part of this rearrangement
45 depends on spatiotemporally regulated activation of autophagy. Notably, this root cap
46 autophagy does not lead to immediate cell death, but rather is necessary for organized
47 separation of living root cap cells, highlighting a previously undescribed role of
48 developmentally regulated autophagy in plants.

49 **Introduction**

50

51 The root cap is a cap-like tissue covering the tip of a plant root. The root cap protects the
52 root meristem where rapid cell division takes place to promote root elongation (Arnaud
53 et al., 2010; Kumpf and Nowack, 2015). The root cap is also responsible for a number of
54 physiological functions, such as gravity-sensing to redirect the root growth axis (Strohm
55 et al., 2012), and metabolite secretion for lubrication and rhizosphere interaction
56 (Cannesan et al., 2012; Driouich et al., 2013; Hawes et al., 2016; Maeda et al., 2019). In
57 addition to its unique functions, the root cap exhibits a striking developmental feature,
58 namely continuous turnover of its constituent cells (Fig. 1A) (Kamiya et al., 2016). This
59 cell turnover is enabled by concerted production and detachment of cells at the inner stem
60 cells layer and the outer mature cell layer, respectively. Notably, the outermost root cap
61 cells detach from the root tip and disperse into the rhizosphere, creating a unique
62 environment at the border between the root and the soil. For this, detaching root cap cells
63 are called "border cells" (Hawes and Lin, 1990). Cell turnover is commonly seen in
64 animals but rarely found in plants where morphogenesis relies not only on the production
65 of new cells but also on the accumulation of mature and sometimes dead cells. Thus, the
66 root cap serves as a unique experimental material to study how plant cells dynamically
67 change their morphology and functions during tissue maintenance.

68 In the model angiosperm *Arabidopsis thaliana* (Arabidopsis), the root cap is
69 composed of two radially organized domains, the central columella and the surrounding
70 lateral root cap (LRC) that together constitute five to six cell layers along the root

71 proximodistal axis (Fig. 1) (Dolan et al., 1993). In *Arabidopsis*, the outermost root cap
72 cells do not detach individually, but rather separate as a cell layer (Fig. 1) (Driouich et al.,
73 2007; Kamiya et al., 2016; Vicre et al., 2005). Previous studies revealed that detachment
74 of the *Arabidopsis* root cap cells is initiated by localized activation of programmed cell
75 death (PCD) at the proximal LRC region, and requires the functions of the NAC-type
76 transcription factor SOMBRERO (SMB), a master regulator of root cap cell maturation
77 (Bennett et al., 2010; Fendrych et al., 2014; Willemsen et al., 2008; Xuan et al., 2016).
78 While SMB is expressed in all root cap cells and acts as a master regulator of cell
79 maturation in the root cap, two related NAC-type transcription factors, BEARSKIN1
80 (BRN1) and BRN2, are specifically expressed in the outer two cell layers of the root cap
81 (Bennett et al., 2010; Kamiya et al., 2016). BRN1 and BRN2 share high sequence
82 similarities and redundantly promote the separation of central columella cells. Cell
83 separation in plants requires partial degradation of cell walls. Indeed, *ROOT CAP*
84 *POLYGLACTUROSE* (*RCPG*) gene encoding a putative pectin-degrading enzymes acts
85 downstream of *BRN1* and *BRN2*, and at least BRN1 can directly bind to the *RCPG*
86 promoter (Kamiya et al., 2016). *CELLULASE5* (*CEL5*) gene encoding a putative
87 cellulose-degrading enzyme is also implicated in cell separation in the root cap (Bennett
88 et al., 2010; del Campillo et al., 2004).

89 Previous electron microscopic studies reported profound differences in the
90 intracellular organization between the inner and the outer root cap cells of *Arabidopsis*
91 (Maeda et al., 2019; Sack and Kiss, 1989). As expected from their gravity-sensing
92 functions, columella cells in the inner layers accumulate large amyloplasts. Amyloplasts

93 are specialized plastids containing starch granules and known to act as statoliths in the
94 gravity-sensing cells (statocytes) in both roots and shoots (Gilroy and Swanson, 2014).
95 In contrast, columella cells constituting the outermost root cap layer do not contain large
96 amyloplasts, and instead accumulate secretory vesicles (Maeda et al., 2019; Poulsen et
97 al., 2008). Thus, the observed difference in subcellular structures correlates well with the
98 functional transition of columella cells from gravity-sensing cells to the secretory cells
99 (Blancaflor et al., 1998; Maeda et al., 2019; Vicre et al., 2005). Before detachment, the
100 outermost root cap cells contain a large central vacuole, likely for the storage of various
101 metabolites (Baetz and Martinoia, 2014). In addition, a novel role of cell death promotion
102 has been proposed for the large central vacuole in the LRC cells (Fendrych et al., 2014).

103 In eukaryotes, dispensable or damaged proteins and organelles are degraded by
104 a self-digestion process called autophagy (Mizushima and Komatsu, 2011). Autophagy
105 initiates with expansion of isolated membranes, which subsequently form spherical
106 structures called the autophagosomes and engulf target components. In later steps,
107 autophagosomes fuse with vacuoles, and the content of autophagosomes degraded by
108 hydrolytic enzymes stored in the vacuole. When eukaryotic cells are subjected to stress
109 conditions such as nutrient starvation, autophagy is activated to recycle nutrients and
110 maintain intracellular environments in order to sustain the life of cells and/or individuals
111 (Mizushima and Komatsu, 2011). Autophagy plays an important role not only in stress
112 response but also in development and differentiation, as autophagy-deficient mutants are
113 lethal in a variety of model organisms including yeast, nematode, fruit fly, and mouse
114 (Mizushima and Levine, 2010). Genes encoding central components of autophagy, the

115 core *ATG* genes, are conserved in the *Arabidopsis* genome (Hanaoka et al., 2002; Liu and
116 Bassham, 2012). However, under normal growth conditions, autophagy-deficient
117 *Arabidopsis* mutants grow normally except for early senescence (Hanaoka et al., 2002;
118 Yoshimoto et al., 2009). Thus roles of autophagy in plant growth and development remain
119 largely unknown.

120 In this study, we revealed morphological and temporal dynamics of
121 intracellular rearrangement that enable the functional transition of the root cap cells in
122 *Arabidopsis* by using motion-tracking time-lapse imaging. We also found that the
123 autophagy-deficient *Arabidopsis* mutants are defective in cell clearance and vacuolization
124 of the outermost root cap cells. Unexpectedly, the autophagy-deficient mutants are
125 impaired in the organized separation of the outermost root cap layer. Thus our study
126 revealed a novel role of developmentally regulated autophagy in the root cap
127 differentiation and functions.

128

129

130 **Results**

131

132 **Outermost columella cells undergo rapid organelle rearrangement before cell
133 detachment**

134 While previous electron microscopic studies have revealed profound differences in
135 intracellular structures between the inner and the outer root cap cells (Maeda et al., 2019;
136 Poulsen et al., 2008; Sack and Kiss, 1989), spatiotemporal dynamics of subcellular

137 reorganization in the root cap cells has not been analyzed, due to a difficulty in performing
138 prolonged time-lapse imaging of the root tip that quickly relocates as the root elongates.
139 To overcome this problem, we developed a motion-tracking microscope system with a
140 horizontal optical axis and a spinning disc confocal unit. A similar system has been
141 reported by another group (von Wangenheim et al., 2017). Our microscope system
142 enabled high-magnification time-lapse confocal imaging of the tip of vertically growing
143 roots for up to six days, allowing visualization of cellular and subcellular dynamics of
144 root cap cells during three consecutive detachment events (Supplementary Fig. S1).

145 Under our experimental conditions, the outermost root cap layer of wild-type
146 *Arabidopsis* sloughed off with a largely fixed interval of about 38 hours (h)
147 (Supplementary Fig. S1F). This periodicity is comparable to that reported for roots
148 growing on agar plates (Shi et al., 2018), indicating that our microscope system does not
149 affect the cell turnover rate of the root cap. Bright-field observation revealed that the cell
150 detachment initiates in the proximal LRC region and extends toward the central columella
151 region (Fig. 1 and Fig. S1A-S1D). In concert with the periodic detachment of the
152 outermost layer, subcellular structures of the neighboring inner cell layer (hereafter called
153 the second outermost layer) rearranged dynamically (Fig. 2A and Supplementary Movie
154 S1). Before the detachment of the outermost layer, columella cells in the inner three to
155 four cell layers contained large amyloplasts that sedimented toward the distal (bottom)
156 side of the cell (Fig. 2A, -4 h, light blue arrowheads), whereas those in the outermost
157 layer were localized in the middle region of the cell (Fig. 2A, -4 h, dark blue arrowhead).
158 A few hours after the outermost layer started to detach at the proximal LRC region, the

159 amyloplasts in the second outermost layer relocated toward the middle region of the cell,
160 resulting in a similar localization pattern to those of the outermost layer (Fig. 2A, 0.5 h,
161 dark blue arrowheads). Toward the completion of the cell separation, rapid vacuolization
162 and shrinkage of amyloplasts took place in the outermost layer (Fig. 2A, 18 h, green
163 arrowhead).

164 By using plants expressing nuclear-localized red fluorescent proteins
165 (*DR5v2:H2B-tdTomato*), we could also visualize dynamic relocation of nuclei, as well as
166 its temporal relationship with amyloplast movement (Fig. 2B and Supplementary Movie
167 S2). In the second outermost layer, nuclei relocated from the proximal (upper) to the
168 middle region of each cell about a few hours before the neighboring outermost layer
169 initiated detachment (Fig. 2B, -8 h, red arrowhead). This nuclear migration was followed
170 by the relocation of amyloplasts around the time when the neighboring outermost layer
171 initiated detachment at the proximal LRC region (Fig. 2B, 0 h, dark blue arrowhead). In
172 later stages, the amyloplasts surrounded the centrally-localized nucleus (Fig. 2B, 13 h,
173 dark blue arrowhead). In the outermost cells, nuclei migrated further to localize to the
174 distal pole of the cell (Fig. 2B, 13 h, purple arrowheads).

175 Dynamic change in vacuolar morphology was also visualized using plants
176 expressing a tonoplast marker (*VHP1-mGFP*) (Segami et al., 2014) (Supplementary Fig.
177 S2 and Supplementary movie S3). Vacuoles in the inner columella cells were smaller and
178 spherical, whereas those in the outer cells were larger and tubular (Supplementary Fig.
179 S2, 5-23 h). Notably, in the outermost layer, vacuoles were dramatically enlarged, and
180 eventually occupied the entire volume of detaching root cap cells (Supplementary Fig.

181 S2, 35-47 h). Confocal imaging of plants expressing both tonoplast and nuclear markers
182 (*VHP1-mGFP* and *pRPS5a:H2B-tdTomato*) (Adachi et al., 2011; Segami et al., 2014)
183 revealed that both nuclei and amyloplasts were embedded in the meshwork of vacuolar
184 membranes in the outermost cell layer, whereas, in the inner cell layer, amyloplasts were
185 localized in a space devoid of vacuolar membranes (Fig. 2C). Taken together, our time-
186 lapse microscopic imaging revealed a highly organized sequence of organelle
187 rearrangement in the outer root cap cells, as well as its close association with cell position
188 and cell detachment.

189

190 **Autophagy is activated in the outermost root cap cells before their detachment**

191 Autophagy is an evolutionarily conserved self-digestion system in eukaryotes and
192 operates by transporting cytosolic components and organelles to the vacuole for nutrient
193 recycling and homeostatic control (Mizushima and Komatsu, 2011). The rapid
194 disappearance of amyloplasts and the formation of large vacuoles observed in the
195 outermost root cap cells made us hypothesize that autophagy operates behind their
196 dynamic subcellular rearrangements before the cell detachment. To test this hypothesis,
197 we examined whether autophagosomes, spherical membrane structures characteristics of
198 autophagy, are formed in the root cap cells at the time and space corresponding to the
199 organelle rearrangement.

200 We first observed an autophagosome marker, *35Spro:GFP-ATG8a*, which
201 ubiquitously expresses GFP-tagged *Arabidopsis* ATG8a proteins, one of the nine ATG8
202 proteins encoded in the *Arabidopsis* genome (Yoshimoto et al., 2004). ATG8 is a

203 ubiquitin-like protein, and upon autophagy activation, incorporated into the
204 autophagosome membranes as a conjugate with phosphatidylethanolamine (Liu and
205 Bassham, 2012). Our time-lapse confocal imaging revealed uniform localization of GFP-
206 ATG8a fluorescence in the inner cell layers, suggesting low autophagic activity in these
207 cells (Fig. 3B and Supplementary Movie S4). In contrast, in detaching outermost cells,
208 dot-like signals of GFP-ATG8a became evident and their number and size increased (Fig.
209 3C, -24.0-1.5 h). In later stages, GFP-ATG8a signals largely disappeared in the outermost
210 cells before their detachment (Fig. 3C, 10 h). After the detachment of the outermost cell
211 layer, the inner cells (the new outermost cells) remained showing uniform GFP-ATG8
212 signals (Fig. 3C, 18.5 h). In the later phase of cell detachment, GFP-ATG8a signals
213 exhibited ring-like shapes, a typical image of autophagosomes in confocal microscopy
214 (Fig. 3C, 1.5 h, red arrowhead and a magnified image in the inset).

215 To further confirm whether the GFP-ATG8a-labelled puncta correspond to the
216 typical double membrane-bound autophagosome, we performed correlative light and
217 electron microscopy (CLEM) analysis (Fig. 4) (Wang and Kang, 2020). GFP
218 fluorescence precisely colocalized with spherical structures typical of autophagosomes
219 (Fig. 4C-4F). Together, our observations confirmed that autophagy is activated in the
220 outermost columella cells before their detachment.

221

222 **Autophagy promotes organelle rearrangement in the outermost root cap cells**
223 To examine whether autophagy plays a role in the maturation of columella cells, we first
224 tested the effect of E-64d, a membrane-permeable protease inhibitor that promotes the

225 accumulation of autophagic bodies inside the vacuole (Inoue et al., 2006; Merkulova et
226 al., 2014). In the outermost columella cells of E64d-treated roots, autophagic body-like
227 aggregates accumulated inside the enlarged vacuoles, suggesting the occurrence of active
228 autophagic degradation in these cells (Fig. S3B, compare with S3A).

229 We next carried out the phenotypic characterization of autophagy-deficient
230 mutants. *ATG* genes encoding autophagy components are known to exist in the genomes
231 of *Arabidopsis* and other model plant species (Hanaoka et al., 2002; Liu and Bassham,
232 2012). Among them, *ATG5* belongs to the core *ATG* genes and is essential for
233 autophagosome formation as *ATG8*. In the loss of function *atg5-1* mutant (Yoshimoto et
234 al., 2009), GFP-ATG8a signal was uniformly distributed throughout the cytosol both
235 during and after the cell detachment, indicating that autophagosome formation in the
236 detaching columella cells requires functional *ATG5* (Fig. S4 and Supplementary movie
237 S5). Furthermore, time-lapse observation revealed a loss of full vacuolation in the
238 detaching outermost cells of *atg5-1* (Fig. S5A, Supplementary movie S6). In the
239 detaching outermost cells of wild-type plants, a central vacuole enlarged to occupy the
240 entire cell volume, whereas only a few spherical and small fragmented vacuoles were
241 found in the corresponding cells of *atg5-1* (Fig. 5A-5D). Whereas the disappearance of
242 iodine-stained large amyloplasts was not affected in the outer columella cells of *atg5-1*
243 (Fig. S3C and S3D), plastids in the *atg5-1* mutant exhibited abnormal morphologies
244 dominated by tubular structures called stromules (Hanson and Hines, 2018), suggesting
245 a specific role of autophagy in plastid restructuring and/or degradation (Fig. S3E and S3F).
246 We also found that the detaching *atg5-1* cells were strongly stained with FDA, a

247 compound that emits green fluorescence when hydrolyzed in the cytosol, as compared
248 with the restricted fluorescence in the cortical region of corresponding wild-type cells
249 (Fig. 5E and 5F). Retention of cytosol in detaching columella cells was also observed in
250 FDA-stained roots of additional *atg* mutants including *atg2-1*, *atg7-2*, *atg10-1*, *atg12ab*,
251 *atg13ab* and *atg18a* (Fig. 5G-5L), as well as in *atg5-1* plants expressing GUS-GFP fusion
252 proteins under the outer layer-specific *BRN1* promoter (Fig. S5D, compare with S5C).
253 Defects of vacuolization and cytosol digestion in *atg5-1* were complemented with an
254 *ATG5-GFP* transgene, where GFP-tagged GFP5 proteins were expressed under the *ATG5*
255 promoter (Fig. 5M and 5N). Together, these observations clearly demonstrated a central
256 role of autophagy in cytosol digestion and vacuolization of detaching columella cells.

257

258 **Autophagy is required for organized separation of root cap cell layer**

259 In the course of time-lapse imaging of *atg5-1*, we noticed that the autophagy-deficient
260 mutants exhibited a distinct cell detachment behavior as compared with that of wild type.
261 While the outermost root cap cells detach as a cell layer in the wild type (Fig. 6A, white
262 arrowheads, and Supplementary Movie S7) (Kamiya et al., 2016), those of *atg5-1*
263 detached individually (Fig. 6B, orange arrowheads, and Supplementary Movie S8),
264 indicating that autophagy is required not only for organelle rearrangement but also for the
265 organized separation of root cap cell layers, a behavior typically observed in the root cap
266 of *Arabidopsis* and related species (Hamamoto et al., 2006; Hawes et al., 2002). The
267 aberrant cell detachment behavior of *atg5-1* was complemented by the *ATG5-GFP*
268 transgene (Fig. 6C, white arrowheads, and Supplementary Movie S9), confirming the

269 causal relationship. To clarify whether autophagy activation in the outermost cells is
270 sufficient for organized cell separation, we established *atg5-1* plants expressing GFP-
271 tagged ATG5 proteins under the *BRN1* and the *RCPG* promoter, which drive transcription
272 in the outer two cell layers and the outermost root cap layer, respectively (Kamiya et al.,
273 2016). Time-lapse imaging revealed that both of the plant lines restored the organized
274 separation of the outermost root cap cell layer (Fig. 7A and 7B, white arrowheads and
275 Supplementary movie S10 and S11). These observations, in particular, restoration of the
276 layered cell separation by the *RCPG* promoter-driven ATG-GFP, confirmed that
277 autophagy activation in the detaching cells at the timing of active cell wall degradation is
278 sufficient for the organized separation of the outermost root cap layer.

