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Abstract

Comprehensive profiling of hormone-dependent breast cancer (HDBC) has identified
hundreds of protein-coding alterations contributing to cancer initiation"2, but only a
handful have been linked to endocrine therapy resistance, potentially contributing to
40% of relapses'3°. If other mechanisms underlie the evolution of HDBC under
adjuvant therapy is currently unknown. In this work, we employ integrative functional
genomics to dissect the contribution of cis-regulatory elements (CREs) to cancer
evolution by focusing on 12 megabases of non-coding DNA, including clonal
enhancers'?, gene promoters, and boundaries of topologically associating domains™'.
Massive parallel perturbation in vitro reveals context-dependent roles for many of
these CREs, with a specific impact on dormancy entrance'?'® and endocrine therapy
resistance®. Profiling of CRE somatic alterations in a unique, longitudinal cohort of
patients treated with endocrine therapies identifies non-coding changes involved in
therapy resistance. Overall, our data uncover actionable transient transcriptional
programs critical for dormant persister cells and unveil new regulatory nodes driving
evolutionary trajectories towards disease progression.
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Main

During multicellular development, cell fate is established through a series of heritable
transcriptional changes '4'5. These changes are orchestrated by the interaction of
transcription factors (TFs) with the regulatory portion of the non-coding genome (cis-
regulatory elements, CREs) 6. CRE activity is largely tissue-specific and contributes
to many aspects of cancer aetiology '"~'°. A large fraction of cancer subtypes displays
addiction to the activity of TFs. In line with this, active compounds against nuclear
receptors, a targetable class of TFs, account for 16% of the total FDA approved cancer
drugs 2°. Hormone Dependent Breast Cancer (HDBC) cells are strongly dependent on
the activity of the nuclear receptor oestrogen receptor (ERa), pioneer factors FOXA1
and PBX1 and the transcription factor YY1'%16, These TFs collectively control many
cancer hallmarks through their direct interaction with a subset of CREs, particularly
distal enhancers °2'-23, Continuous modulation of ERa. activity after breast surgery (5
years of adjuvant endocrine therapy) is one the most successful targeted strategies
and it represents one of the first examples of precision medicine 242, Nevertheless,
over the course of 20 years post-surgery, cancer returns in up to 50% of patients,
suggesting that residual tumour cells can undergo prolonged dormancy %1324 (Figure
1a).

Despite HDBC cells being largely dependent on the activity of these TFs,
previous perturbation screens focusing on ERa or FOXA1 bound CREs found that
only a minority of binding sites appear to be essential for steady-state proliferation in
vitro 282%_ Yet, TF-centric perturbation has missed CREs driven by additional TFs (i.e.,
YY1 and GATAS3 30-32) and overlooked critical intermediate states in cancer evolution
such as adaptive dormancy of persister cells '2'3. To identify CREs contributing to the
evolution and adaptation of HDBC tumours exposed to endocrine therapies we
developed a prioritised CREs panel (termed Systematic Identification of epigenetically
Defined loci, or SID) to investigate the role they play both in vitro and in vivo. The SID
panel leverages our patient-derived epigenetic atlas'® in which we identified putative
enhancers with clonal or sub-clonal representation using Histone 3 Lysine 27
acetylation (H3K27ac) in primary and metastatic HDBC (see Methods). Since
disruption of chromatin topology can also contribute to disease evolution in both
developmental and cancer models 33, SID includes clusters of CTCF binding sites
putatively controlling the integrity of topologically associating domain (TAD)3#3%
(Figure 1a, Supplementary Figure 1a and Methods).

Perturbing SID regions via CRISPRi

We first investigated the contribution of CREs (at enhancers and TAD boundaries) to
HDBC cell growth via massively parallelized dCas9-KRAB (CRISPRi%¢) repressor
perturbation. We designed 136,118 single guide RNA (sgRNAs) to interfere with the
activity of 23,765 CREs in treatment naive MCF7 (HDBC cells grown with oestrogen,
+E2) (Figure 1a, Supplementary Figure 1b, Supplementary Tables 1 and 2, SID
Perturbation or SIDP). We reasoned that KRAB-mediated repression mimics CRE loss
of function potentially produced by somatic genetic alterations impinging on TF affinity
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1  tothese sites 3/-3%. SIDP covers over 60% of the clonal enhancers active in MCF7 and
2 almost every cluster of CTCF binding sites associated with TAD boundaries
3 (Supplementary Figure 1a).
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Figure 1. Defining a comprehensive strategy to functionally annotate the non-coding genome of
HDBC. (a) HDBC journey is characterized by distinct phases. Cells must adapt to different niches and
treatments. Overcoming these stresses require profound, heritable transcriptional changes. Leveraging
in vivo and in vitro data, we develop SID, a strategy to prioritize HDBC-specific regulatory regions for
functional (SID Perturbation) and genomic (SID Variants) annotation in cell line models and patients.
(b) Bar plot showing the relative fraction of scoring sgRNAs and CREs bearing scoring sgRNAs, upon
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perturbation of noncoding genome of oestrogen dependent MCF7 cells via SIDP. Scoring sgRNAs
showing a significantly decreased frequency at 21 days post-infection are referred to as Exhausted,
while those with a significantly higher frequency as Expanded. (c) Box plots showing the log2-fold-
change of both scoring (either blue or yellow) and non-scoring (white) sgRNAs at 21 days post-infection
in oestrogen-dependent MCF7 cells, at 7, 14 and 21 days, as compared to the initial library. (d) Bar plot
showing the top ten hallmark gene sets enriched among the genes found in the proximity of the CREs
with scoring sgRNAs showing a pattern of exhaustion at 21 days post-infection (p-value estimated via
a hypergeometric test).

Nearly 100% of the sgRNAs were captured at high coverage (Supplementary Figure
1b) and then scored based on their relative change after 21 days from infection. This
led to the identification of individual sgRNAs either expanded (increased counts
corresponding to a potential fithess advantage after the loss of activity of the CRE),
exhausted (decreased counts corresponding to a fithess disadvantage after the loss
of activity of the CRE) or neutral (Figure 1b). 34% and 0.9% of positive controls and
non-targeting sgRNAs scored, respectively, demonstrating the robustness of the
approach (FDR <= 0.05; fold-change >= 1.5 or <= -1.5; Supplementary Table 3).
Analysis of the temporal dynamics (7, 14 and 21 days) of the sgRNA scoring at 21
days showed reproducible trends (Figure 1c and Supplementary Figure 2d).
Interestingly, 98.4% of CREs showing multiple, reproducible scoring sgRNA promote
loss of fitness (Figure 1b-c and Supplementary Figure 2d). The regions scoring in our
screen showed significant overlaps with observations from previous screens
(Supplementary Table 3). Motif analysis on exhausted sgRNAs identified YY1 as the
only enriched motif, in line with its critical role in shaping ERa transcriptional activity
at clonal enhancers in HDBC *° (Supplementary Figure 2d). Scoring sgRNAs are also
associated with many epigenetic features, including KDM5A binding*®4!, promoter-
specific H3K4me3 and enhancer specific H3K4me1 (Supplementary Figure 2e).
Exhausted sgRNAs were significantly associated with CREs near genes controlling
metabolic processes (i.e., oxidative phosphorylation) and known MCF7 dependencies
(MYC targets and PI3K and AKT signalling, Figure 1d and Supplementary Table 3).
Collectively, these data establish SIDP as a powerful molecular tool for functional
characterization of the non-coding genome and demonstrate that only a small fraction
of CREs controls cellular proliferation in treatment naive HDBC cells.

SIDP identifies de novo vulnerabilities in adapting cells

Endocrine therapies target disseminated micro-metastatic deposits by interfering with
oestrogen receptor activity, reducing the overall chance of relapse by half in patients
followed over 20 years 2642 This effect is largely unpredictable at a single patient
level'243 by virtue of endocrine therapies ability to induce a transient dormant state in
persister cells, a process mimicked in vitro by long-term oestrogen deprivation'?'3. We
have shown that bona fide coding drivers (i.e., ESR1 mutations) might not be the
actual cause triggering the exit from dormancy as they could emerge and be selected
for after awakening, owing to the increased mutational burden associated with
replication’?. We then reasoned that the activity of specific CREs might contribute to
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the adaptive process occurring during the transition from growth to dormancy
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Figure 2. Adaptation to treatment exposes hidden roles for the non-coding genome. (a)
Experimental design. (b) Bar plot showing the relative fraction of scoring sgRNAs and CREs bearing
scoring sgRNAs, upon perturbation of noncoding genome of oestrogen-deprived MCF7 cells via SIDP.
Scoring sgRNAs showing a significantly decreased frequency at 21 days post-infection are referred to
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as Exhausted, while those with a significantly higher frequency as Expanded. For the total numbers of
SgRNAs and CREs, refer to panel 1b. (c) Longitudinal tracking of non-targeting sgRNAs during
dormancy entrance (black dots highlight 7-, 14-, 21- and 60-days post-infection). (d) Longitudinal
tracking of individual non-targeting sgRNAs in four replicates demonstrate stochastic behaviour during
dormancy entrance (left panel) as opposed to consistent behaviour of sgRNAs targeting the CRE of
essential genes (right panel). (e) Box plots showing the log2-fold-change of both scoring (either blue or
yellow) and non-scoring (white) sgRNAs at 21 days post-infection in oestrogen-deprived MCF7 cells,
at 7, 14 and 21 days, as compared to the initial library. (f) Same as panel (b) but for endocrine-therapy
resistant cells derived from MCF7 (LTED). (g) Summary of the results for the sgRNAs targeting critical
CREs of the USP8 and TLR5 genes. (h) Ternary plots highlight the higher similarity between LTED and
MCF7 +E2 when considering the indicated sets of scoring sgRNAs (Expanded or Exhausted in LTED).
(j) Bubble plot highlighting the enrichment of distinct biological functions, when considering sets of
genes near CREs showing context-specific responses to perturbation.

