

1 **Single-cell transcriptional profiling reveals cellular and molecular**
2 **divergence in human maternal-fetal interface.**

3

4 Quanlei Wang^{1#}, Jinlu Li^{1,2#}, Shengpeng Wang^{1,2#}, Qiuting Deng^{1,2}, Yanru An¹,
5 Yanan Xing^{1,2}, Xi Dai^{1,2}, Zelong Li^{1,2}, Qiwang Ma¹, Kuixing Wang^{1,5}, Chuanyu
6 Liu¹, Yue Yuan^{1,2}, Guoyi Dong^{1,2}, Tao Zhang¹, Huanming Yang^{1,4}, Yutao Du¹,
7 Yong Hou^{1,2}, Weilin Ke^{3*}, Zhouchun Shang^{1,2,6*}

8

9 ¹ BGI-Shenzhen, Shenzhen 518083, China.

10 ² College of Life Sciences, University of Chinese Academy of Sciences, Beijing
11 100049, China.

12 ³ Department of Obstetrics, Shenzhen Second People's Hospital, Shenzhen
13 University 1st Affiliated Hospital, Shenzhen 518035, China

14 ⁴ James D. Watson Institute of Genome Sciences, Hangzhou, China

15 ⁵ Shenzhen BGI Cell Technology Co., Ltd, Shenzhen 518083, China

16 ⁶ BGI College, Northwest University, Xi'an 710000, China

17

18 # These authors contributed equally to this paper.

19 * Correspondence and requests for materials should be addressed to W.K.
20 (szkeweihe@126.com) or to Z.S. (shangzhouchun@genomics.cn).

21

22 Placenta play essential role in successful pregnancy, as the most important
23 organ connecting and interplaying between mother and fetus. However, the
24 cellular and molecular characteristics of fetal origin and maternal origin cell
25 populations within the fetomaternal interface still is poorly understood. Here, we
26 profiled the transcriptomes of single cells with well-defined maternal-fetal origin
27 that consecutively localized from fetal section (FS), middle section (Mid_S) to
28 maternal section (Mat_S) within the human full-term placenta. Then, we initially
29 identified the cellular and molecular heterogeneity of cytotrophoblast cell (CTB)

30 and stromal cell (STR) with the spatial location and fetal/maternal origin, also
31 highlighted STR cells from fetal origins showed greater proliferation ability in
32 Mat_S compared to cells from FS or Mid_S. Further, by integrating analysis
33 with the first-trimester placental single cell transcriptome data, we revealed that
34 a subpopulation of trophoblast progenitor-like cells (TPLCs) existed in the full-
35 term placenta and mainly distributed in Mid_S, with high expression of pool of
36 putative cell surface makers and unique molecular features. Moreover, through
37 the extravillous cytotrophoblast (EVT) subsets differentiation trajectory and
38 regulation network analysis, we proposed a putative key transcription factor
39 *PRDM6* that promoted the differentiation of endovascular extravillous
40 trophoblast cells (enEVT). Finally, based on the integrated analyses of single
41 cell transcriptional profiling of preeclampsia (PE) and match-trimester normal
42 placenta, we highlighted the defective EVT subgroup composition and down-
43 regulation of *PRDM6* may lead to an abnormal enEVT differentiation process
44 in PE. Together, our study offers important resources for better understanding
45 of human placenta, stem cell-based therapy as well as PE, and provides new
46 insights on the study of tissue heterogeneity, the clinical prevention and control
47 of PE as well as the maternal-fetal interface.

48

49 **Keywords:** Placenta; scRNA-seq; cell subpopulation; preeclampsia

50

51 **Introduction**

52 Human placenta is a complex anatomic structure derived from
53 trophectoderm and extraembryonic mesoderm¹. It is responsible for regulating
54 immune system and transporting nutrients and waste between fetus and mother.
55 Various specialized cells derived from fetal and maternal with coordinated
56 mRNA transcriptional regulation during human placentation and maturation
57 contribute to this vital task^{1,2}. Any cellular and molecular abnormality in the
58 maternal-fetal interface may lead to multiple pregnancy outcomes, such as

59 preeclampsia (PE), which are leading causes of maternal and neonatal death^{3–}
60 ⁵. The maternal-fetal interface is generally consecutive from fetal side to
61 maternal side with corresponding fetal or maternal origin cell types distribution¹.
62 For instance, some fetal derived trophoblast cells mainly located in fetal side,
63 also migrated to maternal side for placental anchoring and tissue remodeling.
64 On the other hand, previous study reported that the fetal side also infiltrate
65 maternal derived cells, including placenta chorionic villus, chorionic plate and
66 chorionic membrane through the intervillous space⁶. For other cell types,
67 abundantly resided in maternal-fetal interface, e.g., stromal cells (STR) from
68 both fetal and maternal origin, play crucial roles in modulating multicellular
69 interaction by releasing signal molecules. And, STR culture-expansion *in vitro*
70 holds great promising in regenerative medicine. Current, human placenta has
71 been regarded as an ideal tissue source for STR isolation and preservation in
72 biobank^{7,8}. However, the molecular features and functional differences of
73 primary STR with specific origin and spatial location in the maternal-fetal
74 interface still remain unclear.

75 Based on current knowledge, the trophoblast cells from placenta include
76 three major functional cell populations: cytotrophoblast (CTB),
77 syncytiotrophoblast (STB) and extravillous trophoblast (EVT). Previous studies
78 showed the proliferative CTB as the initial cell population for STB and EVT
79 differentiation during early placenta development. Large studies showed
80 trophoblast progenitor cells (TPCs) existed in placenta early villus CTB, but
81 rapidly decreased after first-trimester stage^{9–11}. Also, several studies have
82 successfully isolated TPCs as cell culture model from the first-trimester
83 placenta villus tissue¹² or from the differentiation of pluripotent stem cells *in*
84 *vitro*^{13,14}. However, whether TPCs exist in human full-term placenta is still
85 undetermined.

86 Out of chorionic villus, the EVT populations that originated from CTB,
87 undergoing serially differentiation and migration to remodel endometrium and
88 spiral artery in maternal tissue to ensure blood flow circulation. The EVT

89 differentiation from CTB is a complex process, and including multiple
90 subpopulations that responsible for specific functional fate. Based on current
91 knowledge, the proliferation CTB form extravillous trophoblast cells column
92 (column EVT) at the tip of villus, then, the column EVT differentiate further into
93 interstitial extravillous trophoblast cells (iEVT) and endovascular extravillous
94 trophoblast cells (enEVT) for invading endometrium and spiral artery
95 respectively. At present, existed several markers are used to distinguish the
96 EVT subpopulations described above, such as *MKI67* for column EVT, *ITGA1*
97 for iEVT and enEVT. However, we still know little about transcriptional
98 regulation and pathways involved in EVT differentiation and invasion, especially,
99 the regulation of both iEVT and enEVT under normal condition and pregnancy-
100 related diseases.

101 Single-cell RNA-sequencing (scRNA-seq) technologies have greatly
102 improved our understanding of heterogeneity in terms of cell fate determination
103 and transcriptional regulation of development^{15–17}. Current, several studies
104 have performed human maternal-fetal interface single cell transcriptome
105 analysis, but most of them focused on the first-trimester pregnancies or
106 integrated analysis of cell lineages without specific origin and spatial location^{18–}
107 ²⁰. For instance, Roser Vento-tormo *et al.* revealed the cellular heterogeneity of
108 the first-trimester placenta, and develop a repository of ligand–receptor
109 complexes that are critical for placentation and reproductive success²⁰.
110 Moreover, Pavličev *et al.* inferred the cell-cell interactome by assessing the
111 gene expression of ligand-receptor pairs across cell types and found that highly
112 cell-type specific expression of a group of G-protein-coupled receptors could
113 be a reliable tool for cell type identification from 87 single-cell transcriptomes.
114 They also suggested that uterine decidual cells represent a cell-cell interaction
115 hub with a large number of potential signal exchange. Growth factors and
116 immune signals dominate among the transmitted signals, which suggest a
117 delicate balance of enhancing and suppressive signals²¹. Tsang *et al.* dissected
118 the cellular heterogeneity of the human placenta and defined individual cell-

119 type specific gene signatures by analyzing nonmarker selected placenta cells
120 from third-trimester placenta and preeclamptic placentas using large-scale
121 microfluidic single-cell transcriptomic technology²². Overall, previous studies
122 showed accurate cellular atlas for early stage of human placenta development,
123 but that for the full-term placenta is largely lacking. Moreover, both the
124 regulatory mechanism of trophoblast subpopulations differentiation and
125 interactions between cell types within the maternal-fetal interface still remains
126 elusive.

127 In the present study, we profiled the transcriptomes of single cells that
128 consecutively localized from fetal section (FS), middle section (Mid_S) and
129 maternal section (Mat_S) of human full-term placenta based on previous study¹.
130 We dissected cell populations with indication of their fetal or maternal origin
131 base on single-cell SNV analysis. Then, we observed the spatial variation of
132 cellular composition from the FS, Mid_S to Mat_S, and highlighted the
133 molecular and functional diversities of CTB and STR. Moreover, we integrated
134 the first-trimester placental single cell transcriptome data with our trophoblast
135 cells and reconstructed the differentiation relationships within the trophoblast
136 subtypes, then revealed trophoblast progenitor-like cells (TPLCs) with unique
137 molecular feature mainly distributed in the Mid_S. Additionally, we proposed
138 putative key transcription factors, *PRDM6* (PR/SET domain 6) that may play
139 critical role in promoting enEVT differentiation through cell-cycle arrest signals.
140 Finally, compared with the transcriptional profiling of the normal placenta
141 tissues, the PE placenta showed abnormal epithelial-to-mesenchymal
142 transition related ligand-receptor interactions and down-regulation of *PRDM6*
143 may lead to dysregulated enEVT differentiation. Collectively, these results not
144 only offer insights into the spatial structure and function of human placenta but
145 also provide an important resource that will pave the way for basic research
146 and regenerative medicine in placental development field.

147

148

149 **Results**

150 **Dissecting maternal and fetal cell heterogeneity in human full-term fetal-**
151 **maternal interface.**

152 Total 11,438 droplet-based single cell transcriptomes of human full-term
153 placenta were harvested with consecutive spatial locations, including fetal
154 section (FS), middle section (Mid_S) and maternal section (Mat_S) (Fig. 1a,
155 Supplementary Fig. 1a). Unsupervised graph-based clustering of the dataset
156 was performed to produce 27 clusters after computational quality control (see
157 Methods). Cluster-specific expression pattern of known marker genes was
158 employed to annotate the major cell types including villous cytotrophoblasts
159 (CTB; marked by *KRT7*, *PAGE4*, *GATA3*), extravillous trophoblasts (EVT; *HLA-*
160 *G*, *PAPPA2*), syncytiotrophoblasts (STB; *CGA*, *CYP19A1*), stromal cells (STR;
161 *THY1*, *DCN*), decidua cells (DEC; *DKK1*, *IGFBP1*), perivascular cells (PV;
162 *MYH11*, *NDUFA4L2*), vascular endothelial cells (VEC; *PECAM1*, *IFI27*),
163 lymphatic endothelial cells (LEC; *LYVE1*, *CC15*), and immune cells (IMM;
164 *PTPRC*, *CD74*) (Fig. 1b, 1c, 1d; Supplementary Fig. 1b, 1c, 1d). These cells
165 showed significant cellular heterogeneity which was consistent with previous
166 bulk RNA sequencing data and single cell transcriptomic profiling of biopsies
167 taken from different areas of the placenta interface^{1,18}.

168 To further distinguish the maternal or fetal origin of single cells within the
169 full-term placenta using previous reported method²⁰. The ratio of Mahalanobis
170 distance of fetal cells, maternal cells and assigned cells of fetal or maternal
171 origin were calculated accordingly using the difference ratio between a single
172 cell SNV and the corresponding fetal SNV datasets reference (Fig. 1e, 1f;
173 Supplementary Fig. 1e; see Methods). The results show that maternal cells
174 including LEC and DEC mainly dominated the Mat_S; CTB, EVT, and STB were
175 derived from fetal origin and mainly distributed in Mid_S; proportionate STR,
176 PV, and VEC originated from both fetal and maternal compartments which
177 mainly occupied Mid_S; IMM mixed with fetal and maternal origin distributed in
178 each section proportionally. The fetal and maternal origin identities was similar

179 with that in first-trimester placenta in previous study²⁰. In additional, a more
180 comprehensive cellular map with fetal and maternal origin and spatial
181 distribution of the full-term fetal-maternal interface was established in our study.

182

183 **CTB and STR molecular and functional diversity within spatial location
184 and origin.**

185 To further dissect the cellular heterogeneity of specific spatial location within
186 placenta interface. Cells from FS, Mid_S and Mat_S areas were re-clustered
187 while each cluster was annotated with well-known cell type markers
188 respectively. As expected, multiple CTB subpopulations were identified within
189 each spatial section (Fig. 2a). Among these CTB subpopulation, one
190 subpopulation in the Mid_S is high expression of cell-cycle related gene *MKI67*,
191 suggesting that highly proliferative CTB also exist in specific location of full-term
192 placenta (Fig. 2b). Then, GO term enrichment analysis was performed for CTB
193 in FS, Mid_S, and Mat_S, respectively. As expected, these GO terms generally
194 divided into common and spatial section-specific groups, for the common terms
195 included “placenta development”, “female pregnancy”, “embryo implantation”,
196 and “post-embryonic animal morphogenesis”, which indicated that the
197 fundamental functions of the placenta were revealed by our data analysis. Then,
198 for the spatial section-specific group terms, for instance, CTB in FS, as the
199 outermost part of placenta and side of umbilical cord insertion, enriched GO
200 terms like “cellular response to gamma radiation”, “regulation of oxidative
201 phosphorylation”, and “cellular response to X-ray”, with high expression of
202 *EGR1* and *TGFBI*, which involve in regulating radiation-induced cell activity
203 have been reported, previously^{23,24,25}. Also, CTB in Mid_S showed high
204 expression of *PRDX2* and *SPINT2* with “positive regulation of exosomal
205 secretion”, “extracellular vesicle biogenesis”, “extracellular exosome
206 biogenesis”, and “exosomal secretion” were enriched (Fig. 2c). Above terms
207 are expected as Mid_S, the location for metabolites exchange between fetus
208 and mother and in line with previous studies^{26,27}. In addition, CTB in Mat_S

209 showed high expression of *MAP2K3* and *XBP1* while the enriched terms
210 include “positive regulation of inflammatory response”, “endothelial cell
211 migration”, and “regulation of vasculature development” (Fig. 2c, 2d, 2e). Based
212 on the above findings, we infer that the human placenta performs
213 executive function through specific trophoblast cell population, and here, our
214 study indicated that CTB populations perform multiple functions via specific
215 spatial microenvironment with specific molecular enrichment expression in the
216 interface. Collectively, we provided a precise study of cellular molecular
217 features of CTB subpopulation with structure and spatial location in the
218 interface, and opening a window with higher resolution for deeper
219 understanding of trophoblast subpopulation biological activities and fetal
220 development.

