

The Transcription Factor Bach2 Negatively Regulates Natural Killer Cell Maturation and Function

Shasha Li¹, Michael D. Bern¹, Benpeng Miao², Takeshi Inoue⁴, Sytse J. Piersma¹, Marco Colonna³, Tomohiro Kurosaki⁴, and Wayne M. Yokoyama¹

¹ Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110

² Department of Genetics, Center for Genomic Science and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110

³ Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110

⁴ Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka

Corresponding Author:

Wayne M. Yokoyama

18 Division of Rheumatology, Department of Medicine, Washington University School of Medicine,
19 St. Louis, MO 63110

20 Phone number: 314-362-9075

21 Fax number: 314-362-9257

22 E-mail address: yokovama@wustl.edu

24 **Abstract**

25 BTB domain And CNC Homolog 2 (Bach2) is a transcription repressor that actively participates
26 in T and B lymphocyte development, but it is unknown if Bach2 is also involved in the
27 development of innate immune cells, such as natural killer (NK) cells. Here, we followed the
28 expression of Bach2 during NK cell development, finding that it peaked in CD27⁺CD11b⁺ cells
29 and decreased upon further maturation. Bach2 expression positively correlated with that of the
30 transcription factor TCF1 and negatively correlated with genes encoding NK effector molecules
31 as well as genes involved in the cell cycle. Bach2-deficient mice showed increased numbers of
32 terminally differentiated NK cells with increased production of granzymes and cytokines. NK
33 cell-mediated control of tumor metastasis was also augmented in the absence of Bach2.
34 Therefore, Bach2 is a key checkpoint protein regulating NK terminal maturation.

35

36

37

38

39

40

41

42

43

44

45

46

47 **Introduction**

48 Natural killer (NK) cells are innate lymphoid cells that have spontaneous cytolytic activity
49 against tumor cells and virus-infected cells. The development of NK cells occurs in bone marrow
50 (BM) as well as in secondary lymphoid tissues in both humans and mice. Multipotent
51 hematopoietic stem cells (HSC) give rise to common lymphoid progenitors (CLPs) that can
52 differentiate into all types of lymphocytes. NK cell precursors (NKP) are then derived and later
53 express IL-2R/IL-15R β chain (CD122), defining refined NK precursors (rNKP) (Carotta et al.,
54 2011; Fathman et al., 2011). At this stage in the mouse, commitment to NK cell development
55 occurs, followed by the acquisition of the germline-encoded NK receptors NK1.1, and the cells
56 become immature NK cells. Mature NK cells develop when they gain the expression of DX5
57 (CD49b), cytotoxic activity, and capacity to produce interferon γ (IFN γ) (Kim et al., 2002).
58 Mature NK cells can be further defined based upon the differential expression of CD27 and
59 CD11b. Starting from double-negative cells being the most immature cells regarding their
60 functionality, the cells upregulate the expression of CD27 then CD11b to become CD27 $^+$ CD11b $^-$
61 (CD27 $^+$ cells) NK cells then CD27 $^+$ CD11b $^+$ (double-positive) NK cells respectively, which
62 undergo homeostatic expansion. Finally, the double-positive cells lose the expression of CD27
63 and retain expression of CD11b to become terminally differentiated NK cells (CD11b $^+$ cells)
64 with increased cytotoxic activity (Chiassone et al., 2009).

65

66 The commitment, development, and function of the NK cells are distinctly regulated by multiple
67 transcription factors, which are reflected by the expression of many unique surface markers at
68 different stages of NK cell development. Eomesodermin (Eomes) has been identified as a unique
69 factor required for NK development, distinct from ILC1s which share many similarities in

70 surface makers with NK cells (Gordon et al., 2012; Intlekofer et al., 2005). Kruppel-like factor 2
71 (KLF2) intrinsically regulates NK cell homeostasis by limiting early-stage NK cell proliferation
72 and guiding them towards trans-presented IL-15 (Rabacal et al., 2016). IRF8 is required for the
73 effector functions of NK cells against viral infection (Adams et al., 2018). T-bet has a broader
74 function in various cells including T cells, ILC1s, and NK cells, and positively regulates the
75 terminal maturation of NK cells (Townsend et al., 2004). Similarly, Zeb2 promotes NK terminal
76 differentiation and may function downstream of T-bet (van Helden et al., 2015). Blimp1 is
77 expressed throughout NK cell maturation and is required for NK homeostasis (Kallies et al.,
78 2011). TCF1 (encoded by *Tcf7* gene) participates in the development of NK cells and its
79 downregulation is required for NK terminal maturation (Jeevan-Raj et al., 2017). A multi-tissue
80 single cell analysis divided NK cells into two major groups based on TCF1 level: high
81 expression of TCF1 correlated with genes expressed in immature NK cells including *Cd27*, *Xcl1*,
82 and *Kit* while it was inversely correlated with the expression of genes involved in effector
83 function such as *Gzmb*, *Gzma*, *Ccl5*, and *Klrg1* (McFarland et al., 2021). Thus, the expression of
84 unique transcription factors at specific developmental stages of the cells appears to generate
85 distinct gene regulatory circuitries. These gene regulatory circuits provide “fingerprints” that
86 may be more reliable to reveal the developmental and functional disparities among
87 phenotypically similar cell populations (Koues et al., 2016). Furthermore, they provide insight
88 into how the development of immune cells, including NK cells, occurs, indicating it is important
89 to clarify the expression pattern and function of unique transcription factors for NK cells during
90 their development.

91 Identified as a transcriptional repressor, Bach2 forms a heterodimer with Maf family proteins and
92 bind to a DNA motif called T-MARE (TGCTGA G/C TCAGCA), a Maf recognition element to

93 regulate gene expression (Muto et al., 1998). The regulatory function of Bach2 is mediated
94 through its interaction with the super-enhancers (SEs), and its aberrant expression is associated
95 with a variety of autoimmune diseases as well as cancers (Afzali et al., 2017; Marroquí et al.,
96 2014; Roychoudhuri, Eil, et al., 2016). In physiological conditions, Bach2 has been shown to
97 participate in cell development, as previously examined in the adaptive immune system. Bach2 is
98 expressed in CLP and represses genes of myeloid lineage to promote the development of cells in
99 the lymphoid lineage (Itoh-Nakadai et al., 2014). Bach2 was first shown to be a B cell-intrinsic
100 transcription factor that regulates B cell development through inhibiting the expression of Blimp-
101 1 (encoded by *Prdm1* gene) (Muto et al., 1998; Ochiai et al., 2006). The rapid upregulation of
102 Blimp-1 mediated by Bach2-deficiency promotes the terminal differentiation of B cells towards
103 plasma cells even prior to class-switch recombination (CSR) (Muto et al., 2004). Bach2 is also
104 critical in regulating the plasticity of T cells. Under homeostatic conditions, Bach2 maintains T
105 cells in a naïve state, preventing the generation of effector T cells through inhibiting the
106 expression of effector molecules downstream of the TCR signaling (Roychoudhuri, Clever, et al.,
107 2016; Tsukumo et al., 2013). Bach2 expression is reduced during T cell polarization while higher
108 expression of Bach2 in CD4 T cell differentiation promotes the formation of regulatory T cells
109 by repressing genes related to the effector differentiation within helper T cell lineages (Lahmann
110 et al., 2019; Roychoudhuri, Clever, et al., 2016; Roychoudhuri et al., 2013). Regaining the
111 expression of Bach2 after differentiation renders downregulation of pro-inflammatory signals
112 and differentiation into T cell memory cell lineages (Herndler-Brandstetter et al., 2018). Thus,
113 the development and function of the adaptive immune cells are critically controlled by the
114 expression of Bach2 and associated regulatory circuits.

115

116 The role of Bach2 in NK cells has not been characterized. Here we found that, at steady state,
117 Bach2 was differentially expressed during NK cell development and terminal maturation. Its
118 deficiency in NK cells resulted in a significantly increased expression of genes involved in NK
119 cytotoxicity. Along with this, NK cells lacking Bach2 expression were more terminally
120 differentiated and demonstrated better control of tumor metastasis. Thus, Bach2 serves as a
121 checkpoint in the terminal maturation of NK cells.

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139 **Results**

140 **Bach2 is expressed at different levels in NK cells at different developmental stages**

141 To characterize the role of Bach2 in NK cell function, we first examined Bach2 expression
142 during different stages of NK development. We used a Bach2^{Flag} reporter mouse in which a
143 3xFlag tag was fused at the N-terminus of Bach2 protein as described previously (Herndler-
144 Brandstetter et al., 2018). Bach2 expression was detected in common lymphoid progenitors
145 (CLPs). Expression was relatively reduced in pre-NK progenitor cells and refined NK
146 progenitors (rNKp) (Fig. 1A, Supplemental Fig. S1A), reflecting the critical role of Bach2 in the
147 development of lymphoid cells from CLPs (Itoh-Nakadai et al., 2014). During NK specification
148 downstream of CLP, pre-NK cells displayed low levels of Bach2 but regained its expression in
149 refined NK progenitors (Fig. 1A), suggesting Bach2 may play an important role during NK
150 development.

151

152 At the CD122⁺CD127⁺ rNKp stage, developing NK cells begin to acquire expression of the NK
153 cell markers, NK1.1 and NKp46 (Fathman et al., 2011). Bach2 was homogenously expressed at
154 higher levels by these NK cells in both the BM and spleen (Fig. 1B and C). At this stage, NK
155 cells further undergo maturation by acquiring the expression of CD49b (DX5). In both the BM
156 and spleen, Bach2 expression can be detected in both immature DX5⁻ and mature DX5⁺ NK cells
157 while mature NK cells have higher Bach2 expression than immature NK cells (Fig. 1B and C,
158 Supplemental Fig. S1B). We further subdivided NK cells by surface expression of CD27 and
159 CD11b. CD27⁻CD11b⁻ and CD27⁺CD11b⁻ subsets (CD27⁺ cells) are regarded as the immature
160 stage. The double-positive CD27⁺CD11b⁺ subset is the intermediate stage, and CD27⁻CD11b⁺
161 subset (CD11b⁺ cells) represents the most mature stage (Fig. 1D, Supplemental Fig. S1C). The

162 expression of Bach2 was lower in CD27⁻CD11b⁺ cells compared with the other two stages (Fig.
163 1D). This observation was further confirmed by western blot (Fig. 1E, Supplemental Fig. S1D).
164 Thus, during NK cell terminal differentiation, Bach2 may function mainly in the relatively
165 immature stages.

166

167 At the bulk splenic NK cell population level, the expression of Bach2 inversely correlated with
168 the age of the mice: 2-week-old mice had the highest expression, and 15-week-old mice had the
169 lowest expression of Bach2 (Fig. 1F and G). The overall downregulation of Bach2 with age
170 correlated with changes in the maturation profile of NK cells. More than 60 percent of NK cells
171 were immature CD27⁺CD11b⁻ cells in 2-week-old mice while around 40 percent of NK cells in
172 15-week-old mice were in the most mature stage (CD27⁻CD11b⁺) (Supplemental Fig. S1E).
173 These findings suggest that older mice, having a biased distribution towards mature NK cells,
174 resulted in a reduction of Bach2 levels at the whole population level whereas younger mice
175 displayed the opposite effect.

