

1 **Non-productive exposure of PBMCs to SARS-CoV-2 induces cell-intrinsic innate**
2 **immunity responses**

3 Julia Kazmierski^{1,2,6}, Kirstin Friedmann^{1,6}, Dylan Postmus^{1,2}, Cornelius Fischer³, Jenny
4 Jansen^{1,2}, Anja Richter¹, Laure Bosquillon de Jarcy^{1,4}, Christiane Schüler^{1,2}, Madlen Sohn³,
5 Sascha Sauer³, Christian Drosten^{1,7}, Antoine-Emmanuel Saliba⁵, Leif Erik Sander⁴, Daniela
6 Niemeyer^{1,7*} and Christine Goffinet^{1,2*}

7 ¹Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz
8 1, 10117 Berlin, Germany

9 ²Berlin Institute of Health, 10178 Berlin, Germany

10 ³Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and
11 Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.

12 ⁴Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin
13 Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and
14 Berlin Institute of Health (BIH), Berlin, Germany.

15 ⁵Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection
16 Research (HZI), Würzburg, Germany

17 ⁷German Center for Infection Research, associated partner Charité, Berlin, Germany.

18 ⁶co-first authors

19

20 *Co-Corresponding authors:

21

22 Daniela Niemeyer, Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin
23 Berlin, Charitéplatz 1, 10117 Berlin, Germany

24 Phone: +0049 30 450 525 488

25 e-mail: daniela.niemeyer@charite.de

26

27 Christine Goffinet, Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin
28 Berlin, Charitéplatz 1, 10117 Berlin, Germany
29 Phone: +0049 30 450 525 489
30 e-mail: christine.goffinet@charite.de

31

32 **Keywords:** SARS-CoV-2, PBMCs, interferon, interferon-stimulated genes

33

34 **Abstract**

35 Cell-intrinsic responses mounted *in vivo* in PBMCs during mild and severe COVID-19 differ
36 quantitatively and qualitatively. Whether they are triggered by signals emitted by productively
37 infected cells of the respiratory tract or are, at least partially, resulting from physical interaction
38 with virus particles, remains unclear. Here, we analyzed susceptibility and expression profiles
39 of PBMCs from healthy donors upon *ex vivo* exposure to SARS-CoV and SARS-CoV-2. In line
40 with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to
41 productive infection. Bulk and single cell RNA-sequencing revealed JAK/STAT-dependent
42 induction of interferon-stimulated genes, but not pro-inflammatory cytokines. This SARS-CoV-
43 2-specific response was most pronounced in monocytes. SARS-CoV-2-RNA-positive
44 monocytes displayed a lower ISG signature as compared to bystander cells of the identical
45 culture. This suggests a preferential invasion of cells with a low ISG base-line profile or delivery
46 of a SARS-CoV-2-specific sensing antagonist upon efficient particle internalization. Together,
47 non-productive physical interaction of PBMCs with SARS-CoV-2- but not SARS-CoV particles
48 stimulates JAK/STAT-dependent, monocyte-accentuated innate immune responses that
49 resemble those detected *in vivo* in patients with mild COVID-19.

50

51

52

53 **Introduction**

54 The current SARS-CoV-2 pandemic represents a global medical, societal and economical
55 emergency of increasing importance. Arising at the end of 2019 in the Hubei province in China,
56 the causative agent of the coronavirus disease 2019 (COVID-19), SARS-CoV-2, has to date
57 infected more than 395 million individuals world-wide (World Health Organization). Owing to
58 SARS-CoV-2 infection, more than 5.7 million deaths were reported up to today (as of 2022,
59 February 6th). The predominant symptoms of symptomatic COVID-19 are fever, cough, and
60 shortness of breath, however, in severe cases disease can progress to pneumonia, acute
61 respiratory distress syndrome, and multiple organ failure (Chen *et al.* 2020; Wölfel *et al.* 2020).
62 The management of the pandemic is complicated by a relatively low manifestation index, a
63 large inter-individual spectrum of clinical courses ranging from asymptomatic to fatal
64 outcomes, pre- and asymptomatic infectious phases (Jones *et al.* 2021; Rothe *et al.* 2020),
65 and the ongoing emergence of variants with increased transmissibility and/or immune escape.
66 The reasons for the high inter-individual outcome of infection are insufficiently understood and
67 may include different degrees of cross-reactive background immunity at the level of humoral
68 (Anderson *et al.* 2021; K. W. Ng *et al.* 2020) and T-cell-mediated immunity (Braun *et al.* 2020;
69 Bacher *et al.* 2020; Nelde *et al.* 2021; Schulien *et al.* 2021), polymorphisms in genes related
70 to innate immunity (Zhang *et al.* 2020) and autoimmunity (Bastard *et al.* 2020). Currently,
71 specific treatment regimen must be administered early post-infection. They include the RNA
72 polymerase inhibitor Remdesivir that may reduce hospitalization time but not mortality (Y.
73 Wang *et al.* 2020) and monoclonal anti-spike antibodies with variant-specific neutralization
74 potencies (Weinreich *et al.* 2021; RECOVERY Collaborative Group, Horby, Mafham, *et al.*
75 2021). In the late phase of infection, the administration of the immune modulator
76 dexamethasone (RECOVERY Collaborative Group, Horby, Lim, *et al.* 2021) dampens
77 hyperactivation of cytokine-driven immune responses. While several effective vaccines are
78 available, the necessity for specific treatment options will likely persist given the expected
79 proportion of the population that will not have access to vaccines or will refuse vaccination.

80 To accelerate the establishment of immunomodulatory strategies, it is crucial to
81 characterize *ex vivo* systems that correlate with cellular immunophenotypes of SARS-CoV-2
82 infection *in vivo* and that may contribute to pre-clinical testing. Furthermore, the usage of *ex*
83 *vivo* platforms allows the systematic and comparative investigation of human cellular
84 responses to exposure with different representatives of the species SARS-related
85 coronaviruses, including SARS-CoV. Peripheral immune cells are major contributors to
86 human cellular responses upon infection. Given the recruitment of blood mononuclear cells to
87 the lung compartment (Delorey et al. 2021; Bost et al. 2020; Wendisch et al. 2021), and the
88 reported presence of viral RNA detectable in the peripheral blood of up to 10% severely ill
89 patients (Prebensen et al. 2021; Andersson et al. 2020), direct contact of PBMCs with SARS-
90 CoV-2 virions is a likely scenario.

91 Here, we analyzed susceptibility to infection and cell-intrinsic innate responses of
92 peripheral blood cells from healthy donors upon *ex vivo* exposure to SARS-CoV and SARS-
93 CoV-2. Although both SARS-related coronaviruses failed to detectably replicate and spread
94 in PBMCs, SARS-CoV-2 specifically triggered a JAK/STAT-dependent innate immune
95 response that was most pronounced in monocytes. Single-cell, virus-inclusive RNA
96 sequencing revealed relatively inefficient and ACE2-independent uptake of virus particles and
97 a SARS-CoV-2 exposure-specific gene expression profile. Cellular responses, consisting in
98 upregulation of expression of interferon-stimulated genes (ISGs) but not pro-inflammatory
99 cytokines, partially recapitulate expression profiles obtained by single-cell RNA-sequencing of
100 PBMCs from patients experiencing mild COVID-19 (Arunachalam et al. 2020; Schulte-
101 Schrepping et al. 2020; Silvin et al. 2020). Our data demonstrate that cells from the peripheral
102 blood, when undergoing contact to SARS-CoV-2 particles, mount cellular responses that
103 potentially contribute to control and/or pathogenesis of the infection.

104

105

106

107 **RESULTS**

108 **Absence of productive infection of human PBMCs by SARS-CoV and SARS-CoV-2**

109 To address the ability of SARS-related coronaviruses to infect and propagate in cells of the
110 peripheral blood, we exposed unstimulated PBMCs from healthy individuals to purified stocks
111 of SARS-CoV and SARS-CoV-2, respectively, using equal infectious titers as determined on
112 Vero E6 cells. As a reference, PBMCs were exposed to supernatants from uninfected Vero
113 E6 cells (mock-exposed). For both SARS-related coronaviruses, infectivity in cell culture
114 supernatants drastically decreased over time compared to the inoculum, reaching
115 undetectable levels at three days post-inoculation (**Fig. 1A**), pointing towards absence of *de*
116 *novo* production of infectious particles. Treatment of cells with the polymerase inhibitor
117 Remdesivir did not further reduce infectivity in the supernatant, suggesting that the infectivity
118 detectable at 24 hours post-inoculation reflects virus input (**Fig. 1B**). In contrast, infection of
119 Vero E6 cells with the identical SARS-CoV-2 stock gave rise to a productive and Remdesivir-
120 sensitive infection (**Supplemental Fig. 1**). In our experiments, virus-containing supernatant
121 was replaced with fresh medium four hours post-inoculation. Nevertheless, viral RNA genome
122 equivalents remained detectable in the culture supernatant until the end of the experiment for
123 both SARS-CoV and SARS-CoV-2 (up to 192 hours post-exposure) (**Fig. 1C**). Viral RNA was
124 abundant also in supernatants from Remdesivir-treated cultures and cultures exposed to heat-
125 inactivated SARS-CoV-2 until 192 hours post-exposure, arguing for a high stability of the
126 residual viral RNA of the inoculum and against a constant replenishment of extracellular viral
127 RNA pools as a reason for the stable RNA quantities (**Fig. 1D**), in line with reported longevity
128 of the incoming genomic viral RNA (Lee *et al.* 2022). Notably, blunting signaling by type I
129 interferons (IFNs) through constant presence of the JAK/STAT inhibitor Ruxolitinib failed to
130 enable secretion of infectious particles and viral RNA in the supernatant, suggesting that
131 JAK/STAT-dependent cell-intrinsic innate immunity is not the underlying reason for the
132 absence of detectable virus production (**Fig. 1 A, C**).

133

134 To elucidate if PBMCs, despite being non-permissive, are nevertheless susceptible to
135 SARS-related coronavirus entry and initial RNA replication, we monitored cell-associated viral
136 RNA species in the adherent and the suspension cell fractions of the cultures over time. Cell-
137 associated viral genome equivalents (**Fig. 1E**) and subgenomic viral E RNA (**Supplemental**
138 **Fig. 2**), the latter produced during discontinuous viral transcription, remained stable over time
139 and did not differ in quantities for both SARS-related coronaviruses. Ruxolitinib treatment did
140 not detectably facilitate RNA replication (**Fig. 1E, Supplemental Fig. 2**), suggesting absence
141 of essential cofactors at the level of entry and/or RNA replication rather than the antiviral
142 activity of IFN-regulated restriction factors. In line with this idea, we failed to detect expression
143 of the SARS-coronavirus receptor, angiotensin-converting enzyme 2 (ACE2) in PBMCs, as
144 judged by immunoblotting, flow cytometry and Q-RT-PCR using ACE2-specific antibodies and
145 primer/probes, respectively (**Supplemental Fig. 3 A-C**). In conclusion, freshly isolated,
146 unstimulated PBMCs seem to be devoid of ACE2 expression. Furthermore, they appear to be
147 non-susceptible and non-permissive to infection with either SARS-related coronavirus, at least
148 *ex vivo*. However, the continuous presence of viral RNA associated to cells and in the culture
149 supernatant suggests that virus particles attach to and/or internalize into PBMCs in an ACE2-
150 independent manner and remain cell-associated for up to several days.

151

152 **Exposure of PBMCs to SARS-CoV-2, but not SARS-CoV, triggers a JAK/STAT-
153 dependent cell-intrinsic innate immune response**

154 To identify potential cell-intrinsic innate immune responses to SARS-CoV and SARS-CoV-2
155 exposure, we analyzed *IFIT1* and *IL6* mRNA expression over time (**Fig. 2A-B**). We selected
156 *IFIT1* and *IL6* as prototypic target genes that are transcribed by IRF3 and NF- κ B, respectively
157 (Honda and Taniguchi, 2006). In contrast to SARS-CoV-inoculated cells, SARS-CoV-2-
158 exposed cells displayed Ruxolitinib-sensitive, significantly upregulated *IFIT1* mRNA
159 expression at 16, 24 and 48 hours post-inoculation (**Fig. 2A**). Inhibition of potential low-level
160 SARS-CoV-2 RNA replication through treatment of cells with Remdesivir, and heat-
161 inactivation of the SARS-CoV-2 stock inoculum did not prevent induction of *IFIT1* mRNA

162 expression (**Supplemental Fig. 4**), corroborating the idea that the latter is triggered by
163 exposure to virions, but not by productive infection. In contrast, *IL6* expression was barely
164 induced after exposure to SARS-CoV and SARS-CoV-2 (**Fig. 2B**). We next analyzed if type I
165 IFN expression preceded *IFIT1* mRNA expression in SARS-CoV-2-exposed PBMCs. Despite
166 a slight trend for elevated *IFNA1* and *IFNB1* mRNA expression at 16 hours, levels failed to
167 reach significant upregulation at four, 16 and 24 hours, when compared to mock-exposed
168 cultures (**Fig. 2C**). Together, SARS-CoV-2 exposure specifically triggered IRF3-induced
169 *IFIT1*, but not NF-κB-transcribed *IL-6* gene expression. These results suggest that, although
170 both SARS-related coronaviruses failed to establish a productive infection in PBMCs, SARS-
171 CoV-2 appears to induce cell-intrinsic, JAK/STAT-dependent responses in several cell types
172 comprised in PBMCs.

173 **SARS-CoV-2 exposure causes transcriptional changes in most cell types**

174 To explore cell-intrinsic responses in individual cell types, we performed single-cell RNA-
175 sequencing of PBMCs exposed to SARS-CoV and SARS-CoV-2, respectively. We identified
176 the five major cell types, namely B-cells, CD4⁺ and CD8⁺ T-cells, NK cells and monocytes
177 (**Fig. 3A**) based on the expression of discriminatory marker mRNAs (see methods). Separated
178 based on experimental condition, PBMCs of both donors shared a similar relative cell type
179 distribution (**Fig. 3B**) and similar cell type-specific transcriptional profile (**Supplemental Fig.**
180 **5**), and data of both donors were merged for the following analyses. In line with our bulk
181 analyses (**Supplemental Fig. 3A-C**), *ACE2* mRNA was undetectable (**Supplemental Fig.**
182 **3E**), as was *TMPRSS2* mRNA. In contrast, the protease-encoding *FURIN*, *BSG* and *NRP1*
183 mRNAs were expressed in all cell types, and most abundantly in monocytes (**Supplemental**
184 **Fig. 3D-E**). Graphical mapping indicated transcriptomic changes within individual cell types
185 for SARS-CoV-2-, but not for SARS-CoV-exposed cultures, compared to mock-inoculated
186 cells (**Fig. 3C**). Notably, SARS-CoV-2 monocytes clustered separately from the other
187 conditions in the UMAP despite library batch correction, implying a pronouncedly altered
188 transcriptome. The T- and NK cell clusters slightly and partially shifted, indicating a change in

189 their transcriptional profile (**Fig. 3C**). The relative abundance of T-cells and monocytes in
190 SARS-CoV-2-exposed cells as compared to mock-exposed PBMCs remained constant, as
191 judged by flow cytometric analysis (**Supplemental Fig. 6**). Together, this analysis revealed
192 that transcriptomic changes occurred in most cell types upon SARS-CoV-2 exposure,
193 particularly in the monocytic fraction.