279

280

281 **Discussion**

282

283 In this study, we revealed spatiotemporal dynamics of the intracellular reorganization and
284 cell detachment in the *Arabidopsis* root cap, as well as a role of developmentally regulated
285 autophagy in these processes. In the outermost root cap layer, autophagy is activated in a
286 specific cell layer and at the timing closely associated with the functional transition of
287 columella cells and their detachment. This spatiotemporally regulated activation of
288 autophagy is essential not only for cell clearance and vacuolar enlargement but also for
289 the organized separation of the outermost layer of the root cap.

290

291 **Motion-tracking time-lapse imaging revealed rapid intracellular rearrangement**
292 **associated with the functional transition of root cap cells**

293 Cells constituting the root cap constantly turn over by balanced production and
294 detachment of cells at the innermost and the outermost cell layers, respectively. During
295 their lifetime, columella cells undergo a functional transition from being gravity-sensing
296 statocytes to secretory cells according to their position (Blancaflor et al., 1998; Maeda et
297 al., 2019; Sack and Kiss, 1989; Vicre et al., 2005). While the previous electron
298 microscopic observations revealed a profound difference in the subcellular structures
299 between the inner statocytes and the outer secretory cells of the *Arabidopsis* root cap
300 (Maeda et al., 2019; Poulsen et al., 2008; Sack and Kiss, 1989), detailed temporal
301 dynamics of organelles rearrangement in relation to the timing of cell displacement and
302 detachment has not been analyzed.

303 Our time-lapse observation using a motion-tracking microscope system with a
304 horizontal optical axis clearly visualized both morphological and temporal details of
305 organelle rearrangement in this transition (Fig. 8). Cells in the inner two to three layers
306 have unique arrangements of organelles, which is likely optimized for their gravity-
307 sensing function (Blancaflor et al., 1998). In these cells, starch granule-containing
308 amyloplasts and nuclei are localized at the distal (lower) and proximal (upper) end of
309 each cell, respectively, whereas small tubular vacuoles preferentially occupy the proximal
310 (upper) half of each cell (Fig. 2) (Leitz et al., 2009; Sack and Kiss, 1989). This organelle
311 arrangement changed dynamically in the outermost cell layer. The first conspicuous sign
312 of rearrangement is relocation of nuclei from the upper to the central region, which

313 happens even before the layer containing these columella cells starts to detach at the
314 proximal LRC region (Fig. 2). Around the time of the detachment of this cell layer,
315 amyloplasts 'float up' to the middle region of the cell (Fig. 2). Later, amyloplasts disappear
316 and vacuoles start to expand to occupy the entire cell volume by the time these cells
317 slough off from the root tip (Fig. 2 and Supplementary Fig. S2). The development of large
318 central vacuoles likely constitutes a central component of functional specialization of
319 these cells for storage (Driouich et al., 2013; Hawes et al., 2016; Vicre et al., 2005). A
320 novel role of central vacuoles for cell death promotion has been also proposed for LRC
321 cells (Fendrych et al., 2014).

322 Here, the central question is what controls the spatiotemporal activation of this
323 dramatic rearrangement of organelles in the root cap. The NAC-type transcription factors
324 BRN1 and BRN2 are expressed specifically in the outer two cell layers of the root cap
325 and required for cell detachment (Bennett et al., 2010; Kamiya et al., 2016), seemingly
326 becoming good candidates for the upstream regulators. However, the outermost root cap
327 cells of *brn1 brn2* mutants, though defective in cell detachment, were found to be
328 normally vacuolated and lacking amyloplasts as those of wild type, indicating that at least
329 a part of the organelle rearrangement is regulated independently of *BRN1* and *BRN2*
330 (Bennett et al., 2010; Kamiya et al., 2016). On the other hand, our previous study
331 suggested the existence of unknown positional cues that, together with another NAC-type
332 transcription factor SMB, promote the outer layer-specific expression of *BRN1* and *BRN2*
333 (Kamiya et al., 2016). Future identification of factors transmitting such positional

334 information will provide a clue to understanding a mechanism underlying position-
335 dependent organelle rearrangement in the root cap.

336

337 **Autophagy is activated in the outermost root cap cells to promote cell clearance and**
338 **vacuolization**

339 Our time-lapse imaging revealed specific activation of autophagy in the outermost root
340 cap layer in concert with the progression of the cell separation (Fig. 3). As expected,
341 mutants defective in the canonical autophagy pathway exhibited compromised cell
342 clearance and vacuolization of detaching root cap cells (Fig. 5). Because detached root
343 cap cells are dispersed into the rhizosphere and act in plant defense through their secretory
344 capacity (Driouich et al., 2013; Hawes et al., 2016), degradation of starch-containing
345 amyloplasts and vacuolar expansion appear to be a reasonable differentiation trajectory
346 in view of energy-recycling and storage.

347 Autophagosomes are double-membrane vesicles that engulf a wide range of
348 intracellular components and transport them to vacuoles for degradation by lytic enzymes.
349 Rapid reduction of GFP-ATG8a signals and accumulation of autophagic body-like
350 structures inside the vacuoles after the application of the proteinase inhibitor E64d
351 (Supplementary Fig. S3) support occurrence of active autophagic flow and vacuolar
352 degradation in the outermost root cap layer. Such active autophagic transport may act to
353 supply membrane components and to facilitate water influx into the vacuoles by
354 increasing osmotic pressure, leading to enhanced vacuolization of the outermost root cap
355 cells.

356 While the autophagy-deficient *atg5-1* mutant was capable of eliminating
357 Lugol-stained amyloplasts from mature columella cells as the wild type, morphology of
358 plastids in the detaching root cap cells was abnormal in *atg5-1*, having tubular structures
359 typical of stromules (Supplementary Fig. S3). Stomules arise from chloroplasts under
360 starvation or senescence conditions. In such stress conditions, chloroplast contents are
361 degraded via piecemeal-type organelle autophagy, in which stromules or chloroplast
362 protrusions are believed to be engulfed by an autophagosome (Ishida et al., 2008),
363 whereas damaged chloroplasts can be engulfed as a whole by an isolated membrane and
364 transported into vacuoles (Izumi et al., 2013). Stromule formation in the autophagy-
365 deficient *atg5-1* mutant suggests that amyloplast degradation in the outermost root cap
366 cells proceeds in two steps; first by autophagy-independent degradation of starch granules
367 and stromule formation, followed by the piecemeal chloroplast autophagy. It should be
368 noted, however, that autophagy-dependent amyloplast degradation also occurs as a part
369 of root hydrotropic response, where some starch-containing amyloplasts are engulfed
370 directly by the autophagosome-like structures (Nakayama et al., 2012). Together, these
371 observations suggest that multiple amyloplast degradation pathways exist in the
372 *Arabidopsis* root cap with different contributions of autophagy.

373 While the present study clearly demonstrated the role of autophagy in the
374 organelle rearrangement in the root cap, spatiotemporal regulation of autophagy
375 activation is yet to be investigated. The root cap autophagy seems to operate via canonical
376 macro-autophagy pathway mediated by the components encoded by the *ATG* genes (Fig.
377 5) (Liu and Bassham, 2012) (Fig. 5). Autophagy is induced by various stress conditions,

378 such as nutrient starvation, as well as abiotic and biotic stresses, where SNF-related
379 kinase 1 (SnRK1) and target of rapamycin (TOR) protein kinase complexes function as
380 key regulators (Liu and Bassham, 2012; Mizushima and Komatsu, 2011). In contrast, the
381 root cap autophagy can occur in plants growing on a sterile nutrient-rich medium in our
382 experiments, suggesting that root cap autophagy is activated independently of nutrient
383 starvation and biotic stress. Instead, activation of the root cap autophagy appears to be
384 closely associated with the process of cell detachment, which in turn is known to be
385 regulated by intrinsic developmental programs (Dubreuil et al., 2018; Shi et al., 2018).
386 Again, *BRN1* and *BRN2* are unlikely to regulate the root cap autophagy, because cell
387 clearance and vacuolization normally occur in the outermost root cap cells of *brn1 brn2*
388 mutants.

389
390 **Autophagy is required for the organized separation of the *Arabidopsis* root cap cells**
391 Autophagy promotes organelle rearrangement associated with the differentiation of
392 secretory cells that subsequently slough off to disperse into the rhizosphere. Based on this,
393 we expected that the loss of autophagy would inhibit or delay cell detachment in the root
394 cap. Somewhat unexpectedly, however, autophagy-deficient *atg5-1* mutants showed a
395 phenotype suggestive of enhanced cell detachment (Fig. 6). In *Arabidopsis* and related
396 species, the outermost root cap cells separate as a cell layer, rather than as isolated cells
397 (Driouich et al., 2010; Driouich et al., 2007; Kamiya et al., 2016). Although the
398 physiological significance of this detachment behavior has not been demonstrated so far,
399 it has been hypothetically linked with a capacity of secreting mucilage, a mixture of

400 polysaccharides implicated in plant defense, aluminum-chelating, and lubrication
401 (Driouich et al., 2010; Maeda et al., 2019).

402 Previous genetic studies suggested a key role of cell wall pectins in the control
403 of root cap cell detachment; when pectin-mediated cell-cell adhesion was compromised
404 by mutations in genes encoding putative pectin-synthesizing enzymes or overexpression
405 of RCPG, a root cap-specific putative pectin-hydrolyzing enzyme, root cap cells slough
406 off as isolated cells (Driouich et al., 2010; Kamiya et al., 2016). Moreover, the
407 morphology of detaching root cap cell layers was altered in the loss-of-function *rcpg*
408 mutant, likely due to a failure of separating cell-cell adhesion along the lateral cell edge
409 (Kamiya et al., 2016). The similarity between the altered cell detachment behaviors
410 between *atg5-1* and pectin-deficient plants suggests a role of autophagy in the control of
411 cell wall integrity during the root cap cell detachment. Both transport and modification
412 of cell wall pectins require Golgi and Golgi-derived vesicles (Driouich et al., 2012; Wang
413 et al., 2017). In outer root cap cells, small vesicles accumulate for their secretory functions
414 (Driouich et al., 2013; Maeda et al., 2019; Wang et al., 2017), and a mutation disrupting
415 this secretory pathway results in the failure of root cap cell detachment (Poulsen et al.,
416 2008). If autophagy is required for timely attenuation of such vesicular transport during
417 the cell detachment program, lack of autophagy should lead to prolonged secretion of cell
418 wall modifying enzymes such as RCPG, resulting in enhanced loosening of cell-cell
419 adhesion. Indeed, we could recognize broader gaps at the apoplastic junctions at the distal
420 cell-cell adhesion points in *atg5-1* than those in the wild type (Supplementary movie S7
421 and S8). Future studies comparing secretory dynamics of cell wall-modifying enzymes in

422 various genetic backgrounds using our live-imaging system will elucidate the molecular
423 mechanism controlling the cell detachment behaviors in the root cap and the role of
424 autophagy.

425 In summary, our study revealed the role of spatiotemporally regulated
426 autophagy in cell clearance and vacuolization in root cap differentiation as well as in cell
427 detachment. While autophagy has been known to promote tracheary element
428 differentiation in *Arabidopsis* and anther maturation in rice, roles of autophagy in these
429 instances are linked to PCD (Escamez et al., 2016; Kurusu and Kuchitsu, 2017).
430 Considering that autophagy is required for functional transition and detachment of living
431 columella cells, our study revealed a previously undescribed role of developmentally
432 regulated autophagy in plant development.

433

434 **Materials and Methods**

435

436 **Plant materials and growth conditions**

437 *Arabidopsis thaliana* L. Heynh (Arabidopsis) accession Col-0 was used as the wild type.

438 The Arabidopsis T-DNA insertional lines, *atg5-1* (SAIL_129_B07), *atg7-2* (GK-

439 655B06), *atg2-1* (SALK_076727), *atg10-1* (SALK_084434), *atg12a* (SAIL_1287_A08),

440 *atg12b* (SALK_003192), *atg13a* (GABI_761_A11), *atg13b* (GK-510F06) and *atg18a*

441 (GK_651D08) have been described previously (Doelling et al., 2002; Hanaoka et al.,

442 2002; Izumi et al., 2013; Thompson et al., 2005; Yoshimoto et al., 2004; Yoshimoto et

443 al., 2009). *35Spro:CT-GFP*, *RPS5apro:H2B-tdTomato* and *VHP1-mGFP* has been

444 described previously (Adachi et al., 2011; Köhler et al., 1997; Segami et al., 2014). Seeds

445 were grown vertically on Arabidopsis nutrient solution supplemented with 1 % (w/v)

446 sucrose and 1 % (w/v) agar under the 16h light/8h dark condition at 23 °C.

447

448 **Generation of transgenic plants**

449 For *ATG5pro:ATG5:GFP*, a 4.5-kb genomic fragment harboring the ATG5

450 coding region and the 5'-flanking region was amplified by PCR and cloned into

451 pAN19/GFP-NOS vector, which contained GFP-coding sequence and the

452 *Agrobacterium (Rhizobium)* nopaline synthase terminator (NOS). The resulting *ATG5-*

453 *GFP* fragment was then transferred to *pBIN4* to give *ATG5pro:ATG5:GFP/pBIN41*.

454 Layer-specific rescue constructs of *ATG5-GFP* were constructed by amplifying
455 the *ATG5-GFP* fragment from *ATG5pro:ATG5:GFP/pBIN41*, and inserting them to
456 pDONR221 by the GatewayTM technology. The *ATG5-GFP* fragment was then
457 transferred to *pGWB501:BRN1pro* and *pGWB501:RCPGpro*, which respectively
458 contained the *BRN1* and *RCPG* promoter flanking the Gateway cassette in pGWB501
459 (Nakagawa et al., 2007). The cytosolic marker *GUS-GFP* was similarly constructed by
460 inserting a *GUS-GFP* fragment into pENTR D-TOPO, and then by transferring the insert
461 to *pGWB501:BRN1pro* to give *BRN1pro:GUS-GFP*.

462 For *DR5v2:H2B:tdTomato*, a *DR5v2* promoter fragment was amplified by PCR
463 from the *DRv2n3GFP* construct (Liao et al., 2015), and inserted into pGWB501 by the
464 In-Fusion technique to give *pGWB501:DR5v2*. The *H2B-tdTomato* fragment in pENTR
465 was transferred to the *pGWB501:DR5v2*. Integrity of the cloned genes was verified by
466 DNA sequencing. Transformation of Arabidopsis plants was performed by the floral dip
467 method using *Rhizobium* (formerly *Agrobacterium*) *tumefaciens*, strain C58MP90.

468

469 **Microscopy**

470 Time-lapse imaging of the root cap was performed using two microscopic systems
471 developed in the corresponding authors' laboratory, which can automatically track the tip
472 of vertically growing roots. Technical details will be published elsewhere. Briefly, an
473 inverted microscope (ECLIPSE Ti-E and ECLIPSE Ti2-E, Nikon, Tokyo, Japan) was
474 tilted by 90 degrees to vertically orient the sample stage. The motorized stage was
475 controlled by the Nikon NIS-elements software with the “keep object in view” plugin to

476 automatically track the tip of growing roots. Three-day-old seedlings were transferred to
477 a chamber slide (Lab-Tek chambered coverglass, Thermo Fisher, Waltham, MA) and
478 covered with a block of agar medium.

479 Confocal laser scanning microscopy was carried out with a Nikon C2 confocal
480 microscope. Roots were stained with 10 μ g/ml of propidium iodide (PI). Fluorescein
481 diacetate (FDA) staining was performed by soaking the roots in a solution containing 2
482 μ g/ml of FDA.

483 Iodine staining was performed as described previously (Segami et al., 2018).
484 Root fixed in 4% (w/v) paraformaldehyde in PBS for 30 min under a vacuum at room
485 temperature. The fixed sample was washed twice for 1 min each in PBS and cleared with
486 ClearSee (Kurihara et al., 2015). The samples were transferred to 10% (w/v) xylitol and
487 25% (w/v) urea to remove sodium deoxycholate, and then stained in a solution containing
488 2 mM iodine (Wako), 10 % (w/v) xylitol, and 25 % (w/v) urea.

489 Correlative light and electron microscopy (CLEM) analysis was performed as
490 described previously (Wang and Kang, 2020; Wang et al., 2019). GFP-ATG8a seedlings
491 were grown vertically under 16 h light-8 h dark cycle at 22 °C for seven days. Root tips
492 samples expressing GFP were cryofixed with an EM ICE high-pressure freezer (Leica
493 Microsystems, Austria) and embedded in Lowicryl HM20 resin at -45°C. TEM sections
494 of 150nm thickness were collected on copper or gold slot grids coated with formvar and
495 examined for GFP after staining the cell wall with Calcofluor White. The grids were post-
496 stained and GFP-positive cells were imaged under an H-7650 TEM (Hitachi High-Tech,

497 Japan) operated at 80kV. For electron tomography, tilt series were collected with a TF-
498 20 intermediate voltage TEM (Thermo Fisher Scientific, USA). Tomogram calculation
499 and three-dimensional model preparation were carried out with the 3dmod software
500 package (bio3d.colorado.edu).

501

502 **Acknowledgments**

503 We thank Masanori Izumi (RIKEN, Japan), Kohki Yoshimoto (Meiji University, Japan),
504 Masayoshi Maeshima (Nagoya University, Japan), Shoji Segami (NIBB, Japan), and
505 Maureen R. Hanson (Cornell University, USA) for providing plant materials, Dolf
506 Weijers (Wageningen University, Netherlands) for providing the DR5v2 construct, and
507 Masako Kanda for technical assistance.

508

509 **Competing interests**

510 The authors declare no competing interests.

511

512 **Funding**

513 This work was supported by MEXT/JSPS KAKENHI grants 20H05330 to T.G. and
514 19H05671, 19H05670 and 19H03248 to K.N., and by the Hong Kong Research Grant
515 Council (GRF14121019, 14113921, AoE/M-05/12, C4002-17G) to B.-H. K..