176

177 **Bach2-deficiency drives a transition from immature stem-like phenotype towards mature**
178 **effector phenotype of NK cells**

179 To further understand the role of Bach2 in NK cell development and function, we generated NK
180 cell-specific Bach2 conditional knockout mice (Bach2^{cKO}) by crossing *Bach2*^{fl/fl} mice with
181 *Ncr1*^{iCre} mice in which *Bach2* was specifically deleted in NKp46-expressing cells which mainly
182 include NK cells among splenocytes. As a control, *Bach2*^{fl/fl} mice (referred to as control mice)
183 were used. NK cell number in Bach2 knockout mice is unchanged compared to control mice
184 (Supplemental Fig. S2A). We assessed the expression of the Ly49 and NKG2A/CD94 receptors,

185 important for missing-self mediated cytotoxicity, in splenic NK cells from Bach2^{cKO} and control
186 mice. We detected only slight changes in the expression profile of the repertoire of these
187 receptors with Bach2-deficiency while CD94 is significantly downregulated (Supplemental Fig.
188 S2B).

189
190 We performed RNA-seq analysis compared between Bach2-deficient NK cells and Bach2-
191 sufficient NK cells. We sorted the splenic NK cells from Bach2^{cKO} and control mice to perform
192 the RNA-seq analysis (Supplemental Fig. S2C). Principal component analysis (PCA) revealed
193 significant changes transcriptionally in NK cells at the quiescent condition with Bach2-
194 deficiency (Fig. S2D). We found 133 genes downregulated and 210 genes upregulated in
195 Bach2^{cKO} NK cells as compared to control NK cells (Bach2^{cKO} versus control) (Fig. 2A and
196 Supplemental Table S1). The transcripts with decreased expression corresponded to genes
197 involved in T cell differentiation, cell development, and cell homeostasis pathways (Fig. 2A).
198 These gene signatures suggested Bach2 controlled NK cell differentiation. Specifically, the top 2
199 downregulated genes included *Kit* and *Tcf7*, which were previously shown to be responsible to
200 maintain the stemness of the T cells (Siddiqui et al., 2019). Regarding to NK cells, the loss of
201 *Tcf7* expression led to enhanced NK cell terminal maturation (Jeevan-Raj et al., 2017). We also
202 detected the downregulation of *Cd27*, *Ccr7*, and *Cd69*. (Fig. 2B). The downregulation of *Ccr7*
203 was also previously shown to be correlated with human NK cell differentiation towards effector
204 phenotype (Hong et al., 2012). On the other hand, the transcripts with an elevated expression
205 included the genes involved in the cell cycle, cell proliferation, and inflammatory response
206 pathways (Fig. 2A), suggesting a skewing towards an effector phenotype as a result of Bach2-
207 deficiency. Indeed, among the upregulated genes were those involved in NK cell effector

208 functions such as *Klrg1*, *Gzmb*, *Gzmk*, and *Ccl5* (Fig. 2B) (Bezman et al., 2012), indicating that
209 lack of Bach2 expression facilitated the differentiation of NK cells towards terminal maturation.

210

211 We confirmed the transcriptomics data by quantitative PCR (qPCR) analysis performed on
212 sorted splenic NK cells from the Bach2^{cKO} and control mice respectively (Fig. 2C). We detected
213 a significantly lower expression of genes for example *Tcf7*, *Kit*, and *Sox6* in Bach2 deficient NK
214 cells. For other genes such as *Cd69*, *Cd62l* (*Sell*), and *Ccr7*, we did not observe significant
215 differences but they all had a trend of downregulation in NK cells lacking Bach2 expression. The
216 genes we picked with upregulation in RNA-seq data were confirmed to be increased by qPCR
217 analysis. These genes included *Gzmb*, *Klrg1*, *Ccl5*, *Klrb1b*, *Cd39*, etc. except for *Cx3cr1* which
218 did not reach significance even though displaying a trend of upregulation. Consistent with their
219 transcription level, the protein encoded by the genes was also revealed to be changed caused by
220 Bach2-deficiency (Fig. 2D). TCF1, Kit, CD69, and CD62L were all shown to be decreased at the
221 protein level. Although *Tcf7* had a dramatic decrease transcriptionally, its protein was only
222 slightly downregulated. On the other hand, CD39, KLRG1, CX3CR1, and Granzyme B were
223 elevated followed by their changes at the RNA level. Thus, we confirmed that our RNA-seq data
224 were reliable to reflect the impact of Bach2 in regulating the expression of various genes in NK
225 cells.

226

227 Next, we asked how Bach2 participated in NK cell biology. It was reported that the enforced
228 Bach2 expression in exhausted CD8⁺ T cells resulted in the cells becoming exclusively stem-like
229 precursor exhausted CD8⁺ T cells, preventing their further differentiation into terminal exhausted
230 CD8⁺ T cells (Yao et al., 2021). We used gene-set enrichment analysis (GSEA) to determine the

231 effect of Bach2-deficiency by comparing against the gene signatures of stem-like CD8⁺ T cells
232 and terminally differentiated effector-like CD8⁺ T cells. We found genes upregulated in NK cells
233 induced by Bach2-deficiency positively correlated with terminal differentiated effector-like gene
234 signatures (Fig. 2E) whereas the genes downregulated showed a stem-like signature (Fig. 2F).
235 Another comparison was performed using GSEA analysis and we found Bach2-sufficient NK
236 cells displayed a naïve CD8⁺ T cell signature (Fig. S2E) while Bach2-deficient NK cells
237 resembled activated effector CD8⁺ T cells (Fig. S2F). These data suggested that Bach2
238 expression suppressed terminal differentiation of NK cells by repressing many effector genes.

239

240 **Bach2 restrained terminal maturation of NK cells**

241 Based on the expression pattern of Bach2 in NK cells as well as RNA-seq and confirmatory
242 qPCR data in Bach2-deficient cells, we tested whether Bach2 indeed restricted the terminal
243 maturation of the immature NK cells. To address this, we analyzed the maturation profile of the
244 NK cells compared between Bach2^{cKO} and control mice. In the bone marrow, we did not observe
245 a significant difference between control and Bach2^{cKO} mice regarding the frequency of the
246 CD27⁺ cells or CD11b⁺ cells (Fig. 3A). However, an altered maturation profile of NK cells was
247 detected in the spleens of Bach2^{cKO} mice, i.e., there were more cells with mature NK cell
248 phenotype (CD11b⁺) and fewer NK cells at the immature DP stage as compared to control mice
249 (Fig. 3B). Consistent with this pattern, expression of KLRG1, a marker of terminally mature
250 splenic NK cells was also increased at the population level, and we detected the percentage of
251 KLRG1⁺ NK cells dramatically increased in Bach2^{cKO} mice (Fig. 3C). To confirm the lack of
252 influence of T cells and B cells on NK cell development and maturation, we evaluated NK cells
253 in germline Bach2-deficient mice on the *Rag1*^{-/-} background. The maturation of NK cells was

254 analyzed in both *Bach2*^{-/-} *Rag1*^{-/-} mice and *Rag1*^{-/-} mice. Similar to the results presented in
255 *Bach2*^{cKO} mice, we found the frequency of CD27⁺ NK cells, specifically the DP (CD27⁺CD11b⁺)
256 NK cells, was significantly reduced while the frequency of CD11b⁺ NK cells was markedly
257 increased in both bone marrow (Fig. 3D) and spleen (Fig. 3E) in *Bach2*^{-/-} mice. In agreement, the
258 expression of KLRG1 was upregulated and we also found more cells (~80%) expressing KLRG1
259 in *Bach2*-deficient mice compared to *Bach2*-sufficient mice (~50%) (Fig. 3F). Taken together,
260 NK cells were skewed towards the most mature NK cells in *Bach2*-deficient mice as compared
261 to *Bach2*-sufficient mice, with a concomitant decrease in the immature NK cells.

262

263 **B16 tumor growth and metastasis is controlled by NK cells with *Bach2*-deficiency**

264 Since differential gene analysis showed many effector molecules, especially cytotoxic genes
265 were increased with *Bach2*-deficiency, we evaluated whether *Bach2*-deficiency resulted in
266 changes in the rejection of target cells. We asked whether the increased representation of more
267 mature NK cells due to *Bach2*-deficiency would result in better control of tumor metastases *in*
268 *vivo*. We assessed the role of *Bach2* in B16F10 metastasis. In tumor metastasis studies, 2.5×10^5
269 B16F10 cells were intravenously injected into *Bach2*^{cKO} or control mice and tumor metastases
270 were evaluated two weeks later by counting the black colonies formed in lungs (Fig. 4A). The
271 lung metastases of B16F10 tumors in *Bach2*^{cKO} mice were dramatically reduced to 25% of
272 metastatic colonies found in control mice (Fig. 4B). This control of tumor metastases was NK
273 cell-dependent because both mice displayed a higher and similar number of metastatic tumor
274 colonies when NK cells were depleted with anti-NK1.1 (PK136) one day prior to injection (Fig.
275 4B). In summary, NK cells in *Bach2*-deficient mice are more efficient in controlling tumor
276 progression and metastasis.

277 **Discussion**

278 Here we found that Bach2 is highly expressed in functional immature NK cells (CD27⁺ NK cells)
279 and gradually downregulates its expression at the terminal stage of NK maturation (CD11b⁺ NK
280 cells). In line with this, we demonstrated that Bach2-deficiency caused a biased NK cell
281 development towards terminal differentiation in an NK cell intrinsic manner. Bach2 deficient
282 NK cells displayed increased cytotoxic gene expression and were more potent in controlling
283 tumor metastases.

284

285 Our prior knowledge of Bach2 was largely from other cells in the lymphoid lineage such as B
286 cells and T cells. Bach2 played a critical role in the development of the lymphoid cells: its
287 presence in common lymphoid progenitor (CLP) repressed the expression of genes important for
288 myeloid cells, promoting the development of T, B cells (Itoh-Nakadai et al., 2014). However, in
289 bone marrow, the expression of Bach2 increased after commitment of stem cells to the B cell
290 lineage with its expression high in pre-pro B cells, pro-B cells, pre-B cells, and immature B cells.
291 In B cells (Muto et al., 1998), Bach2 served as a checkpoint protein that inhibited the expression
292 of the immunoglobulin heavy chain of activated p53 by competing with BCL6 for functional
293 VDJ rearrangements (Muto et al., 1998; Swaminathan et al., 2013). Bach2 also suppressed the
294 differentiation of activated B cells to plasma cells by inhibiting the expression of the Blimp-1
295 (encoded by *Prdm1* gene), which allowed the class switch recombination (CSR) and somatic
296 hypermutation (SHM) to take place before becoming plasma cells abruptly (Kometani et al.,
297 2013; Muto et al., 2004; Ochiai et al., 2006). Here, we also detected a relatively high expression
298 of Bach2 in CLP but there was a reduction in pre-NK progenitors and refined NK progenitors.
299 We showed Bach2 started to gain its expression in NK cells after the acquisition of germline-

300 encoded NK receptors such as NK1.1 and NKp46, a stage when NK cells displayed an effector
301 program. The differential expression pattern of Bach2 in the early stage between NK cell
302 development and B cell development indicated a divergent trajectory of CLP for the commitment
303 of B cells or NK cells.

304

305 Bach2 was specifically highly expressed in CD27⁺ cells but not in CD11b⁺ terminal
306 differentiated cells. Interestingly, maturing NK cells upregulate CD27 transiently followed by
307 the upregulation of CD11b and KLRG1 (Chiossone et al., 2009; Huntington et al., 2007). During
308 this transition, NK cells lose their homeostatic expansion capacity but acquire cytotoxic activity
309 (Chiossone et al., 2009; Huntington et al., 2007), suggesting the main role of Bach2 is to
310 maintain the homeostasis of the most mature NK cells. Indeed, when we examined the
311 differential gene expression in the context of Bach2-deficiency specifically in mature NK cells,
312 we detected an upregulation of a series of genes related to cell proliferation, immune effector
313 molecules, and cell apoptosis. In contrast, genes associated with cell development and
314 homeostasis were downregulated with Bach2-deficiency, suggesting that Bach2 might be
315 required for NK cell self-renewal at steady state.

