

1 **SMN promotes mitochondrial metabolic maturation during myogenesis by regulating the**
2 **MYOD-miRNA axis.**

3

4 **Authors**

5 Akihiro Ikenaka¹, Yohko Kitagawa¹, Michiko Yoshida², Chuang-Yu, Lin^{1,3}, Akira Niwa¹, Tatsutoshi
6 Nakahata⁴ and Megumu K. Saito^{1,4,*}.

7

8 **Affiliations**

9 ¹Department of Clinical Application, and ⁴Drug Discovery Technology Development Office, Center for
10 iPS cell Research and Application, Kyoto University, Kyoto, Japan

11 ²Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan

12 ³Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University,
13 Kaohsiung, Taiwan

14 ⁴Lead Contact

15 * Corresponding author, lead contact

16

17 **Address for Correspondence**

18 Megumu K. Saito, M.D., Ph.D.

19 Center for iPS Cell Research and Application (CiRA), Kyoto University

20 53, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan

21

22 Phone: +81-75-366-7085

23 FAX : +81 -75-366-7091

24 E-mail : msaito@cira.kyoto-u.ac.jp

25

26 **Abstract (196 words)**

27 Spinal muscular atrophy (SMA) is a congenital neuromuscular disease caused by the mutation or
28 deletion of *survival motor neuron 1 (SMN1)* gene. Although the primary cause of progressive muscle
29 atrophy in SMA has classically been considered the degeneration of motor neurons, recent studies
30 have indicated a skeletal muscle-specific pathological phenotype such as impaired mitochondrial
31 function and enhanced cell death. Here we found that the downregulation of SMN causes
32 mitochondrial dysfunction and subsequent cell death in *in vitro* models of skeletal myogenesis with
33 both a murine C2C12 cell line and human induced pluripotent stem cells. During myogenesis, SMN
34 binds to the genome upstream of the transcriptional start sites of MYOD1 and microRNA (miR)-1 and
35 -206. Accordingly, the loss of SMN downregulates these miRs, whereas supplementation of the miRs
36 recovers the mitochondrial function, cell survival and myotube formation of SMN-deficient C2C12,
37 indicating the SMN-miR axis is essential for myogenic metabolic maturation. Additionally, introduction
38 of the miRs into ex vivo muscle stem cells derived from $\Delta 7$ -SMA mice caused myotube formation and
39 muscle contraction. In conclusion, our data revealed novel transcriptional roles of SMN during
40 myogenesis, providing an alternative muscle-oriented therapeutic strategy for SMA patients.
41

42 **Key words**

43 Spinal muscular atrophy; Survival motor neuron; induced pluripotent stem cells; Skeletal muscle;
44 Muscle stem cells; miRNAs
45

46 **Highlights**

47 • Reduced SMN causes mitochondrial dysregulation in myogenic cells.
48 • Reduced SMN downregulates miR-1 and miR-206 expression in myogenic cells.
49 • SMN protein binds to the genome upstream of MYOD1, miR-1 and miR-206.
50 • miR-1 and miR-206 are sufficient to improve skeletal muscle function in an SMA model.
51

52 **Introduction**

53 Spinal muscular atrophy (SMA) is an inherent neuromuscular disease caused by mutation or deletion
54 of *survival motor neuron 1 (SMN1)* gene. *SMN1* encodes the SMN protein. In the severest form of
55 SMA, infants suffer from severe muscle weakness and respiratory failure during the first year of life.
56 Classically, reduced SMN expression was thought to cause selective and primary lower motor
57 neuronal death, leading to subsequent denervation and muscle atrophy, since the degeneration of
58 anterior horn motor neurons is the predominant pathological finding of SMA. However, SMA is
59 currently regarded as a systemic disorder affecting not only motor neurons, but also neuromuscular
60 junctions and skeletal muscles (Hayhurst et al., 2012; Martinez et al., 2012). Indeed, myoblasts with
61 SMN knockdown show reduced proliferation and fusion defects (Shafeey et al., 2005). Animal models
62 of SMA also revealed skeletal muscle has its own pathological contribution to the SMA phenotype
63 (Kim et al., 2020; Martinez et al., 2012). However, the cell-autonomous molecular mechanism of the
64 skeletal muscle degeneration due to SMN deficiency is mostly unknown.

65 SMN localizes ubiquitously and exerts its function in various manners. The first identified
66 function of SMN was the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). SMN
67 forms a large protein complex (SMN complex) and chaperones the biogenesis of snRNPs in the
68 cytoplasm and subsequent translocation to the nucleus (Qing Liu, 1997). In neurons, SMN has a
69 unique role on mRNA transport and local translation, which is exerted by binding with HuD in the
70 cytoplasm (Akten et al., 2011; Hao le et al., 2017). SMN is also involved in actin dynamics and axon
71 elongation by interacting with profilin 2a (Akten et al., 2011; Hao le et al., 2017; Sharma et al., 2005).
72 Additionally, the loss of SMN in motor neurons can cause mitochondrial dysfunction and impaired
73 cellular respiration (Miller et al., 2016). These findings indicate that SMN has both universal and cell-
74 type specific roles. Thus, understanding the specific function of SMN in skeletal muscle could lead to
75 novel muscle-targeting therapeutic strategies.

76 Skeletal muscle stem cells and myoblasts undergo a dramatic bioenergetic transition from
77 glycolysis to oxidative phosphorylation during differentiation into myotubes. This metabolic maturation
78 is accompanied by mitochondrial maturation (Miller et al., 2016; Remels et al., 2010). One of the most
79 important transcription factors governing the metabolic and mitochondrial maturation is *Myoblast*
80 *determination protein 1 (MYOD1)*. MYOD1 is known to regulate oxidative metabolism by directly
81 binding the enhancers along oxidative metabolic genes (Shintaku et al., 2016). MYOD1 also
82 contributes to metabolic maturation by upregulating microRNA (miR)-1, -133a and -206, all of which
83 are important for metabolic and mitochondrial maturation (Przanowska et al., 2020; Shintaku et al.,
84 2016). The MYOD1-miR axis is therefore important for skeletal muscle biogenesis. Interestingly,
85 skeletal muscle specimens obtained from SMA patients showed a downregulation of electron transfer
86 chain (ETC) and mitochondrial outer membrane proteins (Ripolone et al., 2015), a phenomenon also
87 seen in neurons. Oxygen consumption was also decreased in an *in vitro* model using myotubes
88 differentiated from SMA pluripotent stem cell (PSC) models (Hellbach et al., 2018; Ripolone et al.,
89 2015). Although these findings highlight mitochondrial dysfunction in skeletal muscles, the precise
90 molecular mechanism remains unknown. Especially, the relationship between SMN and the MYOD1-
91 miR axis should be elucidated.

92 Here we describe a novel function of SMN during myogenesis using human and murine *in vitro*
93 models. We found that SMN diffusely localizes in the nucleus during myogenesis. The loss of SMN
94 expression causes the downregulation of MYOD1, miR-1 and miR-206, resulting in impaired
95 metabolic maturation and myotube formation. We also show that the *in vitro* phenotypes of SMA
96 myotubes are successfully rescued by the ectopic expression of miRs, demonstrating SMN acts as
97 an upstream regulator of these genes. Interestingly, SMN binds to the upstream genomic legions of
98 MYOD1 and the miR host genes, indicating that SMN regulates their expression. Our results highlight
99 the unique stage- and cell type-specific functions of nuclear SMN that make it a regulatory factor of
100 the metabolic maturation of myotubes, thus providing novel insights into the skeletal myogenesis and
101 an alternative therapeutic strategy for the biogenesis of skeletal muscle in SMA.

102

103 **Results**

104 **Loss of SMN causes mitochondrial bioenergetic failure during the myogenic conversion of**
105 **iPSCs.**

106 Knowing that the forced expression of MYOD1 converts human PSCs to myotubes (Tanaka et al.,
107 2013), we first investigated the effect of SMN downregulation on the myogenic conversion of human
108 iPSCs. For this purpose, we prepared two pairs of isogenic iPSC clones with a doxycycline-inducible
109 MYOD1 expression construct: first, a control 201B7 iPSC line and its SMN-knockdown counterpart
110 (B7-M and B7-M^{SMNKD}, respectively); and second, an SMA patient-derived iPSC line (Yoshida et al.,
111 2015) and the same line but with SMN supplementation (SMA-M and SMA-M^{OE}, respectively). We
112 then converted these clones into myogenic cells by adding doxycycline (**Figure 1A**). On day 3, more
113 than 90% of the cells were positive for Myogenin (MyoG) in all clones (**Figures S1A and S1B**).
114 Genes associated with myogenesis, such as MyoG and Myocyte Enhancer factor 2C (MEF2C), were
115 also upregulated after differentiation (**Figure S1C**). The level of SMN protein was lower in B7-M^{SMNKD}
116 and SMA-M even after differentiation (**Figure S1D**). Interestingly, we found that while iPSC clones
117 with sufficient SMN expression (B7-M and SMA-M^{OE}; SMN-maintained clones) showed increased cell
118 number during the conversion, those with downregulated SMN (B7-M^{SMNKD} and SMA-M; SMN-
119 downregulated clones) failed to proliferate (**Figure S1E**). This effect could be attributed to the
120 increased apoptosis in the SMN-downregulated clones, because the cleavage of caspase-3 was
121 increased. Indeed, treatment with a pan-caspase inhibitor, Z-VAD-FMK, reduced the number of
122 cleaved caspase-3 positive cells in SMN-downregulated clones (**Figure 1B and 1C**).

123 During myogenic differentiation, the bioenergetic status shifts from glycolysis to mitochondrial
124 oxidative phosphorylation. To enhance the mitochondrial function, genes associated with the
125 mitochondrial respiratory complex are upregulated (Remels et al., 2010; Wust et al., 2018). To
126 understand the mechanism of apoptosis, we focused on the mitochondrial biology during myogenic
127 conversion, because myogenic differentiation promotes mitochondrial biogenesis (Frangini et al.,
128 2013) and because mitochondrial failure can cause apoptosis. During the myogenic conversion, the
129 mitochondrial DNA (mtDNA) copy number increased in SMN-maintained clones but not in SMN-
130 downregulated clones (**Figure S1F**). SMN-downregulated myogenic cells showed a downregulation
131 of mitochondrial proteins associated with bioenergetic function (**Figure 1D**). The downregulation of
132 mitochondrial proteins generally represses the oxygen consumption rate of mitochondria (Trotta et
133 al., 2017; Yan et al., 2019). Consistently, the mitochondrial oxygen consumption capacity was
134 impaired (**Figures 1E, 1F and S1G**). In line with this finding, the mitochondrial membrane potential
135 ($\Delta\psi_m$) was lower in SMN-downregulated clones (**Figure S1H**). These results indicate that SMN is
136 required for mitochondrial bioenergetic maturation during myogenic conversion.

137 Impairment of the mitochondrial complex in the ETC promotes excessive ROS production,
138 resulting in apoptosis (Trotta et al., 2017). Consistently, ROS production was increased in SMN-
139 downregulated clones on day 3 (**Figure S1I**). Treating the SMN-downregulated clones with an
140 antioxidant, α -tocopherol (α Toc), reduced the apoptotic cell number such that it almost equaled that
141 of SMN-maintained clones (**Figures S1J**) and recovered the total cell number (**Figure S1K**). Overall,
142 our observations suggest that the loss of SMN causes mitochondrial bioenergetic dysregulation and
143 subsequent ROS-mediated apoptosis during myogenic conversion.

144 **Depletion of SMN causes mitochondrial dysfunction in C2C12 cells**

145 Since the iPSC model uses an artificial expression of MYOD1 to convert cell fate, we next evaluated
146 the reproducibility of our findings by employing a commonly used myogenic differentiation model with
147 the murine C2C12 cell line. For this, we knocked down *Smn* in C2C12 (C2C12^{siSmn}) and differentiated
148 the cells into myotubes by changing the culture medium (**Figure 1G**). C2C12^{siSmn} showed reduced
149 SMN expression at both the transcript and protein levels (**Figures S1L and S1M**). Differentiated
150 C2C12^{siSmn} showed decreased myotube formation, as measured by myosin heavy chain (MyHC)
151 staining (**Figures 1H and 1I**), indicating the indispensable role of *Smn* on myogenic differentiation.

152 The mitochondrial function of C2C12 cells was also evaluated. Cytochrome c oxidase subunit
153 1 (COX1) was upregulated in C2C12 cells 6 days after the differentiation, indicating mitochondrial

155 maturation (**Figure S1N and S1O**). On the other hand, mitochondrial proteins in differentiated
156 C2C12^{siSmn} were less compared to C2C12^{SC} (**Figure 1J**). As expected, C2C12^{siSmn} showed a lower
157 oxygen consumption capacity than C2C12^{SC} (**Figures 1K and 1L**), indicating the dysregulation of
158 mitochondrial electron transmission. Consistently, $\Delta\psi_m$ was also decreased in C2C12^{siSmn} (**Figure**
159 **1M**).

160 As expected, mitochondrial ROS production increased in C2C12^{siSmn} on day 3 of the
161 differentiation (**Figure 1N**). The level of cleaved caspase-3 also increased on day 3 in C2C12^{siSmn},
162 indicating the occurrence of mitochondrial apoptosis (**Figure 1O**). Overall, the data obtained with the
163 C2C12 model were consistent with the iPSC model, showing reproducibility among different species
164 and differentiation systems. Previous SMA studies about the pathogenesis of skeletal muscle showed
165 a failure of the myogenic terminal differentiation, including the abnormal expression of myogenic
166 regulatory genes and fewer myotubes (Boyer et al., 2013; Bricceno et al., 2014; Hayhurst et al., 2012;
167 Nicole et al., 2003). Considering that the failure of the mitochondrial metabolic transition impairs
168 myogenic terminal differentiation (Ripolone et al., 2015; Wust et al., 2018), our results indicate the
169 potential relationship between the mitochondrial metabolic transition and failure of myogenic
170 differentiation in SMA skeletal muscle models.