194

195 **Exposure to SARS-CoV-2 induces a global innate immunity-related gene profile in**
196 **PBMCs with cell type-specific signatures**

197 We next investigated in more detail the cell type-specific response to SARS-CoV-2. Based on
198 differentially expressed genes (DEGs) between mock-, SARS-CoV- and SARS-CoV-2-
199 exposed PBMCs, a pseudotime cell trajectory analysis for all cell types was performed (**Fig.**
200 **4A**). For all five major cell types, cells inoculated with SARS-CoV-2 developed towards a
201 separate cell fate and branched off from mock-exposed and SARS-CoV-exposed cells, which,
202 conversely, shared a common trajectory. Interestingly, B-cell analysis resulted in four
203 branching points, from which only two (#1 and #3) were specific for SARS-CoV-2-exposed
204 cells, suggesting a high transcriptional heterogeneity of B-cells independently of virus
205 exposure. Though progression through pseudotime resulted in a distinct and highly
206 pronounced trajectory of all SARS-CoV-2-exposed cell types, this effect was most pronounced
207 in monocytes (**Fig. 4A**). Analysis of expression of specific genes, including *ISG15* and *IFIT1*,
208 confirmed that in general, all cell types contributed to gene expression changes upon SARS-
209 CoV-2 challenge, and monocytes displayed the most pronounced elevation of expression of
210 both genes (**Fig. 4B**). Identification of DEGs in mock-exposed compared to SARS-CoV-2-
211 inoculated PBMCs revealed a significant upregulation of gene expression in all cell types,
212 especially in monocytes (**Fig. 4C**). Interestingly, the majority of DEGs were identified as known
213 ISGs (defined by the interferome database; colored in green (interferome.org; v2.01)). Scoring
214 the individual cell types and conditions by their expression of an IFN-signaling module
215 revealed a SARS-CoV-2-specific upregulated expression in all cell types, though this was

216 most prominent in monocytes (**Fig. 4D**). Moreover, IFN module scores were colinear with
217 Pseudotime scores along the SARS-CoV-2 trajectory, supporting the notion that SARS-CoV-
218 2 exposure induces a development of PBMCs towards an antiviral phenotype. Increase of
219 expression of several ISGs, including *ISG15*, *IFIT1*, *IFITM3*, *DDX58*, *IFIH*, *LY6E*, *MX2*, *IFI6*,
220 *GBP1*, *BST2*, was detectable predominantly, but not exclusively, in monocytes (**Fig. 4E**),
221 supporting the hypothesis that monocytes play a key role in the induction of cell-intrinsic innate
222 immune response to SARS-CoV-2 stimulation. In line with our previous findings (**Fig. 2**),
223 SARS-CoV-2- and SARS-CoV-exposed cells scored virtually negative for expression of
224 various cytokines, including *IL6* (**Fig. 4E**) and *IFN* mRNAs (**Supplemental Fig. 7**), although
225 they express IFN receptors (**Supplemental Fig. 7**). In conclusion, these data reveal a strong
226 induction of cell-intrinsic innate immunity in SARS-CoV-2-exposed PBMCs that manifests
227 predominantly in monocytes.

228

229 **Transcriptome differences in viral RNA-positive and bystander monocytes**

230 Next, we aimed at identifying viral RNA-positive cells and their specific transcriptional profile
231 that we hypothesized to differ from cells without detectable viral RNA of the identical culture.
232 SARS-CoV-2 RNA was detectable in all cell types, but predominantly in monocytes (**Fig. 5A**).
233 Identified viral reads were distributed over the viral genome sequence, with a high over-
234 representation of the 3' RNA sequences that all subgenomic and genomic viral RNA have in
235 common, corresponding to the 3' part of the N-coding sequence and polyA tail (**Fig. 5B**).
236 Specifically, in SARS-CoV- and SARS-CoV-2-exposed PBMC cultures, we identified 99
237 (2.13%) and 212 (2.88%) viral RNA-positive cells, respectively (**Fig. 5C**). Among those, we
238 identified 56 (7.8%) and 173 (15.3%) viral RNA-positive monocytes among all monocytes,
239 respectively. First of all, no statistically significant differences in expression of individual genes
240 of RNA-positive and RNA-negative monocytes were identified. However, the IFN module
241 score (**Fig. 4**) was slightly, but statistically highly significantly elevated in SARS-CoV-2-
242 exposed monocytes with undetectable viral RNA (**Fig. 5D-E**). Specifically, within the 94 genes
243 that were expressed marginally more abundantly in cells lacking detectable SARS-CoV-2

244 RNA, 18 represented ISGs, including *ISG15*, *IFITM2*, *IFITM3*, *IFI27* and *HLA* genes tended to
245 be upregulated in viral RNA-negative bystander cells. Importantly, the presence of viral RNA
246 did not specifically associate with expression of *BSG/CD147* and *NRP1*, and *ACE2* and
247 *TMPRSS2* expression was undetectable, suggesting that particles internalize in a manner that
248 is independent of these confirmed or proposed receptors, respectively. In SARS-CoV-2 RNA-
249 positive cells as compared to SARS-CoV-2 RNA-negative cells of the identical cultures,
250 among others, *CD163* reads tended to be slightly more abundant. Expression of the
251 hemoglobin-haptoglobin scavenger receptor *CD163* has been associated with regulation of
252 inflammation (Kowal *et al.* 2011) and has interestingly been linked to immunological changes
253 in monocytes and monocyte-derived macrophages from SARS-CoV-2-infected individuals
254 (Gómez-Rial *et al.* 2020; Trombetta *et al.* 2021; Wendisch *et al.* 2021). Looking specifically at
255 the *CD163^{HIGH}* monocyte population, we found that it displayed high expression levels of
256 genes with profibrotic functions, in line with , including *VCAN*, *LGMN*, *MERTK*, *TFGB1*, *MRC1*,
257 *TGFB1* and *MMP9* and enhanced expression of cytokines including *CCL2*, *CXCL8* or *IL1B* and
258 the cytokine receptor *CCR5* (**Suppl. Fig. 8**). Furthermore, SARS-CoV-2 RNA-positive cells
259 displayed a preferential upregulation of genes implicated in migration and integrin binding
260 (*FN1*, *PPBP*, *THBS1*) as well as differentiation, including *FABP5* and *LGMN*. Together, cells
261 that internalized SARS-CoV-2 particles exhibit a slightly distinct gene expression profile
262 characterized by a consistent reduction of antiviral ISGs and an upregulation of pro-fibrotic genes
263 as opposed to bystander cells with undetectable viral RNA.

264

265

266

267

268

269 **DISCUSSION**

270 In this study we characterized the response of peripheral immune cells, at the cell type level
271 and at individual cells' level, to *ex vivo* SARS-CoV-2 exposure as compared to SARS-CoV.
272 While *ex vivo* experiments inherently do not recapitulate systemic immune cell interactions
273 and lack the context of complex tissues' and organs' interplay and communication, they
274 uniquely allow the side-by-side comparison of two genetically closely related, but functionally
275 different viruses under standardized conditions. Furthermore, they allow assessing the direct
276 consequence of virus exposure on individual cell types.

277 Our results indicate that SARS-CoV-2 and SARS-CoV share inability to detectably
278 infect PBMCs. Previous studies with SARS-CoV and MERS-CoV yielded partially conflicting
279 results regarding the susceptibility of human PBMCs to infection. *Ex vivo*, one publication
280 reported absence of SARS-CoV replication in PBMCs (Castilletti *et al.* 2005), while another
281 work suggested susceptibility and permissiveness of PBMCs to SARS-CoV infection with a
282 high inter-donor variability (L. F. P. Ng *et al.* 2004). *In vivo*, *in situ* hybridization and electron
283 microscopy analyses reported presence of SARS-CoV material in lymphocytes and
284 monocytes derived from infected patients (Gu *et al.* 2005). MERS-CoV was suggested to
285 efficiently replicate in *ex vivo*-infected monocytes (Chu *et al.* 2014), but to only abortively infect
286 human T-cells (Chu *et al.* 2016). Of note, the confirmed receptor for SARS-CoV-2 cell entry
287 (Hoffmann *et al.* 2020) has been reported to be virtually absent in PBMCs (Song *et al.* 2020;
288 Xu *et al.* 2020; Zou *et al.* 2020; Xiong *et al.* 2020), a finding that is in line with our own inability
289 to detect ACE2 mRNA and ACE2 protein expression in PBMCs by various methods.
290 Therefore, we hypothesize that virus particles attach and/or internalize in an ACE2-
291 independent manner, resulting in viral RNA associated to and/or internalized into cells. Given
292 that receptor-independent phagocytosis is a hallmark of monocytes, our observation that the
293 majority of the viral reads were retrieved in monocytic cells underlines this idea. Furthermore,
294 as SARS-CoV ORF7a is a virion-associated protein (Cheng Huang *et al.* 2006) and SARS-
295 CoV-2 ORF7a was reported to efficiently interact with PBMC-derived monocytes (Zhou *et al.*
296 2021), ORF7a may contribute to attachment to monocytes. Interestingly, the binding capability

297 of SARS-CoV ORF7a protein was reported to be significantly weaker as compared to SARS-
298 CoV-2 ORF7a (Zhou et al. 2021), which is consistent with the observed two-fold reduced
299 proportion of virus RNA-positive monocytes in SARS-CoV-exposed PBMCs as compared to
300 SARS-CoV-2.

301 *In vivo*, a multitude of cytokines, including IL-1 β , IL-1RA, IL-7, IL-8, IL-9, IL-10,
302 CXCL10, IFN- γ and TNF- α are upregulated in the plasma of COVID-19 patients, especially in
303 cases with severe outcome (Chaolin Huang et al. 2020). In contrast, mild COVID-19
304 associates with effective type I IFN responses, including expression of type I IFNs themselves
305 and IFN-stimulated genes, that are probably essential to clear the virus infection and
306 orchestrate adaptive immunity accordingly. To date, it remains largely unclear which cell
307 populations are the drivers of these individual responses. Productively infected epithelial cells
308 in the respiratory tract may initiate some of these responses directly; alternatively, or in
309 addition, immune cells may be stimulated by signals released by productively infected cells or
310 by virions and/or viral proteins directly. Studies on the consequence of the physical interaction
311 of SARS-CoV-2 with infection-refractory primary immune cells, as opposed to susceptible cell
312 types in the respiratory tract, are largely missing. Of note, cytokines levels and composition
313 differ in serum and bronchoalveolar lavage fluid of patients with COVID-19 (Xiong et al. 2020),
314 suggesting that productively infected epithelial tissue in the respiratory tract and
315 nonsusceptible peripheral immune cells initiate different cytokine responses. Pro-inflammatory
316 monocytes that infiltrate the lung have been proposed to represent major cytokine producers
317 in the lung microenvironment (Liao et al. 2020). In line with this idea, SARS-CoV-2-susceptible
318 infected cell lines and primary cells (Blanco-Melo et al. 2020) display imbalanced host
319 responses, with strong cytokine and ablated ISG responses, when compared to other
320 respiratory virus infections. Also, studies performed in the SARS-CoV-2 Syrian hamster model
321 uncovered an early and strong cytokine response in the myeloid compartment of the lung
322 (Nouailles et al. 2021). Here, our data provide first insight on the response of refractory PBMCs
323 upon exposure to virus particles in the absence of co-stimulating infected cell types. The lack
324 of expression of pro-inflammatory cytokines, including IL-6, TNFa and IL-1 in SARS-CoV-2-

325 exposed PBMCs is in line with the idea that these cytokines are mainly derived from the
326 respiratory tract representing the site of productive infection and it may partially explain the
327 absence of lymphocyte depletion in our experimental setting that is observed *in vivo* (Chaolin
328 Huang et al. 2020; Qin et al. 2020; D. Wang et al. 2020). In our *ex vivo* PBMC setting, which
329 is devoid of productive infection, SARS-CoV-2, but not SARS-CoV particles induced innate
330 immune responses in the absence of coculture with infected epithelial cells, indicating that
331 direct exposure with virions can trigger responses in PBMCs.

332 Immune responses were initiated in different cell types with a focus on monocytes and
333 were characterized by ample induction of expression of *IFIT1* and several other ISGs, as
334 opposed to pro-inflammatory cytokines, including *IL6* mRNA expression. Our data suggest
335 that this response may be triggered, at least to a certain extent, in a virus replication-
336 independent manner. Despite our failure to detect IFN gene expression at the time points
337 investigated, the Ruxolitinib-sensitive induction of *IFIT1* expression strongly suggests an
338 underlying IFN signaling-dependent mechanism. Comparison of cells with and without
339 detectable SARS-CoV-2 RNA revealed quantitative differences regarding gene expression.
340 Genes associated to fibrosis, migration and integrin binding were mildly upregulated in cells
341 with detectable viral RNA when compared to bystander cells, defined as cells of the SARS-
342 CoV-2-exposed cell culture which lacked detectable viral reads. Interestingly, monocytes
343 developing profibrotic functions have recently been established in the context of COVID-19 *in*
344 *vivo* (Wendisch et al. 2021). Bystander cells displayed enhanced ISG expression, suggesting
345 either a more efficient and more probable internalization into cells with a low ISG profile or,
346 alternatively, delivery of a SARS-CoV-2-specific sensing antagonist in the context of efficient
347 particle internalization. Multiple SARS-related coronaviruses-encoded IFN antagonists,
348 including structural components of the incoming virion that do not require productive infection
349 for being expressed and functional, dampen innate immune responses when ectopically
350 expressed, including membrane and nucleocapsid proteins (Lei et al. 2020). In addition, virion
351 components including ORF3 and ORF6 (Bai et al. 2021; Cheng Huang, Peters, and Makino
352 2007; Ito et al. 2005) have type I IFN evasion properties (Li et al. 2020; Schroeder et al. 2021;

353 Lei et al. 2020)). Interestingly, among those, ORF6 from SARS-CoV-2 was described to be
354 inferior in counteracting phospho-IRF3 nuclear translocation in infected cells, compared to
355 SARS-CoV ORF6, resulting in higher ISG induction (Schroeder et al. 2021). Therefore,
356 incoming viral RNA sensing may be less efficiently prevented by SARS-CoV-2 ORF6 as
357 compared to SARS-CoV ORF6. Finally, the large absence of a detectable ISG expression
358 profile in SARS-CoV-exposed PBMCs is consistent with a previous report analyzing abortively
359 infected monocyte-derived macrophages (Cheung et al. 2005).

