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Abstract 16 
Comprehensive profiling of hormone-dependent breast cancer (HDBC) has identified 17 
hundreds of protein-coding alterations contributing to cancer initiation1,2, but only a 18 
handful have been linked to endocrine therapy resistance, potentially contributing to 19 
40% of relapses1,3–9. If other mechanisms underlie the evolution of HDBC under 20 
adjuvant therapy is currently unknown. In this work, we employ integrative functional 21 
genomics to dissect the contribution of cis-regulatory elements (CREs) to cancer 22 
evolution by focusing on 12 megabases of non-coding DNA, including clonal 23 
enhancers10, gene promoters, and boundaries of topologically associating domains11. 24 
Massive parallel perturbation in vitro reveals context-dependent roles for many of 25 
these CREs, with a specific impact on dormancy entrance12,13 and endocrine therapy 26 
resistance9. Profiling of CRE somatic alterations in a unique, longitudinal cohort of 27 
patients treated with endocrine therapies identifies non-coding changes involved in 28 
therapy resistance. Overall, our data uncover actionable transient transcriptional 29 
programs critical for dormant persister cells and unveil new regulatory nodes driving 30 
evolutionary trajectories towards disease progression.  31 
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Main 1 
During multicellular development, cell fate is established through a series of heritable 2 
transcriptional changes 14,15. These changes are orchestrated by the interaction of 3 
transcription factors (TFs) with the regulatory portion of the non-coding genome (cis-4 
regulatory elements, CREs) 16. CRE activity is largely tissue-specific and contributes 5 
to many aspects of cancer aetiology 17–19. A large fraction of cancer subtypes displays 6 
addiction to the activity of TFs. In line with this, active compounds against nuclear 7 
receptors, a targetable class of TFs, account for 16% of the total FDA approved cancer 8 
drugs 20. Hormone Dependent Breast Cancer (HDBC) cells are strongly dependent on 9 
the activity of the nuclear receptor oestrogen receptor (ERa), pioneer factors FOXA1 10 
and PBX1 and the transcription factor YY110,16. These TFs collectively control many 11 
cancer hallmarks through their direct interaction with a subset of CREs, particularly 12 
distal enhancers 10,21–23. Continuous modulation of ERa activity after breast surgery (5 13 
years of adjuvant endocrine therapy) is one the most successful targeted strategies 14 
and it represents one of the first examples of precision medicine 24–27. Nevertheless, 15 
over the course of 20 years post-surgery, cancer returns in up to 50% of patients, 16 
suggesting that residual tumour cells can undergo prolonged dormancy 12,13,24 (Figure 17 
1a).  18 

Despite HDBC cells being largely dependent on the activity of these TFs, 19 
previous perturbation screens focusing on ERa or FOXA1 bound CREs found that 20 
only a minority of binding sites appear to be essential for steady-state proliferation in 21 
vitro 28,29. Yet, TF-centric perturbation has missed CREs driven by additional TFs (i.e., 22 
YY1 and GATA3 30–32) and overlooked critical intermediate states in cancer evolution 23 
such as adaptive dormancy of persister cells 12,13. To identify CREs contributing to the 24 
evolution and adaptation of HDBC tumours exposed to endocrine therapies we 25 
developed a prioritised CREs panel (termed Systematic Identification of epigenetically 26 
Defined loci, or SID) to investigate the role they play both in vitro and in vivo. The SID 27 
panel leverages our patient-derived epigenetic atlas10 in which we identified putative 28 
enhancers with clonal or sub-clonal representation using Histone 3 Lysine 27 29 
acetylation (H3K27ac) in primary and metastatic HDBC (see Methods). Since 30 
disruption of chromatin topology can also contribute to disease evolution in both 31 
developmental and cancer models 33, SID includes clusters of CTCF binding sites 32 
putatively controlling the integrity of topologically associating domain (TAD)34,35 33 
(Figure 1a, Supplementary Figure 1a and Methods). 34 
 35 
Perturbing SID regions via CRISPRi 36 
We first investigated the contribution of CREs (at enhancers and TAD boundaries) to 37 
HDBC cell growth via massively parallelized dCas9-KRAB (CRISPRi36) repressor 38 
perturbation. We designed 136,118 single guide RNA (sgRNAs) to interfere with the 39 
activity of 23,765 CREs in treatment naïve MCF7 (HDBC cells grown with oestrogen, 40 
+E2) (Figure 1a, Supplementary Figure 1b, Supplementary Tables 1 and 2, SID 41 
Perturbation or SIDP). We reasoned that KRAB-mediated repression mimics CRE loss 42 
of function potentially produced by somatic genetic alterations impinging on TF affinity 43 
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to these sites 37–39. SIDP covers over 60% of the clonal enhancers active in MCF7 and 1 
almost every cluster of CTCF binding sites associated with TAD boundaries 2 
(Supplementary Figure 1a).  3 

Figure 1. Defining a comprehensive strategy to functionally annotate the non-coding genome of 4 
HDBC. (a) HDBC journey is characterized by distinct phases. Cells must adapt to different niches and 5 
treatments. Overcoming these stresses require profound, heritable transcriptional changes. Leveraging 6 
in vivo and in vitro data, we develop SID, a strategy to prioritize HDBC-specific regulatory regions for 7 
functional (SID Perturbation) and genomic (SID Variants) annotation in cell line models and patients. 8 
(b) Bar plot showing the relative fraction of scoring sgRNAs and CREs bearing scoring sgRNAs, upon 9 
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perturbation of noncoding genome of oestrogen dependent MCF7 cells via SIDP. Scoring sgRNAs 1 
showing a significantly decreased frequency at 21 days post-infection are referred to as Exhausted, 2 
while those with a significantly higher frequency as Expanded. (c) Box plots showing the log2-fold-3 
change of both scoring (either blue or yellow) and non-scoring (white) sgRNAs at 21 days post-infection 4 
in oestrogen-dependent MCF7 cells, at 7, 14 and 21 days, as compared to the initial library. (d) Bar plot 5 
showing the top ten hallmark gene sets enriched among the genes found in the proximity of the CREs 6 
with scoring sgRNAs showing a pattern of exhaustion at 21 days post-infection (p-value estimated via 7 
a hypergeometric test). 8 
  9 
Nearly 100% of the sgRNAs were captured at high coverage (Supplementary Figure 10 
1b) and then scored based on their relative change after 21 days from infection. This 11 
led to the identification of individual sgRNAs either expanded (increased counts 12 
corresponding to a potential fitness advantage after the loss of activity of the CRE), 13 
exhausted (decreased counts corresponding to a fitness disadvantage after the loss 14 
of activity of the CRE) or neutral (Figure 1b). 34% and 0.9% of positive controls and 15 
non-targeting sgRNAs scored, respectively, demonstrating the robustness of the 16 
approach (FDR <= 0.05; fold-change >= 1.5 or <= -1.5; Supplementary Table 3). 17 
Analysis of the temporal dynamics (7, 14 and 21 days) of the sgRNA scoring at 21 18 
days showed reproducible trends (Figure 1c and Supplementary Figure 2d). 19 
Interestingly, 98.4% of CREs showing multiple, reproducible scoring sgRNA promote 20 
loss of fitness (Figure 1b-c and Supplementary Figure 2d). The regions scoring in our 21 
screen showed significant overlaps with observations from previous screens 22 
(Supplementary Table 3). Motif analysis on exhausted sgRNAs identified YY1 as the 23 
only enriched motif, in line with its critical role in shaping ERα transcriptional activity 24 
at clonal enhancers in HDBC 10 (Supplementary Figure 2d). Scoring sgRNAs are also 25 
associated with many epigenetic features, including KDM5A binding40,41, promoter-26 
specific H3K4me3 and enhancer specific H3K4me1 (Supplementary Figure 2e). 27 
Exhausted sgRNAs were significantly associated with CREs near genes controlling 28 
metabolic processes (i.e., oxidative phosphorylation) and known MCF7 dependencies 29 
(MYC targets and PI3K and AKT signalling, Figure 1d and Supplementary Table 3). 30 
Collectively, these data establish SIDP as a powerful molecular tool for functional 31 
characterization of the non-coding genome and demonstrate that only a small fraction 32 
of CREs controls cellular proliferation in treatment naïve HDBC cells. 33 
 34 
SIDP identifies de novo vulnerabilities in adapting cells 35 
Endocrine therapies target disseminated micro-metastatic deposits by interfering with 36 
oestrogen receptor activity, reducing the overall chance of relapse by half in patients 37 
followed over 20 years 26,42. This effect is largely unpredictable at a single patient 38 
level12,43 by virtue of endocrine therapies ability to induce a transient dormant state in 39 
persister cells, a process mimicked in vitro by long-term oestrogen deprivation12,13. We 40 
have shown that bona fide coding drivers (i.e., ESR1 mutations) might not be the 41 
actual cause triggering the exit from dormancy as they could emerge and be selected 42 
for after awakening, owing to the increased mutational burden associated with 43 
replication12. We then reasoned that the activity of specific CREs might contribute to 44 
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the adaptive process occurring during the transition from growth to dormancy 1 
entrance13,44.  2 

Figure 2. Adaptation to treatment exposes hidden roles for the non-coding genome. (a) 3 
Experimental design. (b) Bar plot showing the relative fraction of scoring sgRNAs and CREs bearing 4 
scoring sgRNAs, upon perturbation of noncoding genome of oestrogen-deprived MCF7 cells via SIDP. 5 
Scoring sgRNAs showing a significantly decreased frequency at 21 days post-infection are referred to 6 
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 6 

as Exhausted, while those with a significantly higher frequency as Expanded. For the total numbers of 1 
sgRNAs and CREs, refer to panel 1b. (c) Longitudinal tracking of non-targeting sgRNAs during 2 
dormancy entrance (black dots highlight 7-, 14-, 21- and 60-days post-infection). (d) Longitudinal 3 
tracking of individual non-targeting sgRNAs in four replicates demonstrate stochastic behaviour during 4 
dormancy entrance (left panel) as opposed to consistent behaviour of sgRNAs targeting the CRE of 5 
essential genes (right panel). (e) Box plots showing the log2-fold-change of both scoring (either blue or 6 
yellow) and non-scoring (white) sgRNAs at 21 days post-infection in oestrogen-deprived MCF7 cells, 7 
at 7, 14 and 21 days, as compared to the initial library. (f) Same as panel (b) but for endocrine-therapy 8 
resistant cells derived from MCF7 (LTED). (g) Summary of the results for the sgRNAs targeting critical 9 
CREs of the USP8 and TLR5 genes. (h) Ternary plots highlight the higher similarity between LTED and 10 
MCF7 +E2 when considering the indicated sets of scoring sgRNAs (Expanded or Exhausted in LTED). 11 
(j) Bubble plot highlighting the enrichment of distinct biological functions, when considering sets of 12 
genes near CREs showing context-specific responses to perturbation. 13 
 14 
To investigate this hypothesis, we performed SIDP in long-term oestrogen deprived 15 
conditions (-E2), measuring gRNA frequencies at 7, 14, 21 and 60 days after infection 16 
(Figure 2a). Analysis of CREs with multiple scoring sgRNAs shows that 10% of these 17 
sgRNAs significantly expanded during this period (compared to 1.6% in SIDP +E2, 18 
Figure 2b: Supplementary Tables 3 and 4). We interpret this increased representation 19 
as a survival advantage emerging uniquely under stress. A significant proportion of 20 
sgRNA overlaps between the two conditions and scoring CREs in -E2 were again 21 
enriched for YY1 binding motifs, supporting a key role of this TF in the adaptive 22 
process, in line with previously reported data 10 (Supplementary Figure 4a). In a 23 
synergistic lineage tracing study (TRADITIOM, see accompanying manuscript), we 24 
show that entrance into dormancy is largely stochastic, with persister dormant 25 
lineages selected by chance each time, leading to a significant divergence between 26 
replicates 12. To test if this process also influences the readout of SIDP, we tracked 27 
lineages leveraging the non-targeting sgRNAs (n = 501) for up to 60 days of hormone 28 
deprivation (full dormancy 12). Surprisingly, 210/501 non-targeting sgRNAs (42%, 29 
compared to 0.9% in SIDP +E2) showed apparent non-neutral expansion or 30 
exhaustion at day 60 (Figure 2c). This behaviour is unpredictable as shown by the 31 
evolution of individual non-targeting sgRNA in every replicate (two pools and two 32 
replicates, Figure 2b) and by the overall divergent trajectories followed by the two 33 
replicates as highlighted by dimensionality reduction (Supplementary Figure 2c). This 34 
phenomenon progressively introduces stochastic deviations with time in otherwise 35 
predictable perturbation (i.e., ESR1, Figure 2d; SOD1 and CCND1, Supplementary 36 
Figure 3a)28. These data indicate that the results of a typical CRISPR screen should 37 
be taken with care and interpreted in light of these results. 38 