171

172 **Depletion of SMN downregulates the expression of MYOD1 and downstream miR-1 and miR-
173 206**

174 MYOD1 is an essential transcriptional factor for myogenesis, and it and its downstream factors
175 enhance mitochondrial oxidative metabolism during myogenic differentiation (Shintaku et al., 2016;
176 Wust et al., 2018; Zhang et al., 2014). Since the myogenic differentiation of iPSCs, primary myoblasts
177 and C2C12 cells relies on the expression of MYOD1 (Tanaka et al., 2013; Wang et al., 2017), we
178 hypothesized that SMN regulates muscle differentiation via MYOD1. In C2C12 cells, Myod1
179 expression increased during differentiation (**Figure S2A**), but the depletion of Smn significantly
180 decreased the expression of Myod1 at both the mRNA and protein level (**Figures 2A and 2B**).
181 Interestingly, in the iPSC model, while the expression of exogenous MYOD1 transgene was
182 comparable between SMN-maintained clones and SMN-downregulated clones (**Figure S2B**), the
183 endogenous MYOD1 expression was significantly impaired in the SMN-downregulated clones
184 (**Figure S2C**). Therefore, the endogenous transcriptional control of MYOD1 gene was affected by the
185 dose of SMN.

186 We next investigated a downstream molecular mechanism harnessing MYOD1 and
187 mitochondrial biogenesis. We focused on miR-1 and miR-206, because both are directly regulated
188 by MYOD1, highly expressed during the development of skeletal muscle (Rao et al., 2006), and
189 control mitochondrial function in myogenic cells (Przanowska et al., 2020; Wust et al., 2018; Zhang
190 et al., 2014). As expected, C2C12^{siSmn} showed less expression of miR-1 and miR-206 compared to
191 C2C12^{SC} (**Figures 2C and 2D**). Similarly, in the iPSC model, SMN-downregulated clones showed
192 less expression too (**Figures S2D and S2E**).

193 Murine miR-1 and miR-206 are embedded in miR1-1 host gene (miR1-1 hg) and long
194 intergenic non-protein coding RNA muscle differentiation 1 (linc-MD1), respectively. These miRs are
195 transcribed as primary miRs (pri-miRs) from these host genes. To determine if the downregulation of
196 the miRs occurred at the transcriptional level, we evaluated the expression of their pri-miRs. The
197 expressions of precursor miRs (pre-miRs) and the host genes of both miRs were also significantly
198 downregulated (**Figures 2E and 2F**), indicating that the cause of impaired miR expression is at least
199 partially attributed to transcriptional dysregulation. In conclusion, our data showed that the depletion
200 of SMN reduces the expression of MYOD1 and its downstream miRs, which in turn could cause
201 impaired mitochondrial metabolic maturation during muscle differentiation.

202

203 **Supplementation of miRs to SMN-depleted myoblasts recovers mitochondrial metabolism and
204 myogenesis**

205 To investigate whether miR-1 and miR-206 are responsible factors for the mitochondrial metabolic
206 dysfunction in SMN-depleted myogenic cells, we introduced miR-1 and/or miR-206 into C2C12^{siSmn}

207 before myogenic differentiation (**Figure 3A**). Supplementation of the miRs into C2C12^{siSMN} improved
208 the oxygen consumption capacity on day 6 compared to untreated C2C12^{siSMN} (**Figure 3B and 3C**).
209 Consistently, miR treatment recovered the expression of COX1 and ND1 to the level of C2C12^{SC}
210 (**Figures 3D, 3E and 3F**). The effect of miR supplementation on mitochondrial metabolism was
211 specific to C2C12^{siSMN}, as miR treatment to C2C12^{SC} did not affect the mitochondrial oxygen
212 consumption capacity or the expression of COX1 (**Figures S3A, S3B and S3C**). Notably, miR
213 supplementation improved the myogenesis of C2C12^{siSMN}, as it recovered the myotube formation
214 ability and cell number (**Figures 3G, 3H and 3I**). In conclusion, the dysregulation of mitochondrial
215 metabolism and myogenesis of myogenic cells due to SMN depletion is caused by the downregulation
216 of miRs.

217 Next, to address the causal association of the expression of MYOD1 and miRs, exogenous
218 MYOD1 was introduced into C2C12 cells (**Figure S3D**). MYOD1 overexpression in C2C12^{siSMN}
219 restored both the pri-miR and pre-miR expression to levels comparable with C2C12^{SC} (**Figures S3E**
220 and **S3F**). It also recovered the expression of proteins associated with mitochondrial metabolism
221 (**Figure S3G**) and myotube formation (**Figures S3H and S3I**). Hence, MYOD1 depletion is
222 responsible for the decrease of these miRs. Overall, our data demonstrate that SMN contributes to
223 the maturation of mitochondrial metabolism and myogenesis by regulating the MYOD1-miR-1/-206
224 axis.

225 **SMN transiently localizes in the nucleus during myogenesis**

226 We next sought to understand the molecular mechanisms by which SMN regulates the MYOD1-miR-
227 1/-206 axis. For this purpose, we first tracked the expression and localization of SMN. In the iPSC
228 model, SMN was upregulated at both the transcript and protein level (**Figures 4A, 4B and 4C**),
229 peaking at day 3 of the conversion. Interestingly, we found that SMN protein diffusely localized in the
230 whole nucleus, corresponding to the upregulation of SMN (**Figures 4D and 4E**). The temporal
231 localization of SMN in the nucleus was confirmed by protein extraction of the nuclear compartment
232 (**Figure 4F**). Similar to the iPSC model, the upregulation and diffuse nuclear localization of SMN was
233 observed during the myogenic differentiation of C2C12 cells, which is different from the typical
234 localization of SMN on Cajal bodies (**Figures S4A, S4B, S4C and S4D**). Therefore, we hypothesized
235 that during myogenesis SMN has a unique role in the nucleus.

236 The canonical function of SMN is to form snRNPs in the cytoplasm and nuclear Cajal bodies
237 in order to maintain the spliceosome (Lotti et al., 2012; Zhang et al., 2008). The number of nuclear
238 SMN foci, which represents the localization of SMN in Cajal bodies, transiently increased in iPSC-
239 derived myogenic cells (**Figure S4E**). However, the signal intensity of diffusely localized SMN protein
240 was not significantly different between cells with and without foci (**Figure S4F**). Furthermore, SMN
241 foci in C2C12 cells did not increase after differentiation despite the nuclear translocation of SMN
242 (**Figure S4G**). These findings imply that diffusely distributed nuclear SMN is regulated independently
243 of SMN in foci and that this spatiotemporally specific distribution is associated with the function of
244 SMN during myogenesis.

245 **SMN and MYOD1 interact with each other and bind to the promoter regions of myogenic genes**
246 Previous studies reported that SMN is involved in genome instability and transcriptional termination
247 by binding with RNAPL II (RNA polymerase II) (Jangi et al., 2017; Zhao et al., 2016). However, it is
248 unclear whether SMN interacts with other molecules involved in transcription or whether it has a
249 regulatory role on controlling cell fate by interacting with the genome. The impaired expression of
250 endogenous MYOD1 mRNA in SMN-depleted cells and the temporal diffuse nuclear localization of
251 SMN during myogenesis (**Figures 2A, S2C and 4E**) prompted us to test the hypothesis that the
252 autoregulation of MYOD1 promotor is controlled by SMN. Indeed, chromatin immunoprecipitation-
253 quantitative PCR analysis (ChIP-qPCR) revealed that SMN bound to the upstream region of the
254 transcription start site (TSS) of MYOD1 in both C2C12- and iPSC-derived myogenic cells (**Figures**
255 **5A and S5A**). Furthermore, we found that SMN and MYOD1 were co-immunoprecipitated with each
256 other in both cell types (**Figures 5B and S5B**). A physical interaction between SMN and MYOD1 was
257

258

259 also confirmed by the overexpression of Flag-tagged MYOD1 and His-tagged SMN in HEK293 cells
260 (**Figure S5C**). Overall, our data suggest that SMN binds to the promoter region of MYOD1 interacting
261 with MYOD1 and regulates the expression of MYOD1 during myogenesis.

262 Since the transcription of pri-miR-1 and pri-miR-206 is regulated by MYOD1 (Cesana et al.,
263 2011; Rao et al., 2006) and because SMN and MYOD1 interact at the promotor region of MYOD1,
264 we next investigated whether SMN also binds to the promotor region of the host genes. Linc-MD1
265 has two promoter regions, a distal promoter and proximal promoter, in its locus (Cesana et al., 2011).
266 The binding of SMN in both promoter regions was confirmed by ChIP-qPCR analysis (**Figure 5C**).
267 SMN also bound to the promotor region of miR1-1 hg (**Figure 5D**). Additionally, we confirmed that
268 SMN binds to the promoter region of human miR-1 and miR-206 in 201B7-derived myogenic cells
269 (**Figure S5D and S5E**). However, since SMN also binds with RNAPLII (Zhao et al., 2016), our data
270 cannot exclude the possibility that SMN non-specifically binds the loci of other expressed genes along
271 with RNAPLII. To exclude this possibility, we evaluated the binding of SMN and RNAPLII to the
272 promoter region of other genes including inhibitor of DNA binding 3 (Id3), a gene highly expressed in
273 proliferating myoblasts, and ribosomal protein L11 (Rpl11), which is ubiquitously expressed (Bouakaz
274 et al., 2006; Wu and Lim, 2005) (**Figure S5F**). RNAPLII bound the promoter regions of both Id3 and
275 Rpl11, but SMN bound to neither (**Figure S5G and S5H**). Consistently, the expression level of Rpl11
276 was not affected by the expression of Smn (**Figure S5I**). On the other hand, Id3 was slightly down-
277 regulated in C2C12^{siSMN} despite SMN not binding to its promoter region (**Figure S5I**). We attribute
278 this observation to the disturbance of myogenic differentiation caused by the depletion of SMN
279 (Bricceno et al., 2014). Therefore, SMN binds selectively to certain genes during myogenesis, and
280 SMN-bound genes are strongly down-regulated in SMN-depleted cells. Overall, SMN and MYOD1
281 interact with each other to bind to the promoter regions of MYOD1 and miR host genes. This
282 mechanism may be important for regulation of the MYOD1-miR-1/-206 axis during myogenesis.
283

284 ***Loss of mitochondrial integrity occurs prior to denervation in skeletal muscle of SMA model***
285 ***mice.***

286 Several studies have suggested mitochondrial dysfunction in SMN-deficient cells, but none have
287 described this event in the skeletal muscle of SMA model mice. We therefore wondered whether SMN
288 and miR- and -206 have important roles in mitochondrial homeostasis in animal models. We used a
289 common SMA model mice, $\Delta 7$ -SMA, for these experiments. $\Delta 7$ -SMA mice are a transgenic strain
290 expressing human SMN2 and the cDNA of SMN $\Delta 7$ in Smn-knockout mice (Smn $^{+/+}$;SMN2 $^{+/+}$;SMN $\Delta 7^{+/+}$).
291 They showed an extended lifespan of 9-18 days compared to the severest SMA model mice. To
292 understand the skeletal muscle-specific pathology, we examined $\Delta 7$ -SMA mice on postnatal day 3
293 (P3), which is prior to the occurrence of motor neuronal deficits. The body weight of P3 $\Delta 7$ -SMA mice
294 was already decreased compared to WT, as previously reported (Ando et al., 2020) (**Figure S6A**),
295 indicating that skeletal muscle atrophy had already begun. The expression level of sarcomeric protein
296 actinin Alpha 2 (ACTN2) also decreased in the tibialis anterior (TA), gastrocnemius (GA) and
297 diaphragm of $\Delta 7$ -SMA mice (**Figure 6A**), which is a hallmark of skeletal muscle atrophy (Schiaffino
298 et al., 2013). Quantification of the mitochondrial area with transmission electron microscopy (TEM)
299 images revealed smaller mitochondria in the TA and GA of $\Delta 7$ -SMA mice (**Figures 6B, 6C and S6B**).
300 In addition, SMN protein was hardly detected in the TA or GA of $\Delta 7$ -SMA mice, and mitochondrial
301 proteins were also fewer (**Figures 6D and 6E**). We confirmed that motor neurons and neuromuscular
302 junctions (NMJs) were maintained in P3 $\Delta 7$ -SMA mice, since the areas of two neuronal markers (Tuj1
303 and SV2) and acetylcholine receptors (AChRs) were comparable to WT (**Figures S6C, S6D and**
304 **S6E**). Therefore, the early mitochondrial defects in $\Delta 7$ -SMA mice seems to be an intrinsic event of
305 skeletal muscle preceding neuronal degeneration.

306 Severe SMA patients suffer from respiratory failure due to the paralysis of respiratory muscles
307 (Burghes and Beattie, 2009). Considering that a loss of NMJs occurs prior to motor neuronal death
308 in SMA model mice (Yoshida et al., 2015) and mitochondrial function is important for the maintenance
309 of NMJs (Xiao et al., 2020), we speculated that postsynaptic mitochondria surrounding NMJs were
310 also affected in the early life period. Postsynaptic mitochondria derived from the diaphragm of $\Delta 7$ -

311 SMA mice were significantly smaller than those from WT (**Figures S6F and S6G**). Mitochondrial
312 proteins in the diaphragm of $\Delta 7$ -SMA mice were also decreased (**Figure S6H**). Considering that the
313 density of NMJs was maintained in the diaphragm of $\Delta 7$ -SMA mice (see **Figure S6I**), these results
314 suggested that the mitochondrial defects occur prior to the degeneration of NMJs.
315

316 ***Impaired functional myotube forming ability of satellite cells from $\Delta 7$ -SMA mice is recovered
317 by miR replacement therapy***

318 Previous data have shown that miR treatment alters the phenotype of skeletal muscle cell lines.
319 Therefore, we next examined whether miRs could also improve the SMN-specific phenotype in mouse
320 skeletal muscle stem cells. We applied miRNA replacement to muscle stem/progenitor cells (MuSCs)
321 obtained from $\Delta 7$ -SMA mice. For this, we isolated the cell population that included satellite cells and
322 differentiated it into myotubes (Hayhurst et al., 2012). To evaluate the contraction ability of the skeletal
323 myotubes, we stimulated them with a square wave electric current and measured the skeletal muscle
324 contraction velocity (SMCV) using a cell motion imaging system (**Figure 7A**) (Hoang et al., 2019; Lin
325 et al., 2019). Myotubes from $\Delta 7$ -MuSCs showed a significantly slower SMCV than those from WT-
326 MuSCs. Consistent results were obtained for MuSCs from both the TA and GA (**Figures 7B and 7C**).
327 SMCV was not affected by treatment with curare, a competitive inhibitor of AChRs, excluding the
328 possibility of NMJ-dependent muscle contraction due to an unexpected contamination of motor
329 neurons (**Figures S7A and S7B**). Overall, $\Delta 7$ -MuSCs had an impaired ability to differentiate into
330 functional myotubes.

