

1 **Neurovascular Uncoupling: Multimodal Imaging Delineates the**
2 **Acute Effects of MDMA**

3 Tudor M. Ionescu ¹, Mario Amend ¹, Tadashi Watabe ^{1,2}, Jun Hatazawa ², Andreas
4 Maurer¹, Gerald Reischl^{1,3}, Bernd J. Pichler ^{1,3}, Hans F. Wehrli ^{1*}, Kristina Herfert ^{1*}

5

6

7

8

9

10

11

12

13

14

15

16 * contributed equally

17 ¹ Werner Siemens Imaging Center, Department of Preclinical Imaging and
18 Radiopharmacy, Eberhard Karls University Tuebingen, Germany

19 ² Department of Nuclear Medicine and Tracer Kinetics, Osaka University, Japan

20 ³Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed
21 Tumor Therapies", University of Tübingen, Germany

22 Corresponding author: Prof. Dr. Kristina Herfert (kristina.hurfert@med.uni-
23 tuebingen.de)

24 Address: Roentgenweg 13, 72076 Tuebingen, Germany, Tel: +49 7071 29 87680

25 **Abstract**

26 Psychedelic compounds have attracted increasing interest in recent years due to
27 their therapeutic potential for psychiatric disorders.
28 Methyleneatedioxymethamphetamine (MDMA) is currently being investigated in clinical
29 trials to treat post-traumatic stress disorder. To understand the acute effects of
30 psychedelic drugs *in vivo*, functional MR imaging (fMRI) has been widely used in
31 recent years. Notably, fMRI studies have shown that MDMA leads to inhibition of
32 brain activity, challenging earlier hypotheses indicating mainly excitatory effects.
33 However, interpretation of hemodynamic changes induced by psychedelics is
34 challenging because of the potent vascular effects associated with this class of
35 substances. Therefore, this study aimed to investigate the acute effects of MDMA
36 using simultaneous positron emission tomography (PET)/fMRI in rats. For this
37 purpose, hemodynamic changes measured by BOLD-fMRI were related to alterations
38 in glucose utilization and serotonin transporter (SERT) occupancy, investigated using
39 [¹⁸F]FDG functional PET (fPET) and [¹¹C]DASB PET.
40 We demonstrate that MDMA induces global hemodynamic decreases accompanied
41 by localized metabolic increases. Elevated metabolism was found primarily in limbic
42 projection areas involved in emotion processing. Concurrent BOLD-fMRI decreases,
43 also found in extracerebral areas, indicate that the BOLD-fMRI reductions observed
44 in the brain are of vascular, non-neuronal origin. We further show that higher SERT
45 occupancy strongly correlates with regional BOLD-fMRI reductions. Therefore,
46 increased serotonin levels induced by SERT blockage may cause a neurovascular
47 uncoupling.
48 Correct understanding of the *in vivo* mechanism of MDMA not only supports ongoing
49 research but also warrants a reassessment of previous studies on neuronal effects of
50 psychedelics relying on neurovascular coupling.

51 **1. Introduction**

52 In recent years psychedelic drugs, including lysergic acid diethylamide (LSD),
53 psilocybin, and methylenedioxymethamphetamine (MDMA), have gained increasing
54 attention due to their potential medical benefit for the treatment of psychiatric
55 disorders [1, 2]. MDMA-assisted psychotherapy is currently in a phase three clinical
56 trial to treat severe post-traumatic stress disorder (PTSD) with encouraging initial
57 results [3]. Research in this area is also increasingly associated with the development

58 of imaging techniques as quantitative biomarkers in addition to behavioral
59 parameters [1]. To investigate the mechanisms of psychedelic drugs *in vivo*,
60 magnetic resonance imaging (MRI) methods inferring neuronal activity through
61 neurovascular coupling, such as blood oxygenation level-dependent functional MRI
62 (BOLD-fMRI) and arterial spin labeling (ASL), have been widely used [4-8].
63 Interestingly, research performed over the last decade using the aforementioned
64 methods has shown that psychedelic compounds such as MDMA [4] and psilocybin
65 [6] inhibit brain activity, contradicting previous studies that indicated mainly excitatory
66 effects [9-12].

67 However, the use of hemodynamic methods may be insufficient to understand the
68 effects of psychedelics on neuronal activity. First, psychedelic drugs elicit their effects
69 by strongly affecting one or more neurotransmitter systems [13]. Thus, it is crucial to
70 evaluate hemodynamic changes in the context of changes in the respective
71 neurotransmitter systems. Second, in addition to neuronal effects, increased
72 neurotransmitter concentrations such as serotonin and dopamine elicited by
73 psychedelic compounds can have potent vascular effects [14-16]. This aspect is
74 particularly critical for methods based on neurovascular coupling, such as BOLD-
75 fMRI and ASL. The emergence of hybrid positron emission tomography (PET)/MRI
76 allows simultaneous assessment of brain function at multiple physiological levels [17,
77 18]. The combination of PET and pharmacological MRI (phMRI) [19] can provide high
78 complementary measures of the effect of pharmacological compounds, especially for
79 the evaluation of drug effects [20, 21]. In addition, recent developments in the
80 administration of 2-[¹⁸F]fluoro-2-deoxyglucose ([¹⁸F]FDG) PET protocols via constant
81 infusion [22] have paved the way towards functional PET (fPET) [22], a technique
82 that allows imaging of changes in glucose metabolism at a temporal resolution of
83 minutes [23]. fPET overcomes the lack of temporal resolution in previous studies,
84 allows imaging of effects within a scan and provides a more robust indirect measure
85 of neuronal activity compared to fMRI, because it is independent of changes in
86 hemodynamics [22].

87 Here, we aimed to characterize the acute effects of MDMA using simultaneous
88 PET/fMRI. First, we performed [¹⁸F]FDG fPET/fMRI scans to simultaneously
89 determine hemodynamic and metabolic changes elicited by MDMA. In a second
90 cohort, because the serotonin transporter (SERT) is one of the main targets of

91 MDMA [24], we used the SERT PET ligand [¹¹C]-3-amino-4-(2-
92 dimethylaminomethylphenylsulfanyl)-benzonitrile ([¹¹C]DASB) [25] to investigate
93 whether SERT blockage by MDMA correlates with changes in BOLD-fMRI across the
94 brain. The overall goal of this study was to exploit the potential of multimodal imaging
95 for complementary detection and characterization of the acute *in vivo* effects of
96 MDMA. By simultaneously acquiring data on hemodynamics, metabolism, and SERT
97 occupancy, we aimed to test the two conflicting hypotheses that MDMA has either
98 mainly inhibitory or excitatory effects on brain activity. A detailed description of the
99 effects of MDMA will help to understand the mechanisms of the drug in the treatment
100 of psychiatric disorders such as PTSD through MDMA-assisted psychotherapy,
101 performed under acute MDMA.

102 **2. Material and Methods**

103 **Animals**

104 Male Lewis rats (n = 29) were obtained from Charles River Laboratories (Sulzfeld,
105 Germany) and divided into two groups: [¹⁸F]FDG fPET/fMRI scans were performed
106 in 17 animals (361 ± 19 g), while [¹¹C]DASB PET/fMRI were performed in 11 animals
107 (365 ± 19 g). Nine fMRI datasets were excluded from the study due to motion during
108 acquisition. One [¹¹C]DASB PET and two [¹⁸F]FDG fPET datasets were excluded
109 from the analysis because of paravenous tracer injections. The animals were kept at
110 a room temperature of 22 °C and 40-60% humidity under a 12-hour light-dark cycle.
111 The rats were fed with standard diet and received tap water *ad libitum*. Animals were
112 fasted for six hours before the start of the experiments. All experiments were
113 performed in accordance with the German Federal Regulations on the Use and Care
114 of Laboratory Animals and approved by the Tübingen regional council.

115 Two additional sets of subjects scanned under the same [¹⁸F]FDG fPET/fMRI and
116 [¹¹C]DASB PET/fMRI protocols, but exposed to PBS instead of MDMA, are presented
117 in the *supplementary information*.

118 **Simultaneous PET/fMRI experiments**

119 Animals were placed in knock-out boxes, and anesthesia was induced with 3%
120 isoflurane in regular air. Reflex tests were performed to determine sufficient sedation.

121 For subsequent preparation procedures, the isoflurane concentration was reduced to
122 2%. After the weight of the animals was determined, a catheter with a 30-G needle
123 was positioned in a tail vein to administer the radioactive tracer. Another catheter was
124 placed into the other tail vein for MDMA administration. Animals were then placed on
125 a dedicated temperature-controlled small animal bed (Medres, Cologne, Germany).
126 The temperature was monitored and maintained at 36.5°C with a rectal probe, and
127 respiratory rates were monitored using a breathing pad. Rats were then placed in the
128 scanner, and the isoflurane concentration was decreased to 1.3% throughout the
129 scan.

