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Abstract: 46 

COVID-19 survivors develop post-acute sequelae of SARS-CoV-2 (PASC), but the mechanistic 47 

basis of PASC-associated lung abnormalities suffers from a lack of longitudinal samples. Mouse-adapted 48 

SARS-CoV-2 MA10 produces an acute respiratory distress syndrome (ARDS) in mice similar to humans. 49 

To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute disease 50 

through clinical recovery. At 15-120 days post-virus clearance, histologic evaluation identified subpleural 51 

lesions containing collagen, proliferative fibroblasts, and chronic inflammation with tertiary lymphoid 52 

structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways 53 

dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, 54 

coupled with focal upregulation of pro-fibrotic markers, were identified in persistently diseased regions. 55 

Early intervention with antiviral EIDD-2801 reduced chronic disease, and early anti-fibrotic agent 56 

(nintedanib) intervention modified early disease severity. This murine model provides opportunities to 57 

identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to 58 

ameliorate PASC. 59 

  60 
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Introduction 61 

The ongoing COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 62 

2 (SARS-CoV-2) (1, 2). New antivirals, antibody therapies, vaccinations, and improved critical care 63 

strategies have diminished acute fatality rates (3). However, ~40% of symptomatic and asymptomatic 64 

COVID-19 survivors develop post-acute sequelae, termed PASC or ‘long-COVID’, with features that 65 

include dyspnea, fatigue, chest pain, cognitive decline, and chronic lung disease (4-9). Models are urgently 66 

needed to identify early biomarkers and countermeasures to identify and prevent PASC. 67 

COVID-19 is generally characterized as biphasic with an acute phase dominated by active SARS-68 

CoV-2 infection and a post-viral clearance phase dominated by host reparative and immunologic processes 69 

(10). Human autopsy samples highlight the lung disease manifestations in patients who succumbed to 70 

COVID-19 (11, 12), with broad features of chronic active pneumonia (CAP), alveolar architectural 71 

destruction, dense cellularity, and pulmonary fibrosis (PF) with myofibroblast proliferation and collagen 72 

deposition (13-19). Survivors of previous emerging coronavirus infections reported severe post-infectious 73 

fibrotic lung sequelae long after virus clearance, and autopsy data suggest similar late sequelae will follow 74 

SARS-CoV-2 infections (20-26). However, elucidating the pathogenesis of post-SARS-CoV-2 lung disease 75 

is difficult because autopsy samples describe disease at single time points and are highly heterogeneous. 76 

Moreover, mechanisms describing the development of non-viral CAP and/or PF in humans are poorly 77 

understood, providing only partial roadmaps on which to base studies of SARS-CoV-2 pathogenesis (27). 78 

Animal models offer novel opportunities to fill these gaps in knowledge.  79 

SARS-CoV-2 infection models in standard laboratory mice are available that produce ARDS and 80 

phenocopy age-related acute SARS-CoV-2 disease (28, 29), but PASC-like disease phenotypes in the lung 81 

after virus clearance have not been reported. We characterized the spatial and temporal patterns associated 82 

with long-term (120 day) pulmonary consequences of SARS-CoV-2 MA10 infection in standard BALB/c 83 

laboratory mice (28, 29). Lung disease in mice surviving acute SARS-CoV-2 MA10 infection was 84 

investigated using complementary virologic, histologic, and immunologic techniques supplemented with 85 
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immunohistochemistry (IHC) and CT scanning. Digital spatial profiling (DSP) and RNA in situ 86 

hybridization (ISH) were utilized to identify transcriptional profiles during acute and chronic disease phases 87 

to characterize tissue damage and repair in mice and humans. Countermeasures to prevent lung disease 88 

sequelae for SARS-CoV-2 infection were investigated.  89 

Results 90 

SARS-CoV-2 MA10 infection produces chronic pulmonary disease 91 

PASC outcomes were investigated in young (10-week-old) and more susceptible aged (1-year-old) 92 

mice through 120 days post infection (dpi) (29). To induce severe acute disease without excessive mortality, 93 

1-year-old female BALB/c mice were inoculated intranasally with 103 PFU of mouse-adapted SARS-CoV-94 

2 MA10 (29). Young mice received 104 PFU to achieve similar acute severe disease and lung titers (~107 95 

PFU) at 2 dpi. Mice were necropsied at 2, 7, 15, 30, 60 and 120 dpi to measure lung viral titers and collect 96 

lungs for histopathology.  97 

Replicating previous findings (29), acute infection in 1-year-old mice resulted in rapid and 98 

significant decreases in body weight and 25% mortality over 7 days compared to controls (Fig. 1A, B). 99 

Surviving aged mice cleared culturable infection by 15 dpi, restored lung function by 15 dpi, and recovered 100 

body weight by 30/60 dpi (100% starting weight) (Fig. 1C-F). 101 

Features of acute (2-7 dpi) lung injury following SARS-CoV-2 MA10 infection in 1-year-old mice 102 

included heterogeneous inflammation and alveolar damage with consolidation, edema, fibrin and protein 103 

exudates, and occasional hyaline membranes (Fig. 1G) (29). By 15 through 120 dpi, a high incidence of 104 

histologically heterogeneous lung disease was observed (Fig. 1G-H). Notably, the distribution of diseased 105 

areas remained relatively constant over the 15 to 120 dpi interval, suggesting disease developed focally 106 

early and persisted. Diseased regions were often subpleurally oriented and characterized by hypercellularity 107 

with immune cell accumulation (often containing tertiary lymphoid structures), abundant smooth muscle 108 

actin (SMA) positive fibroblasts (myofibroblasts), and collagen deposition, characteristic of CAP and PF. 109 

Micro-CT scanning of 15 and 30 dpi 1-year-old mice identified dense subpleural opacities (Fig. S1A), and 110 
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lack of honeycombing, similar to the mouse histologic lesions (Fig. 1G-H) and human fibrotic lung disease 111 

(30, 31). 112 

Chronic manifestations were not limited to susceptible 1-year-old mice. MA10 infection (104 PFU) 113 

in 10-week mice caused acute weight loss (Fig. S2A), 25% mortality (Fig. S2B), and transient pulmonary 114 

dysfunction (Fig. S2D-E). However, young mice cleared infectious virus earlier than old mice, by 7 dpi 115 

(Fig. S2C). Young mice exhibited subpleural lesions similar to old mice at 15 and 30 dpi, but the severity 116 

of disease usually diminished over 120 dpi, suggesting young mice may have a higher capacity for repair 117 

(Fig. S2G-H).  118 

Cytokine analysis of lung homogenate and serum samples from both age groups revealed robust 119 

cytokine responses to infection (Fig. S3A-B, Supplemental Tables 1, 2). Lung cytokine responses were 120 

generally more pronounced at 2 dpi in young mice who received higher inocula. However, old mice 121 

exhibited more sustained responses post 7 dpi (Fig. S3A). Notably, ENA-78, M-CSF, IL-19, and Il-33, 122 

which enhance pro-fibrogenic type 2 cytokine production in a macrophage-dependent manner (32), 123 

remained persistently elevated in lungs to 30 dpi in older but not younger mice. In serum, a similar pattern 124 

of more robust cytokine response in young versus old mice 2 dpi was observed (Fig. S3B). Antiviral 125 

interferons (IFN-a/IFN-l1) were highly expressed at 2 dpi and returned to baseline by 7 dpi at both ages 126 

(Fig. 1C). The more robust acute lung and plasma cytokine responses in younger versus older mice were 127 

associated with more rapid younger mouse viral clearance (by 7 dpi) (Fig. S2C, S3). The persistently 128 

elevated lung cytokine responses in older mice after 7 dpi may reflect delayed virus clearance and/or 129 

defective reparative capacity.  130 

 131 

SARS-CoV-2 MA10 infection produces acute and chronic inflammation 132 

Immunoinflammatory responses to SARS-CoV-2 MA10 infection/injury included recruitment of 133 

macrophages, T cells, and B cells (Fig. S4) (33). Lymphoid aggregates identified in dense cellular regions 134 

at 15-120 dpi consisted of a spectrum of lymphocyte subsets, including CD4+, CD8+ T cells, and B cells 135 

(Fig. S4A-B). Immunohistochemistry quantitated the kinetics of CD4+ and CD8+ T cells (Fig. S4C-D). 136 
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Increased CD4+ cells appeared as early as 2 dpi, peaked at 7-15 dpi, and persisted through 120 dpi (Fig. 137 

S4A). CD8+ cell accumulation peaked at 15 dpi and remained at lower levels through 120 dpi (Fig. S4A, 138 