331 Finally, to evaluate the potential therapeutic ability of miR supplementation, $\Delta 7$ -MuSCs were
332 infected by lentivirus containing either an miR-1 and miR-206 double expression vector ($\Delta 7$ -
333 MuSC^{miRs}) or empty vector ($\Delta 7$ -MuSC^{Empty}) (**Figure 7D**). Introduction of the miRs significantly
334 improved myotube formation compared to $\Delta 7$ -MuSC^{Empty} (**Figures 7E, 7F, S7C and S7D**). Notably,
335 the SMCV of $\Delta 7$ -MuSC^{miRs}-derived myotubes was significantly improved and reached the level of
336 WT-MuSCs (**Figures 7G-I and S7E-G, Video S1-S12**). Collectively, SMN plays an important role in
337 functional muscle differentiation even in primary MuSCs, and miR replacement fully restored the
338 differentiation potential of SMA-derived MuSCs.
339
340

341 **Discussion**

342 Recently, mitochondrial metabolic dysfunction in SMA has been reported in both motor neurons and
343 skeletal muscle (Miller et al., 2016; Ripolone et al., 2015). In the current study, we show that SMN
344 deficiency caused mitochondrial metabolic dysfunction in C2C12 cells and myogenic cells derived
345 from iPSCs at the early stage of differentiation. Moreover, $\Delta 7$ -SMA mice showed few mitochondria
346 and less mitochondrial protein expression at P3, which is before the occurrence of motor neuron
347 denervation. Increasing mitochondrial ETC protein expression in C2C12^{siSMN} by miR-1 and miR-206
348 treatment improved the myotube formation. Therefore, our results indicated a strong association of
349 muscle atrophy in SMA with mitochondrial metabolic dysfunction during myogenic differentiation,
350 indicating a possible pathway for the SMA pathology in skeletal muscle. However, miR-1 and miR-
351 206 also mediate the mitochondria-independent myogenic pathway (Chen et al., 2006; Chen et al.,
352 2010), which was not analyzed in this study and deserves attention in future studies for its relationship
353 with SMN.

354 Our results indicated that SMN could play a role in the regulation of transcription during
355 myogenic differentiation. However, there are still questions about this mechanism. SMN protein binds
356 with RNAPLII via the carboxy-terminal domain to form a DNA-nascent RNA hybrid structure (R
357 loop) (Zhao et al., 2016). Failure to resolve the R loop disturbs transcriptional termination and
358 accelerates the accumulation of DNA damage (Grunseich et al., 2018; Jangi et al., 2017; Zhao et al.,
359 2016). However, there is no evidence that SMN deficiency in the RNAPLII complex causes the
360 downregulation of transcripts directly. There are two hypotheses about the dysfunction of
361 transcriptional regulation mediated by SMN on the promoter region. First is that SMN deficiency fails
362 to form the R loop efficiently, leading to transcriptional downregulation (Grunseich et al., 2018). This
363 failure could alter the epigenetic modification of target genes, because the R loop structure in the
364 promoter region disturbs the binding of epigenetic modifiers. Second is that SMN could form the
365 transcription preinitiation complex (PIC), which is essential for transcription. Thus, SMN deficiency
366 could disturb the formation of the PIC in the promoter region of target genes. Another possible factor
367 for the tissue-specific phenotypes in SMA is the interaction of SMN and RNAPLII. Our results showed
368 the specific binding of SMN on the promotor region of certain expressed genes. The expression of
369 SMN-bound genes appeared to couple with SMN binding to their promoter regions. Therefore, SMN-
370 mediated transcriptional regulation could be one of the mechanisms for the tissue-specific
371 phenotypes in SMA. Which factors and modifications determine the binding of SMN to promoter
372 regions and how SMN regulates transcription are for future study (**Figure 8**).

373 We also showed that the binding of SMN at the promoter region of MYOD1, miR-1 and miR-
374 206 regulates the MYOD1 transcriptional level. SMA motor neurons have been reported to show
375 alternations in miR-1 and miR-206 expression (Luchetti et al., 2015; Wang et al., 2014; Wertz et al.,
376 2016). Additionally, SMN protein binds to miR-processing proteins including fragile X mental
377 retardation protein (FMRP), KH-type splicing regulatory protein (KSRP) and fused in
378 sarcoma/translocated in liposarcoma (FUS/TLS) (Piazzone et al., 2008; Tadesse et al., 2008;
379 Yamazaki et al., 2012). Therefore, it is thought that SMN deficiency disturbs miR processing, thus
380 altering miR expression. However, there is no evidence that SMN protein has a role in the miRNA
381 processing complex. Though we did not show whether SMN protein contributes to miR processing in
382 myogenic differentiation, our results proved that SMN protein regulates the expression of miRs by
383 regulating the transcription of the host genes. In our study, we found that transcriptional regulation is
384 mediated by SMN during myogenic differentiation. Until now, there has been no report showing the
385 SMN-mediated transcriptional regulation of motor neurons. The effects of SMN on transcription during
386 motor neurogenesis warrant further study.

387 We found that the nuclear localization of SMN was transient, indicating that it binds to specific
388 genes only. The introduction of miR-1 and miR-206 into MuSCs derived from $\Delta 7$ -SMA mice improved
389 muscle function and myotube formation. This result indicates that the postnatal introduction of miR-1
390 and miR-206 benefits MuSCs in SMA treatment. Supporting this finding, the miR-1 and miR-206
391 mediated pathway is impaired in SMN-depleted satellite cells (Qing Liu, 1997)

392 SMA model mice have fewer Pax7⁺ MyoD1⁻ satellite cells and a lower capacity to regenerate
393 damaged muscle (Hayhurst, 2012; Kim, 2020), but how SMN deficiency triggers the pathology in
394 satellite cells is unknown. Our results revealed that SMN could regulate the transcription of initial
395 myogenic differentiation factors including MyoD1, miR-1 and miR-206. These results suggested that
396 the disturbed initial myogenic transcriptional network by SMN deficiency could impair the
397 maintenance of satellite cells and their capacity to differentiate. To elucidate when SMN is required
398 and what function it has in satellite cells, we should analyze the sequential transcriptional changes in
399 satellite cells derived from $\Delta 7$ -SMA mice after differentiation and validate whether SMN nuclear
400 localization in satellite cells corresponds to the myogenic differentiation signal.

401 Recently, several new drugs targeting SMN have been marketed and shown significant
402 improvement in the prognosis of type I SMA (Mendell et al., 2017; Passini et al., 2010). However,
403 even with early intervention with these drugs, significant functional impairment remains in the majority
404 of cases, making it difficult to catch up with normal development (De Vivo et al., 2019; Finkel et al.,
405 2016; Finkel et al., 2017; Mendell et al., 2017). Therefore, although therapies that increase full-length
406 SMN expression have a significant impact on the disease course of SMA and the quality of life of
407 patients, further functional improvement is needed to reduce the burden of the disease. One way to
408 improve motor function in SMA patients is to develop therapies that prevent the loss of skeletal muscle
409 in SMA patients and combine them with the restoration of SMN in motor neurons (Long et al., 2019).
410 The regulatory function of SMN for miRs that we have discovered may contribute to the development
411 of such a therapy. Therefore, we plan to investigate whether miR administration improves prognosis
412 in $\Delta 7$ -SMA mice.

413 In conclusion, the downregulation of miR-1 and miR-206 caused mitochondrial dysfunction
414 in the skeletal muscle of SMA models. Our results indicated that SMN is the modulator for
415 transcription during a specific phase of differentiation by binding to genome loci. Our results further
416 suggest miR-1 and miR-206 are candidate therapeutic targets in SMA.

417
418

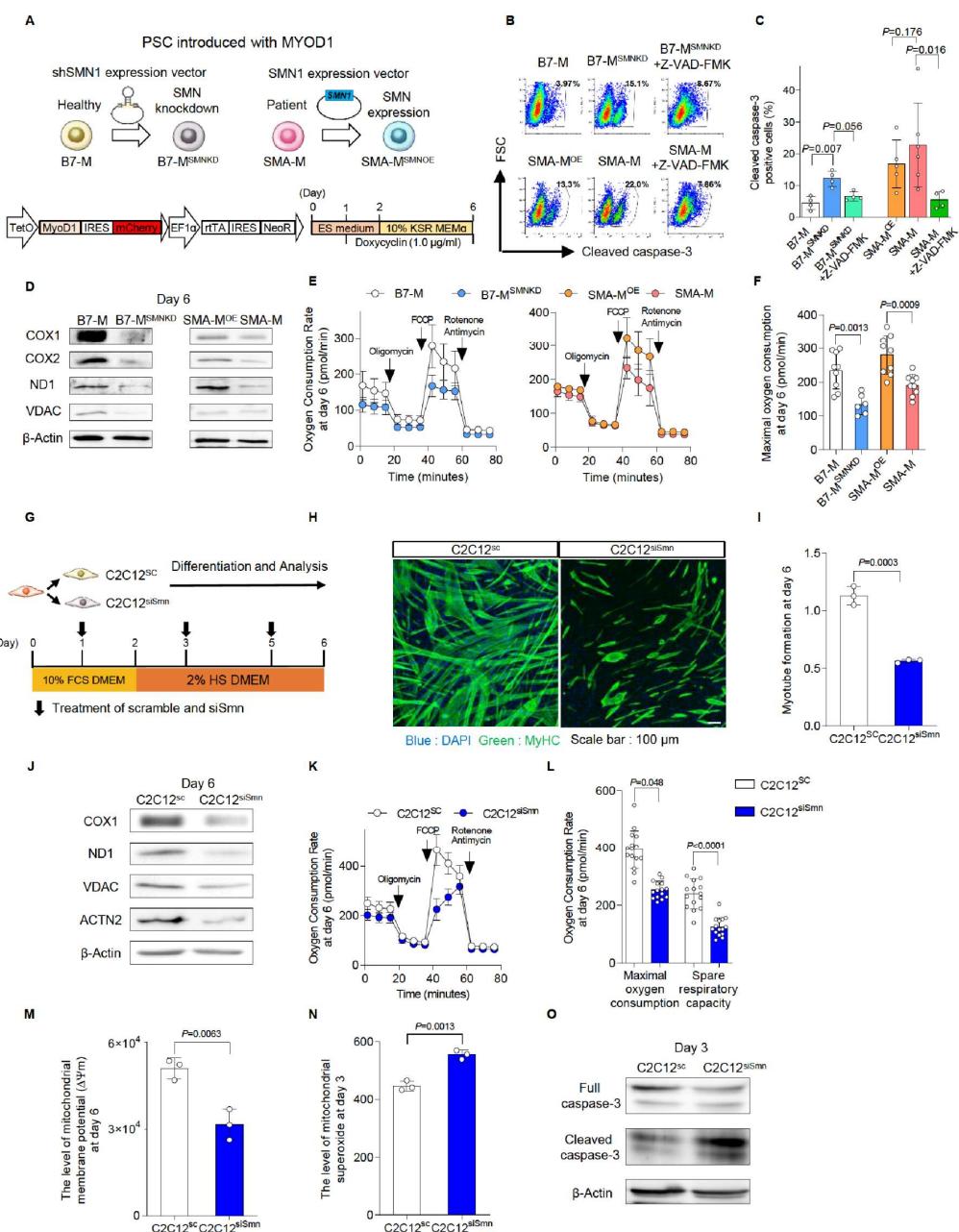
419 **Acknowledgments**

420 We thank Ms. Harumi Watanabe for providing administrative assistance, Dr. Peter Karagiannis for
421 proofreading the paper, Dr. Misaki Ouchida for graphical assistance, and Drs. Shiori Ando and
422 Hideaki Hara for technical support. This work was supported by grants from the Japan Society for
423 the Promotion of Science KAKENHI Grant Numbers 16H0552 [M.K.S] and 20H03642 [M.K.S], the
424 Core Center for iPS Cell Research of Research Center Network for Realization of Regenerative
425 Medicine from Japan Agency for Medical Research and Development [T.N. and M.K.S.], and iPS Cell
426 Research Fund [M.K.S.].

427

428 **Author Contributions**

429 A.I., M.Y. and M.K.S. conceived and designed the study. A.I. performed almost all experiments. Y.K.
430 performed and helped with the ChIP PCR analysis. C-Y.L. performed the TEM analysis. A.N. and T.
431 N. analyzed the data. A.I. and M.K.S. wrote the manuscript. All authors read, edited and approved
432 the manuscript.