130 Scans were performed using a 7-T small-animal MRI scanner (ClinScan, Bruker
131 Biospin, Ettlingen, Germany) using a 72-mm-diameter linearly polarized RF coil
132 (Bruker) for transmission and a four-channel rat brain coil (Bruker) for reception. First,
133 localizer scans were performed to position the brains in the center of the field of view.
134 Local magnetic field maps were then generated to optimize local field homogeneity.
135 Subsequently, T2-weighted MRI sequences (TR: 1800 ms, TE: 67.11 ms, FOV: 40 x
136 32 x 32 mm³, image size: 160 x 128 x 128 px, Rare factor: 28, averages: 1) were
137 performed to obtain anatomical references. Finally, fMRI imaging was performed
138 using T2*-weighted gradient-echo EPI sequences (TR: 2000ms, TE: 18ms, 0.25 mm
139 isotropic resolution, FoV 25 x 23 mm², image size: 92 x 85 x 20 px, slice thickness:
140 0.8 mm, 20 slices).

141 Simultaneously, PET scans were acquired using a PET insert developed in
142 collaboration with Bruker, which is the second generation of an insert previously
143 developed in-house [18]. Protocols for tracer synthesis, injected radioactivities and
144 molar activities are given in *supplementary information*. PET and fMRI acquisitions
145 were started simultaneously 30 seconds before tracer injection and performed over
146 100 minutes after tracer injection. PET data were saved as list-mode files for later
147 reconstruction into dynamic scans of 100 1-minute frames using an ordered-subsets
148 expectation maximization 2D (OSEM-2D) algorithm.

149 A pharmacological MDMA challenge of 3.2 mg/kg was administered 40 minutes after
150 tracer injection over 30 seconds.

151 **Data preprocessing**

152 Statistical Parametric Mapping 12 (SPM 12, Wellcome Trust Centre for
153 Neuroimaging, University College London, London, United Kingdom) via Matlab (The
154 MathWorks, Natick, MA, USA) and Analysis of Functional NeuroImages (AFNI,
155 National Institute of Mental Health (NIMH), Bethesda, Maryland, USA) were used for
156 data preprocessing as previously reported [26]. An extensive description of all
157 preprocessing steps performed can be found in the *supplementary information*.

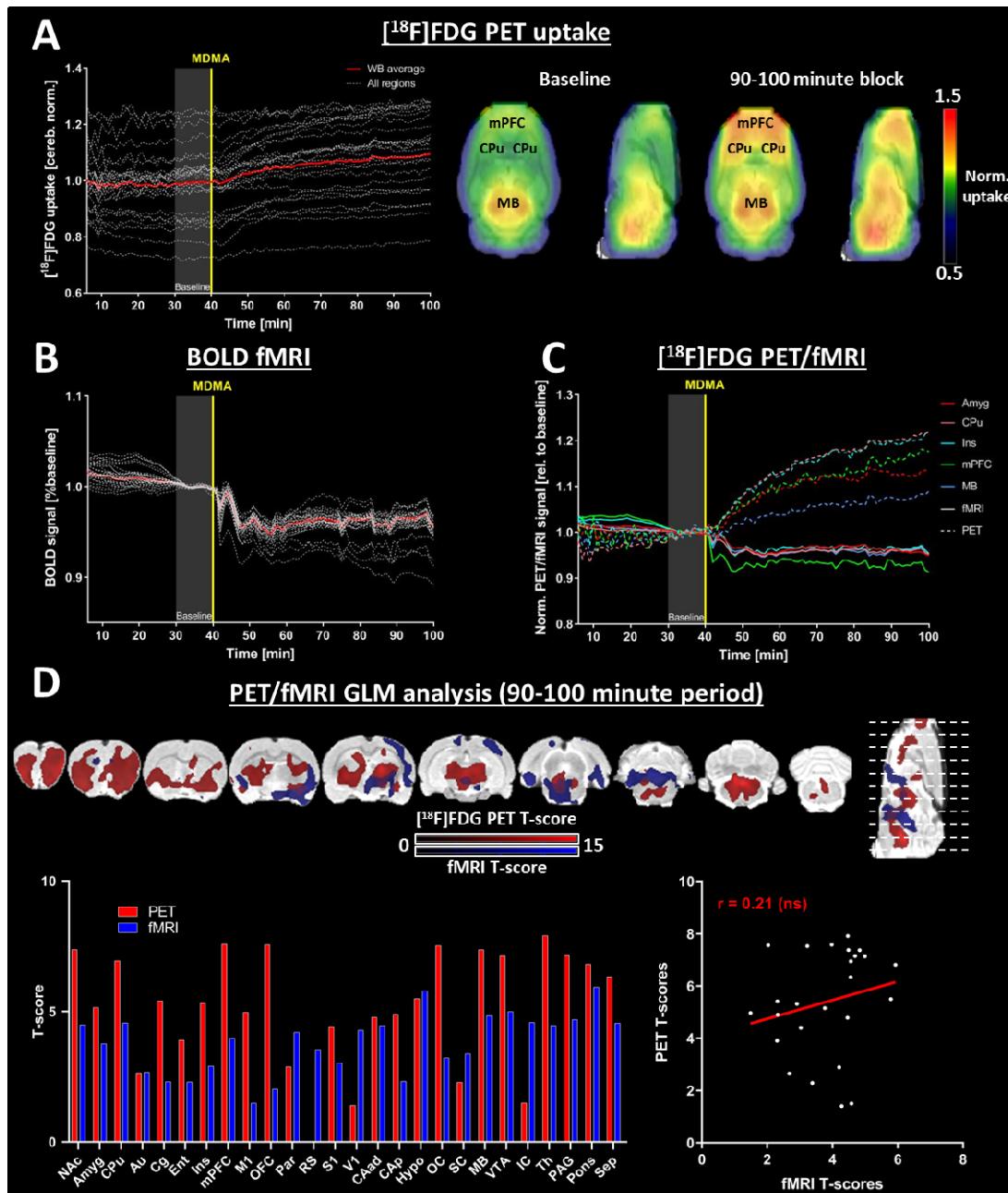
158 To analyze the effect of non-neuronal signal changes on the brain BOLD-fMRI
159 measures, we extracted the average signal from all voxels in areas outside the brain
160 using masks created in AFNI. Average time courses were extracted from all datasets
161 after preprocessing using the MarsBaR toolbox [27] and regions of interest defined
162 by the Schiffer brain atlas [28]. For a complete list of the regions, please refer to
163 *supplementary information*.

164 **SPM data analysis**

165 The general linear model (GLM) available in SPM was applied to determine voxels
166 with significantly altered fMRI and PET signals after MDMA exposure. For all
167 datasets, the baseline was defined as the period between 30 and 40 minutes after
168 scan start, after tracer equilibrium had been reached between the high target and the
169 reference regions. The [¹⁸F]FDG fPET data were normalized based on cerebellar
170 uptake, as previously recommended [29], whereas for [¹¹C]DASB PET, the cerebellar
171 gray matter was chosen as the reference region [30].

172 For PET data analysis, mean images of the dynamic 1-minute frames were
173 generated over seven measurement periods: between 30 and 40 minutes following
174 tracer injection as baseline, and for each of the subsequent 10-minute periods after
175 MDMA exposure (40-50 minutes, 50-60 minutes, 60-70 minutes, 70-80 minutes, 80-
176 90 minutes and 90-100 minutes after scan start). Paired t-maps were then calculated
177 between the baseline and each block after MDMA for [¹⁸F]FDG using voxel-wise
178 normalized uptake maps and for [¹¹C]DASB using voxel-wise DVR-1 maps. For more
179 details please refer to *supplementary information*.

180 For fMRI, a first-level analysis was applied to the individual scans using the pseudo-
181 block approach reported for phMRI [31, 32]. To allow a direct comparison with the


182 PET readout, the same six 10-minute blocks between MDMA challenge and the end
183 of the scans (40-50 minutes, 50-60 minutes, 60-70 minutes, 70-80 minutes, 80-90
184 minutes, and 90-100 minutes after scan start) were compared with the baseline 10-
185 minute block before MDMA injection. After estimating the GLM parameters, statistical
186 parametric maps were generated by interrogating the data using contrast vectors
187 between each block after MDMA and baseline. The generated maps were then used
188 to delineate group-level effects through a second-level analysis. Initially, binary
189 masks were used to perform the analyses only within the brain. The binary masks
190 were removed for later analysis of extracerebral hemodynamic alterations.

191 All group-level t-maps were subjected to voxel-wise signal quantification to determine
192 the regional contributions of brain regions selected according to the Schiffer brain
193 atlas [28]. The average t-scores of all voxels comprising each region were calculated
194 for each period and modality to compare the respective spatial patterns of MDMA
195 effects on hemodynamics, glucose metabolism, and SERT occupancy.