316

317 The genes we detected with differential expression patterns correlated very well with the gene
318 signatures observed in CD8 T cells, their cytotoxic counterparts in the adaptive immune system.
319 One of the genes, *Tcf7*, was particularly interesting and may be important for the mechanism of
320 the regulation of NK development by Bach2. *Tcf7* (encoding TCF1) is highly expressed in naïve
321 T cells, decreased in effector T cells, and regained its expression in memory cells, showing its
322 role in the maintaining pluripotency of the T cells (Willinger et al., 2006; Zhao et al., 2010).

323 Similarly, Bach2 also maintained T cells in a naïve status under homeostatic conditions,
324 preventing the generation of effector T cells through inhibiting the expression of effector
325 molecules downstream of TCR signaling (Roychoudhuri, Clever, et al., 2016; Tsukumo et al.,
326 2013). On the other hand, TCF1 was recently shown to be a hallmark of stem-like precursor
327 exhausted CD8 T cells with self-renewal capability and can differentiate into terminal effector-
328 like exhausted CD8 T cells which lacked TCF1 expression (Utzschneider et al., 2020). It was
329 shown Bach2 also played a positive role in maintaining the pool of these stem-like precursors
330 exhausted CD8 T cells as enforced overexpression of Bach2 resulted in the cells retaining this
331 stem-like condition while knockout of Bach2 led to terminal differentiation of the cells (Yao et
332 al., 2021). Our data also showed the link between Bach2 and TCF1: Bach2-deficiency caused
333 downregulation of TCF1 transcription. More importantly, TCF1 has been previously shown to
334 participate in NK development and its downregulation was required for NK cell terminal
335 maturation (Jeevan-Raj et al., 2017). It would be important to understand whether Bach2 and
336 TCF1 will have some interaction in regulating NK cell development. Given that Bach2 is a
337 transcriptional repressor through its interaction with the super-enhancers (SEs), it is possible that
338 Bach2 may directly regulate TCF1 expression to impact NK maturation. However, since we only
339 detected a minor decrease of TCF1 at the protein level in Bach2-deficient NK cells, to what
340 extent this regulation would impact NK development via TCF1 requires further investigation.

341

342 Human NK cells encompass two major subsets, known as CD56^{dim} and CD56^{bright} NK cells.
343 CD62L (encoded by *Sell*) and CCR7 were shown to be highly expressed by CD56^{bright} NK cells
344 and drove their migration to secondary lymphoid tissues (Campbell et al., 2001; Frey et al.,
345 1998). CD56^{bright} NK cells also expressed high levels of c-Kit for their homeostatic proliferation

346 (Matos et al., 1993). In agreement with this, *Sell*, *Ccr7*, and *Kit* genes were all downregulated in
347 Bach2-deficient NK cells in our data in mice. In contrast, CD56^{dim} NK cells displayed a high
348 density of CX3CR1 for the migration to tissues and higher cytotoxic activity by increased
349 expression of perforin and various granzymes (Campbell et al., 2001), which resembled our
350 Bach2-deficient NK phenotypes in mice. More importantly, Bach2 has been demonstrated to be
351 highly expressed by CD56^{bright} NK cells and with low expression in CD56^{dim} NK cells (Holmes
352 et al., 2021). Another study of regulome analysis in human NK proposed that Bach2-mediated
353 gene suppression relied upon inhibiting BLIMP1 (encoded by *PRDM1* gene) expression, and
354 BLIMP1 repressed the TCF1-LEF1-MYC-induced homeostatic expansion of NK cells (Koues et
355 al., 2016). However, we did not detect a significant upregulation of the *Prdm1* gene in Bach2
356 knockout NK cells in our data. Therefore, the function of Bach2 may be conserved between
357 human and mouse for its regulatory circuitries but still needs further exploration.

358

359 NK cells are currently being studied in clinical trials as potential targets for cancer
360 immunotherapy. Our study shows that, in mice, Bach2 functions as a checkpoint to restrain NK
361 cell cytotoxicity and Bach2-deficiency leads to enhanced NK cell-mediated control of B16
362 melanoma metastases. Studies in humans have also suggested that Bach2 may play a similar role
363 in human NK cells (Koues et al., 2016). As a result, our study suggests that Bach2 may be a
364 novel target for checkpoint inhibition of NK cells for cancer immunotherapy.

365

366

367

368

369 **Materials and Methods**

370 *Mice.* Wild-type C57BL/6 (B6) mice and RAG1^{-/-} mice were purchased from The Jackson
371 Laboratories. Bach2^{Flag} knock-in mice have been described before (Herndler-Brandstetter et al.,
372 2018) as have Bach2^{flox/flox} mice (Kometani et al., 2013). NK cell Bach2 conditional knockout
373 mice were generated by crossing Bach2^{flox/flox} mice with Ncr1^{iCre} mice (Narni-Mancinelli et al.,
374 2011) from Eric Vivier (CNRS-INSERM-Universite de la Mediterranee, Marseille, France). ES
375 cells for Bach2^{-/-} (Bach2^{tm1e}) mice were purchased from the EuComm program. The mice were
376 derived from ES clone EPD0689_1_H03, ES line JM8A3.N1. Animal experiments were
377 performed with 6- to 12-week male or female mice, except for those specifically indicated.
378 Mouse studies were conducted in accordance with the institutional ethical guidelines through
379 institutional animal care and use committee (IACUC) protocol that was approved by the Animal
380 Studies Committee of Washington University (#20180293).

381

382

383 *Antibodies and Flow Cytometry.* The following antibodies and reagents were purchased from
384 eBioscience: anti-CD127 (A7R34), anti-CD3e (145-2C11), anti-CD19 (eBio1D3), anti-CD49b
385 (DX5), anti-NK1.1 (clone PK136), anti-CD27 (LG.TF9), anti-CD11b (M1/70), anti-NKp46
386 (29A1.4), anti-CD39 (24DMS1), anti-Granzyme B (NGZB), anti-Ly49A (eBio12A8), anti-
387 Ly49D (eBio4E5), anti-Ly49EF (CM4), anti-Ly49I (YLI-90), anti-CD94 (18d3), anti-NKG2A
388 (16a11), anti-TER-119 (TER-119), Fixable Viability Dye eFluor 506. The following antibodies
389 were purchased from BD Biosciences: anti-CD244.2 (2B4), anti-TCF-7/TCF-1 (S33-966), anti-
390 Ly49F (HBF-719), anti-Ly6-G and Ly-6C (RB6-8C5), anti-CD122 (TM-β1), anti-CD69
391 (H1.2F3), anti-CD62L (MEL-14), anti-Ly-49G2 (4D11), anti-CD135 (A2F10.1). The following

392 antibodies were purchased from Biolegend: anti-DYKDDDDK tag (L5), anti-KLRG1 (MAFA)
393 (2F1/KLRG1), anti-CD117 (2B8), anti-CX3CR1 (SA011F11). Anti-Ly49H (3D10) and anti-
394 Ly49C (4LO33) were produced in-house. BM or spleen cells were treated with RBC lysis buffer
395 to remove erythrocytes. Then cells were treated with 2.4G2 (anti-Fc RII/III) hybridoma
396 supernatants to block Fc receptors. Surface staining was performed on ice in FACS staining
397 buffer (1% BSA, 0.01% NaN₃ in PBS). The labeling of BM progenitor populations has been
398 described before (Jeevan-Raj et al., 2017). Lineage positive cells were labeled by a cocktail of
399 biotin-conjugated anti-CD3e, CD19, NK1.1, CD11b, Gr-1, Ter-119 antibodies. The resulting
400 lineage-negative cells (Lin⁻) were further stained to identify CLP, pre-NK progenitor, and rNK
401 progenitor as indicated. For intracellular staining of Bach2^{Flag}, TCF1, and GzmB, the Foxp3
402 transcription factor staining buffer set (eBioscience) was used according to the manufacturer's
403 protocols. Samples were collected by FACS Canto (BD Bioscience), and data were analyzed by
404 FlowJo.

405

406 *Western Blot.* NK cells from spleen were enriched by the EasySep Mouse NK cell isolation kit
407 (STEMCELL Technologies) according to the manufacturer's instructions. Enriched NK cells
408 were then labeled by indicated surfaced markers and sorted into different subsets. Sorted cells
409 were lysed in RIPA buffer in the presence of Halt Protease Inhibitor Cocktail (Thermo Scientific,
410 78429) on ice. Lysates were denatured in 2x Laemmli sample buffer (Bio-Rad) and resolved by
411 SDS-PAGE. Proteins were transferred to NC membrane and probed with indicated antibodies.
412 Anti-FLAG M2-Peroxidase (HRP) (A8592) was purchased from Sigma. Beta-Actin Rabbit
413 antibody (4967S) and anti-rabbit IgG HRP-linked antibody (7074S) were purchased from Cell
414 signaling.

415

416 *RNA-sequencing and quantitative PCR.* NK cells from the spleen were enriched by the EasySep
417 Mouse NK cell isolation kit (STEMCELL Technologies) according to the manufacturer's
418 instructions. Enriched cells were then sorted into CD3⁻CD19⁻NK1.1⁺NKp46⁺ cells. RNA was
419 purified by PureLink RNA Mini Kit (Ambion, 12183018A). RNA-sequencing was performed by
420 the Genome Technology Access Center at Washington University School of Medicine. NovaSeq
421 6000 was used for sequencing. RNA-seq reads were then aligned to the Ensembl release 76
422 primary assembly with STAR version 2.5.1a (Dobin et al., 2013). Gene counts were derived
423 from the number of uniquely aligned unambiguous reads by Subread/featureCount version 1.4.6-
424 p5 (Liao et al., 2014). Low expressing genes were filtered with the criteria of cmp>1 in at least
425 three samples. Two outliers were removed. RUVr method (k=1) in RUVseq R package was used
426 to remove batch effect. Differential gene expression was determined using the EdgeR R package
427 with FDR<0.01 and log2 fold change > log2(1.5) as the thresholds. Heatmaps were generated
428 with pheatmap R package. Principal components analysis (PCA) was performed by prcomp
429 function of R. Gene set enrichment pathways analysis was done using the Broad Institute's
430 GSEA software by comparing signature databases from GSE83978 and GSE77857. The data in
431 this paper have been uploaded to Gene Expression Omnibus under accession number
432 GSE196530 that also includes Supplemental Table S1.

433

434 For qPCR, cDNA was synthesized by ProtoScript II Reverse Transcriptase (NEB, M0368S). Pre-
435 designed primers for indicated genes were obtained from IDT. Quantitative real-time PCR was
436 performed by PowerUp SYBR Green Master Mix Kit (Fisher Scientific) on a StepOnePlus real-

437 time PCR system (Thermo Fisher Scientific). Relative gene expression was normalized to beta-
438 actin and calculated by the $\Delta\Delta Ct$ method.

439

440 *B16F10 Metastasis assay.* B16F10 cells were maintained in R10 (RPMI 1640 medium (Gibco)
441 containing 10% FBS, 1% Penicillin/Streptomycin, 1% L-glutamine, 55 μ M 2-mercaptoethanol).
442 Before injection, 2.5×10^5 B16F10 cells were resuspended in 300ul PBS, and intravenously
443 injected into mice. After 14 days, tumor metastasis was evaluated by counting the black colonies
444 formed in the lung under a dissecting microscope. The blind analysis is performed for counting.