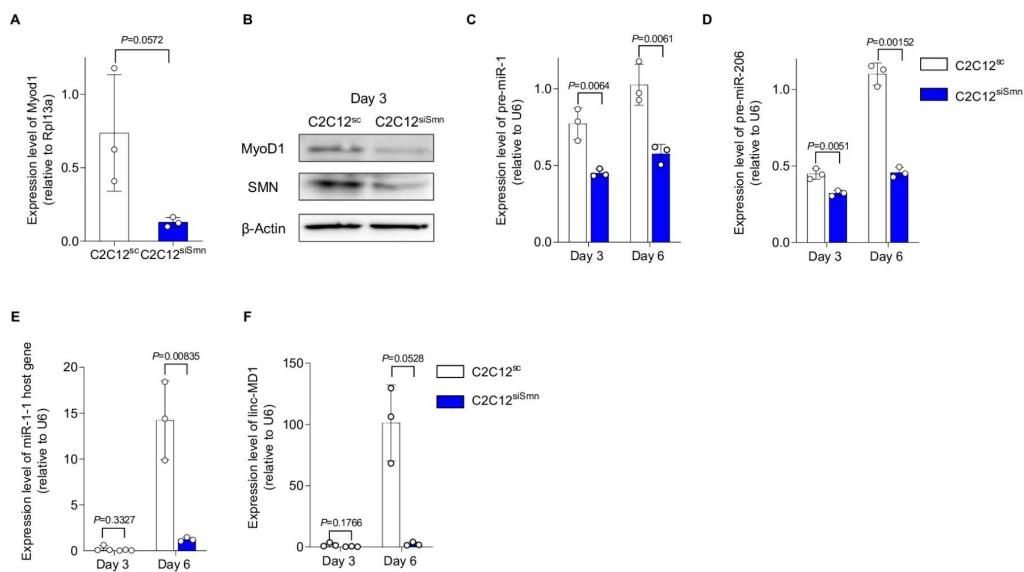

433

434 **Declaration of Interests**

435 The authors declare no conflict of interest.

436

Figure 1


438 **Figure 1. Loss of SMN causes mitochondrial bioenergetic failure during myogenic
439 differentiation.**

440 **(A)** The schema of iPSC clones used in the study and the doxycycline-inducible MYOD1-driven
441 myogenic conversion system. **(B, C)** Cleaved caspase-3-positive apoptotic cells in human iPSC-
442 derived myogenic cells (day 3) analyzed by intracellular flow cytometry. Z-VAD-FMK (20 μ M) was
443 added. (B) Representative flow diagrams and (C) their quantification. **(D)** Immunoblotting assay with
444 iPSC-derived myogenic cells (day 6). **(E)** OCR measured in iPSC-derived myogenic cells (day 6).
445 Oligomycin (10 μ M), FCCP (10 μ M) and Rotenone (1.0 μ M) plus Antimycin (1.0 μ M) were sequentially
446 added. **(F)** Maximal oxygen consumption calculated using the data in (E). **(G)** The schema of
447 myogenic differentiation with C2C12 cells. **(H)** Representative immunostaining images of C2C12 cells
448 with MyHC (myosin heavy chain) (day 6). **(I)** Myotube formation defined by the ratio of the DAPI-
449 positive area to MyHC-positive area (day 6). **(J)** Immunoblotting assay with C2C12 cells (day 6). **(K)**
450 OCR measured with C2C12 cells (day 6). Oligomycin (10 μ M), FCCP (10 μ M) and Rotenone (1.0
451 μ M) plus Antimycin (1.0 μ M) were sequentially added. **(L)** Maximal OCR and spare respiratory
452 capacity calculated using the data in (K). Data are value obtained from 10^4 cells. **(M)** Mitochondrial
453 membrane potential ($\Delta\psi_m$) of C2C12 cells (day 6). **(N)** Mitochondrial superoxide levels of C2C12
454 cells (day 3) evaluated with MitoSOX. **(O)** Immunoblotting assay with C2C12 cells (day 3). Error bars
455 indicate means \pm S.D. (C) Statistical analysis by one-way ANOVA with multiple comparisons. (F, I
456 and K-M) Statistical analysis by Student's t-test. Each dot represents a biologically independent
457 sample.

458

459

Figure 2

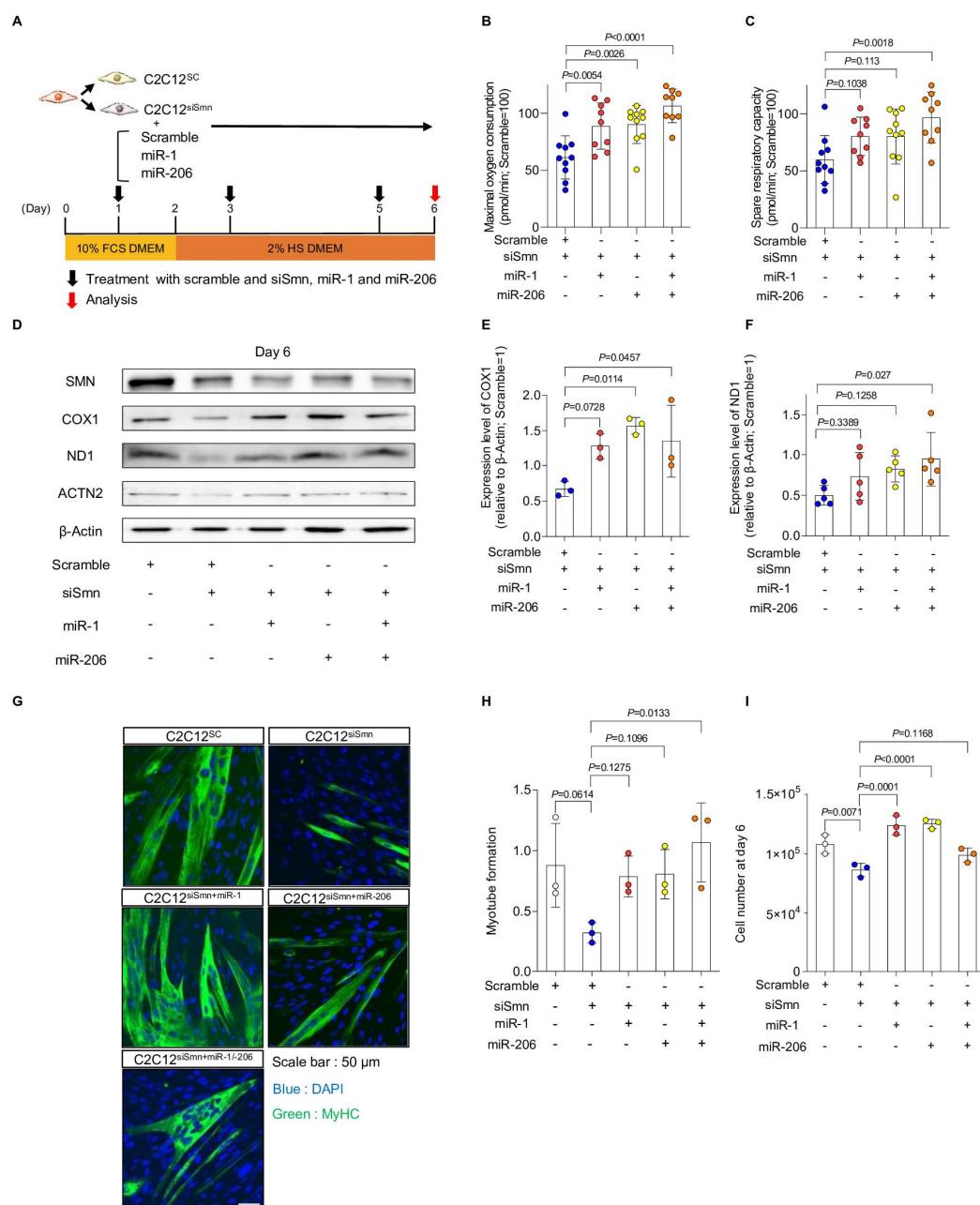


Figure 2. Depletion of SMN downregulates the expression of MYOD1 and its downstream targets miR-1 and miR-206.

(A, B) Expression of MyoD1 in C2C12^{SC} and C2C12^{SMN} (day 6) at the (A) mRNA and (B) protein level. (A) Rpl13a served as the internal control. (B) β-Actin was used as the loading control. (C-F) qPCR analysis for the expression of (C) pre-miR-1, (D) pre-miR-206, (E) miR1-1 host gene and (F) linc-MD1. U6 served as the internal control. Error bars indicate means ± SD. Statistical analysis by Student's t-test. Each dot represents a biologically independent sample.

460
461
462
463
464
465
466
467
468

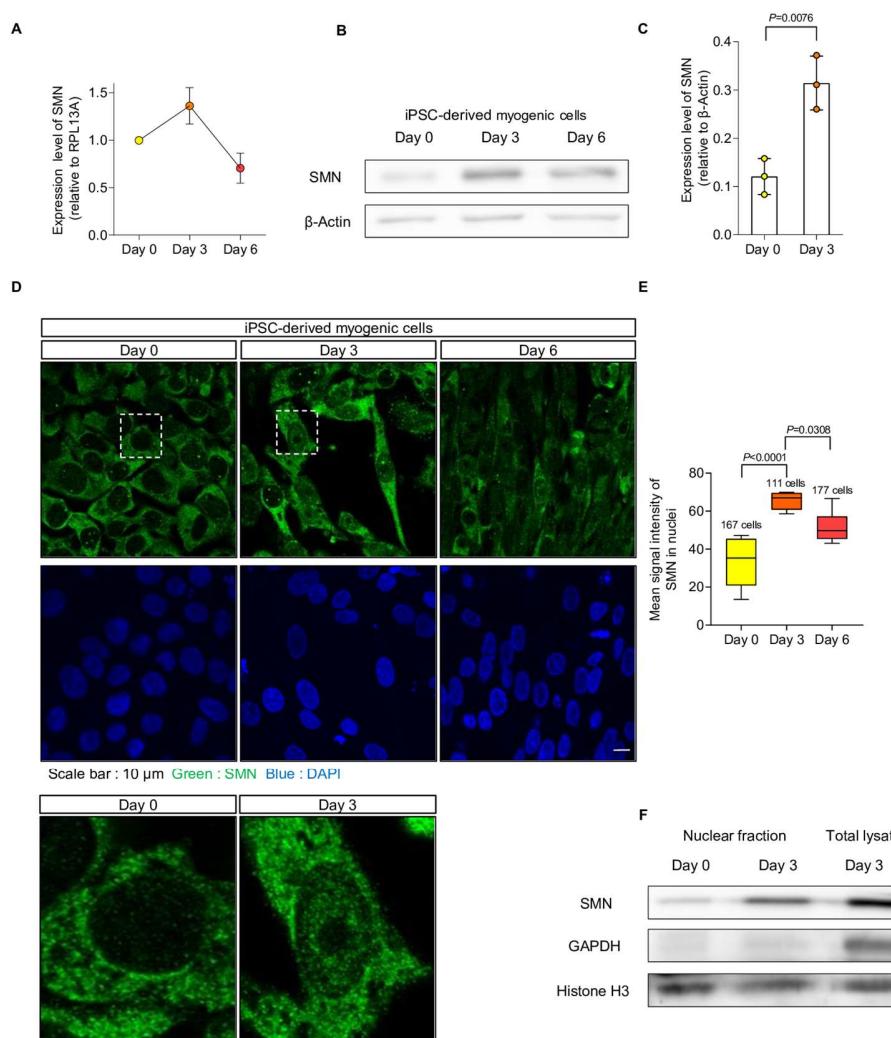
Figure 3

469

470

471 **Figure 3. Supplementation of miRNA recovers the phenotypes of SMN-depleted C2C12 cells.**

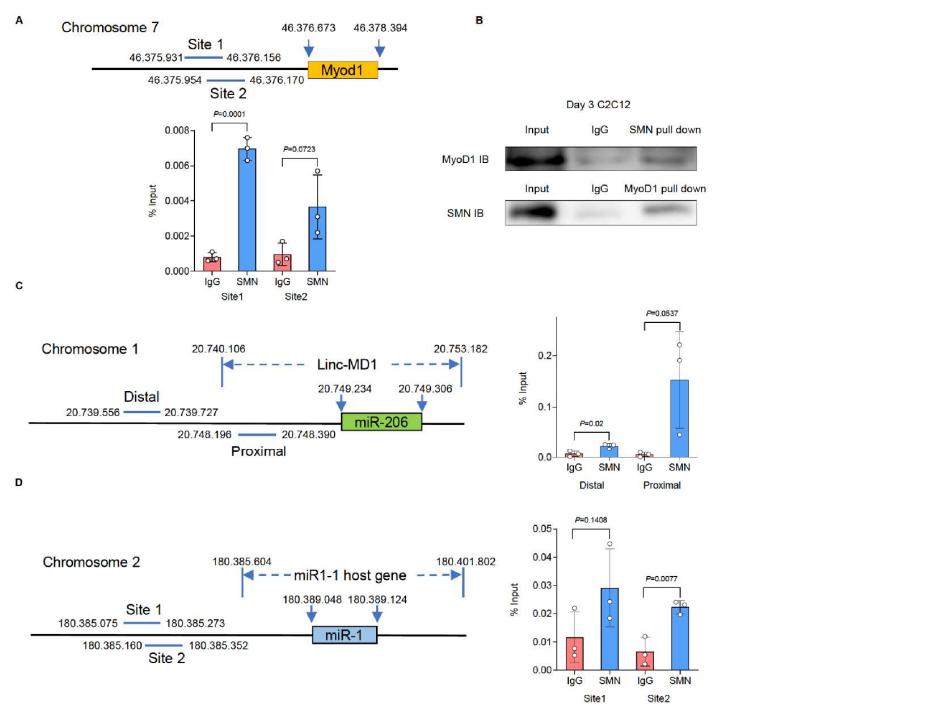
472 (A) Schema of the culture system. (B, C) (B) Maximal oxygen consumption and (C) spare respiratory


473 capacity of C2C12^{siSmn} cells (day 6). (D-F) (D) Immunoblotting assay with C2C12 cells (day 6), and

474 (E, F) quantification of COX1 and ND1 protein. β-Actin served as the loading control. Relative values

475 to C2C12^{SC} (day 6) are shown. (G) Representative immunostaining images of C2C12 cells (day 6).