196 **3. Results**

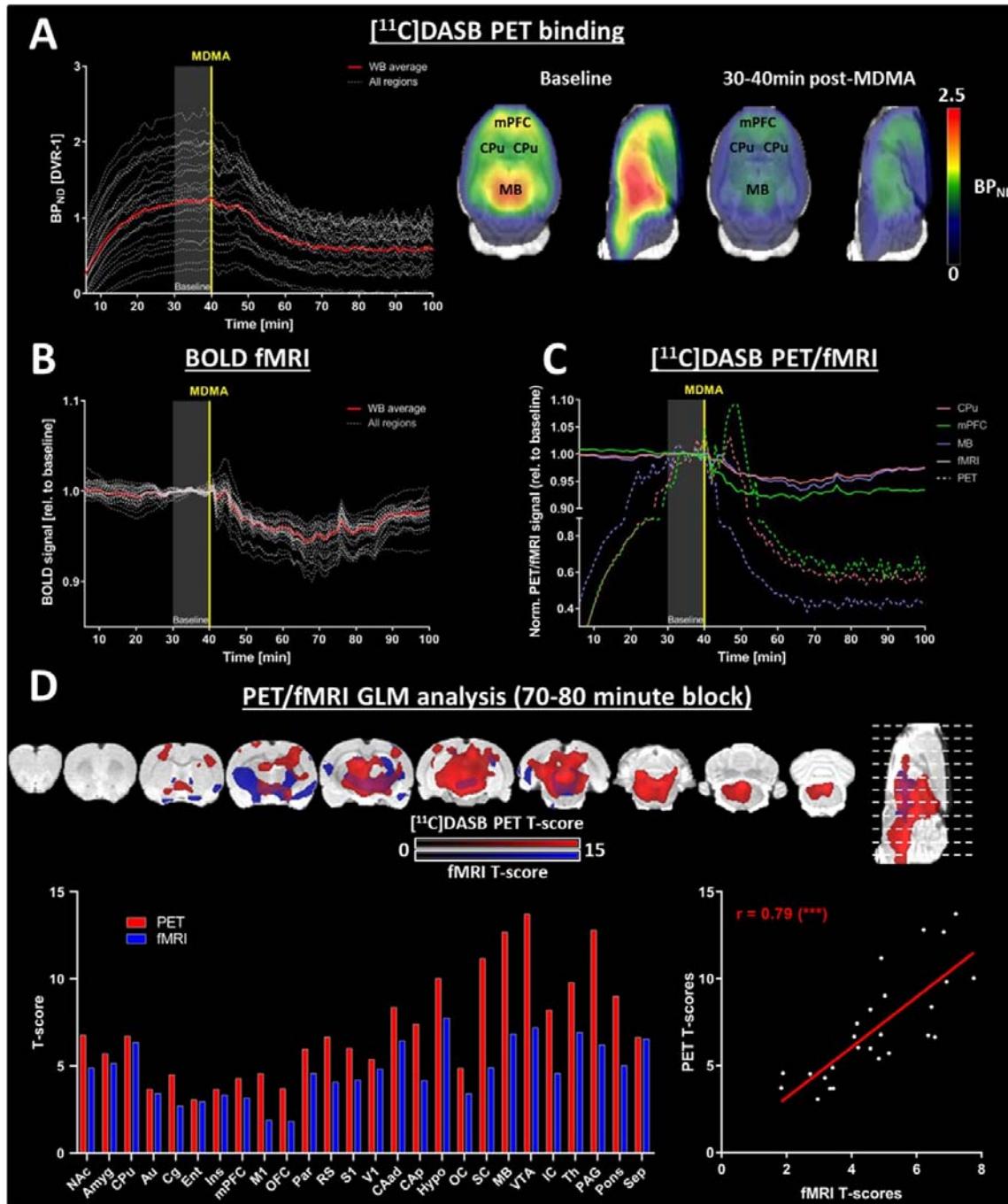
197 **Metabolic increases accompany hemodynamic reductions after MDMA**

198 First, we investigated the relationship between acute hemodynamic and metabolic
199 changes following acute MDMA using a simultaneous $[^{18}\text{F}]$ FDG fPET/fMRI protocol
200 (Figure 1).

202 **Figure 1: Region-wise and voxel-wise evaluation of $[^{18}\text{F}]$ FDG fPET and BOLD-fMRI signals**
203 **changes.** (A) TACs for all regions and whole-brain average. Voxel-wise normalized uptake maps

204 indicate [¹⁸F]FDG uptake at baseline (30 to 40 minutes after scan start), as well as 50-60 minutes after
205 MDMA administration. (B) Regional BOLD-fMRI signals normalized to respective baselines (average
206 regional BOLD-fMRI signals in the period 30-40 minutes after scan start). (C) Both signals were
207 normalized to the baseline period over the last ten minutes before MDMA administration for a common
208 frame of reference. Continuous lines indicate the BOLD-fMRI signals, interrupted lines the [¹⁸F]FDG
209 fPET signals in Amyg, CPu, Ins, mPFC, and MB. (D) Voxel-wise analysis of both signals in the period
210 50-60 minutes after MDMA challenge. The voxelwise maps are presented at $p < 0.05$ (FWE-corrected
211 at voxel level) for PET and $p < 0.001$ at voxel level with $p < 0.05$ FWE correction at cluster level for
212 fMRI ($n = 15$ for fPET, $n = 9$ for fMRI). The bar diagram indicates average t-scores for each region and
213 both modalities. The average regional t-scores are plotted in a scatter diagram to evaluate the spatial
214 correlation of both readouts. Abbreviations: GLM = general linear model, ns = not significant. For
215 abbreviations of the different regions, please refer to *Supplementary Information*.

216 The normalized [¹⁸F]FDG fPET TACs of all regions and the average whole-brain TAC
217 are shown in Figure 1A. Visual assessment of TACs and voxel-wise uptake maps
218 indicated an increase in metabolism in the midbrain and subcortical areas such as
219 the striatum and frontal cortical areas, whereas more minor or no changes occurred
220 in posterior cortical regions. Notably, we found a simultaneous decrease in
221 hemodynamics, as indicated by BOLD-fMRI (Figure 1B). The whole-brain averaged
222 BOLD-fMRI signal was reduced by 4.5% fifteen minutes after the challenge.
223 Importantly, the data revealed that the decreases were of global nature and occurred
224 in all regions investigated.


225 A temporal comparison of the [¹⁸F]FDG fPET and BOLD signal changes relative to
226 baseline is shown in Figure 1C. The highest metabolic increases occurred in frontal
227 areas, including the CPu (22% increase 60 minutes post-challenge), Ins (21%
228 increase 60 minutes post-challenge), mPFC (18% increase 58 minutes post-
229 challenge), and Amyg (13.5% increase 58 minutes post-challenge). Temporally,
230 increases in all regions (>1%) were observed within 5 minutes of challenge.

231 The voxel-wise GLM analyses presented in Figure 1D revealed that the metabolic
232 rate increased across several subcortical areas and in frontal cortical areas in the
233 period between 50 and 60 minutes after the challenge. The mPFC and OFC ($t = 7.6$
234 for both), along with MB ($t = 7.4$), Th ($t = 7.9$) and NAc ($t = 7.4$) exhibited the most
235 significant [¹⁸F]FDG increases. The most significant BOLD-fMRI decreases occurred
236 in posterior areas such as the MB ($t = 4.8$), VTA ($t = 5.0$), Hypo ($t = 5.8$), and Pons (t
237 = 5.9). The t-scores of metabolic increases and BOLD-fMRI decreases did not

238 correlate significantly ($r = 0.21$), underlining a disturbed relationship between
239 metabolism and hemodynamics.