Nevertheless, our data uncovered a small but significant set of CREs playing a 39 
role in the early phases of dormancy entrance (31 CREs with multiple sgRNAs 40 
showing a consistent pattern of expansion, Figure 2b). We then systematically 41 
compared +E2 and -E2 screens to identify regions showing context-specific behaviour 42 
(Supplementary Figure 2d and Supplementary Table 6). During dormancy entrance, 43 
MCF7 appear to become independent of several metabolic dependencies, with CREs 44 
associated with genes involved in translation, mitochondrial function, and other 45 
metabolic processes switching from scoring to non-scoring (+E2>>-E2, 46 
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Supplementary Figure 2d, e.g., MRPL58 and METTL17, Supplementary Figure 3b). 1 
Conversely, a small set of sgRNAs is significantly exhausted exclusively in the -E2 2 
condition, indicating de novo vulnerabilities emerging during hormone deprivation (-3 
E2>>+E2, Supplementary Figure 4e-f, e.g., USP8 and SYNV1, Figure 2g and 4 
Supplementary Figure 6a). Importantly, the majority of sgRNAs expanding uniquely 5 
under therapy showed pronounced enrichment near genes from a single pathway, 6 
namely the Toll-receptor activation of the NF-kB pathway (FDR = 0.0049; odds ratio = 7 
13.3; Figures 2e, g, j, Supplementary Figures 4b and Supplementary Table 6). 8 
Perturbation of these CREs appeared sufficient to influence the stochastic process 9 
controlling dormancy entrance (Supplementary Figures 4c and 5b). 10 