221 The STR in human placenta had showed heterogeneous populations with
222 specific spatial location and origin using traditional methodology²⁸. To further
223 address this item at single-cell resolution, GO enrichment analysis showed that
224 STR in both fetal and maternal origin not only exhibited high biological activity
225 involved in “extracellular matrix organization” and “collagen fibril organization”,
226 but also showed key roles in “embryo implantation” and “embryonic organ
227 development” (Fig. 2c). The results potentially indicated STR has crucial role in
228 regulating placenta and embryonic development and was in line with previous
229 studies^{29,30}. Moreover, fetal STR might be advantage in endomembrane related
230 system development, while maternal origin STR showed great value in
231 regulation of immune response related activity in our study (Fig. 2c). For the
232 spatial location analysis of STR with inferred origin, to our surprise, STR both
233 fetal and maternal STR derived from Mat_S showed higher proliferative activity
234 through regulation of cell cycle G2/M phase transition pathway and telomere
235 maintenance related pathway, respectively based on the GO enrichment
236 analysis (Supplementary Fig. 2a). Also, the stemness-related genes including
237 *THY1* and *VCAM1* were highly expressed in Mat_S STR, as well as cytokines
238 and hormones-related genes like *PGF*, *FGF2*, *FGF10* etc. that have crucial role

239 in maintaining STR self-renewal and functional actives (Supplementary Fig. 2b,
240 2d). Furthermore, cell surface markers including *THY1*, *CD151*, *CD99*, *IL6ST*,
241 *PDGFRA*, etc., involved in promoting STR proliferation, also helped to
242 distinguish fetal and maternal STR in Mat_S (Supplementary Fig. 2e). These
243 genes in line with the functional terms related to positive regulation of cell cycle
244 of fetal STR in Mat_S, such as well-known stemness related gene such as
245 *THY1*, *CD151*^{28,31}, relatively higher expression in fetal STR than that in
246 maternal STR in Mat_S (Supplementary Fig. 2a, 2e). Comparison of STR
247 populations within the same Mat_S of placenta confirmed fetal origin likely to
248 be more stemness than maternal origin STR. Here, for the first time we
249 presented the whole genome wide molecular profiling differences of fetal and
250 maternal STR in the same tissue origin, and the identified gene profiles were
251 employed to further isolate STR with specific origin from Mat_S of full-term
252 placenta tissue *in vitro*.

253

254 **Trophoblast development trajectory reveals TPLCs in full-term placenta.**

255 To investigate the regulation process of trophoblast differentiation and highlight
256 the stemness feature of trophoblasts, our single cell transcriptome data was
257 integrated with published first-trimester placenta transcriptome data²⁰. The
258 trophoblast populations were sub-clustered into CTB subpopulations, EVT
259 subpopulations, and STB subpopulations (Fig. 3a; Supplementary Fig. 3a, 3b,
260 3c). Then, the differentiation trajectory was constructed using the inferred
261 subgroups. As expected, trophoblast cells formed a continuous “Y-shaped”
262 trajectory, in which CTB was located at the trunk with high expression of
263 proliferation and stemness related genes, for instance *TEAD4*, *KRT8*, and the
264 two branch arms were occupied by the differentiation to EVT direction and STB
265 direction (Fig. 3b, 3c; Supplementary Fig. 3d). Genes related to migration and
266 invasion were highly expressed in the cells on EVT path, such as *HLA-G*,
267 *PLAC8*, *ASCL2*, *EBI3*, *PAPPA*, and *PAPPA2*, which was consistent with
268 previous studies²², while genes related to hormone and cell fusion, such as

269 CGA, *ERVFRD-1*, *ERVW-1*, *LGALS16*, and *CYP19A1*, expressed in the cells
270 on STB pathway (Fig. 3c, 3d).

271 Interestingly, a minor subpopulation cluster11 (C11) derived from both first-
272 and third-trimester placenta at the head of trunk on trophoblast trajectory in
273 the CTB subpopulations also mentioned above showed highly expression of
274 proliferative activity-related genes, e.g., *MKI67*, *CCNB1*, *CDK1* and *TOP2A*,
275 also stemness related genes, e.g., *TEAD4*, *TPX2*, *TFAP2C*, suggesting the
276 possible existence of stemness-trophoblast cells, here named: trophoblast
277 progenitor-like cells (TPLCs) in human full-term placenta, and trophoblast
278 progenitor cells (TPCs) in human first-trimester placenta in the present study,
279 respectively (Fig. 3e, 3f). To further characterize TPLCs of full-term placenta
280 in our study, we extracted the C11 cells derived from third-trimester placenta
281 and identified the differentially expressed genes (DEGs) of each CTB
282 subgroup and compared the gene expressions between C11 and all other
283 CTB subgroups of full-term placenta. The results showed unique expression
284 pattern of cell cycle-related genes in TPLCs (C11) with highly expression of
285 cell surface maker *HMMR*. Besides, TPLCs mainly localized in the Mid_S.
286 Furthermore, we found highly expressed genes including *EGFR*, *FN1*,
287 *HSPA1A* and *CCND1* in TPLCs derived from full-term placentas, while *RPL7*,
288 *RPS26*, and *PPDPPF* were highly expressed in TPCs from first-trimester
289 placentas. The GO enrichment analysis showed that TPCs of first-trimester
290 maintained self-renewal and differentiation potency by two pathways,
291 “intracellular steroid hormone receptor signaling” and “androgen receptor
292 signaling pathway”, which play crucial roles in stem cell division and
293 differentiation during early human embryogenesis³², while “Wnt signaling
294 pathway” and “transforming growth factor beta receptor signaling pathway”
295 were enriched in TPLCs of full term(Fig. 3i, 3j), previous reports indicated that
296 Wnt activation and TGF-β inhibition play essential roles in long-term culture
297 of human villous CTB¹⁰. Also, the immunohistochemical staining Mid_S of
298 human placenta tissue showed that KRT8 was co-expressed with MKI67, and

299 CDK1 was co-expressed with TPX2, and TEAD4 was co-expressed with
300 CCNB1 in some specific cells which was consistent with the mRNA
301 expression level (Fig. 3k). Based on above results, we proposed that some
302 trophoblast cells simultaneously expressed proliferative and stemness
303 related markers, might act as the TPLCs in human full-term placenta. To our
304 knowledge, this is the first insights on TPLCs of full-term placenta, and
305 provided gene markers based on bioinformatics analysis for isolating TPLCs
306 from placenta as well as potential cell models application for disease
307 mechanism research.

308

309 **Identifying key transcription factors (TFs) of EVT subpopulation
310 differentiation and invasion.**

311 Based on trophoblast subclustering analysis, total four subclusters of HLA-G⁺
312 EVT were identified, including C1, C2, C8 and C10. C1 was defined as column
313 EVT with high expression of *MKI67*, *TET1*, and *CDK1*; C2 and C8 was defined
314 as iEVT1 with high expression of *ITGA1*, *MCAM*, and *TAC3* that related to
315 invasion, migration, and stromal cell characteristics and iEVT2 with high
316 expression epithelial and smooth muscle cell-related markers *PAEP*, *ACTA2*,
317 and *TAGLN*; C10 was more likely enEVT by expressing higher levels of *ITGB1*,
318 *CDH1*, and *CD44* that are related to extracellular structure organization
319 compared to iEVT1(Supplementary Fig. 4a). Furthermore, the GO enrichment
320 analysis of column EVT, iEVT1, iEVT2 and enEVT were performed by cluster-
321 specific gene (Supplementary Fig. 4b). As expect, the terms “regulation of body
322 fluid levels”, and “cellular response to amino acid stimulus” for iEVT2, suggest
323 iEVT2 invading toward glands³³. Whereas, the enEVT and iEVT1 were
324 commonly enriched terms “extracellular structure organization” and “response
325 to hypoxia”, by contrast, the enEVT were enriched the terms “positive regulation
326 of blood vessel endothelial cell migration”. All the above results suggest the
327 unique characteristics of molecular and functional state in the four EVT
328 subclusters were observed at single cell transcriptome level of full-term

329 placenta.

330 Previous studies showed that transcription factors (TFs) played crucial
331 roles in regulating development and function of trophoblasts³⁴. Understanding
332 the TFs regulation network that guiding differentiation and invasion of EVT
333 subgroups during placenta development is a major challenge. To investigate
334 the regulation dynamics of TFs, we first inferred trajectories of EVT using
335 partition-based approximate graph abstraction (PAGA) analysis based on the
336 four EVT subpopulations mentioned above. The results showed that the column
337 EVT localized at the starting point of trajectory and differentiated towards three
338 directions: column EVT to iEVT1 to enEVT, column EVT to iEVT2, and column
339 EVT to enEVT (Fig. 4a). The TFs/genes dynamically modulated within each
340 direction of differentiation were presented (Fig. 4a). As a crucial role of enEVT
341 in remodeling of the uterine spiral arteries, we focused on the column EVT to
342 iEVT1 to enEVT direction and exacted two pool of TFs/genes with different
343 expression pattern (Fig. 4b); the cell proliferation related gene, including *MKI67*,
344 *CDK1*, *HDAC1* etc. were greatly down-regulated; while *THBS1*, *CXCL8* and *IL6*
345 etc. expression was largely activated during enEVT differentiation (Fig. 4c). In
346 line with the dynamical gene expression, the GO enrichment analysis
347 demonstrated that positive regulation of cell cycle arrest and epithelial to
348 mesenchymal transition was enriched during enEVT differentiation (Fig.4d).
349 Interestingly, *PRDM6* (PR/SET domain 6) , that played important roles in cell
350 cycle regulation in multiple cell types, for instance vascular endothelial cells and
351 smooth muscle cells based on previous studies^{36,35}, was highly expressed in
352 enEVT, and the putative target genes involved in cell growth that were
353 suppressed by *PRDM6*, including *HDAC1*, *HDAC3* and *TET1* (Fig. 4e, 4f).
354 Consistent with the above observations, in our study, the
355 immunohistochemical staining showed that PRDM6 coexpression with HLA-G
356 in some cells, while exclusively expressed with HDAC1 in specific cells (Fig.
357 4g). Based on the above findings, we proposed that *PRDM6* might be a novel
358 regulator in promoting differentiation of enEVT by positive regulation of cell

359 cycle arrest. Collectively, we provided an overview of transcription factors atlas
360 of enEVT subgroups self-renewal, differentiation and invasion, among them,
361 some of TFs involved in cancer cell development regulation, were proposed as
362 putative novel key TFs in promoting EVT subpopulation development. In short,
363 these findings strongly deepening the understanding of the intrinsic regulatory
364 mechanism of EVT subpopulation *in vivo*, although, more work still need to be
365 done for further validation.

366

367 **The transcriptional profiling reveals dysregulation of EVT subgroup in
368 PE.**

369 Previous studies showed that abnormal cell type composition and trophoblast
370 differentiation potentially leaded to placental dysfunction and pregnancy
371 complications^{37,38} . However, the cellular organization of human full-term
372 placenta during both normal and PE development remains largely unknown. In
373 the present study, we combined single cell transcriptome data of both normal
374 placenta from in this study and pregnancy-matched PE placenta from published
375 data²² (Supplementary Fig. 5a, 5b, 5c). As expected, genes associated with
376 pregnancy complication from OMIM (Online Mendelian Inheritance in Man)
377 database were differentially expressed in specific cell types between PE and
378 normal groups (Fig. 5a). For instance, *PLAC8*, *PAPPA2*, *FLT1*, *MMP11*, *TAC3*,
379 and *NOS2* were highly expressed in EVT groups; *MMP1*, *EDN1*, *ANGPT2*,
380 *ADAMTS13*, *KLF2*, *NOTCH1*, *LEPR*, *NOS3*, *JAG2*, *SCNN1B* were expressed
381 in VEC cell types (Fig. 5a, 5b). Further, we constructed the regulatory network
382 of pregnancy PE associated genes described above and found that genes such
383 as *FLT1*, *ITGA1*, *EDN1*, *ITGA6*, *ITGB*, etc. were located in core positions
384 (Supplementary Fig. 5d). The above results indicated PE associated genes
385 expression showing pattern specificity and cell type diversity, and suggested
386 that PE is a complicated pregnancy-specific syndrome involving in various cell
387 types and pathways.

388 As the EVT populations play crucial role in remodeling VEC to provide

389 ample blood supply to the growing fetus. To further investigate the regulation
390 and communication between fetal EVT and maternal VEC cells, we presented
391 the interaction network of ligand-receptor complexes, which played important
392 roles in vascular remodeling process in both PE and normal placenta,
393 respectively (Fig. 5b). Surprisedly, the ligand-receptor numbers were
394 significantly decreased in PE, e.g., *FLT1-VEGFA*, *ENG-TGFB1*, *NRP1-PGF*,
395 *ITGAV-NID1*, and *NOTCH2-JAG1*, belong mainly to terms like “epithelial to
396 mesenchymal transition”. These results above strongly suggested that the EVT
397 development dysfunction and molecules involved in blood vessel remodeling
398 was down-regulated in EVT or VEC of PE placenta.

399 To systematically dissect the development and cell interaction of EVT in
400 PE. First, the GO analysis for the genes down-regulated in EVT of PE
401 compared to normal sample show terms about “blood vessel remodeling”,
402 “positive regulation of epithelial to mesenchymal transition”, and “positive
403 regulation of cell cycle arrest”; while “neutrophil activation involved in immune
404 response”, “positive regulation of apoptotic signaling pathway” and “positive
405 regulation of T cell mediated cytotoxicity” for the up-regulated genes in EVT of
406 PE (Fig. 5c). Then, the EVT subgroups of PE generally belonged to iEVT1 and
407 iEVT2 subgroups of normal placenta based on the transcriptome mapping
408 analysis using the expression gene matrix of each EVT subgroup (Fig 5d;
409 Supplementary Fig. 5a). And the expression of enEVT differentiation and
410 invasion-related genes and ligand-receptors, such as *ASCL2*, *DIO2*, *ITGA1*,
411 *ITGA5*, *TGAV*, *ITGB1*, *PRDM6* and *CD44* were significantly decreased in EVT
412 subgroups of PE (Fig. 5e; Supplementary Fig. 5e, 5f). In additional, *PRDM6*, as
413 a novel marker gene, was highly expressed in enEVT subgroup in normal
414 condition but significantly reduced in PE (Fig. 5e, 5f). Together with previous
415 report that deficient *PRDM6* was associated with vascular system disease³⁵,
416 here, we proposed that the functional dysregulation of *PRDM6*, together with
417 other genes related to EVT differentiation and invasion, may result in placental
418 disorder. In short, these results above suggested that abnormal EVT subgroup

419 composition and defect of invasion or differentiation could be the underlying
420 causes of PE.

421

422 **Discussion**

423 Anatomically, the human placenta is a complex and heterogeneous organ
424 consisting of multiple different cell types that carry out varied functions. In the
425 presented work, we firstly generated a comprehensive single-cell transcriptome
426 profiling of the human full-term placenta. Using unsupervised clustering, we
427 identified the trophoblast cell subtypes and non-trophoblast cell types with
428 indication of their fetal or maternal origin and spatial location. In line with
429 previous studies, Mat_S contained mostly maternal cells, e.g., LEC and DEC;
430 while fetal cells such as CTB, EVT, and STB dominate the Mid_S and FS³⁹. In
431 addition, IMM mixed with fetal and maternal origin distributed in each section
432 also observed in our study, which was consistent with previous study⁴⁰.
433 Interestingly, proportionate STR, PV, and VEC originated from both fetal and
434 maternal compartments mainly occupied Mid_S. Currently, the interaction
435 between fetal-origin and maternal-origin cells during human placentation and
436 functional maturation is poorly understood. Previous studies showed CTB and
437 STR as the core cell populations presented dynamic molecular feature
438 changing during placental mature progress. In our work, we observed that CTB
439 displayed spatial variation by both molecular expression pattern and function
440 terms from the fetal side to the maternal side in the fetomaternal interface, that
441 strongly suggest that microenvironment of different location of placenta
442 contributed CTB subpopulations cell states or behaviors, and this phenomenon
443 may also can be observed in other tissue and organ⁴¹.