To investigate this hypothesis, we performed SIDP in long-term oestrogen deprived
conditions (-E2), measuring gRNA frequencies at 7, 14, 21 and 60 days after infection
(Figure 2a). Analysis of CREs with multiple scoring sgRNAs shows that 10% of these
sgRNAs significantly expanded during this period (compared to 1.6% in SIDP +E2,
Figure 2b: Supplementary Tables 3 and 4). We interpret this increased representation
as a survival advantage emerging uniquely under stress. A significant proportion of
sgRNA overlaps between the two conditions and scoring CREs in -E2 were again
enriched for YY1 binding motifs, supporting a key role of this TF in the adaptive
process, in line with previously reported data '© (Supplementary Figure 4a). In a
synergistic lineage tracing study (TRADITIOM, see accompanying manuscript), we
show that entrance into dormancy is largely stochastic, with persister dormant
lineages selected by chance each time, leading to a significant divergence between
replicates '2. To test if this process also influences the readout of SIDP, we tracked
lineages leveraging the non-targeting sgRNAs (n = 501) for up to 60 days of hormone
deprivation (full dormancy '?). Surprisingly, 210/501 non-targeting sgRNAs (42%,
compared to 0.9% in SIDP +E2) showed apparent non-neutral expansion or
exhaustion at day 60 (Figure 2c). This behaviour is unpredictable as shown by the
evolution of individual non-targeting sgRNA in every replicate (two pools and two
replicates, Figure 2b) and by the overall divergent trajectories followed by the two
replicates as highlighted by dimensionality reduction (Supplementary Figure 2c). This
phenomenon progressively introduces stochastic deviations with time in otherwise
predictable perturbation (i.e., ESR1, Figure 2d; SOD1 and CCND1, Supplementary
Figure 3a)?2. These data indicate that the results of a typical CRISPR screen should
be taken with care and interpreted in light of these results.

Nevertheless, our data uncovered a small but significant set of CREs playing a
role in the early phases of dormancy entrance (31 CREs with multiple sgRNAs
showing a consistent pattern of expansion, Figure 2b). We then systematically
compared +E2 and -E2 screens to identify regions showing context-specific behaviour
(Supplementary Figure 2d and Supplementary Table 6). During dormancy entrance,
MCF7 appear to become independent of several metabolic dependencies, with CREs
associated with genes involved in translation, mitochondrial function, and other
metabolic processes switching from scoring to non-scoring (+E2>>-E2,
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Supplementary Figure 2d, e.g., MRPL58 and METTL17, Supplementary Figure 3b).
Conversely, a small set of sgRNAs is significantly exhausted exclusively in the -E2
condition, indicating de novo vulnerabilities emerging during hormone deprivation (-
E2>>+E2, Supplementary Figure 4e-f, e.g., USP8 and SYNV1, Figure 2g and
Supplementary Figure 6a). Importantly, the majority of sgRNAs expanding uniquely
under therapy showed pronounced enrichment near genes from a single pathway,
namely the Toll-receptor activation of the NF-kB pathway (FDR = 0.0049; odds ratio =
13.3; Figures 2e, g, j, Supplementary Figures 4b and Supplementary Table 6).
Perturbation of these CREs appeared sufficient to influence the stochastic process
controlling dormancy entrance (Supplementary Figures 4c and 5b).

Fully resistant clones emerge from a persister pool after extensive dormancy in
both patients and HDBC cell lines models 124546 Awakening clones exhibit extensive
epigenetic reprogramming 4546 suggesting that the growth of resistant cells might be
driven by a distinct set of CREs distinct from that driving the proliferation of the primary
tumour. To test this, we run SIDP in fully resistant long-term oestrogen deprived
(LTED) cells*®#7, which represent one fully awakened lineage that emerged from the
matched parental MCF74647 (Figure. 1a). In line with the results of the screens in +E2
and -E2 MCF7, only a minority of CREs appear to control LTED fitness (Figure 2f;
Supplementary Table 5). In stark contrast to proliferating MCF7, the exhausted
subgroup does not dominate the scoring sgRNA landscape in LTED (55% vs. 90%,
LTED vs. MCF7 +E2), suggesting that LTED have not yet fully adapted. Next, we
examined if LTED inherited at least part of the CREs activity acquired during dormancy
(Figure 2h). 80% of the dependencies acquired during dormancy appeared to be
inherited in LTED (i.e., USP8, Figure 2g-j and Supplementary Figure 7b). Conversely,
LTED fitness does not improve upon NF-kB suppression, suggesting that this
signalling pathway plays a critical but transient role during dormancy entrance and exit
(Figure 2g-j; i.e., MYD88 and TLR5, Supplementary Figure 7b). Overall, the
application of SIDP showed that a relatively small subset of CREs controls different
phases of the adaptive process during breast cancer evolution in vitro.

Targeted CRE perturbations accelerate or halt the adaptive processes

SIDP demonstrated that cells entering dormancy rapidly switch CREs usage to adapt
to treatment (Figure 2 and '?). However, the interpretation of the genomic data is
difficult due to the stochastic processes influencing individual lineages during
dormancy entrance (Figure 2c-d and '?). For instance, CREs loss of function
conferring fithess advantage under treatment (i.e., TLR/NF-kB) could be explained by
three alternative scenarios: increased plasticity (a larger subset of lineages become
persister), early awakening and clonal expansion!? or complete dormancy bypass
(Figure 3a). To test these hypotheses, we tracked the behaviour of cells carrying
individual sgRNAs (GFP-NLS) mixed with non-targeting controls during dormancy
entrance with live-cell imaging or FACS (Figure 3a).
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Figure 3: Targeted CRE perturbations accelerate or halt the adaptive processes (a) Overview of
the experiments. Cell carrying individual scoring probes were labelled with heritable GFP-NLS are
mixed 1:1 with cells carrying non-targeting sgRNA (built-in negative controls). Increased SIDP scores
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could be explained by three alternative models. (b-¢c) sgRNAs targeting MYD88 and TLR5 accelerate
awakening dynamics driving individual clones to early awakening. Green panels: absolute GFP+ count
(TLR5 and MYD88 sgRNAs). Blue panels: normalized ratios GFP/non GFP across time points. Pink
and purple lines highlight replicates with early awakening events. (d) Representative snapshots of the
competition between CRISPR-KRAB cells carrying MYD88 targeting sgRNA (green) vs. cells carrying
non-targeting sgRNA (blue) throughout dormancy entrance (30 days of continuous estrogen
deprivation) (e-f) Retrospective patient stratification based on RNA expression or CNVs for MYD88 and
TLR5. RFS=recurrence free survival. OS=overall survival. Log-rank p-values calculated with a Mantel-
Cox Test. (g) sgRNAs targeting USP8 specifically decrease adaptability to oestrogen deprivation.
Green panels: absolute GFP+ count (USP8 sgRNASs). Yellow panels: normalized ratios GFP/non GFP
across time points. (h) Representative snapshots of the competition between CRISPR-KRAB cells
carrying USP8 targeting sgRNA (green) vs. cells carrying non-targeting sgRNA 9 (blue) throughout
adaptation to estrogen deprivation (i) CRISPR-Cas9 knock-out of USP8. FACS sorting was used to
quantify green (USP8 sgRNAs carrying cells) and red (non-targeting sgRNAs). FACS analyses were
carried out at three specific time points.

To accommodate and quantify the underlying stochasticity of the process, all these
experiments were run in ten replicates in absence of cell passaging’?. Recruitment of
KRAB on CREs efficiently led to downregulation of all targets (Supplementary Figure
6a). Cells carrying sgRNAs targeting critical CREs of CCND1 disappear more rapidly
in both +E2 and -E2 conditions (Supplementary Figure 6b-c) while MYD88, TLRS and
USP8 targeting sgRNAs do not have any significant impact on the fitness of treatment
naive MCF7 (Supplementary Figure 6b). Conversely, perturbation of MYD88, TLR5
and USP8 gene expression showed a profound effect under oestrogen-deprived
conditions. Cells carrying sgRNAs targeting TLRS or MYD88 showed an accelerated
stochastic awakening, with some clones engaging in rapid expansion in days 2 (Figure
3b-d). In one case (MYD88 sgRNA #2, pink, Figure 3c), cells showed a behaviour
compatible with acquired increased plasticity, given the observed increase in the
relative frequency of GFP+ cells in the absence of active cycling. We next stratified
independent retrospective cohorts containing only Al-treated patients for MYD88 and
TLR5 expression and found that tumours with low pre-treatment expression relapse
significantly earlier (HR = 4.42 and 4, p-value = 0.009 and 0.015, MTD88 and TLR5
respectively, Log-Rank Mantel-Cox test), in agreement with early awakening (Figure
3f). While MYD88 and TLR5 gene deletions are rare, patients characterized by them
also show shorter responses to endocrine treatment (Figure 3f). In summary, these
data demonstrate that therapy-induced activation of innate immune signalling plays a
central role in entrance and exit from dormancy. In line with this, we find significant
evidence that cell-intrinsic activation of this pathway is triggered during active
dormancy and suppressed at awakening in single lineages adapting to therapy2.
Furthermore, cell-intrinsic activation of innate immune signalling is significantly
associated with patients with residual disease after neo-adjuvant therapy“®,
suggesting a critical but unexpected association between innate immunity, dormancy
and persister cells.