Fully resistant clones emerge from a persister pool after extensive dormancy in 11 
both patients and HDBC cell lines models 12,45,46. Awakening clones exhibit extensive 12 
epigenetic reprogramming 45,46 suggesting that the growth of resistant cells might be 13 
driven by a distinct set of CREs distinct from that driving the proliferation of the primary 14 
tumour. To test this, we run SIDP in fully resistant long-term oestrogen deprived 15 
(LTED) cells46,47, which represent one fully awakened lineage that emerged from the 16 
matched parental MCF746,47 (Figure. 1a). In line with the results of the screens in +E2 17 
and -E2 MCF7, only a minority of CREs appear to control LTED fitness (Figure 2f; 18 
Supplementary Table 5). In stark contrast to proliferating MCF7, the exhausted 19 
subgroup does not dominate the scoring sgRNA landscape in LTED (55% vs. 90%, 20 
LTED vs. MCF7 +E2), suggesting that LTED have not yet fully adapted. Next, we 21 
examined if LTED inherited at least part of the CREs activity acquired during dormancy 22 
(Figure 2h). 80% of the dependencies acquired during dormancy appeared to be 23 
inherited in LTED (i.e., USP8, Figure 2g-j and Supplementary Figure 7b). Conversely, 24 
LTED fitness does not improve upon NF-kB suppression, suggesting that this 25 
signalling pathway plays a critical but transient role during dormancy entrance and exit 26 
(Figure 2g-j; i.e., MYD88 and TLR5, Supplementary Figure 7b). Overall, the 27 
application of SIDP showed that a relatively small subset of CREs controls different 28 
phases of the adaptive process during breast cancer evolution in vitro. 29 
 30 
Targeted CRE perturbations accelerate or halt the adaptive processes 31 
SIDP demonstrated that cells entering dormancy rapidly switch CREs usage to adapt 32 
to treatment (Figure 2 and 12). However, the interpretation of the genomic data is 33 
difficult due to the stochastic processes influencing individual lineages during 34 
dormancy entrance (Figure 2c-d and 12). For instance, CREs loss of function 35 
conferring fitness advantage under treatment (i.e., TLR/NF-kB) could be explained by 36 
three alternative scenarios: increased plasticity (a larger subset of lineages become 37 
persister), early awakening and clonal expansion12 or complete dormancy bypass 38 
(Figure 3a). To test these hypotheses, we tracked the behaviour of cells carrying 39 
individual sgRNAs (GFP-NLS) mixed with non-targeting controls during dormancy 40 
entrance with live-cell imaging or FACS (Figure 3a).  41 
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 1 
Figure 3: Targeted CRE perturbations accelerate or halt the adaptive processes (a) Overview of 2 
the experiments. Cell carrying individual scoring probes were labelled with heritable GFP-NLS are 3 
mixed 1:1 with cells carrying non-targeting sgRNA (built-in negative controls). Increased SIDP scores 4 
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could be explained by three alternative models. (b-c) sgRNAs targeting MYD88 and TLR5 accelerate 1 
awakening dynamics driving individual clones to early awakening. Green panels: absolute GFP+ count 2 
(TLR5 and MYD88 sgRNAs). Blue panels: normalized ratios GFP/non GFP across time points. Pink 3 
and purple lines highlight replicates with early awakening events. (d) Representative snapshots of the 4 
competition between CRISPR-KRAB cells carrying MYD88 targeting sgRNA (green) vs. cells carrying 5 
non-targeting sgRNA (blue) throughout dormancy entrance (30 days of continuous estrogen 6 
deprivation) (e-f) Retrospective patient stratification based on RNA expression or CNVs for MYD88 and 7 
TLR5. RFS=recurrence free survival. OS=overall survival. Log-rank p-values calculated with a Mantel-8 
Cox Test. (g) sgRNAs targeting USP8 specifically decrease adaptability to oestrogen deprivation. 9 
Green panels: absolute GFP+ count (USP8 sgRNAs). Yellow panels: normalized ratios GFP/non GFP 10 
across time points. (h) Representative snapshots of the competition between CRISPR-KRAB cells 11 
carrying USP8 targeting sgRNA (green) vs. cells carrying non-targeting sgRNA 9 (blue) throughout 12 
adaptation to estrogen deprivation (i) CRISPR-Cas9 knock-out of USP8. FACS sorting was used to 13 
quantify green (USP8 sgRNAs carrying cells) and red (non-targeting sgRNAs). FACS analyses were 14 
carried out at three specific time points.  15 
 16 
To accommodate and quantify the underlying stochasticity of the process, all these 17 
experiments were run in ten replicates in absence of cell passaging12. Recruitment of 18 
KRAB on CREs efficiently led to downregulation of all targets (Supplementary Figure 19 
6a). Cells carrying sgRNAs targeting critical CREs of CCND1 disappear more rapidly 20 
in both +E2 and -E2 conditions (Supplementary Figure 6b-c) while MYD88, TLR5 and 21 
USP8 targeting sgRNAs do not have any significant impact on the fitness of treatment 22 
naïve MCF7 (Supplementary Figure 6b). Conversely, perturbation of MYD88, TLR5 23 
and USP8 gene expression showed a profound effect under oestrogen-deprived 24 
conditions. Cells carrying sgRNAs targeting TLR5 or MYD88 showed an accelerated 25 
stochastic awakening, with some clones engaging in rapid expansion in days 12 (Figure 26 
3b-d). In one case (MYD88 sgRNA #2, pink, Figure 3c), cells showed a behaviour 27 
compatible with acquired increased plasticity, given the observed increase in the 28 
relative frequency of GFP+ cells in the absence of active cycling. We next stratified 29 
independent retrospective cohorts containing only AI-treated patients for MYD88 and 30 
TLR5 expression and found that tumours with low pre-treatment expression relapse 31 
significantly earlier (HR = 4.42 and 4, p-value = 0.009 and 0.015, MTD88 and TLR5 32 
respectively, Log-Rank Mantel-Cox test), in agreement with early awakening (Figure 33 
3f). While MYD88 and TLR5 gene deletions are rare, patients characterized by them 34 
also show shorter responses to endocrine treatment (Figure 3f). In summary, these 35 
data demonstrate that therapy-induced activation of innate immune signalling plays a 36 
central role in entrance and exit from dormancy. In line with this, we find significant 37 
evidence that cell-intrinsic activation of this pathway is triggered during active 38 
dormancy and suppressed at awakening in single lineages adapting to therapy12. 39 
Furthermore, cell-intrinsic activation of innate immune signalling is significantly 40 
associated with patients with residual disease after neo-adjuvant therapy48, 41 
suggesting a critical but unexpected association between innate immunity, dormancy 42 
and persister cells.  43 
Next, we investigated USP8 as our top de novo vulnerability among the SIDP hit 44 
(Figure 2g and Supplementary Figure 4a). Cells carrying USP8 sgRNA do not have 45 
any disadvantage in treatment-naive conditions (Supplementary Figure 9b) while they 46 
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fail to adapt to -E2 conditions between day 7-30, leading to almost complete 1 
eradication (Figure 3g-h). Repeating the long-term competition experiment using a 2 
genetic CRISPR-Cas9 system to knock-out the USP8 gene further confirms its vital 3 
role in adaptation to endocrine therapies (Fig. 3j). Overall, these data demonstrate that 4 
adaptation requires a rapid switch to alternative CREs. Our data show that these 5 
emergent phenotypes can be exploited to disrupt or accelerate HDBC cells adaptation 6 
to treatment. In vitro, these transitions are not the results of Darwinian selection of pre-7 
existent epigenetic clones but are rather induced and become heritable through 8 
therapy-induced dormancy 10,12,13.  9 
 10 
SIDV identify patterns of CRE mutations in longitudinal cohorts 11 
SIDP is designed to model CRE loss of function via heritable epigenetic repression of 12 
CRE activity (KRAB-mediated heterochromatin formation 49). Somatic genomic 13 
alterations can also strongly influence the activity of individual CREs as well as 14 
chromosomal architecture33,50. We reasoned that high-depth genomic sequencing of 15 
SID CREs in matched pre-treatment and relapsed samples might shed some insight 16 
on the role of the non-coding genome during tumour evolution (Figure 4a). For this 17 
purpose, we developed SID variants (SIDV, see Methods) and profiled 300 matched 18 
samples (normal, primary and relapse biopsies). All patients received either adjuvant 19 
Tamoxifen (a selective oestrogen receptor modulator) or Aromatase Inhibitors (Figure 20 
4a and Supplementary Table 7). The median age of diagnosis was 46 for TAM and 58 21 
for AI. Grade and Ki67 status of the primary lesions were similar between cohorts, 22 
Figure 4b, Supplementary Figures 7b, e-f and Supplementary Table 7 for the full 23 
clinical information). For 58 patients we could also co-profile variants in protein-coding 24 
regions, which identified de novo drivers of treatment failure (by comparing primary 25 
vs. matched relapse) at frequencies comparable to previous studies (i.e. ESR1 26 
mutations2,7,51, Figure 4c). Using a highly stringent computational pipeline (see 27 
Methods and Supplementary Figure 7a), we identified a total of 3576 SNVs and 2,330 28 
INDELs across the cohort, with a median coverage of 117X (Supplementary Table 8). 29 
Relapsed samples covered a wide spectrum of anatomic sites and despite showing 30 
comparable purity to matched primaries (p-value = 0.088), show significantly less 31 
genomic alterations (paired two-tailed t-test, p-value = 0.0007), potentially indicating 32 
decreased genetic intra-tumour heterogeneity due to the bottleneck induced by 33 
metastatic seeding (Supplementary Figures 7b-c and 8 a-c). The mutational burden 34 
from SIDV regions is highly consistent with previous WGS (Supplementary Figure 7d). 35 
Interestingly, the mutational burden is higher in tumours showing high Ki67 and lower 36 
in those positive for the progesterone receptor (Supplementary Figure 7e-f). Therapy 37 
choice (AI vs TAM) did not seem to impact the number of SNVs at relapse (p-value = 38 
0.21; Mann-Whitney Test; Supplementary Figure 8d). We then extended and 39 
integrated several machine learning approaches to prioritize the identified 5,524 SNVs 40 
and short INDELs based on their predicted effect on TF-binding52, chromatin state53, 41 
accessibility54, and splicing55 using only models derived from relevant, HDBC-specific 42 
genome-wide measurements (Supplementary Figure 7a and Methods). A model-43 
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specific p-value for each prediction was derived either using permutation-based 1 
approaches or by generating a null distribution from the non-coding alterations across 2 
all cancer types available in COSMIC 56 (see Extended Methods for details). 3 
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Figure 4. Non-coding variants contribute to heritable transcriptional changes during tumour 1 
progression. (a) Schematic showing the rationale and implementation of SIDV. (b) Overview of the 2 
clinical cohorts and the associated features. (c) Matched targeted coding profiling identified recurrently 3 
mutated (point mutations and indels) genes acquired in metastatic samples. The heat map is showing, 4 
for each patient and mutated genes, the type of lesions detected, and the fraction of lesions showing 5 
an alteration in each gene (left). (d) Pathogenic classification of non-coding variants identified by SIDV. 6 
(e-f) Functional characterization of SIDV calls as compared to the entire COSMIC catalogue. (g) 7 
Scatterplot summarising the potential of the profiled SIDV variants to alter transcription factor binding. 8 
Each dot represents a TF. TFs are sorted based on their propensity to either increase (top panel) or 9 
decrease (lower panel) the affinity to each TF. Values significantly larger than zero indicate a propensity 10 
to alter the binding that is higher than expected by chance. Those significantly smaller instead indicate 11 
a depletion of variants potentially altering the affinity for a given TF. P-values estimated via Chi-squared 12 
Test. (h) Integration of SIDV and SIDP identify critical regulators of HDBC biology. SIDP scores and 13 
SIDV calls at the indicated loci are shown (IGV genome browser). (j) Bar plot showing enrichment of 14 
SIDV-identified alterations at sets of regions showing condition-specific patterns upon perturbation 15 
(SIDP). P-values estimated via Chi-squared Test. (k) Kaplan-Meier plot showing that genes near CREs 16 
with an excess of SIDV mutations and overlapping sgRNAs expanded upon oestrogen deprivation (-17 
E2) are associated with prognostic expression levels (HR= 1.85, p-value = 0.01; Log-rank Test). 18 
  19 
We predict that ~up to 30% of SIDV calls might have a functional impact on chromatin 20 
(Figure 4d). The Disease Impact Score (as predicted by DeepSEA57) of called SIDV 21 
variants showed significantly higher values than non-coding variants across different 22 
cancer types in COSMIC (p-value < 1e-16; KS test) (Figure 4e). We also observe 23 
enrichment for SNVs with a negative impact on chromatin accessibility (as predicted 24 
by Sasquatch54; Figure 4f). Variants predicted to exert pathogenic impact on splicing 25 
appeared to be under negative selection (our set: 2.28% vs Expected: 4.71%, p-value 26 
= 9.4e-15, Chi-squared Test). We then focused on those alterations with predicted 27 
impact on HDBC-specific TF-binding (as predicted by deltaSVM52; see Supplementary 28 
Table 13 for the complete information about the TFs considered). Our data show that 29 
SNVs potentially altering the binding of several critical HDBC TFs are less frequent 30 
than expected (i.e., GATA3, PBX1 Figure 4g and Supplementary Table 12) with the 31 
notable exception of SNVs increasing the binding affinity of the HDBC cancer driver 32 
RUNX1 or decreasing SREBP1 binding. Interestingly, SNVs with predicted activity 33 
(increased or decreased) against ERa binding sites do not appear to be under any 34 
selective pressure, supporting the notion that most ESR1-bound CREs are not 35 
functionally significant10,21,28. These data suggest that there is an overall negative 36 
selection on the binding sites of key TFs. However, when comparing the HDBC-37 
specific alterations we identified to those reported across different cancer types 38 
(COSMIC), a residual enrichment for functional alterations was spotted (Figure 4e). 39 
 Degeneration and redundancy in the genetic grammar governing cis-regulatory 40 
element activity have strongly limited our ability to spot recurrent non-coding 41 
mutations58. Nevertheless, we hypothesized that by integrating the results from SIDV 42 
and SIDP we could gain more specific insights into the role of non-coding genetic 43 
alterations in HDBC (see Extended Methods). Using a lenient threshold (n >= 2; p-44 
value <= 0.05; binomial test), 63 SIDP CREs showed a significant excess of functional 45 
alterations (Supplementary Table 10). These included one CRE falling in a cluster of 46 
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CTCF binding sites within the UNC93B1 gene, which is part of the genes of the Toll 1 
Receptor Cascade whose down-regulation leads to an advantage in -E2 (Figure 2j). 2 
Interestingly, both UNC93B1-associated SNVs are predicted to alter splicing while 3 
sgRNAs targeting this CRE or UNC93B1 promoter are significantly expanded in either 4 
-E2 or LTED screens (but not in +E2 conditions, Figure 4h). Other regions showing 5 
both excesses of mutations and SIDP significant scores include CREs near FOXA1, 6 
a critical TF involved in many aspects of HDBC biology 21 (Figure 4h). Furthermore, 7 
collapsing the predicted functional mutations at the level of pathways identified an 8 
interesting set of biological processes, suggesting that non-coding variants might 9 
contribute to promoting cancer evolution by suppressing differentiation and G1 arrest 10 
(Supplementary Table 10). Finally, we observed a significant overlap between SIDV 11 
mutations predicted as potentially pathogenic and SIDP, but only when considering 12 
CREs bearing expanding sgRNAs under -E2 condition or in LTED cells, suggesting 13 
that mutations in these CREs have the potential of conferring a heritable fitness 14 
advantage to cells under treatment (Figure 4j and Supplementary Table 10). Mutations 15 
found in these CREs tend to show a slight increase in cancer cell fraction in matched 16 
metastatic deposits (p-value = 0.08; paired samples Wilcoxon Test). Low expression 17 
of genes associated with these CREs is associated with poorer prognosis in HDBC 18 
(Figure 4k; HR= 1.85, p-value = 0.01; Log-rank test). This suggests that cells losing 19 
the expression of the target genes due to loss of function of the corresponding CREs 20 
might have increased fitness under the selective pressure imposed by endocrine 21 
therapies. In support of this, 4/6 of the SNVs in this set show higher cancer cell fraction 22 
in matched metastatic samples (p-value = 0.03; Chi-squared Test with Yates’ 23 
Correction). Taken together, our results demonstrate that nongenetic and genetic 24 
mechanisms targeting CREs significantly contribute to tumour evolution by altering the 25 
length of therapy-induced dormancy. 26 
 27 
Discussion  28 
The role of the non-coding genome in cancer has been under intense debate 39,59,60. 29 
In this work we have a) established a hormone-dependent breast cancer-specific 30 
cistrome10; b) systematically perturbed it via targeted epigenetic repression, and c) 31 
profiled a large set of somatic alterations accumulated at these regions during tumour 32 
evolution. We ran three large-scale perturbation screens against the critical portion of 33 
the HDBC non-coding at an unprecedented depth and resolution. We also leveraged 34 
a unique patient cohort to profile non-coding genetic alterations longitudinally and at 35 
high coverage. Finally, we applied machine learning approaches to systematically 36 
dissect the functional consequences of these variants on regulatory potential. 37 
Systematic integration of these experimental and computational strategies led to the 38 
conclusion that while CREs do not display the strong signature associated with coding 39 
drivers, changes in the context-specific regulatory activity of a defined set of CREs 40 
plays a crucial role during therapy-induced dormancy. Our results stand out 41 
considering the stochastic processes dominating dormancy entrance and exit (see 42 
companion manuscript12). For example, our SIDP screens strongly suggest that 43 
signalling converging on NF-kB activation plays a central role in maintaining long-term 44 
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dormancy. This prediction is corroborated by our transcriptional tracking of single 1 
lineages, which shows NF-kB activity being induced in dormant cells but reversed in 2 
awakened lineages (see companion manuscript). Of note, mutations on CREs 3 
associated with NF-kB regulation are surprisingly infrequent considering the potential 4 
benefit to cancer cells under AI pressure (Figure 3g), suggesting that transcriptional 5 
switches are the preferred route to adaptation for HDBC cells, possibly because of 6 
their reversible nature. In agreement, we could not identify recurrent genetic 7 
mechanisms leading to awakening (see companion manuscript). While profiling 8 
primary and secondary lesions as an evolutionary endpoint did not reveal many 9 
additional therapeutic entry points, transient dormancy might offer an attractive and 10 
unexplored stage with potentially actionable transient dependencies. As a proof of 11 
concept, we indeed show that targeting USP8 can actively eradicate HDBC once they 12 
commit to dormancy. As such, we anticipate that our results will also have critical 13 
relevance for the design of future screens that will help expand our knowledge on the 14 