444 Moreover, Trajectory analysis revealing that a subpopulation of TPLCs
445 existed in the full-term placenta and mainly distributed in Mid_S, with high
446 expression of cell surface maker *HMMR* and unique molecular features
447 compared to the TPCs derived from first-trimester placenta, which is worth of

448 further investigation. Although, evidence showed human trophoblast progenitor
449 cells probably exist in the full-term placenta and express angiogenic factors⁴².
450 Currently, researchers are not successfully to isolated trophoblast stem/
451 progenitor cell from full-term placenta that mainly maybe due to unsuitable
452 culture medium in vitro¹². However, using TPLCs in full-term placenta as an
453 ideal disease model for future research still needs further verification.

454 Previous studies showed that STR from fetal- and maternal- origin of
455 placenta possess greats differences in biological behaviors, which potential
456 implications for their applications in regenerative medicine⁴³. However, insights
457 on the molecular heterogeneity of STR populations within the maternal-fetal
458 interface is still missing. Through DEGs and GO enrichment analysis, we found
459 cells from fetal origins showed greater proliferative ability in Mat_S compared
460 to cells from FS or Mid_S while maintaining the molecular characteristics of the
461 stromal cells, which might be a good resource for mesenchymal stem cell
462 expansion-based cell therapy. And our observes are consisted with previous
463 study showed STR cells are heterogeneous population which caused by growth
464 niche or cell fate decision mechanism.

465 Normal placental function is dependent on appropriate growth and
466 development of specific cell subsets, which are heterogeneous, dynamic, and
467 are determined by the precise regulation of gene expression. Additionally,
468 through the extravillous cytotrophoblast (EVT) subsets differentiation trajectory
469 and regulation network analysis, we highlighted the putative key transcription
470 factor *PRDM6* that promoted the differentiation of endovascular extravillous
471 trophoblast cells (enEVT). Previous studies showed *PRDM6* played important
472 roles in cell cycle regulation and inhibited vascular endothelial cells proliferation
473 by targeting *HDAC1* gene^{36,35}. Mutations of *PRDM6* are associated with many
474 syndromes due to the abnormal regulation of cell proliferation and apoptosis,
475 such as nonsyndromic patent ductus arteriosus⁴⁴. Combine with the
476 immunohistochemical staining analysis, we proposed that *PRDM6* might be a

477 novel regulator in promoting differentiation of enEVT by positive regulation of
478 cell cycle arrest.

479 Consequently, alterations to placental gene expression are thought to be
480 a major cause of pregnancy pathologies. Combined with previously published
481 single-cell transcriptome data of PE, we also highlighted the abnormal EVT
482 subgroup components (enEVT absence) and suggested that the defect of
483 epithelial to mesenchymal transition related ligands and receptors could be the
484 underlying causes of PE. Moreover, we inferred down-regulation of PRDM6
485 may lead to an abnormal enEVT differentiation process and highly related to
486 PE. However, the reason why column EVT and enEVT are defective in
487 maternal-fetal interface of PE still need to explore. We hope that the trophoblast
488 differentiation cell model *in vitro* combined with single cell omics technology
489 would provide more clues.

490 Previous studies showed large number of cancer cell features can be
491 recapitulated by development of the placenta⁴⁵. Among the properties shared
492 by trophoblast cells and cancer cells is the ability to invade healthy tissues, to
493 remodel vessels and to form a niche to regulate immunoreaction⁴⁵. In line with
494 previous study, a large number of cancer cell related TFs, e.g., SMARCC1,
495 GTF3A, MYBL2, SUB1, and NCOR1 etc., contributed to maintaining cancer cell
496 proliferation; whereas TFs like CREB3L2, CEBPB, RUNX1 etc., play important
497 roles in EVT differentiation were enriched in specific EVT subpopulations in the
498 present study^{46, 47, 48, 49 36, 35}. In contrast to cancer-invading cells, EVT cells are
499 eliminated at the end of pregnancy in the maternal tissue⁵⁰. Many of the
500 mechanisms leading to the phenotype of cancer cell are still poorly
501 understood⁴⁵. The study of EVT cells might be useful to understand how cancer
502 cells develop their invasive potential in future study.

503 In conclusion, we provided a comprehensive understanding of the
504 molecular and cellular map of the maternal-fetal interface of full-term placenta
505 through single cell transcriptome profiling. We found TPLCs existed in full-term

506 placenta with inferred pools of cell surface markers, which is worth of further
507 investigation. Moreover, we compared the transcriptomic difference among
508 stromal cells derived from placenta (including maternal-origins, fetal-origins,
509 different spatial locations), and found that stromal cells from fetal origins in
510 Mat_S showed greater proliferative ability while maintaining the molecular
511 characteristics of the stromal cells, which might be a good resource for
512 mesenchymal stem cell expansion-based cell therapy. Furthermore, combined
513 with previously published single-cell transcriptome data of PE, we inferred
514 down-regulation of *PRDM6* may lead to an abnormal enEVT differentiation
515 process and highly related to PE. Together, this study offers important
516 resources for better understanding of human placenta, stem cells based
517 regenerative medicine as well as PE, and provides new insights on the study
518 of tissue heterogeneity, the clinical prevention and control of PE as well as the
519 fetal-maternal interface.

520

521 **Methods**

522 **Ethics statement**

523 The study was approved by the Institutional Review Board on Bioethics and
524 Biosafety of BGI (Permit No. BGI-IRB 19145), and the Shenzhen Second
525 People's Hospital (Permit No. KS20191031002). The participants signed
526 informed consents and voluntarily donated the samples in this study.
527 Immediately after delivery (between 38-40 weeks of gestation), the intact
528 human placenta tissue samples were collected for further use.

529

530 **Collection of human placenta samples**

531 All human full-term placenta tissues were obtained from normal pregnancies
532 after delivery¹, and samples were transported from hospital to BGI-Shenzhen
533 in an ice box within eight hours. The three parts of whole placenta, including FS,
534 Mid_S, and Mat_S were mechanically separated. Each section then
535 underwent serial collagenase IV(Sigma) and trypsin (Invitrogen) digests,

536 respectively, as previously described with some modifications²⁰. Next, single
537 cell suspensions were centrifuged and resuspended in 5 mL of red blood cell
538 lysis buffer (Invitrogen) for 5 min, then the cell suspensions were filtered
539 through a 100 µm cell filter (Corning) and washed twice with phosphate-
540 buffered saline (PBS) (Sigma). After single cell suspension preparation, trypan
541 blue (Invitrogen) staining was used to assess cell viability and cell samples with
542 viability over 90% were used for the following single cell RNA seq experiments.

543

544 **Single-cell RNA library preparation and sequencing**

545 Single cells resuspended in PBS with 0.04% bovine serum albumin (BSA)
546 (Sigma) were processed through the Chromium Single Cell 3' Reagent Kit (10X
547 Genomics) according to the manufacturer's protocol. Briefly, a total of 10,000
548 cells per sample were mixed with RT-PCR reagents, and loaded onto each
549 channel with Gel Beads. An average of about 6,000 cells could be recovered
550 for each channel. Cells were then partitioned into Gel Beads in Emulsion in the
551 GemCode instrument, where cell lysis and barcoded reverse transcription of
552 RNA occurred. cDNA molecules were then pooled for amplification and the
553 following library construction, including shearing, adaptor ligation, and sample
554 index attachment. Libraries were sequenced on MGI-seq platform.

555

556 **Single-cell transcriptome data preprocessing**

557 Droplet-based single-cell sequencing data were aligned to human genome
558 GRCh38, and barcode and UMI were counted using CellRanger software
559 (Version 2.0.0, 10x Genomics)⁵¹. Genes that were expressed in less than 0.1%
560 of total cells were removed. Cells with detected gene number of less than 800
561 or expressed mitochondrial genes of more than 10% were filtered. Moreover,
562 for each library, outliers were detected based on gene number using R function
563 boxplot.stats, and were considered as potential doublets to be removed for
564 downstream analysis.

565

566 **Inferring maternal or fetal origin of single cells**

567 We obtained the transcriptome data of three fetal umbilical cord tissues and the
568 whole genome sequencing data of one maternal peripheral blood sample from
569 sample individual c. To get the fetal and maternal-specific SNP arrays, the high-
570 quality sequencing reads were aligned to the human genome GRCh38 using
571 BWA-MEM (Version1.0). Sorting, duplicate marking and single nucleotide
572 variants (SNVs) calling were processed using GATK (Version3.8)⁵². The filter
573 parameters were as follows: QD < 2.0 || MQ < 40.0 || FS > 200.0 || SOR > 10.0
574 || MQRankSum < -12.5 || ReadPosRankSum < -8.0.

575 Variants were identified from each cell using the Genome Analysis Toolkit.
576 Briefly, duplicated reads were marked with Picard (Version2.9.2). Next, the
577 recommended SplitNCigarReads was also performed by GATK
578 (Version4.0.5.1). Then BaseRecalibrator and ApplyBQSR algorithms were
579 used to detect systematic errors. At the variant calling step, the HaplotypeCaller
580 algorithm was used to call variants and SelectVariants algorithm was used to
581 select SNP sites. Besides, VariantFiltration algorithm was used to filter the SNP
582 sites with the follow algorithms: --filter-expression "DP < 6 || QD < 2.0 || MQ <
583 40.0 || FS > 60.0 || SOR > 3.0 || MQRankSum < -12.5 || ReadPosRankSum < -
584 8.0" --filter-name "Filter" -window 35 -cluster 3.

585 The fetal and maternal origin of each cell was inferred by our discrimination
586 function (Each section was processed individually). In brief, because only
587 individual c has the corresponding mother blood whole genome sequence
588 variants, this sample was used as our training sample, for which each cell's
589 fetal or maternal origin was determined by demuxlet⁵³ using Cell Ranger-
590 aligned BAM file from FS, Mid_S and Mat_S and WGS VCF file. And then, a
591 fetal SNP dataset reference was built based on the corresponding umbilical
592 single cell RNA sequencing data for each section from our previous study⁵⁴.
593 Using the difference ratio between a single cell SNP and the corresponding
594 fetal SNP dataset reference, we calculated the Ratio of Mahalanobis distance
595 of fetal cells and maternal cells using the following formulas:

596 Ratio = mahalanobis (TstX, mu2, S2)/mahalanobis (TstX, mu1, S1),
597 While:
598 mu1 = colMeans(Fet.percent.matrix);
599 S1 = var(Fet.percent.matrix);
600 mu2 = colMeans(Mat.percent.matrix);
601 S2 = var(Mat.percent.matrix);
602 TstX: The difference ratio between a single cell SNP and the corresponding
603 fetal SNP dataset reference as input Matrix TstX, which included
604 Fet.percent.matrix and Mat.percent.matrix.
605 Fet.percent.matrix: The difference ratio of individual c's fetal cell between
606 a single cell SNP and the corresponding fetal SNP dataset reference matrix;
607 Mat.percent.matrix: The difference ratio of individual c's maternal cell
608 between a single cell SNP and the corresponding fetal SNP dataset reference
609 matrix;
610 Then, according to the demuxlet results, the sensitivity, specificity, and
611 accuracy were calculated in different ratio. Finally, the optimal discriminant ratio
612 was selected based on the sensitivity, specificity, and accuracy for each section.
613 If a cell's Ratio < fetal discriminant ratio, the cell was inferred as fetal cell; if a
614 cell's Ratio > maternal discriminant ratio, the cell was inferred as maternal cell;
615 otherwise, it was defined as unknown in origin.
616
617 **Cell clustering and identification of differentially expressed genes**
618 The standard Seurat v3⁵⁵ integration workflow was used to integrate multiple
619 datasets from each sample to correct batch effects between sample identities.
620 Cell clusters were identified by a shared nearest neighbor (SNN) modularity
621 optimization-based clustering algorithm used in “FindClusters” function in
622 Seurat (Version 3.1.0). Differentially expressed genes were found based on
623 Wilcoxon Rank Sum test using default parameters in “FindAllMarkers” function.
624 The significantly differentially expressed genes were selected with adjusted P
625 value < 0.05 and fold change > 0.25.

626

627 **Constructing trajectory**

628 Constructing trajectory and ordering single cells were performed with monocle
629 2 (Version 2.10.1) using the default parameters⁵⁶. The top 2000 highly variable
630 genes found by Seurat were used. The relationship between each EVT
631 subgroup was inferred by partition-based approximate graph abstraction
632 (PAGA) (Paga in scanpy Python package version 1.2.2).

633

634 **GO enrichment analysis**

635 GO enrichment analysis was performed by clusterProfiler R package⁵⁷. The p
636 value was adjusted by BH (Benjamini-Hochberg). GO terms with an adjusted
637 p-value less than 0.05 were considered as significantly enriched.

638

639 **Regulatory network construction**

640 Significantly differentially expressed TFs (adjust p value <0.05) between each
641 population were selected and submitted to the STRING database to construct
642 the potential regulatory networks⁵⁸. TFs without any edge were removed from
643 the network.

644

645 **Cell–cell communication analysis**

646 The ligand–receptor pairs were obtained from work of Ramilowski et al⁵⁹. A
647 ligand or receptor transcript was selected for a given cell type if it was
648 expressed in more than 40% cells in that cell type. The gene pairs possibly
649 interact on the same cell type were not presented. The interactions were
650 visualized by R package Circlize⁶⁰.

651

652 **Integrative analysis of published placenta single cell transcriptome data**

653 The previously reports single cell transcriptome data for first-trimester
654 placentas and the preeclamptic placentas papers published in Nature²⁰ and
655 PNAS²², were integrated with our data for different analyses. “IntegrateData”

656 function in Seurat V3 were used to remove batch effect.

657

658 **Immunohistochemistry**

659 Histologic sections of the normal human full-term placenta were rinsed with
660 xylenes two-three times and rehydrated before labeling. Samples were labeled
661 for 1 h with the primary antibody against MKI67 (1:800 Abcam), KRT8 (1:100
662 Abcam), CDK1(1:200 Abcam), TPX2 (1:100 Abcam), TEAD4(1:200 Abcam),
663 CCNB1(1:100 Abcam), HLA-G (1:200 Abcam), HDAC1(1:100 Abcam) and
664 PRDM6 (1:200 Abcam) and for 30 min with the secondary antibody goat anti-
665 mouse (1: 500, Abcam) or goat anti-rabbit (1:500 Abcam) as appropriate. Finally,
666 samples were counterstained with hematoxylin to reveal cell nuclei for 1 min.
667 Images were taken by the Olympus IX71 microscope.

668

669 **Acknowledgements**

670 We sincerely thank the support provided by China National Gene Bank. This
671 study was supported by Science, Technology and Innovation Commission of
672 Shenzhen Municipality Grant (number JCYJ20180507183628543).

673

674 **Data availability**

675 All of the raw data have been deposited into CNSA (CNGB Nucleotide
676 Sequence Archive) of CNGBdb with accession number CNP0000878
677 (<https://db.cngb.org/cnsa/>).

678 **Author contributions**

679 Z.S. and W.K. conceived and designed the project. Q.W., J.L. performed the
680 experiments and data analysis, and wrote the manuscript. Q.D., K.W., Y.X.,
681 S.W., Y.A., and X.D. prepared figures. G.D., Q.C., Z.L., W.Z., and T.Z.
682 contributed to sample collection and provided suggestions on data analysis.
683 Y.H., D.Y., H.Y. supervised the project. All authors read and approved the final

684 manuscript.