360 Together, our study provides analysis of gene expression in *ex vivo*-exposed PBMCs
361 at the cell type and individual cell's level. Our data suggest that direct stimulation of monocytes
362 through physical contact to SARS-CoV-2 particles is followed by strong ISG induction, despite
363 absence of detectable productive infection.

364

365 **METHODS**

366

367 **Cell Lines and Primary Cells**

368 Vero E6 (ATCC CRL-1586) cells, Calu-3 (ATCC HTB-55) cells and HEK293T (ATCC CRL-
369 3216) cells were cultivated in Dulbecco's modified Eagle's medium (DMEM) supplemented
370 with 10% heat-inactivated fetal calf serum, 1% non-essential amino acids (Thermo Fisher
371 Scientific) and 1% sodium pyruvate (Thermo Fisher Scientific) in a 5% CO₂ atmosphere at
372 37°C. Cell lines were routinely monitored for absence of mycoplasma and paramyxovirus
373 simian virus 5.

374 Withdrawal of blood samples from healthy humans and cell isolation were conducted
375 with approval of the local ethics committee (Ethical review committee of Charité Berlin, votes
376 EA4/166/19 and EA4/167/19). Human PBMCs were isolated from buffy coats by Ficoll-
377 Hypaque centrifugation. PBMCs were cultured at 2 × 10⁶/ml in RPMI 1640 containing 10%
378 heat-inactivated fetal calf serum (Sigma-Aldrich), 1% penicillin-streptomycin (Thermo Fisher
379 Scientific) and 2 mM L-glutamine (Thermo Fisher Scientific).

380 **Viruses**

381 SARS-CoV isolate HKU-39849 (accession no. JQ316196.1, (Zeng et al. 2003; van den Worm
382 et al. 2012)) and the SARS-CoV-2 BetaCoV/Munich/ChVir984/2020 isolate (B.1 lineage,
383 EPI_ISL_406862, (Wölfel et al. 2020)) were used.

384 Virus was grown on Vero E6 cells and concentrated using Vivaspin® 20 concentrators with a
385 size exclusion of 100 kDa (Sartorius Stedim Biotech) in order to remove cytokines of lower
386 molecular weight, including IFNs. Virus stocks were stored at -80°C, diluted in OptiPro serum-
387 free medium supplemented with 0.5% gelatine and PBS. Titer was defined by plaque titration
388 assay. Cells inoculated with culture supernatants from uninfected Vero cells mixed with
389 OptiPro serum-free medium supplemented with 0.5% gelatine and PBS, served as mock-
390 infected controls. All infection experiments were carried out under biosafety level three
391 conditions with enhanced respiratory personal protection equipment.

392

393 **Plaque Titration Assay**

394 The amount of infectious virus particles was determined via plaque titration assay. Vero E6
395 cells were plated at 3.5×10^5 cell/ml in 24-well and infected with 200 μ l of a serial dilution of
396 virus-containing cell culture supernatant diluted in OptiPro serum-free medium. One hour after
397 adsorption, supernatants were removed and cells overlaid with 2.4% Avicel (FMC
398 BioPolymers) mixed 1:1 in 2xDMEM. Three days post-infection, the overlay was removed,
399 cells were fixed in 6% formaldehyde and stained with a 0.2% crystal violet, 2% ethanol and
400 10% formaldehyde. Plaque forming units were determined from at least two dilutions for which
401 distinct plaques were detectable.

402

403 **Virus Exposure of PBMCs**

404 30 min prior to virus exposure, PBMCs were left mock-treated or treated with Ruxolitinib (10
405 μ M) or Remdesivir (20 μ M). Treatment was maintained for the duration of the entire
406 experiment. Virus challenge occurred by inoculation of 0.4×10^6 cells/ml in RPMI cell culture
407 medium supplemented with 2% FCS. Four hours post-challenge, cells were centrifuged and

408 supernatants were collected (referred to as inoculum). Cells were resuspended in RPMI cell
409 culture medium supplemented with 10% FCS and plated at 0.4×10^6 cell/1.5 ml in 12-wells.
410 In addition, post-wash samples were collected. For further sampling, cell culture supernatant
411 was centrifuged, supernatant was collected and mixed with OptiPro serum-free medium
412 supplemented with 0.5% gelatine for titration on Vero E6 cell or mixed with RAV1 buffer for
413 viral RNA extraction and stored at -80°C until sample processing. Suspension cells and
414 adherent cells were lysed in Trizol reagents and subjected to total RNA extraction.

415

416 **Reagents and Inhibitors**

417 Ruxolitinib was purchased from InvivoGen and used at 10 μ M concentration. Remdesivir
418 (Gilead Sciences) was kindly provided by the Department of Infectious Diseases and
419 Respiratory Medicine, Charité - Universitätsmedizin Berlin.

420

421 **Quantitative RT-Q-PCR**

422 Viral RNA was extracted from cell culture supernatants using the NucleoSpin RNA virus
423 isolation kit (Macherey-Nagel) according to the manufacturer's instructions. Total RNA
424 extraction from cells and DNase treatment were performed with Direct-zol RNA extraction kit
425 (Zymo Research). Viral genome equivalents were determined using a previously published
426 assay specific for both SARS-CoV and SARS-CoV-2 E gene (Corman *et al.*, 2020).
427 Subgenomic E gene expression was analyzed using the same probe and reverse primer
428 combined with a forward primer, which is located in the SARS-CoV-2 leader region (sgLead-
429 CoV-F: CGA TCT CTT GTA GAT CTG TTC TC (Wölfel *et al.* 2020)).

430 To analyze human gene expression, extracted RNA extraction was subjected to cDNA
431 synthesis (NEB, Invitrogen). Quantification of relative mRNA levels was performed with the
432 LightCycler 480 Instrument II (Roche) using Taq-Man PCR technology. For human *IFIT1* and
433 *IFNB1*, a premade primer-probe kit was used (Applied Biosystems, assay IDs:
434 Hs01911452_s1; Hs01077958_s1; respectively). For human *ACE2* (*ACE2-F*: TGCCTATCC
435 TTCCTATATCAGTCCAA, *ACE2-R*: GAGTACAGATTGTCCAAATCTAC, *ACE2-P*: 6-

436 FAM/ATGCCTCCCTGCTCATTGCTTGGT/IBFQ), *IL-6* (IL-6-F:
437 GGATTCAATGAGGAGACTTGC, IL-6-R: CACAGCTCTGGCTTGTCC, IL-6-P: 6-
438 FAM/AATCATCAC/ZEN/TGGTCTTTGGAGTTGAGG/IBFQ) and *IFNA1* (IFNA1-
439 F:GGGATGAGGACCTCCTAGACAA, IFNA1-R:CATCACACAGGCTTCCAAGTCA, IFNA1-
440 P:6-FAM/TTCTGCACCGAACTCTACCAGCAGCTG/BHQ), customer-designed
441 oligonucleotides were synthesized by Integrated DNA Technologies (IDT). Relative mRNA
442 levels were determined using the $\Delta\Delta Ct$ method using human *RNASEP* (Applied Biosystems)
443 as internal reference. Data analysis was performed using LightCycler Software 4.1 (Roche).
444

445 **Immunoblotting**

446 Cells were washed once with ice-cold PBS and lysed in 60 μ l RIPA Lysis Buffer (Thermo
447 Fisher Scientific) supplied with 1% protease inhibitor cocktail set III (Merck Chemicals) for 30
448 min at 4°C. Cell debris were pelleted for 10 min at 13000g and 4°C and the supernatant was
449 transferred to a fresh tube. Protein concentration was determined with the Thermo Scientific's
450 Pierce™ BCA protein assay kit according to the manufacturer's instructions. Protein lysates
451 were mixed with 4 X NuPAGE LDS Sample Buffer (Invitrogen) supplied with 10% 2-
452 mercaptoethanol (Roth) and inactivated for 10 min at 99°C. Proteins were separated by size
453 on a 12% sodium dodecyl sulfate polyacrylamide gel and blotted onto a 0.2 μ m PVDF
454 membrane (Thermo Scientific) by semi-dry blotting (BioRad). Human ACE2 was detected
455 using a polyclonal goat anti-human ACE2 antibody (1:500, R&D Systems), a horseradish
456 peroxidase (HRP)-labeled donkey anti-goat antibody (1:5000, Dianova) and Super Signal West
457 Femto Chemiluminescence Substrate (Thermo Fisher Scientific). As a loading control, samples
458 were analyzed for β -Actin expression using a mouse anti- β -actin antibody (1:5000, Sigma Aldrich)
459 and a HRP-labeled goat anti-mouse antibody (1:10000, Dianova).
460
461
462

463 **Single-Cell RNA-Seq**

464 Single-Cell RNA-seq libraries were prepared with the 10x Genomics platform using the
465 Chromium Next GEM Single Cell 3' Reagent Kits v.3.1 following manufacturer's instructions.
466 Samples were multiplexed using TotalSeq-A Antibodies purchased from BioLegend (A0256,
467 A0258 and A0259). Antibody staining and the subsequent library preparation were performed
468 following manufacturer's instructions. Quality control of the libraries were performed with the
469 KAPA Library Quantification Kit and Agilent TapeStation. Libraries were sequenced on a
470 HiSeq4000 using the following sequencing mode: read 1: 28 bp, read 2: 91-100 bp, Index i7:
471 8 bp. The libraries were sequenced to reach ~20 000 reads per cell.

472

473 **Single-Cell RNA-Seq Data Analysis**

474 BCL files from the sequencing protocol were processed using the Cell Ranger pipeline v 3.1.0
475 (10X Genomics) and further analysed using the Seurat v3.1.4 package (Butler *et al.* 2018) in
476 R v3.6 (<https://www.r-project.org/>). Pre-processing of the data was performed using the
477 recommended SCTransform procedure and the IntegrateData with PrepSCTIntegration
478 workflows to eliminate batch effects. A comprehensive description of the code used in the
479 analysis of data is available at https://github.com/GoffinetLab/SARS-CoV-2_PBMC-study. Cell
480 types were identified based on marker gene expression (Schulte-Schrepping *et al.* 2020): B-
481 cells (*CD3D*, *MS4A1*⁺), CD4⁺ T-cells (*CD3D*⁺, *CD8A*⁻), CD8⁺ T-cells (*CD3D*⁺, *CD8A*⁺), NK cells
482 (*CD3D*⁻, *CD8A*⁻, *NKG7*⁺, *GNLY*⁺), Monocytes (*CD3D*⁻, *CD14*⁺, *FCGR3A*⁺).

483

484 **Cell Trajectory Analysis**

485 Cell trajectory analysis was performed using the Monocle v2.14.0 package (Trapnell *et*
486 *al.*, 2014) according to the guidelines set out by the developers. Different cell types were
487 subclustered and processed as mentioned above. A resolution parameter of 0.3 was used for
488 clustering. DEGs between clusters were determined using Seurat's FindAllMarkers function
489 (Wilcoxon sum-rank test); of these, genes with a Bonferroni-corrected p-value of <0.05 were

490 imputed as ordering genes to generate the minimum spanning tree using the DDRTree
491 algorithm. Code available at https://github.com/GoffinetLab/SARS-CoV-2_PBMC-study.

492

493 **IFN Module Score**

494 The IFN-signaling pathway gene set [R-HSA-913531] from the Reactome database (Bijay *et*
495 *al.*, 2020) was retrieved from the Molecular Signatures Database (MSigDB) (Liberzon *et al.*,
496 2011). Cells were scored on their expression of these genes using the AddModuleScore
497 function in Seurat, which is referred to as the IFN module score as the pathway includes genes
498 canonically differentially regulated in response to interferon signaling.

499

500 **Flow Cytometry Analysis**

501 PBS-washed cells were PFA-fixed and immunostained for individual surface protein
502 expression using the following antibodies: Anti-CD3-FITC (#561807; BD Biosciences), anti-
503 CD4-APC (#555349; BD Biosciences), anti-CD14-PE (#561707; BD Biosciences), anti-CD19-
504 FITC (#21270193; ImmunoTools), anti-NRP1/CD304-APC-R700 (#566038, BD Biosciences),
505 anti-PD-1/CD279-PE (#21272794; ImmunoTools) and anti-TIM-3/CD366-FITC (#345022;
506 Biolegend). To determine ACE2 cell surface expression, cells were immunostained with a goat
507 anti-human ACE2 antibody (#AF933, R&D Systems) followed by immunostaining with a
508 secondary antibody donkey anti-goat Alexa Fluor 488 (#A-11055, Thermo Fisher). ACE2-
509 positive HEK293T cells were generated by transduction of cells with retroviral vectors
510 generated by transfection of HEK293T cells with MLV gag-pol (Bartosch, Dubuisson, and
511 Cosset 2003), pCX4bsrACE2 (Kamitani *et al.* 2006) and pVSV-G (Stewart *et al.* 2003). A
512 FACS Lyric device (Becton Dickinson, Franklin Lakes, New Jersey, USA) with BD Suite
513 Software was used for analysis.

514

515 **Data Presentation and Statistical Analysis**

516 If not stated otherwise, bars show the arithmetic mean of indicated amount of repetitions. Error
517 bars indicate S.E.M. from the indicated amount of individual experiments. Statistical

518 significance was calculated by performing Student's t-test using GraphPad Prism. *P* values
519 <0.05 were considered significant and marked accordingly: *P*<0.05 (*),*P* <0.01 (**) or *P*<
520 0.001; n.s. = not significant (≥ 0.05).

521

522 **Data availability**

523 The raw sequencing datasets generated during this study will be made available at the NCBI
524 Gene Expression Omnibus.

525

526 **Acknowledgments**

527 We thank Julian Heinze for excellent technical support. We thank J. S. M. Peiris, University of
528 Hong Kong, China for providing the SARS-SARS-CoV isolate HKU-39849. We are grateful for
529 access to the BIH Core Facility Sequencing. This work was supported by funding from Berlin
530 Institute of Health (BIH) to C.G. J.K. is supported by the Center of Infection Biology and
531 Immunity (ZIBI) and Charité PhD Program. Part of this work was supported by Deutsche
532 Forschungsgemeinschaft (DFG) (SFB TR84 to CD) and Bundesministerium für Bildung und
533 Forschung (BMBF) through the projects RAPID-2 (01KI2006A) to CD. A.-E.S. thanks FOR-
534 COVID (Bayerisches Staatsministerium für Wissenschaft und Kunst) and the Helmholtz
535 Association for financial support.

536

537 **Author Contributions**

538 J.K., K.F., D.N. and C.G. conceived and designed the experiments; J.K., K.F., J.J., A.R.,
539 L.B.D.J., C.S., M.S., and D.N. performed the experiments, J.K., K.F., D.P., C.F., L.B.D.J., D.N.
540 and C.G. analyzed the data; C.D., A.E.S. and L.S. provided resources; D.N. and C.G. drafted
541 the manuscript.; J.K., K.F., D.P., D.N. and C.G. reviewed and edited the manuscript; S.S.,
542 D.N. and C.G. supervised the research.