Next, we investigated USP8 as our top de novo vulnerability among the SIDP hit
(Figure 2g and Supplementary Figure 4a). Cells carrying USP8 sgRNA do not have
any disadvantage in treatment-naive conditions (Supplementary Figure 9b) while they
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fail to adapt to -E2 conditions between day 7-30, leading to almost complete
eradication (Figure 3g-h). Repeating the long-term competition experiment using a
genetic CRISPR-Cas9 system to knock-out the USP8 gene further confirms its vital
role in adaptation to endocrine therapies (Fig. 3j). Overall, these data demonstrate that
adaptation requires a rapid switch to alternative CREs. Our data show that these
emergent phenotypes can be exploited to disrupt or accelerate HDBC cells adaptation
to treatment. /n vitro, these transitions are not the results of Darwinian selection of pre-
existent epigenetic clones but are rather induced and become heritable through
therapy-induced dormancy 01213,

SIDV identify patterns of CRE mutations in longitudinal cohorts

SIDP is designed to model CRE loss of function via heritable epigenetic repression of
CRE activity (KRAB-mediated heterochromatin formation 4°). Somatic genomic
alterations can also strongly influence the activity of individual CREs as well as
chromosomal architecture3**°. We reasoned that high-depth genomic sequencing of
SID CREs in matched pre-treatment and relapsed samples might shed some insight
on the role of the non-coding genome during tumour evolution (Figure 4a). For this
purpose, we developed SID variants (SIDV, see Methods) and profiled 300 matched
samples (normal, primary and relapse biopsies). All patients received either adjuvant
Tamoxifen (a selective oestrogen receptor modulator) or Aromatase Inhibitors (Figure
4a and Supplementary Table 7). The median age of diagnosis was 46 for TAM and 58
for Al. Grade and Ki67 status of the primary lesions were similar between cohorts,
Figure 4b, Supplementary Figures 7b, e-f and Supplementary Table 7 for the full
clinical information). For 58 patients we could also co-profile variants in protein-coding
regions, which identified de novo drivers of treatment failure (by comparing primary
vs. matched relapse) at frequencies comparable to previous studies (i.e. ESR1
mutations?7%1, Figure 4c). Using a highly stringent computational pipeline (see
Methods and Supplementary Figure 7a), we identified a total of 3576 SNVs and 2,330
INDELSs across the cohort, with a median coverage of 117X (Supplementary Table 8).
Relapsed samples covered a wide spectrum of anatomic sites and despite showing
comparable purity to matched primaries (p-value = 0.088), show significantly less
genomic alterations (paired two-tailed t-test, p-value = 0.0007), potentially indicating
decreased genetic intra-tumour heterogeneity due to the bottleneck induced by
metastatic seeding (Supplementary Figures 7b-c and 8 a-c). The mutational burden
from SIDV regions is highly consistent with previous WGS (Supplementary Figure 7d).
Interestingly, the mutational burden is higher in tumours showing high Ki67 and lower
in those positive for the progesterone receptor (Supplementary Figure 7e-f). Therapy
choice (Al vs TAM) did not seem to impact the number of SNVs at relapse (p-value =
0.21; Mann-Whitney Test; Supplementary Figure 8d). We then extended and
integrated several machine learning approaches to prioritize the identified 5,524 SNVs
and short INDELs based on their predicted effect on TF-binding®?, chromatin state®?,
accessibility>*, and splicing®® using only models derived from relevant, HDBC-specific
genome-wide measurements (Supplementary Figure 7a and Methods). A model-
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1  specific p-value for each prediction was derived either using permutation-based
2 approaches or by generating a null distribution from the non-coding alterations across
3 all cancer types available in COSMIC *¢ (see Extended Methods for details).
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Figure 4. Non-coding variants contribute to heritable transcriptional changes during tumour
progression. (a) Schematic showing the rationale and implementation of SIDV. (b) Overview of the
clinical cohorts and the associated features. (c) Matched targeted coding profiling identified recurrently
mutated (point mutations and indels) genes acquired in metastatic samples. The heat map is showing,
for each patient and mutated genes, the type of lesions detected, and the fraction of lesions showing
an alteration in each gene (left). (d) Pathogenic classification of non-coding variants identified by SIDV.
(e-f) Functional characterization of SIDV calls as compared to the entire COSMIC catalogue. (g)
Scatterplot summarising the potential of the profiled SIDV variants to alter transcription factor binding.
Each dot represents a TF. TFs are sorted based on their propensity to either increase (top panel) or
decrease (lower panel) the affinity to each TF. Values significantly larger than zero indicate a propensity
to alter the binding that is higher than expected by chance. Those significantly smaller instead indicate
a depletion of variants potentially altering the affinity for a given TF. P-values estimated via Chi-squared
Test. (h) Integration of SIDV and SIDP identify critical regulators of HDBC biology. SIDP scores and
SIDV calls at the indicated loci are shown (IGV genome browser). (j) Bar plot showing enrichment of
SIDV-identified alterations at sets of regions showing condition-specific patterns upon perturbation
(SIDP). P-values estimated via Chi-squared Test. (k) Kaplan-Meier plot showing that genes near CREs
with an excess of SIDV mutations and overlapping sgRNAs expanded upon oestrogen deprivation (-
E2) are associated with prognostic expression levels (HR= 1.85, p-value = 0.01; Log-rank Test).

We predict that ~up to 30% of SIDV calls might have a functional impact on chromatin
(Figure 4d). The Disease Impact Score (as predicted by DeepSEA®’) of called SIDV
variants showed significantly higher values than non-coding variants across different
cancer types in COSMIC (p-value < 1e-16; KS test) (Figure 4e). We also observe
enrichment for SNVs with a negative impact on chromatin accessibility (as predicted
by Sasquatch®*; Figure 4f). Variants predicted to exert pathogenic impact on splicing
appeared to be under negative selection (our set: 2.28% vs Expected: 4.71%, p-value
= 9.4e-15, Chi-squared Test). We then focused on those alterations with predicted
impact on HDBC-specific TF-binding (as predicted by deltaSVM52; see Supplementary
Table 13 for the complete information about the TFs considered). Our data show that
SNVs potentially altering the binding of several critical HDBC TFs are less frequent
than expected (i.e., GATA3, PBX1 Figure 4g and Supplementary Table 12) with the
notable exception of SNVs increasing the binding affinity of the HDBC cancer driver
RUNX1 or decreasing SREBP1 binding. Interestingly, SNVs with predicted activity
(increased or decreased) against ERa binding sites do not appear to be under any
selective pressure, supporting the notion that most ESR1-bound CREs are not
functionally significant'®2'28, These data suggest that there is an overall negative
selection on the binding sites of key TFs. However, when comparing the HDBC-
specific alterations we identified to those reported across different cancer types
(COSMIC), a residual enrichment for functional alterations was spotted (Figure 4e).
Degeneration and redundancy in the genetic grammar governing cis-regulatory
element activity have strongly limited our ability to spot recurrent non-coding
mutations®8. Nevertheless, we hypothesized that by integrating the results from SIDV
and SIDP we could gain more specific insights into the role of non-coding genetic
alterations in HDBC (see Extended Methods). Using a lenient threshold (n >= 2; p-
value <= 0.05; binomial test), 63 SIDP CREs showed a significant excess of functional
alterations (Supplementary Table 10). These included one CRE falling in a cluster of
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CTCF binding sites within the UNC93B1 gene, which is part of the genes of the Toll
Receptor Cascade whose down-regulation leads to an advantage in -E2 (Figure 2j).
Interestingly, both UNC93B1-associated SNVs are predicted to alter splicing while
sgRNAs targeting this CRE or UNC93B1 promoter are significantly expanded in either
-E2 or LTED screens (but not in +E2 conditions, Figure 4h). Other regions showing
both excesses of mutations and SIDP significant scores include CREs near FOXA1,
a critical TF involved in many aspects of HDBC biology 2" (Figure 4h). Furthermore,
collapsing the predicted functional mutations at the level of pathways identified an
interesting set of biological processes, suggesting that non-coding variants might
contribute to promoting cancer evolution by suppressing differentiation and G1 arrest
(Supplementary Table 10). Finally, we observed a significant overlap between SIDV
mutations predicted as potentially pathogenic and SIDP, but only when considering
CREs bearing expanding sgRNAs under -E2 condition or in LTED cells, suggesting
that mutations in these CREs have the potential of conferring a heritable fitness
advantage to cells under treatment (Figure 4j and Supplementary Table 10). Mutations
found in these CREs tend to show a slight increase in cancer cell fraction in matched
metastatic deposits (p-value = 0.08; paired samples Wilcoxon Test). Low expression
of genes associated with these CREs is associated with poorer prognosis in HDBC
(Figure 4k; HR= 1.85, p-value = 0.01; Log-rank test). This suggests that cells losing
the expression of the target genes due to loss of function of the corresponding CREs
might have increased fitness under the selective pressure imposed by endocrine
therapies. In support of this, 4/6 of the SNVs in this set show higher cancer cell fraction
in matched metastatic samples (p-value = 0.03; Chi-squared Test with Yates’
Correction). Taken together, our results demonstrate that nongenetic and genetic
mechanisms targeting CREs significantly contribute to tumour evolution by altering the
length of therapy-induced dormancy.

Discussion

The role of the non-coding genome in cancer has been under intense debate 395960,
In this work we have a) established a hormone-dependent breast cancer-specific
cistrome'?; b) systematically perturbed it via targeted epigenetic repression, and c)
profiled a large set of somatic alterations accumulated at these regions during tumour
evolution. We ran three large-scale perturbation screens against the critical portion of
the HDBC non-coding at an unprecedented depth and resolution. We also leveraged
a unique patient cohort to profile non-coding genetic alterations longitudinally and at
high coverage. Finally, we applied machine learning approaches to systematically
dissect the functional consequences of these variants on regulatory potential.
Systematic integration of these experimental and computational strategies led to the
conclusion that while CREs do not display the strong signature associated with coding
drivers, changes in the context-specific regulatory activity of a defined set of CREs
plays a crucial role during therapy-induced dormancy. Our results stand out
considering the stochastic processes dominating dormancy entrance and exit (see
companion manuscript'?). For example, our SIDP screens strongly suggest that
signalling converging on NF-kB activation plays a central role in maintaining long-term
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dormancy. This prediction is corroborated by our transcriptional tracking of single
lineages, which shows NF-kB activity being induced in dormant cells but reversed in
awakened lineages (see companion manuscript). Of note, mutations on CREs
associated with NF-kB regulation are surprisingly infrequent considering the potential
benefit to cancer cells under Al pressure (Figure 3g), suggesting that transcriptional
switches are the preferred route to adaptation for HDBC cells, possibly because of
their reversible nature. In agreement, we could not identify recurrent genetic
mechanisms leading to awakening (see companion manuscript). While profiling
primary and secondary lesions as an evolutionary endpoint did not reveal many
additional therapeutic entry points, transient dormancy might offer an attractive and
unexplored stage with potentially actionable transient dependencies. As a proof of
concept, we indeed show that targeting USP8 can actively eradicate HDBC once they
commit to dormancy. As such, we anticipate that our results will also have critical
relevance for the design of future screens that will help expand our knowledge on the
regulatory networks underlying therapy-induced dormancy, which we propose as the
critical targetable bottleneck in the adaptive journey of breast cancer cells.
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Material and Methods