685

686 **Competing interests**

687 The authors declare no competing interests.

688

689 **References:**

- 690 1. Sood, R., Zehnder, J. L., Druzin, M. L. & Brown, P. O. Gene expression
691 patterns in human placenta. *Proc. Natl. Acad. Sci. U. S. A.* **103**, 5478–
692 5483 (2006).
- 693 2. Burton, G. J. & Jauniaux, E. Viewpoint What is the placenta. *Am. J.*
694 *Obstet. Gynecol.* **213**, S6.e1-S6.e4 (2015).
- 695 3. Ji, L. *et al.* Placental trophoblast cell differentiation: Physiological
696 regulation and pathological relevance to preeclampsia. *Mol. Aspects Med.*
697 **34**, 981–1023 (2013).
- 698 4. Bs, M. G. *et al.* Preeclampsia: novel insights from global RNA profiling
699 of trophoblast subpopulations. *Am. J. Obstet. Gynecol.* **217**,
700 200.e1-200.e17 (2017).
- 701 5. Phipps, E. A., Thadhani, R., Benzing, T. & Karumanchi, S. A. Pre-
702 eclampsia: pathogenesis, novel diagnostics and therapies. *Nat. Rev.*
703 *Nephrol.* **15**, 275–289 (2019).
- 704 6. Pique, R. *et al.* Single cell transcriptional signatures of the human
705 placenta in term and preterm parturition. *Elife* **8**, e52004 (2019).
- 706 7. Patel, J., Sha, A., Wang, W., Fisk, N. M. & Khosrotehrani, K. Novel
707 isolation strategy to deliver pure fetal-origin and maternal- origin
708 mesenchymal stem cell (MSC) populations from human term placenta.
709 **35**, 969–971 (2014).
- 710 8. Ventura Ferreira, M. S. *et al.* Comprehensive characterization of
711 chorionic villi-derived mesenchymal stromal cells from human placenta.

712 *Stem Cell Res. Ther.* **9**, 1–17 (2018).

713 9. Chang, P. M. Human trophoblast stem cells: Real or not real. *Placenta*
714 **60 Suppl 1**, S57–S60 (2017).

715 10. Hemberger, M., Udayashankar, R., Tesar, P., Moore, H. & Burton, G. J.
716 ELF5-enforced transcriptional networks define an epigenetically
717 regulated trophoblast stem cell compartment in the human placenta. *Hum.*
718 *Mol. Genet.* **19**, 2456–2467 (2010).

719 11. Genbacev, O. *et al.* Human trophoblast progenitors: Where do they
720 reside? *Semin. Reprod. Med.* **31**, 56–61 (2013).

721 12. Okae, H. *et al.* Derivation of Human Trophoblast Stem Cells. *Cell Stem*
722 *Cell* **22**, 50-63.e6 (2018).

723 13. Horii, M. *et al.* Human pluripotent stem cells as a model of trophoblast
724 differentiation in both normal development and disease. *Proc. Natl. Acad.*
725 *Sci. U. S. A.* **113**, E3882–E3891 (2016).

726 14. Telugu, B. P. *et al.* Comparison of extravillous trophoblast cells derived
727 from human embryonic stem cells and from first trimester human
728 placentas. *Placenta* **34**, 536–543 (2013).

729 15. Haber, A. L. *et al.* A single-cell survey of the small intestinal epithelium.
730 *Nature* **551**, 333–339 (2017).

731 16. Villani, A.-C. *et al.* Single-cell RNA-seq reveals new types of human blood
732 dendritic cells, monocytes, and progenitors. *Science (80-.).* **356**,
733 eaah4573 (2017).

734 17. Shang, Z. *et al.* Single-cell RNA-seq reveals dynamic transcriptome
735 profiling in human early neural differentiation. *Gigascience* **7**, 1–19 (2018).

736 18. Suryawanshi, H. *et al.* A single-cell survey of the human first-trimester
737 placenta and decidua. *Sci. Adv.* **4**, 1–13 (2018).

738 19. Liu *et al.* Single-cell RNA-seq reveals the diversity of trophoblast
739 subtypes and patterns of differentiation in the human placenta. *Cell Res.*
740 **28**, 819–832 (2018).

741 20. Ventotomo, R. *et al.* Single-cell reconstruction of the early maternal–fetal

742 interface in humans. *Nature* **563**, 347–353 (2018).

743 21. Pavličev, M. *et al.* Single-cell transcriptomics of the human placenta:
744 Inferring the cell communication network of the maternal-fetal interface.
745 *Genome Res.* **27**, 349–361 (2017).

746 22. Tsang, J. C. H. *et al.* Integrative single-cell and cell-free plasma RNA
747 transcriptomics elucidates placental cellular dynamics. *Proc. Natl. Acad.
748 Sci. U. S. A.* **114**, E7786–E7795 (2017).

749 23. Valle-sistac, J. *et al.* Determination of parabens and benzophenone-type
750 UV filters in human placenta . First description of the existence of benzyl
751 paraben and benzophenone-4. *Environ. Int.* **88**, 243–249 (2016).

752 24. Sternberg, J. Radiation and pregnancy. *109*, 51–57 (1973).

753 25. Huppertz, B. & Kingdom, J. C. P. Apoptosis in the trophoblast - Role of
754 apoptosis in placental morphogenesis. *J. Soc. Gynecol. Investig.* **11**,
755 353–362 (2004).

756 26. Luo, S. *et al.* Human Villous Trophoblasts Express and Secrete Placenta-
757 Specific MicroRNAs into Maternal Circulation via Exosomes 1. *729*, 717–
758 729 (2009).

759 27. Familiari, M., Cronqvist, T., Masoumi, Z. & Hansson, S. R. Placenta-
760 derived extracellular vesicles: Their cargo and possible functions. *Reprod.
761 Fertil. Dev.* **29**, 433–447 (2017).

762 28. Qin, S. Q. *et al.* Establishment and characterization of fetal and maternal
763 mesenchymal stem / stromal cell lines from the human term placenta.
764 *Placenta* **39**, 134–146 (2016).

765 29. Carver, J. *et al.* An in-vitro model for stromal invasion during implantation
766 of the human blastocyst. *18*, 283–290 (2003).

767 30. Durairaj, R. R. P. *et al.* Erratum to: Dereulation of the endometrial
768 stromal cell secretome precedes embryo implantation failure [Mol Hum
769 Reprod (2017)]doi:10.1093/molehr/gax023. *Mol. Hum. Reprod.* **23**, 582
770 (2017).

771 31. Sardesai, V. S., Shafiee, A., Fisk, N. M. & Pelekanos, R. A. Avoidance of

772 maternal cell contamination and overgrowth in isolating fetal chorionic villi
773 mesenchymal stem cells from human term placenta. *Stem Cells Transl.*
774 *Med.* **6**, 1070–1084 (2017).

775 32. Embryogenesis, H. *et al.* Opioid and Progesterone Signaling is Obligatory.
776 **18**, (2009).

777 33. Burton, G. J., Jauniaux, E. & Charnock-jones, D. S. Human Early
778 Placental Development : Potential Roles of the Endometrial Glands. **21**,
779 64–69 (2007).

780 34. Baines, K. J. & Renaud, S. J. Transcription Factors That Regulate
781 Trophoblast Development and Function. *Mol. Biol. Placent. Dev. Dis.* **145**,
782 39–88 (2017).

783 35. Wu, Y. *et al.* PRDM6 is enriched in vascular precursors during
784 development and inhibits endothelial cell proliferation, survival, and
785 differentiation. *J. Mol. Cell. Cardiol.* **44**, 47–58 (2008).

786 36. Möller, E. *et al.* FUS-CREB3L2/L1-positive sarcomas show a specific
787 gene expression profile with upregulation of CD24 and FOXL1. *Clin.*
788 *Cancer Res.* **17**, 2646–2656 (2011).

789 37. Sircar, M., Thadhani, R. & Karumanchi, S. A. Pathogenesis of
790 preeclampsia. *Curr. Opin. Nephrol. Hypertens.* **24**, 131–138 (2015).

791 38. Farah, O., Nguyen, C., Tekkate, C. & Parast, M. M. Trophoblast lineage-
792 specific differentiation and associated alterations in preeclampsia and
793 fetal growth restriction. *Placenta* **102**, 4–9 (2020).

794 39. Farine, T., Parsons, M., Lye, S. & Shynlova, O. Isolation of primary
795 human decidual cells from the fetal membranes of term placentae. *J. Vis.*
796 *Exp.* **2018**, 1–8 (2018).

797 40. Jacobs, S. O. *et al.* Characterizing the immune cell population in the
798 human fetal membrane. *Am. J. Reprod. Immunol.* **85**, 0–2 (2021).

799 41. Asp, M. *et al.* A Spatiotemporal Organ-Wide Gene Expression and Cell
800 Atlas of the Developing Human Heart. *Cell* **179**, 1647-1660.e19 (2019).

801 42. Molbay, M., Kipmen-Korgun, D., Korkmaz, G., Ozekinci, M. & Korgun, E.

802 T. Human trophoblast progenitor cells express and release angiogenic
803 factors. *Int. J. Mol. Cell. Med.* **7**, 203–211 (2018).

804 43. Papait, A. *et al.* Mesenchymal Stromal Cells from Fetal and Maternal
805 Placenta Possess Key Similarities and Differences: Potential Implications
806 for Their Applications in Regenerative Medicine. *Cells* **9**, 127 (2020).

807 44. Li, N. *et al.* Mutations in the Histone Modifier PRDM6 Are Associated with
808 Isolated Nonsyndromic Patent Ductus Arteriosus. *Am. J. Hum. Genet.* **99**,
809 1000 (2016).

810 45. Burton, G. J., Jauniaux, E. & Murray, A. J. Oxygen and placental
811 development; parallels and differences with tumour biology. *Placenta* **56**,
812 14–18 (2017).

813 46. Choi, Y. *et al.* Integrative analysis of oncogenic fusion genes and their
814 functional impact in colorectal cancer. *Br. J. Cancer* **119**, 230–240 (2018).

815 47. Liao, J. *et al.* SSRP1 silencing inhibits the proliferation and malignancy
816 of human glioma cells via the MAPK signaling pathway. *Oncol. Rep.* **38**,
817 2667–2676 (2017).

818 48. Musa, J., Aynaud, M. M., Mirabeau, O., Delattre, O. & Grünewald, T. G.
819 MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and
820 differentiation involved in tumorigenesis. *Cell Death Dis.* **8**, e2895 (2017).

821 49. Chakravarthi, B. V. S. K. *et al.* MicroRNA-101 regulated transcriptional
822 modulator SUB1 plays a role in prostate cancer. *Oncogene* **35**, 6330–
823 6340 (2016).

824 50. Menkhorst, E., Winship, A., Van Sinderen, M. & Dimitriadis, E. Human
825 extravillous trophoblast invasion: Intrinsic and extrinsic regulation.
826 *Reprod. Fertil. Dev.* **28**, 406–415 (2016).

827 51. Zheng, G. X. Y. *et al.* Massively parallel digital transcriptional profiling of
828 single cells. *Nat. Commun.* **8**, 1–12 (2017).

829 52. Depristo, M. A. *et al.* A framework for variation discovery and genotyping
830 using next-generation DNA sequencing data. *Nat. Genet.* **43**, 491–501
831 (2011).

832 53. Kang, H. M. *et al.* Multiplexed droplet single-cell RNA-sequencing using
833 natural genetic variation. *Nat. Biotechnol.* **36**, 89–94 (2018).

834 54. Wang, Q. *et al.* Single - cell transcriptome profiling reveals molecular
835 heterogeneity in human umbilical cord tissue and culture - expanded
836 mesenchymal stem cells. *FEBS J.* **288**, 3069–3082 (2021).

837 55. Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**,
838 1888-1902.e21 (2019).

839 56. Qiu, X. *et al.* Reversed graph embedding resolves complex single-cell
840 trajectories. *Nat. Methods* **14**, 979–982 (2017).

841 57. Chikina, M., Robinson, J. D. & Clark, N. L. Hundreds of Genes
842 Experienced Convergent Shifts in Selective Pressure in Marine Mammals.
843 *Mol. Biol. Evol.* **33**, 2182–2192 (2016).

844 58. Szklarczyk, D. *et al.* The STRING database in 2017: Quality-controlled
845 protein-protein association networks, made broadly accessible. *Nucleic
846 Acids Res.* **45**, D362–D368 (2017).

847 59. Ramilowski, J. A. *et al.* A draft network of ligand-receptor-mediated
848 multicellular signalling in human. *Nat. Commun.* **6**, 7866 (2015).

849 60. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and
850 enhances circular visualization in R. *Bioinformatics* **30**, 2811–2812
851 (2014).

852

853 **Figure legends**

854 **Fig. 1 Dissecting cellular heterogeneity of human full-term placenta.**

855 a. Workflow of single-cell transcriptome profiling of human full-term placenta.

856 b. t-SNE analysis of human full-term placenta (Left). Each dot represents an
857 individual cell. Colors indicate cell type or state. PV, perivascular cell; STR,
858 stromal cell; IMM, immune cell; CTB, villous cytotrophoblast; EVT,
859 extravillous trophoblast; STB, syncytiotrophoblast; VEC, vascular
860 endothelial cell; LEC, lymphatic endothelial cell; DEC, decidual cell. The
861 column chart shows the fraction of indicated cell types (Right).

862 c. Heatmap shows the top differentially expressed genes of each cell type.
863 Color scheme is based on relative gene expression (z-score).
864 d. t-SNE plot showing the selected cell type-specific marker gene expression
865 pattern in human placenta.
866 e. Origin (Left) and location (Right) of each cell are shown using the same
867 layout as in figure 1b. Circle mark cell types with relatively specific origin or
868 spatial localization.
869 f. Column chart shows the percentage of indicated cell types from fetal or
870 maternal origin in specific spatial location, respectively.

871

872 **Fig. 2 Reconstruction of spatial heterogeneity of cell type and gene
873 expression pattern in the maternal-fetal interface.**

874 a. t-SNE plots shows single-cell transcriptomic clustering of three specific
875 tissue locations (including FS, Mid_S, Mat_S) in full-term maternal-fetal
876 interface, respectively. Each dot represents an individual cell. Cells are
877 colored by cell-type cluster.
878 b. Boxplot showing the relative expression levels of selected markers for each
879 cell cluster.
880 c. Selected GO terms identified by highly expressed genes of CTB in FS,
881 Mid_S, and Mat_S, and STR of fetal and maternal origin, respectively. (Top
882 1000 highly expressed genes were selected for GO analysis. Highly
883 expressed gene: expressed cell number > 20% and gene coefficient of
884 variability (CV) <1 in each section).
885 d. Heatmap showing the selected differentially expressed genes of CTB
886 subpopulations derived from FS, Mid_S and Mat_S. Red corresponds to a
887 high expression level; blue and black correspond to low expression level
888 (the differentially expressed genes were identified by FindAllMarker function
889 in Seurat, $p_val_adj < 0.05$; $avg_logFC > 0.25$)
890 e. Boxplots showing the expression of selected genes from figure 2d.

891

892 **Fig. 3 The trophoblast progenitor like cells (TPLCs) existed in human full-
893 term placenta**

894 a. t-SNE visualization of trophoblast cells from integrated data of full-term
895 placenta cells and the published first-trimester placenta cells shown in
896 Supplementary figure 3a. On the right, the barplot shows the proportion of
897 full-term placenta cells and first-trimester placenta cells in each cluster and
898 each cell type.