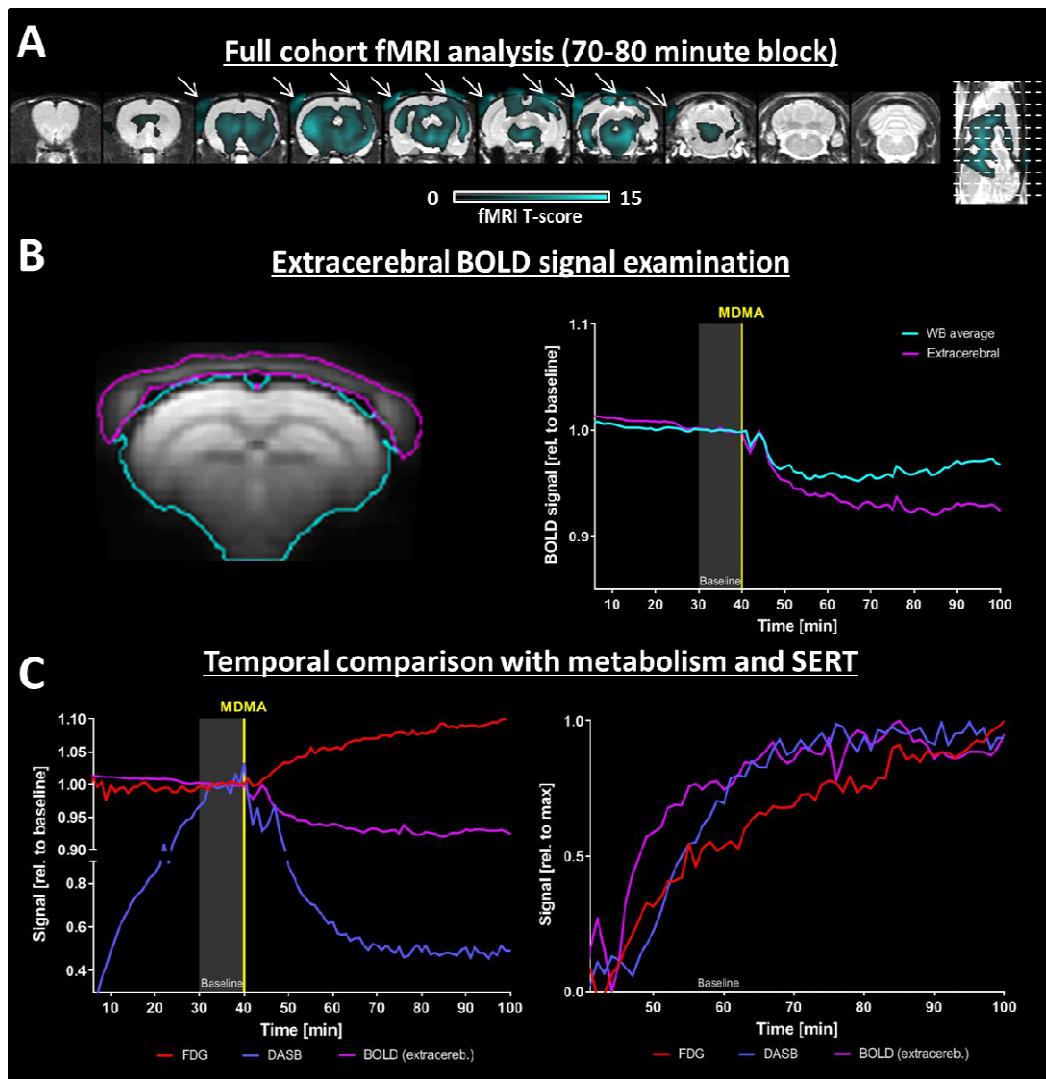
240 **SERT occupancy changes induced by MDMA correlate with BOLD decreases**

241 To further elucidate the molecular underpinnings of the observed hemodynamic
242 decreases, we evaluated BOLD-fMRI changes concurrently with alterations in SERT
243 availability using [^{11}C]DASB PET/fMRI in a second cohort (Figure 2).

244

245 **Figure 2: Region-wise and voxel-wise evaluation of [11C]DASB PET and BOLD-fMRI signal**
 246 **changes (A)** Dynamic binding potentials for all regions and whole-brain average. Voxel-wise binding
 247 potential maps indicate [11C]DASB binding at baseline (30 to 40 minutes after scan start), as well as
 248 70-80 minutes after scan start (30-40 minutes post-challenge). **(B)** Regional BOLD-fMRI signals
 249 normalized to respective baselines (average regional BOLD-fMRI signal in the period 30-40 minutes
 250 after scan start). **(C)** Temporal comparison of PET and BOLD signal changes (normalized to the
 251 baseline) in CPu, mPFC, and MB. **(D)** Voxel-wise analysis of both signals in the period 30-40 minutes

252 after MDMA challenge. The voxelwise maps are presented at $p < 0.05$ (FWE-corrected at voxel level)
253 for PET and $p < 0.001$ at voxel level with $p < 0.05$ FWE correction at cluster level for fMRI ($n = 11$).
254 The bar diagram indicates average t-scores for each region and both modalities. The average regional
255 t-scores are plotted in a scatter diagram to evaluate spatial correlation of both readouts (** indicates
256 significance at $p < 0.001$). Abbreviation: GLM = general linear model; for abbreviations of the different
257 regions please refer to *Supplementary Information*.


258 The DVR-1 of [^{11}C]DASB reached equilibrium 30 minutes after injection (Figure 2A).
259 After pharmacological challenge with MDMA, binding values in all regions decreased
260 either immediately (1-2 minutes after the challenge) in areas with high binding values
261 ($\text{BP}_{\text{ND}} > 1.8$) or with a delay after approximately 10 minutes in regions with lower
262 [^{11}C]DASB binding values. At 30 minutes post-challenge, the binding values
263 remained stable until the end of the scan period. Voxel-wise binding values reflected
264 the most significant decreases of [^{11}C]DASB binding in regions with high SERT
265 availability. Similarly to the BOLD-fMRI dataset acquired in the [^{18}F]FDG fPET/fMRI
266 cohort, all regional BOLD signals decreased within 6 minutes of MDMA challenge
267 (Figure 2B). Fifteen minutes after the MDMA challenge, the whole-brain average
268 BOLD signal was decreased by 4% compared to baseline.

269 A temporal comparison of the changes in [^{11}C]DASB binding and the BOLD-fMRI
270 responses for three exemplary regions (Figure 2C) revealed that regions with higher
271 baseline SERT availability showed a faster response than regions with lower baseline
272 SERT availability. For example, [^{11}C]DASB binding in the MB, a region with high
273 baseline [^{11}C]DASB binding ($\text{BP}_{\text{ND}} = 2.1$), decreased one minute after challenge
274 reaching 59% of its baseline value at 40 minutes after the challenge. In contrast,
275 [^{11}C]DASB binding in the CPu ($\text{BP}_{\text{ND}} = 1.6$) and mPFC ($\text{BP}_{\text{ND}} = 1.6$) remained stable
276 or increased shortly after the MDMA challenge. After approximately 10 minutes,
277 [^{11}C]DASB binding decreased in all regions until it reached equilibrium at 30-40
278 minutes after the challenge (39% decrease for mPFC, 44% decrease for CPu 40
279 minutes post-challenge compared to baseline). Compared to the temporally
280 differentiated [^{11}C]DASB binding reductions delineated above, decreases in BOLD
281 occurred homogeneously. The highest regional BOLD decreases occurred within the
282 first 30 minutes after challenge. Reductions between 1% and 2% could be observed
283 for mPFC, CPu, and MB as early as 2 minutes after challenge. The decreases
284 peaked within 30 minutes after MDMA injection (~8.5% in mPFC, ~5.5% in CPu, and
285 ~6.5% in MB).

286 Figure 2D shows GLM analyses for both readouts between baseline and 70-80
287 minutes after the start of the scan, when changes reached a plateau for both
288 methods. [¹¹C]DASB decreases were highest in the VTA ($t = 13.7$), PAG ($t = 12.8$)
289 and MB ($t = 12.7$), regions with high baseline [¹¹C]DASB binding values. The largest
290 regional t-scores for BOLD-fMRI occurred in the Hypo ($t = 7.8$), VTA ($t = 7.2$) and Th
291 ($t = 6.9$). Remarkably, regional t-scores of both readouts correlated strongly ($r = 0.79$,
292 $p < 0.001$), indicating a strong relationship between SERT occupancy and BOLD
293 signal decreases.

294 **Hemodynamic reductions also occur in non-neuronal tissues**

295 The smaller spatial extent of hemodynamic changes compared with the metabolic
296 and SERT occupancy changes presented for the two cohorts above may be due to
297 the smaller magnitudes of the BOLD decreases. To further clarify this aspect, we
298 merged the fMRI scans from both cohorts (Figure 3). We also extracted the BOLD
299 signals from extracerebral areas to investigate whether the BOLD decreases are
300 specific to neuronal tissue. Finally, we compared the temporal characteristics of
301 hemodynamic, metabolic, and SERT occupancy changes.

303 **Figure 3: Examination of BOLD signal changes in extracerebral areas.** (A) GLM analysis of BOLD
304 decreases after merging BOLD-fMRI datasets acquired in both $[^{18}\text{F}]$ FDG and $[^{11}\text{C}]$ DASB cohorts
305 ($n=20$). Data are shown at $p < 0.05$, FWE-corrected at the voxel level. Arrows indicate extracerebral
306 decreases. (B) BOLD signals were extracted from the extracerebellar regions (indicated in cyan),
307 averaged over the cohort, and plotted along with the group-average whole-brain signal. (C) Left:
308 Temporal alterations of the three signals in relation to the baseline. Right: Temporal changes of the
309 readouts after MDMA challenge relative to their respective maximum changes (0 = no change, 1 =
310 maximum change) are shown in order to depict the temporal evolution of the alterations.

311 Because of the global nature of the observed hemodynamic decreases, we also
312 investigated changes in BOLD signal without masking extracerebral areas (Figure
313 3A). The analysis indicates the decrease in BOLD-fMRI is widespread and
314 comparable in magnitude to the decrease in $[^{11}\text{C}]$ DASB PET binding and, intriguingly,
315 also occurs in non-neuronal areas. Thus, we extracted BOLD signals from

316 extracerebral areas consisting predominantly of tissue surrounding the skull (Figure
317 3B) to determine the temporal characteristics of the observed decreases.
318 Remarkably, the extracerebral BOLD signal decreased coherently with the cerebral
319 BOLD signal, both reaching maximum reductions 27 minutes after the challenge
320 (4.8% for cerebral BOLD signal and 7.4% for extracerebral BOLD signal).