543

544

545 **Conflict of Interest**

546 Technische Universität Berlin, Freie Universität Berlin and Charité - Universitätsmedizin have
547 filed a patent application for siRNAs inhibiting SARS-CoV-2 replication with D.N. as co-author.

548

549 **LEGENDS**

550 **Figure 1. Absence of productive infection of PBMCs by SARS-CoV and SARS-CoV-2**

551 Untreated or Ruxolitinib (10 μ M)-treated PBMCs from four individual donors were exposed to
552 SARS-CoV or SARS-CoV-2 (MOI 0.5). PBMCs inoculated with supernatant from Vero E6 cell
553 cultures mixed with PBS and OptiPro serum-free medium supplemented with 0.5% gelatine
554 were used as control condition (Mock). Supernatants and individual cell fractions were
555 collected at indicated time points post-inoculation and analyzed for:

556 **(A-B)** Infectivity in cell culture supernatants by plaque titration assay

557 **(C-D)** Relative changes of viral RNA (genome equivalents) quantities in cell culture
558 supernatants by Q-RT-PCR

559 **(E)** Relative changes of cell-associated viral genomic RNA quantities by Q-RT-PCR
560 normalized to cellular *RNASEP* expression

561 Data were generated in four individual experiments using cells from four individual donors
562 represented by different symbols. n.d. = not detectable; h.p.e. = hours post-exposure; RMV =
563 Remdesivir; Ruxo. = Ruxolitinib.

564

565 **Figure 2. Exposure of PBMCs to SARS-CoV-2, but not SARS-CoV, triggers a JAK/STAT-
566 dependent cell-intrinsic innate response**

567 RNA extracted from Ruxolitinib-treated or mock-treated, and SARS-CoV-, SARS-CoV-2- or
568 mock-exposed PBMCs was analyzed for:

569 **(A)** *IFIT1*,

570 **(B)** *IL-6*,

571 (C) *IFNA1* and *IFNB1* mRNA expression
572 by Q-RT-PCR at indicated time points. Suspension and adherent cell fractions were analyzed
573 separately, except at the four hours time point. Values were normalized to cellular *RNASEP*
574 expression and are shown as fold change over mock-inoculated conditions. The dotted line
575 indicates the expression level of mock-inoculated cell cultures and is set to 1.
576 Data were generated in four individual experiments using PBMCs from four individual donors
577 represented by different symbols. n.d. = not detectable.

578

579 **Figure 3. SARS-CoV-2 exposure causes transcriptional changes in most cell types**

580 PBMCs isolated from two donors were exposed to SARS-CoV, SARS-CoV-2 or mock-
581 exposed, and analyzed by scRNA-sequencing 24 hours post-exposure.

582 (A) UMAP displaying all identified cell types,

583 (B) UMAP indicating the data obtained from the PBMCs of the two donors,

584 (C) Identified cell types according to condition.

585

586 **Figure 4. Exposure to SARS-CoV-2 induces a global innate immunity-related gene**
587 **profile in PBMCs with cell type-specific signatures**

588 (A) Pseudotime cell trajectory analysis and GSEA analysis using genes differentially regulated
589 between mock-, SARS-CoV- and SARS-CoV-2-challenged conditions for indicated cell types.

590 (B) Representative UMAPs showing *IFIT1* and *ISG15* mRNA expression in the indicated
591 conditions.

592 (C) Volcano plot of all DEGs in SARS-CoV-2-exposed cells compared to mock-exposed cells
593 in the indicated cell types. Known ISGs were colored in green based on their presence in the
594 interferome database (<http://www.interferome.org/>; v2.01).

595 (D) Cell trajectory maps of indicated cell types with cells colored by expression of the genes
596 in an IFN-module gene set.

597 (E) Dot plot depicting expression of selected ISGs and cytokines. Expression levels are color-
598 coded, the percentage of cells expressing the respective gene is coded by symbol size.

599

600 **Figure 5. Viral RNA-positive monocytes trend toward downregulation of ISGs and**
601 **upregulation of fibrosis-associated genes**

602 (A) UMAP highlighting cells in which transcripts of either SARS-CoV RNA (blue) or SARS-
603 CoV-2 RNA (magenta) were identified.

604 (B) Virus-specific reads were aligned to the SARS-CoV or SARS-CoV-2 genome. Coverage
605 of the genome is shown in counts per 100 bp.

606 (C) Bar graph showing the absolute number (bars) and relative percentage of cells that were
607 identified as virus RNA-positive in SARS-CoV- and SARS-CoV-2-inoculated cultures,
608 respectively.

609 (D) Plot of Log_{10} average expression of genes showing a $\text{Log}_2(\text{fold change}) > 0.2$ in viral RNA-
610 positive versus viral RNA-negative monocytes from the SARS-CoV- (left panel) and SARS-
611 CoV-2- (right panel) inoculated PBMCs with genes showing the highest expression fold
612 change between both conditions.

613 (E) IFN Module Score of viral-RNA-negative (grey), SARS-CoV-RNA-positive (blue) and
614 SARS-CoV-2-RNA-positive (magenta) monocytes. Statistical significance was tested using a
615 Wilcoxon rank sum test with continuity correction.

616

617

618

619

620

621

622 **References**

623 Anderson, Elizabeth M., Eileen C. Goodwin, Anurag Verma, Claudia P. Arevalo, Marcus J.
624 Bolton, Madison E. Weirick, Sigrid Gouma, et al. 2021. "Seasonal Human Coronavirus
625 Antibodies Are Boosted upon SARS-CoV-2 Infection but Not Associated with
626 Protection." *Cell* 184 (7): 1858–64.e10.

627 Andersson, Monique I., Carolina V. Arancibia-Carcamo, Kathryn Auckland, J. Kenneth
628 Baillie, Eleanor Barnes, Tom Beneke, Sagida Bibi, et al. 2020. "SARS-CoV-2 RNA
629 Detected in Blood Products from Patients with COVID-19 Is Not Associated with
630 Infectious Virus." *Wellcome Open Research* 5 (October): 181.

631 Arunachalam, Prabhu S., Florian Wimmers, Chris Ka Pun Mok, Ranawaka A. P. M. Perera,
632 Madeleine Scott, Thomas Hagan, Natalia Sigal, et al. 2020. "Systems Biological
633 Assessment of Immunity to Mild versus Severe COVID-19 Infection in Humans."
634 *Science* 369 (6508): 1210–20.

635 Bacher, Petra, Elisa Rosati, Daniela Esser, Gabriela Rios Martini, Carina Saggau, Esther
636 Schiminsky, Justina Dargvainiene, et al. 2020. "Low-Avidity CD4+ T Cell Responses to
637 SARS-CoV-2 in Unexposed Individuals and Humans with Severe COVID-19." *Immunity*
638 53 (6): 1258–71.e5.

639 Bai, Zhihua, Ying Cao, Wenjun Liu, and Jing Li. 2021. "The SARS-CoV-2 Nucleocapsid
640 Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for
641 Drug or Vaccine Mitigation." *Viruses* 13 (6). <https://doi.org/10.3390/v13061115>.

642 Bartosch, Birke, Jean Dubuisson, and François-Loïc Cosset. 2003. "Infectious Hepatitis C
643 Virus Pseudo-Particles Containing Functional E1-E2 Envelope Protein Complexes." *The
644 Journal of Experimental Medicine* 197 (5): 633–42.

645 Bastard, P., L. B. Rosen, Q. Zhang, E. Michailidis, H. H. Hoffmann, Y. Zhang, K. Dorgham,
646 et al. 2020. "Auto-Antibodies against Type I IFNs in Patients with Life-Threatening
647 COVID-19." *Science*. <https://doi.org/10.1126/science.abd4585>.

648 Blanco-Melo, Daniel, Benjamin E. Nilsson-Payant, Wen-Chun Liu, Skyler Uhl, Daisy
649 Hoagland, Rasmus Møller, Tristan X. Jordan, et al. 2020. "Imbalanced Host Response
650 to SARS-CoV-2 Drives Development of COVID-19." *Cell* 181 (5): 1036–45.e9.

651 Bost, Pierre, Amir Giladi, Yang Liu, Yanis Bendjelal, Gang Xu, Eyal David, Ronnie Blecher-
652 Gonen, et al. 2020. "Host-Viral Infection Maps Reveal Signatures of Severe COVID-19
653 Patients." *Cell* 181 (7): 1475–88.e12.

654 Braun, Julian, Lucie Loyal, Marco Frentsche, Daniel Wendisch, Philipp Georg, Florian Kurth,
655 Stefan Hippenstiel, et al. 2020. "SARS-CoV-2-Reactive T Cells in Healthy Donors and
656 Patients with COVID-19." *Nature* 587 (7833): 270–74.

657 Butler, Andrew, Paul Hoffman, Peter Smibert, Efthymia Papalexis, and Rahul Satija. 2018.
658 "Integrating Single-Cell Transcriptomic Data across Different Conditions, Technologies,
659 and Species." *Nature Biotechnology* 36 (5): 411–20.

660 Castilletti, Concetta, Licia Bordi, Eleonora Lalle, Gabriella Rozera, Fabrizio Poccia, Chiara
661 Agrati, Isabella Abbate, and Maria R. Capobianchi. 2005. "Coordinate Induction of IFN-
662 Alpha and -Gamma by SARS-CoV Also in the Absence of Virus Replication." *Virology*
663 341 (1): 163–69.

664 Chen, Nanshan, Min Zhou, Xuan Dong, Jieming Qu, Fengyun Gong, Yang Han, Yang Qiu,
665 et al. 2020. "Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel
666 Coronavirus Pneumonia in Wuhan, China: A Descriptive Study." *The Lancet* 395
667 (10223): 507–13.

668 Cheung, Chung Y., Leo L. M. Poon, Iris H. Y. Ng, Winsie Luk, Sin-Fun Sia, Mavis H. S. Wu,
669 Kwok-Hung Chan, et al. 2005. "Cytokine Responses in Severe Acute Respiratory
670 Syndrome Coronavirus-Infected Macrophages in Vitro: Possible Relevance to
671 Pathogenesis." *Journal of Virology* 79 (12): 7819–26.

672 Chu, Hin, Jie Zhou, Bosco Ho-Yin Wong, Cun Li, Jasper Fuk-Woo Chan, Zhong-Shan
673 Cheng, Dong Yang, et al. 2016. "Middle East Respiratory Syndrome Coronavirus
674 Efficiently Infects Human Primary T Lymphocytes and Activates the Extrinsic and

675 Intrinsic Apoptosis Pathways." *The Journal of Infectious Diseases* 213 (6): 904–14.
676 Chu, Hin, Jie Zhou, Bosco Ho-Yin Wong, Cun Li, Zhong-Shan Cheng, Xiang Lin, Vincent
677 Kwok-Man Poon, et al. 2014. "Productive Replication of Middle East Respiratory
678 Syndrome Coronavirus in Monocyte-Derived Dendritic Cells Modulates Innate Immune
679 Response." *Virology* 454-455 (April): 197–205.
680 Delorey, Toni M., Carly G. K. Ziegler, Graham Heimberg, Rachelle Normand, Yiming Yang,
681 Åsa Segerstolpe, Domenic Abbondanza, et al. 2021. "COVID-19 Tissue Atlases Reveal
682 SARS-CoV-2 Pathology and Cellular Targets." *Nature* 595 (7865): 107–13.
683 Gómez-Rial, Jose, María José Currás-Tuala, Irene Rivero-Calle, Alberto Gómez-Carballa,
684 Miriam Cebey-López, Carmen Rodríguez-Tenreiro, Ana Dacosta-Urbieto, et al. 2020.
685 "Increased Serum Levels of sCD14 and sCD163 Indicate a Preponderant Role for
686 Monocytes in COVID-19 Immunopathology." *Frontiers in Immunology* 11 (September):
687 560381.
688 Gu, Jiang, Encong Gong, Bo Zhang, Jie Zheng, Zifen Gao, Yanfeng Zhong, Wanzhong Zou,
689 et al. 2005. "Multiple Organ Infection and the Pathogenesis of SARS." *The Journal of
690 Experimental Medicine* 202 (3): 415–24.
691 Hoffmann, Markus, Hannah Kleine-Weber, Simon Schroeder, Nadine Krüger, Tanja Herrler,
692 Sandra Erichsen, Tobias S. Schiergens, et al. 2020. "SARS-CoV-2 Cell Entry Depends
693 on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor." *Cell*
694 181 (2): 271–80.e8.
695 Huang, Chaolin, Yeming Wang, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu, Li Zhang, et al.
696 2020. "Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan,
697 China." *The Lancet* 395 (10223): 497–506.
698 Huang, Cheng, Naoto Ito, Chien-Te K. Tseng, and Shinji Makino. 2006. "Severe Acute
699 Respiratory Syndrome Coronavirus 7a Accessory Protein Is a Viral Structural Protein." *Journal of Virology* 80 (15): 7287–94.
700 Huang, Cheng, C. J. Peters, and Shinji Makino. 2007. "Severe Acute Respiratory Syndrome
701 Coronavirus Accessory Protein 6 Is a Virion-Associated Protein and Is Released from
702 Protein-Expressing Cells." *Journal of Virology* 81 (10): 5423–26.
703 Ito, Naoto, Eric C. Mossel, Krishna Narayanan, Vsevolod L. Popov, Cheng Huang, Taisuke
704 Inoue, Clarence J. Peters, and Shinji Makino. 2005. "Severe Acute Respiratory
705 Syndrome Coronavirus 3a Protein Is a Viral Structural Protein." *Journal of Virology* 79
706 (5): 3182–86.
707 Jones, Terry C., Guido Biele, Barbara Mühlmann, Talitha Veith, Julia Schneider, Jörn
708 Beheim-Schwarzbach, Tobias Bleicker, et al. 2021. "Estimating Infectiousness
709 throughout SARS-CoV-2 Infection Course." *Science* 373 (6551).
710 <https://doi.org/10.1126/science.abi5273>.
711 Kamitani, Wataru, Krishna Narayanan, Cheng Huang, Kumari Lokugamage, Tetsuro
712 Ikegami, Naoto Ito, Hideyuki Kubo, and Shinji Makino. 2006. "Severe Acute Respiratory
713 Syndrome Coronavirus nsp1 Protein Suppresses Host Gene Expression by Promoting
714 Host mRNA Degradation." *Proceedings of the National Academy of Sciences of the
715 United States of America* 103 (34): 12885–90.
716 Kowal, Krzysztof, Richard Silver, Emila Sławińska, Marek Bielecki, Lech Chyczewski, and
717 Otylia Kowal-Bielecka. 2011. "CD163 and Its Role in Inflammation." *Folia Histochemica
718 et Cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical
719 Society* 49 (3): 365–74.
720 Lee, Jeffrey Y., Peter Ac Wing, Dalia S. Gala, Marko Noerenberg, Aino I. Järvelin, Joshua
721 Titlow, Xiaodong Zhuang, et al. 2022. "Absolute Quantitation of Individual SARS-CoV-2
722 RNA Molecules Provides a New Paradigm for Infection Dynamics and Variant
723 Differences." *eLife* 11 (January). <https://doi.org/10.7554/eLife.74153>.
724 Lei, Xiaobo, Xiaojing Dong, Ruiyi Ma, Wenjing Wang, Xia Xiao, Zhongqin Tian, Conghui
725 Wang, et al. 2020. "Activation and Evasion of Type I Interferon Responses by SARS-
726 CoV-2." *Nature Communications* 11 (1): 3810.
727 Liao, Mingfeng, Yang Liu, Jing Yuan, Yanling Wen, Gang Xu, Juanjuan Zhao, Lin Cheng, et
728 al. 2020. "Single-Cell Landscape of Bronchoalveolar Immune Cells in Patients with
729 SARS-CoV-2." *Nature Communications* 11 (1): 3810.