899 b. Pseudotime ordering of trophoblast subgroups that reveals EVT and STB
900 pathway and visualization in biaxial scatter plot.

901 c. Expression pattern of selected genes across trophoblast differentiation
902 branches on the reconstructed trajectory. Color scheme is based on log-
903 transformed, normalized expression levels .

904 d. Heatmap showing the selected differentially expressed genes expression of
905 genes that are identified as significantly involved in EVT and STB
906 differentiation pathway. Color scheme is based on relative gene expression
907 (z-score).

908 e. Heatmap shows the differentially expressed genes among CTB
909 subpopulations, in which one small cluster (C11, termed as TPLCs) shows
910 highly expressed cell cycle-related genes.

911 f. Boxplot showing the log-transformed, normalized expression of genes
912 selected from figure. 3e.

913 g. Boxplot showing the expression level of selected cell surface genes
914 between TPLCs and other CTB clusters derived from full-term placenta in
915 CTB branch of figure. 3b. Two-sided Wilcoxon rank sum test were calculated,
916 *: $p < 0.05$; **: $p < 0.01$; ****: $p < 0.0001$

917 h. Column chart showing the percentage of stemness trophoblast cells derived
918 from indicated gestation and spatial location.

919 i. Boxplot showing the differentially expressed genes of stemness trophoblast
920 cells derived from first-trimester and full-term placenta. Genes were
921 selected from top 50 differentially expressed genes identified by

922 FindAllMarker function in Seurat, $p_val_adj < 0.05$; $avg_logFC > 0$)
923 j. GO enrichment analysis showing the selected functional terms of TPLCs
924 derived from first-trimester and full-term placenta.
925 k. Immunostaining of MKI67, KRT8, CDK1, TPX2, TEAD4 and CCNB1 in
926 Mid_S of human full-term placenta. Scale bar represents 100 μ m.
927

928 **Fig. 4 Identification of key transcription factor regulators during**
929 **extravillous trophoblast cell differentiation.**

930 a. Partition-based approximate graph abstraction (PAGA) analysis of EVT
931 subpopulations, including column trophoblast cell (column EVT), interstitial
932 extravillous trophoblast cells 1/2 (iEVT1/2), and endovascular extravillous
933 trophoblast cells (enEVT). Lines show connections; line thickness
934 corresponds to the level of connectivity (low (thin) to high (thick) PAGA
935 connectivity). Heatmap showing min-max normalized expression of
936 statistically significant ($P < 0.001$), dynamically variable transcription factors
937 (TFs) from pseudotime analysis for EVT trajectories.
938 b. The expression pattern of selected DEGs of column EVT, iEVT1 and enEVT.
939 c. Boxplot visualization of log-transformed, normalized expression of selected
940 TFs in EVT subgroups.
941 d. Selected GO terms of TFs differentially expressed in column EVT, iEVT1
942 and enEVT, respectively.
943 e. Regulatory network of selected TFs differentially expressed in column EVT,
944 iEVT1 and enEVT.
945 f. Model of regulation loops of column EVT differentiation into enEVT.
946 g. Immunostaining of HLA-G, PRDM6 and HDAC1 in Mat_S of human full-term
947 placenta. Scale bar represents 100 μ m.
948

949 **Fig. 5 The transcriptional profiling reveals dysregulation of EVT**
950 **subgroups in PE.**

951 a. Heatmap showing the expression level of pregnancy disorder-associated

952 genes downloaded from OMIM website in specific cell types of human
953 normal and PE placenta.

954 b. The ligand-receptor interaction between EVT and VEC in normal and PE
955 samples; genes expressed in more than 40% of cells for specific subtype
956 were selected. Each arrow represents the paired ligand-receptor, and
957 ligands with the same arrow color =belong to the common cell type; violin
958 plots show the selected ligand-receptor pairs for EVT and VEC differentially
959 expressed in normal and PE sample.

960 c. GO term enrichment analysis of genes down-regulated (upper panel) and
961 up-regulated (lower panel) in PE compared to normal placenta.

962 d. The t-SNE plot and column chart showing the consistency of trophoblast
963 subtypes in PE and in normal placenta.

964 e. Boxplot showing the expression level of genes associated with EVT
965 proliferation and differentiation in EVT subgroups between normal and PE
966 samples.

967 f. Proposed schematic of trophoblast subtypes, their self-renewal and
968 differentiation regulated by indicated genes and transcription factors in
969 human normal and PE placenta.

970

971 **Supplementary Fig 1. Information about the samples and the single-cell
972 datasets quality.**

973 a. Detailed information of human full-term placenta samples and single cell
974 sequencing data.

975 b. The density graphic showing the distribution of detected gene number(left),
976 unique feature counts (middle), and the percentage of mitochondrial counts
977 (right)

978 c. Boxplot showing the expression pattern of canonical marker genes in each
979 cell type.

980 d. Barplot showing the proportion of each sample in each cell cluster.

981 e. Table showing the sensitivity, accuracy, and specificity of discrimination

982 function to infer the origin of fetal or maternal cells in full-term placenta.

983

984 **Supplementary Fig 2. Molecular features analysis of STR with specific**
985 **origin and spatial location.**

986 a. Selected GO terms identified by top 1000 highly expressed genes in each
987 section of fetal origin (Left) and maternal origin (Right) STR cell. (Highly
988 expressed genes with expressed cell number > 20% and gene coefficient of
989 variability (CV) <1 was used in each section).

990 b. Boxplot showing the differentially expressed genes of STR cells in each
991 section. Two-sided Wilcoxon rank sum test were calculated, **** p <0.0001.

992 c. Barplot showing the proportion of STR cells with determined origin and
993 undetermined origin in each section.

994 d. Heatmap showing the expression pattern of genes related to cytokines and
995 hormones in STR cells from different origin in each section.

996 e. Boxplot showing the different gene expression between STR cells from
997 different origin in Mat_S. Two-sided Wilcoxon rank sum test were calculated,
998 * p < 0.05, ** p < 0.01, *** p < 0.001, **** p <0.0001.

999

1000 **Supplementary Fig 3. Integrated data analysis of trophoblast cell from**
1001 **human full-term placenta and downloaded first-trimester placenta.**

1002 a. t-SNE visualization of integrated data for full-term placenta single cell
1003 transcriptome data with that from published first-trimester placenta. On the
1004 right, barplot shows the proportion of full-term placenta cell and first-
1005 trimester placenta cell in each cluster.

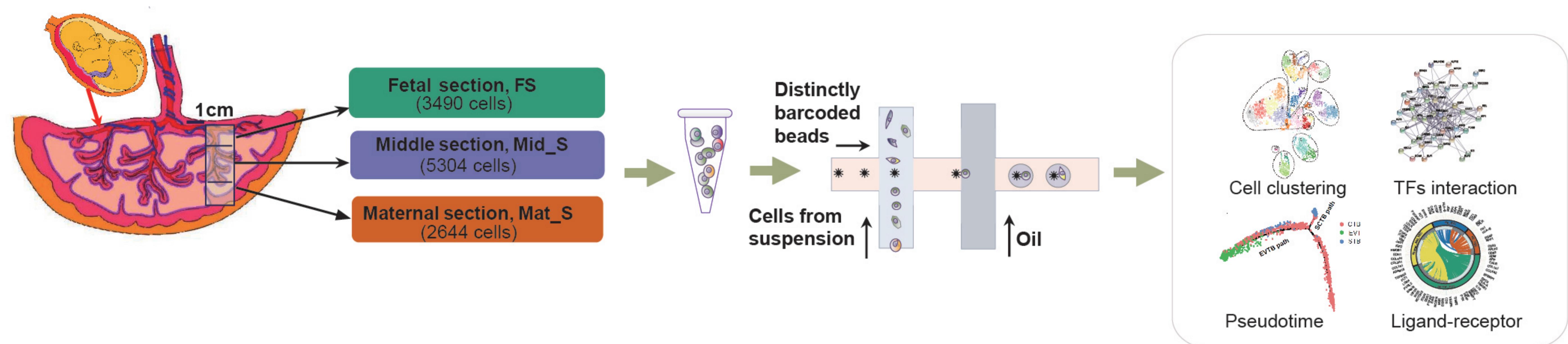
1006 b. Violin plot showing the expression of canonical marker genes for the defined
1007 cell types. Clusters annotated with the same cell type are shown together.
1008 (The clusters in Supplementary Fig 3a that each cell type includes are: CTB:
1009 3, 16, 19, 21; EVT: 8, 11; STB: 29; STR: 7, 9, 13, 32; DEC: 4, 14, 18, 24, 27;
1010 PV: 6, 10, 12, 33; VEC: 20; LEC: 23; Dendritic cell, DC: 2, 5, 25; Hofbauer
1011 cell, HB: 17, 26, 28; T cell, TC: 1, 15; Natural killer cell, NK: 0, 22;

1012 Endometrial Epithelial Cell, EEC: 31)
1013 c. t-SNE Plot showing the expression of canonical marker genes for the
1014 defined cell types of re-clustered trophoblast cells shown in Fig. 3a.
1015 d. Location of each trophoblast subgroup of Fig. 3a on the trophoblast cell
1016 differentiation trajectory.

1017

1018 **Supplementary Fig 4. The features analysis in each EVT subgroup.**

1019 a. Boxplot showing the expression level of specific genes for each EVT
1020 subgroup.
1021 b. Selected GO terms identified by differentially expressed genes for each
1022 EVT subgroup.

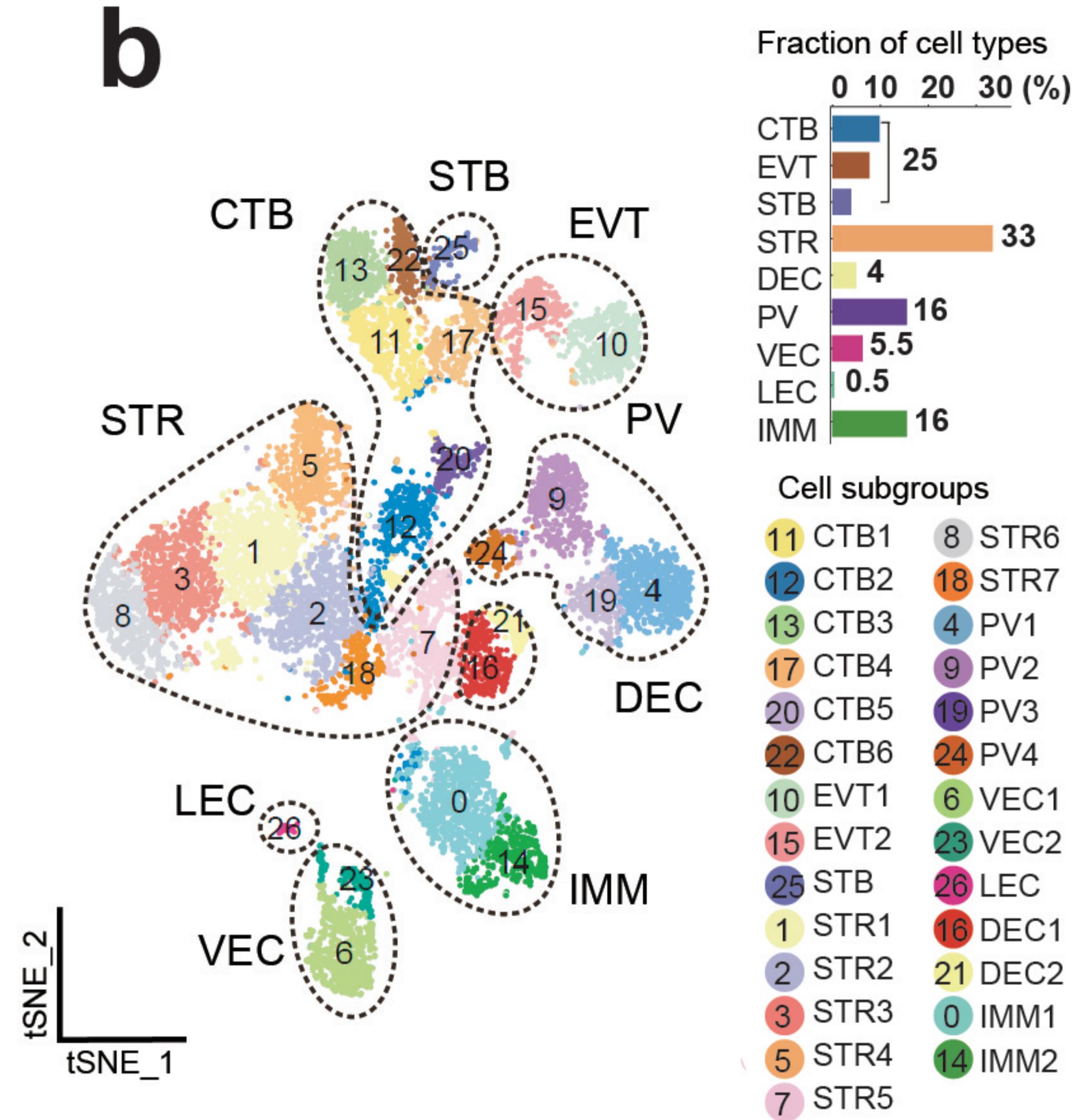

1023

1024 **Supplementary Fig 5. Comparison of the differentially key features of**
1025 **trophoblast cell subgroups between human normal and PE placenta.**