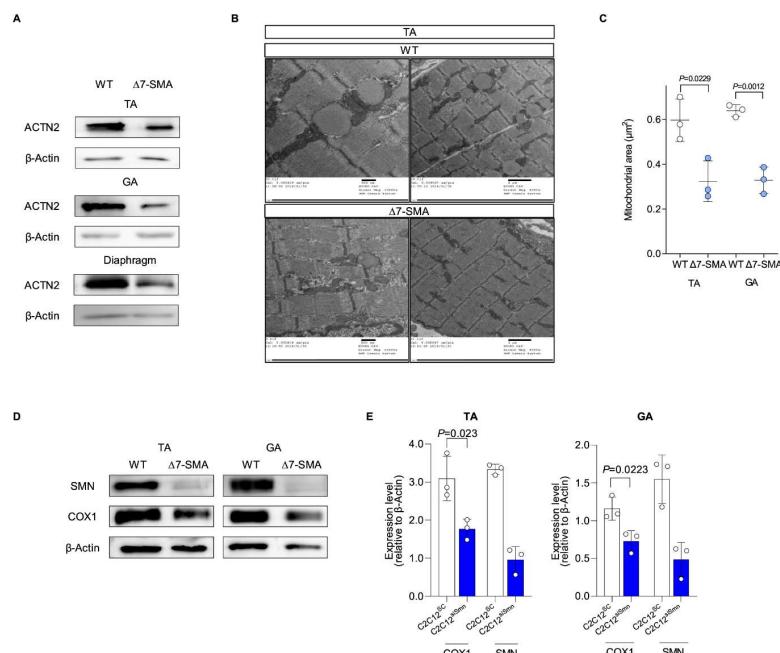
476 (I) Number of C2C12 cells (day 6). Error bars indicate means \pm SD. Statistical analysis by one-way
477 ANOVA with multiple comparisons. Each dot represents a biologically independent sample.
478


Figure 4

479

480 **Figure 4. SMN transiently localizes in the nucleus during myogenesis.**
481 **(A)** SMN expression in B7-M-derived myogenic cells. Relative values to the expression level at day
482 0 are plotted. RPL13A was used as the internal control. **(B)** Immunoblotting assay with B7-M-derived
483 myogenic cells. β-Actin served as the loading control. **(C)** Quantification of the SMN expression
484 measured from (B). **(D)** Representative immunostaining images of 201B7 iPSC- and B7-M-derived
485 myogenic cells. Magnified images of the dotted square regions are shown below. **(E)** Quantification
486 of the signal intensity of nuclear SMN using the data in (D). **(F)** Immunoblotting assay with the nuclear
487 fraction separated from 201B7 iPSC- and B7-M-derived myogenic cells. GAPDH and Histone H3
488 served as the loading control for total lysate and nuclear fraction, respectively. Error bars indicate
489 means \pm SD. (C) Statistical analysis by Student's t-test. (E) Statistical analysis by one-way ANOVA
490 with multiple comparisons. Each dot represents a biologically independent sample.
491

Figure 5

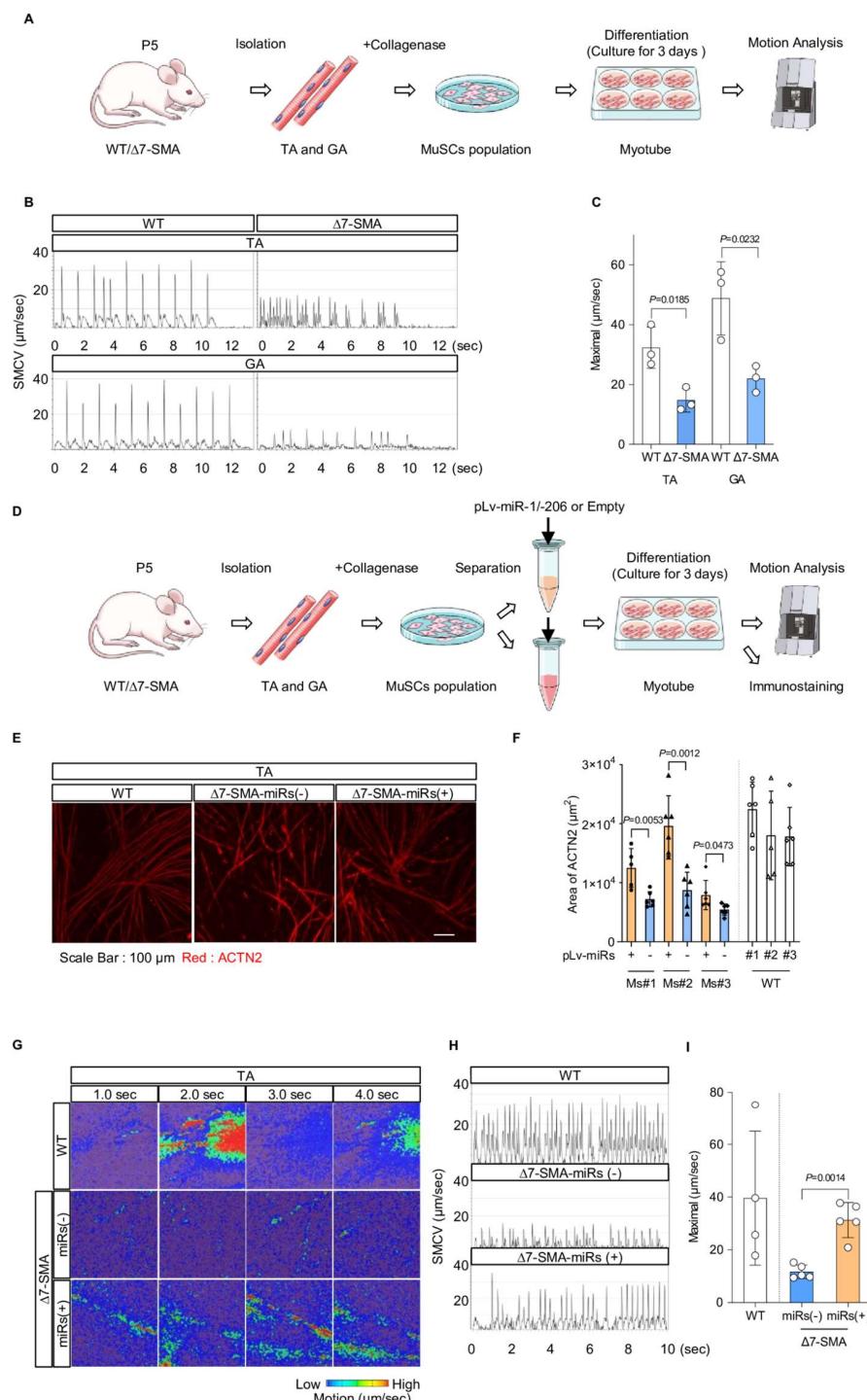


492
493
494
495
496
497
498
499

Figure 5. SMN binds the upstream region of MyoD1 and miRs in C2C12-derived myogenic cells.

(A) ChIP-qPCR analysis of the SMN binding sites upstream of the MyoD1 TSS. C2C12 cells (day 3) were subjected to the analysis. (B) Co-immunoprecipitation assay of MyoD1 and SMN with C2C12 cells (day 3). (C, D) ChIP-qPCR analysis of the SMN binding sites upstream of (C) miR-206 and (D) miR-1 in C2C12 cells (day 3). Horizontal blue bars indicate the target sites. The error bars indicate means \pm SD. Each dot represents a biologically independent sample.

Figure 6


500

501

Figure 6. Early muscular phenotype of neonatal $\Delta 7\text{-SMA}$ mice.

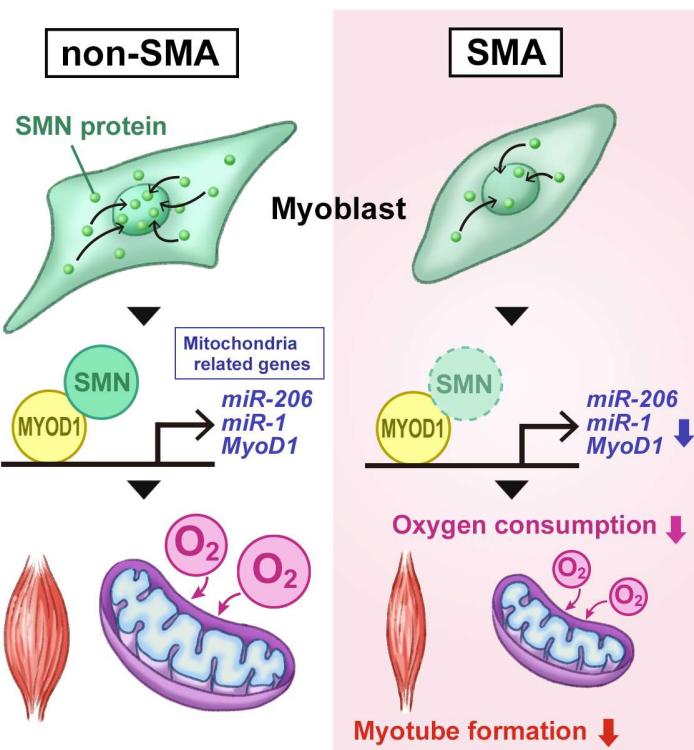

502 (A) Immunoblotting assay of TA, GA and diaphragm samples from mice (P3). (B) Representative
503 TEM images of TA muscle from WT mice and $\Delta 7\text{-SMA}$ mice (P3). (C) Quantification of the
504 mitochondrial area (μm^2) in TA and GA using data from the TEM images. Three mice from each group
505 were evaluated. The number of analyzed mitochondria is as follows: TA (WT=286, $\Delta 7\text{-SMA}=286$), GA
506 (WT=183, $\Delta 7\text{-SMA}=253$). (D, E) (D) Immunoblotting assay with TA and GA samples from mice (P3)
507 and (E) its quantification. Each dot represents independent mice. Error bars indicate means \pm SD.
508 Statistical analysis by Student's t-test. β -Actin served as the loading control.
509

Figure 7

511 **Figure 7. miRNA treatment improves the *ex vivo* function of MuSC-derived myotubes from Δ7-
512 SMA mice.**

513 **(A)** Procedure for the isolation of MuSCs, myotube differentiation and motion analysis. **(B)** Motion
514 analysis of myotubes derived from MuSCs. SMCV, skeletal muscle contraction velocity. **(C)** Maximal
515 SMCV. Three mice from each group were evaluated. The number of analyzed ROIs is as follows: TA
516 (WT=45, Δ7-SMA=45), GA (WT=48, Δ7-SMA=45). **(D)** The procedure for miRNA introduction into
517 MuSCs. **(E)** Representative immunostaining images of MuSC-derived myotubes obtained from the
518 TA. **(F)** The ACTN2-positive area (μm^2) was calculated from (E). Three mice from each group were
519 evaluated. Each dot represents an ROI. Six ROIs were obtained from each mouse. **(G)** Motion
520 heatmaps of MuSC-derived myotubes obtained from the TA. **(H)** Motion analysis of myotubes derived
521 from WT-MuSCs, Δ7-MuSCs^{Empty} and Δ7-MuSCs^{miRs}. **(I)** Maximal SMCV. Four or five mice from each
522 group were evaluated. The number of analyzed ROIs is as follows: WT=30, Δ7-SMA with miRs=31,
523 Δ7-SMA without miRs=31. Error bars indicate means \pm SD. (C, F, and I) Statistical analysis by
524 Student's t-test. (C and I) Each dot represents a biologically independent sample.
525

526 **Figure 8. Graphical summary of the study.**

527

528

529 **METHODS**

530

531 **Key Resources Table**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Mouse monoclonal anti-SMN	BD Transduction Laboratories™	Cat# 610647; RRID: AB_397973
Rabbit polyclonal anti-MT-ND1	Abcam	Cat# ab222892; RRID: AB
Rabbit monoclonal anti-MTCO1 (EPR19628)	Abcam	Cat# ab203912; RRID: AB_2801537
Mouse monoclonal anti-Fast Myosin Skeletal Heavy chain (MY-32)	Abcam	Cat# ab51263; RRID: AB_2297993
Mouse monoclonal anti-MyoD1 (5.2F)	Abcam	Cat# ab16148; RRID: AB_2148758
Mouse monoclonal anti-MTCO2 (12C4F12)	Abcam	Cat# ab110258; RRID: AB_10887758
Mouse monoclonal anti-Sarcomeric Alpha Actinin (EA-53)	Abcam	Cat# ab9465; RRID: AB_307264
Rat monoclonal anti-RNA polymerase II CTD repeat YSPTSPS (1C7)	Abcam	Cat# ab252854
Rabbit monoclonal MyoD1 (D8G3) XP	Cell Signaling Technology	Cat# 13812S; RRID: AB_2798320
Rabbit monoclonal Cleaved Caspase-3 (Asp175) (5A1E)	Cell Signaling Technology	Cat# 9664S; RRID: AB_2070042
Rabbit polyclonal Caspase-3	Cell Signaling Technology	Cat# 9662S; RRID: AB_331439
Rabbit polyclonal VDAC	Cell Signaling Technology	Cat# 4866S; RRID: AB_2272627
Rabbit monoclonal GAPDH (14C10)	Cell Signaling Technology	Cat# 2118S; RRID: AB_561053
Rabbit monoclonal Histone H3 (D2B12) XP (ChIP Formulated)	Cell Signaling Technology	Cat# 4620S; RRID: AB_1904005
Mouse monoclonal His-Tag (27E8)	Cell Signaling Technology	Cat# 2366S; RRID: AB_2115719
Rabbit monoclonal DYKDDDDK Tag (D6W5B)	Cell Signaling Technology	Cat# 14793S; RRID: AB_2572291
Rabbit monoclonal β-Actin (13E5)	Cell Signaling Technology	Cat# 5125S; RRID: AB_1903890
Rabbit polyclonal anti-rabbit IgG, HRP-linked antibody	Cell Signaling Technology	Cat# 7074S; RRID: AB_2099233
Horse polyclonal anti-mouse IgG, HRP-linked antibody	Cell Signaling Technology	Cat# 7076S; RRID: AB_330924
Rabbit monoclonal (DA1E) IgG XP Isotype control	Cell Signaling Technology	Cat# 3900S; RRID: AB_1550038
Mouse monoclonal anti-rabbit IgG (Conformation Specific) (L27A9) (HRP Conjugate)	Cell Signaling Technology	Cat# 5127S; RRID: AB_10892860
Rabbit monoclonal Cleaved Caspase-3 (Asp175) (D3E9) Rabbit (Alexa Fluor 647® Conjugate)	Cell Signaling Technology	Cat# 9602S; RRID: AB_2687881