SID panel design. Previous epigenomic annotation of primary and metastatic luminal
breast cancer tissues led to the identification of 326,729 putative enhancer regions "°.
Most of these regions were private or poorly shared amongst individual tumours.
However, an overall correlation between the activity of an enhancer in an individual
tumour (low ranking index, or RI) and the pervasiveness of its activity across tumours
(high sharing index, or Sl) was observed. Thus, putative enhancer regions for the
panel were biased for those showing a low RI. Starting from the ~326K regions
mentioned above, we first excluded all the private enhancers (RI>=80). 19,482
enhancers were retained and evaluated in terms of their delta of activity between
primary and metastatic tumours. The average Rl of each enhancer in the primary and
metastatic cohorts was calculated (termed RI_Prim and RI_Met, respectively). These
two numbers were then used to calculate a region-specific log2(Rl_Met/RI_Prim).
Putative enhancers showing either higher enrichment in the primary or metastatic
samples were selected (regions with Rl <=50 in both primary and metastatic, and
either in the top positive or negative log2(Rl_Met/RI_Prim)). This resulted in 8.05 Mbps
covering regions with higher Rl in the metastatic samples and 3.7 Mbps showing
higher Rl in the primary samples. Finally, 2.5 Mbps was assigned to private enhancers
being clonal in only 1 or 2 samples. As an internal control, 800 putative enhancer
regions were randomly selected among those showing extremely low sharing (S1==1)
and ranking (RI==100) index. To reduce the required coverage and to increase the
enrichment for potentially functional regulatory regions, DNase-| accessible regions
available in ENCODE 8" were then used to restrict the area of investigation to the sub-
regions within the selected putative regulatory regions. These are more likely to
represent clusters of TF-binding sites. To this aim, the regions resulting from the
analysis described above were intersected with the DHS from HoneyBadger2
(https://personal.broadinstitute.org/meuleman/reg2map/), which effectively lowered
the coverage to ~9 Mbps. Based on an initial iteration of the capturing strategy, these
9 Mbps were further reduced to about 7, by excluding those regions with either a very
low or an extremely high coverage. This resulted into a higher and more even
coverage on the majority of the targeted elements Putative insulator regions were
selected through a meta-analysis of previously published human ChlP-seq profiles,
namely 161 for CTCF (in 89 cell lines or primary cells), 46 for subunits of cohesin (8
targetings SMC3 and 38 targeting RAD21, corresponding to multiple profiles across 5
and 11 cell lines or primary cells, respectively for SMC3 and RAD21) and 8 for ZNF143
(in 4 cell lines or primary cells). ZNF143 has been shown to bind together with CTCF
and cohesin and to be specifically enriched at domain boundaries 2. Briefly, to identify
the strongest, most conserved insulator sites in the human genome, site-specific
scoring and spatial clustering of CTCF, cohesin and ZNF143 binding across different
cell types were calculated and combined. First, consistently derived, enriched regions
from ENCODE datasets ' were downloaded from the UCSC genome browser on July
16%", 2016 (Table S1). ChIP-seqs for the same protein in the same cell line (or primary
cells) were considered as replicates. Narrow peaks from replicates were merged. The
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union of the peaks was then computed, and each peak was re-annotated to the sum
of the corresponding -log10(p-value) of the overlapping peaks across replicates. To
compare the binding profiles across cell types, the obtained scores were converted to
percentiles. Given a cell type, percentiles from overlapping CTCF, cohesin and
ZNF143 peaks were then summed, resulting in site-specific scores. Separately for
each cell type, nearby CTCF-bound regions were then clustered together if found
within 10 Kbp from each other. Given each cluster, site-specific scores for each
constituent region were combined, first for each cell type, and eventually across all the
cell types considered, obtaining an overall score for each cluster. For the final design,
the clusters were sorted according to this score, and starting from the highest-scoring
cluster, the top clusters covering 3 Mbp of the genome were considered. This way,
>95% of previously annotated TAD boundaries®® were covered by one or more
clusters (keeping in mind the resolution limit of the corresponding HiC datasets,
namely 40 Kbp). Promoter regions were selected according to the following strategy.
Genes that are either annotated as ER-alpha targets (from the MSigDB Hallmark
datasets; PMID: 26771021), found in the PAM50 signature (PMID: 19204204) or being
annotated as cancer genes (Network of Cancer Genes version 6.0; PMID: 30606230)
while showing an FPKM >= 50 in bulk-RNA-seq data from either LTED, TamR or FulvR
resistant cell lines*®, were considered. From this initial list, genes annotated as
housekeeping %4were excluded. Promoter regions ([-750, +250] from annotated
transcriptional start sites) were derived from the refGene table of the UCSC genome
browser on December 13", 2018. Within these regions, only those DNA stretches
overlapping DHS (as described above for the putative enhancer regions) were
retained. Regions of low mappability along with those mapping to either chromosome
Y or the mitochondrial chromosome, as well as those overlapping segmental
duplications, were excluded from the design. Regions of unique mappability were
defined according to the UCSC genome browser track k50.Unique.Mappability.bb in
the Hoffman Mappability collection. After performing an initial, small set of captures,
the overall design was further improved by excluding the top and bottom 1% regions.
The top 1% regions were responsible for ~21% of the signal, and the bottom 1% for
just ~0.03% of the signal. Omission of these regions resulted in a more uniform
coverage.

SIDP screens

Two oligo pools for the SIDP library (n=67839 and 69569 oligos respectively, see
design information below) were synthesized by Twist Bioscience. Each 60 bp ssDNA
oligos contained a 20 bp sgRNA sequence flanked by these sequences 5'-
gccatccagaagacttaccg-3’ and 5'-gtttccgtctticacgactge-3’ used for PCR amplification
and Bbsl restriction enzyme-mediated cloning. The oligo pools were cloned into a
modified pLKO-TET-ON plasmid by the Golden Gate method and the resulting product
was used to transform Endura electrocompetent cells (Lucigen) according to the
manufacturer’s protocol. The transformation efficiency was =500 fold higher than the
SIDP library size and complete and even oligos representation was confirmed by NGS.
Large scale preps of bacteria cultures containing the sgRNA plasmid library were
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harvested using the Genopure plasmid maxi kit (Roche). SIDP library was packaged
in lentiviral particles by large scale co-transfection of HEK293T cells with CELLECTA
ready-to-use packaging plasmid (Cellecta — cat.no CPCP-K2A) using TRANSIT-LT1
transfection reagent (Mirus biologicals — cat. no. MIR 2300) according to manufacturer
guidelines.

MCF7 and LTED cells were engineered to stably express dCas9-KRAB by lentiviral
transduction and selected using 10ug/ml blasticidin (Invitrogen) and initially
maintained in EMEM (Amimed #1-31S01-l), 10% FBS (Seradigm #1500-500,
Lot:077B15), 2mM Glut., 1mM Na Pyr., 10mM HEPES, 1% P/S. Homogeneous
dCas9-KRAB expression was confirmed by intracellular staining using Cas9 antibody
(Cell Signaling Cat-14697) according to the manufacturer’s protocol.
MCF7-dCas9-KRAB and LTED-dCas9-KRAB cells were then infected with SIDP
lentiviral particles at low MOI (=0.3) in two independent replicates. We transduced
=1000 cells per plasmid present in the library to guarantee a good representation of
all sgRNAs in the population of cells under screening. The cells were selected using
2ug/ml puromycin (Invitrogen) starting at 24 hours post-transduction and maintained
in culture in CellStacks (Corning) in the described conditions and for the indicated time
points. Cells were then harvested and gDNA isolated using the QlAamp DNA maxi kit
(QIAGEN). Amplicons containing the sgRNA sequences were amplified using
NEBNext High-Fidelity (NEB) and their representation was analyzed by next-
generation sequencing (HiSeq2500, lllumina). During SIDP, for RM condition (full
growth media +oestrogen) MCF7-dcas9-KRAB were maintained in DMEM (Gibco
#11885-084) supplemented with 10% FBS (Seradigm #1500-500, Lot:077B15), 10mM
HEPES, 1mM Sodium-Pyruvate, 1% P/S. For WM (oestrogen-deprived media)
MCF7-dcas9-KRAB and LTED were maintained in Phenol-free DMEM (Gibco #11880-
028) supplemented with 10% Fetal Bovine Serum, charcoal-stripped, USDA-approved
regions (Gibco #12676029), 2mM L-Glutamine, 10mM HEPES, 1mM Sodium-
Pyruvate, 1% P/S.

Flow cytometry-based cell competition assays

MCF7-dcas9KRAB were infected with a modified pLKO-TET-ON lentiviral vector to
deliver constitutively expressed sgRNAs in the target cells. Cells transduced with
targeting sgRNAs (expressing mCherry) or non-targeting sgRNAs (expressing GFP)
were mixed (ratio 2:1 mCherry: GFP) and maintained in culture as described above.
At each time point, cells were harvested and analyzed by flow cytometry using
CitoFLEX S (Beckman Coulter). We recorded at a minimum of 2,000 single-cells for
each condition and the results were analyzed by FlowJo.

Incucyte-based competition assays

MCF7-dcas9-KRAB cells were engineered by lentiviral transduction containing a
vector expressing NLS-eGFP (kindly provided by Dr Chun Fui Lai, Imperial College
London). Transduction efficiency was evaluated with EVOS XL Core Imaging System
microscope (Thermo Fisher — AMEX100), and a population of bright GFP-positive
cells was obtained by Fluorescence-Activated Cell Sorting (FACS). Sorting was
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performed by the Flow Cytometry facility at MRC London Institute of Medical Sciences.
MCF7-NLS-eGFP-dCAS9KRAB were then transduced with lentiviral particles
containing plasmids expressing individual sgRNAs and selected with Puromycin
(Sigma-Aldrich cat no. P8833). For each gene of interest, 150 eGFP positive (targeting
sgRNA) and 150 transparent (NTC-sgRNA) MCF7-dcas-9KRAB cells were seeded
per well in a 96 wells ImageLock plate (Sartorius — cat no 4379) both in the presence
and absence of oestradiol (Complete medium with 10% FCS +/- 17- Oestradiol 1x10-
8 M (Sigma Aldrich — cat no E-060)) in parallel, for a total of ten replicates per
condition. The plate was routinely media changed and imaged daily with Incucyte
(Incucyte ZOOM - Sartorius) using a Dual Color 10X 1.22um/pixel Nikon Air Objective
(Sartorius cat no 4464). (Green filter: Ex 440/480 nm, Em 504/544nm). The IncuCyte
ZOOM Live-cell analysis system software was used to perform automated cell imaging
over time and to calculate cell-by-cell segmentation employing a manually adjusted
segmentation mask used to train the images taken at each time point. The total
percentage of confluency and the total GFP positive area percentage were
automatically registered by the software and used to calculate the ratio between the
two parameters normalized to day 0, to highlight an increase (> 1: fitness) or a
decrease (< 1:vulnerability) in the trend of GFP-targeting representation over the non-
targeting one. Numbers of green nuclei were also automatically counted by the
software to obtain the GFP+ only cell count.

qPCR analysis

RNA was extracted from dcas9-KRAB-MCF?7 cells transduced with targeting and non-
targeting sgRNA (Qiagen, cat no. 74016). RNA was retrotranscribed using iScript
(BioRad, cat no. 1708891). Quantitative PCR was performed with QuantStudio3 Real-
Time PCR instrument (Applied Biosystems, cat.no A28567) using an SYBR-green
PCR master mix reporter (Applied Biosystems, cat no. 4309155) and the following
primers, designed around the promoter of the repressed genes. USP8 fwd:
GGGTCTTGGGCCCTAGCA, rvrs: CAGAGCTTGTCTCCGGGGTA - MYDS88
fwd:CTGCTCTCAACATGCGAGTG,rvs: CAGTTGCCGGATCTCCAAGT — TLRS5 fwd:
GCGCGAGTTGGACATAGACT, rvrs: GAGGTTTTCAGGAGCCCGAGQG).