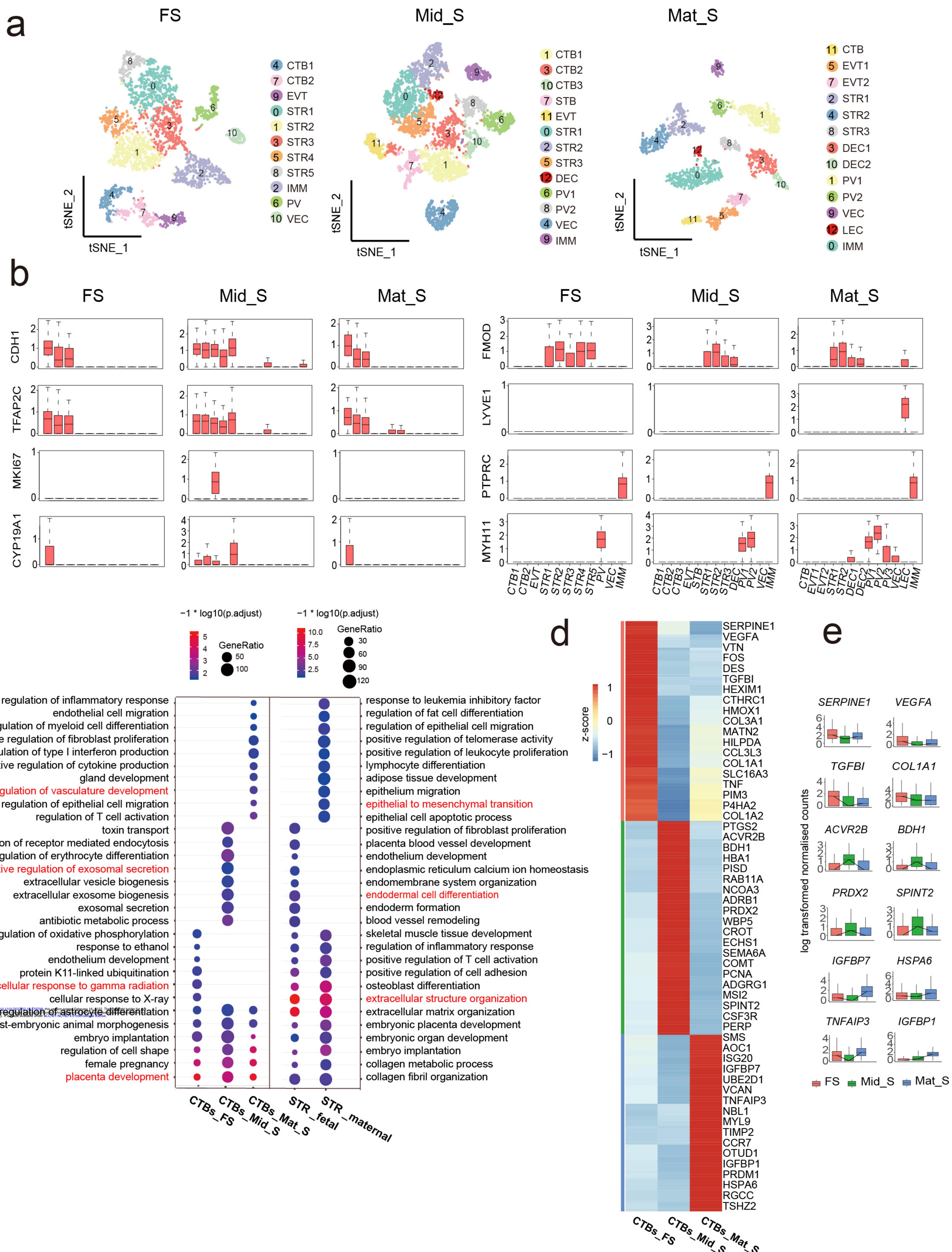
1026 a. t-SNE visualization of single cell RNA transcriptome data of two selected
1027 preeclampsia(PE) placenta in reference 22, colors indicate different cell
1028 types or subtypes.
1029 b. t-SNE plot showing the relative expression level of canonical marker genes
1030 for the defined cell types.
1031 c. Barplot showing the proportion of each sample in each cellular subgroup.
1032 d. Regulatory network of pregnancy-associated and candidate disease genes
1033 from Fig. 5a.
1034 e. Boxplot showing the relative expression levels of genes associated with
1035 trophoblast proliferation and differentiation in EVT subgroups between
1036 normal and PE sample.
1037 f. Violin plot showing the relative expression levels for selected ligand-
1038 receptor pairs in EVT and VEC of normal and PE samples.

Fig.1

a


(1) Schematic representation of human full-term placenta and tissues extraction

(2) Single cell dissociation


(3) Single cell RNA-seq by droplet platform

(4) Computational analysis

b

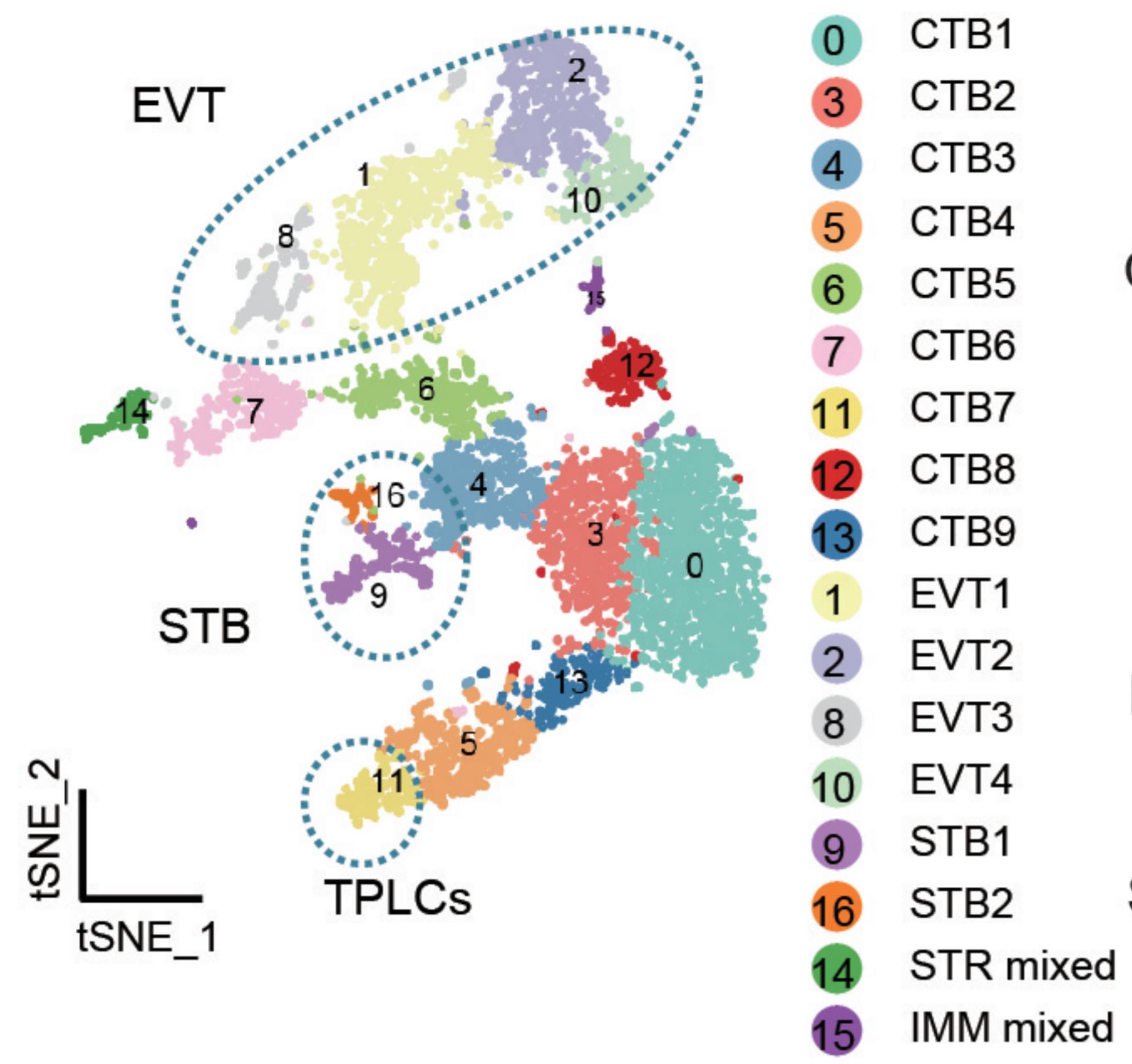
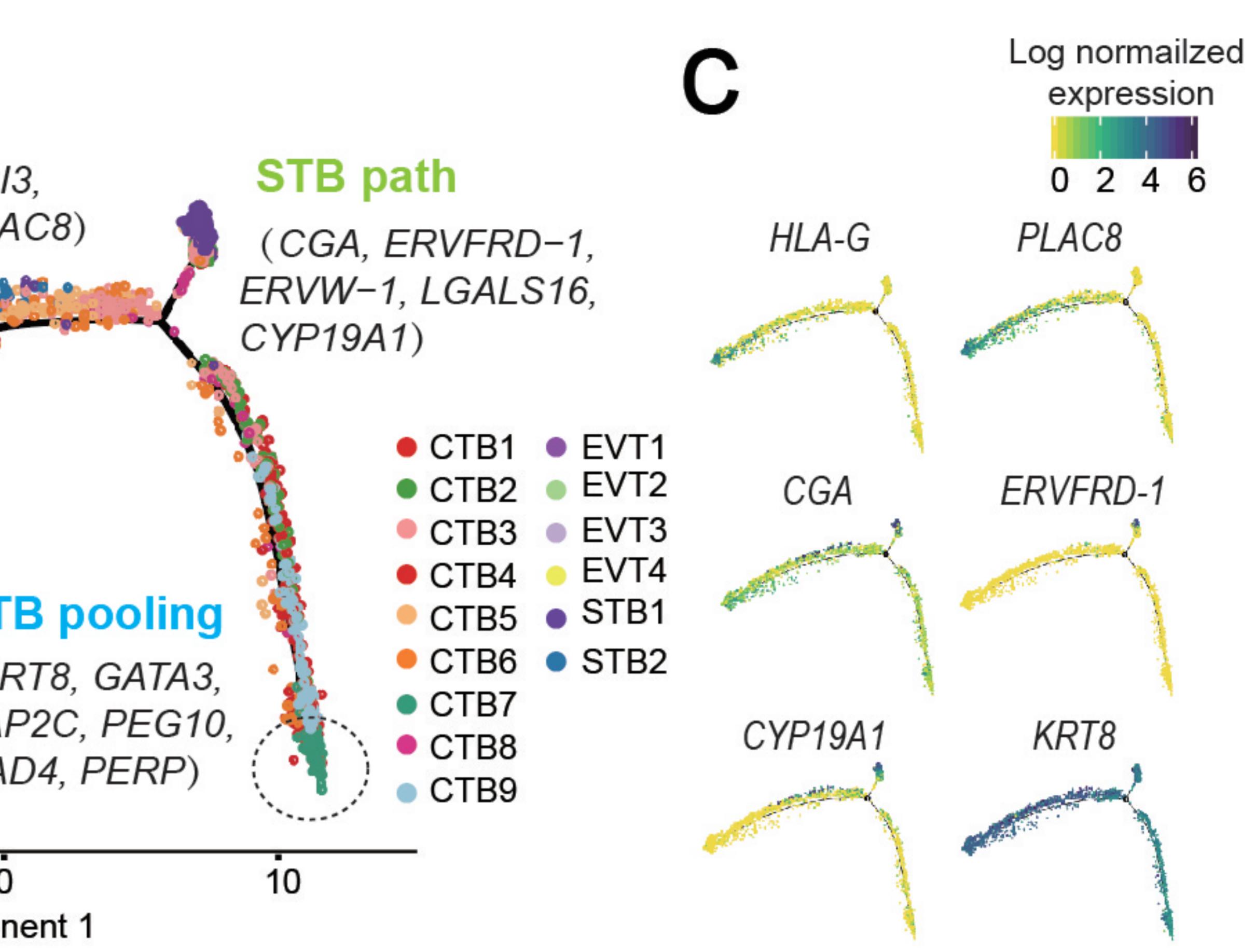
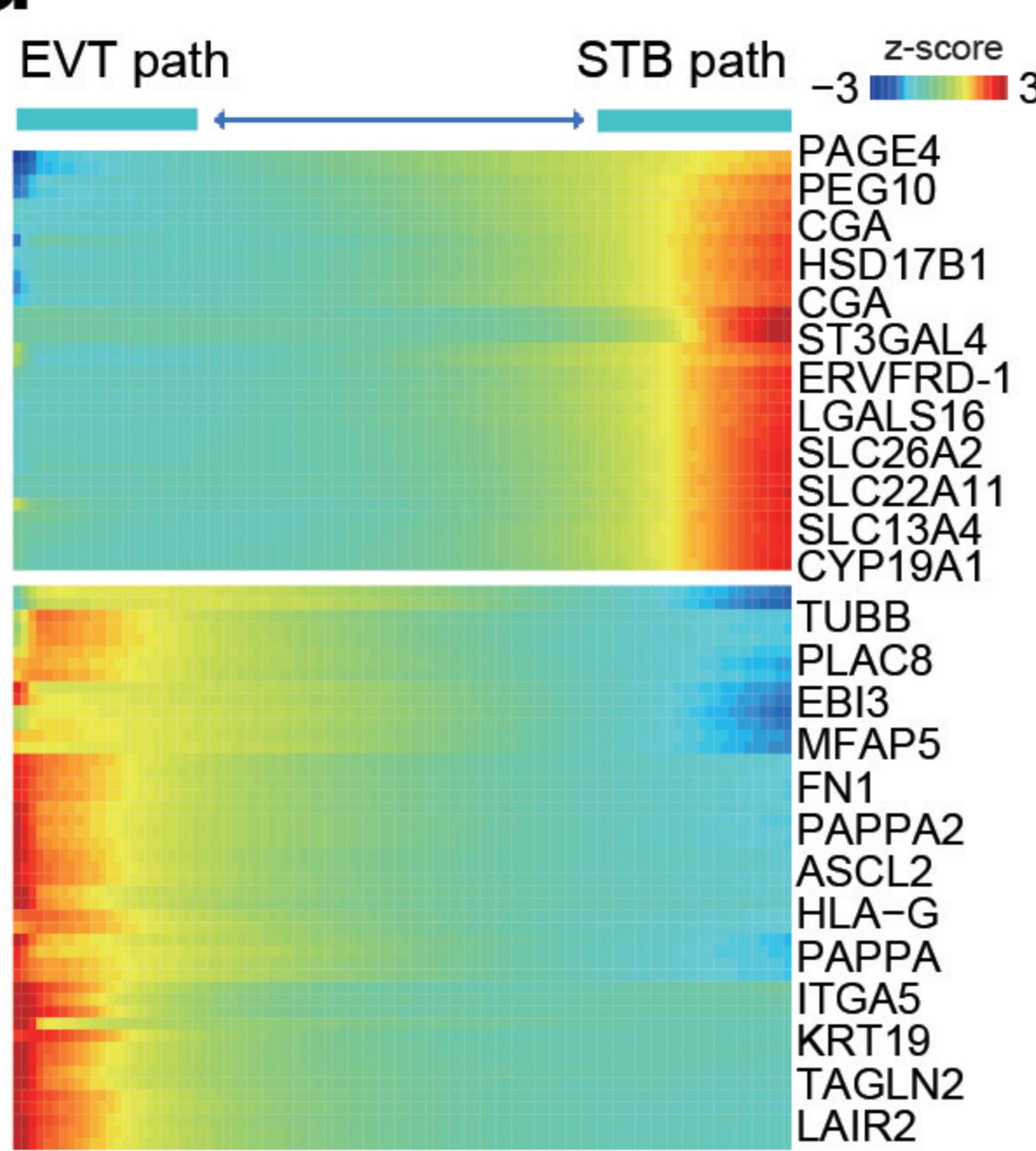
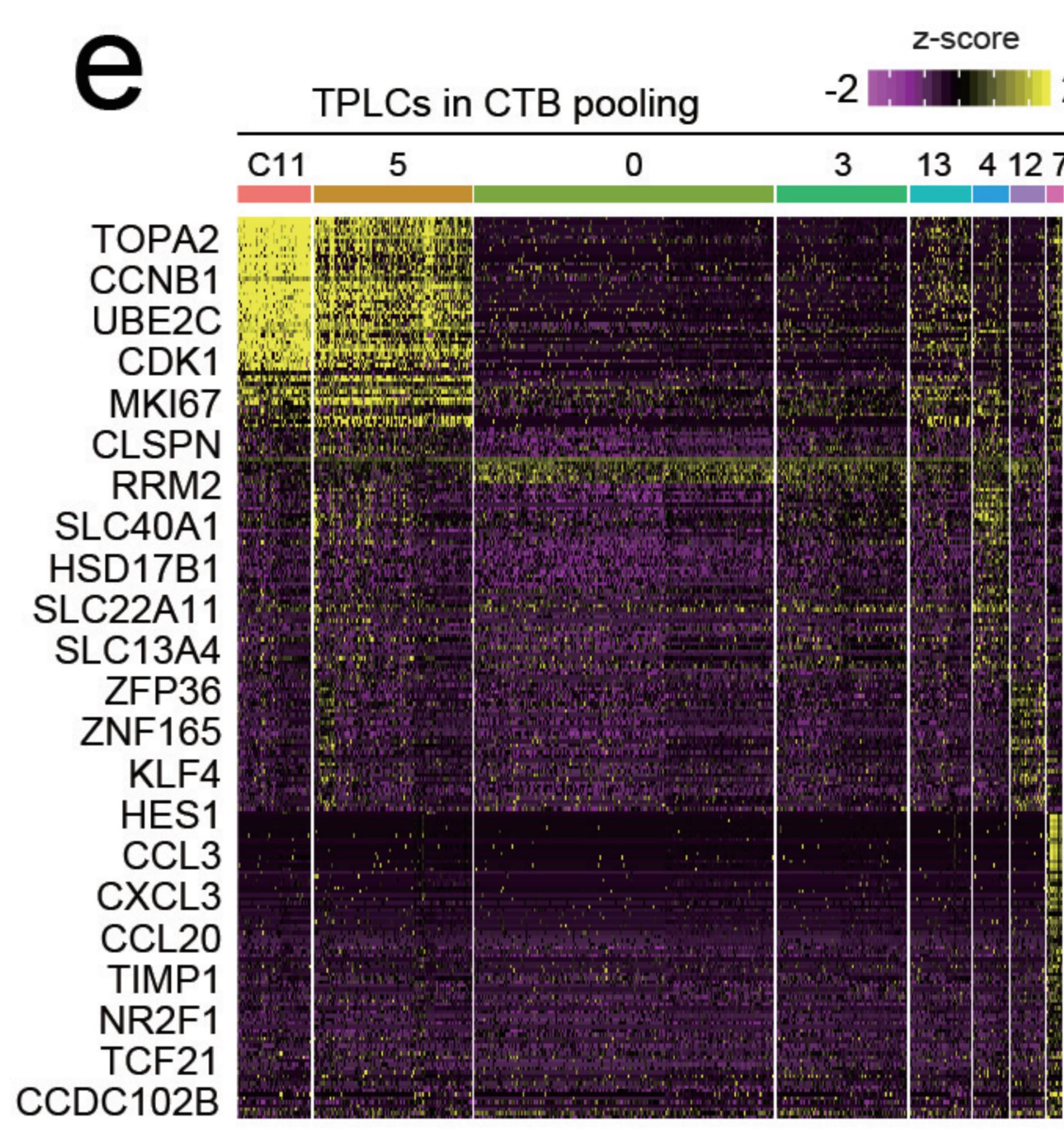