730 COVID-19." *Nature Medicine* 26 (6): 842–44.

731 Li, Jin-Yan, Ce-Heng Liao, Qiong Wang, Yong-Jun Tan, Rui Luo, Ye Qiu, and Xing-Yi Ge.

732 2020. "The ORF6, ORF8 and Nucleocapsid Proteins of SARS-CoV-2 Inhibit Type I

733 Interferon Signaling Pathway." *Virus Research* 286 (September): 198074.

734 Nelde, Annika, Tatjana Bilich, Jonas S. Heitmann, Yacine Maringer, Helmut R. Salih, Malte

735 Roerden, Maren Lübke, et al. 2021. "SARS-CoV-2-Derived Peptides Define

736 Heterologous and COVID-19-Induced T Cell Recognition." *Nature Immunology* 22 (1):

737 74–85.

738 Ng, Kevin W., Nikhil Faulkner, Georgina H. Cornish, Annachiara Rosa, Ruth Harvey, Saira

739 Hussain, Rachel Ulferts, et al. 2020. "Preexisting and de Novo Humoral Immunity to

740 SARS-CoV-2 in Humans." *Science* 370 (6522): 1339–43.

741 Ng, Lisa F. P., Martin L. Hibberd, Eng-Eong Ooi, Kin-Fai Tang, Soek-Ying Neo, Jenny Tan,

742 Karuturi R. Krishna Murthy, et al. 2004. "A Human in Vitro Model System for

743 Investigating Genome-Wide Host Responses to SARS Coronavirus Infection." *BMC*

744 *Infectious Diseases* 4 (September): 34.

745 Nouailles, Geraldine, Emanuel Wyler, Peter Pennitz, Dylan Postmus, Daria Vladimirova,

746 Julia Kazmierski, Fabian Pott, et al. 2021. "Temporal Omics Analysis in Syrian

747 Hamsters Unravel Cellular Effector Responses to Moderate COVID-19." *Nature*

748 *Communications* 12 (1): 4869.

749 Prebensen, Christian, Peder L. Myhre, Christine Jonassen, Anbjørg Rangberg, Anita

750 Blomfeldt, My Svensson, Torbjørn Omland, and Jan-Erik Berdal. 2021. "Severe Acute

751 Respiratory Syndrome Coronavirus 2 RNA in Plasma Is Associated With Intensive Care

752 Unit Admission and Mortality in Patients Hospitalized With Coronavirus Disease 2019."

753 *Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of*

754 *America*.

755 Qin, Chuan, Luoqi Zhou, Ziwei Hu, Shuoqi Zhang, Sheng Yang, Yu Tao, Cuihong Xie, et al.

756 2020. "Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China." *Clinical Infectious Diseases: An Official Publication of the*

757 *Infectious Diseases Society of America* 71 (15): 762–68.

758 RECOVERY Collaborative Group, Peter Horby, Wei Shen Lim, Jonathan R. Emberson,

759 Marion Mafham, Jennifer L. Bell, Louise Linsell, et al. 2021. "Dexamethasone in

760 Hospitalized Patients with Covid-19." *The New England Journal of Medicine* 384 (8):

761 693–704.

762 RECOVERY Collaborative Group, Peter W. Horby, Marion Mafham, Leon Peto, Mark

763 Campbell, Guilherme Pessoa-Amorim, Enti Spata, et al. 2021. "Casirivimab and

764 Imdevimab in Patients Admitted to Hospital with COVID-19 (RECOVERY): A

765 Randomised, Controlled, Open-Label, Platform Trial." *bioRxiv. medRxiv*.

766 <https://doi.org/10.1101/2021.06.15.21258542>.

767 Rothe, Camilla, Mirjam Schunk, Peter Sothmann, Gisela Bretzel, Guenter Froeschl, Claudia

768 Wallrauch, Thorbjörn Zimmer, et al. 2020. "Transmission of 2019-nCoV Infection from

769 an Asymptomatic Contact in Germany." *The New England Journal of Medicine* 382 (10):

770 970–71.

771 Schroeder, Simon, Fabian Pott, Daniela Niemeyer, Talitha Veith, Anja Richter, Doreen Muth,

772 Christine Goffinet, Marcel A. Müller, and Christian Drosten. 2021. "Interferon

773 Antagonism by SARS-CoV-2: A Functional Study Using Reverse Genetics." *The Lancet.*

774 *Microbe* 2 (5): e210–18.

775 Schulien, Isabel, Janine Kemming, Valerie Oberhardt, Katharina Wild, Lea M. Seidel, Saskia

776 Killmer, Sagar, et al. 2021. "Characterization of Pre-Existing and Induced SARS-CoV-2-

777 Specific CD8+ T Cells." *Nature Medicine* 27 (1): 78–85.

778 Schulte-Schrepping, Jonas, Nico Reusch, Daniela Paclik, Kevin Baßler, Stephan

779 Schlickeiser, Bowen Zhang, Benjamin Krämer, et al. 2020. "Severe COVID-19 Is

780 Marked by a Dysregulated Myeloid Cell Compartment." *Cell* 182 (6): 1419–40.e23.

781 Silvin, Aymeric, Nicolas Chapuis, Garrett Dunsmore, Anne-Gaëlle Goubet, Agathe

782 Dubuisson, Lisa Derosa, Carole Almire, et al. 2020. "Elevated Calprotectin and

783 Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19." *Cell* 182 (6):

784

1401–18.e18.

Song, Xiang, Wei Hu, Haibo Yu, Laura Zhao, Yeqian Zhao, Xin Zhao, Hai-Hui Xue, and Yong Zhao. 2020. “Little to No Expression of Angiotensin-Converting Enzyme-2 on Most Human Peripheral Blood Immune Cells but Highly Expressed on Tissue Macrophages.” *Cytometry. Part A: The Journal of the International Society for Analytical Cytology*, December. <https://doi.org/10.1002/cyto.a.24285>.

Stewart, Sheila A., Derek M. Dykxhoorn, Deborah Palliser, Hana Mizuno, Evan Y. Yu, Dong Sung An, David M. Sabatini, et al. 2003. “Lentivirus-Delivered Stable Gene Silencing by RNAi in Primary Cells.” *RNA* 9 (4): 493–501.

Trombetta, Amelia C., Guilherme B. Farias, André M. C. Gomes, Ana Godinho-Santos, Pedro Rosmaninho, Carolina M. Conceição, Joel Laia, et al. 2021. “Severe COVID-19 Recovery Is Associated with Timely Acquisition of a Myeloid Cell Immune-Regulatory Phenotype.” *Frontiers in Immunology* 12 (June): 691725.

Wang, Dawei, Bo Hu, Chang Hu, Fangfang Zhu, Xing Liu, Jing Zhang, Binbin Wang, et al. 2020. “Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China.” *JAMA: The Journal of the American Medical Association* 323 (11): 1061–69.

Wang, Yeming, Dingyu Zhang, Guanhua Du, Ronghui Du, Jianping Zhao, Yang Jin, Shouzhi Fu, et al. 2020. “Remdesivir in Adults with Severe COVID-19: A Randomised, Double-Blind, Placebo-Controlled, Multicentre Trial.” *The Lancet* 395 (10236): 1569–78.

Weinreich, David M., Sumathi Sivapalasingam, Thomas Norton, Shazia Ali, Haitao Gao, Rafia Bhore, Jing Xiao, et al. 2021. “REGEN-COV Antibody Cocktail Clinical Outcomes Study in Covid-19 Outpatients.” *bioRxiv*. medRxiv. <https://doi.org/10.1101/2021.05.19.21257469>.

Wendisch, Daniel, Oliver Dietrich, Tommaso Mari, Saskia von Stillfried, Ignacio L. Ibarra, Mirja Mittermaier, Christin Mache, et al. 2021. “SARS-CoV-2 Infection Triggers Profibrotic Macrophage Responses and Lung Fibrosis.” *Cell*, November. <https://doi.org/10.1016/j.cell.2021.11.033>.

Wölfel, Roman, Victor M. Corman, Wolfgang Guggemos, Michael Seilmaier, Sabine Zange, Marcel A. Müller, Daniela Niemeyer, et al. 2020. “Virological Assessment of Hospitalized Patients with COVID-2019.” *Nature* 581 (7809): 465–69.

Worm, Sjoerd H. E. van den, Klara Kristin Eriksson, Jessika C. Zevenhoven, Friedemann Weber, Roland Züst, Thomas Kuri, Ronald Dijkman, et al. 2012. “Reverse Genetics of SARS-Related Coronavirus Using Vaccinia Virus-Based Recombination.” *PLoS One* 7 (3): e32857.

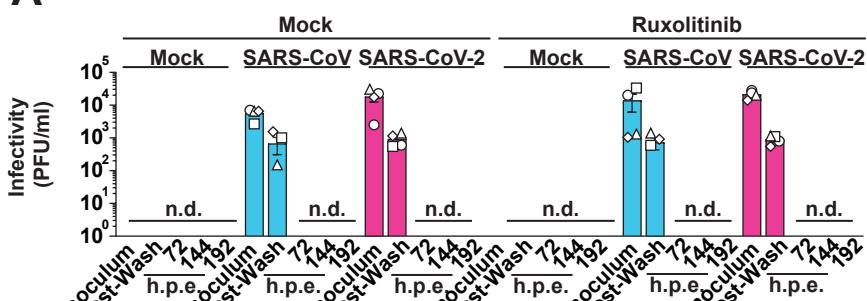
Xiong, Yong, Yuan Liu, Liu Cao, Dehe Wang, Ming Guo, Ao Jiang, Dong Guo, et al. 2020. “Transcriptomic Characteristics of Bronchoalveolar Lavage Fluid and Peripheral Blood Mononuclear Cells in COVID-19 Patients.” *Emerging Microbes & Infections* 9 (1): 761–70.

Xu, Hao, Liang Zhong, Jiaxin Deng, Jiakuan Peng, Hongxia Dan, Xin Zeng, Taiwen Li, and Qianming Chen. 2020. “High Expression of ACE2 Receptor of 2019-nCoV on the Epithelial Cells of Oral Mucosa.” *International Journal of Oral Science* 12 (1): 8.

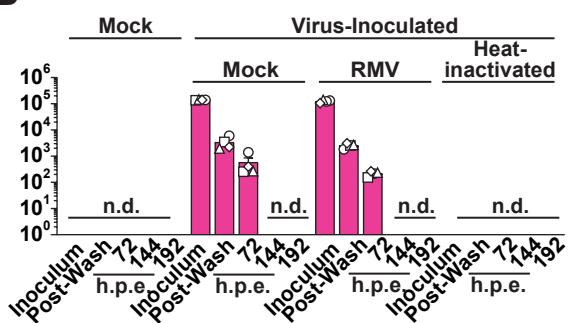
Zeng, F. Y., C. W. M. Chan, M. N. Chan, J. D. Chen, K. Y. C. Chow, C. C. Hon, K. H. Hui, et al. 2003. “The Complete Genome Sequence of Severe Acute Respiratory Syndrome Coronavirus Strain HKU-39849 (HK-39).” *Experimental Biology and Medicine* 228 (7): 866–73.

Zhang, Q., P. Bastard, Z. Liu, J. Le Pen, M. Moncada-Velez, J. Chen, M. Ogishi, et al. 2020. “Inborn Errors of Type I IFN Immunity in Patients with Life-Threatening COVID-19.” *Science* 370 (6515). <https://doi.org/10.1126/science.abd4570>.

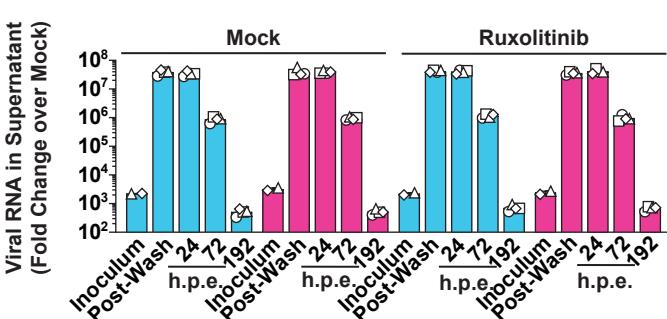
Zhou, Ziliang, Chunliu Huang, Zhechong Zhou, Zhaoxia Huang, Lili Su, Sisi Kang, Xiaoxue Chen, et al. 2021. “Structural Insight Reveals SARS-CoV-2 ORF7a as an Immunomodulating Factor for Human CD14+ Monocytes.” *iScience* 24 (3): 102187.

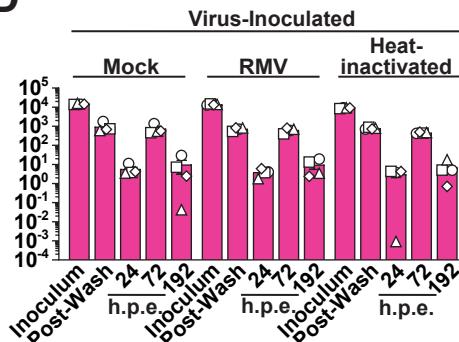

Zou, Xin, Ke Chen, Jiawei Zou, Peiyi Han, Jie Hao, and Zeguang Han. 2020. “Single-Cell RNA-Seq Data Analysis on the Receptor ACE2 Expression Reveals the Potential Risk of Different Human Organs Vulnerable to 2019-nCoV Infection.” *Frontiers of Medicine*

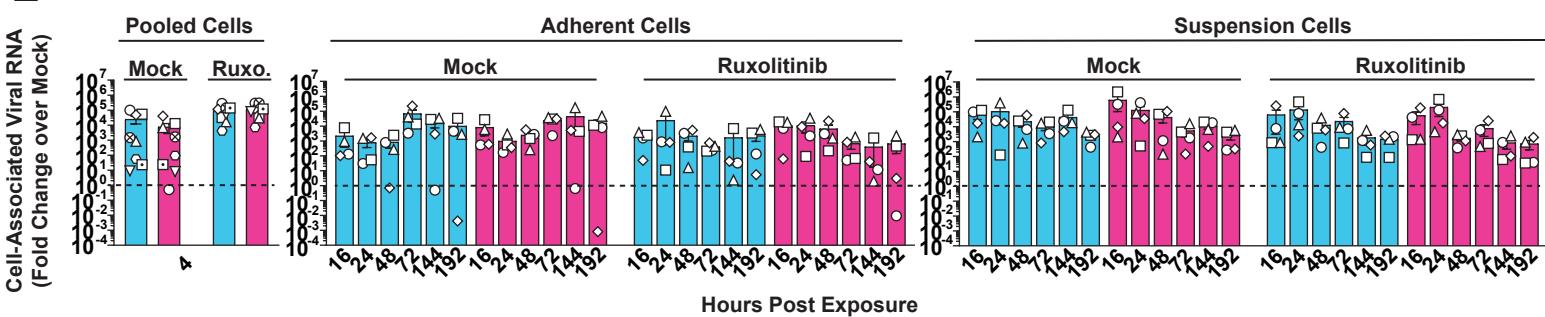
840 14 (2): 185–92.