Tissue Specimens. Longitudinal Formalin-Fixed Paraffin-Embedded (FFPE) HDBC
samples were retrospectively collected from 100 patients. 61 patients were collected
from Professor Giancarlo Pruneri at The European Institute for Oncology, Milan.
Samples from 26 patients were collected from Professor Andrea Rocca at The Cancer
Institute of Romagna, Meldola. The remaining 14 patient samples were collected from
Professor Maria Vittoria Dieci at The Institute of Oncology Padova. The material was
collected in the form of 10 pym slices. Detailed clinical notes were provided for each
patient including age at diagnosis, Tumour grade, Percentage of ER-positive cells,
Percentage of PR positive cells, Percentage of Ki-67 high cells, Percentage of HER2
positive cells, Years until relapse, Metastatic site, Type of Chemotherapy, Type of
hormonal therapy. A full summary of the clinical data can be found in Supplementary
material 3.
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Sample Preparation Workflow Extraction. DNA was extracted from 10 micro-meter
slices using the Qiagen GeneRead DNA FFPE extraction kit (Qiagen, Catalogue no.
180134) which includes a Uracil N Glycosylase enzyme treatment to reduce FFPE
artefacts. DNA quality and quantity were assessed using an Agilent Tapestation 2200
using the Genomic DNA screentape and reagents (Agilent, Catalogue no. 5067-5365
and 5067-5366). Samples were sonicated custom number of cycles to achieve
fragments of uniform length. Post-sonication samples were quality controlled using the
Tapestation 2200 instrument with a threshold set for samples to have at least 60% of
fragments between 100-500bp to proceed with processing. DNA underwent a second
treatment with NEBNext FFPE DNA Repair Mix (NEB, Catalogue no. M6630) to further
reduce FFPE artefacts.

Library Preparation and capture. DNA libraries were prepared from 30 ng — 1 ug of
DNA using the NEBNext Ultra 2 DNA library kit for lllumina sequencing. Unique dual
8bp indexes were used for each sample (A gift from Paolo Piazza of the Imperial
British Research Council Genomics Facility). DNA libraries from 15 samples were
pooled and captured with the SID-V capture probes produced by Twist Biosciences
(ratio of 1.5 ug DNA libraries, 100 ng each, to 800 ng of capture probes). Non-captured
DNA was recovered using SPRI size selection beads to be used for a secondary
capture. Post-capture amplification was performed using the KAPA HiFi Hot Start PCR
ReadyMix Kit (KAPA Biosystems, Catalogue no. KK2601). Post-capture amplified
libraries were quality controlled and quantified using a Tapestation 2200 with the High
Sensitivity reagents.

Sequencing. The initial 40 patients were sequenced on an lllumina HiSeq 4000
Instrument (Standard mode, 2 x 150bp). After sequencing the initial 40 patients,
sequencing was then performed by Novogene on an lllumina NovaSeq 6000 using 2
x 150bp chemistry. An average of 176 million reads per sample was achieved.

Raw data processing of the captured DNA. First, paired-end reads from each
sample were trimmed for adapter sequences and based on quality using Trim-galore
(version 0.6.4; htip://www.biocinformatics.babraham.ac.uk/projects/trim _galore/) in --paired
mode. Alignment to the hg38 genome was then performed using bwa mem (version
0.7.15; nhttps:/arxiv.org/abs/1303.3997) using default parameters. The hg38 reference
genome along with the corresponding annotation and known variant files mentioned
in this and the following paragraphs were part of the Broad Institute Bundle, as per
download from the Broad FTP on February 5", 2018. Sambamba (version 0.7.1;
PMID: 25697820) was then used to convert the resulting SAM to a BAM file (using
sambamba view -S -h -F "not unmapped" -f bam). Sambamba sort and index were
then used for sorting and indexing the resulting BAM file. The markdup function from
Sambamba was used to mark potential PCR duplicates. Recalibration of base quality
scores was performed using GATK4 (version 4.1.3.0; %%). The BaseRecalibrator
function was run (providing dbSNP version 146 via the parameter --known-sites)
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followed by ApplyBQSR. The resulting BAM file with recalibrated scores was indexed
using Sambamba. Final metrics for each sample were computed using the
CollectHsMetrics function of the Picard tools (version 2.20.6;
http://broadinstitute.github.io/picard/).

Mutational calling pipeline. To robustly identify SNVs and short INDELSs, a pipeline
deriving a consensus between three independent tools (Mutect2, Platypus and
Strelka) was deployed. Mutect2 (part of GATK4 version 4.1.3.0;%¢) was run individually
on each primary and metastatic sample using the matched normal as reference. The
-L option was used to specify the targeted regions. The file af-only-
gnomad.hg38.vcf.gz acted as the source of germline variants with estimated allele
frequency (as specified via the --germline-resource option). Parameters --af-of-alleles-
not-in-resource 0.001, --disable-read-filter
MateOnSameContigOrNoMappedMateReadFilter and --fir2-tar-gz  were also
specified. The output from running the --f1r2-tar-gz option was then used to learn an
orientation biased model (separately for each sample), leveraging the
LearnReadOrientationModel function of GATK4. This allows estimating the
substitution errors occurring as a result of damage induced by FFPE, by identifying
residues showing a significant bias of substitutions on a single strand. The resulting
model was then fed into the FilterMutectCalls function of GATK4 so that potentially
affected residues can be flagged for subsequent filtering (see below).

Platypus (version 0.8.1.2;%7) was run on each patient, jointly considering the normal
as well the primary and metastatic profiles. The union of the variants called by Mutect2
separately on the primary and metastatic sample (see above) was used as prior (--
source option). Option --minReads was set to 4.

Strelka (version 2.9.10; %8) was run independently for each primary and metastatic
sample using the matched normal as a reference, with default parameters. While both
Mutect2 and Platypus jointly identify SNVs and INDELs, Strelka relies on Manta
(version 1.6.0; °) for the detection of INDELs. Manta was run first, and the resulting
list of candidate INDELs was then provided to Strelka via the --indelCandidates option.
Considering the resulting lists of SNVs and INDELs, both common and tool-specific
filters were applied to the lists generated by the different tools. General filters included:

e A minimum depth of 20 reads was applied to both normal and tumour samples.

e A minimum alternate allele coverage of 2 reads.

e Exclusion of variant overlapping known SNPs (dbSNP version 146).

Tool-specific filters were set as follows:

e Mutect2: after running FilterMutectCalls (GATK4) which also considered FFPE
artefacts as estimated by the orientation bias model, only those variants
marked as PASS were retained.

e Platypus: all variants flagged by the tool were discarded, except those marked
as PASS or including just one or more of the following flags: badReads,
HapScore, alleleBias.

e Strelka: only variants marked as PASS were kept for further analyses.
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e Of the resulting filtered variants, only those SNVs or short INDELs that were
consistently identified by at least 2 out of 3 calling algorithms, very retained for
further investigation.

Copy number calling pipeline. CNVKit (version 0.9.7; 7°) was run in batch mode on
the tumour bam files, using all normal bam files of each capturing-sequencing batch
as input for the option --normal. SIDV3 intervals were specified under option --targets.
The reference genome used for mutational calling was employed (Broad Bundle).

Purity and Cancer Cell Fraction estimation. To estimate the Cancer Cell Fraction
(CCF) of each SNV, only SNVs with an estimated copy number of 2 were considered.
Separately for each sample, the SNVs fulfilling this criterion were hierarchically
clustered based on their VAF (using Euclidean distance and complete linkage). The
dendrogram was then cut at a fixed height of 0.15, and the cluster with the larger mean
VAF was identified. This mean VAF was then used to estimate the purity of the sample:
purity = VAFmean * 2. The CCF of each variant was then calculated starting from its
VAF and the estimated purity for the sample, using the following formula: CCF = VAF
*(2* (1 - purity) + CNA_TOT * purity) / (CNA_MUT * purity) "'. While CNA_TOT was
known (2, see above), each variant was assumed to be heterozygous, with CNA_MUT
settobe 17,

Data collection and pre-processing to train the deltaSVM models. A manually
curated list of previously published, high-quality human ChlP-seq datasets from
luminal breast cancer cell lines was compiled. Only those having a high-quality model
(position weight matrix or PWM) describing their binding preferences were considered.
The reason behind this choice is that knowing the binding preferences was a
prerequisite to generate well-controlled negative sets for the deltaSVM models. Briefly,
each PWM was used for genome-wide predictions of binding sites specific for each
TF, to then derive a positive (predicted TF-binding site showing a ChlP-seq peak) and
a negative (predicted TF-binding site, that could be in principle be contacted by the
TF, but without a ChlP-seq peak) training set. This selection resulted in 72 ChIP-seq,
corresponding to 43 transcription factors (Table S2). Peaks in BED format were
downloaded from the Gene Expression Omnibus (GEO;"?). Regions in hg18 or hg19
coordinates were converted to hg38 using liftOver’3, and then filtered against the
ENCODE blacklists’ using BEDTools 7°.