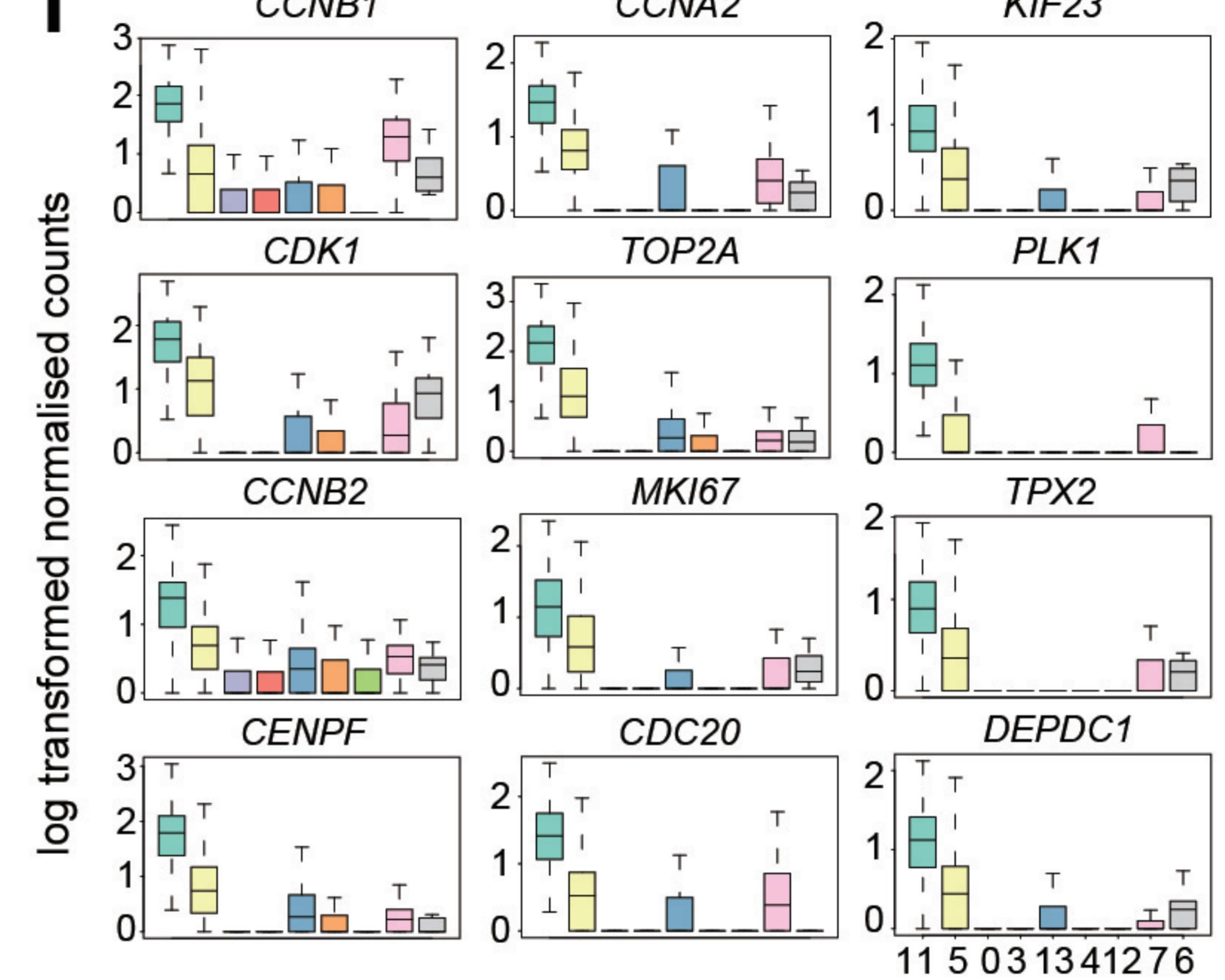
Fig.2

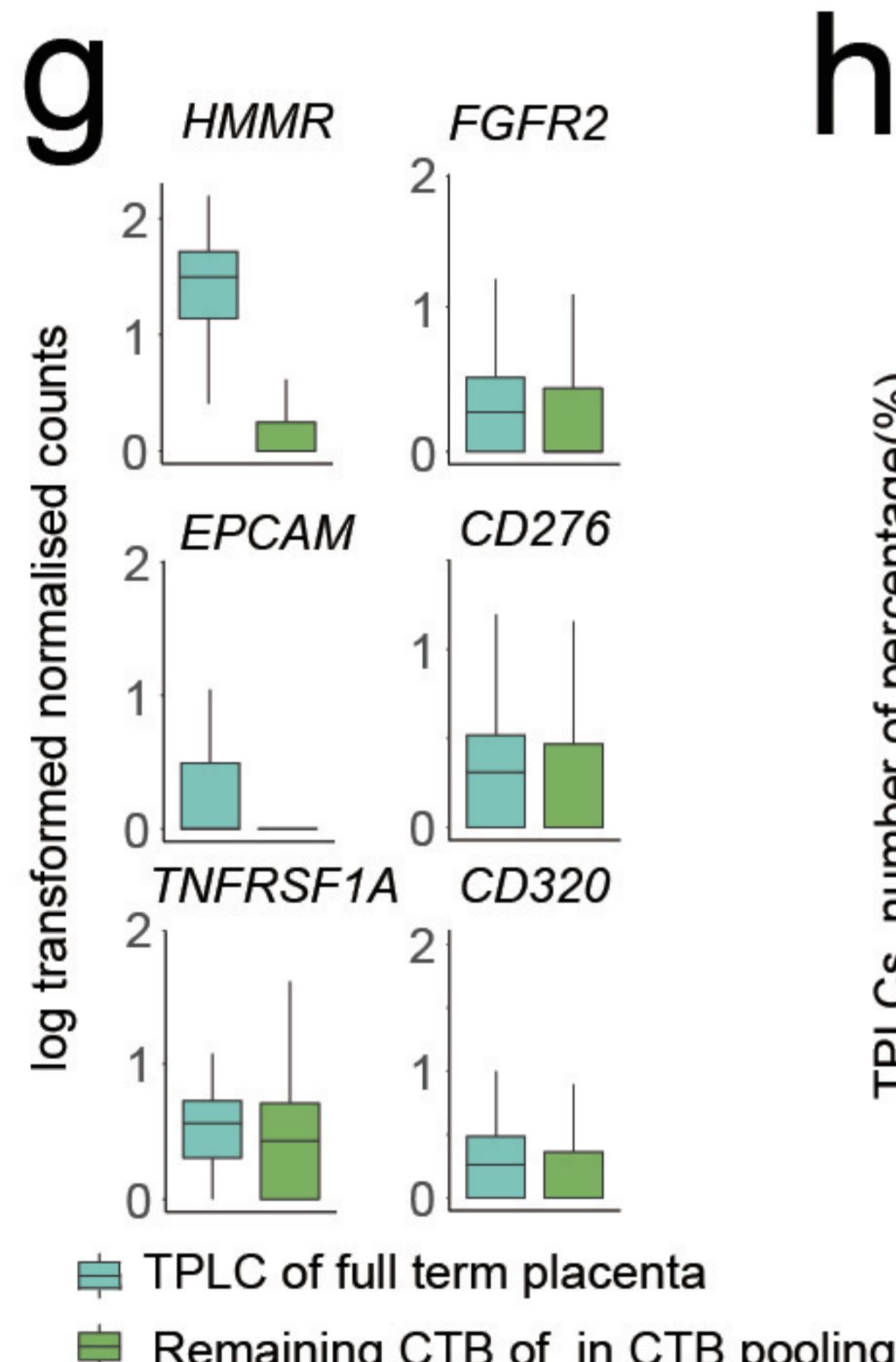
Fig.3

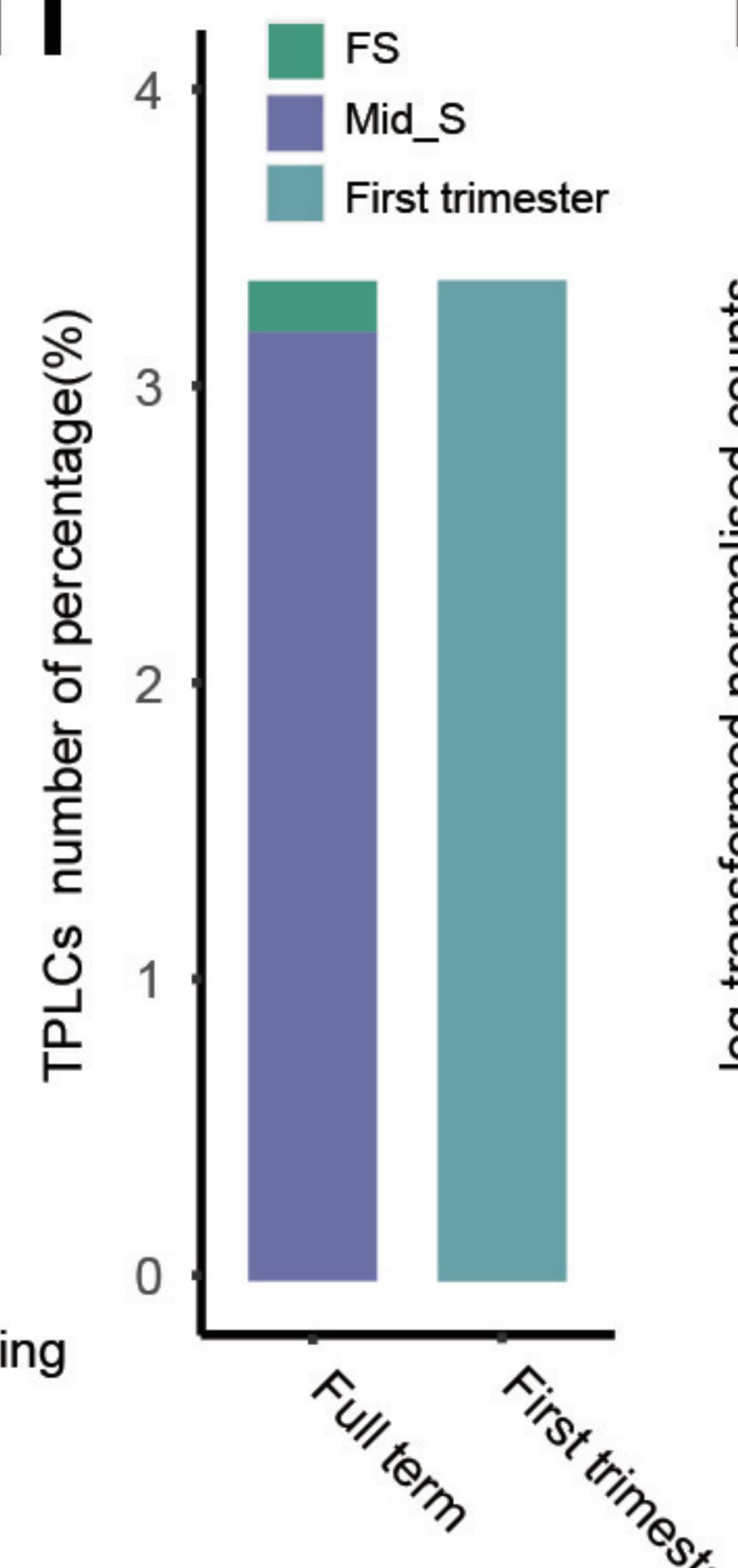

a

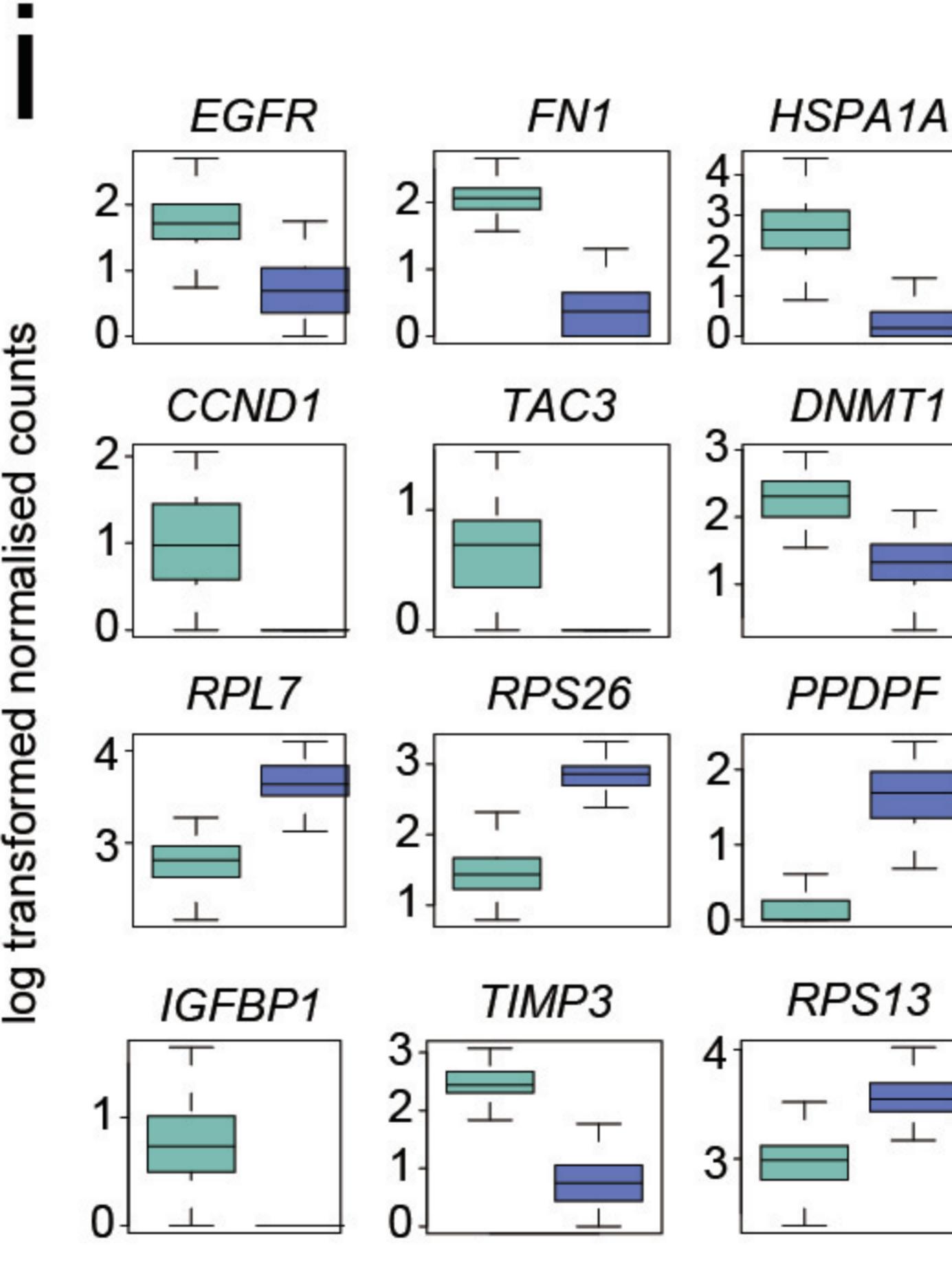

b