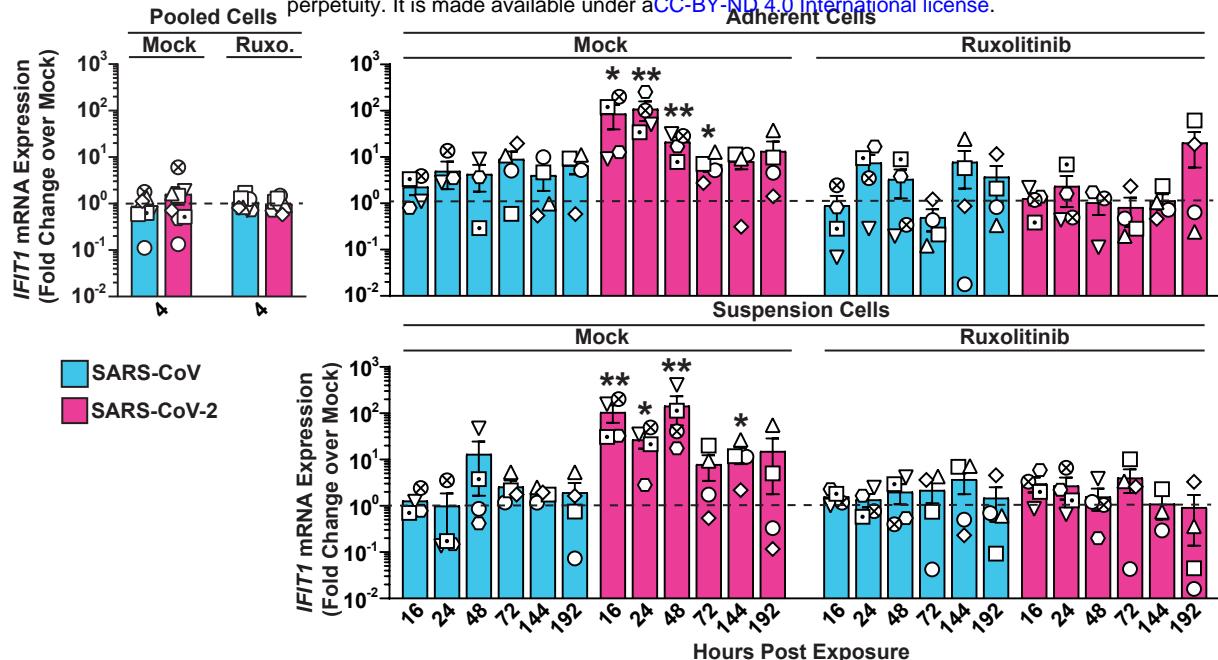

841

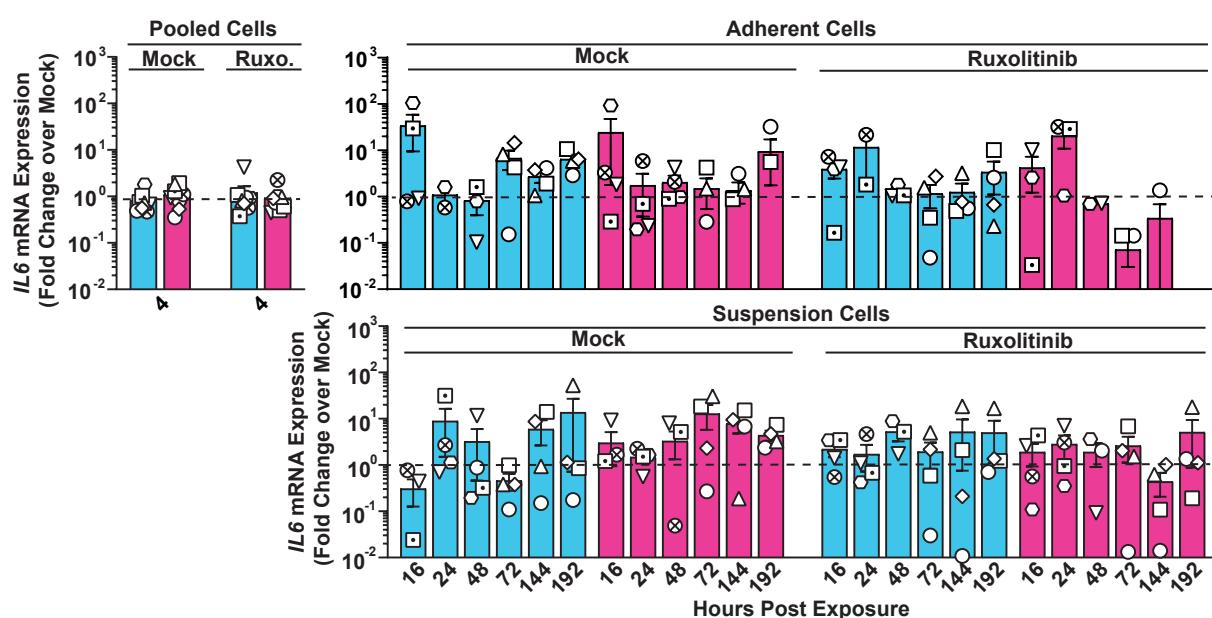
Mock
SARS-CoV
SARS-CoV-2

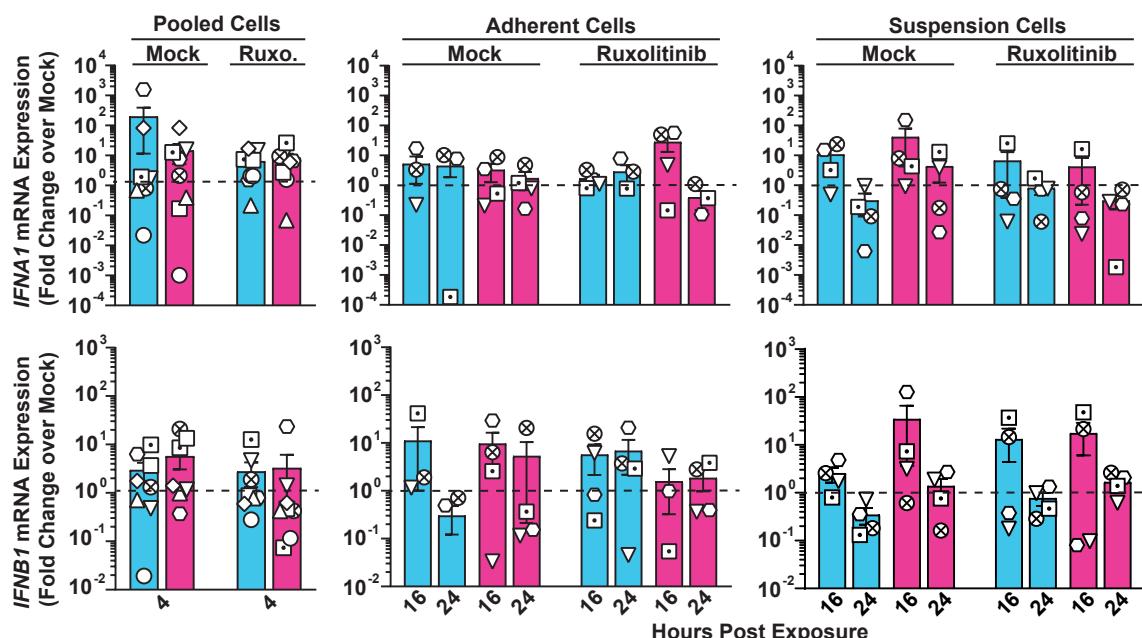

A

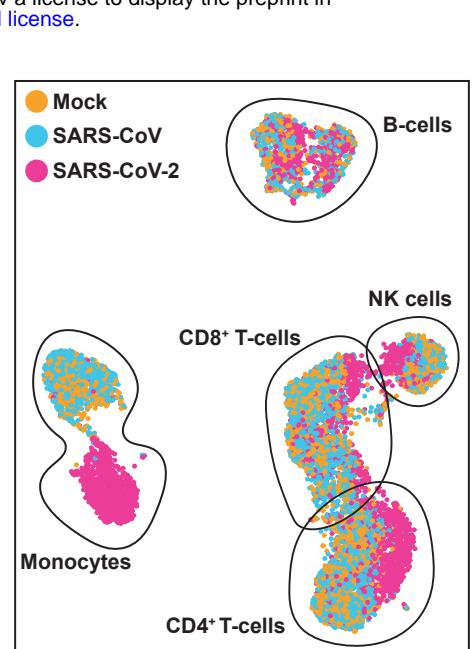
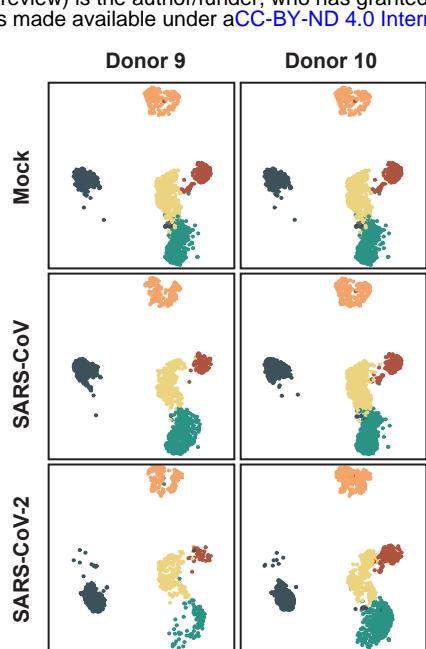
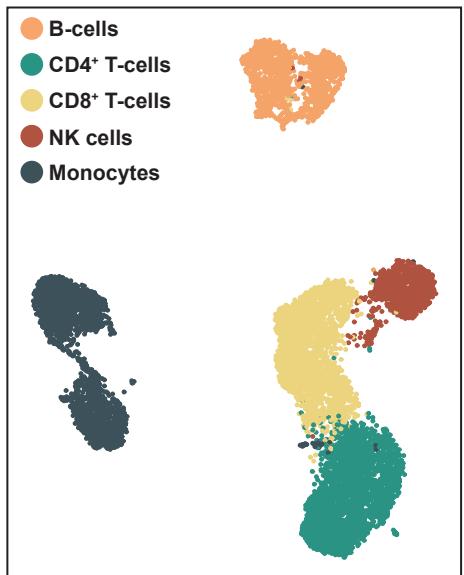