regulatory networks underlying therapy-induced dormancy, which we propose as the 15 
critical targetable bottleneck in the adaptive journey of breast cancer cells.  16 
  17 
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Material and Methods 1 
 2 
SID panel design. Previous epigenomic annotation of primary and metastatic luminal 3 
breast cancer tissues led to the identification of 326,729 putative enhancer regions 10. 4 
Most of these regions were private or poorly shared amongst individual tumours. 5 
However, an overall correlation between the activity of an enhancer in an individual 6 
tumour (low ranking index, or RI) and the pervasiveness of its activity across tumours 7 
(high sharing index, or SI) was observed. Thus, putative enhancer regions for the 8 
panel were biased for those showing a low RI. Starting from the ~326K regions 9 
mentioned above, we first excluded all the private enhancers (RI>=80). 19,482 10 
enhancers were retained and evaluated in terms of their delta of activity between 11 
primary and metastatic tumours. The average RI of each enhancer in the primary and 12 
metastatic cohorts was calculated (termed RI_Prim and RI_Met, respectively). These 13 
two numbers were then used to calculate a region-specific log2(RI_Met/RI_Prim). 14 
Putative enhancers showing either higher enrichment in the primary or metastatic 15 
samples were selected (regions with RI <=50 in both primary and metastatic, and 16 
either in the top positive or negative log2(RI_Met/RI_Prim)). This resulted in 8.05 Mbps 17 
covering regions with higher RI in the metastatic samples and 3.7 Mbps showing 18 
higher RI in the primary samples. Finally, 2.5 Mbps was assigned to private enhancers 19 
being clonal in only 1 or 2 samples. As an internal control, 800 putative enhancer 20 
regions were randomly selected among those showing extremely low sharing (SI==1) 21 
and ranking (RI==100) index. To reduce the required coverage and to increase the 22 
enrichment for potentially functional regulatory regions, DNase-I accessible regions 23 
available in ENCODE 61 were then used to restrict the area of investigation to the sub-24 
regions within the selected putative regulatory regions. These are more likely to 25 
represent clusters of TF-binding sites. To this aim, the regions resulting from the 26 
analysis described above were intersected with the DHS from HoneyBadger2 27 
(https://personal.broadinstitute.org/meuleman/reg2map/), which effectively lowered 28 
the coverage to ~9 Mbps. Based on an initial iteration of the capturing strategy, these 29 
9 Mbps were further reduced to about 7, by excluding those regions with either a very 30 
low or an extremely high coverage. This resulted into a higher and more even 31 
coverage on the majority of the targeted elements Putative insulator regions were 32 
selected through a meta-analysis of previously published human ChIP-seq profiles, 33 
namely 161 for CTCF (in 89 cell lines or primary cells), 46 for subunits of cohesin (8 34 
targetings SMC3 and 38 targeting RAD21, corresponding to multiple profiles across 5 35 
and 11 cell lines or primary cells, respectively for SMC3 and RAD21) and 8 for ZNF143 36 
(in 4 cell lines or primary cells). ZNF143 has been shown to bind together with CTCF 37 
and cohesin and to be specifically enriched at domain boundaries 62. Briefly, to identify 38 
the strongest, most conserved insulator sites in the human genome, site-specific 39 
scoring and spatial clustering of CTCF, cohesin and ZNF143 binding across different 40 
cell types were calculated and combined. First, consistently derived, enriched regions 41 
from ENCODE datasets 61 were downloaded from the UCSC genome browser on July 42 
16th, 2016 (Table S1). ChIP-seqs for the same protein in the same cell line (or primary 43 
cells) were considered as replicates. Narrow peaks from replicates were merged. The 44 
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union of the peaks was then computed, and each peak was re-annotated to the sum 1 
of the corresponding -log10(p-value) of the overlapping peaks across replicates. To 2 
compare the binding profiles across cell types, the obtained scores were converted to 3 
percentiles. Given a cell type, percentiles from overlapping CTCF, cohesin and 4 
ZNF143 peaks were then summed, resulting in site-specific scores. Separately for 5 
each cell type, nearby CTCF-bound regions were then clustered together if found 6 
within 10 Kbp from each other. Given each cluster, site-specific scores for each 7 
constituent region were combined, first for each cell type, and eventually across all the 8 
cell types considered, obtaining an overall score for each cluster. For the final design, 9 
the clusters were sorted according to this score, and starting from the highest-scoring 10 
cluster, the top clusters covering 3 Mbp of the genome were considered. This way, 11 
>95% of previously annotated TAD boundaries63 were covered by one or more 12 
clusters (keeping in mind the resolution limit of the corresponding HiC datasets, 13 
namely 40 Kbp). Promoter regions were selected according to the following strategy. 14 
Genes that are either annotated as ER-alpha targets (from the MSigDB Hallmark 15 
datasets; PMID: 26771021), found in the PAM50 signature (PMID: 19204204) or being 16 
annotated as cancer genes (Network of Cancer Genes version 6.0; PMID: 30606230) 17 
while showing an FPKM >= 50 in bulk-RNA-seq data from either LTED, TamR or FulvR 18 
resistant cell lines46, were considered. From this initial list, genes annotated as 19 
housekeeping 64were excluded. Promoter regions ([-750, +250] from annotated 20 
transcriptional start sites) were derived from the refGene table of the UCSC genome 21 
browser on December 13th, 2018. Within these regions, only those DNA stretches 22 
overlapping DHS (as described above for the putative enhancer regions) were 23 
retained. Regions of low mappability along with those mapping to either chromosome 24 
Y or the mitochondrial chromosome, as well as those overlapping segmental 25 
duplications, were excluded from the design. Regions of unique mappability were 26 
defined according to the UCSC genome browser track k50.Unique.Mappability.bb in 27 
the Hoffman Mappability collection. After performing an initial, small set of captures, 28 
the overall design was further improved by excluding the top and bottom 1% regions. 29 
The top 1% regions were responsible for ~21% of the signal, and the bottom 1% for 30 
just ~0.03% of the signal. Omission of these regions resulted in a more uniform 31 
coverage. 32 
 33 
SIDP screens  34 
Two oligo pools for the SIDP library (n=67839 and 69569 oligos respectively, see 35 
design information below) were synthesized by Twist Bioscience. Each 60 bp ssDNA 36 
oligos contained a 20 bp sgRNA sequence flanked by these sequences 5’-37 
gccatccagaagacttaccg-3’ and 5’-gtttccgtcttcacgactgc-3’ used for PCR amplification 38 
and BbsI restriction enzyme-mediated cloning. The oligo pools were cloned into a 39 
modified pLKO-TET-ON plasmid by the Golden Gate method and the resulting product 40 
was used to transform Endura electrocompetent cells (Lucigen) according to the 41 
manufacturer’s protocol. The transformation efficiency was ≈500 fold higher than the 42 
SIDP library size and complete and even oligos representation was confirmed by NGS. 43 
Large scale preps of bacteria cultures containing the sgRNA plasmid library were 44 
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harvested using the Genopure plasmid maxi kit (Roche). SIDP library was packaged 1 
in lentiviral particles by large scale co-transfection of HEK293T cells with CELLECTA 2 
ready-to-use packaging plasmid (Cellecta – cat.no CPCP-K2A) using TRANSIT-LT1 3 
transfection reagent (Mirus biologicals – cat. no. MIR 2300) according to manufacturer 4 
guidelines. 5 
MCF7 and LTED cells were engineered to stably express dCas9-KRAB by lentiviral 6 
transduction and selected using 10μg/ml blasticidin (Invitrogen) and initially 7 
maintained in EMEM (Amimed #1-31S01-I), 10% FBS (Seradigm #1500-500, 8 
Lot:077B15), 2mM Glut., 1mM Na Pyr., 10mM HEPES, 1% P/S. Homogeneous 9 
dCas9-KRAB expression was confirmed by intracellular staining using Cas9 antibody 10 
(Cell Signaling Cat-14697) according to the manufacturer’s protocol.  11 
MCF7-dCas9-KRAB and LTED-dCas9-KRAB cells were then infected with SIDP 12 
lentiviral particles at low MOI (≈0.3) in two independent replicates. We transduced 13 
≈1000 cells per plasmid present in the library to guarantee a good representation of 14 
all sgRNAs in the population of cells under screening. The cells were selected using 15 
2μg/ml puromycin (Invitrogen) starting at 24 hours post-transduction and maintained 16 
in culture in CellStacks (Corning) in the described conditions and for the indicated time 17 
points. Cells were then harvested and gDNA isolated using the QIAamp DNA maxi kit 18 
(QIAGEN). Amplicons containing the sgRNA sequences were amplified using 19 
NEBNext High-Fidelity (NEB) and their representation was analyzed by next-20 
generation sequencing (HiSeq2500, Illumina). During SIDP, for RM condition (full 21 
growth media +oestrogen) MCF7-dcas9-KRAB were maintained in DMEM (Gibco 22 
#11885-084) supplemented with 10% FBS (Seradigm #1500-500, Lot:077B15), 10mM 23 
HEPES, 1mM Sodium-Pyruvate, 1% P/S.  For WM (oestrogen-deprived media) 24 
MCF7-dcas9-KRAB and LTED were maintained in Phenol-free DMEM (Gibco #11880-25 
028) supplemented with 10% Fetal Bovine Serum, charcoal-stripped, USDA-approved 26 
regions (Gibco #12676029), 2mM L-Glutamine, 10mM HEPES, 1mM Sodium-27 
Pyruvate, 1% P/S. 28 
 29 
Flow cytometry-based cell competition assays 30 
MCF7-dcas9KRAB were infected with a modified pLKO-TET-ON lentiviral vector to 31 
deliver constitutively expressed sgRNAs in the target cells. Cells transduced with 32 
targeting sgRNAs (expressing mCherry) or non-targeting sgRNAs (expressing GFP) 33 
were mixed (ratio 2:1 mCherry: GFP) and maintained in culture as described above. 34 
At each time point, cells were harvested and analyzed by flow cytometry using 35 
CitoFLEX S (Beckman Coulter). We recorded at a minimum of 2,000 single-cells for 36 
each condition and the results were analyzed by FlowJo. 37 
 38 
Incucyte-based competition assays 39 
MCF7-dcas9-KRAB cells were engineered by lentiviral transduction containing a 40 
vector expressing NLS-eGFP (kindly provided by Dr Chun Fui Lai, Imperial College 41 
London). Transduction efficiency was evaluated with EVOS XL Core Imaging System 42 
microscope (Thermo Fisher – AMEX100), and a population of bright GFP-positive 43 
cells was obtained by Fluorescence-Activated Cell Sorting (FACS). Sorting was 44 
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performed by the Flow Cytometry facility at MRC London Institute of Medical Sciences. 1 
MCF7-NLS-eGFP-dCAS9KRAB were then transduced with lentiviral particles 2 
containing plasmids expressing individual sgRNAs and selected with Puromycin 3 
(Sigma-Aldrich cat no. P8833). For each gene of interest, 150 eGFP positive (targeting 4 
sgRNA) and 150  transparent (NTC-sgRNA) MCF7-dcas-9KRAB cells were seeded 5 
per well in a 96 wells ImageLock plate (Sartorius – cat no 4379) both in the presence 6 
and absence of oestradiol (Complete medium with 10% FCS +/- 17-ß Oestradiol 1x10-7 
8 M (Sigma Aldrich – cat no E-060)) in parallel, for a total of ten replicates per 8 
condition. The plate was routinely media changed and imaged daily with Incucyte 9 
(Incucyte ZOOM - Sartorius) using a Dual Color 10X 1.22um/pixel Nikon Air Objective 10 
(Sartorius cat no 4464).  (Green filter: Ex 440/480 nm, Em 504/544nm). The IncuCyte 11 
ZOOM Live-cell analysis system software was used to perform automated cell imaging 12 
over time and to calculate cell-by-cell segmentation employing a manually adjusted 13 
segmentation mask used to train the images taken at each time point.  The total 14 
percentage of confluency and the total GFP positive area percentage were 15 
automatically registered by the software and used to calculate the ratio between the 16 
two parameters normalized to day 0, to highlight an increase (> 1: fitness) or a 17 
decrease (< 1:vulnerability) in the trend of GFP-targeting representation over the non-18 
targeting one. Numbers of green nuclei were also automatically counted by the 19 
software to obtain the GFP+ only cell count.  20 
 21 
qPCR analysis 22 
RNA was extracted from dcas9-KRAB-MCF7 cells transduced with targeting and non-23 
targeting sgRNA (Qiagen, cat no. 74016). RNA was retrotranscribed using iScript 24 
(BioRad, cat no. 1708891). Quantitative PCR was performed with QuantStudio3 Real-25 
Time PCR instrument (Applied Biosystems, cat.no A28567) using an SYBR-green 26 
PCR master mix reporter (Applied Biosystems, cat no. 4309155) and the following 27 
primers, designed around the promoter of the repressed genes. USP8 fwd: 28 
GGGTCTTGGGCCCTAGCA, rvrs: CAGAGCTTGTCTCCGGGGTA - MYD88 29 
fwd:CTGCTCTCAACATGCGAGTG,rvs: CAGTTGCCGGATCTCCAAGT – TLR5 fwd: 30 
GCGCGAGTTGGACATAGACT, rvrs: GAGGTTTTCAGGAGCCCGAG). 31 
 32 
Tissue Specimens. Longitudinal Formalin-Fixed Paraffin-Embedded (FFPE) HDBC 33 
samples were retrospectively collected from 100 patients. 61 patients were collected 34 
from Professor Giancarlo Pruneri at The European Institute for Oncology, Milan. 35 
Samples from 26 patients were collected from Professor Andrea Rocca at The Cancer 36 
Institute of Romagna, Meldola. The remaining 14 patient samples were collected from 37 
Professor Maria Vittoria Dieci at The Institute of Oncology Padova. The material was 38 
collected in the form of 10 µm slices. Detailed clinical notes were provided for each 39 
patient including age at diagnosis, Tumour grade, Percentage of ER-positive cells, 40 
Percentage of PR positive cells, Percentage of Ki-67 high cells, Percentage of HER2 41 
positive cells, Years until relapse, Metastatic site, Type of Chemotherapy, Type of 42 
hormonal therapy. A full summary of the clinical data can be found in Supplementary 43 
material 3. 44 
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 1 
Sample Preparation Workflow Extraction. DNA was extracted from 10 micro-meter 2 
slices using the Qiagen GeneRead DNA FFPE extraction kit (Qiagen, Catalogue no. 3 
180134) which includes a Uracil N Glycosylase enzyme treatment to reduce FFPE 4 
artefacts. DNA quality and quantity were assessed using an Agilent Tapestation 2200 5 
using the Genomic DNA screentape and reagents (Agilent, Catalogue no. 5067-5365 6 
and 5067-5366). Samples were sonicated custom number of cycles to achieve 7 
fragments of uniform length. Post-sonication samples were quality controlled using the 8 
Tapestation 2200 instrument with a threshold set for samples to have at least 60% of 9 
fragments between 100-500bp to proceed with processing. DNA underwent a second 10 
treatment with NEBNext FFPE DNA Repair Mix (NEB, Catalogue no. M6630) to further 11 
reduce FFPE artefacts. 12 
  13 
Library Preparation and capture. DNA libraries were prepared from 30 ng – 1 ug of 14 
DNA using the NEBNext Ultra 2 DNA library kit for Illumina sequencing. Unique dual 15 
8bp indexes were used for each sample (A gift from Paolo Piazza of the Imperial 16 
British Research Council Genomics Facility). DNA libraries from 15 samples were 17 
pooled and captured with the SID-V capture probes produced by Twist Biosciences 18 
(ratio of 1.5 ug DNA libraries, 100 ng each, to 800 ng of capture probes). Non-captured 19 
DNA was recovered using SPRI size selection beads to be used for a secondary 20 
capture. Post-capture amplification was performed using the KAPA HiFi Hot Start PCR 21 
ReadyMix Kit (KAPA Biosystems, Catalogue no. KK2601). Post-capture amplified 22 
libraries were quality controlled and quantified using a Tapestation 2200 with the High 23 
Sensitivity reagents. 24 
  25 
Sequencing. The initial 40 patients were sequenced on an Illumina HiSeq 4000 26 
Instrument (Standard mode, 2 x 150bp). After sequencing the initial 40 patients, 27 
sequencing was then performed by Novogene on an Illumina NovaSeq 6000 using 2 28 
x 150bp chemistry. An average of 176 million reads per sample was achieved. 29 
 30 
Raw data processing of the captured DNA. First, paired-end reads from each 31 
sample were trimmed for adapter sequences and based on quality using Trim-galore 32 
(version 0.6.4; http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) in --paired 33 
mode. Alignment to the hg38 genome was then performed using bwa mem (version 34 
0.7.15; https://arxiv.org/abs/1303.3997) using default parameters. The hg38 reference 35 
genome along with the corresponding annotation and known variant files mentioned 36 
in this and the following paragraphs were part of the Broad Institute Bundle, as per 37 
download from the Broad FTP on February 5th, 2018. Sambamba (version 0.7.1; 38 
PMID: 25697820) was then used to convert the resulting SAM to a BAM file (using 39 
sambamba view -S -h -F "not unmapped" -f bam). Sambamba sort and index were 40 
then used for sorting and indexing the resulting BAM file. The markdup function from 41 
Sambamba was used to mark potential PCR duplicates. Recalibration of base quality 42 
scores was performed using GATK4 (version 4.1.3.0; 65). The BaseRecalibrator 43 
function was run (providing dbSNP version 146 via the parameter --known-sites) 44 
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followed by ApplyBQSR. The resulting BAM file with recalibrated scores was indexed 1 
using Sambamba. Final metrics for each sample were computed using the 2 
CollectHsMetrics function of the Picard tools (version 2.20.6; 3 
http://broadinstitute.github.io/picard/). 4 
  5 
Mutational calling pipeline. To robustly identify SNVs and short INDELs, a pipeline 6 
deriving a consensus between three independent tools (Mutect2, Platypus and 7 
Strelka) was deployed. Mutect2 (part of GATK4 version 4.1.3.0;66) was run individually 8 
on each primary and metastatic sample using the matched normal as reference. The 9 
-L option was used to specify the targeted regions. The file af-only-10 
gnomad.hg38.vcf.gz acted as the source of germline variants with estimated allele 11 
frequency (as specified via the --germline-resource option). Parameters --af-of-alleles-12 
not-in-resource 0.001, --disable-read-filter 13 
MateOnSameContigOrNoMappedMateReadFilter and --f1r2-tar-gz were also 14 
specified. The output from running the --f1r2-tar-gz option was then used to learn an 15 
orientation biased model (separately for each sample), leveraging the 16 
LearnReadOrientationModel function of GATK4. This allows estimating the 17 
substitution errors occurring as a result of damage induced by FFPE, by identifying 18 
residues showing a significant bias of substitutions on a single strand. The resulting 19 
model was then fed into the FilterMutectCalls function of GATK4 so that potentially 20 
affected residues can be flagged for subsequent filtering (see below). 21 
Platypus (version 0.8.1.2;67) was run on each patient, jointly considering the normal 22 
as well the primary and metastatic profiles. The union of the variants called by Mutect2 23 
separately on the primary and metastatic sample (see above) was used as prior (--24 
source option). Option --minReads was set to 4. 25 
Strelka (version 2.9.10; 68) was run independently for each primary and metastatic 26 
sample using the matched normal as a reference, with default parameters. While both 27 
Mutect2 and Platypus jointly identify SNVs and INDELs, Strelka relies on Manta 28 
(version 1.6.0; 69) for the detection of INDELs. Manta was run first, and the resulting 29 
list of candidate INDELs was then provided to Strelka via the --indelCandidates option. 30 
Considering the resulting lists of SNVs and INDELs, both common and tool-specific 31 
filters were applied to the lists generated by the different tools. General filters included: 32 