321 The temporal profiles of the changes in hemodynamics, metabolism, and SERT
322 occupancy are shown in **Error! Reference source not found.C** and D, respectively.
323 The temporal characteristics of hemodynamic and SERT availability decreases were
324 highly comparable, both reaching 90% of their maximum changes 30 minutes after
325 the challenge. In contrast to the other two datasets, $[^{18}\text{F}]$ FDG increased linearly,
326 reaching 90% of the maximum change only 45 minutes after the challenge, with the
327 whole-brain average $[^{18}\text{F}]$ FDG TAC continuing to increase until the end of the scan.
328 This finding suggests that metabolic increase may persist longer than one hour after
329 the MDMA challenge included in the scans.

330 **4. Discussion**

331 In this study, we investigated the acute effects of the psychedelic drug MDMA using
332 simultaneous PET/fMRI. For this purpose, we examined the relationships between
333 changes in glucose metabolism, vascular responses, and SERT availability in
334 different brain regions. We detected concurrent localized increases in glucose
335 consumption and hemodynamic decreases of global nature, both occurring within
336 minutes after MDMA exposure. Furthermore, as expected, we identified decreased
337 $[^{11}\text{C}]$ DASB specific binding to the SERT following the challenge. Remarkably,
338 regional SERT changes correlated strongly with decreased hemodynamics, whereas
339 increased glucose metabolism measured by $[^{18}\text{F}]$ FDG fPET showed no correlation
340 with BOLD reductions. Finally, we show that hemodynamic decreases concurrently
341 take place in non-neuronal extracerebral tissues. Our data suggest that increased
342 neuronal activity is accompanied by neurovascular uncoupling, possibly mediated
343 through the vascular effects of serotonin following SERT blockage.

344 **Simultaneous uncoupling between metabolism and hemodynamics**

345 The acute *in vivo* effects of psychedelic compounds, and MDMA in particular, have
346 not been fully elucidated in terms of neuronal activation or inhibition, with two

347 hypotheses being postulated. *In vivo*, studies measuring glucose utilization have
348 shown mixed results, yet mainly increased metabolism following psychedelic
349 challenges [9, 10, 12, 33], suggesting neuronal activation. However, more recent
350 work with ASL challenged this hypothesis and argued that brain activity is decreased
351 under MDMA [4]. Interestingly, the authors did not find any hemodynamic increase
352 following MDMA across the entire brain. Our study confirms that this finding also
353 holds when applying an acute MDMA challenge in rodents. Furthermore, the authors
354 speculated that MDMA exerts inhibitory effects directly through 5-HT_{1A} receptors,
355 which are known to induce hyperpolarization and decrease firing rates [4, 34]. The
356 same group found similar hemodynamic decreases under acute psilocybin [6],
357 postulated by the authors to be driven by inhibitory effects of 5-HT_{2A} receptors [35].
358 On a side note, the decreases in ASL and BOLD previously observed for MDMA and
359 psilocybin in humans were also asymmetric [4, 36], with a focus on the right cerebral
360 hemisphere. The same pattern can be observed in our study, supporting the
361 translatability of our readout. Notably, the authors argued that possible discrepancies
362 with previous work indicating increased metabolism using [¹⁸F]FDG PET [12] might
363 be because [¹⁸F]FDG PET operates on a much longer time scale than fMRI [6].
364 Therefore, the authors claimed that the increases in earlier [¹⁸F]FDG PET studies
365 may represent a rebound in glucose metabolism after the actual acute inhibitory
366 effects captured by fMRI [6]. We agree with the above statement that earlier
367 [¹⁸F]FDG PET or *ex vivo* studies [9, 10, 12, 33] measuring cerebral glucose utilization
368 lacked temporal specificity because of the paradigms used, which complicates the
369 interpretation of results for acute effects. Earlier work on blood flow effects is similarly
370 inconclusive and partly confirms the general decreases induced by MDMA seen
371 with ASL [4, 9]; however, CBF measurements using [¹⁵O]H₂O PET indicated mixed
372 regional increases and decreases [37]. A further reason for the partially conflicting
373 results of the above studies is that the conclusions were drawn between different,
374 relatively small cohorts having received either placebo or MDMA.

375 In our study, the above limitations of previous studies were overcome. Recently
376 developed PET protocols have enabled the detection of metabolic effects at high
377 temporal resolutions of only a few minutes [22, 23]. Our similarly designed study
378 allowed temporal assessment of the acute effects of two pairs of readouts: metabolic
379 versus hemodynamic response and SERT occupancy versus hemodynamics. The
380 effects were delineated (1) immediately after the challenge at 1-minute intervals, (2)

381 simultaneously for both pairs of measurements, and (3) in the same animals, thus
382 avoiding the comparison of two different groups of subjects. Therefore, we
383 demonstrate that the uncoupling between flow and metabolism suggested in previous
384 work [9, 14, 33] does occur in the same subjects and almost simultaneously.

385 **Origin of peripheral and cerebral hemodynamic effects**

386 We show that non-neuronal effects dominate hemodynamic changes induced by
387 MDMA. In particular, our data shed light on two separate phenomena. First, temporal
388 coherence between hemodynamic reductions in cerebral and extracerebral areas
389 suggests that vascular effects occur in the periphery. The 5-HT_{2A}, which is
390 postulated, along with the 5-HT_{1B} receptor, to mediate vasoconstrictive effects [38,
391 39], is one of the main targets of MDMA [5, 36]. However, because MDMA has a
392 much stronger affinity to the 5-HT_{2A} receptor than to the 5-HT_{1B} receptor [5], direct
393 agonist action of MDMA at the 5-HT_{2A} in peripheral blood vessels likely results in
394 vasoconstriction [38]. This is supported by work showing that the use of 5-HT_{2A}
395 antagonists following the elevation of serotonin levels reduces the serotonin-induced
396 vasoconstriction in the carotid artery, the main vessel that provides blood supply to
397 the brain [40]. Furthermore, compounds with high selectivity for 5-HT_{2A} have been
398 shown to increase blood pressure in carotid arteries, indicating vasoconstrictive
399 effects [41].

400 In addition to the peripheral effects of MDMA, the reductions observed in the brain
401 are likely also of direct serotonergic nature, consistent with the previously reported
402 effects of serotonin on brain microvasculature [15, 16]. Early work has shown that
403 manipulation of the raphé nuclei directly affects brain microcirculation by inducing
404 vasoconstriction [14]. Interestingly, although both MDMA and psilocybin act potently
405 on the serotonergic system, psilocybin has a very low affinity to the SERT, unlike
406 MDMA [42, 43]. Based on this fact, it is interesting that both drugs appear to induce
407 similar spatial patterns of hemodynamic decreases [4, 6]. Since of all serotonergic
408 receptors, psilocybin has the highest affinity to the 5-HT_{2A} receptor [43], which has
409 been shown to induce vasoconstriction peripherally, it is reasonable to assume that
410 this is similar in the brain. In contrast to the peripheral effects of MDMA, which can be
411 attributed solely to the direct effects of the drug, the observed decreases in the brain
412 may additionally be triggered by increased synaptic serotonin levels following SERT
413 blockage. This finding is supported by the very high correlation between SERT

414 blockage and hemodynamic decreases in BOLD-fMRI, suggesting that direct effect of
415 endogenous serotonin may additionally modulate hemodynamic decreases in the
416 brain. In the future, further insight may be gained by combining a psychedelic
417 challenge with antagonists to 5-HT_{2A} and other serotonin receptors to elucidate their
418 respective involvements in the observed hemodynamic decreases.

419 Our results warrant a re-evaluation of the hypothesis that the observed hemodynamic
420 reductions by psychedelic drugs are driven by neuronal activity, which is also
421 supported and discussed in later publications [44-47]. In general, additional caution is
422 necessary when interpreting findings relying on neurovascular coupling, such as
423 BOLD-fMRI functional connectivity studies, under pharmacological challenges [4, 5,
424 36].