B

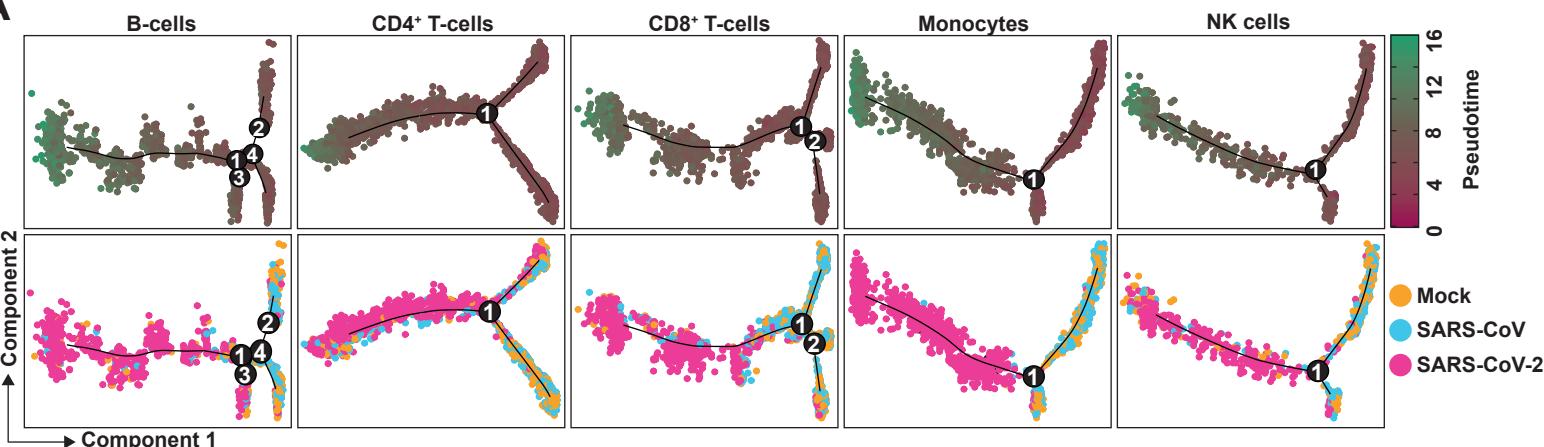

C

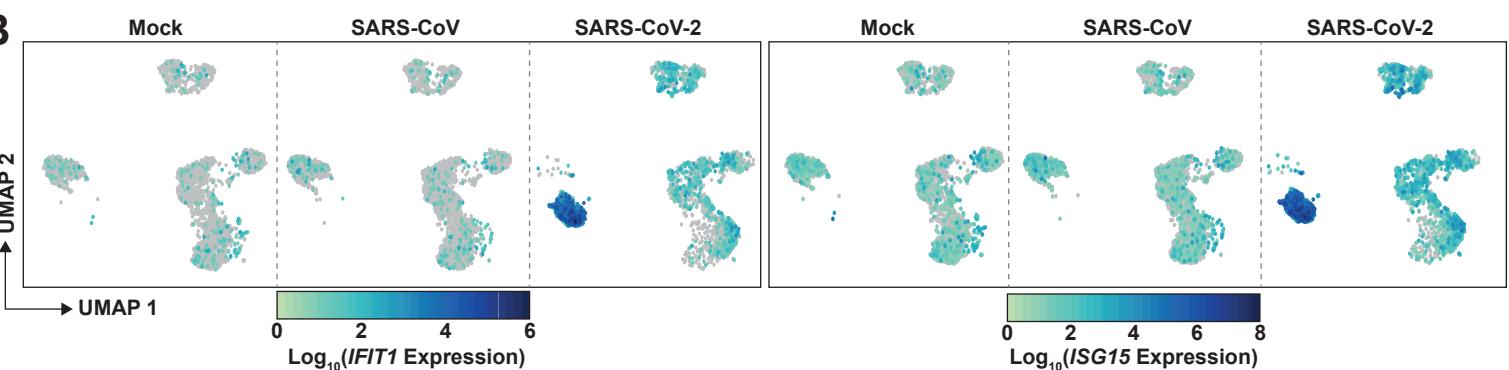

D

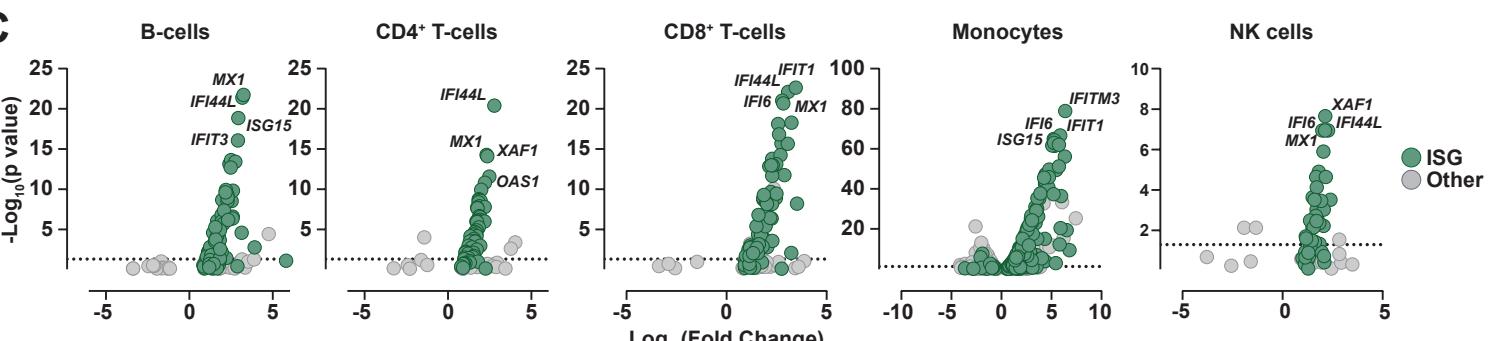

E

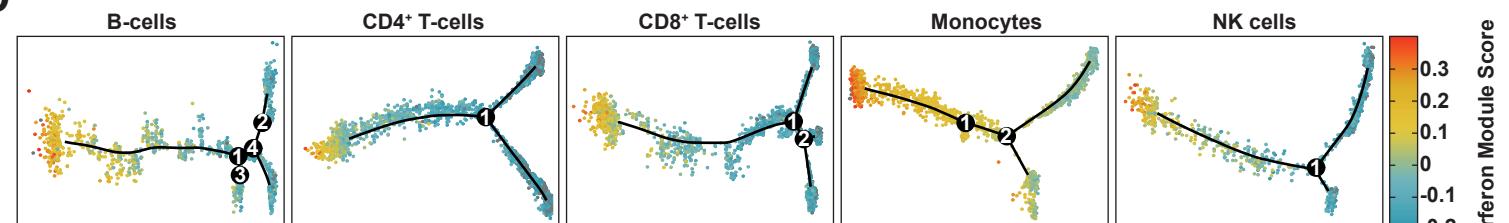

A

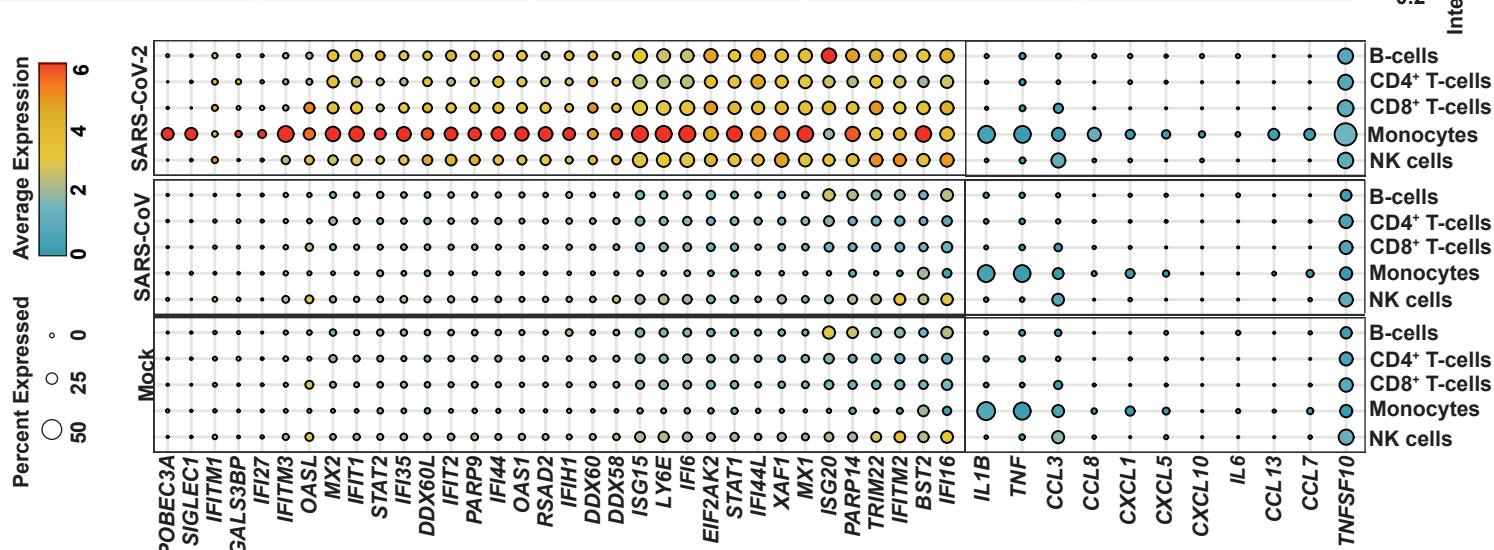



B

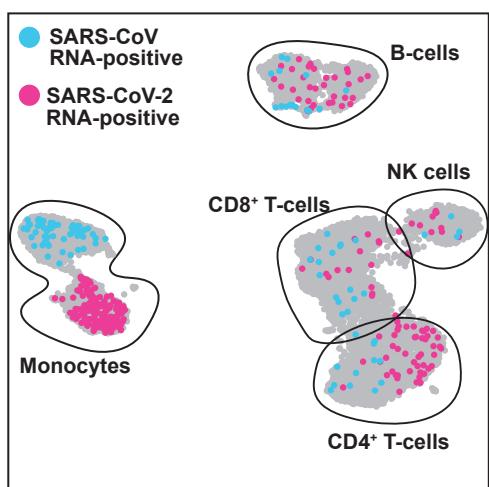

C

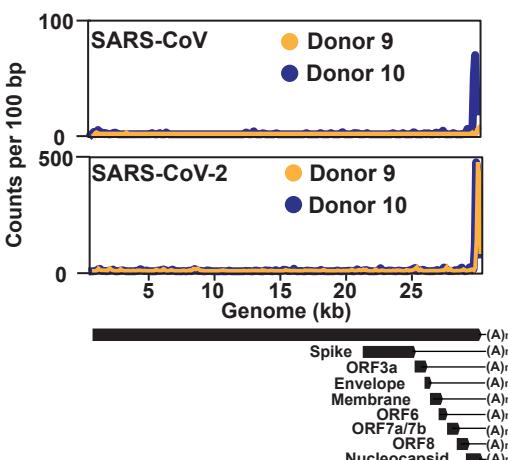

A

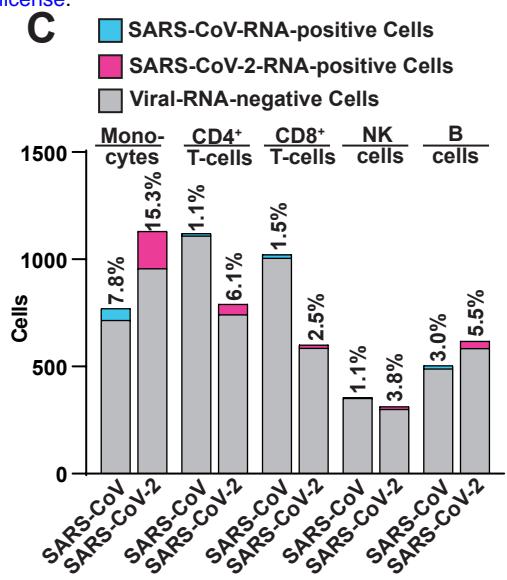

A

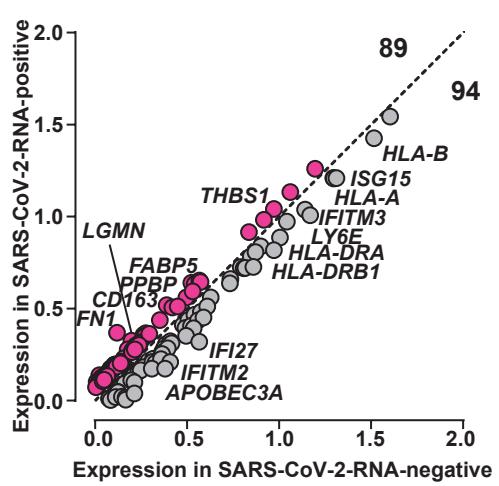
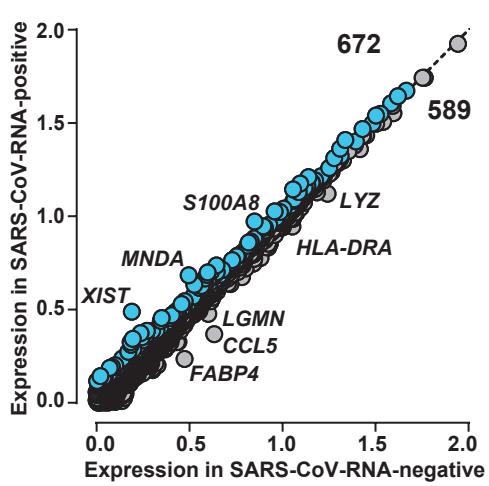

B

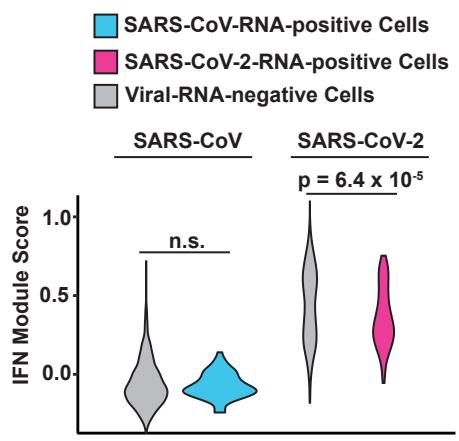

C


D


E

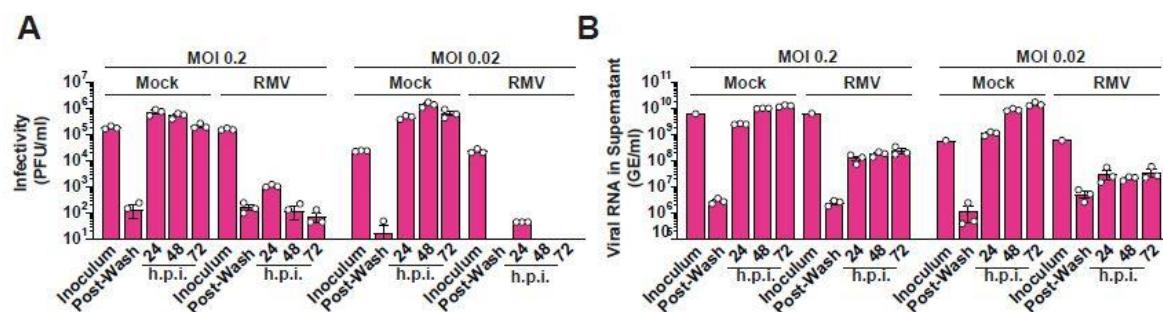

A



B


C

D

E



Non-productive exposure of PBMCs to SARS-CoV-2 induces cell-intrinsic innate immunity responses

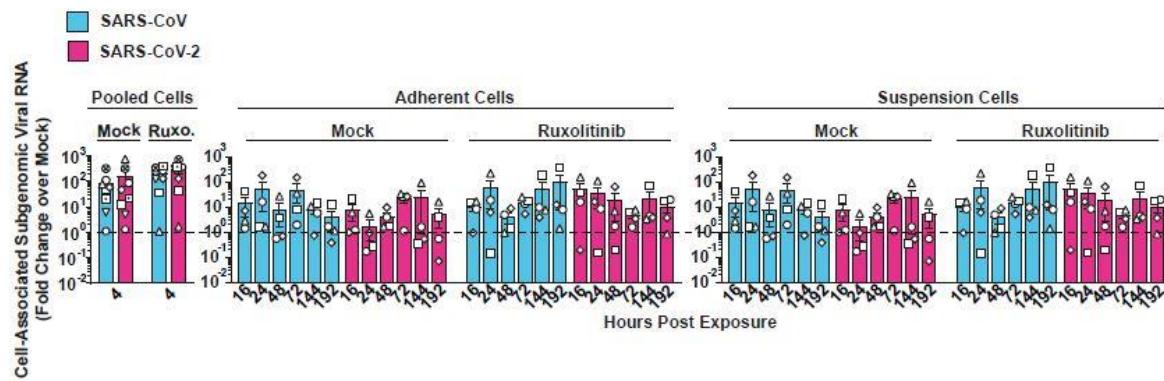
Julia Kazmierski^{1,2,6}, Kirstin Friedmann^{1,6}, Dylan Postmus^{1,2}, Cornelius Fischer³, Jenny Jansen^{1,2}, Anja Richter¹, Laure Bosquillon de Jarcy^{1,4}, Christiane Schüler^{1,2}, Madlen Sohn³, Sascha Sauer³, Christian Drosten^{1,7}, Antoine-Emmanuel Saliba⁵, Leif Erik Sander⁴, Daniela Niemeyer^{1,7*} and Christine Goffinet^{1,2*}

Supplemental Data

Kazmierski and Friedmann et al., Supplemental Figure 1

Supplemental Figure 1. Remdesivir-sensitive SARS-CoV-2 infection of Vero E6 cells