445

446 *Statistical analysis.* Statistical analyses were performed using GraphPad Prism 9 software. The
447 statistical test used is stated in the figure legend. Data are presented as mean \pm SD as stated in the
448 figure legend. Statistical significance was determined as indicated. $p < 0.05$ was considered
449 statistically significant.

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466 **Acknowledgments**

467 We thank Susan Gilfillan for helping with the establishment of the Bach2^{-/-} (Bach2^{tm1e}) cell. We
468 thank Beatrice Plougastel-Douglas and Anna Sliz for helpful discussions.

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489 **References**

490 Adams, N. M., Lau, C. M., Fan, X., Rapp, M., Geary, C. D., Weizman, O. E., Diaz-Salazar, C., & Sun, J. C. (2018). Transcription Factor IRF8 Orchestrates the Adaptive Natural Killer Cell Response. *Immunity*, 48(6), 1172–1182.e6.
<https://doi.org/10.1016/j.immuni.2018.04.018>

494 Afzali, B., Grönholm, J., Vandrovčova, J., O'Brien, C., Sun, H. W., Vanderleyden, I., Davis, F. P., Khoder, A., Zhang, Y., Hegazy, A. N., Villarino, A. V., Palmer, I. W., Kaufman, J., Watts, N. R., Kazemian, M., Kamenyeva, O., Keith, J., Sayed, A., Kasperaviciute, D., Mueller, M., ... Laurence, A. (2017). BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. *Nature immunology*, 18(7), 813–823.
<https://doi.org/10.1038/ni.3753>

500 Bezman, N. A., Kim, C. C., Sun, J. C., Min-Oo, G., Hendricks, D. W., Kamimura, Y., Best, J. A., Goldrath, A. W., Lanier, L. L., & Immunological Genome Project Consortium (2012). Molecular definition of the identity and activation of natural killer cells. *Nature immunology*, 13(10), 1000–1009. <https://doi.org/10.1038/ni.2395>

504 Campbell, J. J., Qin, S., Unutmaz, D., Soler, D., Murphy, K. E., Hodge, M. R., Wu, L., & Butcher, E. C. (2001). Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes

506 identified by chemokine receptor expression repertoire. *Journal of immunology*
507 (*Baltimore, Md. : 1950*), 166(11), 6477–6482.

508 <https://doi.org/10.4049/jimmunol.166.11.6477>

509 Carotta, S., Pang, S. H., Nutt, S. L., & Belz, G. T. (2011). Identification of the earliest NK-cell
510 precursor in the mouse BM. *Blood*, 117(20), 5449–5452. <https://doi.org/10.1182/blood-2010-11-318956>

512 Chiossone, L., Chaix, J., Fuseri, N., Roth, C., Vivier, E., & Walzer, T. (2009). Maturation of mouse
513 NK cells is a 4-stage developmental program. *Blood*, 113(22), 5488–5496.
514 <https://doi.org/10.1182/blood-2008-10-187179>

515 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., &
516 Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics (Oxford, England)*, 29(1), 15–21. <https://doi.org/10.1093/bioinformatics/bts635>

518 Fathman, J. W., Bhattacharya, D., Inlay, M. A., Seita, J., Karsunky, H., & Weissman, I. L. (2011).
519 Identification of the earliest natural killer cell-committed progenitor in murine bone
520 marrow. *Blood*, 118(20), 5439–5447. <https://doi.org/10.1182/blood-2011-04-348912>

521 Frey, M., Packianathan, N. B., Fehniger, T. A., Ross, M. E., Wang, W. C., Stewart, C. C., Caligiuri,
522 M. A., & Evans, S. S. (1998). Differential expression and function of L-selectin on
523 CD56bright and CD56dim natural killer cell subsets. *Journal of immunology (Baltimore, Md. : 1950)*, 161(1), 400–408.

525 Gordon, S. M., Chaix, J., Rupp, L. J., Wu, J., Madera, S., Sun, J. C., Lindsten, T., & Reiner, S. L.
526 (2012). The transcription factors T-bet and Eomes control key checkpoints of natural

527 killer cell maturation. *Immunity*, 36(1), 55–67.

528 <https://doi.org/10.1016/j.immuni.2011.11.016>

529 Herndler-Brandstetter, D., Ishigame, H., Shinnakasu, R., Plajer, V., Stecher, C., Zhao, J.,

530 Lietzenmayer, M., Kroehling, L., Takumi, A., Kometani, K., Inoue, T., Kluger, Y., Kaech, S.

531 M., Kurosaki, T., Okada, T., & Flavell, R. A. (2018). KLRG1⁺ Effector CD8⁺ T Cells Lose

532 KLRG1, Differentiate into All Memory T Cell Lineages, and Convey Enhanced Protective

533 Immunity. *Immunity*, 48(4), 716–729.e8. <https://doi.org/10.1016/j.immuni.2018.03.015>

534 Holmes, T. D., Pandey, R. V., Helm, E. Y., Schlums, H., Han, H., Campbell, T. M., Drashansky, T. T.,

535 Chiang, S., Wu, C. Y., Tao, C., Shoukier, M., Tolosa, E., Von Hardenberg, S., Sun, M.,

536 Kleemann, C., Marsh, R. A., Lau, C. M., Lin, Y., Sun, J. C., Måansson, R., ... Bryceson, Y. T.

537 (2021). The transcription factor Bcl11b promotes both canonical and adaptive NK cell

538 differentiation. *Science immunology*, 6(57), eabc9801.

539 <https://doi.org/10.1126/sciimmunol.abc9801>

540 Hong, H. S., Ahmad, F., Eberhard, J. M., Bhatnagar, N., Bollmann, B. A., Keudel, P., Ballmaier, M.,

541 Zielinska-Skowronek, M., Schmidt, R. E., & Meyer-Olson, D. (2012). Loss of CCR7

542 expression on CD56(bright) NK cells is associated with a CD56(dim)CD16⁺ NK cell-like

543 phenotype and correlates with HIV viral load. *PLoS one*, 7(9), e44820.

544 <https://doi.org/10.1371/journal.pone.0044820>

545 Huntington, N. D., Tabarias, H., Fairfax, K., Brady, J., Hayakawa, Y., Degli-Esposti, M. A., Smyth,

546 M. J., Tarlinton, D. M., & Nutt, S. L. (2007). NK cell maturation and peripheral

547 homeostasis is associated with KLRG1 up-regulation. *Journal of immunology (Baltimore,*

548 *Md. : 1950)*, 178(8), 4764–4770. <https://doi.org/10.4049/jimmunol.178.8.4764>

549 Intlekofer, A. M., Takemoto, N., Wherry, E. J., Longworth, S. A., Northrup, J. T., Palanivel, V. R.,

550 Mullen, A. C., Gasink, C. R., Kaech, S. M., Miller, J. D., Gapin, L., Ryan, K., Russ, A. P.,

551 Lindsten, T., Orange, J. S., Goldrath, A. W., Ahmed, R., & Reiner, S. L. (2005). Effector and

552 memory CD8+ T cell fate coupled by T-bet and eomesodermin. *Nature immunology*, 6(12), 1236–1244. <https://doi.org/10.1038/ni1268>

553

554 Itoh-Nakadai, A., Hikota, R., Muto, A., Kometani, K., Watanabe-Matsui, M., Sato, Y., Kobayashi, M., Nakamura, A., Miura, Y., Yano, Y., Tashiro, S., Sun, J., Ikawa, T., Ochiai, K., Kurosaki, T., & Igashiri, K. (2014). The transcription repressors Bach2 and Bach1 promote B cell

555 development by repressing the myeloid program. *Nature immunology*, 15(12), 1171–

556 1180. <https://doi.org/10.1038/ni.3024>

557

558

559 Jeevan-Raj, B., Gehrig, J., Charmoy, M., Chennupati, V., Grandclément, C., Angelino, P.,

560 Delorenzi, M., & Held, W. (2017). The Transcription Factor Tcf1 Contributes to Normal

561 NK Cell Development and Function by Limiting the Expression of Granzymes. *Cell reports*, 20(3), 613–626. <https://doi.org/10.1016/j.celrep.2017.06.071>

562

563 Kallies, A., Carotta, S., Huntington, N. D., Bernard, N. J., Tarlinton, D. M., Smyth, M. J., & Nutt, S. L. (2011). A role for Blimp1 in the transcriptional network controlling natural killer cell

564

565 maturation. *Blood*, 117(6), 1869–1879. <https://doi.org/10.1182/blood-2010-08-303123>

566 Kim, S., Iizuka, K., Kang, H. S., Dokun, A., French, A. R., Greco, S., & Yokoyama, W. M. (2002). In

567 vivo developmental stages in murine natural killer cell maturation. *Nature immunology*, 3(6), 523–528. <https://doi.org/10.1038/ni796>

568

569 Kometani, K., Nakagawa, R., Shinnakasu, R., Kaji, T., Rybouchkin, A., Moriyama, S., Furukawa, K.,

570 Koseki, H., Takemori, T., & Kurosaki, T. (2013). Repression of the transcription factor

571 Bach2 contributes to predisposition of IgG1 memory B cells toward plasma cell
572 differentiation. *Immunity*, 39(1), 136–147.
573 <https://doi.org/10.1016/j.immuni.2013.06.011>
574 Koues, O. I., Collins, P. L., Celli, M., Robinette, M. L., Porter, S. I., Pyfrom, S. C., Payton, J. E.,
575 Colonna, M., & Oltz, E. M. (2016). Distinct Gene Regulatory Pathways for Human Innate
576 versus Adaptive Lymphoid Cells. *Cell*, 165(5), 1134–1146.
577 <https://doi.org/10.1016/j.cell.2016.04.014>
578 Lahmann, A., Kuhrau, J., Fuhrmann, F., Heinrich, F., Bauer, L., Durek, P., Mashreghi, M. F., &
579 Hutloff, A. (2019). Bach2 Controls T Follicular Helper Cells by Direct Repression of Bcl-
580 6. *Journal of immunology (Baltimore, Md. : 1950)*, 202(8), 2229–2239.
581 <https://doi.org/10.4049/jimmunol.1801400>
582 Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for
583 assigning sequence reads to genomic features. *Bioinformatics (Oxford, England)*, 30(7),
584 923–930. <https://doi.org/10.1093/bioinformatics/btt656>
585 Marroquí, L., Santin, I., Dos Santos, R. S., Marselli, L., Marchetti, P., & Eizirik, D. L. (2014). BACH2,
586 a candidate risk gene for type 1 diabetes, regulates apoptosis in pancreatic β -cells via
587 JNK1 modulation and crosstalk with the candidate gene PTPN2. *Diabetes*, 63(7), 2516–
588 2527. <https://doi.org/10.2337/db13-1443>
589 Matos, M. E., Schnier, G. S., Beecher, M. S., Ashman, L. K., William, D. E., & Caligiuri, M. A.
590 (1993). Expression of a functional c-kit receptor on a subset of natural killer cells. *The*
591 *Journal of experimental medicine*, 178(3), 1079–1084.
592 <https://doi.org/10.1084/jem.178.3.1079>