• A minimum depth of 20 reads was applied to both normal and tumour samples. 33 
• A minimum alternate allele coverage of 2 reads. 34 
• Exclusion of variant overlapping known SNPs (dbSNP version 146). 35 

Tool-specific filters were set as follows: 36 
• Mutect2: after running FilterMutectCalls (GATK4) which also considered FFPE 37 

artefacts as estimated by the orientation bias model, only those variants 38 
marked as PASS were retained. 39 

• Platypus: all variants flagged by the tool were discarded, except those marked 40 
as PASS or including just one or more of the following flags: badReads, 41 
HapScore, alleleBias. 42 

• Strelka: only variants marked as PASS were kept for further analyses. 43 
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• Of the resulting filtered variants, only those SNVs or short INDELs that were 1 
consistently identified by at least 2 out of 3 calling algorithms, very retained for 2 
further investigation. 3 

  4 
Copy number calling pipeline. CNVkit (version 0.9.7; 70) was run in batch mode on 5 
the tumour bam files, using all normal bam files of each capturing-sequencing batch 6 
as input for the option --normal. SIDV3 intervals were specified under option --targets. 7 
The reference genome used for mutational calling was employed (Broad Bundle). 8 
  9 
Purity and Cancer Cell Fraction estimation. To estimate the Cancer Cell Fraction 10 
(CCF) of each SNV, only SNVs with an estimated copy number of 2 were considered. 11 
Separately for each sample, the SNVs fulfilling this criterion were hierarchically 12 
clustered based on their VAF (using Euclidean distance and complete linkage). The 13 
dendrogram was then cut at a fixed height of 0.15, and the cluster with the larger mean 14 
VAF was identified. This mean VAF was then used to estimate the purity of the sample: 15 
purity = VAFmean * 2. The CCF of each variant was then calculated starting from its 16 
VAF and the estimated purity for the sample, using the following formula: CCF = VAF 17 
* (2 * (1 - purity) + CNA_TOT * purity) / (CNA_MUT * purity) 71. While CNA_TOT was 18 
known (2, see above), each variant was assumed to be heterozygous, with CNA_MUT 19 
set to be 1 71. 20 
  21 
Data collection and pre-processing to train the deltaSVM models. A manually 22 
curated list of previously published, high-quality human ChIP-seq datasets from 23 
luminal breast cancer cell lines was compiled. Only those having a high-quality model 24 
(position weight matrix or PWM) describing their binding preferences were considered. 25 
The reason behind this choice is that knowing the binding preferences was a 26 
prerequisite to generate well-controlled negative sets for the deltaSVM models. Briefly, 27 
each PWM was used for genome-wide predictions of binding sites specific for each 28 
TF, to then derive a positive (predicted TF-binding site showing a ChIP-seq peak) and 29 
a negative (predicted TF-binding site, that could be in principle be contacted by the 30 
TF, but without a ChIP-seq peak) training set. This selection resulted in 72 ChIP-seq, 31 
corresponding to 43 transcription factors (Table S2). Peaks in BED format were 32 
downloaded from the Gene Expression Omnibus (GEO;72). Regions in hg18 or hg19 33 
coordinates were converted to hg38 using liftOver73, and then filtered against the 34 
ENCODE blacklists74  using BEDTools 75. 35 
  36 
Predicting the functional effects of the identified variant. Available, pre-computed 37 
genome-wide predictions were used to assess the impact of somatic variants on 38 
chromatin accessibility (Sasquatch;54), mRNA splicing (Splicing Clinically Applicable 39 
Pathogenicity prediction or S-CAP;55) and protein-coding sequence (Cancer Genome 40 
Interpreter or CGI;76). Available models based on deep learning (DeepSEA;57) were 41 
used to compute the overall disease impact score of each variant. Support vector 42 
machines (SVMs) were instead trained to predict the impact of somatic variants on the 43 
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binding affinity of luminal breast cancer-relevant TFs. For each one of the different 1 
functional categories, the predictions were obtained as follows: 2 

• Chromatin Accessibility: The Sasquatch R package version 0.1 3 
(https://github.com/Hughes-Genome-Group/sasquatch) was used to assess 4 
the impact of the identified somatic variants using the available model pre-5 
trained with ENCODE_DUKE_MCF7_merged DNase-seq dataset. Briefly, 6 
hg38 coordinates were converted to hg19 using liftOver 73. Analysis of multiple 7 
reference-alternative alleles pairs was then performed using the RefVarBatch 8 
wrapper, using DNase as fragmentation type: (frag. type = “DNase”) and human 9 
as propensity source (pnorm.tag = “h_ery_1”). Empirical p-values were 10 
estimated separately for observing a predicted increase or decrease in 11 
accessibility. A null distribution was derived from the COSMIC non-coding 12 
database 56, which contains millions of variants from different cancer types. 13 
Version 92 (08.2020) was downloaded as a flat file on October 12th, 2020. 14 
Sasquatch was run on the entire set of variants, but only those overlapping with 15 
the SIDV3 intervals were retained to compute the null. 16 

• mRNA splicing: Full S-CAP predictions (scap_COMBINED_v1.0.vcf) were 17 
downloaded from http://bejerano.stanford.edu/scap/ on August 27th, 2019. A 18 
custom Python script was prepared to annotate the somatic variants with these 19 
predictions. 20 

• Protein-coding sequence: The list of candidate somatic mutations was 21 
submitted to the CGI webserver on December 1st, 2020 22 
(https://www.cancergenomeinterpreter.org/). Also, in this case, hg38 23 
coordinates were converted to hg19 using liftOver 73. 24 

• Disease impact score: models from DeepSEA version 3 were used to estimate 25 
this. Hg38 coordinates were converted to hg19 using liftOver73 and a 26 
corresponding null distribution leveraging COSMIC was computed as described 27 
above for chromatin accessibility. 28 

• TF-binding affinity: deltaSVM52 was used to predict significant effects of a 29 
somatic variant in decreasing on increasing the affinity of the region for a given 30 
TF. First of all, for each considered PWM (Table S2) a genome-wide map of 31 
the high-affinity sites in the human genome (hg38) was predicted using FIMO 32 
77. FIMO was run with the following parameters: --thresh 1e-4 --no-qvalue --33 
max-stored-scores 10000000, separately for each motif. Regions of unique 34 
mappability (as defined according to the UCSC genome browser track 35 
k50.Unique.Mappability.bb in the hoffmanMappability collection) were defined 36 
using BEDTools75, and only those were retained for the next steps. This 37 
information was coupled to the corresponding TF-ChIP-seq, to derive a positive 38 
(predicted TF-binding site showing a ChIP-seq peak) and a negative (predicted 39 
TF-binding site, that could be in principle be contacted by the TF, but without a 40 
ChIP-seq peak) training set. Each region in these two sets was defined as the 41 
100 bps of genomic DNA centred on the predicted, high-affinity site. The actual 42 
training set used were randomly subsampled versions of these two sets (n = 43 
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10,000). Training of the support vector machine (SVM) discriminating the 1 
positive from the negative examples was performed by running gkmsvm_kernel 2 
(with option -d set to 3) followed by gkmsvm_train. After that, gkmsvm_classify 3 
was used to generate a weighted list of all possible 10-mers, where each 10-4 
mer is assigned a SVM weight corresponding to its contribution to the 5 
prediction. With this list of weights, it was possible to predict (using the script 6 
deltasvm.pl) the impact of any sequence variant on the regulatory activity of a 7 
given region. One limitation of this approach when comparing models 8 
generated with very different data (like in this case for different TFs) is to define 9 
model-specific thresholds. To overcome this, the set of genomic regions under 10 
investigation was randomly mutagenized, resulting in a dataset in which every 11 
sequence was mutagenized at 5 residues (to all the three possible variants). 12 
The resulting values were used to compute model-specific null distributions, 13 
that were used to estimate empirical p-values for the predicted effects of the 14 
real set of mutations. 15 

  16 
Variant classification. A variant was classified as potentially pathogenic if meeting at 17 
least one of the following conditions: 18 

• Annotated as either Missense, Nonsense, or Frameshift by the CGI; 19 
• Showing an empirical p-value equal or lower than 0.05 in terms of either 20 

disease impact score (DeepSEA), or predicted increase or decrease in 21 
chromatin accessibility (Sasquatch), or for the affinity of any of the 43 22 
transcription factors considered in the deltaSVM models; 23 

• Showing any of the following S-CAP scores: 1) score >= 0.006 in case of 24 
mutations in the introns upstream of a 3’ SS or downstream of a 5’ SS; 2) score 25 
>= 0.033 in case of a mutation in the 3’ AG (3’ SS core); 3) score >= 0.009 in 26 
case of synonymous exonic mutation; 4) score >= 0.034 for a mutation in the 27 
5’ GT (5’ SS core); 5) score >= 0.005 in case of variants lying in the canonical 28 
U1 snRNA-binding site, excluding the 5’ SS core (5’ extended); 6) score >= 0. 29 
006. 30 