D). B220+ B cell accumulation was observed at 7 dpi and thereafter. CD68+ macrophages were increased 139 

at 7 dpi and remained elevated at 120 dpi in dense cellular regions, while iNOS+ M1 and Arginase+ M2 140 

macrophages peaked at 2 and 7 dpi, respectively, and remained elevated at lower levels thereafter, 141 

suggesting involvement of multiple subsets of macrophages in inflammatory and reparative process with 142 

different kinetics.  143 

Flow cytometry at 30 dpi revealed that total cells, CD45+ immune, and CD31+ endothelial cells 144 

were increased (Fig. S4E, F), consistent with IHC (Fig. 4A-B). CD4+ T cells and CD19+ B cells were 145 

significantly increased in infected mice, while CD8+ T cells trended higher (Fig. S4G), consistent with 146 

prolonged inflammatory immune responses in pulmonary fibrotic diseases (34). Within the 147 

monocyte/macrophage lineage, interstitial macrophages were elevated in infected mice at 30 dpi (Fig. S4H), 148 

consistent with a documented role that macrophages play in lung remodeling in pulmonary fibrosis (35). 149 

 150 

Spatial and temporal alteration in host transcriptional profiles in response to SARS-CoV-2 infection. 151 

GeoMx DSP was employed to interrogate viral and mouse transcripts in pulmonary lesions from a 152 

subset of mock versus infected 1-year-old mice at 2, 15, and 30 dpi (Fig. 2A). Since SARS-CoV-2 MA10 153 

primarily infects alveolar AT2 cells and terminal bronchiolar secretory club cells (29), we focused on these 154 

two regions. At 2 dpi, alveolar regions of interest (ROIs) were selected based on the presence of SARS-155 

CoV-2 MA10 RNA positive cells. Bronchiolar ROIs at 2 dpi were selected to represent a range of SARS-156 

CoV-2 MA10 infection. At later time points (15, 30 dpi), the heterogeneity of alveolar lung 157 

infection/responses was sampled by obtaining ROIs from morphologically “diseased” regions with 158 

hypercellularity versus morphologically “intact” regions. All distal airways appeared normal at 15 and 30 159 

dpi with ROIs defined as “intact”. Following data quality control/normalization, 60 alveolar and 36 160 

bronchiolar epithelial ROIs from SARS-CoV-2 MA10-infected or mock mice were sampled at acute (2 dpi) 161 

and late (15 and 30 dpi) time points (Fig. 2B-C, Supplemental Table 3). Quantification of viral RNAs 162 
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demonstrated clearance of viral RNAs from intact and diseased alveolar ROIs by 15 dpi (Fig. 2D), 163 

concordant with clearance of infectious virus (Fig. 1C). Normalized viral RNA counts (see Methods) 164 

trended higher in the distal airways compared with alveoli at 2 dpi and returned to baseline by 15 dpi (Fig. 165 

2D). 166 

Principal component analysis (PCA) of expressed genes identified time, region, and virus-167 

dependent effects (Fig. 2E, F). High virus transcript positive regions at 2 dpi clustered away from mock in 168 

both distal airway and alveolar regions. Further, the alveolar ROIs selected from diseased regions of 169 

infected mice at 15/30 dpi separated from mock, suggesting persistent alterations of host transcriptomes 170 

(Fig. 2F). In contrast, the ROIs selected from “intact” airway and alveolar regions at 15/30 dpi clustered 171 

near mock healthy ROIs, suggesting recovery (Fig. 2E-F).  172 

Consistent with PCA, viral infection induced major changes in transcriptome profiles in infected 173 

mouse lungs (Fig. 3A, B; Supplemental Tables 3, 4). In both alveoli and bronchioles, virally infected 174 

disease ROIs at 2 dpi were characterized by a broad and robust upregulation of viral infection-induced acute 175 

inflammatory genes, represented by enrichment of interferon, IL-1, and NF-kB signaling pathways (Fig. 176 

3A-C, Supplemental Table 5). Upregulated ISGs were consistent with ISGs reported in human cells after 177 

emerging CoV infection (Fig. S5A-C; Supplemental Table 2) (36, 37), suggesting common antiviral 178 

pathways are activated in human and mouse pulmonary cells. As noted in other human lung cell types after 179 

CoV infection (38), ISG expression patterns in airway and alveolar ROIs were not identical, with some 180 

ISGs more robustly upregulated in airway epithelium (Ifitm1, Lap3, Epsti1) (Fig. S5C, D) or alveolar ROIs 181 

(Ifitm2, Batf2, Samhd1) (Fig. S5C, E). By 15 and 30 dpi, most ISG expression levels returned to mock 182 

levels (Fig. 1C, 2D, 3A-B, Fig. S5C).  183 

DSP pathway analyses revealed downregulation of biological oxidation (bronchiolar and alveoli) 184 

and surfactant metabolism (alveoli) in infected mice at 2 dpi (Fig. 3A-B), associated with loss of secretory 185 

club (Cyp2f2, Scgb1a1, Scgb3a2) and AT2 (Sftpc, Lamp3, Abca3) cell markers (Fig. S6A). RNA-ISH 186 

confirmed that SARS-CoV-2 MA10 RNA was localized in Scgb1a1+ secretory club cells at 1 dpi and 187 

Sftpc+ AT2 cells at 1 dpi in bronchioles and alveoli, respectively (Fig. S6B-C). Significant loss of club 188 
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(Scgb1a1) and AT2 (Sftpc) cell marker expression accompanied SARS-CoV-2 MA10 infection at 1-2 dpi, 189 

followed by restoration to baseline levels by 15 dpi (Fig. S6A-E). The early loss of Scgb1a1 and surfactant 190 

protein genes is consistent with reported human COVID-19 autopsy data (39). Ciliated (Foxj1, Dnah5, 191 

Rsph1) and AT1 (Ager, Hopx, Cav1) cell markers were minimally affected by MA10 infection at any time 192 

point (Fig. S6A-C, F).  193 

The transcriptomic analyses also revealed striking temporal differences in gene expression in 194 

alveolar versus bronchiolar regions (Fig. 3A-C). Consistent with failure of “diseased” alveolar regions to 195 

return to histologically “intact”-like states, pathway analyses at 30 dpi revealed persistently upregulated 196 

cellular senescence, hypoxia signaling, complement activation, P53 damage responses, signaling by the 197 

TGFβ receptor complex, collagen formation, and extracellular matrix organization pathways, unique to 198 

diseased alveolar regions. 199 

The difference in post-infection histologic recovery between the bronchiolar (rapid, complete) 200 

versus alveolar regions (slow, incomplete) was notable. Because apoptosis is reported to be less 201 

inflammatory than necrotic cell death (40), we investigated whether apoptotic cellular responses to infection 202 

were different between the two regions (Fig. S6G). At 2 dpi, SARS-CoV-2 MA10-infected bronchiolar 203 

epithelial cells expressed evidence of activated apoptotic pathways (cleaved caspase-3). In contrast, 204 

alveolar regions were characterized by widespread infection but little cleaved caspase-3. These differences 205 

in apoptotic activity are consistent with reports that murine airway epithelial cells are more primed for 206 

apoptosis than alveolar epithelial cells in basal states (41).  207 

 208 

Alveolar epithelial damage and regeneration following SARS-CoV-2 infection.  209 

Recent single-cell RNA sequencing studies in acute alveolar injury mouse models have identified 210 

unique AT2 to AT1 transitional alveolar epithelial cell types following alveolar damage (42-44). These 211 

cells are defined variably as a Krt8+ alveolar differentiation intermediate (ADI) (42), damage-associated 212 

transient progenitor (DATP) (43), or pre-AT1 transitional state cell (PATS) (44) (ADI/DATP/PATS 213 

hereafter). Incomplete transition from AT2 to AT1 cells, with an accumulation of ADI/DATP/PATS cells, 214 
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has also been identified in human idiopathic pulmonary fibrosis (IPF) (44) and in COVID-19 postmortem 215 

lungs (45, 46), suggesting a common dysfunction in prolonged epithelial repair/disrepair. However, 216 

longitudinal characterizations of ADI/DATP/PATS cell dynamics following SARS-CoV-2 infection have 217 

not been reported.  218 

Utilizing ADI/DATP/PATS signature genes reported from mouse acute lung injury (ALI) models 219 

(42-44), the SARS-CoV-2 MA10 DSP data demonstrated enrichment of ADI/DATP/PATS signatures in 220 

diseased alveolar ROIs at 2, 15, and 30 dpi (Fig. 4A). The ADI/DATP/PATS signature genes were 221 

categorized into three expression clusters (Fig. 4B, Supplemental Table 2). The first cluster 222 

(Cdkn1a/F3/Timp1) was enriched in diseased ROIs at 2 dpi and decreased after 15 dpi, suggesting these 223 

genes may play a role in AT2 cell trans-differentiation into ADI/DATP/PATS cells. The second cluster 224 

(Krt8/Cxcl16/Cstb) exhibited increased expression levels at 2 dpi through 30 dpi. The third gene cluster 225 