516

517 **References**

518 **Adachi, S., Minamisawa, K., Okushima, Y., Inagaki, S., Yoshiyama, K., Kondou, Y.,**
519 **Kaminuma, E., Kawashima, M., Toyoda, T., Matsui, M., et al. (2011).** Programmed induction of endoreduplication by DNA double-strand breaks in
520 **Arabidopsis.** *Proc. Natl. Acad. Sci. USA* **108**, 10004-10009.

522 **Arnaud, C., Bonnot, C., Desnos, T. and Nussaume, L.** (2010). The root cap at the
523 **forefront.** *C. R. Biol.* **333**, 335-343.

524 **Baetz, U. and Martinoia, E.** (2014). Root exudates: the hidden part of plant defense.
525 **Trends Plant Sci.** **19**, 90-98.

526 **Bennett, T., van den Toorn, A., Sanchez-Perez, G. F., Campilho, A., Willemse, V.,**
527 **Snel, B. and Scheres, B.** (2010). SOMBRERO, BEARSKIN1, and BEARSKIN2
528 **regulate root cap maturation in Arabidopsis.** *Plant Cell* **22**, 640-654.

529 **Blancaflor, E. B., Fasano, J. M. and Gilroy, S.** (1998). Mapping the Functional Roles
530 **of Cap Cells in the Response of Arabidopsis Primary Roots to Gravity.** *Plant*
531 **Physiol.** **116**, 213-222.

532 **Cannesan, M. A., Durand, C., Burel, C., Gangneux, C., Lerouge, P., Ishii, T., Laval,**
533 **K., Follet-Gueye, M. L., Driouich, A. and Vicré-Gibouin, M.** (2012). Effect of
534 **Arabinogalactan Proteins from the Root Caps of Pea and Brassica napus on**
535 **Aphanomyces euteiches Zoospore Chemotaxis and Germination.** *Plant Physiol.*
536 **159**, 1658-1670.

537 **del Campillo, E., Abdel-Aziz, A., Crawford, D. and Patterson, S. E.** (2004). Root cap
538 **specific expression of an endo-beta-1,4-D-glucanase (cellulase): a new marker to**
539 **study root development in Arabidopsis.** *Plant Mol. Biol.* **56**, 309-323.

540 **Doelling, J. H., Walker, J. M., Friedman, E. M., Thompson, A. R. and Vierstra, R.**
541 **D.** (2002). The APG8/12-activating Enzyme APG7 Is Required for Proper
542 **Nutrient Recycling and Senescence in Arabidopsis thaliana.** *J. Biol. Chem.* **277**,
543 **33105-33114.**

544 **Dolan, L., Janmaat, K., Willemse, V., Linstead, P., Poethig, S., Roberts, K. and**
545 **Scheres, B.** (1993). Cellular organisation of the Arabidopsis thaliana root.
546 **Development** **119**, 71-84.

547 **Driouich, A., Durand, C., Cannesan, M.-A., Percoco, G. and Vicré-Gibouin, M.**
548 **(2010). Border cells versus border-like cells: are they alike?** *J. Exp. Bot.* **61**, 3827-

549 3831.

550 **Driouich, A., Durand, C. and Vicre-Gibouin, M.** (2007). Formation and separation of
551 root border cells. *Trends Plant Sci.* **12**, 14-19.

552 **Driouich, A., Follet-Gueye, M.-L., Bernard, S., Kousar, S., Chevalier, L., Vicré-
553 Gibouin, M. and Lerouxel, O.** (2012). Golgi-mediated synthesis and secretion
554 of matrix polysaccharides of the primary cell wall of higher plants. *Front. Plant
555 Sci.* **3**, 79-79.

556 **Driouich, A., Follet-Gueye, M. L., Vicré-Gibouin, M. and Hawes, M.** (2013). Root
557 border cells and secretions as critical elements in plant host defense. *Curr. Opin.
558 Plant Biol.* **16**, 489-495.

559 **Dubreuil, C., Jin, X., Grönlund, A. and Fischer, U.** (2018). A Local Auxin Gradient
560 Regulates Root Cap Self-Renewal and Size Homeostasis. *Curr. Biol.* **28**, 2581-
561 2587.e2583.

562 **Escamez, S., Andre, D., Zhang, B., Bollhoner, B., Pesquet, E. and Tuominen, H.**
563 (2016). METACASPASE9 modulates autophagy to confine cell death to the
564 target cells during *Arabidopsis* vascular xylem differentiation. *Biol. Open* **5**, 122-
565 129.

566 **Fendrych, M., Van Hautegem, T., Van Durme, M., Olvera-Carrillo, Y., Huysmans,
567 M., Karimi, M., Lippens, S., Guerin, C. J., Krebs, M., Schumacher, K., et al.**
568 (2014). Programmed cell death controlled by ANAC033/SOMBRENO
569 determines root cap organ size in *Arabidopsis*. *Curr. Biol.* **24**, 931-940.

570 **Gilroy, S. and Swanson, S. J.** (2014). Gravitropic Signaling in Plants. In *eLS*.

571 **Hamamoto, L., Hawes, M. C. and Rost, T. L.** (2006). The production and release of
572 living root cap border cells is a function of root apical meristem type in
573 dicotyledonous angiosperm plants. *Ann. Bot.* **97**, 917-923.

574 **Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S.
575 and Ohsumi, Y.** (2002). Leaf Senescence and Starvation-Induced Chlorosis Are
576 Accelerated by the Disruption of an *Arabidopsis* Autophagy Gene. *Plant Physiol.*
577 **129**, 1181-1193.

578 **Hanson, M. R. and Hines, K. M.** (2018). Stromules: Probing Formation and Function.
579 *Plant Physiol.* **176**, 128-137.

580 **Hawes, M., Allen, C., Turgeon, B. G., Curlango-Rivera, G., Minh Tran, T., Huskey,
581 D. A. and Xiong, Z.** (2016). Root Border Cells and Their Role in Plant Defense.

582 *Annu. Rev. Phytopathol.* **54**, 143-161.

583 **Hawes, M. C., Bengough, G., Cassab, G. and Ponce, G.** (2002). Root Caps and
584 Rhizosphere. *J. Plant Growth Regul.* **21**, 352-367.

585 **Hawes, M. C. and Lin, H. J.** (1990). Correlation of Pectolytic Enzyme Activity with the
586 Programmed Release of Cells from Root Caps of Pea (*Pisum sativum*). *Plant*
587 *Physiol.* **94**, 1855-1859.

588 **Inoue, Y., Suzuki, T., Hattori, M., Yoshimoto, K., Ohsumi, Y. and Moriyasu, Y.**
589 (2006). AtATG genes, homologs of yeast autophagy genes, are involved in
590 constitutive autophagy in *Arabidopsis* root tip cells. *Plant Cell Physiol.* **47**, 1641-
591 1652.

592 **Ishida, H., Yoshimoto, K., Izumi, M., Reisen, D., Yano, Y., Makino, A., Ohsumi, Y.,**
593 **Hanson, M. R. and Mae, T.** (2008). Mobilization of rubisco and stroma-localized
594 fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent
595 autophagic process. *Plant Physiol.* **148**, 142-155.

596 **Izumi, M., Hidema, J., Makino, A. and Ishida, H.** (2013). Autophagy Contributes to
597 Nighttime Energy Availability for Growth in *Arabidopsis*. *Plant Physiol.* **161**,
598 1682-1693.

599 **Kamiya, M., Higashio, S. Y., Isomoto, A., Kim, J. M., Seki, M., Miyashima, S. and**
600 **Nakajima, K.** (2016). Control of root cap maturation and cell detachment by
601 BEARSKIN transcription factors in *Arabidopsis*. *Development* **143**, 4063-4072.

602 **Köhler, R. H., Cao, J., Zipfel, W. R., Webb, W. W. and Hanson, M. R.** (1997).
603 Exchange of Protein Molecules Through Connections Between Higher Plant
604 Plastids. *Science* **276**, 2039-2042.

605 **Kumpf, R. P. and Nowack, M. K.** (2015). The root cap: a short story of life and death.
606 *J. Exp. Bot.* **66**, 5651-5662.

607 **Kurihara, D., Mizuta, Y., Sato, Y. and Higashiyama, T.** (2015). ClearSee: a rapid
608 optical clearing reagent for whole-plant fluorescence imaging. *Development* **142**,
609 4168-4179.

610 **Kurusu, T. and Kuchitsu, K.** (2017). Autophagy, programmed cell death and reactive
611 oxygen species in sexual reproduction in plants. *J. Plant Res.* **130**, 491-499.

612 **Leitz, G., Kang, B. H., Schoenwaelder, M. E. and Staehelin, L. A.** (2009). Statolith
613 sedimentation kinetics and force transduction to the cortical endoplasmic
614 reticulum in gravity-sensing *Arabidopsis* columella cells. *Plant Cell* **21**, 843-860.

615 **Liao, C. Y., Smet, W., Brunoud, G., Yoshida, S., Vernoux, T. and Weijers, D.** (2015).
616 Reporters for sensitive and quantitative measurement of auxin response. *Nat.*
617 *Methods* **12**, 207-210.

618 **Liu, Y. and Bassham, D. C.** (2012). Autophagy: pathways for self-eating in plant cells.
619 *Annu. Rev. Plant Biol.* **63**, 215-237.

620 **Maeda, K., Kunieda, T., Tamura, K., Hatano, K., Hara-Nishimura, I. and Shimada,**
621 T. (2019). Identification of Periplasmic Root-Cap Mucilage in Developing
622 Columella Cells of *Arabidopsis thaliana*. *Plant Cell Physiol.* **60**, 1296-1303.

623 **Merkulova, E. A., Guiboileau, A., Naya, L., Masclaux-Daubresse, C. and Yoshimoto,**
624 K. (2014). Assessment and optimization of autophagy monitoring methods in
625 *Arabidopsis* roots indicate direct fusion of autophagosomes with vacuoles. *Plant*
626 *Cell Physiol.* **55**, 715-726.

627 **Mizushima, N. and Komatsu, M.** (2011). Autophagy: Renovation of Cells and Tissues.
628 *Cell* **147**, 728-741.

629 **Mizushima, N. and Levine, B.** (2010). Autophagy in mammalian development and
630 differentiation. *Nat. Cell Biol.* **12**, 823-830.

631 **Nakagawa, T., Suzuki, T., Murata, S., Nakamura, S., Hino, T., Maeo, K., Tabata, R.,**
632 Kawai, T., Tanaka, K., Niwa, Y., et al. (2007). Improved Gateway binary
633 vectors: high-performance vectors for creation of fusion constructs in transgenic
634 analysis of plants. *Biosci. Biotechnol. Biochem.* **71**, 2095-2100.

635 **Nakayama, M., Kaneko, Y., Miyazawa, Y., Fujii, N., Higashitani, N., Wada, S.,**
636 Ishida, H., Yoshimoto, K., Shirasu, K., Yamada, K., et al. (2012). A possible
637 involvement of autophagy in amyloplast degradation in columella cells during
638 hydrotropic response of *Arabidopsis* roots. *Planta* **236**, 999-1012.

639 **Poulsen, L. R., López-Marqués, R. L., McDowell, S. C., Okkeri, J., Licht, D., Schulz,**
640 A., Pomorski, T., Harper, J. F. and Palmgren, M. G. (2008). The *Arabidopsis*
641 P4-ATPase ALA3 Localizes to the Golgi and Requires a β -Subunit to Function in
642 Lipid Translocation and Secretory Vesicle Formation. *Plant Cell* **20**, 658-676.

643 **Sack, F. D. and Kiss, J. Z.** (1989). Rootcap structure in wild type and in a starchless
644 mutant of *Arabidopsis*. *Am. J. Bot.* **76**, 454-464.

645 **Segami, S., Makino, S., Miyake, A., Asaoka, M. and Maeshima, M.** (2014). Dynamics
646 of vacuoles and H⁺-pyrophosphatase visualized by monomeric green fluorescent
647 protein in *Arabidopsis*: artifactual bulbs and native intravacuolar spherical

648 structures. *Plant Cell* **26**, 3416-3434.

649 **Segami, S., Tomoyama, T., Sakamoto, S., Gunji, S., Fukuda, M., Kinoshita, S.,**
650 **Mitsuda, N., Ferjani, A. and Maeshima, M.** (2018). Vacuolar H(+) -
651 Pyrophosphatase and Cytosolic Soluble Pyrophosphatases Cooperatively
652 Regulate Pyrophosphate Levels in *Arabidopsis thaliana*. *Plant Cell* **30**, 1040-1061.

653 **Shi, C.-L., von Wangenheim, D., Herrmann, U., Wildhagen, M., Kulik, I., Kopf, A.,**
654 **Ishida, T., Olsson, V., Anker, M. K., Albert, M., et al.** (2018). The dynamics
655 of root cap sloughing in *Arabidopsis* is regulated by peptide signalling. *Nat. Plants* **4**, 596-604.

657 **Strohm, A. K., Baldwin, K. L. and Masson, P. H.** (2012). Molecular mechanisms of
658 root gravity sensing and signal transduction. *Wiley Interdiscip. Rev.: Dev. Biol.* **1**,
659 276-285.

660 **Thompson, A. R., Doelling, J. H., Suttangkakul, A. and Vierstra, R. D.** (2005).
661 Autophagic Nutrient Recycling in *Arabidopsis* Directed by the ATG8 and ATG12
662 Conjugation Pathways. *Plant Physiol.* **138**, 2097-2110.

663 **Vicre, M., Santaella, C., Blanchet, S., Gateau, A. and Driouich, A.** (2005). Root
664 border-like cells of *Arabidopsis*. Microscopical characterization and role in the
665 interaction with rhizobacteria. *Plant Physiol.* **138**, 998-1008.

666 **von Wangenheim, D., Hauschild, R., Fendrych, M., Barone, V., Benková, E. and**
667 **Friml, J.** (2017). Live tracking of moving samples in confocal microscopy for
668 vertically grown roots. *eLife* **6**, e26792.

669 **Wang, P., Chen, X., Goldbeck, C., Chung, E. and Kang, B.-H.** (2017). A distinct class
670 of vesicles derived from the trans-Golgi mediates secretion of xylogalacturonan
671 in the root border cell. *Plant J.* **92**, 596-610.

672 **Wang, P. and Kang, B. H.** (2020). Correlative Light and Electron Microscopy Imaging
673 of the Plant trans-Golgi Network. *Methods Mol. Biol.* **2177**, 59-67.

674 **Wang, P., Liang, Z. and Kang, B. H.** (2019). Electron tomography of plant organelles
675 and the outlook for correlative microscopic approaches. *New Phytol.* **223**, 1756-
676 1761.

677 **Willemse, V., Bauch, M., Bennett, T., Campilho, A., Wolkenfels, H., Xu, J.,**
678 **Haseloff, J. and Scheres, B.** (2008). The NAC domain transcription factors FEZ
679 and SOMBRERO control the orientation of cell division plane in *Arabidopsis* root
680 stem cells. *Dev. Cell* **15**, 913-922.

681 **Xuan, W., Band, L. R., Kumpf, R. P., Van Damme, D., Parizot, B., De Rop, G.,**
682 **Opdenacker, D., Moller, B. K., Skorzinski, N., Njo, M. F., et al.** (2016). Cyclic
683 programmed cell death stimulates hormone signaling and root development in
684 *Arabidopsis*. *Science* **351**, 384-387.

685 **Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T. and Ohsumi, Y.**
686 (2004). Processing of ATG8s, Ubiquitin-Like Proteins, and Their Deconjugation
687 by ATG4s Are Essential for Plant Autophagy. *Plant Cell* **16**, 2967-2983.

688 **Yoshimoto, K., Jikumaru, Y., Kamiya, Y., Kusano, M., Consonni, C., Panstruga, R.,**
689 **Ohsumi, Y. and Shirasu, K.** (2009). Autophagy negatively regulates cell death
690 by controlling NPR1-dependent salicylic acid signaling during senescence and the
691 innate immune response in *Arabidopsis*. *Plant Cell* **21**, 2914-2927.

692

693 **Figures legends**

694

695 **Fig. 1. A diagram illustrating structure and cell detachment process of Arabidopsis**
696 **root cap.**

697 Landmark events constituting the cell separation sequence are marked by arrowheads.
698 Definition of the proximodistal polarity used in this study is shown on the left.

699

700 **Fig. 2. Organelle rearrangement takes place in the outer root cap layers**

701 **(A)** Time-lapse images visualizing the sequences of root cap cell detachment and
702 relocation of amyloplasts. Representative images before (left panel), at the beginning
703 (central panel), and around the end (right panel) of cell layer detachment are shown. Light
704 blue and dark blue arrowheads indicate sedimenting and floating amyloplasts,
705 respectively. Green arrowhead points to a highly vacuolated cell. Corresponding video is
706 available as Supplementary movie S1.

707 **(B)** Time-lapse images showing intracellular relocation of nuclei (red fluorescence of
708 *DR5v2:H2B-tdTomato*) and amyloplasts (gray particles in the bright field). Orange and
709 red arrowheads point to the nuclei localized in the proximal (upper) and the middle
710 regions of the cell, respectively. Light blue and dark blue arrowheads point to the
711 amyloplasts in the distal (bottom) and the middle regions of the cell, respectively. Purple
712 arrowheads point to the nuclei localized at the distal pole of the cells. Corresponding
713 video is available as Supplementary movie S2.

714 **(C)** Confocal images visualizing differential localization of organelles between the inner

715 and the outermost cell layers. Orange and red arrowheads point to red-fluorescent nuclei
716 in the proximal (upper) and the middle regions in the cell, respectively. Light blue and
717 dark blue arrowheads point to the amyloplasts in the distal (bottom) and the middle
718 regions in the cell, respectively. Green color indicates vacuolar membranes.
719 Time tables shown in (A) and (B) represent durations of the cell detachment process (gray
720 box). Timing of image capturing is indicated at the upper right corner of each image
721 where the origin (0 h) is set at the time when the outermost layer started detachment in
722 the proximal LRC region. Cell outlines are delineated by white dotted lines. Scale bar, 20
723 μm .