  31 
Identification of regions showing an excess of regulatory mutations in the 32 
tumour samples cohort. Given a regulatory element targeted by the enrichment 33 
strategy, the probability of a given region to show an excess of mutations predicted as 34 
pathogenic was evaluated based on a binomial distribution. The expected probability 35 
p was estimated as the fraction of variants predicted as pathogenic in the entire 36 
datasets. The pbinom function from R was used to calculate the probability of seeing 37 
an equal or better number of q pathogenic variants in the region, given the expected 38 
probability p and the total number of variants n identified in the region [pbinom(q, n, p, 39 
lower.tail = FALSE)]. 40 
 41 
 42 
Coding Variant Panel Design 43 
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To profile the coding genome in these patients, a refined panel of genes known as the 1 
Oncomine panel was utilised, specifically designed to cover key areas of mutation in 2 
luminal breast cancers78. The panel targets 6,812 coding regions, selected by 3 
compiling commonly mutated sites identified in up-to-date studies, sequencing both 4 
primary and metastatic luminal breast cancer tumours. The panel utilised data from an 5 
array of databases and studies including: The Cancer Genome Atlas (TCGA) 6 
database, the Molecular Taxonomy of Breast Cancer International Consortium 7 
(METABRIC) database 79, Lefebvre et al 2016 80, the MSKCC IMPACTTM study 81, 8 
the AACR GENIE database 82, the COSMIC database, the Cancer Gene Census, and 9 
the Pharmacogenomics Knowledgebase (PharmKGB)83. In total, these datasets 10 
included 1,673 primary and 1,596 metastatic luminal breast cancer cases. Mutated 11 
genes identified in these datasets were compiled and refined using the following 12 
criteria. Sites that were mutated in at least 2% of primary or metastatic samples and 13 
CNVs with a frequency of over 5% or with a fold change of over 5% in either primary 14 
or metastatic tumours were compiled. All breast cancer genes reported in the Cancer 15 
Gene Census and all pharmacogenomic SNPs related to breast cancer in the 16 
PharmKGB database were compiled. Finally, some manual curation was included, 17 
adding in the CYP19A1 and SQLE amplification9,84. After refinement, the panel 18 
included 6,812 regions covering 134 genes, 27 CNV sites, 37 germline cancer genes, 19 
and 59 germline loci, with associations to pharmacogenomic interactions. 20 
 21 
Sample preparation and sequencing 22 
Secondary captures, on SIDV, captured DNA libraries, was carried out using the 23 
Oncomine panel. After hybridisation of SIDV capture probes to complementary DNA 24 
and purification, non-captured DNA was recovered and concentrated using SPRI size-25 
selection beads. Quality control assessment using a Tapestation 2200 instrument was 26 
performed reporting that, in all cases, at least 50% recovery of initial DNA 27 
concentrations before the SIDV capture had been achieved. A custom set of capture 28 
probes for the Oncomine regions were produced by Twist Biosciences. Pools of DNA 29 
were captured using the Oncomine panel and quality controlled as previously 30 
described with the SIDV panel. Pools of 10 patients were sequenced at Novogene on 31 
an Illumina NovaSeq 6000 (150bp paired-end), with 700 million reads per pool.  32 
 33 
Computational analysis of Coding Variants. Variant calling was initially performed 34 
for all 100 patients that were sequenced – matched normal, primary and metastatic 35 
samples. Adapter trimming was performed using Trim Galore version 0.6.4 36 
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Bwa-mem version 37 
0.7.15 PMID: 19451168 was used for alignment to the hg38 human genome reference. 38 
Sambamba 85version 0.7.0 was used for conversion to binary, removal of PCR 39 
duplicates, sorting and indexing. Pre-processing before variant calling was performed 40 
using GATK86, version 4.1.3.0: read groups were added using picard version 2.20.6 41 
(https://sourceforge.net/projects/picard/files/picard-tools/), base quality recalibration 42 
using gatk BaseRecalibrator and gatk ApplyBQSR. Mutect2 was used for somatic 43 
variant calling against the matched normal bam samples: using the germline resource 44 
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from the GATK resource bundle af-only-gnomad.hg38.vcf.gz with option –af-of-alleles-1 
not-in-resource set as 0.001 and with 2 
MateOnSameContigOrNoMappedMateReadFilter disabled. To flag possible FFPE 3 
artefacts gatk LearnReadOrientationModel was run, using output during the filtering of 4 
variants with FilterMutectCalls. Only PASS mutations were further processed.  Depth 5 
was checked at 500 mutated loci (variants with a FATHMM score >= 0.8 and a variant 6 
allele frequency (VAF) of at least 0.1 from the pool of de novo metastatic mutations) 7 
in all 100 patients – across normal, primary and metastatic - using samtools depth. 8 
This analysis revealed that in 42/100 patients, depth was lower than 10 in the majority 9 
of the loci, in at least one of the normal, primary or metastatic bam files. Since this low 10 
number of reads could affect variant detection generally, or affect the identification of 11 
de novo metastatic variants (i.e. impossible to discern whether a mutation found in the 12 
metastatic sample was not present in the primary if the depth at that locus is low in the 13 
primary). As depth was sufficient across all variants in the other 58 patients, these 14 
were further processed. Variant annotation was performed using OpenCRAVAT, 15 
filtering for mutations only found in established breast cancer driver genes87. To 16 
discover potential de novo driver variants of metastasis in these patients, we filtered 17 
for non-synonymous coding variants, with >= 0.1 VAF, private to metastasis or with 18 
an allele frequency at least 5 times higher than in the primary. ComplexHeatmap 19 
version 2.9.3. 20 
(http://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html) was 21 
used to generate an OncoPrint heatmap of these de novo, possibly pathogenic 22 
variants. 23 
  24 
CRISPRi screen: sgRNA design. First, promoter-associated SIDV3 regions were 25 
excluded (a more tailored design of sgRNAs guided by available CAGE tags data in 26 
MCF7 was performed instead, see below for details). After enlarging each region to 27 
be at least 500 bps in size, the command-line version of the CRISPR-DO tool (version 28 
0.04,88) was then run separately for each one of the considered regions (with --spacer-29 
len=20), and the predicted sgRNAs stored. Only sgRNAs showing efficiency between 30 
0.4 and 1.3, and specificity >= 80% were retained for further analyses. One G 31 
nucleotide was then added at both 5' and 3’ of each sgRNA, and the resulting guides 32 
predicted to be digested by endonuclease BbsI were discarded. In silico digestion was 33 
performed using the digest package in R. After that, to obtain a more uniform 34 
distribution of sgRNAs, an iterative pruning procedure was applied until no two guides 35 
were found within 50 bps from each other. This resulted in 62.2% and 79.7% of the 36 
putative insulators and enhancers showing 3 or more sgRNAs targeting them, 37 
respectively. Only the sgRNAs targeting those regions were retained. 38 
Hg19 coordinates for CAGE tags peaks from FANTOM5 89 were downloaded from the 39 
consortium website 40 
(https://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/). Briefly, starting 41 
from hg19.cage_peak_phase1and2combined_tpm_ann.osc.txt.gz, only those 42 
expressed at least with a TPM >= 1 in unstimulated MCF7 were considered further. 43 
For each gene (after filtering for blacklisted regions in ENCODE and for promoters of 44 
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anti-sense, non-coding RNAs) the dominant TSS (based on highest CAGE TPM) was 1 
identified. Only a single, dominant TSS for each expressed gene was retained. Of 2 
those, only those corresponding to promoters of genes with at least one overlapping 3 
putative insulator or enhancer in SIDV3 were considered for sgRNA design. 4 
Considering the directionality of transcription at each CAGE tags cluster, each region 5 
was standardized to [-100, +300] bps from the dominant position in the cluster. Design 6 
and filtering of the sgRNAs were then performed as described in the previous 7 
paragraph. 8 
  9 
CRISPRi screen: data analysis. Count data were normalised according to the 10 
weighted trimmed mean of the log expression ratios (trimmed mean of M values 11 
(TMM)) normalisation90, using the calcNormFactors function from edgeR91. Initial PCA 12 
and clustering analyses indicated high similarity between the 8 days samples and the 13 
initial library. For this reason, the replicated 8 days samples were used as a reference 14 
to identify statistically significant changes in abundance of sgRNAs at later time points, 15 
using edgeR91. Briefly, after estimating dispersion using the estimateDisp function, 16 
generalised linear models (GLMs) were fit separately to each condition (full and 17 
oestrogen-depleted medium), using the glmFit function. Coefficients were retrieved 18 
with glmLRT, and significant changes were retained as those showing a Benjamini-19 
Hochberg corrected FDR <= 0.05 and a log2-fold-change of at least 1, in either 20 
direction. The same computational strategy was applied to compare the sgRNAs 21 
counts in full vs oestrogen-depleted media, at any given time point. 22 
  23 
Statistical analyses and plotting using R. Unless indicated otherwise, all the 24 
described statistical analyses and preparation of plots were performed in the statistical 25 
computing environment R v4 (www.r-project.org).  26 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.15.480537doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480537
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

References 1 
 2 

1. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome 3 
sequences. Nature 534, 47 (2016). 4 

2. Bertucci, F. et al. Genomic characterization of metastatic breast cancers. Nature 569, 560–5 
564 (2019). 6 

3. Stephens, P. J. et al. The landscape of cancer genes and mutational processes in breast 7 
cancer. Nature 486, 400–404 (2012). 8 

4. Nik-Zainal, S. et al. The Life History of 21 Breast Cancers. 149,. 9 

5. Toy, W. et al. Activating ESR1 Mutations Differentially Affect the Efficacy of ER 10 
Antagonists. Cancer Discov 7, 277–287 (2017). 11 

6. Yates, L. R. et al. Subclonal diversification of primary breast cancer revealed by 12 
multiregion sequencing. Nat Med 21, 751–759 (2015). 13 

7. Angus, L. et al. The genomic landscape of metastatic breast cancer highlights changes in 14 
mutation and signature frequencies. Nat Genet 51, 1450–1458 (2019). 15 

8. Haar, J. van de et al. Limited evolution of the actionable metastatic cancer genome under 16 
therapeutic pressure. Nat Med 1–11 (2021) doi:10.1038/s41591-021-01448-w. 17 

9. Magnani, L. et al. Acquired CYP19A1 amplification is an early specific mechanism of 18 
aromatase inhibitor resistance in ERα metastatic breast cancer. Nat Genet 49, 444 (2017). 19 

10. Patten, D. K. et al. Enhancer mapping uncovers phenotypic heterogeneity and evolution 20 
in patients with luminal breast cancer. Nat Med 24, 1469–1480 (2018). 21 

11. Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-22 
cell Hi-C. Nature 544, 59 (2017). 23 

12. Rosano, D. et al. Unperturbed dormancy recording reveals stochastic awakening 24 
strategies in endocrine treated breast cancer cells. bioRxiv (2021). 25 

13. Hong, S. P. et al. Single-cell transcriptomics reveals multi-step adaptations to endocrine 26 
therapy. Nat Commun 10, 3840 (2019). 27 

14. Festuccia, N., Gonzalez, I., Owens, N. & Navarro, P. Mitotic bookmarking in 28 
development and stem cells. Development 144, 3633–3645 (2017). 29 

15. He, P. et al. The changing mouse embryo transcriptome at whole tissue and single-cell 30 
resolution. Nature 583, 760–767 (2020). 31 

16. Magnani, L., Eeckhoute, J. & Lupien, M. Pioneer factors: directing transcriptional 32 
regulators within the chromatin environment. Trends Genet 27, 465–474 (2011). 33 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.15.480537doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480537
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

17. Hoadley, K. A. et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 1 
10,000 Tumors from 33 Types of Cancer. Cell 173, 291-304.e6 (2018). 2 

18. Gaiti, F. et al. Epigenetic evolution and lineage histories of chronic lymphocytic 3 
leukaemia. Nature 569, 576–580 (2019). 4 

19. Polak, P. et al. Cell-of-origin chromatin organization shapes the mutational landscape of 5 
cancer. Nature 518, 360–364 (2015). 6 

20. Santos, R. et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov 7 
16, 19–34 (2017). 8 

21. Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical 9 
outcome in breast cancer. Nature 481, 389–393 (2012). 10 

22. Magnani, L., Ballantyne, E. B., Zhang, X. & Lupien, M. PBX1 Genomic Pioneer 11 
Function Drives ERα Signaling Underlying Progression in Breast Cancer. Plos Genet 7, 12 
e1002368 (2011). 13 

23. Lupien, M. et al. FoxA1 Translates Epigenetic Signatures into Enhancer-Driven Lineage-14 
Specific Transcription. Cell 132, 958–970 (2008). 15 

24. Pan, H. et al. 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine 16 
Therapy at 5 Years. New Engl J Medicine 377, 1836–1846 (2017). 17 

25. (EBCTCG), E. et al. Aromatase inhibitors versus tamoxifen in early breast cancer: 18 
patient-level meta-analysis of the randomised trials. The Lancet 386, 1341–1352 (2015). 19 

26. (EBCTCG), E. B. C. T. C. G. et al. Relevance of breast cancer hormone receptors and 20 
other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised 21 
trials. Lancet 378, 771–784 (2011). 22 

27. Beatson, G. ON THE TREATMENT OF INOPERABLE CASES OF CARCINOMA OF 23 
THE MAMMA: SUGGESTIONS FOR A NEW METHOD OF TREATMENT, WITH 24 
ILLUSTRATIVE CASES.1. Lancet 148, 104–107 (1896). 25 

28. Lopes, R. et al. Systematic dissection of transcriptional regulatory networks by genome-26 
scale and single-cell CRISPR screens. Sci Adv 7, eabf5733 (2021). 27 

29. Fei, T. et al. Deciphering essential cistromes using genome-wide CRISPR screens. 28 
Proceedings of the National Academy of Sciences (2019) doi:10.1073/pnas.1908155116. 29 

30. Perone, Y. et al. SREBP1 drives Keratin-80-dependent cytoskeletal changes and invasive 30 
behavior in endocrine-resistant ERα breast cancer. Nat Commun 10, 2115 (2019). 31 

31. Nagarajan, S. et al. ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative 32 
capacity and breast cancer treatment response. Nat Genet 52, 187–197 (2020). 33 

32. Xu, G. et al. ARID1A determines luminal identity and therapeutic response in estrogen-34 
receptor-positive breast cancer. Nat Genet 52, 198–207 (2020). 35 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.15.480537doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480537
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

33. Lupiáñez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic 1 
rewiring of gene-enhancer interactions. 161, (2015). 2 

34. Nora, E. P. et al. Targeted Degradation of CTCF Decouples Local Insulation of 3 
Chromosome Domains from Genomic Compartmentalization. Cell 169, 930-944.e22 (2017). 4 

35. Guo, Y. et al. CRISPR Inversion of CTCF Sites Alters Genome Topology and 5 
Enhancer/Promoter Function. Cell 162, 900–10 (2015). 6 

36. Gilbert, L. A. et al. CRISPR-Mediated Modular RNA-Guided Regulation of 7 
Transcription in Eukaryotes. Cell 154, 442–451 (2013). 8 

37. Katainen, R. et al. CTCF/cohesin-binding sites are frequently mutated in cancer. Nat 9 
Genet 47, 818–821 (2015). 10 

38. Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,658 cancer whole 11 
genomes. Nature 578, 102–111 (2020). 12 

39. Zhang, X. & Meyerson, M. Illuminating the noncoding genome in cancer. Nat Cancer 1–13 
9 (2020) doi:10.1038/s43018-020-00114-3. 14 

40. Hinohara, K. et al. KDM5 Histone Demethylase Activity Links Cellular Transcriptomic 15 
Heterogeneity to Therapeutic Resistance. Cancer Cell (2018) 16 
doi:10.1016/j.ccell.2018.10.014. 17 

41. Sharma, S. V. et al. A Chromatin-Mediated Reversible Drug-Tolerant State in Cancer 18 
Cell Subpopulations. Cell 141, 69–80 (2010). 19 

42. Pagani, O. et al. Adjuvant Exemestane with Ovarian Suppression in Premenopausal 20 
Breast Cancer. New Engl J Medicine 371, 107–118 (2014). 21 

43. Rueda, O. M. et al. Dynamics of breast-cancer relapse reveal late-recurring ER-positive 22 
genomic subgroups. Nature 1 (2019) doi:10.1038/s41586-019-1007-8. 23 

44. Rosano, D. et al. Unperturbed dormancy recording reveals stochastic awakening 24 
strategies in endocrine treated breast cancer cells. Biorxiv 2021.04.21.440779 (2021) 25 
doi:10.1101/2021.04.21.440779. 26 

45. Magnani, L. et al. Genome-wide reprogramming of the chromatin landscape underlies 27 
endocrine therapy resistance in breast cancer. Proc National Acad Sci 110, E1490–E1499 28 
(2013). 29 

46. Nguyen, V. T. M. et al. Differential epigenetic reprogramming in response to specific 30 
endocrine therapies promotes cholesterol biosynthesis and cellular invasion. Nat Commun 6, 31 
10044 (2015). 32 

47. Shaw, L. E., Sadler, A. J., Pugazhendhi, D. & Darbre, P. D. Changes in oestrogen 33 
receptor-α and -β during progression to acquired resistance to tamoxifen and fulvestrant 34 
(Faslodex, ICI 182,780) in MCF7 human breast cancer cells. J Steroid Biochem Mol Biology 35 
99, 19–32 (2006). 36 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.15.480537doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480537
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