Predicting the functional effects of the identified variant. Available, pre-computed
genome-wide predictions were used to assess the impact of somatic variants on
chromatin accessibility (Sasquatch;>4), mRNA splicing (Splicing Clinically Applicable
Pathogenicity prediction or S-CAP;*®) and protein-coding sequence (Cancer Genome
Interpreter or CGI;’®). Available models based on deep learning (DeepSEA;%") were
used to compute the overall disease impact score of each variant. Support vector
machines (SVMs) were instead trained to predict the impact of somatic variants on the
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binding affinity of luminal breast cancer-relevant TFs. For each one of the different
functional categories, the predictions were obtained as follows:

Chromatin  Accessibility: The Sasquatch R package version 0.1
(https://github.com/Hughes-Genome-Group/sasquatch) was used to assess
the impact of the identified somatic variants using the available model pre-
trained with ENCODE_DUKE_MCF7_merged DNase-seq dataset. Briefly,
hg38 coordinates were converted to hg19 using liftOver 3. Analysis of multiple
reference-alternative alleles pairs was then performed using the RefVarBatch
wrapper, using DNase as fragmentation type: (frag. type = “DNase”) and human
as propensity source (pnorm.tag = “h_ery 1”). Empirical p-values were
estimated separately for observing a predicted increase or decrease in
accessibility. A null distribution was derived from the COSMIC non-coding
database %5, which contains millions of variants from different cancer types.
Version 92 (08.2020) was downloaded as a flat file on October 12", 2020.
Sasquatch was run on the entire set of variants, but only those overlapping with
the SIDV3 intervals were retained to compute the null.

mRNA splicing: Full S-CAP predictions (scap_COMBINED v1.0.vcf) were
downloaded from http://bejerano.stanford.edu/scap/ on August 27", 2019. A
custom Python script was prepared to annotate the somatic variants with these
predictions.

Protein-coding sequence: The list of candidate somatic mutations was
submitted to the CGI webserver on December 15, 2020
(https://www.cancergenomeinterpreter.org/). Also, in this case, hg38
coordinates were converted to hg19 using liftOver 73,

Disease impact score: models from DeepSEA version 3 were used to estimate
this. Hg38 coordinates were converted to hg19 using liftOver’® and a
corresponding null distribution leveraging COSMIC was computed as described
above for chromatin accessibility.

TF-binding affinity: deltaSVM?®? was used to predict significant effects of a
somatic variant in decreasing on increasing the affinity of the region for a given
TF. First of all, for each considered PWM (Table S2) a genome-wide map of
the high-affinity sites in the human genome (hg38) was predicted using FIMO
7. FIMO was run with the following parameters: --thresh 1e-4 --no-qvalue --
max-stored-scores 10000000, separately for each motif. Regions of unique
mappability (as defined according to the UCSC genome browser track
k50.Unique.Mappability.bb in the hoffmanMappability collection) were defined
using BEDTools’®, and only those were retained for the next steps. This
information was coupled to the corresponding TF-ChIP-seq, to derive a positive
(predicted TF-binding site showing a ChIP-seq peak) and a negative (predicted
TF-binding site, that could be in principle be contacted by the TF, but without a
ChlP-seq peak) training set. Each region in these two sets was defined as the
100 bps of genomic DNA centred on the predicted, high-affinity site. The actual
training set used were randomly subsampled versions of these two sets (n =

23


https://doi.org/10.1101/2022.02.15.480537
http://creativecommons.org/licenses/by-nc-nd/4.0/

O 00 3 N D A W N =

I e T e e e
N N L AW = O

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.15.480537; this version posted February 18, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

10,000). Training of the support vector machine (SVM) discriminating the
positive from the negative examples was performed by running gkmsvm_kernel
(with option -d set to 3) followed by gkmsvm_train. After that, gkmsvm_classify
was used to generate a weighted list of all possible 10-mers, where each 10-
mer is assigned a SVM weight corresponding to its contribution to the
prediction. With this list of weights, it was possible to predict (using the script
deltasvm.pl) the impact of any sequence variant on the regulatory activity of a
given region. One limitation of this approach when comparing models
generated with very different data (like in this case for different TFs) is to define
model-specific thresholds. To overcome this, the set of genomic regions under
investigation was randomly mutagenized, resulting in a dataset in which every
sequence was mutagenized at 5 residues (to all the three possible variants).
The resulting values were used to compute model-specific null distributions,
that were used to estimate empirical p-values for the predicted effects of the
real set of mutations.

Variant classification. A variant was classified as potentially pathogenic if meeting at
least one of the following conditions:

¢ Annotated as either Missense, Nonsense, or Frameshift by the CGl;

e Showing an empirical p-value equal or lower than 0.05 in terms of either
disease impact score (DeepSEA), or predicted increase or decrease in
chromatin accessibility (Sasquatch), or for the affinity of any of the 43
transcription factors considered in the deltaSVM models;

e Showing any of the following S-CAP scores: 1) score >= 0.006 in case of
mutations in the introns upstream of a 3’ SS or downstream of a 5’ SS; 2) score
>= 0.033 in case of a mutation in the 3° AG (3’ SS core); 3) score >= 0.009 in
case of synonymous exonic mutation; 4) score >= 0.034 for a mutation in the
5 GT (5’ SS core); 5) score >= 0.005 in case of variants lying in the canonical
U1 snRNA-binding site, excluding the 5’ SS core (5’ extended); 6) score >= 0.
006.

Identification of regions showing an excess of regulatory mutations in the
tumour samples cohort. Given a regulatory element targeted by the enrichment
strategy, the probability of a given region to show an excess of mutations predicted as
pathogenic was evaluated based on a binomial distribution. The expected probability
p was estimated as the fraction of variants predicted as pathogenic in the entire
datasets. The pbinom function from R was used to calculate the probability of seeing
an equal or better number of g pathogenic variants in the region, given the expected
probability p and the total number of variants n identified in the region [pbinom(q, n, p,
lower tail = FALSE)].

Coding Variant Panel Design

24


https://doi.org/10.1101/2022.02.15.480537
http://creativecommons.org/licenses/by-nc-nd/4.0/

O 00 3 N D A W N =

b BB D W W W W W W W W W WD NN NN NN NN = === = = = = =
B WO = O 0 09NN DR WD OO I PR WD OO0 N WD~ O

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.15.480537; this version posted February 18, 2022. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

To profile the coding genome in these patients, a refined panel of genes known as the
Oncomine panel was utilised, specifically designed to cover key areas of mutation in
luminal breast cancers’®. The panel targets 6,812 coding regions, selected by
compiling commonly mutated sites identified in up-to-date studies, sequencing both
primary and metastatic luminal breast cancer tumours. The panel utilised data from an
array of databases and studies including: The Cancer Genome Atlas (TCGA)
database, the Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) database °, Lefebvre et al 2016 8, the MSKCC IMPACTTM study &',
the AACR GENIE database 8, the COSMIC database, the Cancer Gene Census, and
the Pharmacogenomics Knowledgebase (PharmKGB)®. In total, these datasets
included 1,673 primary and 1,596 metastatic luminal breast cancer cases. Mutated
genes identified in these datasets were compiled and refined using the following
criteria. Sites that were mutated in at least 2% of primary or metastatic samples and
CNVs with a frequency of over 5% or with a fold change of over 5% in either primary
or metastatic tumours were compiled. All breast cancer genes reported in the Cancer
Gene Census and all pharmacogenomic SNPs related to breast cancer in the
PharmKGB database were compiled. Finally, some manual curation was included,
adding in the CYP19A1 and SQLE amplification®®. After refinement, the panel
included 6,812 regions covering 134 genes, 27 CNV sites, 37 germline cancer genes,
and 59 germline loci, with associations to pharmacogenomic interactions.

Sample preparation and sequencing

Secondary captures, on SIDV, captured DNA libraries, was carried out using the
Oncomine panel. After hybridisation of SIDV capture probes to complementary DNA
and purification, non-captured DNA was recovered and concentrated using SPRI size-
selection beads. Quality control assessment using a Tapestation 2200 instrument was
performed reporting that, in all cases, at least 50% recovery of initial DNA
concentrations before the SIDV capture had been achieved. A custom set of capture
probes for the Oncomine regions were produced by Twist Biosciences. Pools of DNA
were captured using the Oncomine panel and quality controlled as previously
described with the SIDV panel. Pools of 10 patients were sequenced at Novogene on
an lllumina NovaSeq 6000 (150bp paired-end), with 700 million reads per pool.

Computational analysis of Coding Variants. Variant calling was initially performed
for all 100 patients that were sequenced — matched normal, primary and metastatic
samples. Adapter trimming was performed using Trim Galore version 0.6.4
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Bwa-mem version
0.7.15 PMID: 19451168 was used for alignment to the hg38 human genome reference.
Sambamba ®version 0.7.0 was used for conversion to binary, removal of PCR
duplicates, sorting and indexing. Pre-processing before variant calling was performed
using GATK?®, version 4.1.3.0: read groups were added using picard version 2.20.6
(https://sourceforge.net/projects/picard/files/picard-tools/), base quality recalibration
using gatk BaseRecalibrator and gatk ApplyBQSR. Mutect2 was used for somatic
variant calling against the matched normal bam samples: using the germline resource
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from the GATK resource bundle af-only-gnomad.hg38.vcf.gz with option —af-of-alleles-
not-in-resource set as 0.001 and with
MateOnSameContigOrNoMappedMateReadFilter disabled. To flag possible FFPE
artefacts gatk LearnReadOrientationModel was run, using output during the filtering of
variants with FilterMutectCalls. Only PASS mutations were further processed. Depth
was checked at 500 mutated loci (variants with a FATHMM score >= 0.8 and a variant
allele frequency (VAF) of at least 0.1 from the pool of de novo metastatic mutations)
in all 100 patients — across normal, primary and metastatic - using samtools depth.
This analysis revealed that in 42/100 patients, depth was lower than 10 in the majority
of the loci, in at least one of the normal, primary or metastatic bam files. Since this low
number of reads could affect variant detection generally, or affect the identification of
de novo metastatic variants (i.e. impossible to discern whether a mutation found in the
metastatic sample was not present in the primary if the depth at that locus is low in the
primary). As depth was sufficient across all variants in the other 58 patients, these
were further processed. Variant annotation was performed using OpenCRAVAT,
filtering for mutations only found in established breast cancer driver genes®’. To
discover potential de novo driver variants of metastasis in these patients, we filtered
for non-synonymous coding variants, with >= 0.1 VAF, private to metastasis or with
an allele frequency at least 5 times higher than in the primary. ComplexHeatmap
version 2.9.3.
(http://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html) was
used to generate an OncoPrint heatmap of these de novo, possibly pathogenic
variants.