724

725 **Fig. 3. Autophagosomes are formed specifically in the outermost root cap layer**
726 Representative confocal time-lapse images of the *35Spro:GFP-ATG8a* root. Bright-field
727 (A) and GFP-ATG8a fluorescence (B, C) images are shown. Images in (C) are magnified
728 images of the boxed regions in (B). White arrowheads in (C) indicate autophagosomes
729 marked by GFP-ATG8a. They showed the typical donut-shaped autophagosome images
730 in the later phase of detachment (red arrowhead at 1.5h, inset: enlarged view). Timing of
731 image capturing is indicated at the upper right corner of each image where the origin (0
732 h) is set at the time when the outermost layer started detachment in the proximal LRC
733 region. Scale bar, 50 μm (A, B), 20 μm (C), 2 μm (C, inset). A corresponding video is
734 available as Supplementary movie S4.

735

736 **Fig. 4. CLEM imaging revealed localization of GFP-ATG8a in autophagosomes**

737 **(A, B)** GFP fluorescence (A) and TEM (B) images of a section from a *GFP-ATG8a* root
738 cap.

739 **(C-E)** Magnification of the region boxed in (A) and (B). *GFP-ATG8a* (C), TEM (D), and
740 their merged image (E) are shown. Red arrowhead in (E) indicates an autophagosome
741 with *GFP-ATG8a* fluorescence.

742 **(F)** A 3D electron tomographic model built for an amyloplast (blue), two mitochondria
743 (brown,) and an autophagic compartment (magenta) overlaid with the TEM image.

744 Scale bar, 10 μ m (A, B); 500 nm (C-F).

745

746 **Fig. 5. Vacuolization and cytosol digestion were inhibited in detaching columella
747 cells in *atg* mutants**

748 **(A-D)** Vacuolar morphologies in wild-type (A, B) and *atg5-1* (C, D) columella cells. (A,
749 C) VHP1-mGFP fluorescence (green). (B, D) Merged images with PI-stained cell walls
750 (red).

751 **(E-L)** Retention of cytosol in the detaching root cap cells of various *atg* mutants (F-L) as
752 compared with wild type (E). Cytosol and cell walls were stained with FDA (green) and
753 PI (red), respectively.

754 **(M, N)** Vacuolization and cytosol digestion defects of detaching *atg5-1* root cap cells
755 were complemented by the *ATG5-GFP* transgene (white arrowheads). Note the uniform
756 *ATG5*:GFP expression by the *ATG5* promoter.

757 Scale bar, 10 μ m (A-D); 50 μ m (E-N).

758

759 **Fig. 6. Autophagy activation is required for organized separation of the outermost**
760 **root cap cell layer**

761 (A-C) Time-lapse images of root cap detachment processes in wild-type (A), *atg5-1* (B),
762 and *ATG5pro:ATG5:GFP atg5-1* (C) plants at the time points indicated at the top. Note
763 that the outermost root cap cells detach as a layer (white arrowheads) in wild type (A)
764 and *ATG5:GFP atg5-1* (C), whereas they detach individually in *atg5-1* (B, orange
765 arrowheads). Scale bar, 50 μ m. Corresponding videos are available as Supplementary
766 movie S7-S9.

767

768 **Fig. 7. Autophagy activation at the timing of cell wall degradation is sufficient for**
769 **organized cell separation**

770 (A-D) Time-lapse images of root cap detachment processes in *BRN1pro:ATG5-GFP*
771 *atg5-1* (A, B) and *RCPGpro:ATG5:GFP atg5-1* (C, D) at the time points indicated at the
772 top right corner of each panel. Note that the outermost root cap cells detach as a cell layer
773 in both genotypes (white arrowheads), as compared with individual detachment in *atg5-*
774 *1* (Fig. 6B). Bright-field (A, C) and GFP fluorescence (B, D) images were shown. Scale
775 bar, 50 μ m. Corresponding videos are available as Supplementary movies S10 and S11.

776

777 **Fig. 8. Schematic illustration of the sequence of organelle rearrangement and**
778 **autophagy activation during maturation and detachment of columella cells.**

779

780 **Fig. S1. Arabidopsis root cap cells detach at fixed intervals**

781 **(A-D)** Time-lapse images showing periodic detachment of *Arabidopsis* root cap cells.

782 Detachment of the outermost root cap layer initiates at the proximal LRC region and
783 progressively extends toward the central columella region (B, black arrowheads).
784 Detached root cap cells adhere together to keep a cell layer morphology (C, red
785 arrowhead). Detachment of the next cell layer initiates in the same manner as the previous
786 one (D). Elapsed time after the start of culture is indicated in each panel. Scale bar, 100
787 μ m.

788 **(E)** A time table showing periodic detachment of root cap cell layers in five (#1-5) root
789 samples each experiencing three rounds of root cap detachment. Gray, blue, and orange
790 boxes indicate the duration from the start (initial detachment at the proximal LRC region)
791 and the end (complete detachment at the columella region) of the first, second, and third
792 cell layer, respectively. The x-axis indicates elapsed time (h) from the start of culture.
793 Red lines indicate average time points of the start of detachment.

794 **(F)** Intervals between the start of detachment between the first and second cell layers
795 (gray bar), and between the second and third cell layer (black bar). Mean and SE are
796 shown ($n = 5$).

797

798 **Fig. S2. Morphological transition of vacuoles during the detachment of root cap cells**

799 **(A, B)** Time-lapse images showing vacuolar morphology by the tonoplast-localized
800 VHP1-mGFP fluorescence (A) and bright-field images (B). In the outermost cells,
801 vacuoles are initially small and fragmented (up to 17 h), and gradually expand to form
802 large central vacuoles before the cell detachment (41 h). Elapsed time after the start of

803 observation is indicated in each panel. A corresponding video is available as
804 Supplementary movie S3.

805 **(C-E)** The entire cell volume was occupied by a large central vacuole in detaching root
806 cap cells. Images of VHP1-mGFP fluorescence (C) and its overlay with a DIC image (D)
807 were shown. (F) is a Z-stack projection encompassing 50- μ m depth. Note that cells at the
808 center of the detached cell layer possess large central vacuoles as visualized by VHP1-
809 mGFP (white arrowheads), whereas those at the periphery do not show fluorescence
810 (orange arrowheads) likely due to the loss of cell viability.

811 Scale bar, 20 μ m.

812

813 **Fig. S3. Accumulation of autophagic body-like structures in the E64d-treated wild-**
814 **type root cap cells and abnormal plastid morphology in *atg5-1***

815 **(A, B)** Accumulation of autophagic body-like structures inside the vacuoles of the wild-
816 type outermost root cap cells after E-64d treatment (B, orange arrowheads), as compared
817 with the translucence vacuolar images of a non-treated control (A, white arrowheads). 5-
818 day-old seedlings grown on the medium with or without 10 μ M E-64d were observed.

819 Scale bar, 20 μ m.

820 **(C, D)** Amyloplasts in the outermost root cap cells lost starch granules in both wild type
821 and *atg5-1*. Black arrowheads indicate the detaching outermost cell layers. Scale bar, 50
822 μ m.

823 **(E, F)** Amyloplasts exhibit abnormal morphologies in the outermost root cap cells of
824 *atg5-1* (F) as compared with those in the wild type (E). Plastids are visualized by the CT-

825 GFP fluorescence marker line. Note that small spherical plastids accumulate in the wild-
826 type cells (white arrowheads), whereas those with tubular morphologies dominate in
827 *atg5-1* cells (orange arrowheads). Scale bar, 20 μ m.

828

829 **Fig. S4. Autophagosomes do not form in the detaching root cap cells of *atg5-1***
830 Time-lapse images of the *35Spro:GFP-ATG8a atg5-1* root tip. Bright-field (A) and GFP-
831 ATG8a fluorescence images (B, C) are shown. Images in (C) are magnified views of
832 boxed regions in (B) of respective time points. Note that the GFP-ATG8a signals were
833 uniformly distributed throughout the cytosol. Occasionally observed punctate signals did
834 not form a donut-shape typical of an autophagosome (D, E). Elapsed time after the start
835 of observation is indicated at the top. Scale bar, 50 μ m (A, B); 20 μ m (C); 10 μ m (D, E).
836 A corresponding video is available as Supplementary movie S5.

837

838 **Fig. S5. Vacuolization and cytosol digestion do not occur in detaching *atg5-1* cells**
839 **(A, B)** Time-lapse images showing vacuolar morphology by the tonoplast-localized
840 VHP1-mGFP fluorescence (A), and corresponding bright-field images (B) in *atg5-1*. In
841 the outermost cells, vacuoles are initially small and fragmented and gradually expand as
842 those in wild type, but fail to expand fully (43 h). Elapsed time after the start of
843 observation is indicated at the upper right corner of each panel. Corresponding video is
844 available as Supplementary movie S6.

845 **(C, D)** Cytosolic GUS-GFP proteins expressed under the outer layer-specific *BRN1*
846 promoter revealed cytosol digestion in the detaching root cap cells of wild type, as

847 compared with its retention in *atg5-1* (white arrowheads).

848 Scale bar, 20 μ m (A, B); 50 μ m (C, D).

849

850 **Supplementary Movie S1. Time-lapse movie showing root cap cell detachment and**
851 **organelle rearrangement in wild-type root cap cells**

852 Scale bar, 20 μ m.

853

854 **Supplementary Movie S2. Time-lapse movie showing intracellular relocation of**
855 **nuclei (red, *DR5v2:H2B-tdTomato*) and amyloplasts (gray particles in the bright**
856 **field) in the root cap cells**

857 Scale bar, 20 μ m.

858

859 **Supplementary Movie S3. Time-lapse movie showing morphological transition of**
860 **vacuoles during cell detachment**

861 Scale bar, 20 μ m.

862

863 **Supplementary Movie S4. Time-lapse movie showing autophagosome formation in**
864 **the outermost root cap cells visualized by *35Spro:GFP-ATG8a***

865 Scale bar, 20 μ m.

866

867 **Supplementary Movie S5. Time-lapse movie showing the absence of autophagosome**
868 **formation in *35Spro:GFP-ATG8a* in *atg5-1*.**

869 Scale bar, 20 μ m.

870

871 **Supplementary Movie S6. Time-lapse movie showing morphological transition of**
872 **vacuoles during cell detachment in *atg5-1*.**

873 Scale bar, 20 μ m.

874

875 **Supplementary Movie S7. Time-lapse movie showing root cap cell detachment in the**
876 **wild type**

877 Scale bar, 50 μ m.

878

879 **Supplementary Movie S8. Time-lapse movie showing root cap cell detachment in**
880 ***atg5-1***

881 Scale bar, 50 μ m.

882

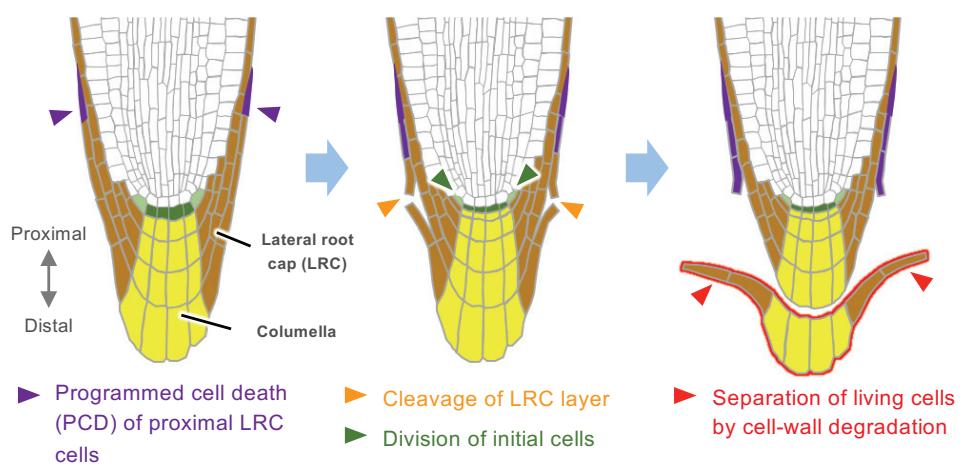
883 **Supplementary Movie S9. Time-lapse movie showing root cap cell detachment in**
884 ***atg5-1* complemented with *ATG5pro:ATG-GFP***

885 Scale bar, 50 μ m.

886

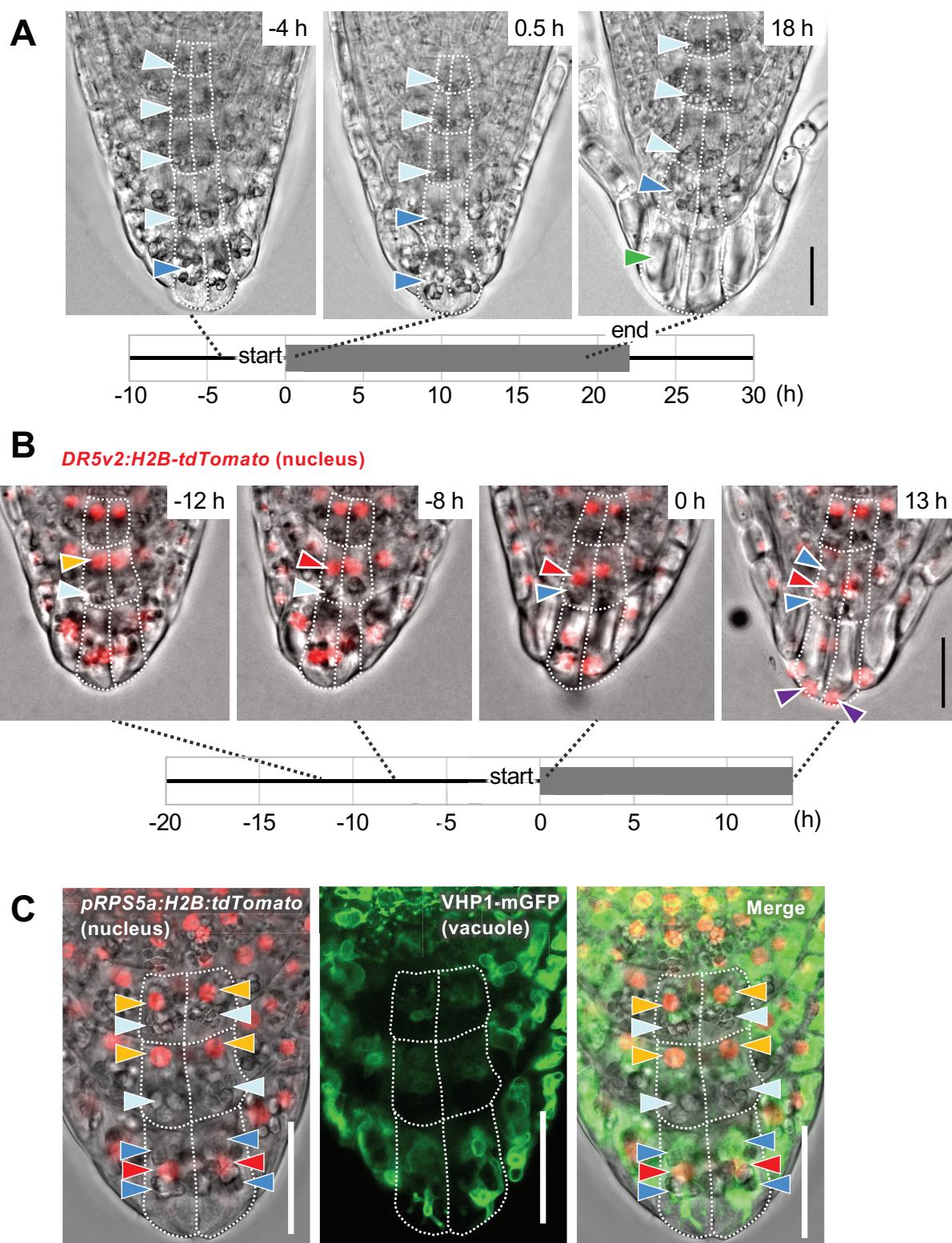
887 **Supplementary Movie S10. Time-lapse movie showing root cap cell detachment in**
888 ***atg5-1* complemented with *BRN1pro:ATG-GFP***

889 Scale bar, 50 μ m.


890

891 **Supplementary Movie S11. Time-lapse movie showing root cap cell detachment in**

892 ***atg5-1* complemented with *RCPG1pro:ATG5-GFP***

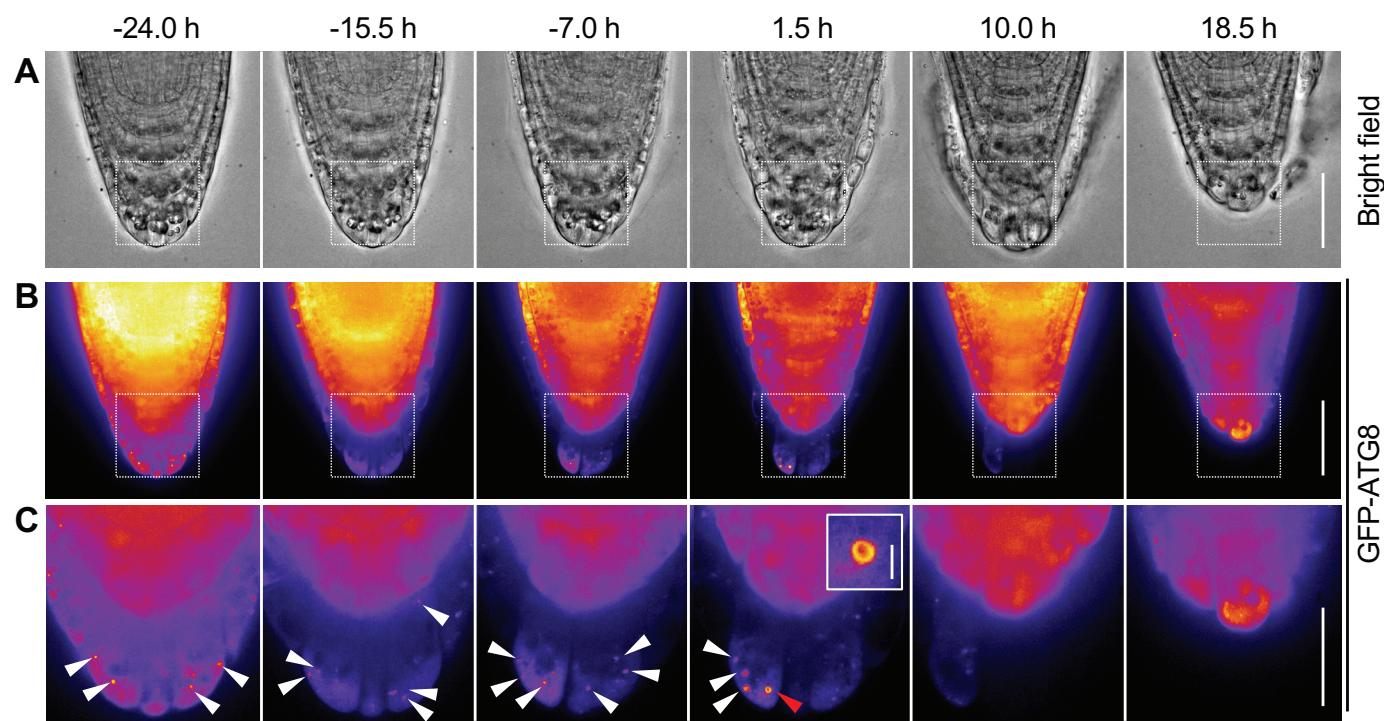

893 Scale bar, 50 μ m.

894

Fig. 1. A diagram illustrating structure and cell detachment process of *Arabidopsis* root cap.