593 McFarland, A. P., Yalin, A., Wang, S. Y., Cortez, V. S., Landsberger, T., Sudan, R., Peng, V., Miller,
594 H. L., Ricci, B., David, E., Faccio, R., Amit, I., & Colonna, M. (2021). Multi-tissue single-cell
595 analysis deconstructs the complex programs of mouse natural killer and type 1 innate
596 lymphoid cells in tissues and circulation. *Immunity*, 54(6), 1320–1337.e4.
597 <https://doi.org/10.1016/j.immuni.2021.03.024>

598 Muto, A., Hoshino, H., Madisen, L., Yanai, N., Obinata, M., Karasuyama, H., Hayashi, N.,
599 Nakauchi, H., Yamamoto, M., Groudine, M., & Igarashi, K. (1998). Identification of Bach2
600 as a B-cell-specific partner for small maf proteins that negatively regulate the
601 immunoglobulin heavy chain gene 3' enhancer. *The EMBO journal*, 17(19), 5734–5743.
602 <https://doi.org/10.1093/emboj/17.19.5734>

603 Muto, A., Tashiro, S., Nakajima, O., Hoshino, H., Takahashi, S., Sakoda, E., Ikebe, D., Yamamoto,
604 M., & Igarashi, K. (2004). The transcriptional programme of antibody class switching
605 involves the repressor Bach2. *Nature*, 429(6991), 566–571.
606 <https://doi.org/10.1038/nature02596>

607 Narni-Mancinelli, E., Chaix, J., Fenis, A., Kerdiles, Y. M., Yessaad, N., Reynders, A., Gregoire, C.,
608 Luche, H., Ugolini, S., Tomasello, E., Walzer, T., & Vivier, E. (2011). Fate mapping analysis
609 of lymphoid cells expressing the NKp46 cell surface receptor. *Proceedings of the
610 National Academy of Sciences*, 108(45), 18324–18329.
611 <https://doi.org/10.1073/pnas.1112064108>

612 Ochiai, K., Katoh, Y., Ikura, T., Hoshikawa, Y., Noda, T., Karasuyama, H., Tashiro, S., Muto, A., &
613 Igarashi, K. (2006). Plasmacytic transcription factor Blimp-1 is repressed by Bach2 in B

614 cells. *The Journal of biological chemistry*, 281(50), 38226–38234.

615 <https://doi.org/10.1074/jbc.M607592200>

616 Rabacal, W., Pabbisetty, S. K., Hoek, K. L., Cendron, D., Guo, Y., Maseda, D., & Sebzda, E. (2016).

617 Transcription factor KLF2 regulates homeostatic NK cell proliferation and survival.

618 *Proceedings of the National Academy of Sciences*, 113(19), 5370–5375.

619 <https://doi.org/10.1073/pnas.1521491113>

620 Roychoudhuri, R., Clever, D., Li, P., Wakabayashi, Y., Quinn, K. M., Klebanoff, C. A., Ji, Y.,

621 Sukumar, M., Eil, R. L., Yu, Z., Spolski, R., Palmer, D. C., Pan, J. H., Patel, S. J., Macallan, D.

622 C., Fabozzi, G., Shih, H.-Y., Kanno, Y., Muto, A., ... Restifo, N. P. (2016). BACH2 regulates

623 CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers. *Nature Immunology*, 17(7), 851–860. <https://doi.org/10.1038/ni.3441>

624 Roychoudhuri, R., Eil, R. L., Clever, D., Klebanoff, C. A., Sukumar, M., Grant, F. M., Yu, Z., Mehta,

625 G., Liu, H., Jin, P., Ji, Y., Palmer, D. C., Pan, J. H., Chichura, A., Crompton, J. G., Patel, S. J.,

626 Stroncek, D., Wang, E., Marincola, F. M., ... Restifo, N. P. (2016). The transcription factor

627 BACH2 promotes tumor immunosuppression. *Journal of Clinical Investigation*, 126(2),

628 599–604. <https://doi.org/10.1172/JCI82884>

629 Roychoudhuri, R., Hirahara, K., Mousavi, K., Clever, D., Klebanoff, C. A., Bonelli, M., Sciumè, G.,

630 Zare, H., Vahedi, G., Dema, B., Yu, Z., Liu, H., Takahashi, H., Rao, M., Muranski, P.,

631 Crompton, J. G., Punkosdy, G., Bedognetti, D., Wang, E., ... Restifo, N. P. (2013). BACH2

632 represses effector programs to stabilize Treg-mediated immune homeostasis. *Nature*,

633 498(7455), 506–510. <https://doi.org/10.1038/nature12199>

635 Siddiqui, I., Schaeuble, K., Chennupati, V., Fuertes Marraco, S. A., Calderon-Copete, S., Pais
636 Ferreira, D., Carmona, S. J., Scarpellino, L., Gfeller, D., Pradervand, S., Luther, S. A.,
637 Speiser, D. E., & Held, W. (2019). Intratumoral Tcf1+PD-1+CD8+ T Cells with Stem-like
638 Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade
639 Immunotherapy. *Immunity*, 50(1), 195-211.e10.
640 <https://doi.org/10.1016/j.jimmuni.2018.12.021>
641 Swaminathan, S., Huang, C., Geng, H., Chen, Z., Harvey, R., Kang, H., Ng, C., Titz, B., Hurtz, C.,
642 Sadiyah, M. F., Nowak, D., Thoennissen, G. B., Rand, V., Graeber, T. G., Koeffler, H. P.,
643 Carroll, W. L., Willman, C. L., Hall, A. G., Igarashi, K., ... Müschen, M. (2013). BACH2
644 mediates negative selection and p53-dependent tumor suppression at the pre-B cell
645 receptor checkpoint. *Nature Medicine*, 19(8), 1014–1022.
646 <https://doi.org/10.1038/nm.3247>
647 Townsend, M. J., Weinmann, A. S., Matsuda, J. L., Salomon, R., Farnham, P. J., Biron, C. A.,
648 Gapin, L., & Glimcher, L. H. (2004). T-bet regulates the terminal maturation and
649 homeostasis of NK and Valpha14i NKT cells. *Immunity*, 20(4), 477–494.
650 [https://doi.org/10.1016/s1074-7613\(04\)00076-7](https://doi.org/10.1016/s1074-7613(04)00076-7)
651 Tsukumo, S., Unno, M., Muto, A., Takeuchi, A., Kometani, K., Kurosaki, T., Igarashi, K., & Saito, T.
652 (2013). Bach2 maintains T cells in a naive state by suppressing effector memory-related
653 genes. *Proceedings of the National Academy of Sciences of the United States of*
654 *America*, 110(26), 10735–10740. <https://doi.org/10.1073/pnas.1306691110>
655 Utzschneider, D. T., Gabriel, S. S., Chisanga, D., Gloury, R., Gubser, P. M., Vasanthakumar, A., Shi,
656 W., & Kallies, A. (2020). Early precursor T cells establish and propagate T cell exhaustion

657 in chronic infection. *Nature Immunology*, 21(10), 1256–1266.

658 <https://doi.org/10.1038/s41590-020-0760-z>

659 van Helden, M. J., Goossens, S., Daussy, C., Mathieu, A.-L., Faure, F., Marçais, A., Vandamme, N.,

660 Farla, N., Mayol, K., Viel, S., Degouve, S., Debien, E., Seuntjens, E., Conidi, A., Chaix, J.,

661 Mangeot, P., de Bernard, S., Buffat, L., Haigh, J. J., ... Walzer, T. (2015). Terminal NK cell

662 maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for

663 melanoma rejection. *Journal of Experimental Medicine*, 212(12), 2015–2025.

664 <https://doi.org/10.1084/jem.20150809>

665 Willinger, T., Freeman, T., Herbert, M., Hasegawa, H., McMichael, A. J., & Callan, M. F. C. (2006).

666 Human Naive CD8 T Cells Down-Regulate Expression of the WNT Pathway Transcription

667 Factors Lymphoid Enhancer Binding Factor 1 and Transcription Factor 7 (T Cell Factor-1)

668 following Antigen Encounter In Vitro and In Vivo. *The Journal of Immunology*, 176(3),

669 1439–1446. <https://doi.org/10.4049/jimmunol.176.3.1439>

670 Yao, C., Lou, G., Sun, H.-W., Zhu, Z., Sun, Y., Chen, Z., Chauss, D., Moseman, E. A., Cheng, J.,

671 D'Antonio, M. A., Shi, W., Shi, J., Kometani, K., Kurosaki, T., Wherry, E. J., Afzali, B.,

672 Gattinoni, L., Zhu, Y., McGavern, D. B., ... Wu, T. (2021). BACH2 enforces the

673 transcriptional and epigenetic programs of stem-like CD8+ T cells. *Nature Immunology*,

674 22(3), 370–380. <https://doi.org/10.1038/s41590-021-00868-7>

675 Zhao, D. M., Yu, S., Zhou, X., Haring, J. S., Held, W., Badovinac, V. P., Harty, J. T., & Xue, H. H.

676 (2010). Constitutive activation of Wnt signaling favors generation of memory CD8 T

677 cells. *Journal of immunology (Baltimore, Md. : 1950)*, 184(3), 1191–1199.

678 <https://doi.org/10.4049/jimmunol.0901199>

679

680 **Figure Legends**

681 **Fig.1.** Bach2 expression at different NK cell developmental stages by analysis of Bach2^{Flag}

682 knock-in mouse.

683 (A) BM Lin⁻2B4⁺CD27⁺CD127⁺ cells were subdivided into common lymphoid progenitor (CLP)

684 (Flt3⁺CD122⁻), pre-NK progenitor (pre-NKp) (Flt3⁻CD122⁻), and refined NK progenitor (rNKp)

685 (Flt3⁻CD122⁺). Two individual experiments have been done with a total of four mice per group.

686 (B) CD3⁻CD19⁻CD122⁺ NK cells from BM were subdivided into iNK (DX5⁻NK1.1⁺) and mNK

687 (DX5⁺NK1.1⁺) cells. Bach2 expression was analyzed in the bulk BM NK cells (CD3⁻CD19⁻

688 NK1.1⁺) and the iNK, mNK subsets. Two individual experiments have been done with a total of

689 four mice per group (C) Same as (B) except cells were harvested from spleen. (D) Splenic NK

690 cells (CD3⁻CD19⁻NK1.1⁺) were subdivided into maturation stages by CD27 and CD11b. Bach2-

691 flag expression was detected in CD27⁺CD11b⁻, CD27⁺CD11b⁺ and CD27⁺CD11b⁺ subsets by

692 flow cytometry. Three individual experiments have been done with a total of four to six mice per

693 group. (E) Splenic NK cells were sorted into CD27⁺CD11b⁻, CD27⁺CD11b⁺ and CD27⁻CD11b⁺

694 subsets. Bach2-Flag expression in the subsets was detected using Anti-FLAG M2-Peroxidase

695 (HRP) antibody by western blot. Expression of Actin was used as an internal control. Two

696 individual experiments have been done with one mouse each time. (F) Bach2-Flag expression

697 was detected in splenic NK cell (CD3⁻CD19⁻NK1.1⁺) from mice at 2-week (red), 5-week (blue)

698 and 12-week (orange) age. A representative plot was shown for two individual experiments with

699 a total of three to six mice per group. (G) Summary of the geometric MFI (gMFI) of Bach2-Flag

700 on splenic NK cells from mice at indicated age. Data in G are pooled from two independent

701 experiments with a total of three to six mice per group (one-way ANOVA with Tukey's

702 correction). Histogram overlays show Bach2-Flag expression (open histograms) as compared to
703 cells from wild-type C57BL/6 mice (gray fill). Error bars indicate SD. * $p < 0.05$; ** $p < 0.01$;
704 *** $p < 0.001$; **** $p < 0.0001$. ns, not significant.