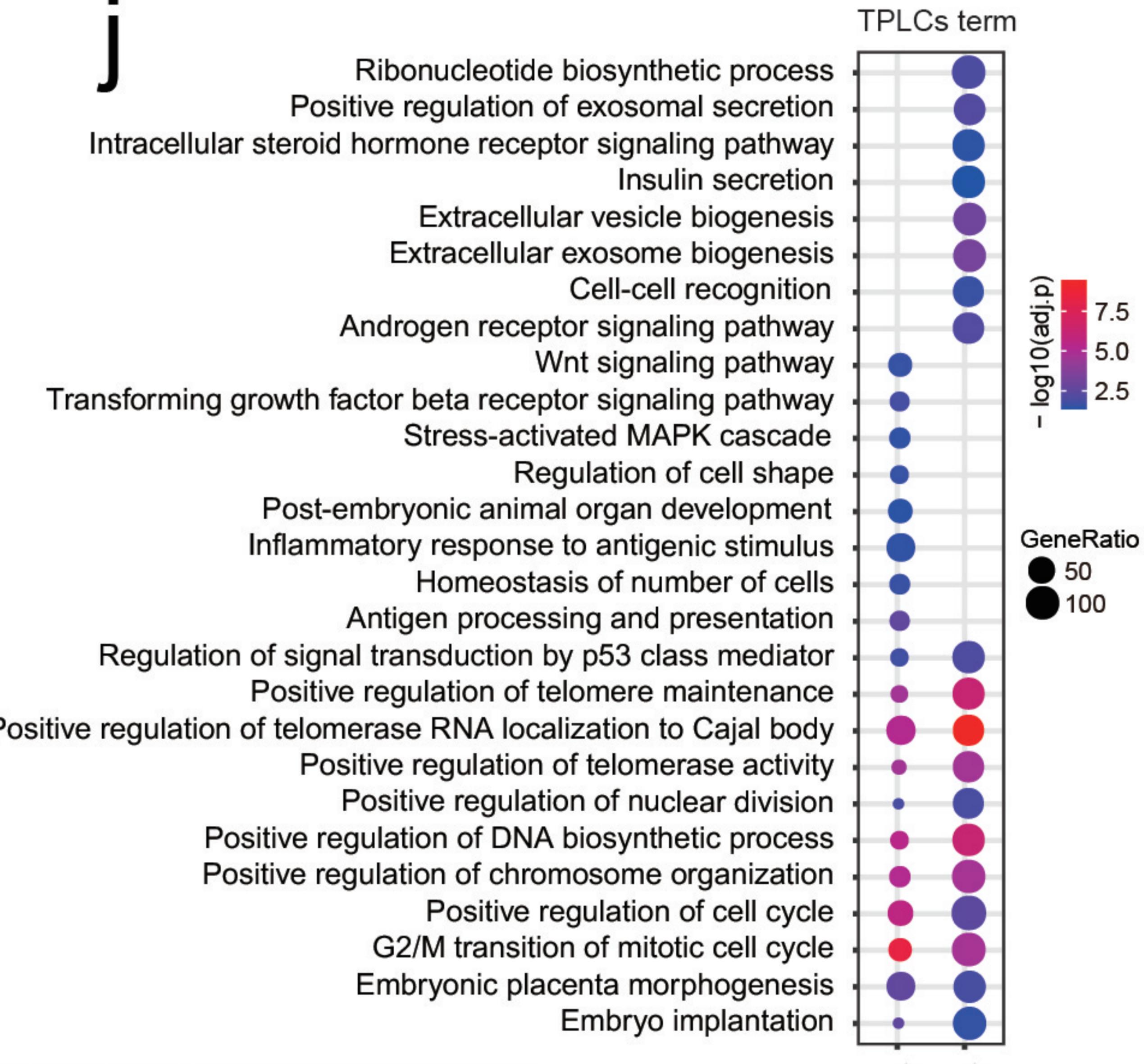

c

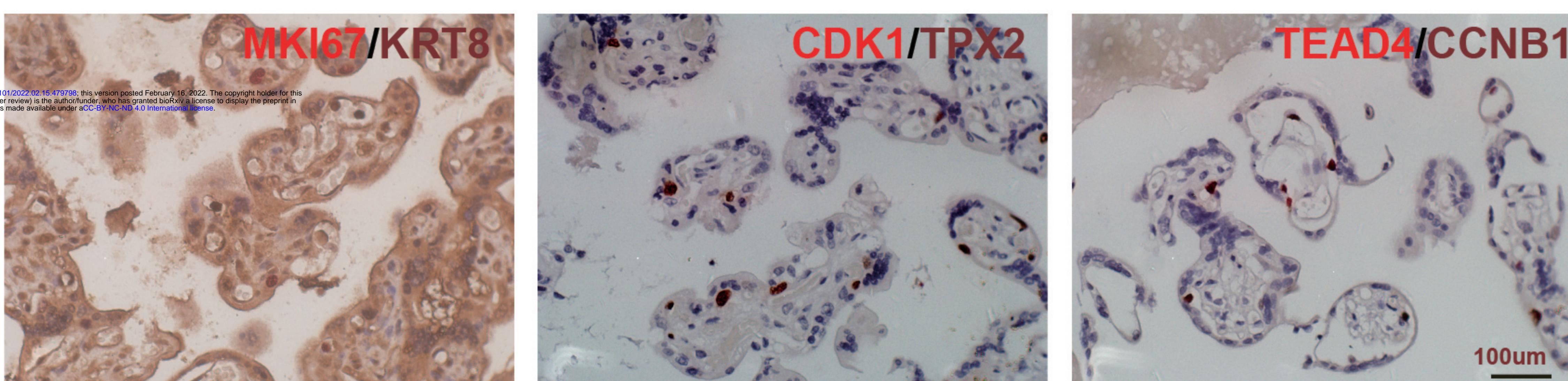

d

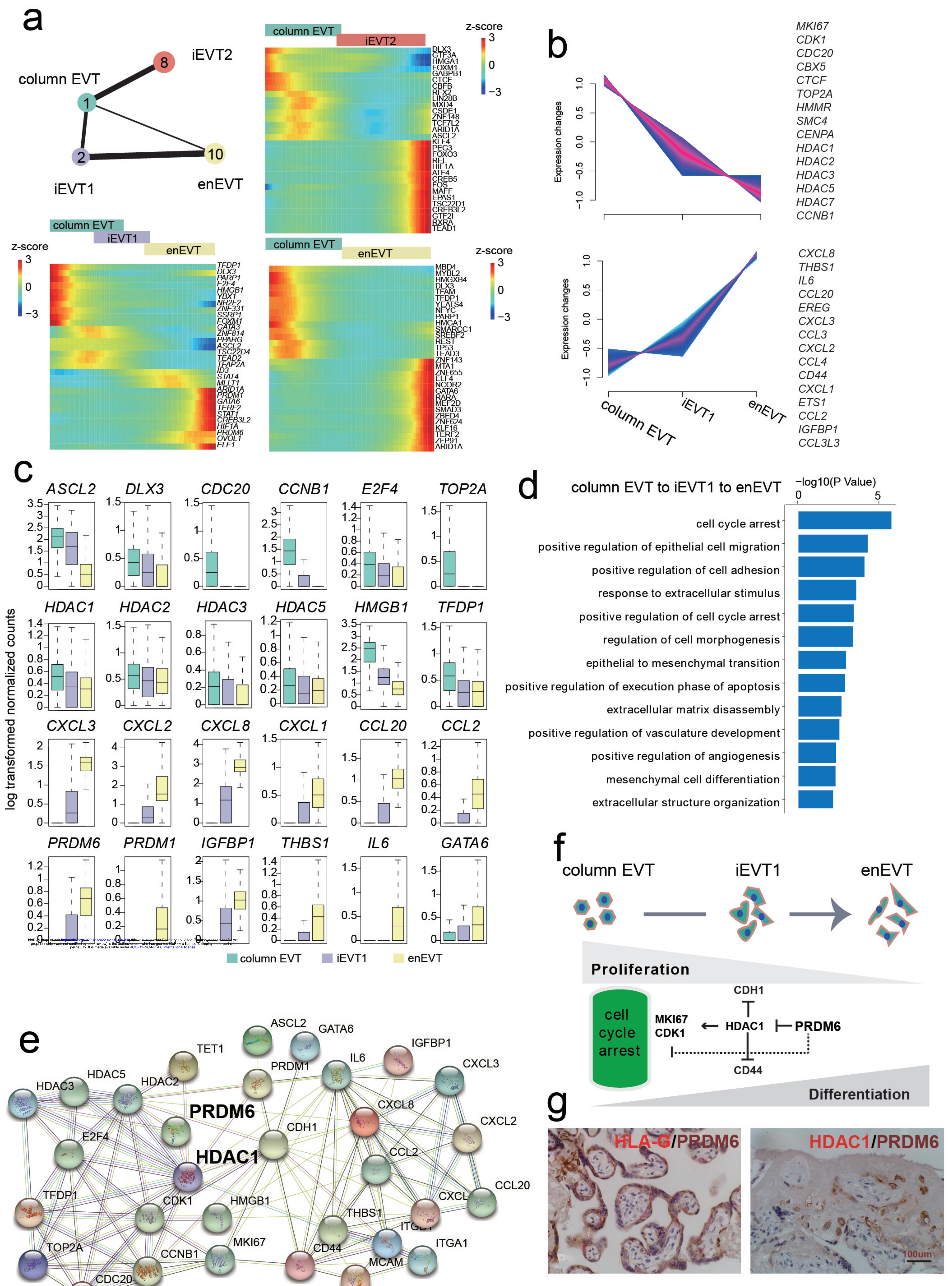

e


f


g


h


i


j

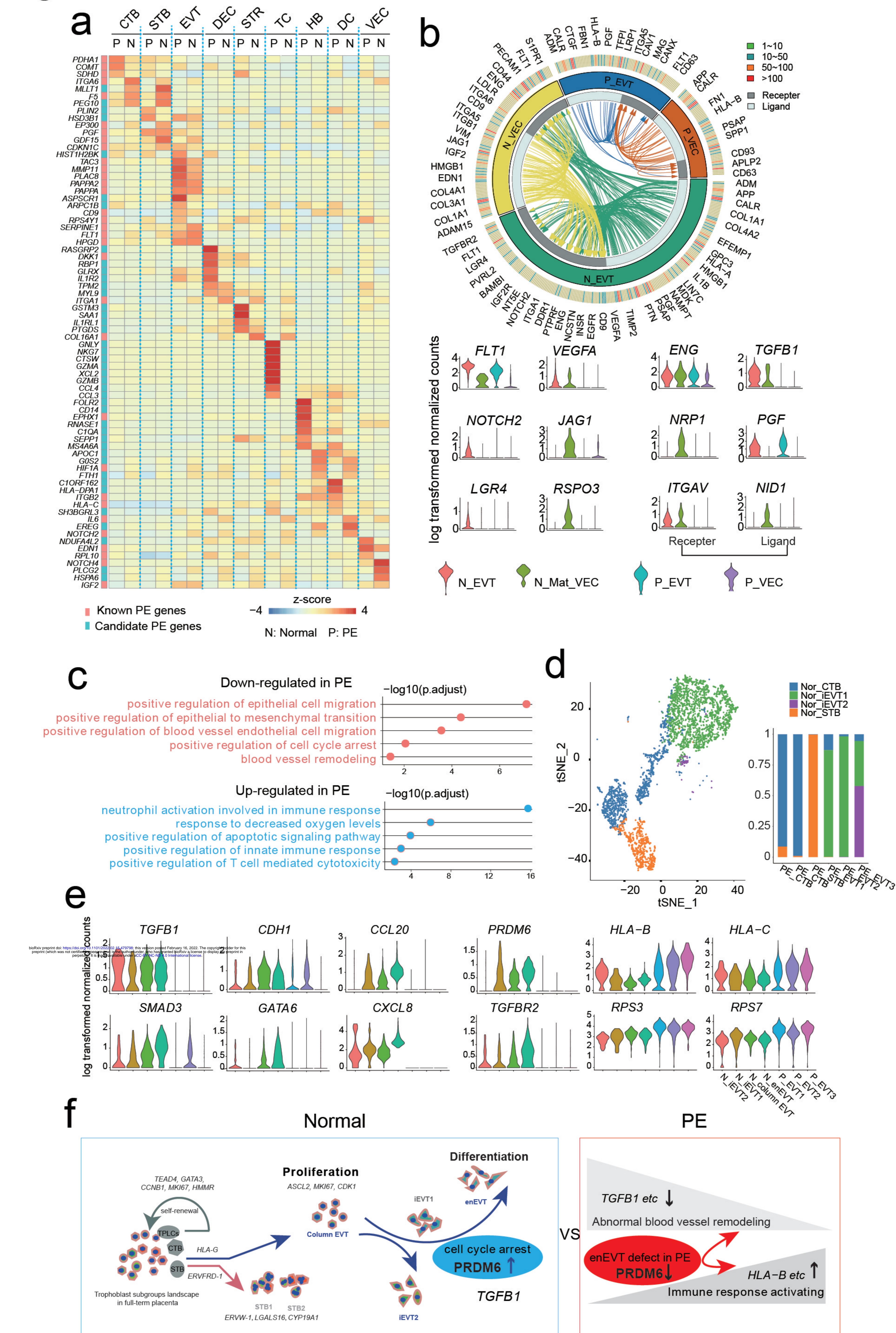

k

Fig.4

Fig.5