CRISPRI screen: sgRNA design. First, promoter-associated SIDV3 regions were
excluded (a more tailored design of sgRNAs guided by available CAGE tags data in
MCF7 was performed instead, see below for details). After enlarging each region to
be at least 500 bps in size, the command-line version of the CRISPR-DO tool (version
0.04,88) was then run separately for each one of the considered regions (with --spacer-
len=20), and the predicted sgRNAs stored. Only sgRNAs showing efficiency between
0.4 and 1.3, and specificity >= 80% were retained for further analyses. One G
nucleotide was then added at both 5' and 3’ of each sgRNA, and the resulting guides
predicted to be digested by endonuclease Bbsl were discarded. In silico digestion was
performed using the digest package in R. After that, to obtain a more uniform
distribution of sgRNAs, an iterative pruning procedure was applied until no two guides
were found within 50 bps from each other. This resulted in 62.2% and 79.7% of the
putative insulators and enhancers showing 3 or more sgRNAs targeting them,
respectively. Only the sgRNAs targeting those regions were retained.

Hg19 coordinates for CAGE tags peaks from FANTOMS5 &° were downloaded from the
consortium website
(https://fantom.gsc.riken.jp/5/datafiles/latest/extra/ CAGE _peaks/). Briefly, starting
from hg19.cage_peak phaseland2combined_tpm_ann.osc.txt.gz, only those
expressed at least with a TPM >= 1 in unstimulated MCF7 were considered further.
For each gene (after filtering for blacklisted regions in ENCODE and for promoters of
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anti-sense, non-coding RNAs) the dominant TSS (based on highest CAGE TPM) was
identified. Only a single, dominant TSS for each expressed gene was retained. Of
those, only those corresponding to promoters of genes with at least one overlapping
putative insulator or enhancer in SIDV3 were considered for sgRNA design.
Considering the directionality of transcription at each CAGE tags cluster, each region
was standardized to [-100, +300] bps from the dominant position in the cluster. Design
and filtering of the sgRNAs were then performed as described in the previous
paragraph.

CRISPRIi screen: data analysis. Count data were normalised according to the
weighted trimmed mean of the log expression ratios (timmed mean of M values
(TMM)) normalisation®, using the calcNormFactors function from edgeR®". Initial PCA
and clustering analyses indicated high similarity between the 8 days samples and the
initial library. For this reason, the replicated 8 days samples were used as a reference
to identify statistically significant changes in abundance of sgRNAs at later time points,
using edgeR?®'. Briefly, after estimating dispersion using the estimateDisp function,
generalised linear models (GLMs) were fit separately to each condition (full and
oestrogen-depleted medium), using the gimFit function. Coefficients were retrieved
with g/imLRT, and significant changes were retained as those showing a Benjamini-
Hochberg corrected FDR <= 0.05 and a log2-fold-change of at least 1, in either
direction. The same computational strategy was applied to compare the sgRNAs
counts in full vs oestrogen-depleted media, at any given time point.

Statistical analyses and plotting using R. Unless indicated otherwise, all the
described statistical analyses and preparation of plots were performed in the statistical
computing environment R v4 (www.r-project.org).
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Supplementary Figure 1. (a) SIDP coverage (percentage) of the specific partitions of
the human CREs considered in this study. (b) Histograms showing the distribution of
counts per sgRNAs (log10) for two replicates of sgRNAs in pool 1, at day 7 and day
21 post-infection (MCF7 full media). (c¢) Box plots showing the log2-fold-change of
positive controls (left panel) and non-targeting sgRNAs (right panel) in two replicates
of oestrogen-dependent MCF7 cells, at 7, 14 and 21 days, as compared to the initial
library. (d) Box plots showing the distribution of the number of significantly scoring
sgRNAs per CRE, for Expanded (yellow) and Exhausted (blue) sgRNAs, across three
different genomic partitions (promoters, putative enhancers, and CTCF-clusters
associated to TAD boundaries). (e) Motif analysis of CREs associated with
significantly exhausted sgRNAs identifies YY1 as a putative TF enriched in functional
CREs.
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Supplementary Figure 2. (a) Motif analysis of CREs associated with significantly
exhausted sgRNAs identifies YY1 as a putative TF enriched in functional CREs. (b)
Box plots showing the log2-fold-change of positive controls (left panel) and non-
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targeting sgRNAs (right panel) in two replicates of oestrogen-deprived MCF7 cells, at
7, 14 and 21 days, as compared to the initial library. (c) Principal component analysis
(PCA) of all samples. For clarity in the visualization, the analysis was first run excluding
day 60 and split by replicate (columns) and condition (+/- E2; first two rows). The last
pair of plots from above, instead include day 60. Note: 8 and 15 days post cells seeding
(corresponding to 7 and 14 post-infection). (d) Bar plot showing the overall number of
sgRNAs showing the indicated behaviour ad day 21 (MCF7 white media). (e) Box plots
showing the number of sgRNAs significantly decreased or increased at day 21 (MCF7
white media). Specific outliers indicate the nearest gene to the overlapping CRE.
(Bottom right) Schematic of the genes identified in the TLR/NF-kB signalling pathway,
showing at least one CRE with multiple expanded sgRNAs at day 21 (MCF7 white
media).
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Supplementary Figure 3. (a-b) SIDP results at the indicated loci are shown as IGV
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Supplementary Figure 4. (a-b) SIDP results at the indicated loci are shown as IGV
genome browser screenshots. For each of the indicated conditions, the log2-fold
change for each sgRNA is indicated, with bars proportional to the effect size, and
colour reflecting the sign (blue = expanded; yellow = exhausted). (¢) Box plots showing
the distribution of the compounded score (-log10 of the edgeR-estimated p-value
times the log2FC) for different sets of sgRNAs (blue = expanded; yellow = exhausted),
at 60 days (MCF7 white media). The scoring sgRNAs mapping to the CREs of the
genes annotated to TLR/NF-kB signalling are highlighted in red (as outliers in the
distribution of the sgRNAs significantly more expanded in -E2 vs +E2 conditions at 21
days, and then as a separate group).
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and non-scoring (white) sgRNAs at 21 days post-infection in oestrogen-deprived
MCF7 cells, at 7, 14 and 21 days, as compared to the initial library. (b) SIDP results
at the indicated loci are shown as IGV genome browser screenshots. For each of the
indicated conditions, the log2-fold change for each sgRNA is indicated, with bars
proportional to the effect size, and colour reflecting the sign (blue = expanded; yellow
= exhausted).
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Supplementary Figure 6. (a) RT-gPCR validation of the effect of individual sgRNA
on MCF7 transfected with a constitutive dCAS(-KRAB construct. Relative mRNA
values are plotted against a non-targeting sgRNA  b) Cell competition experiments.
150 cells GFP positive transfected with single experimental sgRNAs were plated with
150 cells transfected with non-targeting sgRNA. The relative ratio of GFP+/non-GFP
cells across ten days is plotted. Experiments were conducted in full media (with
estradiol) ¢) CCND1 targeting sgRNAs lead to the rapid extinction of GFP cells while
non-targeted cells enter dormancy with normal dynamics. Green panels: absolute
GFP+ count (CCND1 sgRNAs). Yellow panels: normalized ratios GFP/non GFP
across time points.
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Supplementary Figure 7. (a) Schematic summarising the steps of the custom
computational pipeline employed for the identification and functional annotation of the
SIDV variants. (b) Summary of the sequencing statistics for the profiled samples. (c)
Stacked bar plots showing the anatomic site of the profiled relapse, split by centre. (d)
Box plot showing the distribution of the overall mutational load per sample in the SID
regions, as estimated in either the non-coding COSMIC or in our cohort (separately
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for primary and metastatic samples). The companion scatterplot shows the correlation
between the genome-wide estimate of mutational burden and the same estimate using
only the mutations identified in SID regions, considering the WGS data available in the
non-coding COSMIC. The statistics and statistical significance of this linear correlation
are indicated on top of the plot. (e-f) Scatterplots showing the relationship between
the number of somatic mutations detected per sample, and the indicated variables.
For visualization purposes, least-square regression models were trained separately
for primary and metastatic samples. For quantifying the relationships, Spearman’s
correlation coefficients (SCC) are indicated on top of the plots, along with the
corresponding p-values.
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Supplementary Figure 8. (a) Scatterplot comparing the number of variants (SNVs
plus INDELs) in matched primary and metastatic lesions. (b) Scatterplot showing the
fraction (0-1) of mutations identified in the metastatic tumour that was also called in
the corresponding matched primary. Each dot represents a pair of matched primary-
met, with the x-axis indicating the total number of variants in each metastatic sample.
(c) (Left to right) Box plots showing the overall coverage of the regions showing
variants, separately for matched normal (N), primary (P) and metastatic (M) samples.
The other three box plots show the VAF (frequency of alternative alleles) in normal
and tumour (either primary, metastatic, or both) specimens, for three sets of variants
(left to right): those identified only in primaries; those identified only in metastasis;
those identified in both. (d) Box plot showing that lesions that were treated with TAM
or Al did not show a different number of detected mutations at relapse (p-value = 0.21;
Mann-Whitney Test).
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Supplementary Tables Legends

Supplementary Table 1: Regions defined by SID (Systematic Identification of
epigenetically Defined loci). For each region (hg38 genomic coordinates including
chromosome, starting and ending positions), the table indicates whether the region was
selected as a gene promoter, putative enhancer or putative insulator. Whether the region is
covered by designed oligo baits for SIDV profiling, and the number of sgRNAs targeting the
region in SIDP, are also indicated.