425 **Spatial and temporal properties of increased metabolism**

426 We demonstrate that MDMA triggers increased glucose consumption, likely due to
427 neuronal activation, in different regions by [¹⁸F]FDG fPET measurements. Changes
428 in [¹⁸F]FDG fPET have been shown to reliably reflect changes in neuronal activity
429 while being independent of hemodynamic changes [22]. Our data revealed a
430 substantial increase in metabolic activity that started a few minutes after MDMA
431 injection and extended from the raphé nuclei to anterior subcortical and cortical
432 projection areas. Interestingly, although many increases in glucose consumption
433 overlapped with SERT blockage, the metabolic increases were more weighted
434 toward projection areas than the reductions seen in [¹¹C]DASB binding. First, this
435 finding is in line with the hypothesis that the majority of glucose is consumed
436 postsynaptically [48, 49]. Second, the areas showing increased metabolism are
437 consistent at a functional level with the majority of previously reported behavioral
438 effects of MDMA. The signals observed in the nucleus accumbens, amygdala, and
439 insula compare well with salience changes known from imaging and behavioral
440 studies [4, 50]. In particular, the nucleus accumbens, as the main reward processing
441 hub, is involved in responses to numerous drugs [51]. In addition, the amygdala,
442 insula, and orbitofrontal cortex are strongly involved in emotional processes [52], so
443 their increased activities could explain the enhanced emotionality and empathy
444 reported as effects of the drug [53]. Activity in the olfactory cortex and olfactory bulb
445 could indicate increased food-seeking or sexual arousal [53, 54]. Enhanced
446 metabolic activity in sensory cortices is in concordance with heightened sensations

447 elicited by MDMA [53]. At the molecular level, the aforementioned 5-HT_{2A} receptor
448 exhibits a strong anterior-posterior gradient in the cortex, with strong expression in
449 frontal areas and less expression in posterior areas of the cortex [55], consistent with
450 the activations indicated by our [¹⁸F]FDG PET data, predominantly in frontal cortical
451 areas. Moreover, the 5-HT_{2A} receptor has been shown to be responsible for
452 serotonergic activation in projection areas such as the prefrontal cortex [56, 57].
453 However, the exact receptors involved in neuronal activation indicated by fPET can
454 only be speculated because both MDMA and endogenous serotonin may play a role,
455 both of which can bind to a wide array of monoaminergic receptors.

456 Temporally, changes in [¹¹C]DASB and extracerebral BOLD predominated in the first
457 30 minutes after the challenge, both reaching over 90% of their respective maximal
458 changes at this time point. Therefore, the two readouts likely reflect the direct
459 molecular and vascular effects of MDMA discussed above. This finding is consistent
460 with previous work indicating peak serotonin release 20 minutes after intraperitoneal
461 MDMA injection [13]. In contrast, increases in [¹⁸F]FDG fPET, likely reflecting
462 increased neuronal activity, did not reach a plateau 60 minutes after the challenge at
463 the end of the experiment, suggesting prolonged activation after the peak of direct
464 MDMA action.

465 **Further considerations**

466 Other factors may play a role in the findings. First, MDMA and endogenous serotonin
467 bind to other receptors highly expressed in the brain, such as the 5-HT₁ receptor
468 family [5, 58], which could also be involved in the observed effects. Next, the
469 neuronal activations indicated by fPET could be caused by the effects of MDMA on
470 other neurotransmitters, primarily norepinephrine and dopamine [13, 59]. Dopamine,
471 similarly to serotonin, has been shown to cause vasoconstriction when released at
472 high concentrations [60]. However, the strong correlation between SERT occupancy
473 and hemodynamic changes implies that serotonin is more actively modulating brain
474 microcirculation after acute MDMA application than other monoamines, as previously
475 postulated [9, 14, 33]. To understand how exactly regional hemodynamic and
476 metabolic changes occur, distributions of all drug targets are generally required.
477 PET/MRI imaging offers the opportunity to elucidate the effects of psychedelic drugs
478 by combining data on transporters and receptors with hemodynamics measured by
479 BOLD-fMRI. Recent work has demonstrated how insight into different receptor

480 distributions can be used to understand changes in BOLD-fMRI data [5]. Such
481 analytical approaches are of interest to gain a deeper understanding of drug
482 mechanisms of action. A more thorough discussion on the advantages and limitations
483 of multimodal imaging and small-animal imaging can be found in *supplementary*
484 *information*.

485 **5. Conclusion**

486 The present study pioneers and demonstrates the tremendous potential of
487 multimodal imaging in psychedelic drug research. We demonstrate the neurovascular
488 uncoupling induced by an acute MDMA challenge, characterized by increased
489 neuronal activity in monoaminergic projection areas accompanied by vascular
490 depression caused, at least in part, by serotonin release. Our results provide
491 tremendous insight into the mechanism of action of MDMA and pave the way for the
492 application of hybrid PET/fMRI in psychedelic drug research.

493 **Funding**

494 The research was funded by the Eberhard Karls University Tübingen, Faculty of
495 Medicine (fortüne 2209-0-0 and 2409-0-0) to HFW, the Carl Zeiss Foundation to KH
496 and the Werner Siemens Foundation to BJP.

507 **CRediT authorship contribution statement**

508 **Tudor M. Ionescu:** Conceptualization, Methodology, Software, Validation, Formal
499 analysis, Data curation, Writing – original draft, Visualization. **Mario Amend:**
500 Conceptualization, Methodology, Investigation, Writing – review & editing,
501 Supervision. **Tadashi Watabe:** Methodology, Investigation, Writing – review &
502 editing. **Jun Hatazawa:** Writing – review & editing. **Andreas Maurer:** Writing –
503 review & editing. **Gerald Reischl:** Writing – review & editing. **Bernd J Pichler:**
504 Writing – review & editing, Funding acquisition. **Hans F. Wehrl:** Conceptualization,
505 Methodology, Writing – review & editing, Funding acquisition, Visualization. **Kristina**
506 **Herfert:** Methodology, Writing – review & editing, Funding acquisition, Visualization.

507 **Declaration of Competing Interests**

508 The authors declare no conflict of interest.

509 **Acknowledgements**

510 We acknowledge Dr. Julia Mannheim, Dr. Rebecca Rock, Dr. Neele Hübner, Dr.
511 Andreas Dieterich, Ines Herbon, Stacy Huang, Sandro Aidone, and Linda Schramm
512 for their administrative and technical support. We thank the Radiopharmacy
513 department for tracer production. This work is also part of the Ph.D. thesis of Tudor M
514 Ionescu.

515 **6. Bibliography**

- 516 1. Carhart-Harris RL, Goodwin GM. The Therapeutic Potential of Psychedelic
517 Drugs: Past, Present, and Future. *Neuropsychopharmacology*. 2017;42(11):2105-13.
518 doi: 10.1038/npp.2017.84.
- 519 2. Andersen KAA, Carhart-Harris R, Nutt DJ, Erritzoe D. Therapeutic effects of
520 classic serotonergic psychedelics: A systematic review of modern-era clinical studies.
521 *Acta psychiatrica Scandinavica*. 2021;143(2):101-18. Epub 2020/10/31. doi:
522 10.1111/acps.13249. PubMed PMID: 33125716.
- 523 3. Mitchell JM, Bogenschutz M, Lilienstein A, Harrison C, Kleiman S, Parker-
524 Guilbert K, et al. MDMA-assisted therapy for severe PTSD: a randomized, double-
525 blind, placebo-controlled phase 3 study. *Nature Medicine*. 2021;27(6):1025-33. doi:
526 10.1038/s41591-021-01336-3.
- 527 4. Carhart-Harris RL, Murphy K, Leech R, Erritzoe D, Wall MB, Ferguson B, et al.
528 The Effects of Acutely Administered 3,4-Methylenedioxymethamphetamine on
529 Spontaneous Brain Function in Healthy Volunteers Measured with Arterial Spin
530 Labeling and Blood Oxygen Level-Dependent Resting State Functional Connectivity.
531 *Biological Psychiatry*. 2015;78(8):554-62. doi:
532 <https://doi.org/10.1016/j.biopsych.2013.12.015>.
- 533 5. Dipasquale O, Selvaggi P, Veronese M, Gabay AS, Turkheimer F, Mehta MA.
534 Receptor-Enriched Analysis of functional connectivity by targets (REACT): A novel,
535 multimodal analytical approach informed by PET to study the pharmacodynamic
536 response of the brain under MDMA. *NeuroImage*. 2019;195:252-60. Epub 04/04. doi:
537 10.1016/j.neuroimage.2019.04.007. PubMed PMID: 30953835.
- 538 6. Carhart-Harris RL, Erritzoe D, Williams T, Stone JM, Reed LJ, Colasanti A, et
539 al. Neural correlates of the psychedelic state as determined by fMRI studies with
540 psilocybin. *Proceedings of the National Academy of Sciences*. 2012;109(6):2138-43.
541 doi: 10.1073/pnas.1119598109.
- 542 7. Barrett FS, Krimmel SR, Griffiths RR, Seminowicz DA, Mathur BN. Psilocybin
543 acutely alters the functional connectivity of the claustrum with brain networks that
544 support perception, memory, and attention. *NeuroImage*. 2020;218:116980. doi:
545 <https://doi.org/10.1016/j.neuroimage.2020.116980>.
- 546 8. Gabay AS, Kempton MJ, Gilleen J, Mehta MA. MDMA Increases Cooperation
547 and Recruitment of Social Brain Areas When Playing Trustworthy Players in an
548 Iterated Prisoner's Dilemma. *The Journal of Neuroscience*. 2019;39(2):307-20. doi:
549 10.1523/jneurosci.1276-18.2018.
- 550 9. Quate L, McBean DE, Ritchie IM, Olverman HJ, Kelly PAT. Acute
551 methylenedioxymethamphetamine administration: effects on local cerebral blood flow
552 and glucose utilisation in the dark agouti rat. *Psychopharmacology*. 2004;173(3):287-
553 95. doi: 10.1007/s00213-004-1784-z.