(Clu/Eef1a1), including a variety of ribosomal protein genes, exhibited increased expression levels at 15 226 

dpi and later. The murine DSP gene signatures exhibited features similar to ADI/DATP/PATS signature 227 

genes identified in human COVID-19 autopsy lungs (45) (Fig. S7A, Supplemental Table 2), including 228 

p53, apoptosis, and hypoxia pathways (Fig. 3B, C).  229 

To further characterize the relationships between ADI/DATP/PATS cells and disease, combined 230 

RNA-ISH and DSP analyses of reported transitional ADI/DATP/PATS cell markers (Cdkn1a, Krt8) (45, 231 

46) were serially performed post infection (Fig. 4C-D, S7B). DSP data demonstrated that: 1) Cdkn1a was 232 

upregulated at 2 dpi and waned at late time points; and 2) Krt8 was also upregulated at 2 dpi but exhibited 233 

a trend toward modestly higher expression in diseased versus intact ROIs at all points (Fig. 4C). While 234 

Krt8+/Cdkn1a+ RNA-ISH signals were not detectable in alveolar regions in mock mice, increased numbers 235 

of dual Krt8+ and Cdkn1a+ cells was observed by RNA-ISH in SARS-CoV-2-infected alveolar regions at 236 

1-2 dpi (Fig. 4D, S7B), consistent with the DSP data (Fig. 4B, C). Notably, Sftpc+ AT2 cells remaining in 237 

infected alveolar regions at 1 dpi co-expressed Krt8 and Cdkn1a (Fig. S7B), consistent with the reported 238 

AT2 to ADI/DATP/PATS transitions after ALI in mice (42-44). At 2 dpi, Krt8+/Cdkn1a+ cells were present 239 

and Sftpc+/Krt8+ cells were rare (Fig. 4D, S7B), consistent with the loss of Sftpc in disease ROIs at 2 dpi 240 
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(Fig. S6D, E). At 7-15 dpi, Sftpc expression was restored and only occasional Sftpc+/Krt8+ cells were 241 

observed in repairing regions (Fig. S7B). Given the decreased viral titer (Fig. 1C) and restoration of Sftpc 242 

expression at 7-15 dpi (Fig. S6D, G), Sftpc+/Krt8+ cells observed in these repairing regions likely reflected 243 

Krt8+ ADI/DATP/PATS cells re-transitioning into mature alveolar cells. Consistent with this notion, 244 

immunohistochemistry revealed co-expression of Krt8 with both AT1 (Ager) and AT2 (Sftpc) cell markers 245 

at 30 dpi (Fig. S7C). However, while Sftpc+ AT2 cells were restored in most alveolar regions at 15-30 dpi 246 

(Fig. 4D, S7C), persistent Krt8+ and/or Cdkn1a+ cell clusters, coupled with muted restoration of Sftpc+ 247 

cells, was identified in dense cellular subpleural fibrotic alveolar regions where Col1a1 protein 248 

accumulation coexisted (Fig. 4D).  249 

 250 

Persistent inflammation and fibrosis as a chronic manifestation in SARS-CoV-2 MA10-infected mice. 251 

In diseased alveolar ROIs at 15 and 30 dpi, multiple genes involved in adaptive immune signaling 252 

and extracellular matrix deposition were highly upregulated, consistent with a wound repair/profibrotic 253 

environment (Fig. 5A-B). Recent human COVID-19 autopsy and transplant lung studies identified 254 

abundant interstitial pro-fibrotic monocyte-derived macrophages characterized by increased expression of 255 

SPP1, MMP9, and CTSZ (45, 47, 48). These macrophage features, coupled with upregulated extra cellular 256 

matrix remodeling (SPARC, CTSK) and macrophage-colony stimulating factor signaling genes (CSF1, 257 

CSF1R), defined a profibrotic macrophage archetype in human IPF samples (49). Our DSP analyses 258 

identified features associated with this profibrotic macrophage archetype in diseased alveolar ROIs at 15 259 

and 30 dpi, including increased Spp1, Sparc, and Csf1r expression (Fig. 5C). RNA-ISH confirmed a 260 

persistent increase in Spp1 expression in SARS-CoV-2 MA10-infected mice after 7 dpi (Fig. 5D-E). These 261 

chronic fibrotic manifestations were consistent with IHC and flow cytometry data demonstrating increased 262 

interstitial macrophage populations during chronic SARS-CoV-2 MA10 infection (Fig. S4H). Additionally, 263 

adaptive immune cell signatures, e.g., immunoglobulin (Igha, Igkc, J chain) and MHC II complex (H2-Ea, 264 

H2-Eb1, H2-Ab1) genes, were upregulated in diseased alveolar ROIs at 30 dpi (Fig. 5B), consistent with 265 
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the accumulation of interstitial macrophages and CD19+ B cells observed by immunohistochemistry and 266 

flow cytometry (Fig. S4A, G-H). 267 

In parallel, we characterized SARS-CoV-2 MA10-ingected mouse genes associated with human 268 

IPF (49). Hierarchical clustering of alveolar ROIs (Fig. 5F, Supplemental Table 2) demonstrated 269 

enrichment of extracellular matrix-related genes (Col1a1/Fbn1/Fn1) in mouse alveolar disease ROIs at 15 270 

and 30 dpi (Fig. 5A-B, F). RNA-ISH and immunohistochemistry confirmed increased expression of Col1a1 271 

protein and Fn1 transcripts in the subpleural pro-fibrotic alveolar regions at 15 and 30 dpi (Fig. 4D, 5G-272 

H). TGF-β is likely a central pro-fibrotic growth factor in IPF (50), and DSP data demonstrated an 273 

upregulated TGF-β signaling pathway (Fig. 3C) with trends toward Tgfb1 upregulation in alveolar diseased 274 

versus intact ROIs at 15 and 30 dpi (Fig. 5I). Importantly, RNA-ISH revealed high Tgfb1 expression in 275 

alveolar fibrotic regions, associated with lymphocyte accumulation, in SARS-CoV-2 MA10-infected mice 276 

at 30 dpi (Fig. 5J). These data suggest common pathways are activated in the development of IPF in humans 277 

and our mouse model of SARS-CoV-2 infection PASC. 278 

Mouse MA10 recapitulates features of fatal human COVID-19 lungs.  279 

We next compared mouse and published human data to a novel human COVID-19 autopsy cohort. 280 

Analyses of human COVID-19 autopsy by DSP, histology scoring, and immunohistochemistry revealed 281 

significant biological networks/processes modified by COVID-19 disease that were recapitulated in SARS-282 

CoV-2 MA10-infected mice (Fig. S8). Given the small number of patients, heterogeneity of time between 283 

disease onset and death, and patient variability, pathway analyses of COVID-19 lung samples were 284 

performed rather than longitudinal/patient-based analyses. Analyses indicated: 1) significant transcriptional 285 

alteration in DSP COVID-19 ROIs separated from non-COVID ROIs indicated by PCA analysis (Fig. 286 

S8A); 2) histological evidence of chronic inflammation and organizing lung injury with upregulation of 287 

networks containing type I/II interferon-stimulated/IL-6-driven inflammation signatures (Fig. S8B); 288 

3) upregulation of collagen/fibrotic gene signatures containing multiple human IPF genes 289 

[COL1A1, COL15A1, FBN1, FN1, TNC, consistent with mouse gene signatures; (Fig. 5A-B, F-H)] with 290 
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significantly increased collagen and SMA protein on immunohistochemistry (Fig. S8B-D); 4) evidence of 291 

complement activation; an 5) evidence for altered alveolar architecture as indicated by downregulation of 292 

ATI/endothelial networks and AT2 gene markers. Note, these findings differed from mice. For example, 293 

ciliated and TP63/MUC5AC networks were enriched in some COVID lungs, which are consistent with 294 

histopathologic IPF features that exhibit infiltration of fibrotic alveoli with airway basal cells and 295 

“honeycombing cysts” lined by mucus producing ciliated epithelia (50, 51). The absence of this finding in 296 

the mouse likely reflects a dearth of basal cells in the bronchiolar region of mice and/or unknown 297 

preexisting lung disease in COVID patients (31, 51, 52). 298 

EIDD-2801 reduces chronic pulmonary lesions in mice 299 

 EIDD-2801 (molnupiravir) is an FDA approved direct-acting antiviral (DAA) that rapidly clears 300 

SARS-CoV-2 infection in mice and humans (53, 54). We treated infected 1-year-old female BALB/c mice 301 

with EIDD-2801 or vehicle twice daily from 12 hpi - 5 dpi post infection and followed survivors through 302 

day 30. As reported (53), EIDD-2801 administration reduced weight loss, mortality, virus titers, gross lung 303 

congestion, diffuse alveolar damage (DAD) and ALI during the acute phase of infection (Fig. 6A-F). At 30 304 

days, profibrotic disease prevalence was significantly reduced compared to vehicle controls (Fig. 6G-H).  305 