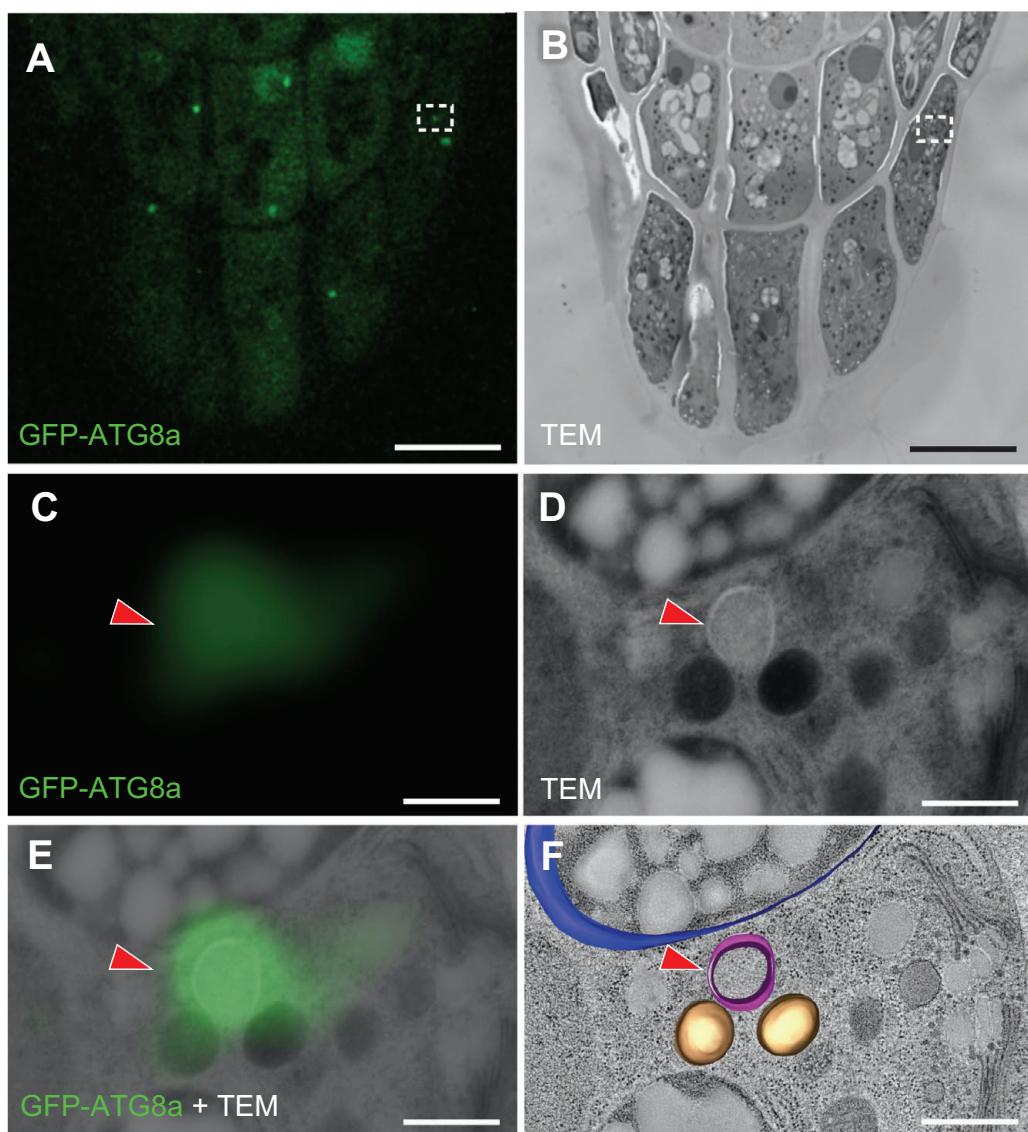
Landmark events constituting the cell separation sequence are marked by arrowheads. Definition of the proximodistal polarity used in this study is shown on the left.

Fig. 2. Organelle rearrangement takes place in the outer root cap layers


Fig. 2. Organelle rearrangement takes place in the outer root cap layers

(A) Time-lapse images visualizing the sequences of root cap cell detachment and relocation of amyloplasts. Representative images before (left panel), at the beginning (central panel), and around the end (right panel) of cell layer detachment are shown. Light blue and dark blue arrowheads indicate sedimenting and floating amyloplasts, respectively. Green arrowhead points to a highly vacuolated cell. Corresponding video is available as Supplementary movie S1.

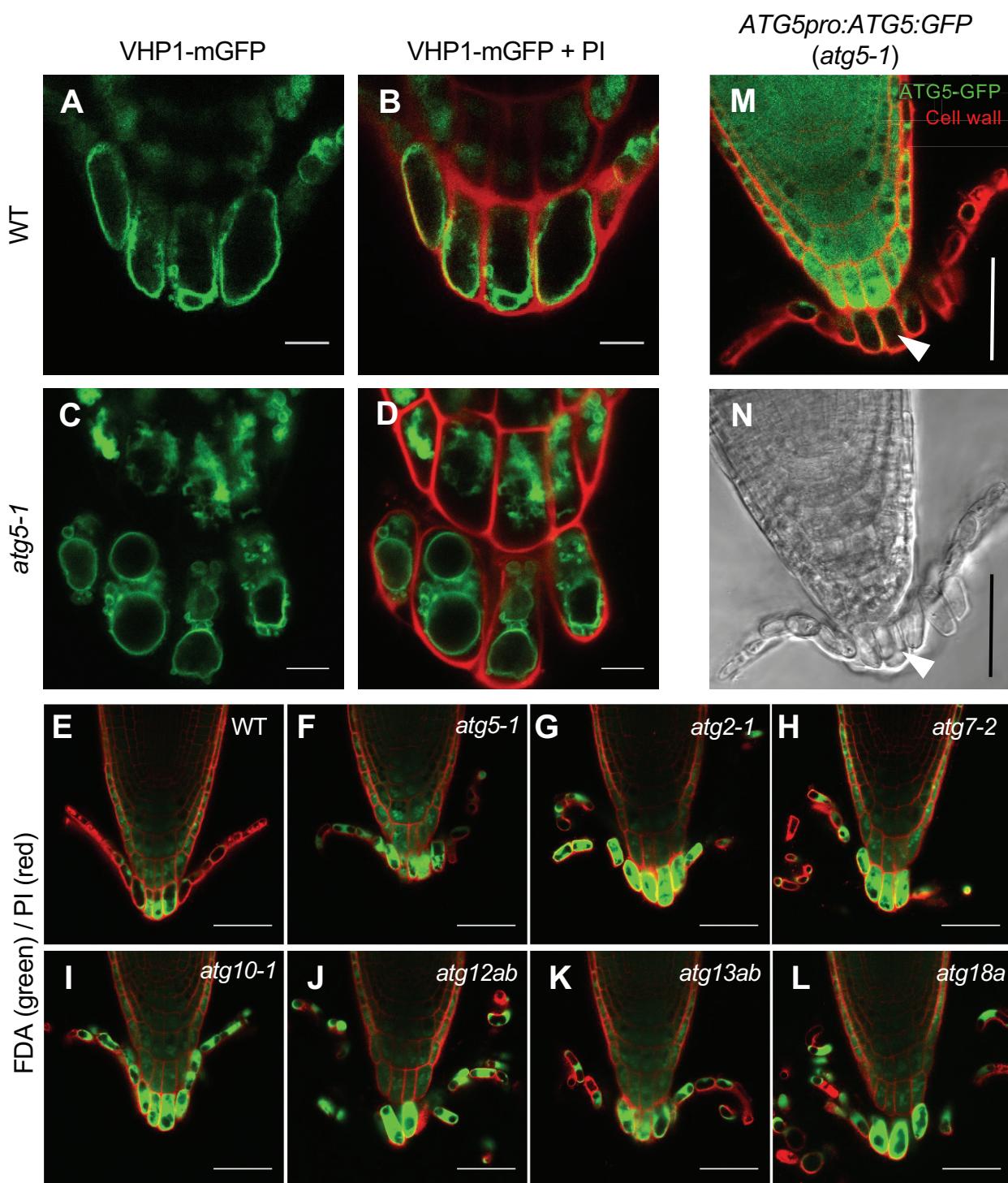
(B) Time-lapse images showing intracellular relocation of nuclei (red fluorescence of *DR5v2:H2B-tdTomato*) and amyloplasts (gray particles in the bright field). Orange and red arrowheads point to the nuclei localized in the proximal (upper) and the middle regions of the cell, respectively. Light blue and dark blue arrowheads point to the amyloplasts in the distal (bottom) and the middle regions of the cell, respectively. Purple arrowheads point to the nuclei localized at the distal pole of the cells. Corresponding video is available as Supplementary movie S2.


(C) Confocal images visualizing differential localization of organelles between the inner and the outermost cell layers. Orange and red arrowheads point to red-fluorescent nuclei in the proximal (upper) and the middle regions in the cell, respectively. Light blue and dark blue arrowheads point to the amyloplasts in the distal (bottom) and the middle regions in the cell, respectively. Green color indicates vacuolar membranes.

Time tables shown in (A) and (B) represent durations of the cell detachment process (gray box). Timing of image capturing is indicated at the upper right corner of each image where the origin (0 h) is set at the time when the outermost layer started detachment in the proximal LRC region. Cell outlines are delineated by white dotted lines. Scale bar, 20 μ m.

Fig. 3. Autophagosomes are formed specifically in the outermost root cap layer

Representative confocal time-lapse images of the *35Spro:GFP-ATG8a* root. Bright-field (A) and GFP-ATG8a fluorescence (B, C) images are shown. Images in (C) are magnified images of the boxed regions in (B). White arrowheads in (C) indicate autophagosomes marked by GFP-ATG8a. They showed the typical donut-shaped autophagosome images in the later phase of detachment (red arrowhead at 1.5h, inset: enlarged view). Timing of image capturing is indicated at the upper right corner of each image where the origin (0 h) is set at the time when the outermost layer started detachment in the proximal LRC region. Scale bar, 50 μ m (A, B), 20 μ m (C), 2 μ m (C, inset). A corresponding video is available as Supplementary movie S4.

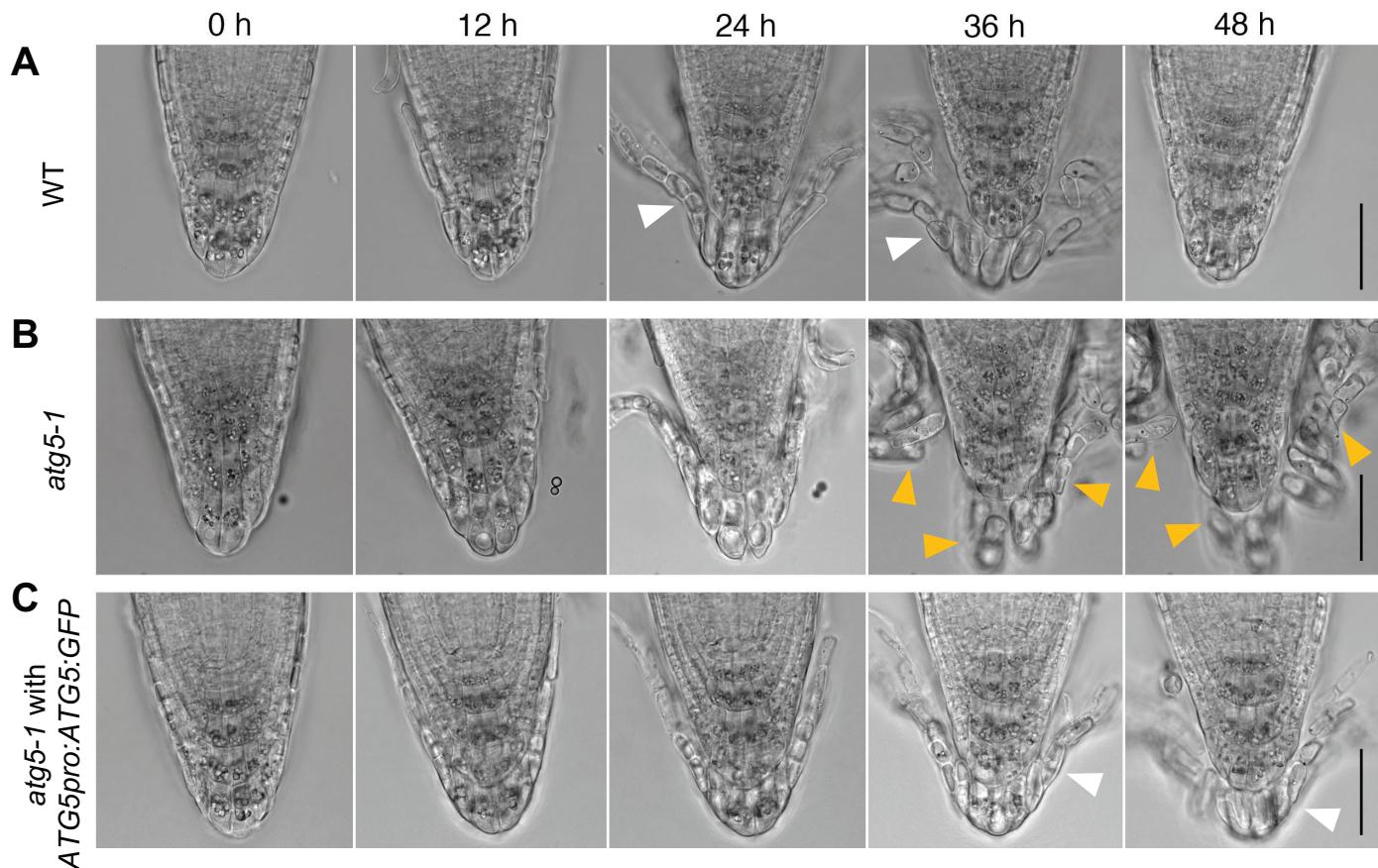

Fig. 4. CLEM imaging revealed localization of GFP-ATG8a in autophagosomes

(A, B) GFP fluorescence (A) and TEM (B) images of a section from a *GFP-ATG8a* root cap.

(C-E) Magnification of the region boxed in (A) and (B). GFP-ATG8a (C), TEM (D), and their merged image (E) are shown. Red arrowhead in (E) indicates an autophagosome with GFP-ATG8a fluorescence.

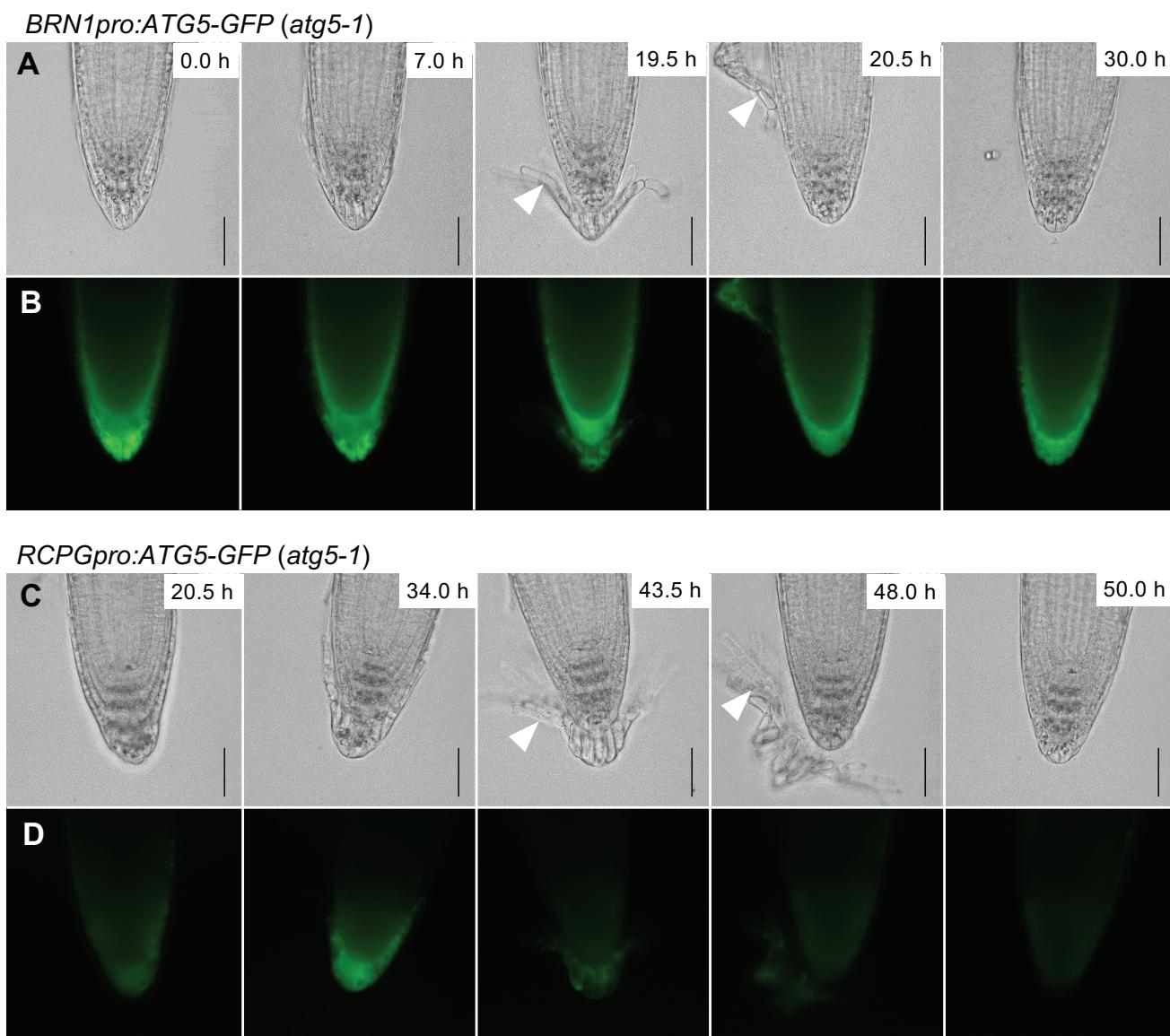
(F) A 3D electron tomographic model built for an amyloplast (blue), two mitochondria (brown,) and an autophagic compartment (magenta) overlaid with the TEM image.