705

706 **Fig. 2.** RNA-seq analysis reveals Bach2-deficiency in NK cells promotes the terminal maturation
707 of NK cells with elevated effector function.

708 (A) Heatmap of differentially expressed genes in NK cells compared between control and
709 Bach2^{cKO} mice in RNA-seq analysis. Each column represents total splenic CD3⁺CD19⁻
710 NK1.1⁺NKp46⁺ cells from an individual mouse. Cells were sorted from two individual
711 experiments with four mice per group. The data were analyzed with the Database for Annotation,
712 Visualization and Integrated Discovery (DAVID) Gene Ontology (GO) analysis for the
713 biological process using the genes differentially expressed from NK cells between control and
714 Bach2^{cKO} mice. (B) Volcano plot shows the differential gene expression between control and
715 Bach2^{cKO} splenic NK cells. Highlighted are genes discussed in the text. (C) Quantitative real-
716 time PCR (qPCR) validation of selected genes. Data are shown with four mice per group from
717 two individual experiments (student's *t* test). (D) Flow cytometry plots of indicated protein
718 expression in Bach2^{cKO} mice (open histograms) or control mice (gray fill). Two experiments
719 have been done with a total of two mice per group. (E and F) GSEA illustrating the enrichment
720 of effector-like (E) and stem-like (F) gene signatures in Bach2^{cKO} and control splenic NK cells.
721 Error bars indicate SD. * $p < 0.05$; ** $p < 0.01$. ns, not significant.

722

723 **Fig. 3.** Bach2-deficiency increases NK cells with terminally differentiated phenotype.

724 (A and B) Representative flow cytometry plots of NK cells (CD3⁻CD19⁻NK1.1⁺NKp46⁺)
725 separated into maturation stages by CD27 and CD11b expression from BM (A) or spleen (B) in
726 control mice and Bach2^{cKO} mice. Percentage of different subsets were plotted. Data were pooled
727 from three independent experiments with a total of four to six mice per group (two-way ANOVA
728 with Bonferroni correction). (C) Representative histogram of KLRG1 expression on splenic NK
729 cells (CD3⁻CD19⁻NK1.1⁺NKp46⁺) from control mice and Bach2^{cKO} mice. Percentage of NK
730 cells that express KLRG1 from control mice and Bach2^{cKO} mice were pooled from three
731 independent experiments with a total of four to six mice per group (student's *t* test). (D and E)
732 Representative flow cytometry plots of total NK cells (CD3⁻CD19⁻NK1.1⁺NKp46⁺) maturation
733 stages separated by CD27 and CD11b expression from BM (D) or spleen (E) in Rag1^{-/-}Bach2^{-/-}
734 (Bach2^{-/-}) and Rag1^{-/-} (WT) mice. Percentage of different subsets were plotted. Data were shown
735 for three mice per group from one experiment (two-way ANOVA with Bonferroni correction). (F)
736 Representative histogram of KLRG1 expression on splenic NK cells (CD3⁻CD19⁻
737 NK1.1⁺NKp46⁺) from Rag1^{-/-}Bach2^{-/-} (Bach2^{-/-}) and Rag1^{-/-} (WT) mice. The percentage of NK
738 cells that express KLRG1 was shown for three mice per group from one experiment (student's *t*
739 test). Error bars indicate SD. **p* < 0.05; ***p* < 0.01; ****p* < 0.001; *****p* < 0.0001. ns, not
740 significant.

741

742 **Fig. 4.** Lack of Bach2 expression in NK cells suppresses B16F10 tumor metastasis and growth.
743 (A) Representative picture of lung metastatic nodules in Bach2^{cKO} mice and control mice under
744 steady state or anti-NK1.1 (PK136) depletion. (B) The number of B16F10 metastatic nodules in
745 lung from Bach2^{cKO} and control mice with or without anti-NK1.1 (PK136) depletion. Data were

746 pooled from three independent experiments with a total of three to eight mice per group
747 (student's *t* test). Error bars indicate SD. ***p* < 0.01.

748

749 **Supplementary Figure Legends**

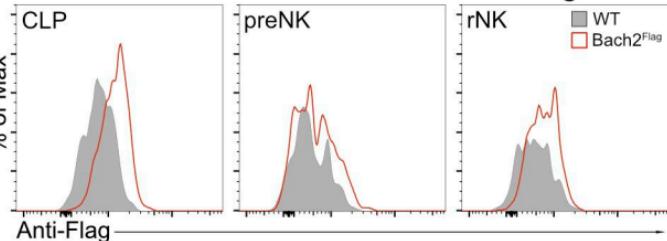
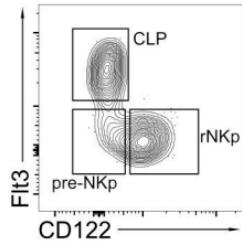
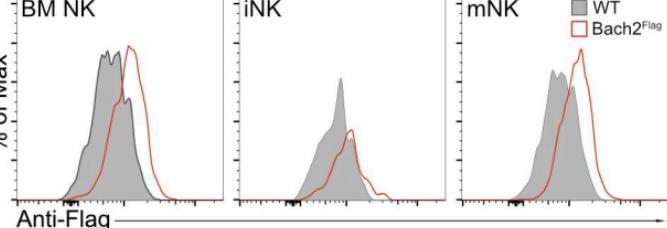
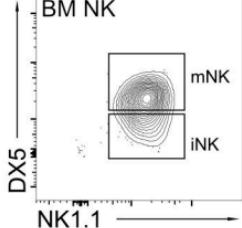
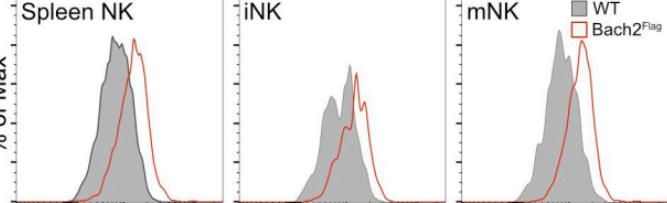
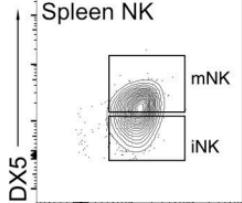
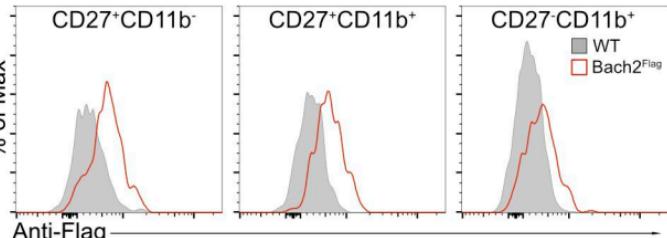
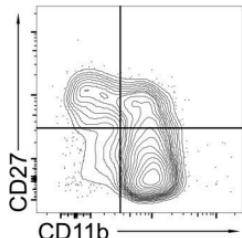
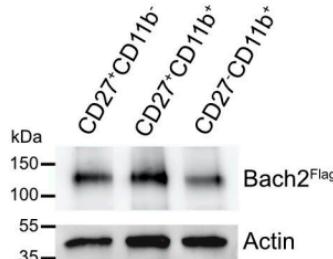
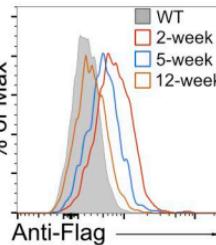
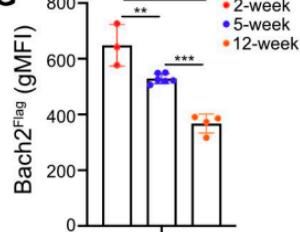
750 **Fig. S1** Gating strategy for flow cytometry analysis.
751 (A) Representative flow cytometry gating strategy showing the common lymphoid progenitor
752 (CLP) cells, pre-NK progenitors, and refined NK progenitor cells in BM. (B) Representative
753 flow cytometry gating strategy for immature and mature NK cells from bone marrow and spleen,
754 corresponding to Figs. 1B and C. (C) Representative flow cytometry gating for NK cells,
755 corresponding to Fig. 1D. (D) Representative flow cytometry for the sorting of different subsets
756 of NK cells in the spleen, corresponding to Fig. 1E. (E) Maturation stages of splenic NK cells
757 separated by CD27 and CD11b expression from mice at the indicated age. Data are shown for
758 three mice per group from one experiment.