Nintedanib decreases peak fibrotic disease in mice 306 

Nintedanib is an FDA approved anti-fibrotic therapeutic agent that prevents IPF progression in 307 

humans (55, 56). Nintedanib inhibits the tyrosine kinase PDGF, FGF, and vascular endothelial growth 308 

factor receptors and interferes with fibroblast proliferation, migration, differentiation, and secretion of 309 

extracellular matrices (57). Older BALB/c mice administered Nintedanib continuously from 7 dpi showed 310 

no differences in weight loss/recovery compared to vehicle treated mice through 30 dpi (Fig. 6I). 311 

Nintedanib treatment decreased gross tissue congestion scores, fibrotic prevalence scores, and collagen 312 

deposition, at 15 dpi compared to controls (Fig. 6I-L). Vehicle-treated mice exhibited reduced 30 dpi 313 

fibrotic prevalence/collagen deposition scores compared to d 15, approaching values similar to 30 dpi 314 
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nintedanib-treated animals. Serum nintedanib concentrations were confirmed by UHPLC-TOF mass 315 

spectrometry to be within range previously reported in mice (58) (Fig. 6M). 316 

Discussion 317 

SARS-CoV-2 infection causes acute ALI/ARDS and post-acute phase chronic lung sequelae, 318 

including CAP and PF (59, 60). CT scans reveal chronic COVID-19 pulmonary findings as evidenced by 319 

ground glass opacities (44%) and fibrosis (21%) after acute COVID-19 infection (61) and fibrotic-like 320 

changes (35%) 6 months after severe human COVID-19 pneumonia (62). Pathology studies of COVID-19 321 

lungs obtained at autopsy reveal similar late findings, i.e., CAP/PF (51, 63, 64). The SARS-CoV-2 MA10 322 

model recapitulates these phenotypes through 120 dpi.  323 

Currently, our understanding of PASC and COVID-19 induced CAP/PF is poor and 324 

countermeasures are limited due to the wide spectrum of potential disease pathophysiologies. Recently, a 325 

chronic (30 dpi) SARS-CoV-2 infection model was reported in immunosuppressed, humanized mice 326 

characterized by persistent virus replication and chronic inflammation with fibrotic markers, typical of rare 327 

infections seen in immunosuppressed humans who cannot clear virus (65). We developed a model of long-328 

term pulmonary sequelae of SARS-CoV-2 infection that persisted after virus clearance and was more 329 

characteristic of the general patient population. In the SARS-CoV-2 MA10 model, surviving older mice 330 

cleared infection by 15 dpi but exhibited damaged pulmonary epithelia accompanied by secretion of a 331 

spectrum of pro-inflammatory/fibrotic cytokines often upregulated in fibrotic disease in humans, e.g., IL-332 

1β, TNF-α, GM-CSF, TGF-β, IL-33, and IL-17A (Fig. S3, 5J) (66). Like humans, surviving SARS-CoV-333 

2-infected mice by 30-120 dpi developed heterogeneous, persistent pulmonary lesions of varying severity 334 

(67-69) with abnormally repairing AT2 cells, interstitial macrophage and lymphoid cell accumulation, 335 

myofibroblast proliferation, and interstitial collagen deposition, particularly in subpleural regions (Fig. 1, 336 

S1, S2). Micro-CT detected heterogeneous subpleural opacities and fibrosis in surviving mice, similar to 337 

human studies (70). While most of acute cytokine production returned to normal levels by 30 dpi, DSP and 338 

RNA-ISH data revealed focally prolonged upregulation of cytokine signaling, including TGF-β, in sub-339 
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pleural fibrotic regions. Importantly, similar heterogeneous cellular and fibrotic features in subpleural 340 

regions are also evident in late stage COVID-19 patients (71).  341 

SARS-CoV-2 MA10 infection caused acute loss of distal airway club cell (Scgb1a1) and alveoli 342 

AT2 cell (Sftpc) marker expression, phenotypes consistent with SARS-CoV-2 cellular tropisms in humans 343 

(72) (Fig. 3, S5). The expression levels of club/AT2 cell genes were variably restored by 15 dpi as 344 

demonstrated by DSP and RNA-ISH data (Fig. S5). We speculate that a key variable determining the ability 345 

of the alveolar region to repair, or not, reflects the capacity of surviving and/or residual AT2 cells to 346 

regenerate an intact alveolar epithelium. The failure of AT2 cells to replenish themselves or AT1 cells and 347 

repair alveolar surfaces in subpleural regions likely reflects the intensity of SARS-CoV-2 infection. Based 348 

on data from COVID-19 autopsy lungs, an accumulation of replication-defective/pro-inflammatory 349 

(ADI/DATP/PATS) transitional cells emerge early after SARS-CoV-2 infection and may persist, associated 350 

with persistent inflammation and failure of repair (45, 46). Our longitudinal mouse model data support this 351 

notion as evidenced by the observation that ADI/DATP/PATS cells were detected at 2 dpi and persisted 352 

through 30 dpi in diseased, but not morphologically intact, alveolar regions (Fig. 4). These 353 

ADI/DATP/PATS cells were notable for upregulation of senescence, Hif1α, and pro-inflammatory 354 

cytokines, e.g., IL-1β pathways, in keeping with low cycling rates/failure to replenish AT2/AT1 cells and 355 

a pro-inflammatory phenotype (43). However, as evidenced by the return of significant Sftpc expression by 356 

15 dpi in intact alveolar regions, a fraction of the ADI/DATP/PATS cells likely regenerated mature Sftpc-357 

expressing AT2 cells. Notably, our longitudinal studies revealed that the gene expression profiles of 358 

ADI/DATP/PATS cells are dynamic over the evolution of lung disease (Fig. 4B, S7A). 359 

As reported in humans, CD4+/CD8+ lymphocyte populations increased in SARS-CoV-2-diseased 360 

areas of mouse lungs, and peripheral lymphoid aggregations were a feature of chronic disease (Fig. 1). 361 

These features were consistent across all analyses, including immunohistochemistry, DSP, and flow 362 

cytometry data. A notable macrophage feature, identified by DSP and flow cytometry data, was expansion 363 

of the interstitial macrophage population, consistent with human data (47). The subpleural regions exhibited 364 
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the most striking histologic evidence of immunologic cell recruitment and activation of adaptive immune, 365 

hypoxia, fibrotic, and extracellular matrix pathways in association with ADI/DATP/PATS cells (Fig. 3-6).  366 

Final clues to the etiology of the late-stage alveolar CAP/PF response emerged from comparisons 367 

to infection in bronchioles. Despite quasi-higher bronchiolar infection intensities, bronchioles repaired 368 

without evidence of organizing/fibrotic sequelae. Bronchioles may be protected from this adverse fate by 369 

tissue-specific ISG responses to control the duration/severity of infection (Fig. S5C-E). In this context, 370 

several ISGs, including Ifitm1 and Ifitm2, exhibited clear differences in tissue specific expression and/or 371 

persistence through 30 dpi (Fig. 2, S5). Other possible relevant variables that may favor bronchiolar repair 372 

include: 1) more “controlled” cell death, i.e., apoptosis (Fig. S6G); 2) a less damaged basement membrane 373 

architecture; and 3) inability of club cells to enter an intermediate, ADI/DATP/PATS cell equivalent (Fig. 374 

4). 375 

Mouse models of acute and chronic viral disease are critical also for countermeasure development. 376 

Molnupiravir is one of three FDA-approved DAA that clear virus, reduce morbidity, mortality, and time to 377 

recovery (53, 73). Early molnupiravir treatment attenuated chronic PASC in the SARS-CoV-2 MA10 378 

mouse model (Fig. 6). Although speculative, early DAA treatment may forestall chronic lung and other 379 

organ PASC manifestations. Based on preclinical studies of anti-fibrotic agents in reducing the severity of 380 

PF responses to chemical agents, we tested the concept that early intervention with an anti-fibrotic agent 381 

may reduce the severity of PF following SARS-CoV-2 infection (57). Nintedanib administered from 7 dpi 382 

blunted maximal fibrotic responses to virus at 15 dpi, supporting the concept that early intervention with 383 

anti-fibrotic agents may attenuate post-SARS-CoV-2 severe disease trajectories. 384 

In summary, the SARS-CoV-2 MA10 mouse model provides novel opportunities to longitudinally 385 

study the molecular mechanisms/pathways mediating long-term COVID-19 pulmonary sequelae as relates 386 

to human PASC. The model supports high-priority research directions that include SARS-CoV-2 infection 387 

of transgenic lineage tracing reporter mice to define longitudinally the fates of infected club and AT2 cells, 388 

ADI/DATP/PATS cell transitions, mechanisms of cell death, and epithelial cell regeneration/repopulation 389 
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following infection. With respect to countermeasures, ~1 year clinical trials are required to assess 390 

therapeutic benefit for lung fibrosis, emphasizing the utility of the SARS-CoV-2 MA10 model to test 391 

rapidly agents that may counter the pulmonary CAP/PF effects of COVID-19 (74, 75). Thus, the murine 392 