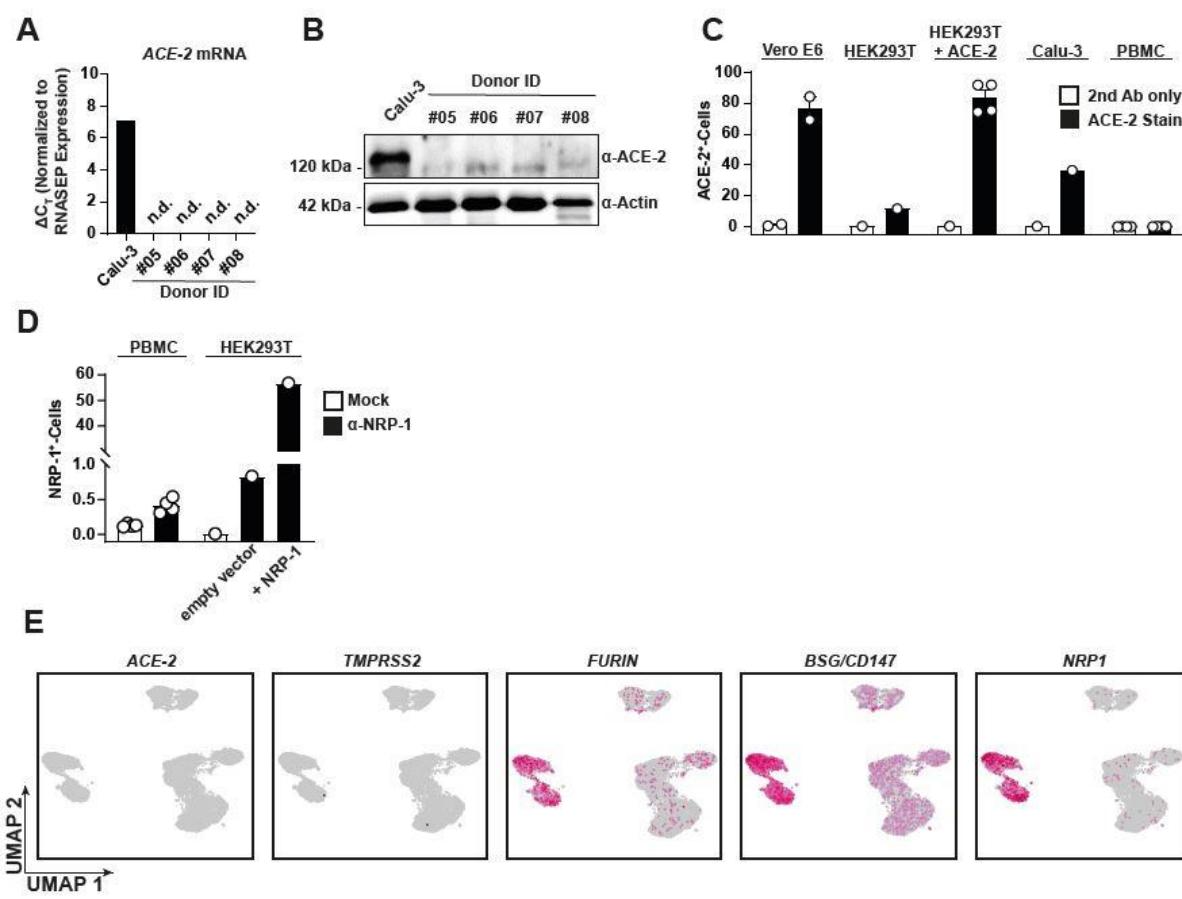
Vero E6 cells were treated with Remdesivir (20 μ M) or mock-treated and infected with SARS-


CoV-2 at indicated MOIs. At indicated time points post-infection,

(A) infectivity in supernatant was quantified by plaque titration assays and

(B) viral RNA in supernatant was quantified by Q-RT-PCR.

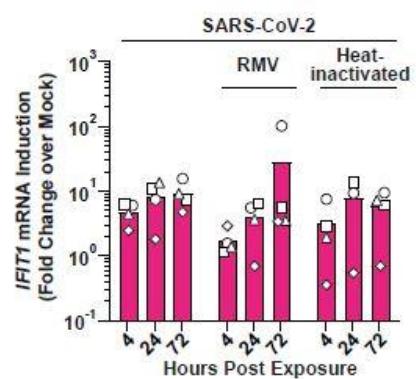
RMV = Remdesivir.


Kazmierski and Friedmann *et al.*, Supplemental Figure 2

Supplemental Figure 2. Absence of *de novo* production of subgenomic viral RNA in SARS-CoV- and SARS-CoV-2-inoculated PBMCs

PBMCs were treated with Ruxolitinib (10 μ M) or mock-treated and challenged with SARS-CoV, SARS-CoV-2 or mock-challenged. Cell-associated subgenomic viral RNA (sgRNA encoding envelope gene) at indicated time points was quantified in suspension and adherent cells by Q-RT-PCR and normalized to mock-inoculated samples.

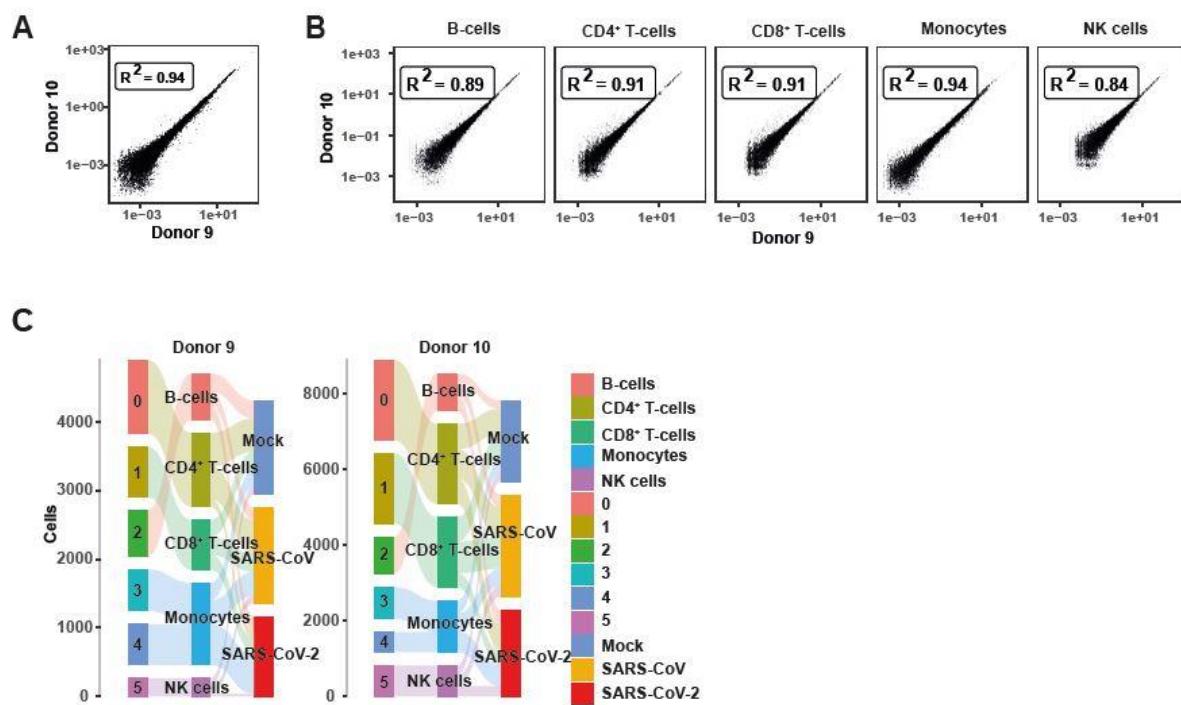
Kazmierski and Friedmann et al., Supplemental Figure 3


Supplemental Figure 3. Cofactor expression profile in PBMCs

(A-C) ACE2 expression was analyzed in PBMC lysates from four healthy donors and Calu-3 cells by Q-RT-PCR of *ACE2* mRNA **(A)**, anti-ACE2 immunoblotting **(B)**, and anti-ACE2 immunostaining followed by flow cytometric analysis **(C)**.

(D) Surface NRP1 expression was quantified by flow cytometry in PBMCs and indicated HEK293T cells.

(E) UMAPs showing expression of *ACE2*, *TMPRSS2*, *FURIN*, *BSG/CD147* and *NRP1* in all analyzed cells.


Kazmierski and Friedmann *et al.*, Supplemental Figure 4

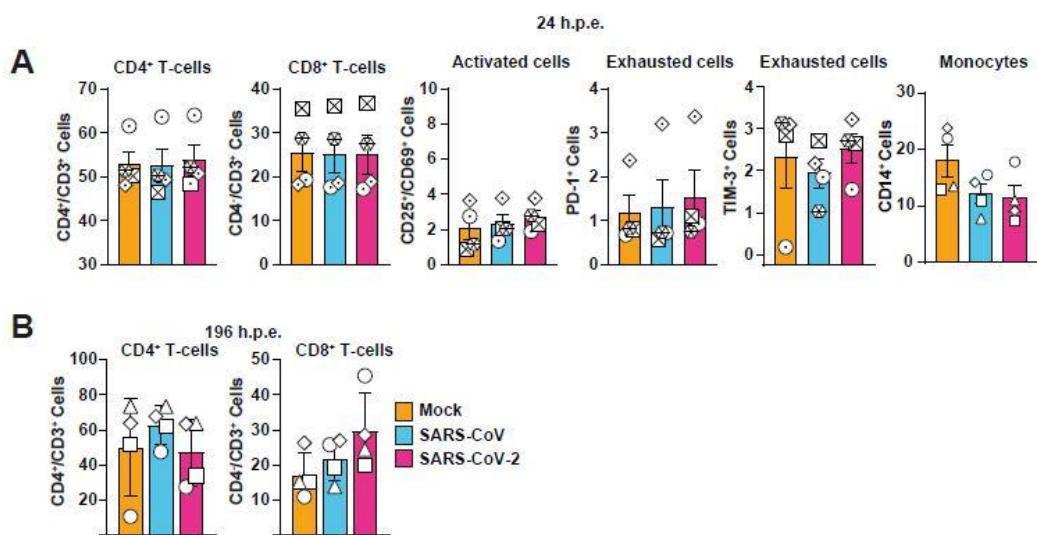
Supplemental Figure 4. Exposure of PBMCs to SARS-CoV-2 induces *IFIT1* mRNA expression in the absence of productive infection

PBMCs were either mock-inoculated, pre-treated with Remdesivir or mock-treated, and challenged with SARS-CoV-2, or exposed to heat-inactivated SARS-CoV-2, and analyzed for *IFIT1* mRNA expression by Q-RT-PCR.

Kazmierski and Friedmann *et al.*, Supplemental Figure 5

Supplemental Figure 5. Quality control metrics of scRNA-seq data

Raw gene counts of

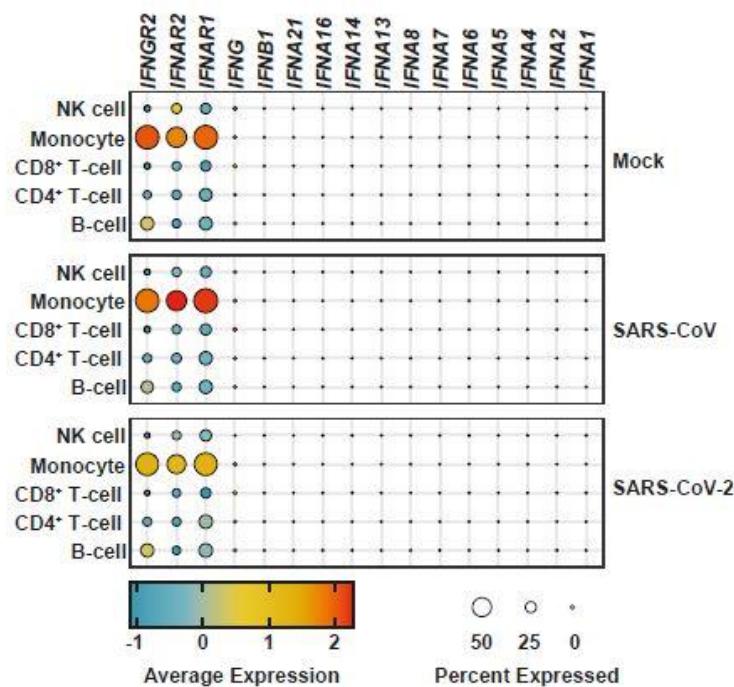

(A) all identified genes in donor #9 and #10 or

(B) separated by identified cell types.

(C) Graph showing the cell number distribution of each sample in Seurat cluster (left), cell type

annotations (middle) and treatments (right).

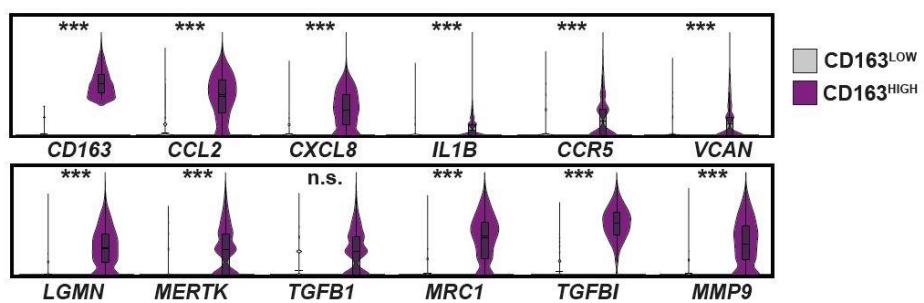
Kazmierski and Friedmann *et al.*, Supplemental Figure 6



Supplemental Figure 6. *Ex vivo* exposure with SARS-CoV or SARS-CoV-2 has no influence on T-cell activation and exhaustion

Surface immunostaining of SARS-CoV or SARS-CoV-2-exposed or mock-exposed PBMCs for T cell surface marker CD3, CD4, CD25/CD69, PD-1 and TIM-3 (**A**) 24 hours post-exposure or (**B**) 192 hours post-exposure.

Symbols indicate cultures from individual donors, error bars indicate S.E.M. from four individual experiments.


Kazmierski and Friedmann *et al.*, Supplemental Figure 7

Supplemental Figure 7. Expression of *IFNA*, *IFNB1*, *IFNG* genes and genes encoding for the IFN receptors

Dot plot showing the expression of the IFN-receptor encoding genes *IFNGR2*, *IFNAR1*, *IFNAR2* and individual *IFNA* subtypes, *IFNB1* or *IFNG* genes according to the treatment and cell types.

Kazmierski and Friedmann *et al.*, Supplemental Figure 8

Supplemental Figure 8. CD163^{HIGH} monocytes associate with marker genes specific for fibrosis

Distribution of indicated gene expression in CD163^{HIGH} and CD163^{LOW} monocytes. Cells were considered as CD163^{HIGH} with an $\text{Log}_2(\text{CD163 average expression}) > 2$. A total of 1520 CD163^{HIGH} and 20962 CD163^{LOW} cells were analyzed. P values < 0.05 were considered significant and marked accordingly: $P < 0.05$ (*), and $P < 0.01$ very significant (**) or $P < 0.001$; n.s. = not significant (≥ 0.05).