Anti-mouse IgG (H+L), F(ab')2 Fragment (Alexa Fluor® 647 Conjugate)	Cell Signaling Technology	Cat# 4410S; RRID: AB_1904023
Anti-mouse IgG (H+L), F(ab')2 Fragment (Alexa Fluor® 488 Conjugate)	Cell Signaling Technology	Cat# 4408S; RRID: AB_1904023
Anti-mouse IgG (H+L), F(ab')2 Fragment (Alexa Fluor® 594 Conjugate)	Cell Signaling Technology	Cat# 4412S; RRID: AB_1904025
Anti-rabbit IgG (H+L), F(ab')2 Fragment (Alexa Fluor® 647 Conjugate)	Cell Signaling Technology	Cat# 8890S; RRID: AB_2714182
Anti-rabbit IgG (H+L), F(ab')2 Fragment (Alexa Fluor® 488 Conjugate)	Cell Signaling Technology	Cat# 4414S; RRID: AB_10693544
Rabbit IgG Isotype Control (Alexa Fluor® 647 Conjugate)	Cell Signaling Technology	Cat# 3452S; RRID: AB_10695811
Mouse (MOPC-21) mAb IgG ₁ Isotype Control (Alexa Fluor® 647 Conjugate)	Cell Signaling Technology	Cat# 4843S; RRID: AB_1281292
Negative control mouse IgG ₁	Dako	Cat# X0931
α-bungarotoxin, Alexa Fluor® 647 conjugated	Molecular probe	Cat# B35450
Neuronal Class III beta-Tubulin (TUJ1)	Covance	Cat# MMS435P; RRID: AB_2313773
Anti-Synaptic vesicle glycoprotein 2A	DSHB	Cat# SV2; RRID: AB_2315387
Myogenin antibody (MGN185) Alexa Fluor® 647	NOVUS	Cat# NBP2-33056AF647
Bacterial and Virus Strains		
pcDNA3.1+SMN1 myc HIS	Unpublished	Addgene; Cat# 71687
FLAG-hMYOD1	Unpublished	Addgene; Cat# 78329
Mouse pre-microRNA Expression Construct mir1a-1	System Biosciences	Cat# MMIR-1a-1-PA-1
Mouse pre-microRNA Expression Construct mir206	System Biosciences	Cat# MMIR-206-PA-1
Chemicals, Peptides, and Recombinant Proteins		
3,3'- diethyloxacarbocyanine iodide	Life technologies	Cat# M3415
CellROX™ Green Flow Cytometry Assay Kit	Molecular probe	Cat# C10492
MitoSOX™ Red Mitochondrial Superoxide Indicator	Invitrogen	Cat# M36008
Caspase Inhibitor Z-VAD-FMK, 20mM	Promega	Cat# G7231
α-Tocopherol	Sigma-Aldrich	Cat# T3251-5G
Dynabeads™ Sheep anti-Rat IgG	Invitrogen	Cat# 11035
Dynabeads™ M-280 Sheep anti-Rabbit IgG	Invitrogen	Cat# 11203D
Dynabeads™ M-280 Sheep anti-Mouse IgG	Invitrogen	Cat# 11201D
Dynabeads™ His-Tag Isolation & Pulldown	Invitrogen	Cat# 10103D
Experimental Models: Cell Lines		
C2C12 cells	Provided by Dr. Atsuko Sehara-Fujisawa	
Experimental Models: Organisms/Strains		
FVB.Cg-Tg(SMN2) 89Ahmb <i>Smn1</i> ^{tm1Msd} Tg (SMN2*Δ7) 4299AhmB/J	Jackson Laboratories	Cat# 007951; RRID: IMSR JAX:007951
Oligonucleotides		

See Table S1		
Primer1 for the genotyping: Forward: CGGCTACCTGCCCATTCGACCACC	Le et al., 2005	N/A
Primer1 for the genotyping: Reverse: CCTTAAAGGAAGGCCACAGCTTATC	Le et al., 2005	N/A
Primer2 for the genotyping: Forward: TCCAGCTCCGGATATTGGGATTG	Le et al., 2005	N/A
Primer2 for the genotyping: Reverse: AGGTCCCACCACCTAAGAAAGCC	Le et al., 2005	N/A
Primer for U6 forward	Takara Bio	Cat# 638315
Primer for U6 reverse	Takara Bio	Cat# 638315
Primer for mRQ 3` Primer	Takara Bio	Cat# 638315
Software and Algorithms		
GraphPad Prism 6	Graph Pad Software, Inc	N/A
ImageJ	National Institutes of Health	https://imagej.nih.gov/ij/ ; RRIS:SCR_003070

532

533 **Resource Availability**

534 **Lead Contact**

535 Further information and requests for resources and reagents should be directed to and will be fulfilled
536 by the Lead Contact, Megumu K. Saito (msaito@cira.kyoto-u.ac.jp).

537

538 **Materials Availability**

539 iPSCs and other research reagents generated by the authors will be distributed upon request to other
540 researchers.

541

542 **Experimental Model and Subject Details**

543 **Ethics statement**

544 The iPSC study was approved by the Ethics Committees of Kyoto University (R0091/G0259). Written
545 informed consent was obtained from the patients or their guardians in accordance with the
546 Declaration of Helsinki. The study plan for recombinant DNA research was approved by the
547 recombinant DNA experiments safety committee of Kyoto University. Animal studies were approved
548 by the institutional review board. All methods were performed in accordance with the relevant
549 guidelines and regulations.

550

551 **Human iPSC lines (Figure 1A)**

552 A human iPSC line, 201B7, was kindly provided by Dr. Shinya Yamanaka (Kyoto University, Kyoto,
553 Japan). Isogenic iPSC lines with doxycycline-inducible MYOD1 construct (B7-M and B7-M^{SMNKD}) were
554 established in a previous study (Lin et al., 2019). The iPSC line established from a type I SMA patient
555 was also established in a previous study (Yoshida et al., 2015). The doxycycline-inducible MYOD1
556 overexpression vector (Lin et al., 2019) was introduced into SMA patient iPSCs by FuGENE HD
557 (Promega) and iPSCs that stably expressed the vector (SMA-M) were selected with G418 (Wako)
558 (50 µg/mL). A constitutive SMN1 expression vector was introduced into SMA-M to establish the SMA-
559 M^{OE} clone, and SMA-M^{OE} was selected with Puromycin (InvivoGen) (1.0 µg/mL).

560

561 **Conversion of hiPSC clones into myogenic cells**

562 The iPSC lines with doxycycline-inducible MYOD1 expression vector (B7-M, B7-M^{SMNKD}, SMA-M and
563 SMA-M^{OE}) were converted into myogenic cells as previously described (Tanaka, 2013). In brief,

564 4.0×10⁵ iPSCs were seeded onto Matrigel (CORNING)-coated 24-well plates in Primate ES Cell
565 Medium (ReproCELL). At day 0, the medium was exchanged with primate ES Cell Medium containing
566 doxycycline (TaKaRa) (1.0 µg/mL). From day 1, the medium was exchanged everyday with Minimum
567 Essential Medium Alpha (Gibco) containing 10% knockout Serum Replacement (Gibco) and
568 doxycycline (1.0 µg/mL). Cells were collected with Accumax (Nacalai tesque) on days 0, 3 and 6 after
569 the myogenic conversion and analyzed thereafter.

570

571 **C2C12 culture and differentiation**

572 A mice myoblast cell line, C2C12, was maintained with Dulbecco's minimal essential medium (DMEM)
573 (Nacalai tesque) containing 10% fetal calf serum (FCS; Sigma-Aldrich). To differentiate the cells into
574 myotubes, the culture medium of confluent C2C12 cells was replaced with DMEM containing 2%
575 horse serum (HS; Sigma-Aldrich). For subsequent analysis, the cells were collected with 0.05%
576 Trypsin-EDTA (Gibco) at days 3 and 6.

577

578 **siRNA and microRNA mimic transfection**

579 siSmn (Sigma, SASI_Mm01_00155410), miRNAs mimicking miR-1 and miR-206 (Gene Design) or
580 scramble negative control (GENETOOLS,LLC, Standard control) (final concentration, 100 nM) were
581 transfected into C2C12 cells seeded on 24- or 96-well plates using Lipofectamine RNAiMAX (Life
582 Technologies) after the cells reached 70% confluence according to the manufacturer's instruction.

583

584 **RNA isolation and quantitative PCR (qPCR)**

585 For the reverse transcription (RT)-qPCR analysis of mRNA, total RNA was extracted from the cells
586 with the RNeasy Mini Kit (QIAGEN), and RT was performed using the PrimeScript RT Master Mix
587 (TaKaRa). For the RT-qPCR analysis of miR, total RNA was extracted from cells with the miRNeasy
588 Mini Kit (QIAGEN), and complementary DNA of miR was synthesized using the Mir-X miRNA First-
589 Strand Synthesis Kit (TaKaRa). RT-qPCR was performed with TB Green Premix Ex Taq II (Tli RNaseH
590 Plus) (TaKaRa) on the StepOnePlus Real-time PCR System (Applied Biosystems) according to the
591 manufacturer's protocol. Ribosomal protein L13a or U6 was used as the internal control. Primer
592 sequences are listed in **Table S1**.

593

594 **Intracellular flow cytometry analysis**

595 iPSC-derived myogenic cells on day 3 were collected and incubated with 0.2% Saponin (Nacalai
596 tesque) and 4% paraformaldehyde (Nacalai tesque) on ice for 5 minutes for permeabilization and
597 fixation. Then the cells were labeled with antibodies against cleaved caspase-3 (1:20, CST #9602S)
598 or Myogenin (1:20, Novus Biologicals #NBP2-33056). The following isotype controls were used: rabbit
599 IgG Isotype Control (Alexa Fluor 647 Conjugate) (1:20, CST #3452S) and mouse (MOPC-21) mAb
600 IgG₁ Isotype Control (Alexa Fluor 647 Conjugate) (1:20, CST #4843S). Antibodies were incubated
601 with cells for 90 minutes at room temperature. The labeled cells were analyzed with BD FACSaria
602 (BD Biosciences), and the results were analyzed and processed with FlowJo software (Tree Star Inc.)

603

604 **Measurement of reactive oxygen species (ROS) and membrane potential (Δψ_m)**

605 For the measurement of the total ROS level, the cells were incubated with medium containing
606 CellROX Green reagent (Invitrogen) (2.5 µM) for 60 minutes at 37°C. Cells were then washed three
607 times with phosphate-buffered saline (PBS). For mitochondrial superoxide production analysis, cells
608 were incubated with medium containing MitoSOX Red Mitochondrial Superoxide Indicator reagent
609 (Invitrogen) (2.5 µM) for 60 minutes at 37°C and then washed three times with PBS. To measure
610 mitochondrial membrane potential (Δψ_m), the cells were incubated with medium containing the 3,3'-
611 diethyloxacarbocyanine iodide (5.0 µM) (Life technologies) for 45 minutes at 37°C and then washed
612 three times with PBS. The stained cells were analyzed with BD FACSaria, and the results were
613 analyzed and processed with FlowJo software.

614

615 **Immunocytochemistry**

616 Cells on a multi-well glass bottom dish (D141400, MATSUNAMI) were washed three times with PBS
617 and incubated with ice-cold methanol for 15 minutes at -30°C. Fixed cells were further washed three
618 times with PBS and incubated with 5% bovine serum albumin (BSA) (Sigma-Aldrich) in PBS for 30
619 minutes at room temperature. Primary antibody reactions were performed at 4°C overnight.
620 Secondary antibody reactions were performed at room temperature for 90 minutes. Stained cells
621 were washed three times with PBS containing 4',6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich).
622 Image were taken with a FLUOVIEW FV1000. (Olympus). The following primary and secondary
623 antibodies were used: anti-SMN (1:1000, BD Transduction Laboratories #610647), anti-Fast Myosin
624 Skeletal Heavy chain (1:1000, Abcam #ab51263), anti-Sarcomeric Alpha Actinin (1:1000, Abcam
625 #ab9465), anti-mouse IgG (H+L), F(ab')2 Fragment (Alexa Fluor 488 Conjugate) (1:1000, CST
626 #4408S), anti-rabbit IgG (H+L), F(ab')2 Fragment (Alexa Fluor 488 Conjugate) (1:1000, CST #4412S),
627 anti-synaptic vesicle protein 2 (1:50, DSHB SV2), anti-Tuj1 (1:1000, R&D systems MAB1195), and
628 Alexa Fluor 647-conjugated α-Bungarotoxin (0.5 µg/mL, Molecular Probes B3545).
629

630 **Image analysis**

631 To show myotube formation, the ratio of nuclei labeled in the DAPI-positive area to myosin heavy
632 chain-positive area was processed and analyzed with ImageJ (NIH). To show the signal intensity of
633 SMN in the nuclei, the nuclear area was recognized by the DAPI-positive area, and the signal intensity
634 of SMN in the nuclei excluding SMN foci was quantified with ImageJ.
635

636 **Immunoblotting**

637 Cells were collected with Accumax and centrifuged at 7000 rpm for 15 seconds at 4°C. To extract
638 proteins, cell pellets were lysed with RIPA buffer (Wako) and incubated for 30 minutes on ice. The
639 lysate was centrifuged at 15000 rpm for 15 minutes at 4°C. The supernatant was mixed with 2 ×
640 Laemmli Sample Buffer (Bio-Rad Laboratories) containing 5% total volume of 2-mercaptoethanol
641 (Nacalai tesque) and boiled for 5 minutes at 95°C. Polyacrylamide gel electrophoresis was performed
642 on SDS-polyacrylamide gels, and proteins were transferred to a nitrocellulose membrane (Merck
643 Millipore). The membrane was then incubated with 5% BSA in Tris-buffered saline with tween 20
644 (Santa Cruz Biotechnology, Inc.) for blocking. The primary antibody reaction was performed at 4°C
645 overnight. The secondary antibody incubation was performed for 90 minutes at room temperature,
646 and then the protein was detected using ECL chemiluminescence reagents (Thermo Fisher Scientific).
647 Antibody against β-Actin was reacted for 60 minutes at room temperature. The following primary and
648 secondary antibodies were used: anti-SMN (1:1000, BD Transduction Laboratories #610647), anti-
649 ND1 (1:1000, Abcam #ab222892), anti-COX1 (1:1000, Abcam #ab51263), anti-MyoD1 (1:1000, CST
650 #13812S), anti-cleaved caspase-3 (1:1000, CST #9664S), anti-caspase-3 (1:1000, CST #9662S),
651 anti-VDAC (1:1000, CST #4866S), anti-His-Tag (1:1000, CST #2366P), anti-GAPDH (1:1000, CST
652 #2118S), anti-Histone H3 (1:1000, CST #4620S), anti-Flag (1:1000, CST #14793S), anti-COX2
653 (1:1000, Abcam #ab110258), anti-Sarcomeric Alpha Actinin (1:1000, Abcam #ab9465), anti-β-Actin
654 (1:5000, CST #5125S), anti-mouse-HRP (1:2500, CST #7076S), anti-rabbit-HRP (1:2500, CST
655 #7074S), anti-rabbit-conformation specific-HRP (1:2500, CST #5127S), and anti-mouse-
656 conformation specific-HRP (1:2500, Abcam #ab131368).
657