SARS-CoV-2 MA10 model permits longitudinal selection/validation of therapeutic targets, accelerated 393 

timelines, and controlled experimental settings for testing of novel therapeutic agents. 394 

Material and Methods 395 

Ethics and biosafety 396 

 The generation of SARS-CoV-2 MA10 was approved for use under BSL3 conditions by the 397 

University of North Carolina at Chapel Hill Institutional Review Board (UNC-CH IBC) and by a Potential 398 

Pandemic Pathogen Care and Oversight committee at the National Institute of Allergy and Infectious 399 

Diseases (NIAID). All animal work was approved by Institutional Animal Care and Use Committee at 400 

University of North Carolina at Chapel Hill according to guidelines outlined by the Association for the 401 

Assessment and Accreditation of Laboratory Animal Care and the U.S. Department of Agriculture. All 402 

work was performed with approved standard operating procedures and safety conditions for SARS-CoV-2, 403 

including all virologic work was performed in a high containment BSL3 facility and personnel wore PAPR, 404 

Tyvek suits and were double gloved. Our institutional BSL3 facilities have been designed to conform to 405 

the safety requirements recommended by Biosafety in Microbiological and Biomedical Laboratories 406 

(BMBL), the U.S. Department of Health and Human Services, the Public Health Service, the Centers for 407 

Disease Control and Prevention (CDC), and the National Institutes of Health (NIH). Laboratory safety plans 408 

have been submitted, and the facility has been approved for use by the UNC Department of Environmental 409 

Health and Safety (EHS) and the CDC. 410 

Viruses and cells 411 

Serial in vivo passaging of parental SARS-CoV-2 MA virus (76) in mice lead to the plaque 412 

purification of a passage 10 clonal isolate (SARS-CoV-2 MA10) (29). A large working stock of SARS-413 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2022. ; https://doi.org/10.1101/2022.02.15.480515doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480515
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

CoV-2 MA10 was generated by passaging the plaque purified clonal isolate sequentially on Vero E6 cells 414 

at 37°C (passage 3, SARS-CoV-2 P3). SARS-CoV-2 MA10 P3 was used for all in vivo experiments. 415 

Vero E6 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Gibco) with the 416 

addition of 5% Fetal Clone II serum (Hyclone) and 1X antibiotic/antimycotic (Gibco). Working stock titers 417 

were determined via plaque assay by adding serially diluted virus to Vero E6 cell monolayers. After 418 

incubation, monolayers were overlayed with media containing 0.8% agarose. After 72 hours, Neutral Red 419 

dye was used to visualize plaques.  420 

In vivo infection 421 

All BALB/c mice used in this study were purchased from Envigo (BALB/cAnNHsd; strain 047) 422 

and housed at the University of North Carolina at Chapel Hill until the start of the experiment. For intranasal 423 

infection, mice were anesthetized using a mixture of ketamine and xylazine. 104 plaque forming units (PFU) 424 

or 103 PFU of SARS-CoV-2 MA10 diluted in PBS were used for inoculation of young (10 week) or aged 425 

(12 months) BALB/c mice, respectively. Weight loss and morbidity were monitored daily as clinical signs 426 

of disease whereas lung function was assessed at indicated time points using whole body plethysmography 427 

(WBP; DSI Buxco respiratory solutions, DSI Inc.). Lung function data was acquired as previously described 428 

(77) by allowing mice to acclimate in WBP chambers for 30 min and a data acquisition time of 5 min. Data 429 

was analyzed using FinePointe software.  430 

At indicated harvest time points, randomly assigned animals were euthanized by an overdose of 431 

isoflurane and samples for analyses of titer (caudal right lung lobe) and histopathology (left lung lobe) were 432 

collected. Animals recorded as “dead” on non-harvest days were either found dead in cage or were 433 

approaching 70% of their starting body weight which resembles the criteria for humane euthanasia defined 434 

by respective animal protocols. 435 
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Viral titers in lungs were determined by plaque assay for which caudal right lung lobes were 436 

homogenized in 1mL of PBS and glass beads, monolayers of Vero E6 cells inoculated, and 72 hours after 437 

incubation stained with Neutral Red dye for visualization of plaques.  438 

Disease incidence scoring 439 

Profibrotic disease incidence was scored by a blinded veterinary pathologist using serial H&E and 440 

Picrosirius Red stained slides. Ordinal scoring was defined by percent of total parenchyma affected on the 441 

sampled section: 0 = 0% of total parenchyma, 1 = < 5%; 2 = 6-10%; 3 = 11-50%; 4 = 51-95%; 5 = > 95%. 442 

Instances of rare and isolated alveolar septa with gentle fibrotic changes were excluded from scoring.  443 

Chemokine & Cytokine analysis 444 

Chemokine and cytokine profiles of serum and lung samples were assessed using Immune 445 

Monitoring 48-plex mouse ProcartaPlex Panel kits (Invitrogen). Briefly, 50 μL of either a 1:4 dilution of 446 

serum or 50 μL straight clarified lung homogenate were incubated with magnetic capture beads containing 447 

analyte specific antibodies. After washing, 96-well plates containing samples and magnetic beads were 448 

incubated with detection antibodies and SA-PE. Results were collected using a MAGPIX machine 449 

(Luminex) and quantification was achieved by comparing to a standard curve; both were done in xPONENT 450 

software. Values below limit of detection (LOD) were set to LOD and hierarchical clustering heatmaps 451 

were generated with the Bioconductor R package, ComplexHeatmap, after scaling the values across samples. 452 

Preparation of lung cell suspensions for flow cytometric analysis 453 

Enzymatic digestion of lung tissue was performed by intratracheal instillation via a 20-gauge 454 

catheter of 1 mL of 5 mg/mL collagenase I (Worthington Biochemical Corp, Lakewood, NJ) and 0.25 455 

mg/mL DNase I (Sigma) prepared in RPMI media (Life Technologies, Carlsbad, CA) prior to instilling 0.5 456 

mL of 1% (wt/vol) low melting agarose (Amresco, Solon, OH), similar to previous protocols (78). Lung 457 

were then incubated at 37oC for 30 minutes. Lung were then minced and triturated through a 5 mL syringe. 458 

Cell suspensions were then filtered through a 50 mL conical 100 μM filter (ThermoFisher, Pittsburgh, PA) 459 
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before RBC lysis and stained as previously described. 460 

Multi-color flow cytometry 461 

 The prepared lung cells were suspended in approximately 1 mL of PBS buffer supplemented with 462 

1.5 % (w/v) bovine serum albumin (Sigma) and 2 mM EDTA (Sigma). The total cell count determined by 463 

hemocytometer with trypan blue (VWR). For each sample 1.5 x 106 cells first underwent Fc receptor 464 

blockade with rat anti-mouse FcgRIII/II receptor (CD16/32; BD Biosciences). After Fc receptor blocking 465 

for 5 minutes on ice, cells were surface stained using antibodies listed in Key Resources Table and as 466 

previously described (78). For intracellular staining, the cells underwent fixation and permeabilization with 467 

the Foxp3/Transcription Factor Staining Buffer Set (eBioscience, San Diego, CA). Fixed and permeabilized 468 

single cells suspensions were subsequently stained with intracellular antibodies (Supplemental Table 8) 469 

to characterize differences in specific populations.  470 

 The neutrophils and macrophage subpopulations were identified through gating, as demonstrated 471 

in prior reports (78, 79) and adapted from previously published methods (80). 472 

 Flow cytometry was performed using a Cytoflex flow cytometer (Beckman Coulter, Brea, CA) 473 

and analyzed using CytExpert (Beckman Coulter) software. To determine the total number of a specific 474 

population in the lung, we first calculated the population’s percentage with respect to the total live single 475 

cell population. Next, we multiplied this percentage to the total cell count as determined by hemocytometer 476 

measurements to calculate the specific population’s total number per mouse lung. 477 

Specimen Computed Tomography (CT) Imaging 478 

Phosphotungstic acid (PTA) staining was performed to increase soft tissue conspicuity for 479 

specimen computed tomography (CT) imaging. Lungs were inflated and fixed with 10% formalin at 20 cm 480 

H2O pressure for seven days. Samples were initially washed 3X in 70% EtOH in 50 ml non-reactive tubes 481 

prior to staining. Each lung was then immersed in 0.3% (w/v) Phosphotungstic acid hydrate (Sigma-Aldrich 482 

P4006) in 70% EtOH for seven days on an oscillating table. They were subsequently air dried prior to 483 

imaging.  484 
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Specimen CT scanning of the dried lungs was performed on a Sanco µCT 40 (ScanCo Medical AG, 485 

Switzerland. Imaging was performed at 70kVP at 114 µA current and 200 ms integration time. Images were 486 

reconstructed using a conebeam algorithm at 16 µm voxel size in a DICOM file format. Images were viewed 487 

with ImageJ.  488 

RNA in situ hybridization, Immunohistochemistry, and Quantification 489 

For histopathological analyses on mouse lung tissue sections, left lung lobes were stored in 10% 490 

phosphate buffered formalin for at least 7 days before transferring out of the BSL for further processing. 491 