Scale bar, 10 μ m (A, B); 500 nm (C-F).

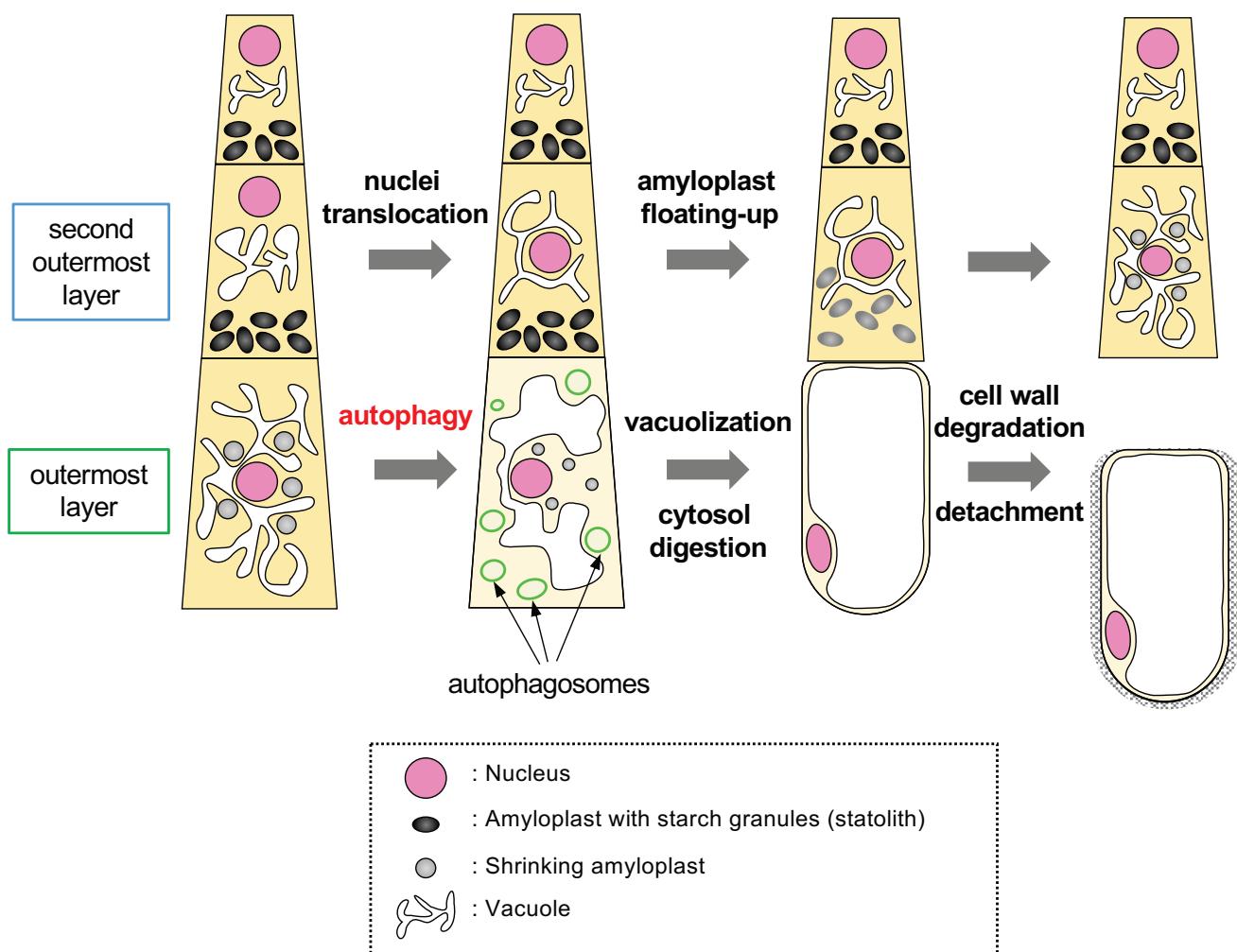

Fig. 5. Vacuolization and cytosol digestion were inhibited in detaching columella cells in *atg* mutants

(A-D) Vacuolar morphologies in wild-type (A, B) and *atg5-1* (C, D) columella cells. (A, C) VHP1-mGFP fluorescence (green). (B, D) Merged images with PI-stained cell walls (red).

(E-L) Retention of cytosol in the detaching root cap cells of various *atg* mutants (F-L) as compared with wild type (E). Cytosol and cell walls were stained with FDA (green) and PI (red), respectively.


(M, N) Vacuolization and cytosol digestion defects of detaching *atg5-1* root cap cells were complemented by the *ATG5-GFP* transgene (white arrowheads). Note the uniform *ATG5*:GFP expression by the *ATG5* promoter.

Scale bar, 10 μ m (A-D); 50 μ m (E-N).


Fig. 6. Autophagy activation is required for organized separation of the outermost root cap cell layer

(A-C) Time-lapse images of root cap detachment processes in wild-type (A), *atg5-1* (B), and *ATG5pro:ATG5:GFP atg5-1* (C) plants at the time points indicated at the top. Note that the outermost root cap cells detach as a layer (white arrowheads) in wild type (A) and *ATG5:GFP atg5-1* (C), whereas they detach individually in *atg5-1* (B, orange arrowheads). Scale bar, 50 μ m. Corresponding videos are available as Supplementary movie S7-S9.

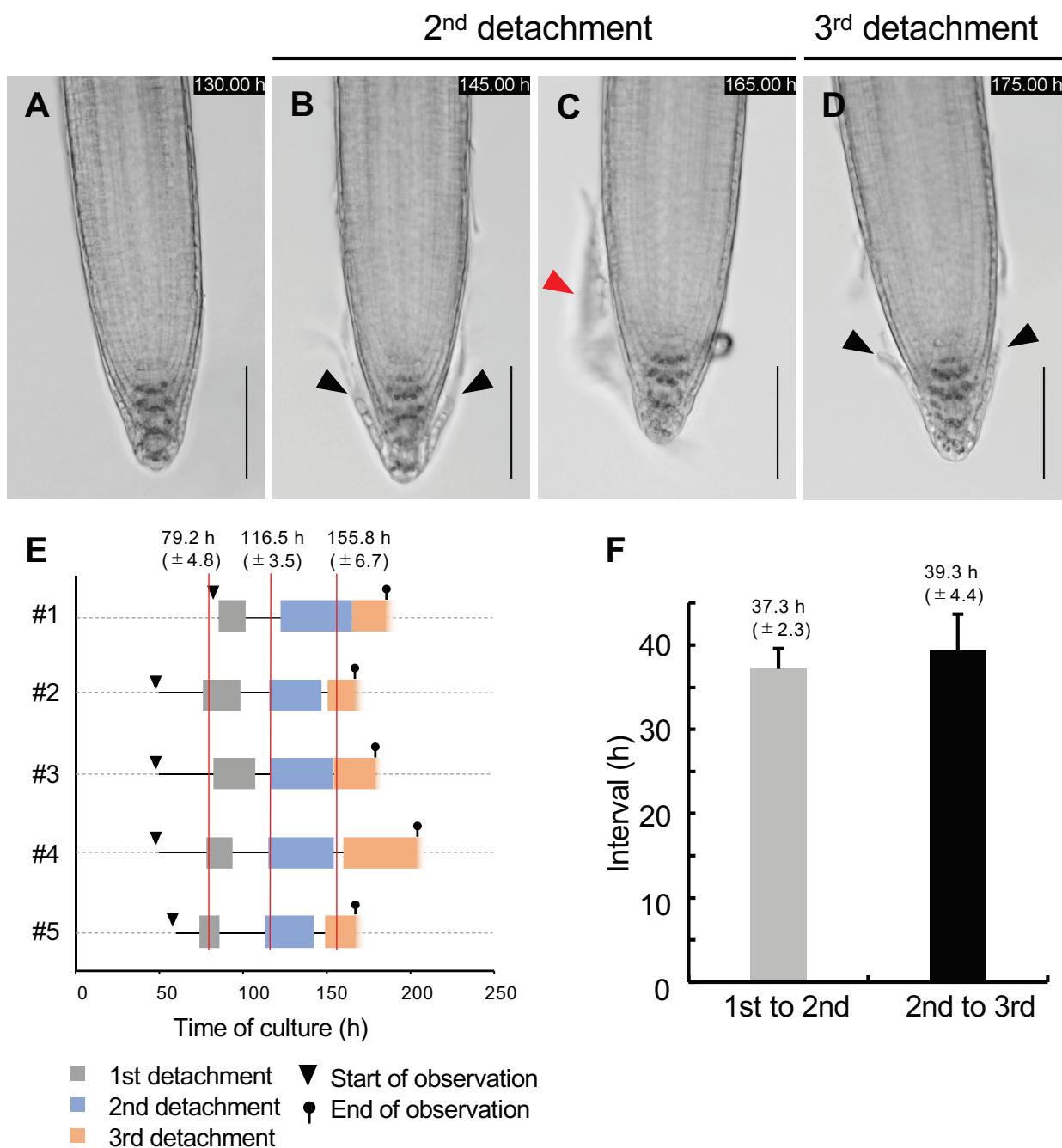


Fig. 7. Autophagy activation at the timing of cell wall degradation is sufficient for organized cell separation

(A-D) Time-lapse images of root cap detachment processes in *BRN1pro:ATG5-GFP atg5-1* (A, B) and *RCPGpro:ATG5:GFP atg5-1* (C, D) at the time points indicated at the top right corner of each panel. Note that the outermost root cap cells detach as a cell layer in both genotypes (white arrowheads), as compared with individual detachment in *atg5-1* (Fig. 6B). Bright-field (A, C) and GFP fluorescence (B, D) images were shown. Scale bar, 50 μm. Corresponding videos are available as Supplementary movies S10 and S11.

Fig. 8. Schematic illustration of the sequence of organelle rearrangement and autophagy activation during maturation and detachment of columella cells.

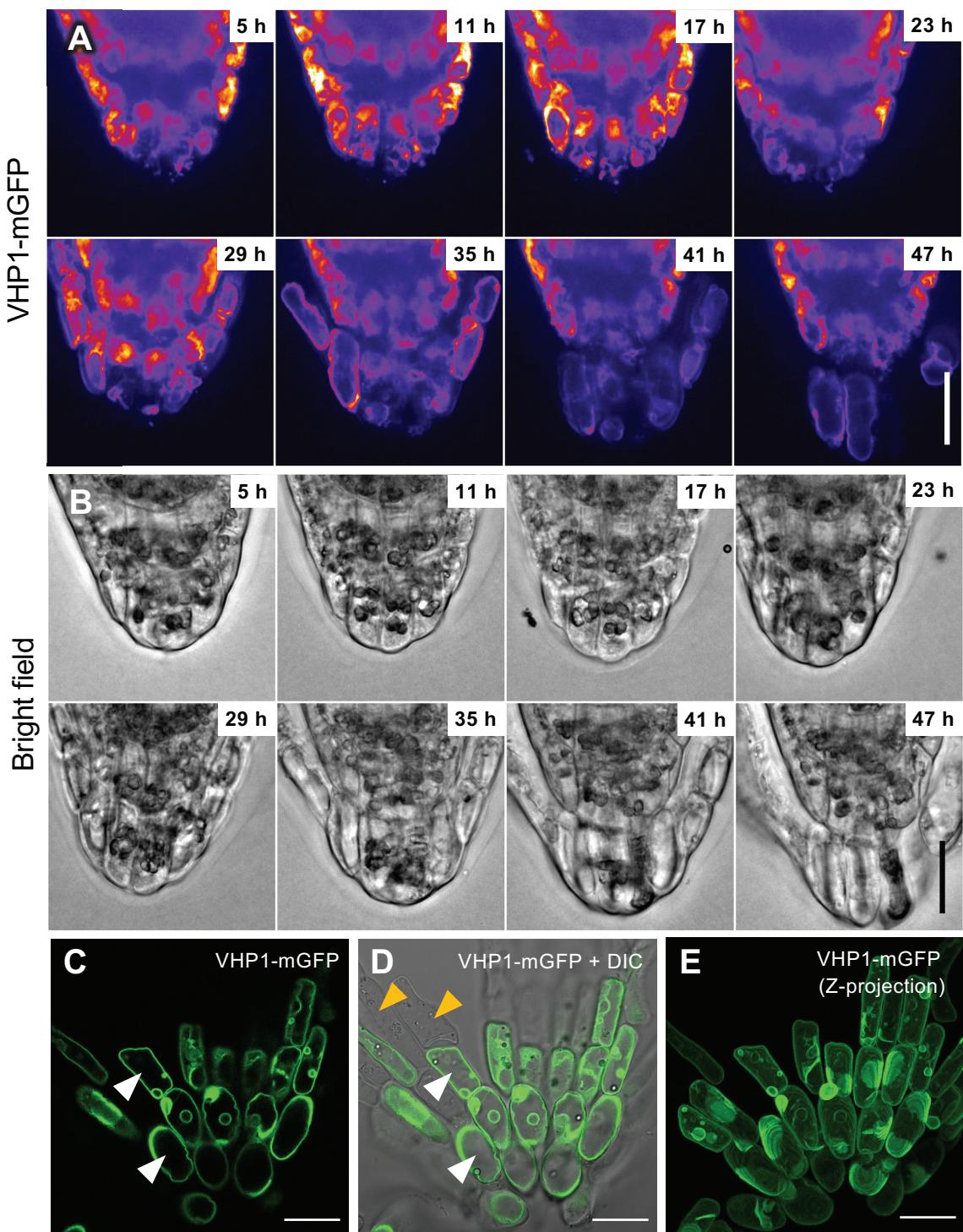


Fig. S1. *Arabidopsis* root cap cells detach at fixed intervals

(A-D) Time-lapse images showing periodic detachment of *Arabidopsis* root cap cells. Detachment of the outermost root cap layer initiates at the proximal LRC region and progressively extends toward the central columella region (B, black arrowheads). Detached root cap cells adhere together to keep a cell layer morphology (C, red arrowhead). Detachment of the next cell layer initiates in the same manner as the previous one (D). Elapsed time after the start of culture is indicated in each panel. Scale bar, 100 μ m.

(E) A time table showing periodic detachment of root cap cell layers in five (#1-5) root samples each experiencing three rounds of root cap detachment. Gray, blue, and orange boxes indicate the duration from the start (initial detachment at the proximal LRC region) and the end (complete detachment at the columella region) of the first, second, and third cell layer, respectively. The x-axis indicates elapsed time (h) from the start of culture. Red lines indicate average time points of the start of detachment.

(F) Intervals between the start of detachment between the first and second cell layers (gray bar), and between the second and third cell layer (black bar). Mean and SE are shown ($n = 5$).

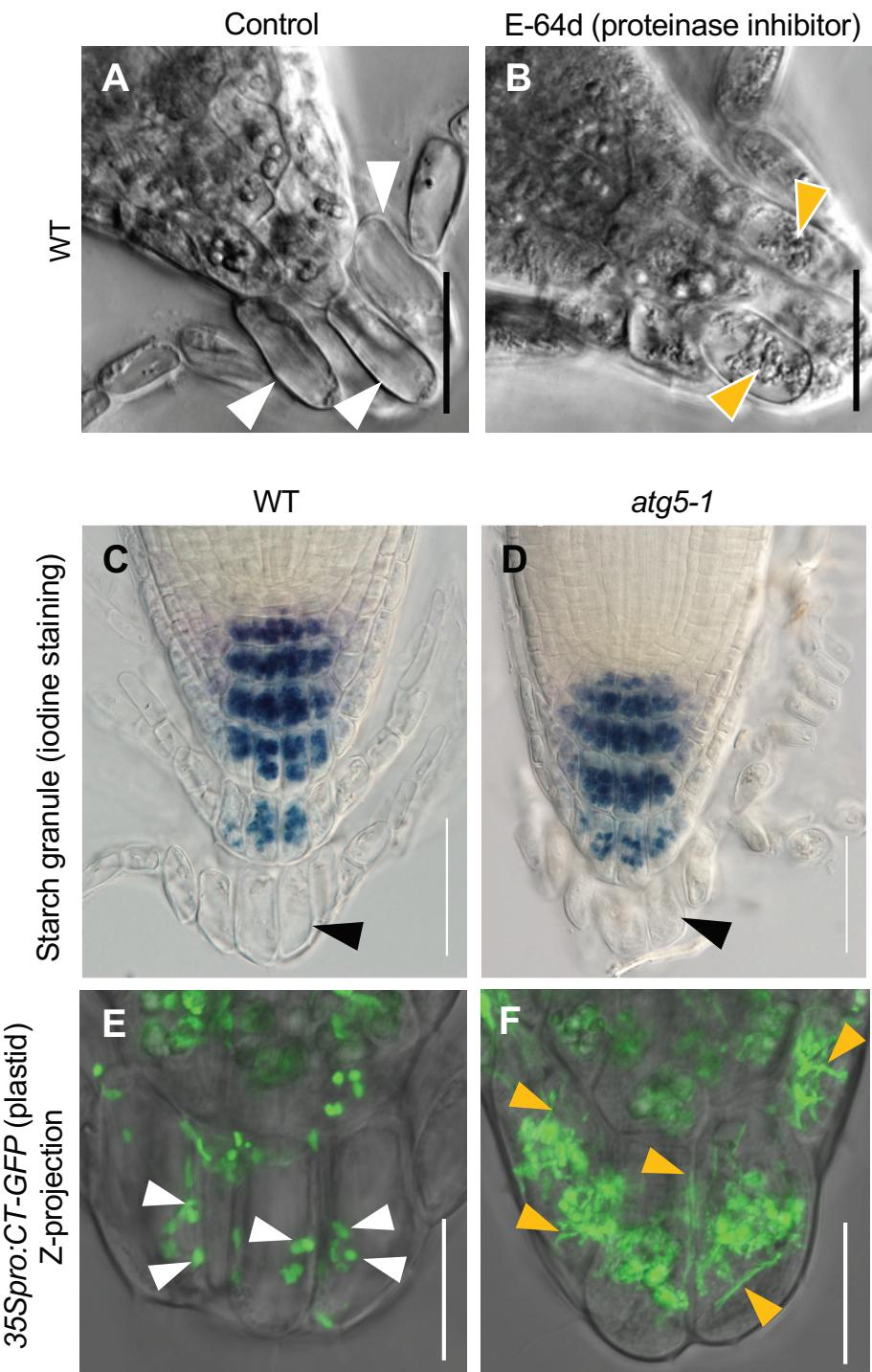


Fig. S2. Morphological transition of vacuoles during the detachment of root cap cells

(A, B) Time-lapse images showing vacuolar morphology by the tonoplast-localized VHP1-mGFP fluorescence (A) and bright-field images (B). In the outermost cells, vacuoles are initially small and fragmented (up to 17 h), and gradually expand to form large central vacuoles before the cell detachment (41 h). Elapsed time after the start of observation is indicated in each panel. A corresponding video is available as Supplementary movie S3.