48. Sammut, S.-J. et al. Multi-omic machine learning predictor of breast cancer therapy 1 
response. Nature 1–10 (2021) doi:10.1038/s41586-021-04278-5. 2 

49. Thakore, P. I. et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for 3 
silencing of distal regulatory elements. Nat Methods 12, 1143–1149 (2015). 4 

50. Mansour, M. R. et al. An oncogenic super-enhancer formed through somatic mutation of 5 
a noncoding intergenic element. Science 346, 1373–1377 (2014). 6 

51. Harrod, A. et al. Genomic modelling of the ESR1 Y537S mutation for evaluating 7 
function and new therapeutic approaches for metastatic breast cancer. Oncogene 36, 2286–8 
2296 (2016). 9 

52. Lee, D. et al. A method to predict the impact of regulatory variants from DNA sequence. 10 
Nat Genet 47, 955–961 (2015). 11 

53. Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on 12 
expression and disease risk. Nat Genet 50, 1171–1179 (2018). 13 

54. Schwessinger, R. et al. Sasquatch: predicting the impact of regulatory SNPs on 14 
transcription factor binding from cell- and tissue-specific DNase footprints. Genome 15 
Research 27, 1730–1742 (2017). 16 

55. Jagadeesh, K. A. et al. S-CAP extends pathogenicity prediction to genetic variants that 17 
affect RNA splicing. Nat Genet 51, 755–763 (2019). 18 

56. Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids 19 
Res 47, gky1015- (2018). 20 

57. Zhou, J. et al. Whole-genome deep-learning analysis identifies contribution of noncoding 21 
mutations to autism risk. Nature Genetics 51, 973–980 (2019). 22 

58. Smith, R. P. et al. Massively parallel decoding of mammalian regulatory sequences 23 
supports a flexible organizational model. Nat Genet 45, 1021–1028 (2013). 24 

59. Cowper-Sal·lari, R. et al. Breast cancer risk–associated SNPs modulate the affinity of 25 
chromatin for FOXA1 and alter gene expression. Nat Genet 44, 1191 (2012). 26 

60. Mazrooei, P. et al. Cistrome Partitioning Reveals Convergence of Somatic Mutations and 27 
Risk Variants on Master Transcription Regulators in Primary Prostate Tumors. Cancer Cell 28 
36, 674-689.e6 (2019). 29 

61. Dunham, I. et al. An Integrated Encyclopedia of DNA Elements in the Human Genome. 30 
Nature 489, 57–74 (2012). 31 

62. Mourad, R. & Cuvier, O. Computational Identification of Genomic Features That 32 
Influence 3D Chromatin Domain Formation. Plos Comput Biol 12, e1004908 (2016). 33 

63. Dixon, J. R. et al. Topological Domains in Mammalian Genomes Identified by Analysis 34 
of Chromatin Interactions. Nature 485, 376–380 (2012). 35 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.15.480537doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480537
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

64. Lin, Y. et al. Evaluating stably expressed genes in single cells. Gigascience 8, giz106 1 
(2019). 2 

65. McKenna, A. et al. The Genome Analysis Toolkit: A MapReduce framework for 3 
analyzing next-generation DNA sequencing data. Genome Research 20, 1297–1303 (2010). 4 

66. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and 5 
heterogeneous cancer samples. Nat Biotechnol 31, 213–219 (2013). 6 

67. Rimmer, A. et al. Integrating mapping-, assembly- and haplotype-based approaches for 7 
calling variants in clinical sequencing applications. Nat Genet 46, 912–918 (2014). 8 

68. Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat 9 
Methods 15, 591–594 (2018). 10 

69. Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and 11 
cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016). 12 

70. Talevich, E., Shain, H. A., Botton, T. & Bastian, B. C. CNVkit: Genome-Wide Copy 13 
Number Detection and Visualization from Targeted DNA Sequencing. PLOS Computational 14 
Biology 12, e1004873 (2016). 15 

71. Jiang, Y., Qiu, Y., Minn, A. J. & Zhang, N. R. Assessing intratumor heterogeneity and 16 
tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing. 17 
Proc National Acad Sci 113, E5528–E5537 (2016). 18 

72. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene 19 
expression and hybridization array data repository. Nucleic Acids Res 30, 207–10 (2002). 20 

73. Hinrichs, A. S. et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids 21 
Res 34, D590-8 (2006). 22 

74. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: Identification of 23 
Problematic Regions of the Genome. Sci Rep-uk 9, 9354 (2019). 24 

75. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing 25 
genomic features. Bioinformatics 26, 841–842 (2010). 26 

76. Tamborero, D. et al. Cancer Genome Interpreter annotates the biological and clinical 27 
relevance of tumor alterations. Genome Med 10, 25 (2018). 28 

77. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given 29 
motif. Bioinformatics 27, 1017–1018 (2011). 30 

78. Zoppoli, G. et al. Abstract PD8-04: Ultra-deep multigene profiling of matched primary 31 
and metastatic hormone receptor positive breast cancer patients relapsed after adjuvant 32 
endocrine treatment reveals novel aberrations in the estrogen receptor pathway. Poster 33 
Spotlight Sess Abstr PD8-04-PD8-04 (2020) doi:10.1158/1538-7445.sabcs19-pd8-04. 34 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.15.480537doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480537
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

79. Mukherjee, A. et al. Associations between genomic stratification of breast cancer and 1 
centrally reviewed tumour pathology in the METABRIC cohort. Npj Breast Cancer 4, 5 2 
(2018). 3 

80. Lefebvre, C. et al. Mutational Profile of Metastatic Breast Cancers: A Retrospective 4 
Analysis. Plos Med 13, e1002201 (2016). 5 

81. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective 6 
clinical sequencing of 10,000 patients. Nat Med 23, 703–713 (2017). 7 

82. Consortium, A. P. G. AACR Project GENIE: Powering Precision Medicine through an 8 
International Consortium. Cancer Discov 7, 818–831 (2017). 9 

83. Whirl-Carrillo, M. et al. Pharmacogenomics knowledge for personalized medicine. Clin 10 
Pharmacol Ther 92, 414–7 (2012). 11 

84. Brown, D. N. et al. Squalene epoxidase is a bona fide oncogene by amplification with 12 
clinical relevance in breast cancer. Sci Rep-uk 6, 19435 (2016). 13 

85. Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast 14 
processing of NGS alignment formats. Bioinform Oxf Engl 31, 2032–4 (2015). 15 

86. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-16 
generation DNA sequencing data. Nat Genet 43, 491–8 (2011). 17 

87. Martínez-Jiménez, F. et al. A compendium of mutational cancer driver genes. Nat Rev 18 
Cancer 20, 555–572 (2020). 19 

88. Ma, J. et al. CRISPR-DO for genome-wide CRISPR design and optimization. 20 
Bioinformatics 32, 3336–3338 (2016). 21 

89. (DGT), F. C. and the R. P. and C. et al. A promoter-level mammalian expression atlas. 22 
Nature 507, 462–470 (2014). 23 

90. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential 24 
expression analysis of RNA-seq data. Genome Biol 11, R25 (2010). 25 

91. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor 26 
RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40, 4288–97 27 
(2012). 28 

  29 

  30 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.15.480537doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480537
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

Supplementary Figures Legends 1 
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Supplementary Figure 1. (a) SIDP coverage (percentage) of the specific partitions of 1 
the human CREs considered in this study. (b) Histograms showing the distribution of 2 
counts per sgRNAs (log10) for two replicates of sgRNAs in pool 1, at day 7 and day 3 
21 post-infection (MCF7 full media). (c) Box plots showing the log2-fold-change of 4 
positive controls (left panel) and non-targeting sgRNAs (right panel) in two replicates 5 
of oestrogen-dependent MCF7 cells, at 7, 14 and 21 days, as compared to the initial 6 
library. (d) Box plots showing the distribution of the number of significantly scoring 7 
sgRNAs per CRE, for Expanded (yellow) and Exhausted (blue) sgRNAs, across three 8 
different genomic partitions (promoters, putative enhancers, and CTCF-clusters 9 
associated to TAD boundaries). (e) Motif analysis of CREs associated with 10 
significantly exhausted sgRNAs identifies YY1 as a putative TF enriched in functional 11 
CREs. 12 
  13 
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 1 
Supplementary Figure 2. (a) Motif analysis of CREs associated with significantly 2 
exhausted sgRNAs identifies YY1 as a putative TF enriched in functional CREs. (b) 3 
Box plots showing the log2-fold-change of positive controls (left panel) and non-4 
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targeting sgRNAs (right panel) in two replicates of oestrogen-deprived MCF7 cells, at 1 
7, 14 and 21 days, as compared to the initial library. (c) Principal component analysis 2 
(PCA) of all samples. For clarity in the visualization, the analysis was first run excluding 3 
day 60 and split by replicate (columns) and condition (+/- E2; first two rows). The last 4 
pair of plots from above, instead include day 60. Note: 8 and 15 days post cells seeding 5 
(corresponding to 7 and 14 post-infection). (d) Bar plot showing the overall number of 6 
sgRNAs showing the indicated behaviour ad day 21 (MCF7 white media). (e) Box plots 7 
showing the number of sgRNAs significantly decreased or increased at day 21 (MCF7 8 
white media). Specific outliers indicate the nearest gene to the overlapping CRE. 9 
(Bottom right) Schematic of the genes identified in the TLR/NF-kB signalling pathway, 10 
showing at least one CRE with multiple expanded sgRNAs at day 21 (MCF7 white 11 
media). 12 
  13 
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 1 
Supplementary Figure 3. (a-b) SIDP results at the indicated loci are shown as IGV 2 
genome browser screenshots. For each of the indicated conditions, the log2-fold 3 
change for each sgRNA is indicated, with bars proportional to the effect size, and 4 
colour reflecting the sign (blue = expanded; yellow = exhausted). 5 
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Supplementary Figure 4. (a-b) SIDP results at the indicated loci are shown as IGV 1 
genome browser screenshots. For each of the indicated conditions, the log2-fold 2 
change for each sgRNA is indicated, with bars proportional to the effect size, and 3 
colour reflecting the sign (blue = expanded; yellow = exhausted). (c) Box plots showing 4 
the distribution of the compounded score (-log10 of the edgeR-estimated p-value 5 
times the log2FC) for different sets of sgRNAs (blue = expanded; yellow = exhausted), 6 
at 60 days (MCF7 white media). The scoring sgRNAs mapping to the CREs of the 7 
genes annotated to TLR/NF-kB signalling are highlighted in red (as outliers in the 8 
distribution of the sgRNAs significantly more expanded in -E2 vs +E2 conditions at 21 9 
days, and then as a separate group). 10 
  11 
  12 
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 1 
Supplementary Figure 5. (a) (top to bottom, left to right) Box plots showing the log2-2 
fold-change of positive controls and non-targeting sgRNAs in two replicates of 3 
oestrogen-deprived MCF7 cells, at 7, 14 and 21 days, as compared to the initial library. 4 
The other two box plots show log2-fold-change of both scoring (either blue or yellow) 5 
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and non-scoring (white) sgRNAs at 21 days post-infection in oestrogen-deprived 1 
MCF7 cells, at 7, 14 and 21 days, as compared to the initial library. (b) SIDP results 2 
at the indicated loci are shown as IGV genome browser screenshots. For each of the 3 
indicated conditions, the log2-fold change for each sgRNA is indicated, with bars 4 
proportional to the effect size, and colour reflecting the sign (blue = expanded; yellow 5 
= exhausted). 6 
  7 
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Supplementary Figure 6. (a) RT-qPCR validation of the effect of individual sgRNA 1 
on MCF7 transfected with a constitutive dCAS(-KRAB construct. Relative mRNA 2 
values are plotted against a non-targeting sgRNA    b) Cell competition experiments. 3 
150 cells GFP positive transfected with single experimental sgRNAs were plated with 4 
150 cells transfected with non-targeting sgRNA. The relative ratio of GFP+/non-GFP 5 
cells across ten days is plotted. Experiments were conducted in full media (with 6 
estradiol)  c) CCND1 targeting sgRNAs lead to the rapid extinction of GFP cells while 7 
non-targeted cells enter dormancy with normal dynamics. Green panels: absolute 8 
GFP+ count (CCND1 sgRNAs). Yellow panels: normalized ratios GFP/non GFP 9 
across time points. 10 
  11 
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 1 
Supplementary Figure 7. (a) Schematic summarising the steps of the custom 2 
computational pipeline employed for the identification and functional annotation of the 3 
SIDV variants. (b) Summary of the sequencing statistics for the profiled samples. (c) 4 
Stacked bar plots showing the anatomic site of the profiled relapse, split by centre. (d) 5 
Box plot showing the distribution of the overall mutational load per sample in the SID 6 
regions, as estimated in either the non-coding COSMIC or in our cohort (separately 7 
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 46 