Histopathological scoring was performed after tissue samples were embedded with paraffin, sectioned, and 492 

stained. Immunohistochemistry (IHC) was performed on paraffin-embedded lung tissues that were 493 

sectioned at 5 microns. This IHC was carried out using the Leica Bond III Autostainer system. Slides were 494 

dewaxed in Bond Dewax solution (AR9222) and hydrated in Bond Wash solution (AR9590). Heat induced 495 

antigen retrieval was performed for 20 min at 100ºC in Bond-Epitope Retrieval solution 2, pH-9.0 496 

(AR9640). After pretreatment, slides were incubated with primary antibodies (see Key Resources Table) 497 

for 1h followed with Novolink Polymer (RE7260-K) secondary. Antibody detection with 3,3'-498 

diaminobenzidine (DAB) was performed using the Bond Intense R detection system (DS9263). Stained 499 

slides were dehydrated and coverslipped with Cytoseal 60 (8310-4, Thermo Fisher Scientific).  500 

RNA-ISH was performed on paraffin-embedded 5 μm tissue sections using the RNAscope 501 

Multiplex Fluorescent Assay v2 or RNAscope 2.5 HD Reagent Kit according to the manufacturer’s 502 

instructions (Advanced Cell Diagnostics). Briefly, tissue sections were deparaffinized with xylene and 503 

100% ethanol twice for 5 min and 1 min, respectively, incubated with hydrogen peroxide for 10 min and in 504 

boiling Target Retrieval Reagent (Advanced Cell Diagnostics) for 15 min, and then incubated with Protease 505 

Plus (Advanced Cell Diagnostics) for 15 min at 40°C. Slides were hybridized with custom probes at 40°C 506 

for 2 h, and signals were amplified according to the manufacturer’s instructions.  507 
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Stained mouse tissue sections were scanned and digitized by using an Olympus VS200 slide 508 

scanner. Images were imported into Visiopharm Software® (version 2020.09.0.8195) for 509 

quantification. Lung tissue and probe signals for targeted genes detected by RNA-ISH were quantified 510 

using a customized analysis protocol package to 1) detect lung tissue using a decision forest classifier, 2) 511 

detect the probe signal based on the intensity of the signal in the channel corresponding to the relevant 512 

probe. The same methodology was applied to quantify CD4+ and CD8+ cells identified by IHC. Positive 513 

signals for CD4+ cells were determined using contrast of red-blue channels at a determined threshold to 514 

exclude background, similarly, CD8+ cells were determined using contrast of green-blue channels. All 515 

slides were analysed under the same conditions. Results were expressed as the area of the probe relative to 516 

total lung tissue area. 517 

Paraffin-embedded mouse and human tissue sections (5 μm) were used for fluorescent IHC staining. 518 

According to the previously described protocol (81) sections were baked at 60 °C for 2-4 hours followed 519 

by a deparaffinization step including xylene and graded ethanol. Antigen retrieval was achieved after 520 

rehydration by boiling slides in 0.1M sodium citrate at pH 6.0 in a microwave. Slides were allowed to cool 521 

down and rinsed with distilled water before quenching of endogenous peroxidase was performed with 0.5% 522 

hydrogen peroxide in methanol for 15 min. After a PBS wash, slides were blocked with 4% normal donkey 523 

serum for 60 min at room temperature followed by incubation with primary antibodies (diluted in 4% 524 

normal donkey serum in PBST) at 4 °C overnight. Isotype control (species-matched gamma globulin) was 525 

diluted in the same manner as the primary antibody. Slides were incubated for 60 min at room temperature 526 

with secondary antibodies after being washed in PBST. Reduction of background staining was achieved by 527 

utilization of Vector® TrueVIEW Autofluorescence Quenching Kit (Vector laboratories). Tissue sections 528 

were covered in glass coverslips by adding ProLong Gold Antifade Reagent with DAPI (Invitrogen). 529 

Stained human tissue sections were scanned and digitized by using an Olympus VS200 slide scanner.  530 

GeoMx Digital Spatial Profiling 531 
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Five µm-thick FFPE sections were prepared using the RNAscope & DSP combined slide prep 532 

protocol from NanoString Technologies. Prior to imaging, mouse tissue morphology was visualized by IHC 533 

for CD45 and RNAscope for SARS-CoV-2 RNA, and DNA was visualized with 500 nM Syto83. Human 534 

tissue morphology was visualized by IHC for immune cell marker CD45/epithelial cell marker 535 

panCK/Syto83 and for KRT5 (IHC)/SARS-CoV-2 (RNA) on serial sections. Mouse or Human Whole 536 

Transcriptome Atlas probes targeting over 19,000 targets were hybridized, and slides were washed twice 537 

in fresh 2X SSC then loaded on the GeoMx Digital Spatial Profiler (DSP). In brief, entire slides were 538 

imaged at 20X magnification and 6-10 regions of interest (ROI) were selected per sample. ROIs were 539 

chosen based on serial hematoxylin and eosin-stained sections and morphology markers (mouse: 540 

DNA/CD45 IHC/SARS-CoV-2 RNA; human: CD45/PanCK/Syto83 IHC and SARS-CoV-2 541 

RNA/KRT5/DAPI IHC on serial sections by a veterinary pathologist (S.A.M.). The GeoMx then exposed 542 

ROIs to 385 nm light (UV) releasing the indexing oligos and collecting them with a microcapillary. 543 

Indexing oligos were then deposited in a 96-well plate for subsequent processing. The indexing oligos were 544 

dried down overnight and resuspended in 10 μL of DEPC-treated water. 545 

Sequencing libraries were generated by PCR from the photo-released indexing oligos and ROI-546 

specific Illumina adapter sequences and unique i5 and i7 sample indices were added. Each PCR reaction 547 

used 4 μL of indexing oligos, 4 μL of indexing primer mix, and 2 μL of NanoString 5X PCR Master Mix. 548 

Thermocycling conditions were 37°C for 30 min, 50°C for 10 min, 95°C for 3 min; 18 cycles of 95°C for 549 

15 sec, 65°C for 1 min, 68°C for 30 sec; and 68°C 5 min. PCR reactions were pooled and purified twice 550 

using AMPure XP beads (Beckman Coulter, A63881) according to manufacturer’s protocol. Pooled 551 

libraries were sequenced at 2×27 base pairs and with the dual-indexing workflow on an Illumina NovaSeq. 552 

Analysis of mouse GeoMx transcriptomic data  553 

For mouse samples, raw count, 3rd quartile (Q3) normalized count data of target genes from ROIs 554 

were provided by the vendor, which were used as input to downstream analyses (Supplemental Table 3). 555 

Mouse Q3 normalized data were used for principal component analysis (PCA) using the R package ade4 556 
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and visualized using factoextra package. Raw count data were used for differential expression analysis 557 

using the Bioconductor R package, variancePartition (82), with transformation of raw counts by voom 558 

method (83). The dream function from variancePartition allows fitting of mixed-effect models to account 559 

for ROIs obtained from the same animal, and assay slides as random-effect factors. Differentially expressed 560 

genes (DEGs) were defined as genes that passed the filters of Benjamini-Hochberg adjusted p-value < 0.05, 561 

and absolute log2 fold-change > 1. Pre-ranked gene set enrichment analysis (GSEA) was performed using 562 

the Bioconductor R package, fgsea (84), with gene set collections obtained from Gene Ontology Biological 563 

Process (85), and Reactome pathways (86). Various gene lists of interests were curated manually from 564 

published literature, and human gene symbols from references were converted into homologous mouse 565 

genes using bioDBnet (https://biodbnet-abcc.ncifcrf.gov/). Plots and hierarchical clustering heatmaps were 566 

generated using the R package, ggplot2 (87), and ComplexHeatmap (88).  567 

For the human samples, WTA + COVID-19 spike-in gene targets were assayed. FASTQ data were 568 

first converted to digital counts conversion (DCC) format. Probe outlier tests were performed on each set 569 

of negative probes (one set of negative probes for the WTA panel and one set for the COVID-19 spike-in 570 

panel). Specifically, for a given negative probe pool, the geometric mean of all counts (across all probes 571 

and all samples) was computed. A probe was identified as a low count outlier if its probe-specific geometric 572 

mean divided by the grand geometric mean was less than the threshold of 0.1. From the remaining probes, 573 

the Rosner Test was used to detect local outliers on a sample-specific case using the R package EnvStats 574 