658 **Mice**

659 Δ7 SMA mice (Le et al., 2005) were purchased from Jackson Laboratories (FVB.Cg-Tg (SMN2)
660 89Ahmb *Smn1*^{tm1Msd}Tg (SMN2*Δ7) 4299AhmB/J; stock no. 005025). Primers for genotyping
661 were designed as described previously (Le et al., 2005). All experiments were performed on P3
662 or P5 Mice. *Smn*^{+/+}; SMN2^{+/+}; SMNΔ7^{+/+} was used as WT. Mice were maintained at the animal
663 facility according to an institutionally approved protocol.
664

665 **Isolation and primary culture of MuSCs**

666 Isolation and culture of MuSCs were performed as previously described (Hayhurst et al., 2012). Briefly,
667 skeletal muscle tissue was isolated from the TA and GA of neonatal mice. The muscle tissue was

668 shredded by sterilized scissors, incubated with 0.2% (w/v) collagenase II (Roche) in DMEM containing
669 20% FCS and antibiotic-antimycotic (100×) (Gibco) for 30 minutes at 37°C, and dissociated into single
670 myofibers by pipetting several times. The dissociated tissue was then centrifuged at 7000 rpm for 15
671 seconds and suspended with 20% FCS DMEM. The cell suspension including MuSCs was seeded
672 into a 6-well plate coated with Matrigel. The attached cells including MuSCs were then expanded in
673 20% FCS DMEM condition for a few days. After reaching confluence, the MuSCs were cultured to
674 induce myotubes in DMEM containing 2% HS for 3 days.
675

676 **Transmission electron microscopy (TEM)**

677 TEM sample preparation and analysis were performed following a previous protocol (Lin et al., 2019).
678 The TA, GA, and diaphragm were dissected from Δ7-SMA or WT mice. The tissues were cut into
679 small pieces of about 2 mm² and then fixed by 0.1 M phosphate buffer (pH 7.4) including 2% PFA
680 (Electron Microscopy Sciences) and 2% glutaraldehyde (Electron Microscopy Sciences) overnight at
681 4°C. Post-fixation was carried out in 1% osmium tetroxide solution (Electron Microscopy Sciences)
682 for 1 hour at room temperature. The samples were dehydrated in graded concentrations of ethanol
683 (30%, 50%, 70%, 90%, 95%, and 100%) and embedded in Epon resin (Electron Microscopy
684 Sciences). Ultrathin sections (80 nm) were cut and stained with uranyl acetate and alkaline lead
685 citrate. The specimens were examined with a transmission electron microscope (H-7650, Hitachi).
686

687 **Motion vector analysis**

688 Motion quantification in an ROI was performed using the SI8000 Cell Motion Imaging System (Sony)
689 as previously described (Lin et al., 2019). Both moving image capture and motion analysis were
690 performed using this system. To compare muscle contraction ability between WT and Δ7-SMA MuSC-
691 derived myotubes, moving images were acquired under a continuous square wave electric current
692 stimulation (25 V) using NEPA21 (Nepa Gene). To show muscle contraction ability, the maximal SMCV,
693 which indicates the maximal value of the SMCV during an electric current stimulation, was applied.
694

695 **Production and infection of lentiviral vectors**

696 To produce the virus particle, a lentivirus expression plasmid (MMIR-1a-1-PA-1 and MMIR-206-PA-1
697 purchased from System Biosciences) and plasmid mixture for packaging (ViraPower HiPerform
698 Lentiviral Expression Systems, Invitrogen) were transfected into 293 package cells with
699 Lipofectamine 2000 (Invitrogen) under DMEM (10% FCS) condition. After incubation for 2 days, the
700 medium containing the virus particles was recovered and concentrated with Polyethylene Glycol 8000
701 (Sigma-Aldrich) at 4°C overnight. The medium was centrifuged at 2000×g for 30 minutes. The virus
702 particle pellets were suspended with PBS. For virus infection into C2C12 cells or MuSCs, virus
703 solution was added into the cell suspension in a 1.5 mL tube, and then the mixture was incubated for
704 60 minutes at 37°C. After the incubation, the mixture was seeded into culture ware.
705

706 **Immunoprecipitation (IP)**

707 IP was performed with Dynabeads (Thermo Fisher Scientific) according to the manufacturer's
708 protocol. The preincubation of Dynabeads (100 μL) (M-280 Sheep anti Mouse IgG or M280-Sheep
709 anti Rabbit IgG) with primary antibody (5.0 μL) in 1.0% BSA/PBS was performed at 4°C overnight.
710 The beads conjugated with primary antibodies were then washed with IP buffer (10 mM Tris-HCl
711 (pH7.8) (Nacalai tesque), 1.0% NP-40 (Nacalai tesque) and 15 mM NaCl (Nacalai tesque) EDTA free
712 protease inhibitors (100×) (Nacalai tesque)). Cells were collected with a cell scraper in IP buffer. A
713 total of 1.0×10⁷ cells were sonicated on ice three times for 1 second by the XL-2000 (MISONIX).
714 Sonicated cells were centrifuged at 15000 rpm for 10 minutes. The supernatant was collected and
715 incubated with primary antibody conjugated with Dynabeads at 4°C overnight. After incubation, the
716 sample tubes were set on DynaMag-2 (Thermo Fisher Scientific), and Dynabeads were washed three
717 times with IP buffer. Dynabeads were then suspended with fresh IP buffer and incubated at 95°C for
718 5 minutes. The supernatant was collected on DynaMag-2 and mixed with 2 × Laemmli Sample Buffer.
719 Immunoblotting was performed as described.

720

721 **Chromatin immunoprecipitation (ChIP) quantitative PCR (qPCR)**

722 The preincubation of Dynabeads (100 μ L) (Thermo Fisher Scientific, M-280 Sheep anti Mouse IgG)
723 with primary antibody (5.0 μ g) was performed at 4°C overnight. For ChIP-qPCR, 1.0×10^7 cells were
724 collected and then cross-linked in 1.0% (w/v) formaldehyde solution for 30 minutes at room
725 temperature. Cross-linked cells were neutralized with glycine (Wako) and then centrifuged at 3500
726 rpm for 2 minutes. Cell pellets were suspended with 2.0% FSC/PBS, rotated for 10 minutes at 4°C
727 and then centrifuged at 3500 rpm for 2 minutes. In the lysis procedure, cell pellets were suspended
728 with lysis buffer 1 (50 mM HEPES buffer (Hampton Research), 140 mM NaCl (Nacalai tesque), 1.0
729 mM EDTA (Nacalai tesque), 10% Glycerol (Wako), 0.5% NP-40, 0.25% TritonX-100 (Thermo Fisher
730 Scientific)) and rotated for 10 minutes at 4°C. After centrifugation at 13000 rpm for 5 minutes, the cell
731 pellets were suspended in lysis buffer 2 (10 mM Tris-HCl (Nacalai tesque), 200 mM NaCl, 1.0 mM
732 EDTA, 0.5 mM EGTA (Nacalai tesque)) and rotated for 10 minutes at 4°C. The cell suspension was
733 then centrifuged at 13000 rpm for 5 minutes, and lysis buffer 2 was then replaced with lysis buffer 3
734 (10 mM Tris-HCl, 100 mM NaCl, 1.0 mM EDTA, 0.5 mM EGTA, 0.1% sodium deoxycholate (Wako),
735 0.5% N-lauroylsarcosine (Nacalai tesque)). The fragmentation of cross-linked DNA in lysis buffer 3
736 was performed by SFX250 sonicator (BRANSON). Fragmented DNA was incubated with Dynabeads
737 at 4°C overnight. After the incubation, the samples were washed four times with RIPA buffer (50 mM
738 HEPES buffer, 500 mM LiCl (Sigma-Aldrich), 1.0 mM EDTA, 1.0% NP40 and 0.7% sodium
739 deoxycholate) on Dynamag-2 and then eluted. To detach the antibodies from Dynabeads, Dynabeads
740 were incubated at 65°C for 15 minutes, and the supernatant was collected on Dynamag-2. Cross-
741 linking was reversed for 24 hours at 65°C. Reverse cross-linked samples were purified using ChIP
742 DNA Clean & concentrator (ZYMO Research) according to the manufacturer's protocol. Eluted DNA
743 was used as the template for qPCR. The primer sequences used for ChIP-qPCR are listed in **Table**
744 **S2**.

745

746 **Mitochondrial oxygen consumption rate**

747 The mitochondrial OCR was measured using an XF96 Extracellular Flux Analyzer (Seahorse
748 Bioscience) according to the manufacturer's instruction. C2C12 cells (1.0×10^4 cells) were seeded into
749 XF96 Cell Culture Microplates (Agilent Technologies) coated with Matrigel and differentiated into
750 myotubes. A total of 1.0×10^4 iPSC-derived myogenic cells at day 5 were re-plated onto XF96 Cell
751 Culture Microplates coated with Matrigel and analyzed at day 6. Before the analysis, the culture
752 medium was replaced with DMEM (Sigma-Aldrich) containing 5.0 mM glucose, 5.0 mM GlutaMAX
753 (Gibco) and 1.0 mM sodium pyruvate (Gibco). The cells were incubated for 60 minutes at 37°C without
754 CO₂. To measure the mitochondrial function, the following compounds were added: 8-10 μ M
755 oligomycin (Sigma-Aldrich), 10 μ M carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP;
756 Sigma-Aldrich), and 1.0 μ M antimycin A (Sigma-Aldrich) and 1.0 μ M rotenone (Sigma-Aldrich). Each
757 mitochondrial oxygen respiration-related value was calculated using Wave software (Agilent
758 Technologies).

759

760 **References**

761 Akten, B., Kye, M.J., Hao Ie, T., Wertz, M.H., Singh, S., Nie, D., Huang, J., Merianda, T.T., Twiss, J.L.,
762 Beattie, C.E., *et al.* (2011). Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA
763 cpg15 rescues motor neuron axonal deficits. *Proc Natl Acad Sci U S A* **108**, 10337-10342.

764 Ando, S., Tanaka, M., Chinen, N., Nakamura, S., Shimazawa, M., and Hara, H. (2020). SMN Protein
765 Contributes to Skeletal Muscle Cell Maturation Via Caspase-3 and Akt Activation. *In Vivo* **34**, 3247-
766 3254.

767 Bouakaz, L., Bouakaz, E., Murgola, E.J., Ehrenberg, M., and Sanyal, S. (2006). The role of ribosomal
768 protein L11 in class I release factor-mediated translation termination and translational accuracy. *J Biol
769 Chem* **281**, 4548-4556.

770 Boyer, J.G., Murray, L.M., Scott, K., De Repentigny, Y., Renaud, J.M., and Kothary, R. (2013). Early
771 onset muscle weakness and disruption of muscle proteins in mouse models of spinal muscular
772 atrophy. *Skeletal Muscle* **3**.

773 Bricceno, K.V., Martinez, T., Leikina, E., Duguez, S., Partridge, T.A., Chernomordik, L.V., Fischbeck,
774 K.H., Sumner, C.J., and Burnett, B.G. (2014). Survival motor neuron protein deficiency impairs
775 myotube formation by altering myogenic gene expression and focal adhesion dynamics. *Hum Mol
776 Genet* **23**, 4745-4757.

777 Burghes, A.H., and Beattie, C.E. (2009). Spinal muscular atrophy: why do low levels of survival motor
778 neuron protein make motor neurons sick? *Nat Rev Neurosci* **10**, 597-609.

779 Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., Tramontano, A., and
780 Bozzoni, I. (2011). A long noncoding RNA controls muscle differentiation by functioning as a
781 competing endogenous RNA. *Cell* **147**, 358-369.

782 Chen, J.F., Mandel, E.M., Thomson, J.M., Wu, Q., Callis, T.E., Hammond, S.M., Conlon, F.L., and
783 Wang, D.Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and
784 differentiation. *Nat Genet* **38**, 228-233.

785 Chen, J.F., Tao, Y., Li, J., Deng, Z., Yan, Z., Xiao, X., and Wang, D.Z. (2010). microRNA-1 and
786 microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing
787 Pax7. *J Cell Biol* **190**, 867-879.

788 De Vivo, D.C., Bertini, E., Swoboda, K.J., Hwu, W.L., Crawford, T.O., Finkel, R.S., Kirschner, J., Kuntz,
789 N.L., Parsons, J.A., Ryan, M.M., *et al.* (2019). Nusinersen initiated in infants during the
790 presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase
791 2 NURTURE study. *Neuromuscul Disord* **29**, 842-856.

792 Finkel, R.S., Chiriboga, C.A., Vajsar, J., Day, J.W., Montes, J., De Vivo, D.C., Yamashita, M., Rigo, F.,
793 Hung, G., Schneider, E., *et al.* (2016). Treatment of infantile-onset spinal muscular atrophy with
794 nusinersen: a phase 2, open-label, dose-escalation study. *The Lancet* **388**, 3017-3026.