554 10. Soto-Montenegro ML, Vaquero JJ, Arango C, Ricaurte G, García-Barreno P,
555 Desco M. Effects of MDMA on blood glucose levels and brain glucose metabolism.
556 European Journal of Nuclear Medicine and Molecular Imaging. 2007;34(6):916-25.
557 doi: 10.1007/s00259-006-0262-8.

558 11. Wilkerson G, London ED. Effects of methylenedioxymethamphetamine on
559 local cerebral glucose utilization in the rat. Neuropharmacology. 1989;28(10):1129-
560 38. doi: [https://doi.org/10.1016/0028-3908\(89\)90128-7](https://doi.org/10.1016/0028-3908(89)90128-7).

561 12. Vollenweider FX, Leenders KL, Scharfetter C, Maguire P, Stadelmann O,
562 Angst J. Positron emission tomography and fluorodeoxyglucose studies of metabolic
563 hyperfrontality and psychopathology in the psilocybin model of psychosis.
564 Neuropsychopharmacology. 1997;16(5):357-72. Epub 1997/05/01. doi:
565 10.1016/s0893-133x(96)00246-1. PubMed PMID: 9109107.

566 13. Gough B, Ali SF, Slikker W, Holson RR. Acute effects of 3,4-
567 methylenedioxymethamphetamine (MDMA) on monoamines in rat caudate.
568 Pharmacology Biochemistry and Behavior. 1991;39(3):619-23. doi:
569 [https://doi.org/10.1016/0091-3057\(91\)90137-Q](https://doi.org/10.1016/0091-3057(91)90137-Q).

570 14. Cohen ZVI, Bonvento G, Lacombe P, Hamel E. SEROTONIN IN THE
571 REGULATION OF BRAIN MICROCIRCULATION. Progress in Neurobiology.
572 1996;50(4):335-62. doi: [https://doi.org/10.1016/S0301-0082\(96\)00033-0](https://doi.org/10.1016/S0301-0082(96)00033-0).

573 15. Kim JG, Leem Y-E, Kwon I, Kang J-S, Bae YM, Cho H. Estrogen modulates
574 serotonin effects on vasoconstriction through Src inhibition. Experimental & Molecular
575 Medicine. 2018;50(12):1-9. doi: 10.1038/s12276-018-0193-z.

576 16. Van Nueten JM, Janssens WJ, Vanhoutte PM. Serotonin and vascular
577 reactivity. Pharmacological research communications. 1985;17(7):585-608. Epub
578 1985/07/01. doi: 10.1016/0031-6989(85)90067-0. PubMed PMID: 2931729.

579 17. Wehrl HF, Hossain M, Lankes K, Liu CC, Bezrukov I, Martirosian P, et al.
580 Simultaneous PET-MRI reveals brain function in activated and resting state on
581 metabolic, hemodynamic and multiple temporal scales. Nat Med. 2013;19(9):1184-9.
582 doi: 10.1038/nm.3290. PubMed PMID: 23975025.

583 18. Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al.
584 Simultaneous PET-MRI: a new approach for functional and morphological imaging.
585 Nat Med. 2008;14(4):459-65. doi: 10.1038/nm1700. PubMed PMID: 18376410.

586 19. Jonckers E, Shah D, Hamaide J, Verhoye M, Van der Linden A. The power of
587 using functional fMRI on small rodents to study brain pharmacology and disease.
588 Frontiers in Pharmacology. 2015;6(231). doi: 10.3389/fphar.2015.00231.

589 20. Sander CY, Hooker JM, Catana C, Normandin MD, Alpert NM, Knudsen GM,
590 et al. Neurovascular coupling to D2/D3 dopamine receptor occupancy using
591 simultaneous PET/functional MRI. Proceedings of the National Academy of Sciences
592 of the United States of America. 2013;110(27):11169-74. Epub 05/30. doi:
593 10.1073/pnas.1220512110. PubMed PMID: 23723346.

594 21. Hansen HD, Mandeville JB, Sander CY, Hooker JM, Catana C, Rosen BR, et
595 al. Functional Characterization of 5-HT(1B) Receptor Drugs in Nonhuman Primates
596 Using Simultaneous PET-MRI. J Neurosci. 2017;37(44):10671-8. Epub 2017/10/04.
597 doi: 10.1523/jneurosci.1971-17.2017. PubMed PMID: 28972127; PubMed Central
598 PMCID: PMCPMC5666586.

599 22. Villien M, Wey H-Y, Mandeville JB, Catana C, Polimeni JR, Sander CY, et al.
600 Dynamic functional imaging of brain glucose utilization using fPET-FDG.
601 NeuroImage. 2014;100:192-9. doi: <https://doi.org/10.1016/j.neuroimage.2014.06.025>.

602 23. Rischka L, Gryglewski G, Pfaff S, Vanicek T, Hienert M, Klobl M, et al.
603 Reduced task durations in functional PET imaging with [(18)F]FDG approaching that

604 of functional MRI. *Neuroimage*. 2018;181:323-30. Epub 2018/07/04. doi:
605 10.1016/j.neuroimage.2018.06.079. PubMed PMID: 29966719.

606 24. Morefield KM, Keane M, Felgate P, White JM, Irvine RJ. Pill content, dose and
607 resulting plasma concentrations of 3,4-methylendioxymethamphetamine (MDMA) in
608 recreational 'ecstasy' users. *Addiction*. 2011;106(7):1293-300. doi:
609 <https://doi.org/10.1111/j.1360-0443.2011.03399.x>.

610 25. Reimold M, Smolka MN, Schumann G, Zimmer A, Wräse J, Mann K, et al.
611 Midbrain serotonin transporter binding potential measured with [11C]DASB is
612 affected by serotonin transporter genotype. *Journal of neural transmission (Vienna, Austria* : 1996). 2007;114(5):635-9. Epub 2007/01/18. doi: 10.1007/s00702-006-0609-0. PubMed PMID: 17225932.

613 26. Amend M, Ionescu TM, Di X, Pichler BJ, Biswal BB, Wehrl HF. Functional
614 resting-state brain connectivity is accompanied by dynamic correlations of
615 application-dependent [(18)F]FDG PET-tracer fluctuations. *Neuroimage*.
616 2019;196:161-72. Epub 2019/04/15. doi: 10.1016/j.neuroimage.2019.04.034.
617 PubMed PMID: 30981858.

618 27. Matthew Brett J-LA, Romain Valabregue, Jean-Baptiste Poline. Region of
619 interest analysis using an SPM toolbox. 8th Internation Conference on Functional
620 Mapping of the Human Brain. Sendai, JapanJune 2-6, 2002.

621 28. Schiffer WK, Mirrione MM, Biegon A, Alexoff DL, Patel V, Dewey SL. Serial
622 microPET measures of the metabolic reaction to a microdialysis probe implant. *J
623 Neurosci Methods*. 2006;155(2):272-84. Epub 2006/03/08. doi:
624 10.1016/j.jneumeth.2006.01.027. PubMed PMID: 16519945.

625 29. López-González FJ, Silva-Rodríguez J, Paredes-Pacheco J, Niñerola-Baizán
626 A, Efthimiou N, Martín-Martín C, et al. Intensity normalization methods in brain FDG-
627 PET quantification. *NeuroImage*. 2020;222:117229. doi:
628 <https://doi.org/10.1016/j.neuroimage.2020.117229>.

629 30. Walker M, Ehrlichmann W, Stahlschmidt A, Pichler BJ, Fischer K. In Vivo
630 Evaluation of 11C-DASB for Quantitative SERT Imaging in Rats and Mice. *J Nucl
631 Med*. 2016;57(1):115-21. Epub 2015/10/31. doi: 10.2967/jnumed.115.163683.
632 PubMed PMID: 26514178.

633 31. Hodkinson DJ, de Groot C, McKie S, Deakin JFW, Williams SR. Differential
634 Effects of Anaesthesia on the phMRI Response to Acute Ketamine Challenge. *Br J
635 Med Med Res*. 2012;2(3):373-85. doi: 10.9734/bjmmr/2012/1412. PubMed PMID:
636 22737655.

637 32. McKie S, Del-Ben C, Elliott R, Williams S, del Vai N, Anderson I, et al.
638 Neuronal effects of acute citalopram detected by pharmacoMRI. *Psychopharmacology (Berl)*.
639 2005;180(4):680-6. Epub 2005/05/13. doi: 10.1007/s00213-005-2270-y. PubMed PMID: 15889241.