(89) with parameters k equal to 20% of the number of negative probes and alpha equal to 0.01. A negative 575 

probe was considered a global outlier if it was found to be a local outlier in more than 20% of samples and 576 

was discarded from downstream analysis. For each panel pool, the negative probe geometric mean and 577 

geometric standard deviation were computed. The sample-specific limit of quantification (LOQ) was 578 

estimated from these moments by multiplying the geometric mean by the geometric SD and then squaring 579 

that quantity. Gene targets in the COVID-19 spike-in, which contain multiple probes per target, were 580 

collapsed to a single floating point value using the geometric mean. Following outlier filtering, the 581 
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sequencing saturation for each sample was computed as the one minus the number of deduplicated reads 582 

divided by the number of aligned reads. One sample yielded a sequencing saturation below the 0.67 cutoff 583 

(range of other samples: 85.9-96.8) and was removed. Additionally, one sample had an LOQ more than 2.7 584 

standard deviations from the mean in the WTA panel and 4.2 standard deviations from the mean in the 585 

COVID-19 spike-in pool and was removed from the analysis. Filtering gene targets was also performed. If 586 

a gene target was below LOQ in more than 10% of samples, it was filtered out. Following the above probe, 587 

sample, and target filtering steps, the data matrix was normalized using the Q3 method (see above).  588 

Preliminary analysis of the log2 transformed and scaled Q3 normalized data identified a putative 589 

batch effect between two runs as identified using the PCA in the R package FactoMineR. The following 590 

batch correction algorithm was used before downstream data analysis. We first ensured that the batching 591 

factor was not itself confounded with Group (Healthy or COVID-19) or Region (alveolar, bronchiolar, 592 

disorganized). This was done by creating a design matrix and checking for any linearly dependent terms 593 

using the core R package stats (90). No factors were correlated with Batch using a correlation threshold of 594 

0.3. Batch correction was performed for each gene target by modeling its log2 Q3 expression (dependent 595 

variable) in a mixed effect model that included a random intercept for the fixed portion and Batch as a 596 

random effect with random intercept. Modeling was done in the R package lme4. For each model, the 597 

residuals of the model were extracted and converted back to the linear scale. These residuals were then 598 

multiplied by the model’s estimated intercept (also linear scale) to shift the values to an intensity similar to 599 

the original Q3 data. To evaluate how well the above approach removed the batch effect, we regressed the 600 

first 5 PC scores against Batch for both the Q3 as well as the batch corrected (BC) data using a series of 601 

ANOVAs. Of the five PC axes, only the first was associated with the batching factor (P < 4e-36; all others, 602 

P > 0.23) in the Q3 data. Following correction, no axes were associated with Batch (all P > 0.80).  603 

Histological scoring of human COVID-19 lung tissue  604 

The H&E stained regions of interest (ROI) were scored by a pulmonary pathologist (S.G.) grading 605 

each section on a semi-quantitative scale between zero and three, with zero representing a normal human 606 
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lung section and three representing the most severe histologic change encountered in clinical practice. The 607 

features scored in each ROI are: interstitial inflammation, airspace fibrin exudates (acute phase of lung 608 

injury), the fibroblastic/organizing-phase of lung injury and mature fibrosis. Human donor information can 609 

be found in Supplementary Table 6.  610 

Analysis of human GeoMx transcriptomic data  611 

For human samples, raw count and Q3 + batch corrected count data of target genes from ROIs were 612 

provided by the vendor (Supplemental Table 7). Prior to downstream analysis, Q3 + batch corrected data 613 

were log2 normalized. Principal component analysis were performed on the top 1,000 highly variable genes 614 

on the log normalize data. Coexpression network analysis was performed on 11,556 expressed genes using 615 

Weighted Gene Coexpression Network Analysis (WGCNA) R package (91). Differential gene and network 616 

expression between groups were evaluated under a linear mixed model approach accounting for multiple 617 

ROIs per donor using R package Ime4. Statistical significance of the estimates were evaluated with R 618 

package lmerTest (92), using the Satterthwaite’s degrees of freedom method. Sets of differentially 619 

expressed genes were tested for overrepresentation of the genes in the databases (GO: Biological Process, 620 

GO: Molecular Function, GO: Cellular Components, KEGG, and Reactome) using R package enrichR (93). 621 

For each network, genes were selected based on the degree of correlation with the network eigengene. To 622 

cluster ROIs obtained from healthy and COVID-19 donors, hierarchical clustering was performed based on 623 

the 50 most correlated network genes from each of the 7 identified networks using ward.D2 agglomeration 624 

method. As a result, healthy ROIs were separated from COVID-19 ROIs and COVID-19 ROIs were 625 

segregated into three subtypes, including COVID1, COVID2, and COVID3. Various plots and heatmaps 626 

were generated using the R packages ggplot2 (87) and heatmap3 (94). 627 

Human lung tissue and quantification of Sirius Red and smooth muscle actin signals 628 

Control lungs were obtained from lung transplant donors without any history of pulmonary disease 629 

whose lungs were unsuitable for transplant due to size mismatch provided by the University of North Carolina 630 

(UNC) Tissue Procurement and Cell Culture Core (institutional review board (IRB)-approved protocol #03-631 
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1396). COVID-19 autopsy lung tissue sections were obtained from Drs. Ross. E. Zumwalt (University of 632 

New Mexico, Albuquerque, NM), Edana Stroberg (Office of the Chief Medical Examiner, Oklahoma City, 633 

OK), Alain Borczuk (Weill Cornell Medicine, New York, NY), and Leigh B. Thorne (University of North 634 

Carolina at Chapel Hill (UNC), Chapel Hill, NC). Human donor information can be found in 635 

Supplementary Table 6. Early- and late-phase specimens were defined as autopsy tissues obtained ≤ 20 636 

and > 20 days post an onset of symptoms, respectively.  637 

Stained areas of Sirius Red and SMA detected by IHC in the alveolar regions were quantitated 638 

using Fiji software. Alveolar regions were randomly selected and cropped from the field. Optimized 639 

threshold value was determined by adjusting the threshold accurately representing the original images. The 640 

optimized threshold values were applied to identify Sirius Red or SMA signals. The Sirius Red or SMA-641 

stained areas were measured and normalized to alveolar areas. 642 

In vivo Drug Treatment 643 

 EIDD-2801 (Emory Institute of Drug Design) was dissolved in a solution of 2.5% cremaphor 644 

(Sigma-Aldrich), 10% PEG 400 (Fisher Chemical), and 87.5% Molecular biology grade water (HyClone) 645 

via bath sonication at 37°C for 10 minutes, as described previously (53). Drug solution was made at a 646 

concentration of 62.5 mg/mL fresh daily for a final dose of 250 mg/kg per mouse (500mg/kg BID). Mice 647 

were dosed via oral gavage with 100uL of vehicle or EIDD solution twice daily beginning at 12 hours post 648 

infection and were dosed every 12 hours until 120 hours post infection.  649 

 Nintedanib (MedChemExpress) suspension was made in Molecular Biology Grade Water 650 

(HyClone) with 1% Tween-80 (Sigma-Aldrich) fresh daily at a concentration of 15mg/mL for a final dose 651 

of 60mg/kg per mouse (95, 96). Mice were dosed once daily via oral gavage with either 100uL of 652 

Nintedanib suspension or vehicle starting at 7 days post infection until final harvest at either 15 or 30 days 653 

post infection. Mouse serum was harvested at indicated time points after nintedanib administration, 654 

inactivated for BSL3 removal with 0.05% Triton-X100 and heating at 56°C, and was analyzed using ultra 655 
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high-performance liquid chromatography time-of-flight mass spectrometry (UHPC-TOF MS). Samples 656 

were prepared by precipitating protein with acetonitrile (Sigma-Aldrich) containing diazepam (Cerilliant) 657 

as an internal standard. The supernatant was separated using a Flexar FX-20 UHPLC system (Perkin Elmer) 658 

with a Kinetex C18 biphenyl column (2.6 um 50 x 3 mm Phenomenex) at 45°C with 98% MS-grade water 659 

(Sigma-Aldrich), 10 mM ammonium acetate (Hagn Scientific), and 98% methanol (Sigma-Aldrich) 0.1% 660 

formic acid (Hagn Scientific) gradient elution at a flow rate of 0.6 mL/min. The Perkin Elmer Axion2 TOF 661 

mass spectrometer operated in positive-ion electrospray ionization (ESI+) mode was used to detect accurate 662 

mass spectra of nintedanib at 540.2605 [M+H]+. The method was linear from 1 to 500 ng/mL with a lower 663 

limit of detection of 1 ng/mL. The results for nintedanib concentration in mouse sera for this study was in 664 

agreement with the serum concentrations reported previously (58). 665 

Quantification and statistical analysis 666 

Wilcoxon rank-sum test was used to test the difference in CD4+ or CD8+ T cells (Fig. S4C, D), as 667 

well as Sirius red- or SMA-stained areas (Fig. S8C, D), identified by IHC between two groups. Flow 668 

cytometry data were analyzed by Wilcoxon rank-sum test (Fig. S4E) or ANOVA followed by Sidak’s 669 

multiple comparisons test (Fig. S4F-H). The difference in DSP Q3 normalized counts for targeted genes in 670 