for primary and metastatic samples). The companion scatterplot shows the correlation 1 
between the genome-wide estimate of mutational burden and the same estimate using 2 
only the mutations identified in SID regions, considering the WGS data available in the 3 
non-coding COSMIC. The statistics and statistical significance of this linear correlation 4 
are indicated on top of the plot. (e-f) Scatterplots showing the relationship between 5 
the number of somatic mutations detected per sample, and the indicated variables. 6 
For visualization purposes, least-square regression models were trained separately 7 
for primary and metastatic samples. For quantifying the relationships, Spearman’s 8 
correlation coefficients (SCC) are indicated on top of the plots, along with the 9 
corresponding p-values. 10 
  11 
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 1 
Supplementary Figure 8. (a) Scatterplot comparing the number of variants (SNVs 2 
plus INDELs) in matched primary and metastatic lesions. (b) Scatterplot showing the 3 
fraction (0-1) of mutations identified in the metastatic tumour that was also called in 4 
the corresponding matched primary. Each dot represents a pair of matched primary-5 
met, with the x-axis indicating the total number of variants in each metastatic sample. 6 
(c) (Left to right) Box plots showing the overall coverage of the regions showing 7 
variants, separately for matched normal (N), primary (P) and metastatic (M) samples. 8 
The other three box plots show the VAF (frequency of alternative alleles) in normal 9 
and tumour (either primary, metastatic, or both) specimens, for three sets of variants 10 
(left to right): those identified only in primaries; those identified only in metastasis; 11 
those identified in both. (d) Box plot showing that lesions that were treated with TAM 12 
or AI did not show a different number of detected mutations at relapse (p-value = 0.21; 13 
Mann-Whitney Test). 14 
 15 
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Supplementary Tables Legends 1 
 2 
Supplementary Table 1: Regions defined by SID (Systematic Identification of 3 
epigenetically Defined loci). For each region (hg38 genomic coordinates including 4 
chromosome, starting and ending positions), the table indicates whether the region was 5 
selected as a gene promoter, putative enhancer or putative insulator. Whether the region is 6 
covered by designed oligo baits for SIDV profiling, and the number of sgRNAs targeting the 7 
region in SIDP, are also indicated. 8 
 9 
Supplementary Table 2: sgRNAs sequences and metadata for the SIDP assays. S2.1: 10 
for each sgRNA targeting a region in the human genome, an identifier (using the 11 
corresponding hg38 genomic coordinates), the DNA sequence, the genomic coordinates 12 
(hg38) including the strand, along with efficiency and specificity scores as estimated by 13 
CRISPR-do, are provided. S2.2: for each positive control or non-targeting sgRNA, a custom 14 
identifier is shown along with the DNA sequence. 15 
 16 
Supplementary Table 3: SIDP results in MCF7 grown in full (red; +E2) media. S3.1: 17 
results of the differential abundance analysis for the positive controls and the non-targeting 18 
sgRNAs (as indicated in the genome_partition field). For each sgRNA, an identifier, the pool, 19 
and the results from the edgeR analysis are shown. The average abundance of the sgRNA at 20 
day 7 and 21 post-infection is indicated as logCPM (counts per million). The log2-fold changes 21 
(log2FC) between day 21 and 7, and between day 21 and the initial library, are indicated, 22 
along with the FDR (Benjamini-corrected p-value). Two further fields indicate whether the 23 
sgRNA was identified as significantly expanded (FDR <= 0.05 and linear fold-change >= 1.5) 24 
or exhausted (FDR <= 0.05 and linear fold-change <= -1.5). S3.2: similar to S3.1 but listing 25 
the results for the sgRNAs targeting the genomic regions of interest. Hg38 coordinates are 26 
also included in this case. S3.3: summary of the results at the level of each SID region. For 27 
each region, hg38 coordinates are listed, along with the symbol of the nearest gene, and the 28 
distance to its TSS in bp (positive or negative values indicate the region is either downstream 29 
or upstream the TSS, respectively). The table then indicates whether the region was selected 30 
as a gene promoter, putative enhancer or putative insulator. The number of sgRNAs targeting 31 
the enlarged region (indicated coordinates +- 1 kbp), is followed by information on the 32 
overlapping sgRNAs that scored significantly, separately for exhaustion and expansion. In 33 
both cases, the total number of significant guides, the corresponding fraction, and the FDR 34 
and log2FC of the highest-scoring sgRNA are reported. A column indicating the significance 35 
of one or more sgRNAs is also provided. S3.4: enriched terms in the set of genes close to the 36 
regions showing scoring sgRNAs, separately for the exhausted and the expanded sets. For 37 
each group, hallmark sets showing a p-value <= 0.05 are included in the table. Statistics of 38 
the hypergeometric test are shown, along with the total number and identity of the overlapping 39 
genes. S3.5: overlap between the regions identified in our +E2 MCF7 SIDP assay and 40 
previously published screens in breast cancer cell lines (marcotte: Marcotte et al. 2012; fei: 41 
Fei at al. 2019; Korkmaz: Korkmaz et al. 2019; ggg: Rui Lopes et al. 2020). 42 
 43 
Supplementary Table 4: SIDP results in MCF7 grown in white media (-E2). S4.1-5: the 44 
tables follow the same structure as S3.1-5. 45 
 46 
Supplementary Table 5: SIDP results in LTED. S5.1: results of the differential abundance 47 
analysis for the positive controls and the non-targeting sgRNAs. The structure of the table is 48 
similar to S3.1. S5.2: results for the sgRNAs targeting the genomic regions of interest. The 49 
structure of the table is similar to S3.2. 50 
 51 
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Supplementary Table 6: SIDP results summary. S6.1: regions showing at least one 1 
overlapping sgRNA scoring in at least one of the different conditions assayed. For each region 2 
(hg38 genomic coordinates), the table indicates whether this was selected as a gene 3 
promoter, putative enhancer or putative insulator. It also shows the symbol of the nearest 4 
gene, and the distance to its TSS in bp (positive or negative values indicate the region is either 5 
downstream or upstream of the TSS, respectively). For each condition (MCF7 RM, MCF7 WM 6 
or LTED) and direction of the change (Exhaustion vs Expansion), the table indicates whether 7 
the region overlaps one or more (columns labelled “single”) vs two or more (columns labelled 8 
“multiple”) sgRNAs. S6.2: summary of the overlaps between either scoring sgRNAs (“guides”), 9 
regions showing at least one scoring sgRNA (“regions_single”), or regions showing two or 10 
more consistently scoring sgRNAs (“regions_multiple”) between pairs of conditions (as 11 
indicated by columns assay_1 and assay_2). The nature of the change (either Exhaustion or 12 
Expansion), along with the total number of overlapping sgRNAs or regions, and the 13 
corresponding fraction, are also indicated. S6.3: results of gene set enrichment analysis using 14 
the indicated gene sets and the set of genes close to the regions showing scoring sgRNAs, 15 
according to the indicated pattern (SIDP_set). Statistics of the hypergeometric test are shown, 16 
along with the total number of the overlapping genes (count), the observed and expected 17 
overlaps, and the odds ratio. 18 
 19 
Supplementary Table 7: Metadata of the clinical cohort profiled by SIDV. S7.1: for each 20 
donor, from which genetic material from matched normal, primary and metastatic samples 21 
was derived, the following information is provided: the identifier for the samples; the centre 22 
where the samples were collected; the sequencing batch; the age of diagnosis; the clinical 23 
features of the primary tumours; the indication of the metastatic sites. Legend: ER = estrogen-24 
receptor alpha; PR = progesterone receptor; pct = percentage; HR = hormone therapy. S7.2: 25 
for each triplet of matched normal, primary and metastasis derived material, and separately 26 
for each one of the 100 donors, sequencing statistics are provided. Sequencing depth, the 27 
fraction of the reads mapping to oligo baits, mean coverage on baits and corresponding fold-28 
enrichment, and on-target mean coverage, are shown. The percentages (pct) of targeted 29 
bases covered at least 10x, 30x, 50x or 100x are also indicated. 30 
 31 
Supplementary Table 8: Summary of SNVs and INDELs identified by SIDV. S8.1: total 32 
number of SNVs and INDELs (filtered for common variants, according to dbSNP) per donor 33 
(sample_id), divided by those identified in primary or metastasis (vs matched normal). S8.2: 34 
full list of SNVs and INDELs. Chromosome and position on the chromosome (hg38 35 
coordinates) are indicated for each variant, along with the reference and detected alternative 36 
allele. Also, the table indicates the donor, and whether the variant allele was directly detected 37 
in the primary (P_CALL) and/or the metastatic material (M_CALL). S8.3: tumour purity 38 
estimation for each sample and site (P = primary; M = metastasis) is listed, along with the size 39 
of the subset of SNVs used for the purity estimation analysis. S8.4: final annotation of the 40 
SNVs after sample-specific purity correction. For each SNV, genomic coordinates, reference 41 
and alternative alleles, donor identifier, and evidence (filtered read counts) supporting the 42 
different alleles in normal (N), primary (P) and metastatic (M) samples are provided. For both 43 
primary and metastatic samples, the variant allele frequency (VAF), along with the estimated 44 
purity for the sample, the estimated copy number alterations of the region bearing the variant 45 
(CNA) and the purity-corrected VAF, or cancer-cell fraction (CCF), are indicated. S8.5: regions 46 
showing an enrichment in either amplification (amp) or deletions (del) across the metastatic 47 
samples as compared to the matched primary samples, are indicated. 48 
 49 
Supplementary Table 9: Computational predictions of the functional impact of the SNVs 50 
and short INDELs identified through SIDV. S9.1: for each variant, the type (SNV or 51 
INDEL_short) and its hg38 coordinates are listed, along with the symbol of the nearest gene, 52 
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and the distance to its TSS in bp (positive or negative values indicate the region is either 1 
downstream or upstream the TSS, respectively). Reference and alternative alleles are also 2 
provided, along with whether the variant is computationally predicted to alter the molecular 3 
function of the genomic element bearing it (indicated as different “pathogenic” classes; column 4 
mutation_class) or not (“benign”). The table is then indicating, for each one of the models 5 
considered, whether the variant is predicted to significantly affect the indicated molecular 6 
function. S9.2: extract of S9.1, for three regions of interest. 7 
 8 
Supplementary Table 10: Downstream analyses considering only the SIDV inferred 9 
genetic alterations with predicted impact on function. S10.1: results of the binomial 10 
enrichment test. SID regions overlapping at least 2 SNVs predicted as pathogenic are 11 
included. Along with genomic coordinates (hg38) the total number of SNVs, as well as the 12 
number of predicted pathogenic SNVs overlapping the region, are indicated. The p-value and 13 
the q-value (after Benjamini-Hochberg correction) of the binomial test are indicated, along with 14 
annotation to the closest gene. S10.2: same as S10.1, but considering all the regions assigned 15 
to the genes annotated to the same ontological terms together. The number and identity of 16 
the genes contributing to the overlap are indicated, along with the p-value of the binomial test, 17 
and the q-value (after Benjamini-Hochberg correction). Statistically significant terms (q-value 18 
<= 0.05) are highlighted in red. S10.3: results of the analyses testing for the enrichment of 19 
mutations (either SNVs, short INDELs, or both; mutation_type column) with computationally 20 
predicted pathogenic effects in the sets of regions also showing a certain behaviour in SIDP 21 
(CRISPRi_hit_type column). Observed and expected overlap are indicated, along with the 22 
odds ratio and the p-value (Chi-squared test). 23 
 24 
Supplementary Table 11: Downstream analyses considering only the SIDV inferred 25 
genetic alterations with predicted impact on function, and stratifying them by cancer-26 
cell fraction (CCF) increase and decrease in metastatic samples. S11.1: summary of the 27 
results of the statistical tests performed to identify differences in the predicted impact of 28 
mutations stratified by a change in CCF in metastatic samples compared to matched primary. 29 
The fraction of variants predicted as pathogenic and either showing an increase or a decrease 30 
in CCF (+- 0.1) was compared to that of those showing no change. P-values for the indicated 31 
features are shown (Chi-squared test). S11.2: similarly, the distribution of the predicted 32 
molecular effects of variants in the three groups (increase, decrease or no change in CCF) 33 
were compared using the Kruskal-Wallis test. S11.3: similar to S10.3, but testing for the 34 
enrichment of mutations with both computationally predicted pathogenic effects and a certain 35 
CCF increase or decrease in metastatic samples, that also show a certain behaviour in SIDP. 36 
 37 
Supplementary Table 12: Results of the enrichment analyses looking for binding sites 38 
of specific TFs accumulating more or less genetic variants than expected by chance. 39 
For each TF and category (mutations significantly increasing or decreasing affinity) the 40 
observed and expected fraction of mutations overlapping the TF-bound sites are indicated, 41 
along with the difference between these two fractions, and the p-value of the corresponding 42 
Chi-squared test. Considering each TF and the mutations affecting the affinity to its target 43 
sites either positively or negatively (based on the p-value of the test) TFs could be either 44 
classified as showing significantly more or fewer mutations than expected, or not significant 45 
(ns). 46 
 47 
Supplementary Table 13: Datasets used for the training of the TF-specific deltaSVM 48 
models. For each TF, the corresponding gene symbol, along with information about the cells 49 
from which the ChIP-seq binding profile was obtained, the treatment the cells were exposed 50 
to (if any), and reference to the corresponding records on the Gene Expression Omnibus, are 51 
indicated. Information about the matched, high-quality position weight matrix (PWM) utilized 52 
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as a source of information to infer the binding affinities of each TF is also provided. For each 1 
PWM, an identifier is indicated, along with the corresponding reference database or 2 
publication (including Pubmed ID). 3 
 4 
 5 
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