(C-E) The entire cell volume was occupied by a large central vacuole in detaching root cap cells. Images of VHP1-mGFP fluorescence (C) and its overlay with a DIC image (D) were shown. (F) is a Z-stack projection encompassing 50- μ m depth. Note that cells at the center of the detached cell layer possess large central vacuoles as visualized by VHP1-mGFP (white arrowheads), whereas those at the periphery do not show fluorescence (orange arrowheads) likely due to the loss of cell viability.

Scale bar, 20 μ m.

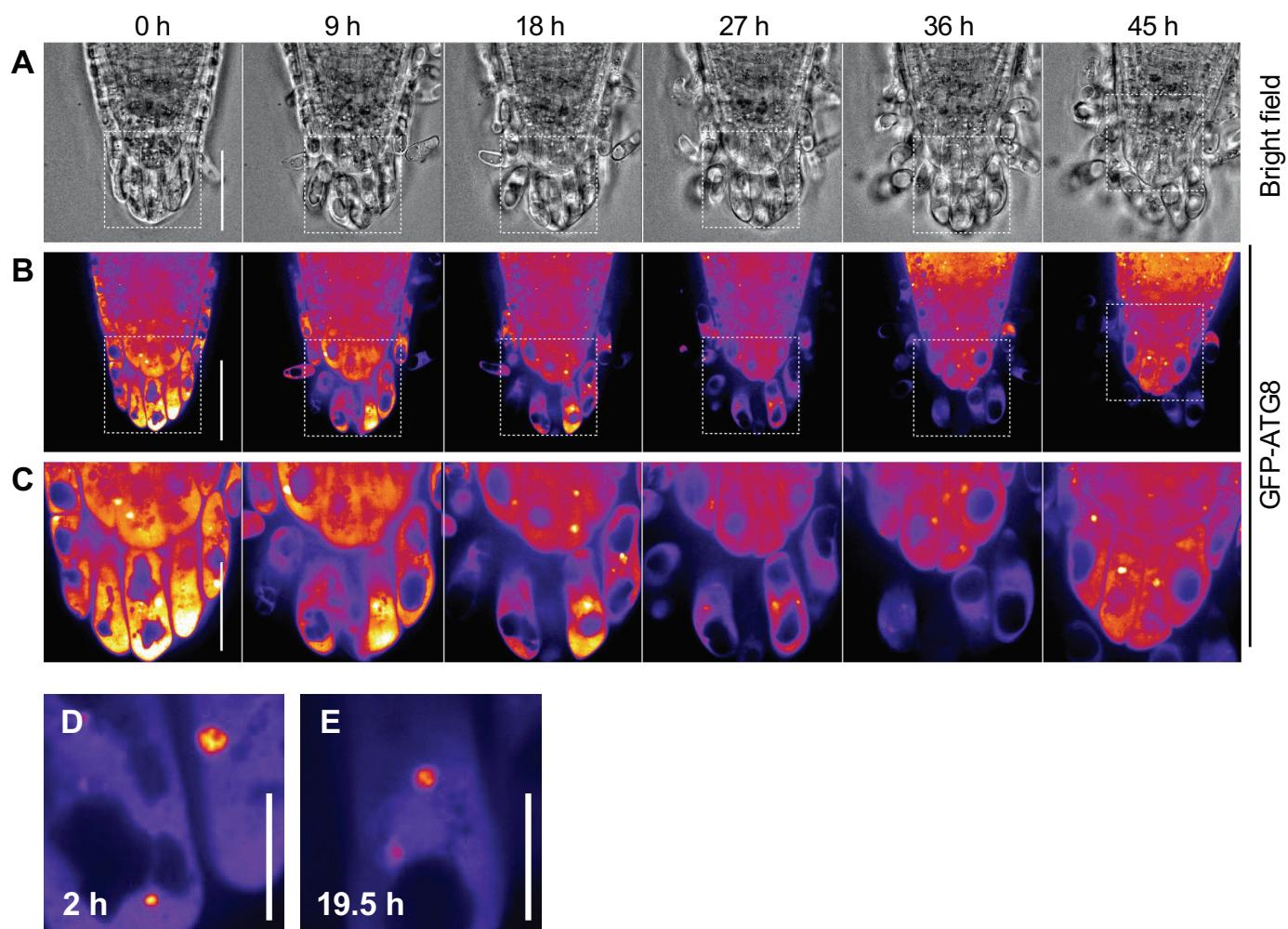
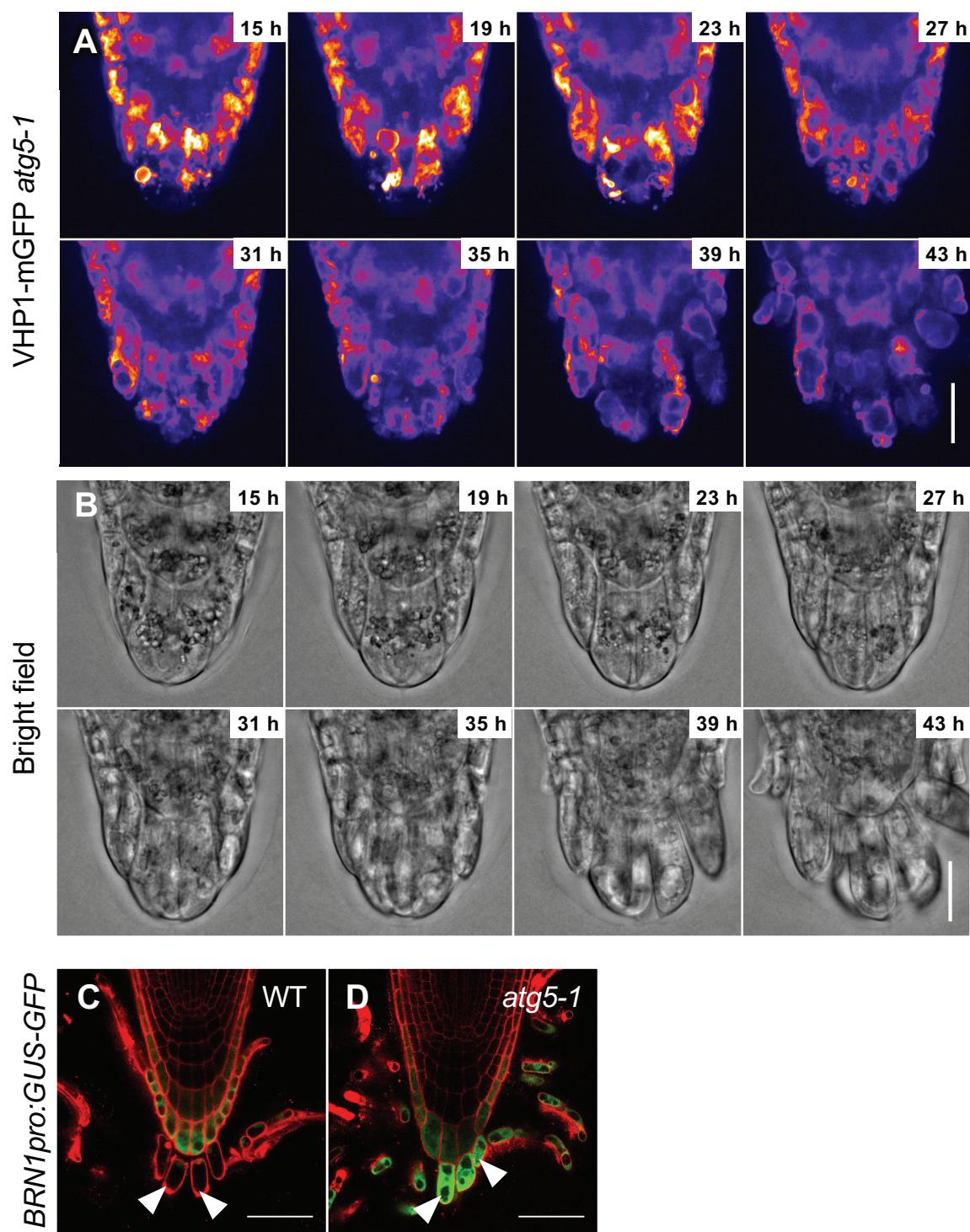


Fig. S3. Accumulation of autophagic body-like structures in the E64d-treated wild-type root cap cells and abnormal plastid morphology in *atg5-1*

(A, B) Accumulation of autophagic body-like structures inside the vacuoles of the wild-type outermost root cap cells after E-64d treatment (B, orange arrowheads), as compared with the translucence vacuolar images of a non-treated control (A, white arrowheads). 5-day-old seedlings grown on the medium with or without 10 μ M E-64d were observed. Scale bar, 20 μ m.


(C, D) Amyloplasts in the outermost root cap cells lost starch granules in both wild type and *atg5-1*. Black arrowheads indicate the detaching outermost cell layers. Scale bar, 50 μ m.

(E, F) Amyloplasts exhibit abnormal morphologies in the outermost root cap cells of *atg5-1* (F) as compared with those in the wild type (E). Plastids are visualized by the CT-GFP fluorescence marker line. Note that small spherical plastids accumulate in the wild-type cells (white arrowheads), whereas those with tubular morphologies dominate in *atg5-1* cells (orange arrowheads). Scale bar, 20 μ m.

Fig. S4. Autophagosomes do not form in the detaching root cap cells of *atg5-1*

Time-lapse images of the *35Spro:GFP-ATG8a atg5-1* root tip. Bright-field (A) and GFP-ATG8a fluorescence images (B, C) are shown. Images in (C) are magnified views of boxed regions in (B) of respective time points. Note that the GFP-ATG8a signals were uniformly distributed throughout the cytosol. Occasionally observed punctate signals did not form a donut-shape typical of an autophagosome (D, E). Elapsed time after the start of observation is indicated at the top. Scale bar, 50 μ m (A, B); 20 μ m (C); 10 μ m (D, E). A corresponding video is available as Supplementary movie S5.

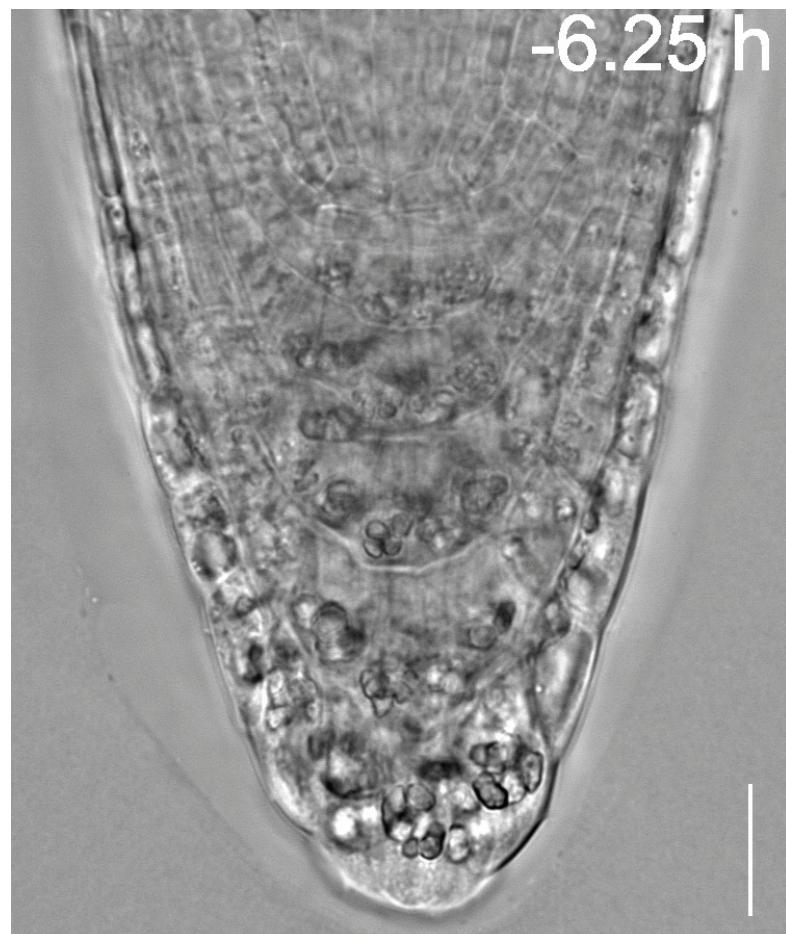
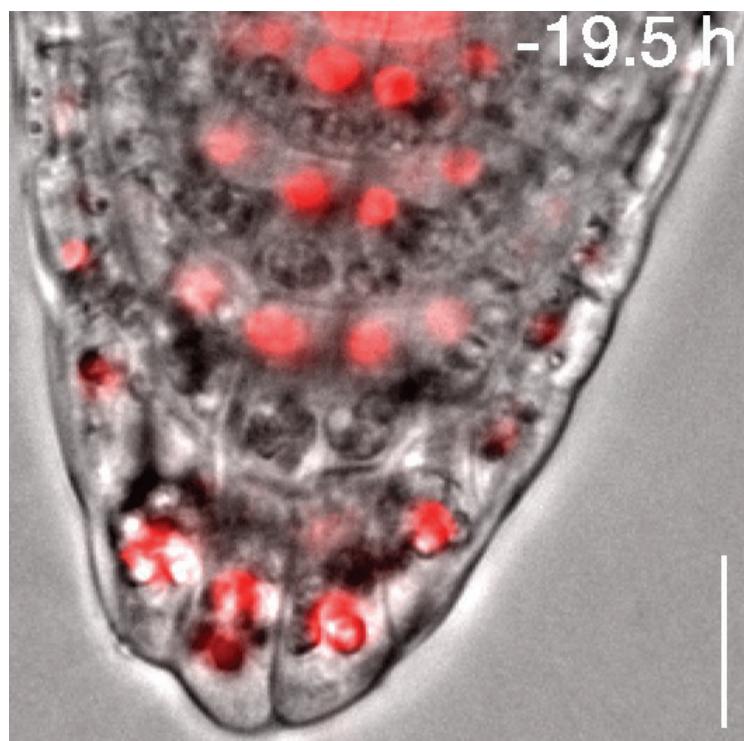
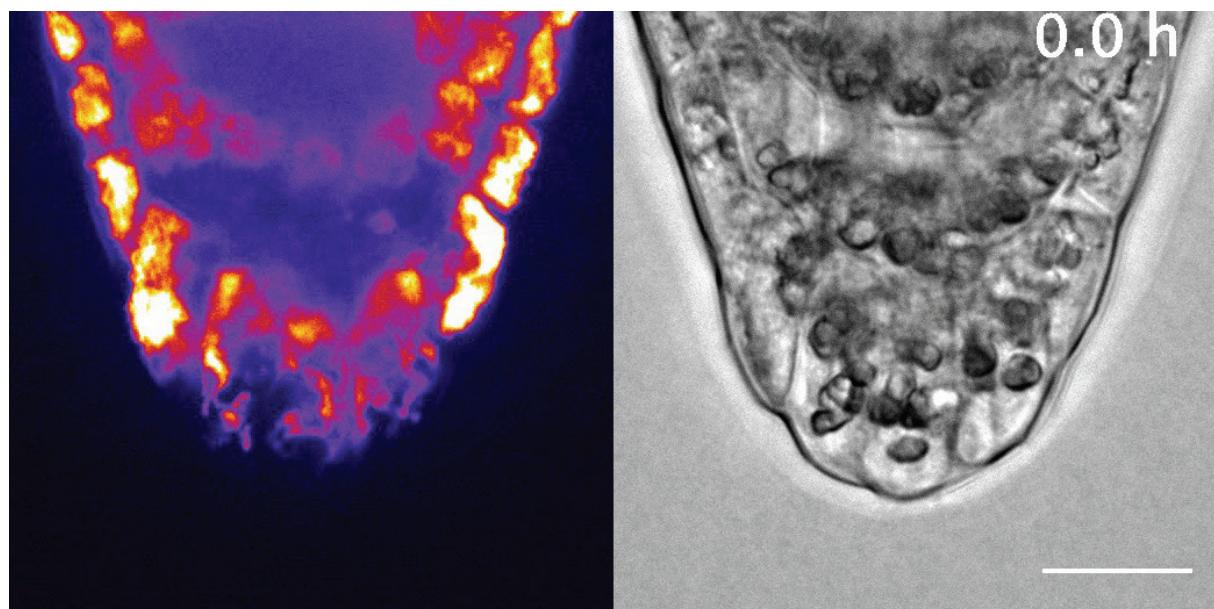


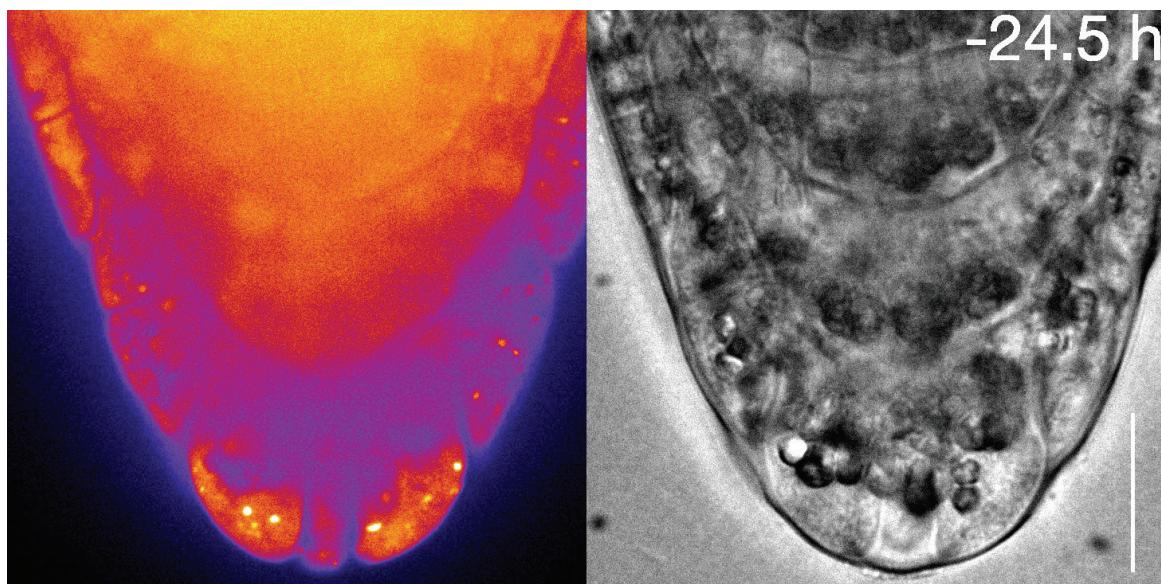
Fig. S5. Vacuolization and cytosol digestion do not occur in detaching *atg5-1* cells


(A, B) Time-lapse images showing vacuolar morphology by the tonoplast-localized VHP1-mGFP fluorescence (A), and corresponding bright-field images (B) in *atg5-1*. In the outermost cells, vacuoles are initially small and fragmented and gradually expand as those in wild type, but fail to expand fully (43 h). Elapsed time after the start of observation is indicated at the upper right corner of each panel. Corresponding video is available as Supplementary movie S6.