ROIs between each condition and time point was statistically tested using a linear mixed-effect model using 671 

the R package Ime4 (97), with condition and time point as fixed effects and replicate mice as random-effect 672 

factors (Fig. 4C, S5D-E). Statistical significance was evaluated with the R lmerTest package(92), using the 673 

Satterthwarte’s degrees of freedom method. Multiple post-hoc comparisons of subgroups were performed 674 

using the R multcomp package (Hothorn T, 2008). P < 0.05 was considered statistically significant. 675 

Data and material availability 676 

All relevant data is included in this article. SARS-CoV-2 MA10 is available from BEI resources. Reagents 677 

and resources available upon request to corresponding author (rbaric@email.unc.edu) and with material 678 

transfer agreement. 679 
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 1083 

Fig. 1: SARS-CoV-2 MA10 infection causes lung damage in aged surviving mice. 1-year-old female 1084 

BALB/c mice were infected with 103 PFU SARS-CoV-2 MA10 (n=74) or PBS (n=24) and monitored for 1085 

(A) percent starting weight and (B) survival. (C) Log transformed infectious virus lung titers were assayed 1086 

at indicated time points. Dotted line represents limit of detection. Undetected samples are plotted at half the 1087 

limit of detection. (D-F) Lung function was assessed by whole body plethysmography for (D) PenH, (E) 1088 
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Rpef, and (F) EF50. (G) Histopathological analysis of lungs at indicated time points. H&E: hematoxylin 1089 

and eosin. SMA: immunohistochemistry for α-smooth muscle actin. Picrosirius Red staining highlights 1090 

collagen fibers. Image scale bars represents 1000 μm for low magnification and 100 μm for 400X images. 1091 

(H) Disease incidence scoring at indicated time points: 0 = normal; 0 = 0% of total area of examined section, 1092 

1 = < 5%; 2 = 6-10%; 3 = 11-50%; 4 = 51-95%; 5 = > 95%. Graphs represent individuals necropsied at 1093 

each timepoint (C, H), with the average value for each treatment and error bars representing standard error 1094 

of the mean (A-H).  1095 
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 1097 

Fig. 2: Transcriptional digital spatial profiling reveals unique signatures in diseased tissue 1098 

compartments. (A) Experimental setup for GeoMx digital spatial profiling (DSP). (B) A table 1099 

summarizing numbers of regions of interest (ROIs) from each tissue compartment, disease state, and time 1100 

point. Each time point includes 3 independent mouse samples. (C) Example of ROI selections from mock, 1101 

2 dpi, and 30 dpi post SARS-CoV-2 MA10 lungs. Scale Bars = 5 mm for low magnification images and 1102 
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500 μm for insets. (D) DSP Q3 normalized counts of SARS-CoV-2 MA10 Spike (S) and ORF1ab 1103 

expression in mock, infected diseased (D), or intact (I) ROIs. Graphs represent all ROIs selected with each 1104 

unique color and symbol representing one animal, bars represent average value of each group (D). (E-F) 1105 

Principal component analysis (PCA) plot of distal airway (E) and alveolar (F) ROIs. 1106 
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 1108 

Fig. 3: Digital spatial profiling reveals distinct transcriptional pathway changes during acute and late 1109 

stages of SARS-CoV-2 disease. (A-B) DSP heatmaps of differentially expressed genes (DEGs) in ROIs 1110 

across all time points in (A) distal airway and (B) alveolar tissue compartments. (C) DSP pathway 1111 

enrichment analysis in distal airway and alveolar ROIs at 2, 15, and 30 dpi vs. mock. Statistical analyses 1112 

and R packages used are detailed in methods.  1113 
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 1114 

Fig. 4: Transitional alveolar epithelial cell genes are upregulated following SARS-CoV-2 MA10 1115 

infection. (A) DSP pathway analysis of an ADI/DATP/PATS signature in diseased alveolar ROIs at 2, 15, 1116 

and 30 dpi vs. mock. (B) DSP heatmap of reported ADI/DATP/PATS marker genes in alveolar ROIs. (C) 1117 

DSP Q3 normalized counts of Cdkn1a and Krt8 expression across alveolar ROIs. Graphs represent all ROIs 1118 

selected with each unique color and symbol representing one animal, bars represent average value of each 1119 
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group with error bars representing standard error of the mean. The difference in DSP Q3 normalized counts 1120 

for targeted genes in ROIs between each condition and time point was statistically tested using a linear 1121 

mixed-effect model with condition and time point as fixed effects and replicate mice as random-effect 1122 

factors. (D) Histopathological analysis of lungs at indicated time points. H&E: hematoxylin and eosin. 1123 

Col1a1: immunohistochemistry for Col1a1. RNA-ISH for Sftpc, Krt8 and Cdkn1a. Scale Bars = 100 μm. 1124 
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 1126 

Fig. 5: SARS-CoV-2 MA10 infection induces profibrotic gene expression at late time points. (A-B) 1127 

Volcano plots of DSP DEGs in diseased alveolar ROIs at (A) 15 and (B) 30 dpi vs. mock. (C) DSP Q3 1128 

normalized counts of Spp1, Sparc, and Csf1r expression associated with profibrotic macrophage archetype. 1129 

(D-E) Spp1 expression by RNA-ISH (D) with quantification (E). (F) DSP heatmap of selected profibrotic 1130 

and fibrosis related genes in alveolar ROIs. (G-H) Fn1 expression by RNA-ISH (G) with quantification 1131 
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(H). D, G: Scale Bars = 1 mm. (I) DSP Q3 normalized counts of Tgfb1. (J) Tgfb1 expression by RNA-ISH 1132 

in subpleural diseased regions in a SARS-CoV-2 MA10 infected mouse at 30 dpi compared to mock. Scale 1133 

Bars = 1 mm (low power) and 100 μm (high power). DSP count graphs represent all ROIs selected with 1134 

each unique color and symbol representing one animal, bars represent average value of each group with 1135 

error bars representing standard error of the mean (C, I). RNA-ISH quantification graphs represent average 1136 

value of each group with error bars representing standard error of the mean (E, H). 1137 
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 1139 

Fig. 6: Direct acting antiviral EIDD-2801 prevents lung damage and anti-fibrotic Nintedanib reduces 1140 

peak disease in SARS-CoV-2 infected aged mice. 1-year-old female BALB/c mice were infected with 1141 

103 PFU of SARS-CoV-2 MA10 (n=50) or PBS (n= 5) then treated with EIDD-2801 (n= 10) (500 mg/kg 1142 

BID) or vehicle (n= 45) starting at 12 hours post infection until 5 days post infection. Animals were 1143 

monitored for weight loss (A) and survival (B). Log transformed infectious virus lung titers were assayed 1144 
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at selected timepoints (C). Dotted line indicates limit of detection and undetected samples are plotted at 1145 

half the limit of detection. Pathology scores of mice as measured by lung congestion at time of harvest (D), 1146 

lung damage measured via evaluation of H&E staining for diffuse alveolar damage (E) and acute lung 1147 

injury (F). (G) Histopathological analysis of lungs at indicated time points. H&E: hematoxylin and eosin. 1148 

α-SMA: immunohistochemistry for smooth muscle actin. Picrosirius Red staining highlights collagen fibers. 1149 

Scale bars represents 100 μm for 200X images. (H) Disease incidence scoring at indicated time points: 0 = 1150 

normal; 0 = 0% of total area of examined section, 1 = < 5%; 2 = 6-10%; 3 = 11-50%; 4 = 51-95%; 5 = > 1151 

95%. 1-year-old female BALB/c mice were infected with 103 PFU of SARS-CoV-2 MA10 (n=90) or PBS 1152 

(n=5) then treated with Nintedanib (n=45) or vehicle (n=50) starting at 7 days post infection until designated 1153 

harvest date. (I-J) Animals were monitored for weight loss (I) and survival (J). (K) Gross pathology scores 1154 

of mice as measured by lung congestion at time of harvest. Disease incidence scoring at indicated time 1155 

points: 0 = normal; 0 = 0% of total parenchyma, 1 = < 5%; 2 = 6-10%; 3 = 11-50%; 4 = 51-95%; 5 = > 1156 

95% (L) Histopathological analysis of lungs at indicated time points. H&E: hematoxylin and eosin. α-SMA: 1157 

immunohistochemistry for smooth muscle actin. Picrosirius Red staining highlights collagen fibers. Image 1158 

scale bars represents 100 μm for 200X images. (M) Serum nintedanib concentrations. Graphs represent 1159 

individuals collected at each timepoint (C-F, H-K, M), with the average value for each treatment and error 1160 

bars representing standard error of the mean, calculated in Prism 9 (A-F, H-K, M). Kruskal-Wallis (D, H) 1161 

and two-way ANOVA (J, K) were performed in Prism 9 and p-values are given with comparisons on each 1162 

graph.  1163 
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