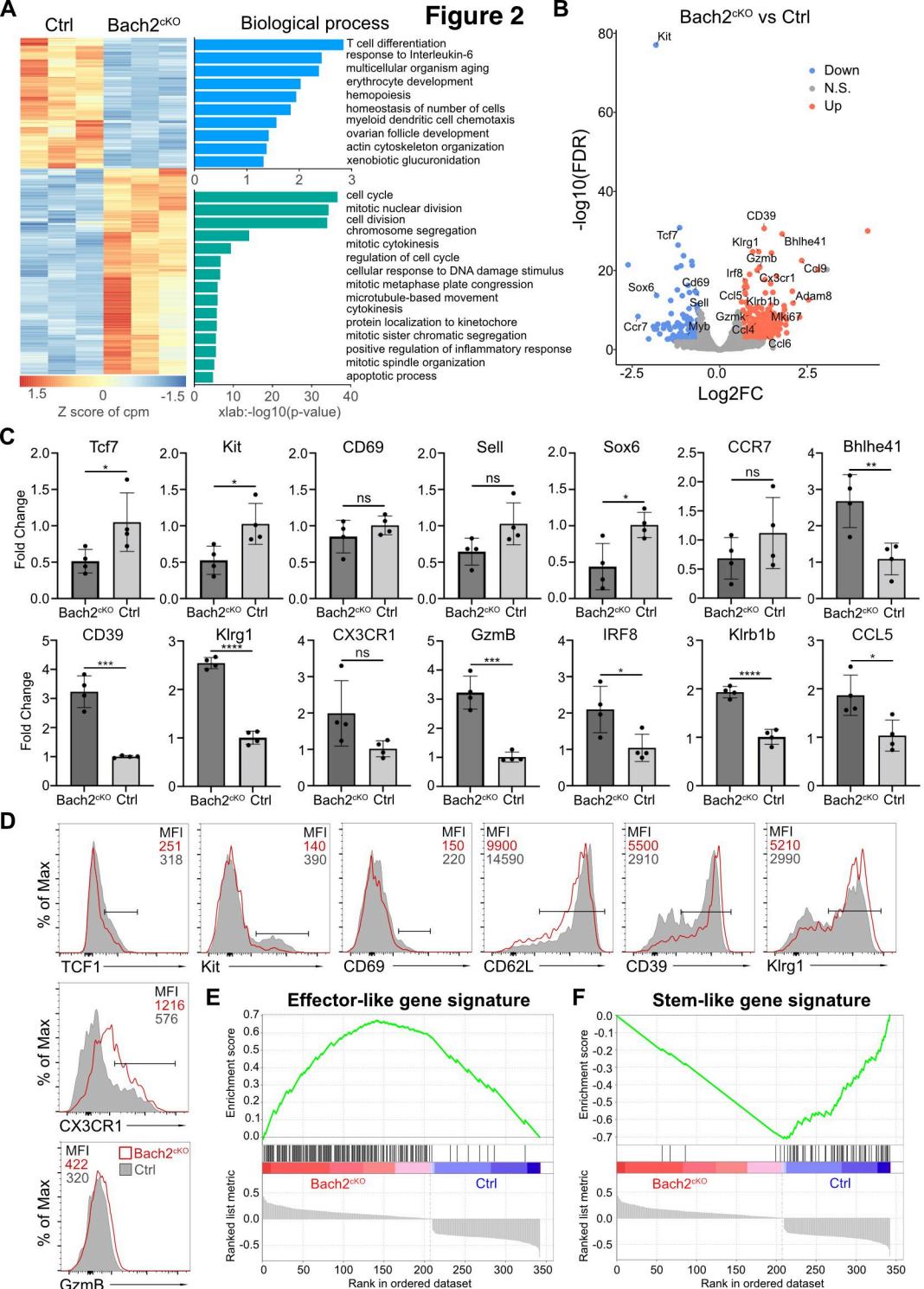
759

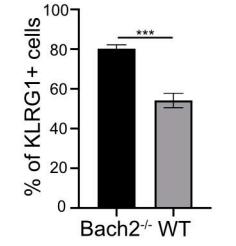
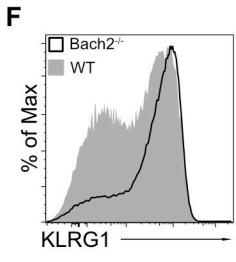
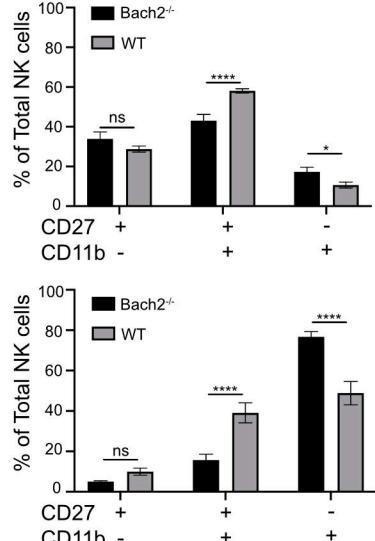
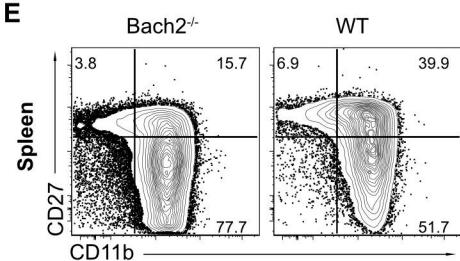
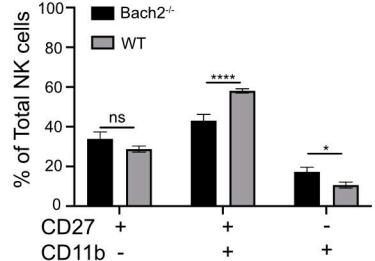
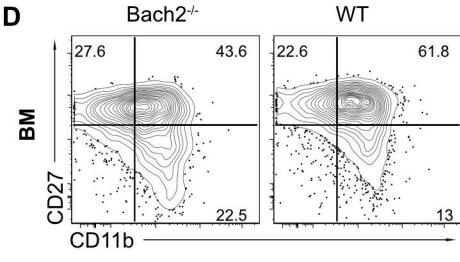
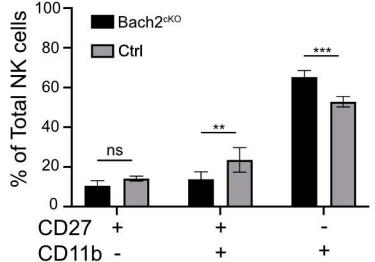
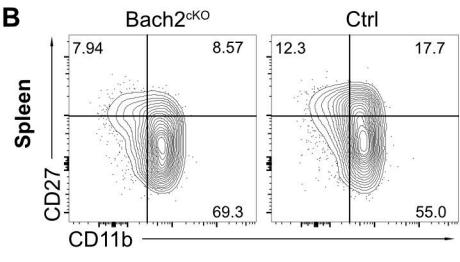
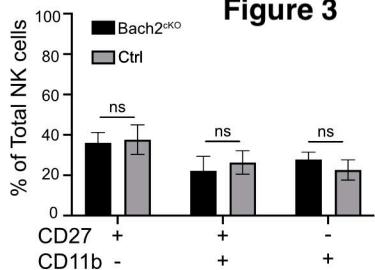
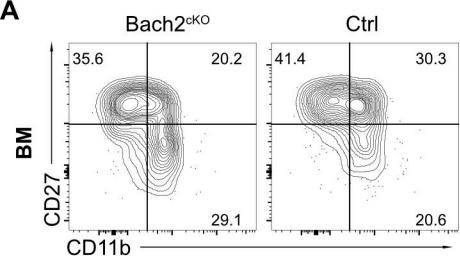
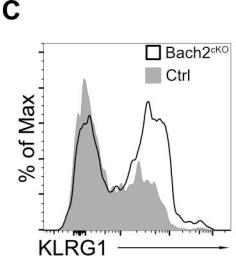
760 **Fig. S2** Bach2-deficiency in NK cells resembles activated effector CD8⁺ T cells.
761 (A) Total number of NK cells from the spleen of Bach2^{cKO} or control mice. Data are shown for
762 three mice per group from one experiment (student's *t* test). ns, not significant. (B) The
763 expression profile of various NK receptors (% of total NK cells) in control and Bach2^{cKO} mice.
764 Data were pooled from two independent experiments with a total of four to six mice per group
765 (two-way ANOVA with Bonferroni correction). **p* < 0.05. (C) Flow cytometry sorting of splenic
766 NK cells (CD3⁻CD19⁻NK1.1⁺NKp46⁺) from Bach2^{cKO} or control mice for RNA-seq analysis
767 (Fig. 2A). Post-sorting flow cytometry shows the purity of the NK cells. (D) Principal
768 component analysis (PCA) of differentially expressed genes (log2FC>log2(1.5) and FDR<0.01

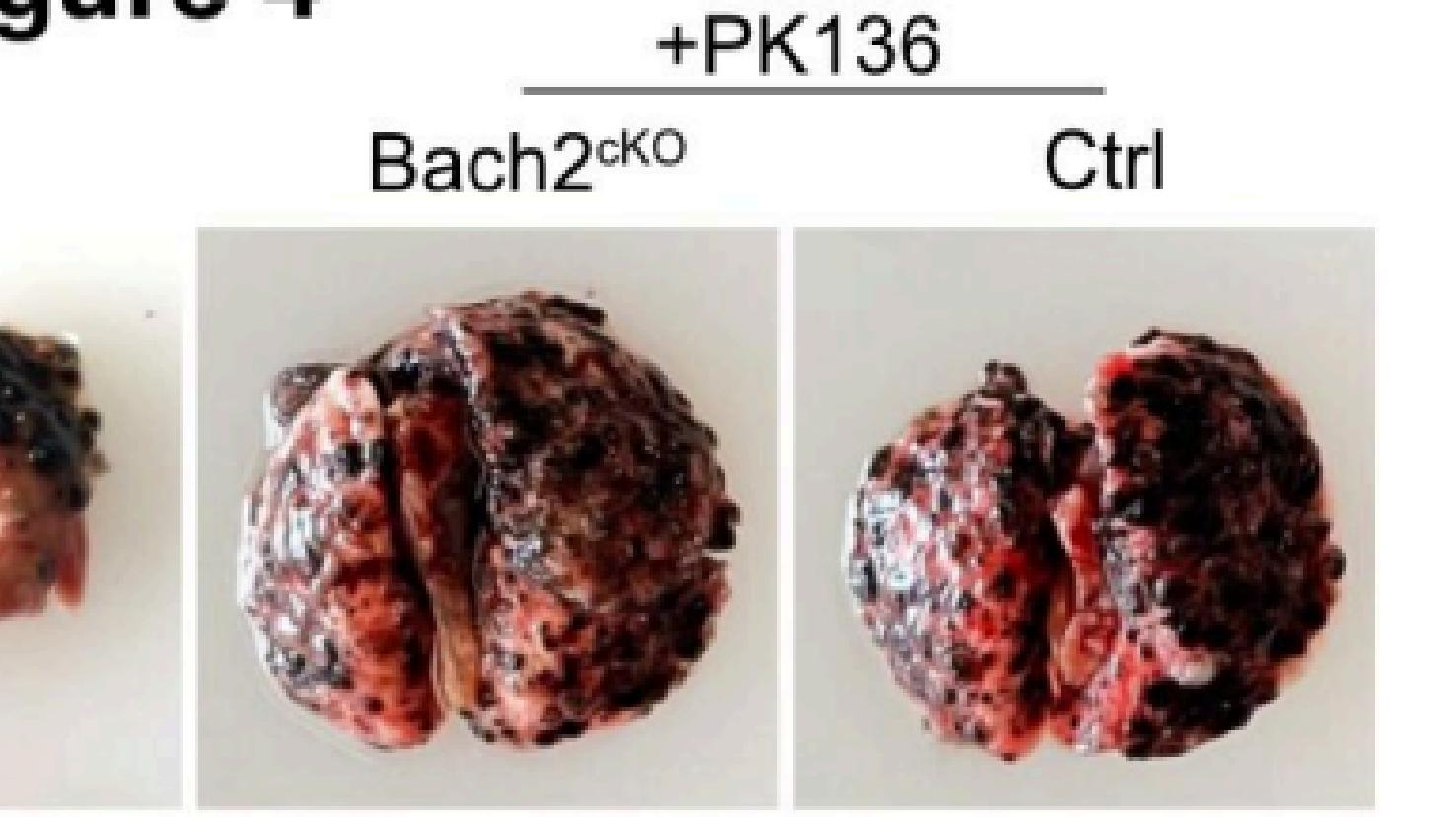
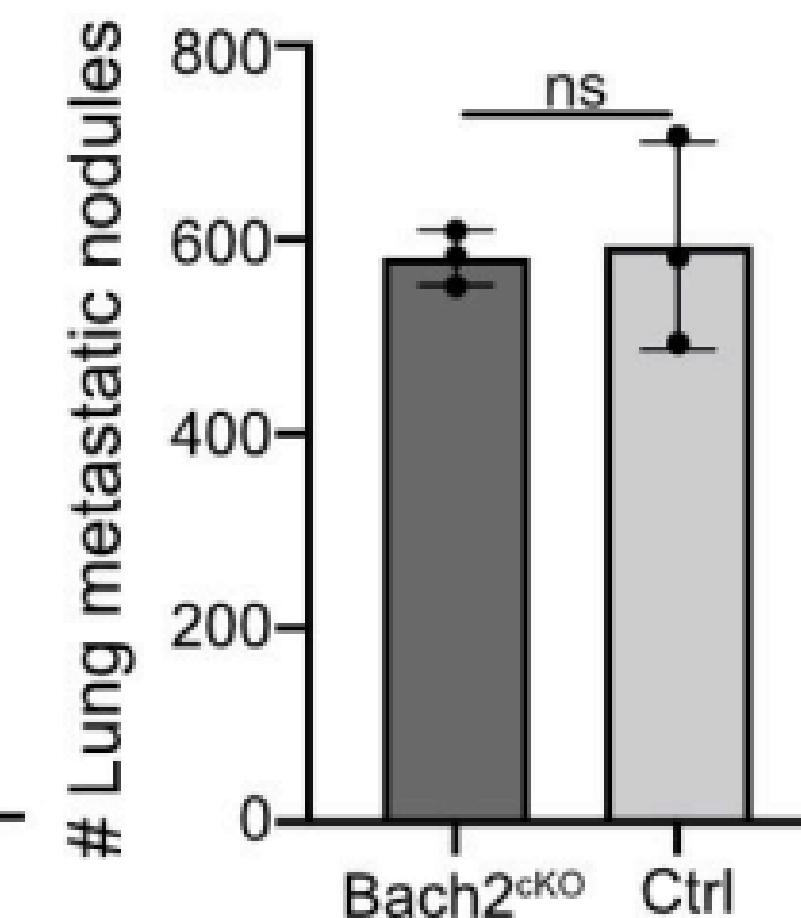
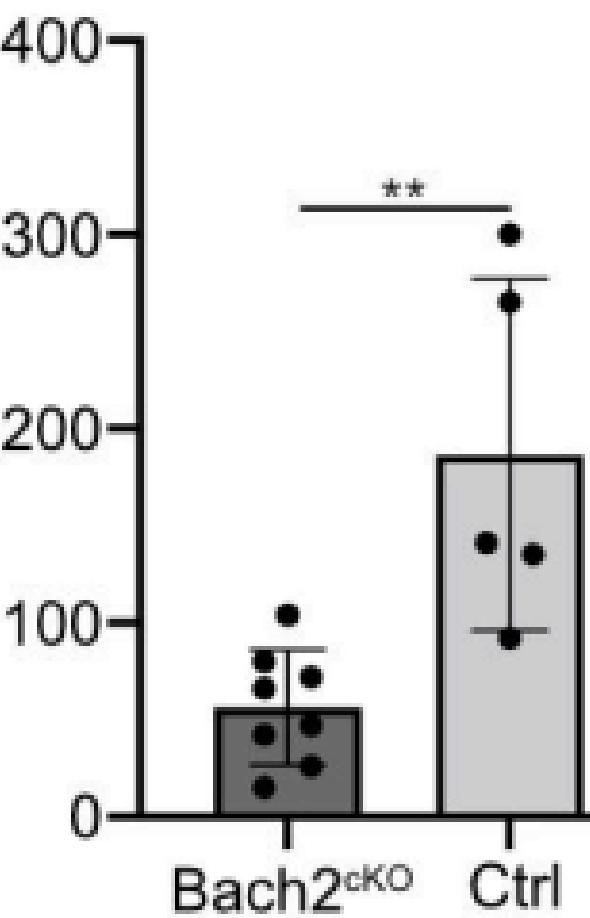
769 or $\log_{2}FC < -\log_{2}(1.5)$ and $FDR < 0.01$) for splenic NK cells isolated from control and $Bach2^{cKO}$
770 mice. (E and F) GSEA illustrating the enrichment of naïve (E) and day7 Klrg1-positive (F) gene
771 signatures in $Bach2^{cKO}$ and control splenic NK cells.