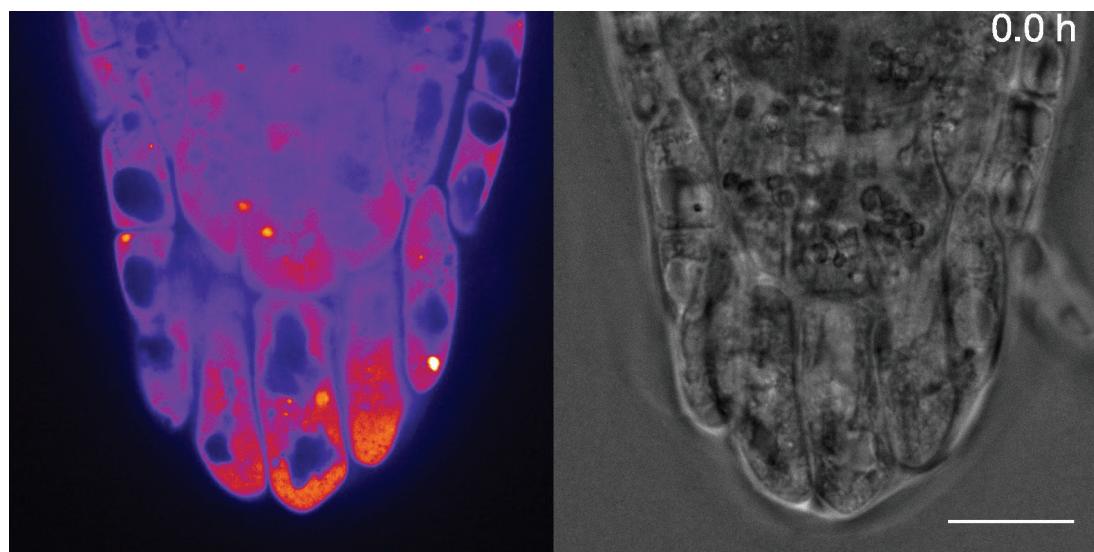
(C, D) Cytosolic GUS-GFP proteins expressed under the outer layer-specific *BRN1* promoter revealed cytosol digestion in the detaching root cap cells of wild type, as compared with its retention in *atg5-1* (white arrowheads).


Scale bar, 20 μ m (A, B); 50 μ m (C, D).

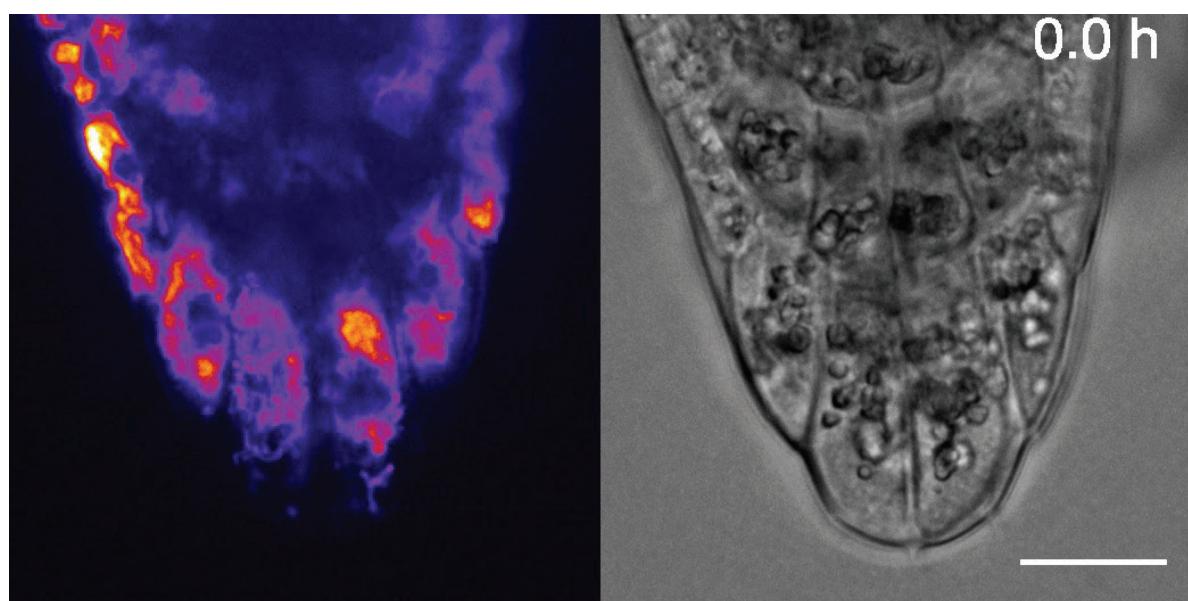
Supplementary Movie S1. Time-lapse movie showing root cap cell detachment and organelle rearrangement in wild-type root cap cells
Scale bar, 20 μ m.

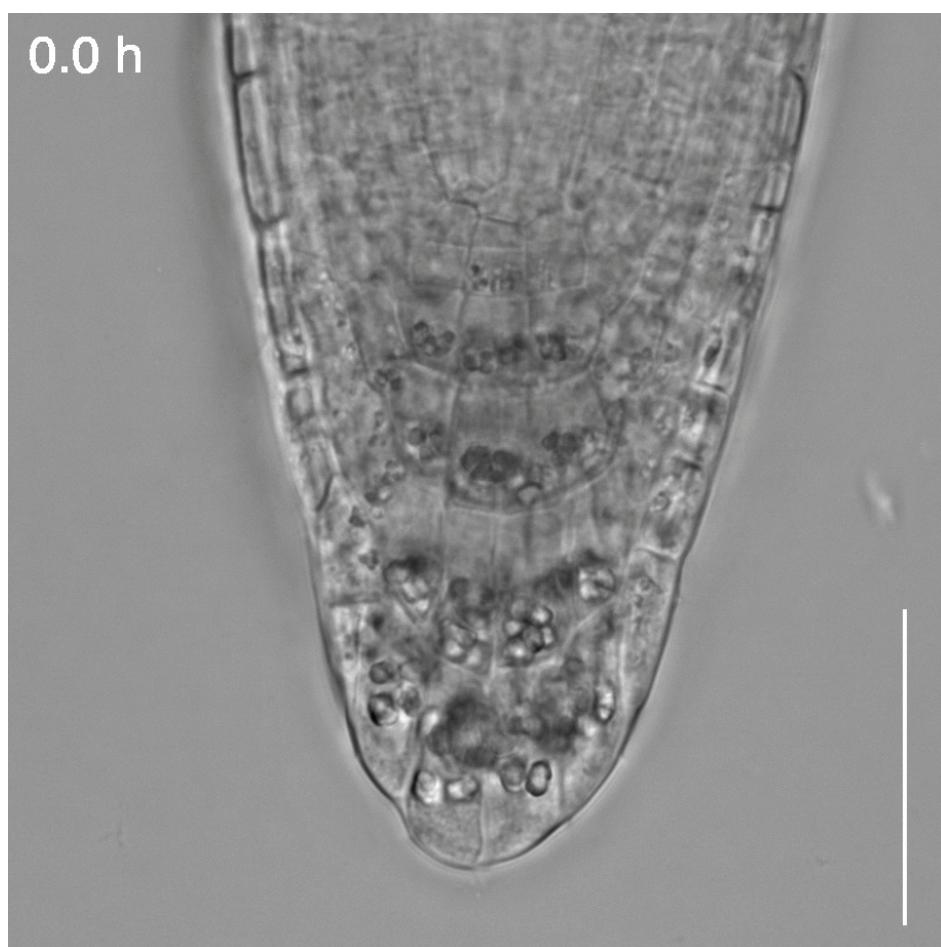


Supplementary Movie S2. Time-lapse movie showing intracellular relocation of nuclei (red, *DR5v2:H2B-tdTomato*) and amyloplasts (gray particles in the bright field) in the root cap cells
Scale bar, 20 μ m.



Supplementary Movie S3. Time-lapse movie showing morphological transition of vacuoles during cell detachment

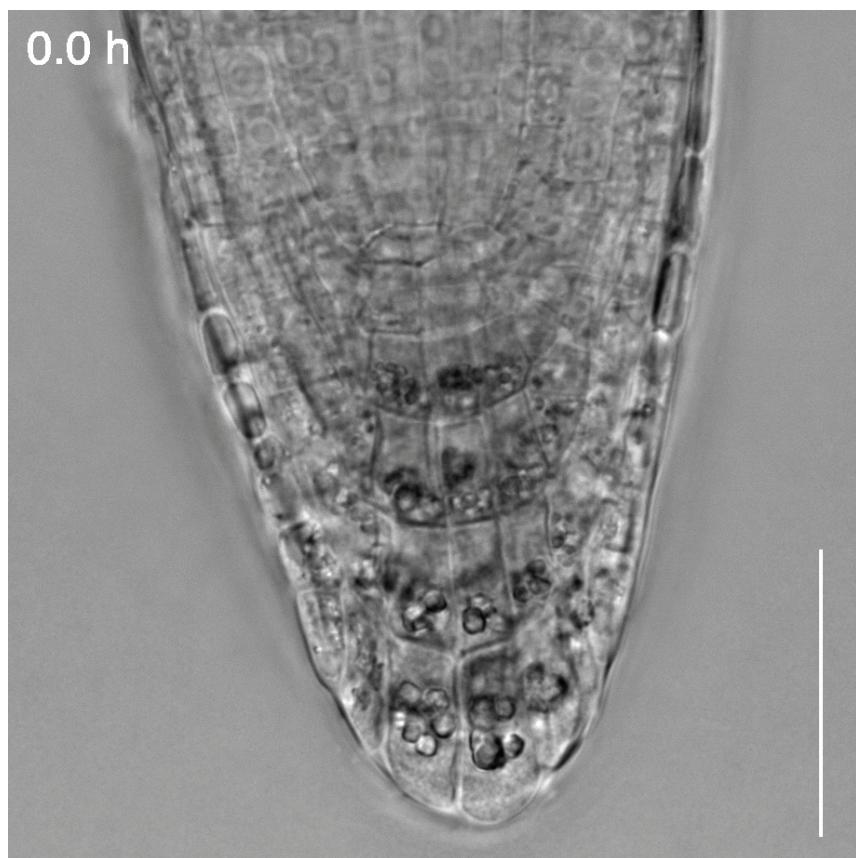

Scale bar, 20 μ m.


Supplementary Movie S4. Time-lapse movie showing autophagosome formation in the outermost root cap cells visualized by *35Spro:GFP-ATG8a*
Scale bar, 20 μ m.

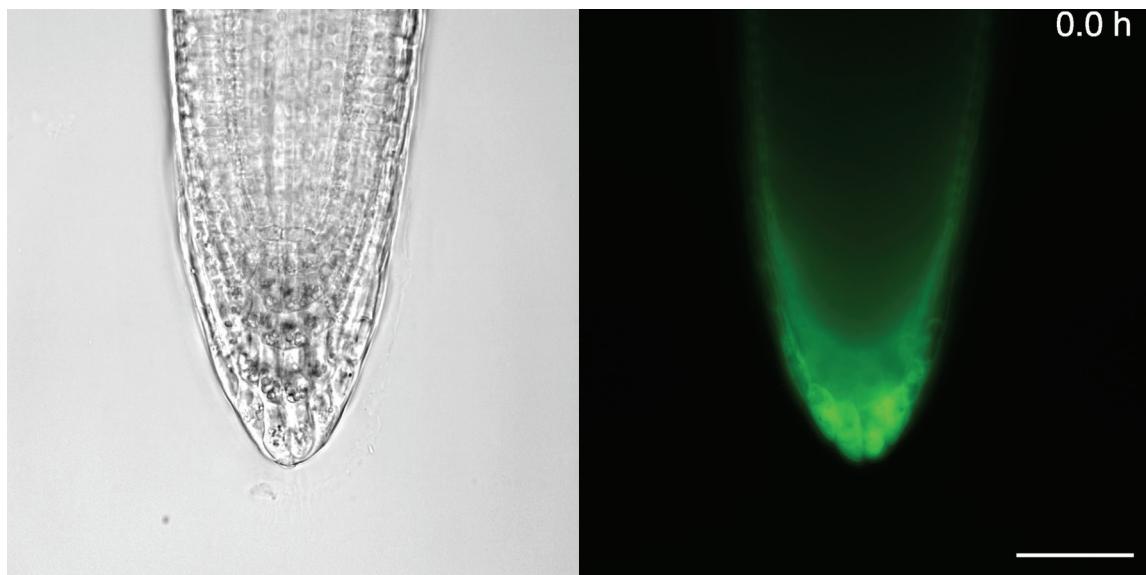
Supplementary Movie S5. Time-lapse movie showing the absence of autophagosome formation in *35Spro:GFP-ATG8a* in *atg5-1*.
Scale bar, 20 μ m.

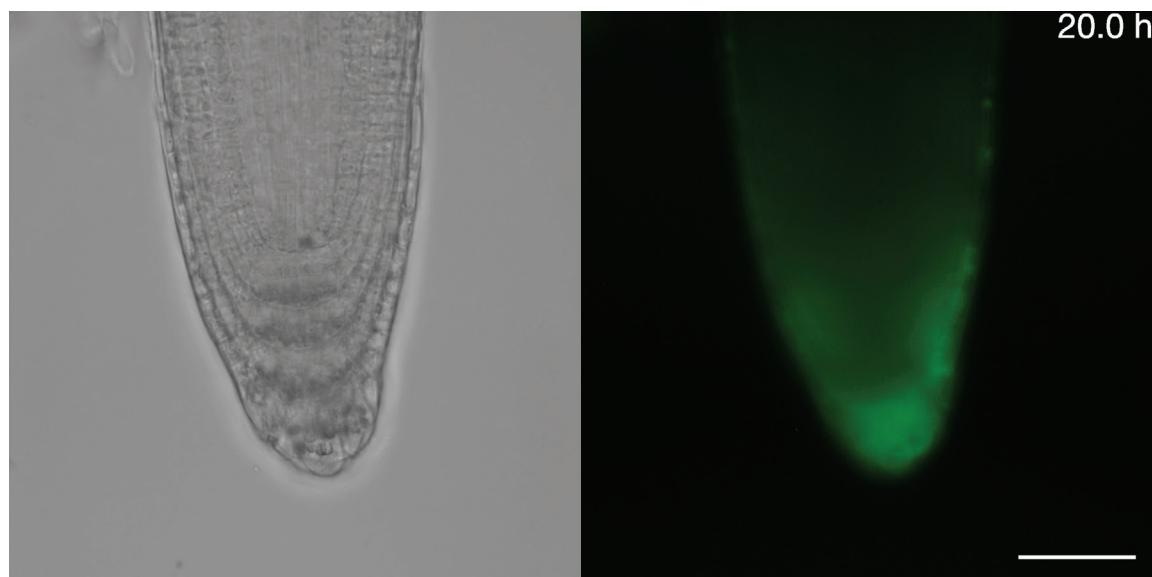


Supplementary Movie S6. Time-lapse movie showing morphological transition of vacuoles during cell detachment in *atg5-1*.
Scale bar, 20 μ m.



Supplementary Movie S7. Time-lapse movie showing root cap cell detachment in the wild type


Scale bar, 50 μ m.


Supplementary Movie S8. Time-lapse movie showing root cap cell detachment in *atg5-1*
Scale bar, 50 μ m.

Supplementary Movie S9. Time-lapse movie showing root cap cell detachment in *atg5-1* complemented with *ATG5pro:ATG-GFP*
Scale bar, 50 μ m.

Supplementary Movie S10. Time-lapse movie showing root cap cell detachment in *atg5-1* complemented with *BRN1pro:ATG-GFP*
Scale bar, 50 μ m.

Supplementary Movie S11. Time-lapse movie showing root cap cell detachment in *atg5-1* complemented with *RCPG1pro:ATG5-GFP*
Scale bar, 50 μ m.