640 33. Ferrington L, Kirilly E, McBean DE, Olverman HJ, Bagdy G, Kelly PAT.
641 Persistent cerebrovascular effects of MDMA and acute responses to the drug.
642 *European Journal of Neuroscience*. 2006;24(2):509-19. doi:
643 <https://doi.org/10.1111/j.1460-9568.2006.04923.x>.

644 34. Andrade R. Serotonergic regulation of neuronal excitability in the prefrontal
645 cortex. *Neuropharmacology*. 2011;61(3):382-6. doi:
646 <https://doi.org/10.1016/j.neuropharm.2011.01.015>.

647 35. Shen R-Y, Andrade R. 5-Hydroxytryptamine₂ Receptor Facilitates GABAergic
648 Neurotransmission in Rat Hippocampus. *Journal of Pharmacology and Experimental
649 Therapeutics*. 1998;285(2):805-12.

650 36. Roseman L, Leech R, Feilding A, Nutt DJ, Carhart-Harris RL. The effects of
651 psilocybin and MDMA on between-network resting state functional connectivity in
652

655 healthy volunteers. *Frontiers in human neuroscience*. 2014;8:204-. doi:
656 10.3389/fnhum.2014.00204. PubMed PMID: 24904346.

657 37. Gouzoulis-Mayfrank E, Schreckenberger M, Sabri O, Arning C, Thelen B,
658 Spitzer M, et al. Neurometabolic Effects of Psilocybin, 3,4-
659 Methylenedioxymethamphetamine (MDMA) and d-Methamphetamine in Healthy
660 Volunteers A Double-Blind, Placebo-Controlled PET Study with [18F]FDG.
661 *Neuropsychopharmacology*. 1999;20(6):565-81. doi: 10.1016/S0893-133X(98)00089-
662 X.

663 38. Ullmer C, Schmuck K, Kalkman HO, Lübbert H. Expression of serotonin
664 receptor mRNAs in blood vessels. *FEBS Letters*. 1995;370(3):215-21. doi:
665 [https://doi.org/10.1016/0014-5793\(95\)00828-W](https://doi.org/10.1016/0014-5793(95)00828-W).

666 39. Gamoh S, Hisa H, Yamamoto R. 5-Hydroxytryptamine Receptors as Targets
667 for Drug Therapies of Vascular-Related Diseases. *Biological and Pharmaceutical
668 Bulletin*. 2013;36(9):1410-5. doi: 10.1248/bpb.b13-00317.

669 40. Yakovlev DS, Spasov AA, Mal'tsev DV, Anisimova VA. Effect of 5-HT(2A)
670 receptor antagonists on blood flow in the carotid vessels upon elevation of serotonin
671 level. *Bulletin of experimental biology and medicine*. 2014;157(3):350-2. Epub
672 2014/07/30. doi: 10.1007/s10517-014-2563-4. PubMed PMID: 25070162.

673 41. !!! INVALID CITATION !!! {}.

674 42. Madsen MK, Fisher PM, Burmester D, Dyssegård A, Stenbæk DS,
675 Kristiansen S, et al. Psychedelic effects of psilocybin correlate with serotonin 2A
676 receptor occupancy and plasma psilocin levels. *Neuropsychopharmacology*.
677 2019;44(7):1328-34. Epub 01/26. doi: 10.1038/s41386-019-0324-9. PubMed PMID:
678 30685771.

679 43. Passie T, Seifert J, Schneider U, Emrich HM. The pharmacology of psilocybin.
680 *Addiction Biology*. 2002;7(4):357-64. doi:
681 <https://doi.org/10.1080/1355621021000005937>.

682 44. Nutt DJ, de Wit H. Putting the MD back into MDMA. *Nature Medicine*.
683 2021;27(6):950-1. doi: 10.1038/s41591-021-01385-8.

684 45. Sarris J, Pinzon Rubiano D, Day K, Galvão-Coelho NL, Perkins D.
685 Psychedelic medicines for mood disorders: current evidence and clinical
686 considerations. *Current Opinion in Psychiatry*. 2022;35(1):22-9. doi:
687 10.1097/yco.0000000000000759. PubMed PMID: 00001504-202201000-00005.

688 46. Carhart-Harris RL, Nutt DJ. Serotonin and brain function: a tale of two
689 receptors. *Journal of Psychopharmacology*. 2017;31(9):1091-120. doi:
690 10.1177/0269881117725915.

691 47. Nutt D, Carhart-Harris R. The Current Status of Psychedelics in Psychiatry.
692 *JAMA psychiatry*. 2021;78(2):121-2. Epub 2020/07/30. doi:
693 10.1001/jamapsychiatry.2020.2171. PubMed PMID: 32725172.

694 48. Riedl V, Utz L, Castrillón G, Grimmer T, Rauschecker JP, Ploner M, et al.
695 Metabolic connectivity mapping reveals effective connectivity in the resting human
696 brain. *Proceedings of the National Academy of Sciences of the United States of
697 America*. 2016;113(2):428-33. Epub 12/28. doi: 10.1073/pnas.1513752113. PubMed
698 PMID: 26712010.

699 49. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of
700 the brain. *Journal of cerebral blood flow and metabolism : official journal of the
701 International Society of Cerebral Blood Flow and Metabolism*. 2001;21(10):1133-45.
702 Epub 2001/10/13. doi: 10.1097/00004647-200110000-00001. PubMed PMID:
703 11598490.

704 50. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al.
705 Dissociable intrinsic connectivity networks for salience processing and executive

706 control. *J Neurosci.* 2007;27(9):2349-56. Epub 2007/03/03. doi:
707 10.1523/jneurosci.5587-06.2007. PubMed PMID: 17329432; PubMed Central
708 PMCID: PMCPMC2680293.

709 51. Olsen CM. Natural rewards, neuroplasticity, and non-drug addictions.
710 *Neuropharmacology.* 2011;61(7):1109-22. Epub 04/01. doi:
711 10.1016/j.neuropharm.2011.03.010. PubMed PMID: 21459101.

712 52. Phan KL, Wager T, Taylor SF, Liberzon I. Functional Neuroanatomy of
713 Emotion: A Meta-Analysis of Emotion Activation Studies in PET and fMRI.
714 *NeuroImage.* 2002;16(2):331-48. doi: <https://doi.org/10.1006/nimg.2002.1087>.

715 53. Sumnall HR, Cole JC, Jerome L. The varieties of ecstatic experience: an
716 exploration of the subjective experiences of ecstasy. *Journal of psychopharmacology*
717 (Oxford, England). 2006;20(5):670-82. Epub 2006/01/13. doi:
718 10.1177/0269881106060764. PubMed PMID: 16401654.

719 54. Pfaus JG, Tse TL, Werk CM, Chanda ML, Leblonde A, Harbour VL, et al.
720 Enhanced synaptic responses in the piriform cortex associated with sexual
721 stimulation in the male rat. *Neuroscience.* 2009;164(4):1422-30. Epub 2009/09/30.
722 doi: 10.1016/j.neuroscience.2009.09.060. PubMed PMID: 19786078.

723 55. Andrade R, Weber E. Htr2a Gene and 5-HT2A Receptor Expression in the
724 Cerebral Cortex Studied Using Genetically Modified Mice. *Front Neurosci.*
725 2010;4(36). doi: 10.3389/fnins.2010.00036.

726 56. Amargós-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, Celada P, et al.
727 Co-expression and In Vivo Interaction of Serotonin1A and Serotonin2A Receptors in
728 Pyramidal Neurons of Prefrontal Cortex. *Cerebral Cortex.* 2004;14(3):281-99. doi:
729 10.1093/cercor/bhg128.

730 57. Puig MV, Gulledge AT. Serotonin and prefrontal cortex function: neurons,
731 networks, and circuits. *Mol Neurobiol.* 2011;44(3):449-64. Epub 11/11. doi:
732 10.1007/s12035-011-8214-0. PubMed PMID: 22076606.

733 58. Paterson LM, Kornum BR, Nutt DJ, Pike VW, Knudsen GM. 5-HT radioligands
734 for human brain imaging with PET and SPECT. *Medicinal Research Reviews.*
735 2013;33(1):54-111. doi: <https://doi.org/10.1002/med.20245>.

736 59. Lettfuss NY, Fischer K, Sossi V, Pichler BJ, von Ameln-Mayerhofer A. Imaging
737 DA release in a rat model of L-DOPA-induced dyskinesias: a longitudinal in vivo PET
738 investigation of the antidyskinetic effect of MDMA. *NeuroImage.* 2012;63(1):423-33.
739 Epub 2012/07/07. doi: 10.1016/j.neuroimage.2012.06.051. PubMed PMID:
740 22766162.

741 60. Brodde OE. Vascular dopamine receptors: Demonstration and
742 characterization by in vitro studies. *Life Sci.* 1982;31(4):289-306. Epub 1982/07/26.
743 doi: 10.1016/0024-3205(82)90406-4. PubMed PMID: 6292644.

744

745