Supplementary Table 2: sgRNAs sequences and metadata for the SIDP assays. S2.1:
for each sgRNA targeting a region in the human genome, an identifier (using the
corresponding hg38 genomic coordinates), the DNA sequence, the genomic coordinates
(hg38) including the strand, along with efficiency and specificity scores as estimated by
CRISPR-do, are provided. S2.2: for each positive control or non-targeting sgRNA, a custom
identifier is shown along with the DNA sequence.

Supplementary Table_3: SIDP results in MCF7 grown in full (red; +E2) media. S3.1:
results of the differential abundance analysis for the positive controls and the non-targeting
sgRNAs (as indicated in the genome_partition field). For each sgRNA, an identifier, the pool,
and the results from the edgeR analysis are shown. The average abundance of the sgRNA at
day 7 and 21 post-infection is indicated as logCPM (counts per million). The log2-fold changes
(log2FC) between day 21 and 7, and between day 21 and the initial library, are indicated,
along with the FDR (Benjamini-corrected p-value). Two further fields indicate whether the
sgRNA was identified as significantly expanded (FDR <= 0.05 and linear fold-change >= 1.5)
or exhausted (FDR <= 0.05 and linear fold-change <= -1.5). §3.2: similar to S3.1 but listing
the results for the sgRNAs targeting the genomic regions of interest. Hg38 coordinates are
also included in this case. S3.3: summary of the results at the level of each SID region. For
each region, hg38 coordinates are listed, along with the symbol of the nearest gene, and the
distance to its TSS in bp (positive or negative values indicate the region is either downstream
or upstream the TSS, respectively). The table then indicates whether the region was selected
as a gene promoter, putative enhancer or putative insulator. The number of sgRNAs targeting
the enlarged region (indicated coordinates +- 1 kbp), is followed by information on the
overlapping sgRNAs that scored significantly, separately for exhaustion and expansion. In
both cases, the total number of significant guides, the corresponding fraction, and the FDR
and log2FC of the highest-scoring sgRNA are reported. A column indicating the significance
of one or more sgRNAs is also provided. S3.4: enriched terms in the set of genes close to the
regions showing scoring sgRNAs, separately for the exhausted and the expanded sets. For
each group, hallmark sets showing a p-value <= 0.05 are included in the table. Statistics of
the hypergeometric test are shown, along with the total number and identity of the overlapping
genes. S3.5: overlap between the regions identified in our +E2 MCF7 SIDP assay and
previously published screens in breast cancer cell lines (marcotte: Marcotte et al. 2012; fei:
Fei at al. 2019; Korkmaz: Korkmaz et al. 2019; ggg: Rui Lopes et al. 2020).

Supplementary Table 4: SIDP results in MCF7 grown in white media (-E2). S4.1-5: the
tables follow the same structure as S3.1-5.

Supplementary Table 5: SIDP results in LTED. S5.1: results of the differential abundance
analysis for the positive controls and the non-targeting sgRNAs. The structure of the table is
similar to S3.1. §5.2: results for the sgRNAs targeting the genomic regions of interest. The
structure of the table is similar to S3.2.
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Supplementary Table 6: SIDP results summary. S6.1: regions showing at least one
overlapping sgRNA scoring in at least one of the different conditions assayed. For each region
(hg38 genomic coordinates), the table indicates whether this was selected as a gene
promoter, putative enhancer or putative insulator. It also shows the symbol of the nearest
gene, and the distance to its TSS in bp (positive or negative values indicate the region is either
downstream or upstream of the TSS, respectively). For each condition (MCF7 RM, MCF7 WM
or LTED) and direction of the change (Exhaustion vs Expansion), the table indicates whether
the region overlaps one or more (columns labelled “single”) vs two or more (columns labelled
“multiple”) sgRNAs. S6.2: summary of the overlaps between either scoring sgRNAs (“guides”),
regions showing at least one scoring sgRNA (“regions_single”), or regions showing two or
more consistently scoring sgRNAs (“regions_multiple”) between pairs of conditions (as
indicated by columns assay_1 and assay_2). The nature of the change (either Exhaustion or
Expansion), along with the total number of overlapping sgRNAs or regions, and the
corresponding fraction, are also indicated. $6.3: results of gene set enrichment analysis using
the indicated gene sets and the set of genes close to the regions showing scoring sgRNAs,
according to the indicated pattern (SIDP_set). Statistics of the hypergeometric test are shown,
along with the total number of the overlapping genes (count), the observed and expected
overlaps, and the odds ratio.

Supplementary Table 7: Metadata of the clinical cohort profiled by SIDV. S7.1: for each
donor, from which genetic material from matched normal, primary and metastatic samples
was derived, the following information is provided: the identifier for the samples; the centre
where the samples were collected; the sequencing batch; the age of diagnosis; the clinical
features of the primary tumours; the indication of the metastatic sites. Legend: ER = estrogen-
receptor alpha; PR = progesterone receptor; pct = percentage; HR = hormone therapy. §7.2:
for each triplet of matched normal, primary and metastasis derived material, and separately
for each one of the 100 donors, sequencing statistics are provided. Sequencing depth, the
fraction of the reads mapping to oligo baits, mean coverage on baits and corresponding fold-
enrichment, and on-target mean coverage, are shown. The percentages (pct) of targeted
bases covered at least 10x, 30x, 50x or 100x are also indicated.

Supplementary Table 8: Summary of SNVs and INDELs identified by SIDV. S8.1: total
number of SNVs and INDELs (filtered for common variants, according to dbSNP) per donor
(sample_id), divided by those identified in primary or metastasis (vs matched normal). $8.2:
full list of SNVs and INDELs. Chromosome and position on the chromosome (hg38
coordinates) are indicated for each variant, along with the reference and detected alternative
allele. Also, the table indicates the donor, and whether the variant allele was directly detected
in the primary (P_CALL) and/or the metastatic material (M_CALL). S$8.3: tumour purity
estimation for each sample and site (P = primary; M = metastasis) is listed, along with the size
of the subset of SNVs used for the purity estimation analysis. $8.4: final annotation of the
SNVs after sample-specific purity correction. For each SNV, genomic coordinates, reference
and alternative alleles, donor identifier, and evidence (filtered read counts) supporting the
different alleles in normal (N), primary (P) and metastatic (M) samples are provided. For both
primary and metastatic samples, the variant allele frequency (VAF), along with the estimated
purity for the sample, the estimated copy number alterations of the region bearing the variant
(CNA) and the purity-corrected VAF, or cancer-cell fraction (CCF), are indicated. $8.5: regions
showing an enrichment in either amplification (amp) or deletions (del) across the metastatic
samples as compared to the matched primary samples, are indicated.

Supplementary Table 9: Computational predictions of the functional impact of the SNVs

and short INDELs identified through SIDV. S9.1: for each variant, the type (SNV or
INDEL_short) and its hg38 coordinates are listed, along with the symbol of the nearest gene,
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and the distance to its TSS in bp (positive or negative values indicate the region is either
downstream or upstream the TSS, respectively). Reference and alternative alleles are also
provided, along with whether the variant is computationally predicted to alter the molecular
function of the genomic element bearing it (indicated as different “pathogenic” classes; column
mutation_class) or not (“benign”). The table is then indicating, for each one of the models
considered, whether the variant is predicted to significantly affect the indicated molecular
function. §9.2: extract of S9.1, for three regions of interest.

Supplementary Table 10: Downstream analyses considering only the SIDV inferred
genetic alterations with predicted impact on function. $10.1: results of the binomial
enrichment test. SID regions overlapping at least 2 SNVs predicted as pathogenic are
included. Along with genomic coordinates (hg38) the total number of SNVs, as well as the
number of predicted pathogenic SNVs overlapping the region, are indicated. The p-value and
the g-value (after Benjamini-Hochberg correction) of the binomial test are indicated, along with
annotation to the closest gene. $10.2: same as S10.1, but considering all the regions assigned
to the genes annotated to the same ontological terms together. The number and identity of
the genes contributing to the overlap are indicated, along with the p-value of the binomial test,
and the g-value (after Benjamini-Hochberg correction). Statistically significant terms (g-value
<= 0.05) are highlighted in red. S10.3: results of the analyses testing for the enrichment of
mutations (either SNVs, short INDELSs, or both; mutation_type column) with computationally
predicted pathogenic effects in the sets of regions also showing a certain behaviour in SIDP
(CRISPRI_hit_type column). Observed and expected overlap are indicated, along with the
odds ratio and the p-value (Chi-squared test).

Supplementary Table 11: Downstream analyses considering only the SIDV inferred
genetic alterations with predicted impact on function, and stratifying them by cancer-
cell fraction (CCF) increase and decrease in metastatic samples. S11.1: summary of the
results of the statistical tests performed to identify differences in the predicted impact of
mutations stratified by a change in CCF in metastatic samples compared to matched primary.
The fraction of variants predicted as pathogenic and either showing an increase or a decrease
in CCF (+- 0.1) was compared to that of those showing no change. P-values for the indicated
features are shown (Chi-squared test). S$11.2: similarly, the distribution of the predicted
molecular effects of variants in the three groups (increase, decrease or no change in CCF)
were compared using the Kruskal-Wallis test. $11.3: similar to $10.3, but testing for the
enrichment of mutations with both computationally predicted pathogenic effects and a certain
CCF increase or decrease in metastatic samples, that also show a certain behaviour in SIDP.

Supplementary Table 12: Results of the enrichment analyses looking for binding sites
of specific TFs accumulating more or less genetic variants than expected by chance.
For each TF and category (mutations significantly increasing or decreasing affinity) the
observed and expected fraction of mutations overlapping the TF-bound sites are indicated,
along with the difference between these two fractions, and the p-value of the corresponding
Chi-squared test. Considering each TF and the mutations affecting the affinity to its target
sites either positively or negatively (based on the p-value of the test) TFs could be either
classified as showing significantly more or fewer mutations than expected, or not significant
(ns).

Supplementary Table 13: Datasets used for the training of the TF-specific deltaSVM
models. For each TF, the corresponding gene symbol, along with information about the cells
from which the ChlP-seq binding profile was obtained, the treatment the cells were exposed
to (if any), and reference to the corresponding records on the Gene Expression Omnibus, are
indicated. Information about the matched, high-quality position weight matrix (PWM) utilized
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as a source of information to infer the binding affinities of each TF is also provided. For each
PWM, an identifier is indicated, along with the corresponding reference database or

publication (including Pubmed ID).
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