795 Finkel, R.S., Mercuri, E., Darras, B.T., Connolly, A.M., Kuntz, N.L., Kirschner, J., Chiriboga, C.A., Saito,
796 K., Servais, L., Tizzano, E., *et al.* (2017). Nusinersen versus Sham Control in Infantile-Onset Spinal
797 Muscular Atrophy. *N Engl J Med* **377**, 1723-1732.

798 Frangini, M., Franzolin, E., Chemello, F., Laveder, P., Romualdi, C., Bianchi, V., and Rampazzo, C.
799 (2013). Synthesis of mitochondrial DNA precursors during myogenesis, an analysis in purified C2C12
800 myotubes. *J Biol Chem* **288**, 5624-5635.

801 Grunseich, C., Wang, I.X., Watts, J.A., Burdick, J.T., Guber, R.D., Zhu, Z., Bruzel, A., Lanman, T.,
802 Chen, K., Schindler, A.B., *et al.* (2018). Senataxin Mutation Reveals How R-Loops Promote
803 Transcription by Blocking DNA Methylation at Gene Promoters. *Mol Cell* **69**, 426-437 e427.

804 Hao Ie, T., Duy, P.Q., An, M., Talbot, J., Iyer, C.C., Wolman, M., and Beattie, C.E. (2017). HuD and
805 the Survival Motor Neuron Protein Interact in Motoneurons and Are Essential for Motoneuron
806 Development, Function, and mRNA Regulation. *J Neurosci* **37**, 11559-11571.

807 Hayhurst, M., Wagner, A.K., Cerletti, M., Wagers, A.J., and Rubin, L.L. (2012). A cell-autonomous
808 defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein. *Dev
809 Biol* **368**, 323-334.

810 Hellbach, N., Peterson, S., Haehnke, D., Shankar, A., LaBarge, S., Pivaroff, C., Saenger, S., Thomas,
811 C., McCarthy, K., Ebeling, M., *et al.* (2018). Impaired myogenic development, differentiation and

812 function in hESC-derived SMA myoblasts and myotubes. *PLoS One* **13**, e0205589.

813 Hoang, P., Jacquir, S., Lemus, S., and Ma, Z. (2019). Quantification of Contractile Dynamic
814 Complexities Exhibited by Human Stem Cell-Derived Cardiomyocytes Using Nonlinear Dimensional
815 Analysis. *Sci Rep* **9**, 14714.

816 Jangi, M., Fleet, C., Cullen, P., Gupta, S.V., Mekhoubad, S., Chiao, E., Allaire, N., Bennett, C.F., Rigo, F., Krainer, A.R., *et al.* (2017). SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage. *Proc Natl Acad Sci U S A* **114**, E2347-E2356.

817 Kim, J.K., Jha, N.N., Feng, Z., Faleiro, M.R., Chiriboga, C.A., Wei-Lapierre, L., Dirksen, R.T., Ko, C.P., and Monani, U.R. (2020). Muscle-specific SMN reduction reveals motor neuron-independent disease
818 in spinal muscular atrophy models. *J Clin Invest* **130**, 1271-1287.

819 Le, T.T., Pham, L.T., Butchbach, M.E., Zhang, H.L., Monani, U.R., Covert, D.D., Gavrilina, T.O., Xing, L., Bassell, G.J., and Burghes, A.H. (2005). SMN Δ 7, the major product of the centromeric survival
820 motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates
821 with full-length SMN. *Hum Mol Genet* **14**, 845-857.

822 Lin, C.Y., Yoshida, M., Li, L.T., Ikenaka, A., Oshima, S., Nakagawa, K., Sakurai, H., Matsui, E., Nakahata, T., and Saito, M.K. (2019). iPSC-derived functional human neuromuscular junctions model
823 the pathophysiology of neuromuscular diseases. *JCI Insight* **4**.

824 Long, K.K., O'Shea, K.M., Khairallah, R.J., Howell, K., Paushkin, S., Chen, K.S., Cote, S.M., Webster, M.T., Stains, J.P., Treece, E., *et al.* (2019). Specific inhibition of myostatin activation is beneficial in
825 mouse models of SMA therapy. *Hum Mol Genet* **28**, 1076-1089.

826 Lotti, F., Imlach, W.L., Saieva, L., Beck, E.S., Hao le, T., Li, D.K., Jiao, W., Mentis, G.Z., Beattie, C.E., McCabe, B.D., *et al.* (2012). An SMN-dependent U12 splicing event essential for motor circuit function.
827 *Cell* **151**, 440-454.

828 Luchetti, A., Ciafre, S.A., Murdocca, M., Malgieri, A., Masotti, A., Sanchez, M., Farace, M.G., Novelli, G., and Sangiolo, F. (2015). A Perturbed MicroRNA Expression Pattern Characterizes Embryonic
829 Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA). *Int J Mol
Sci* **16**, 18312-18327.

830 Martinez, T.L., Kong, L., Wang, X., Osborne, M.A., Crowder, M.E., Van Meerbeke, J.P., Xu, X., Davis, C., Wooley, J., Goldhamer, D.J., *et al.* (2012). Survival motor neuron protein in motor neurons
831 determines synaptic integrity in spinal muscular atrophy. *J Neurosci* **32**, 8703-8715.

832 Mendell, J.R., Al-Zaidy, S., Shell, R., Arnold, W.D., Rodino-Klapac, L.R., Prior, T.W., Lowes, L., Alfano, L., Berry, K., Church, K., *et al.* (2017). Single-Dose Gene-Replacement Therapy for Spinal Muscular
833 Atrophy. *N Engl J Med* **377**, 1713-1722.

834 Miller, N., Shi, H., Zelikovich, A.S., and Ma, Y.C. (2016). Motor neuron mitochondrial dysfunction in
835 spinal muscular atrophy. *Hum Mol Genet* **25**, 3395-3406.

836 Nicole, S., Desforges, B., Millet, G., Lesbordes, J., Cifuentes-Diaz, C., Vertes, D., Cao, M.L., De
837 Backer, F., Languille, L., Roblot, N., *et al.* (2003). Intact satellite cells lead to remarkable protection
838 against Smn gene defect in differentiated skeletal muscle. *J Cell Biol* **161**, 571-582.

839 Passini, M.A., Bu, J., Roskelley, E.M., Richards, A.M., Sardi, S.P., O'Riordan, C.R., Klinger, K.W., Shihabuddin, L.S., and Cheng, S.H. (2010). CNS-targeted gene therapy improves survival and motor
840 function in a mouse model of spinal muscular atrophy. *J Clin Invest* **120**, 1253-1264.

841 Piazzon, N., Rage, F., Schlotter, F., Moine, H., Branolant, C., and Massenet, S. (2008). In vitro and in
842 cellulo evidences for association of the survival of motor neuron complex with the fragile X mental
843 retardation protein. *J Biol Chem* **283**, 5598-5610.

844 Przanowska, R.K., Sobierajska, E., Su, Z., Jensen, K., Przanowski, P., Nagdas, S., Kashatus, J.A., Kashatus, D.F., Bhatnagar, S., Lukens, J.R., *et al.* (2020). miR-206 family is important for
845 mitochondrial and muscle function, but not essential for myogenesis in vitro. *FASEB J* **34**, 7687-7702.

846 Qing Liu, U.F., Fan Wang, and Gideon Dreyfuss (1997). The spinal muscular atrophy disease gene
847 product SMN and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins.
848 *Cell Vol.* **90**, 1013-1021.

849 Rao, P.K., Kumar, R.M., Farkhondeh, M., Baskerville, S., and Lodish, H.F. (2006). Myogenic factors
850 that regulate expression of muscle-specific microRNAs. *Proc Natl Acad Sci U S A* **103**, 8721-8726.

864 Remels, A.H., Langen, R.C., Schrauwen, P., Schaart, G., Schols, A.M., and Gosker, H.R. (2010).
865 Regulation of mitochondrial biogenesis during myogenesis. *Mol Cell Endocrinol* 315, 113-120.

866 Rapolone, M., Ronchi, D., Violano, R., Vallejo, D., Fagiolari, G., Barca, E., Lucchini, V., Colombo, I.,
867 Villa, L., Berardinelli, A., *et al.* (2015). Impaired Muscle Mitochondrial Biogenesis and Myogenesis in
868 Spinal Muscular Atrophy. *JAMA Neurol* 72, 666-675.

869 Schiaffino, S., Dyar, K.A., Ciciliot, S., Blaauw, B., and Sandri, M. (2013). Mechanisms regulating
870 skeletal muscle growth and atrophy. *FEBS J* 280, 4294-4314.

871 Shafey, D., Cote, P.D., and Kothary, R. (2005). Hypomorphic Smn knockdown C2C12 myoblasts
872 reveal intrinsic defects in myoblast fusion and myotube morphology. *Exp Cell Res* 311, 49-61.

873 Sharma, A., Lambrechts, A., Hao le, T., Le, T.T., Sewry, C.A., Ampe, C., Burghes, A.H., and Morris,
874 G.E. (2005). A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin
875 in neurite-like cytoplasmic extensions of cultured nerve cells. *Exp Cell Res* 309, 185-197.

876 Shintaku, J., Peterson, J.M., Talbert, E.E., Gu, J.M., Ladner, K.J., Williams, D.R., Mousavi, K., Wang,
877 R., Sartorelli, V., and Guttridge, D.C. (2016). MyoD Regulates Skeletal Muscle Oxidative Metabolism
878 Cooperatively with Alternative NF- κ B. *Cell Rep* 17, 514-526.

879 Tadesse, H., Deschenes-Furry, J., Boisvenue, S., and Cote, J. (2008). KH-type splicing regulatory
880 protein interacts with survival motor neuron protein and is misregulated in spinal muscular atrophy.
881 *Hum Mol Genet* 17, 506-524.

882 Tanaka, A., Woltjen, K., Miyake, K., Hotta, A., Ikeya, M., Yamamoto, T., Nishino, T., Shoji, E., Sehara-
883 Fujisawa, A., Manabe, Y., *et al.* (2013). Efficient and reproducible myogenic differentiation from human
884 iPS cells: prospects for modeling Miyoshi Myopathy in vitro. *PLoS One* 8, e61540.

885 Trotta, A.P., Gelles, J.D., Serasinghe, M.N., Loi, P., Arbiser, J.L., and Chipuk, J.E. (2017). Disruption
886 of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK
887 inhibition. *J Biol Chem* 292, 11727-11739.

888 Wang, C., Liu, W., Nie, Y., Qaher, M., Horton, H.E., Yue, F., Asakura, A., and Kuang, S. (2017). Loss
889 of MyoD Promotes Fate Transdifferentiation of Myoblasts Into Brown Adipocytes. *EBioMedicine* 16,
890 212-223.

891 Wang, L.T., Chiou, S.S., Liao, Y.M., Jong, Y.J., and Hsu, S.H. (2014). Survival of motor neuron protein
892 downregulates miR-9 expression in patients with spinal muscular atrophy. *Kaohsiung J Med Sci* 30,
893 229-234.

894 Wertz, M.H., Winden, K., Neveu, P., Ng, S.Y., Ercan, E., and Sahin, M. (2016). Cell-type-specific miR-
895 431 dysregulation in a motor neuron model of spinal muscular atrophy. *Hum Mol Genet* 25, 2168-
896 2181.

897 Wu, J., and Lim, R.W. (2005). Regulation of inhibitor of differentiation gene 3 (Id3) expression by Sp2-
898 motif binding factor in myogenic C2C12 cells: downregulation of DNA binding activity following
899 skeletal muscle differentiation. *Biochim Biophys Acta* 1731, 13-22.

900 Wust, S., Drose, S., Heidler, J., Wittig, I., Klockner, I., Franko, A., Bonke, E., Gunther, S., Gartner, U.,
901 Boettger, T., *et al.* (2018). Metabolic Maturation during Muscle Stem Cell Differentiation Is Achieved
902 by miR-1/133a-Mediated Inhibition of the Dlk1-Dio3 Mega Gene Cluster. *Cell Metab* 27, 1026-1039
903 e1026.

904 Xiao, Y., Zhang, J., Shu, X., Bai, L., Xu, W., Wang, A., Chen, A., Tu, W.-Y., Wang, J., Zhang, K., *et al.*
905 (2020). Loss of mitochondrial protein CHCHD10 in skeletal muscle causes neuromuscular junction
906 impairment. *Human Molecular Genetics* 29, 1784-1796.

907 Yamazaki, T., Chen, S., Yu, Y., Yan, B., Haertlein, T.C., Carrasco, M.A., Tapia, J.C., Zhai, B., Das, R.,
908 Lalancette-Hebert, M., *et al.* (2012). FUS-SMN protein interactions link the motor neuron diseases
909 ALS and SMA. *Cell Rep* 2, 799-806.

910 Yan, K., An, T., Zhai, M., Huang, Y., Wang, Q., Wang, Y., Zhang, R., Wang, T., Liu, J., Zhang, Y., *et al.*
911 (2019). Mitochondrial miR-762 regulates apoptosis and myocardial infarction by impairing ND2. *Cell
912 Death Dis* 10, 500.

913 Yoshida, M., Kitaoka, S., Egawa, N., Yamane, M., Ikeda, R., Tsukita, K., Amano, N., Watanabe, A.,
914 Morimoto, M., Takahashi, J., *et al.* (2015). Modeling the early phenotype at the neuromuscular
915 junction of spinal muscular atrophy using patient-derived iPSCs. *Stem Cell Reports* 4, 561-568.

916 Zhang, X., Zuo, X., Yang, B., Li, Z., Xue, Y., Zhou, Y., Huang, J., Zhao, X., Zhou, J., Yan, Y., *et al.*
917 (2014). MicroRNA directly enhances mitochondrial translation during muscle differentiation. *Cell* 158,
918 607-619.

919 Zhang, Z., Lotti, F., Dittmar, K., Younis, I., Wan, L., Kasim, M., and Dreyfuss, G. (2008). SMN
920 deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects
921 in splicing. *Cell* 133, 585-600.

922 Zhao, D.Y., Gish, G., Braunschweig, U., Li, Y., Ni, Z., Schmitges, F.W., Zhong, G., Liu, K., Li, W.,
923 Moffat, J., *et al.* (2016). SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal
924 domain control termination. *Nature* 529, 48-53.

925