772












773 **Supplemental Table S1** Differential gene expression in NK cells between $Bach2^{cKO}$ and control
774 mice.


775












776
777 **Figure 1-source data.** $Bach2$ expression in different subsets by western blot.




778 Splenic NK cells were enriched from splenocytes of $Bach2^{Flag}$ mice. Enriched NK cells ($CD3^{-}$
779 $NK1.1^{+}$) from $Bach2^{Flag}$ mice were further sorted into $CD27^{+}CD11b^{-}$, $CD27^{+}CD11b^{+}$ and $CD27^{-}$
780 $CD11b^{+}$ subsets. (A) $Bach2$ expression in the subsets was detected using Anti-FLAG M2-
781 Peroxidase (HRP) antibody by western blot. (B) Expression of Actin was used as an internal
782 control. Splenocytes from WT mice were used as negative control. Splenocytes from $Bach2^{Flag}$
783 mice were used as positive control. Two individual experiments have been done with one mouse
784 each time. (C) Composite figure using source data from A and B.

785

Figure 1**A Lin^{2B4⁺CD27⁺CD127⁺}****B BM NK****C Spleen NK****D****E****F****G**

Figure 3

A**Figure 4****B**

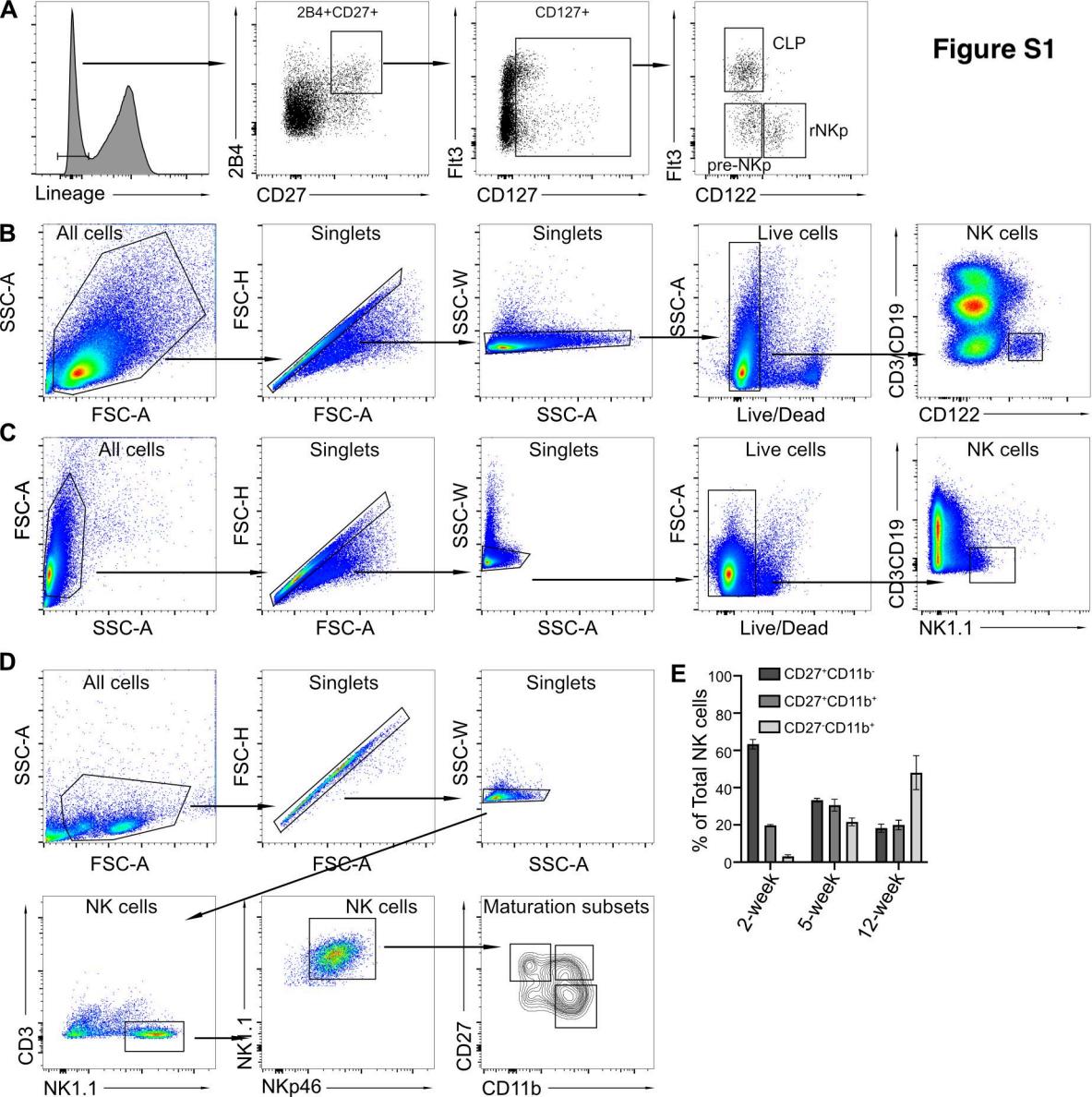
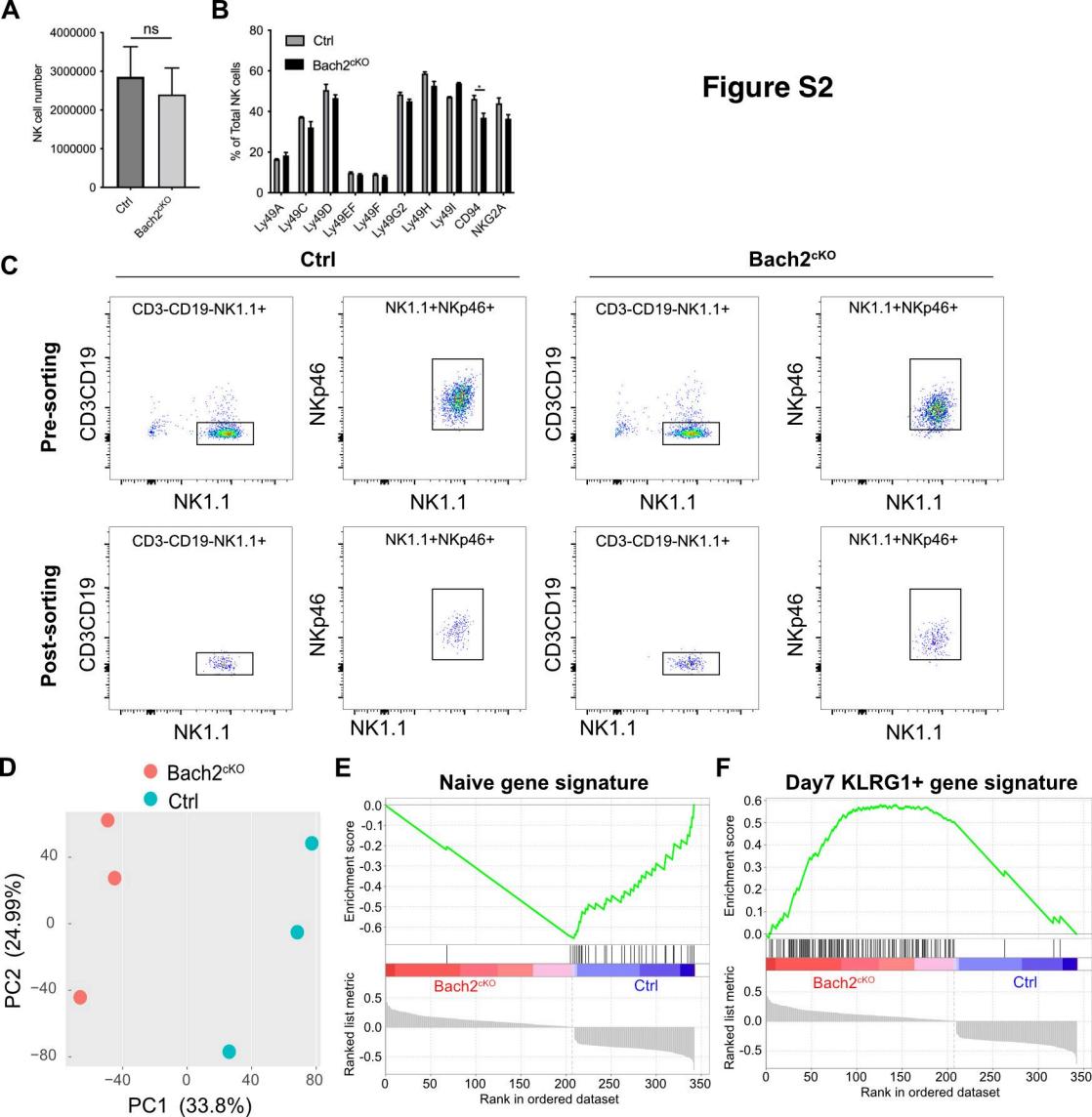


Figure S1

Figure S2

