

1 **A screen of drug-like molecules identifies chemically diverse electron transport chain
2 inhibitors in apicomplexan parasites**

3 Jenni A. Hayward[†], F. Victor Makota[†], Daniela Cihalova, Esther Rajendran, Soraya M.
4 Zwahlen, Laura Shuttleworth, Ursula Wiedemann, Christina Spry, Kevin J. Saliba*, Alexander
5 G. Maier*, Giel G. van Dooren*

6

7 Research School of Biology, Australian National University, Canberra, ACT, Australia

8

9 [†]J.A. Hayward and F.V. Makota contributed equally to this paper.

10 * Correspondence: giel.vandooren@anu.edu.au; alex.maier@anu.edu.au;
11 kevin.saliba@anu.edu.au

12

13 Key words: electron transport chain, inhibitors, mitochondrion, Apicomplexa, *Plasmodium*
14 *falciparum*, *Toxoplasma gondii*

15

16 Running title: Identifying apicomplexan ETC inhibitors

17 **Abstract**

18 With the advent of resistance to existing treatments, new drugs are needed to combat
19 apicomplexan parasites such as the causative agents of malaria (*Plasmodium* species) and
20 toxoplasmosis (*Toxoplasma gondii*). To identify new inhibitors of the mitochondrial electron
21 transport chain (ETC) in these parasites, we developed a Seahorse XFe96 flux analyzer
22 approach to screen compounds from the Medicines for Malaria Venture ‘Pathogen Box’ for
23 ETC inhibition. We identified six chemically diverse, on-target inhibitors of the ETC of *T.*
24 *gondii*, five of which also target the ETC of *Plasmodium falciparum*. Two of the identified
25 compounds (MMV024937 and MMV688853) represent novel ETC inhibitor chemotypes. We
26 pinpoint the molecular targets of these inhibitors, demonstrating that all target ETC Complex
27 III, with MMV688853 additionally targeting a kinase with a key role in parasite invasion of
28 host cells. Most of the compounds remain effective inhibitors of parasites that are resistant to
29 the clinically used Complex III inhibitor atovaquone. In sum, we have developed a versatile
30 screening approach to identify and characterize new inhibitors of the ETC in apicomplexan
31 parasites.

32 **Introduction**

33 Apicomplexan parasites cause numerous diseases in humans and livestock worldwide. Up to a
34 third of the global human population is chronically infected with *Toxoplasma gondii*, which
35 can cause the disease toxoplasmosis in immunocompromised or pregnant individuals (Montoya
36 and Liesenfeld, 2004). *Plasmodium* parasites cause the disease malaria, which killed an
37 estimated 409 000 people and infected 229 million in 2019 (WHO, 2020). Despite the recent
38 approval of the first malaria vaccine for children by the World Health Organization, there is
39 currently no effective vaccine against malaria for adults or against toxoplasmosis in humans.
40 There is therefore a heavy reliance on drugs to treat both diseases. Current treatment options
41 are limited and have questionable efficacy and safety. For instance, while frontline therapeutics
42 such as pyrimethamine and sulfadiazine are able to kill the disease-causing tachyzoite stage of
43 *T. gondii*, they fail to eradicate the long-lived bradyzoite cyst stage that causes chronic infection
44 and elicit adverse effects in many patients (Alday and Doggett, 2017). Emerging resistance to
45 frontline therapeutics, such as artemisinin, is a particular problem for treating the potentially
46 life-threatening severe malaria caused by *Plasmodium falciparum* (Fairhurst and Dondorp,
47 2016). New treatments for toxoplasmosis and malaria are therefore much needed.

48 The mitochondrion is important for apicomplexan parasite survival and is a target of many anti-
49 parasitic compounds (Goodman et al., 2017). Like in other eukaryotes, the inner membrane of
50 the parasite mitochondrion houses an electron transport chain (ETC), which is composed of a
51 series of protein complexes that contribute to energy generation and pyrimidine biosynthesis
52 (Hayward and van Dooren, 2019). Electrons derived from parasite metabolism are fed into the
53 ETC via the action of several dehydrogenases – including succinate dehydrogenase (SDH),
54 malate-quinone oxidoreductase (MQO), glycerol 3-phosphate dehydrogenase (G3PDH),
55 dihydroorotate dehydrogenase (DHODH), and type II NADH dehydrogenases (NDH2) –
56 which all reduce the hydrophobic inner membrane electron transporting molecule coenzyme Q

57 (CoQ). CoQ interacts with ETC Complex III (also known as the coenzyme Q:cytochrome *c*
58 oxidoreductase or *bc*₁ complex) at the so-called Q_o and Q_i sites, where electrons are donated to
59 or accepted from Complex III, respectively, in a process termed the Q cycle (Mitchell, 1975).
60 This process also contributes to the generation of a proton motive force across the inner
61 mitochondrial membrane by transporting protons from the matrix into the intermembrane
62 space. Complex III passes electrons to the soluble intermembrane space protein cytochrome *c*
63 (CytC). CytC shuttles the electrons to ETC Complex IV (cytochrome *c* oxidase), which donates
64 them to the terminal electron acceptor, oxygen. Complex IV also contributes to the proton
65 motive force by translocating protons across the inner mitochondrial membrane. The net
66 reaction of the ETC is thus the oxidation of cellular substrates and reduction of oxygen, coupled
67 to the translocation of protons from the matrix into the intermembrane space to generate a
68 proton gradient across the inner membrane. This proton gradient can be utilized by an F-type
69 ATPase (Complex V) to generate ATP and for important mitochondrial processes such as
70 protein import (Schmidt et al., 2010). In the erythrocytic stages of the *P. falciparum* lifecycle,
71 the ETC functions primarily as an electron sink for the DHODH reaction in the *de novo*
72 pyrimidine biosynthesis pathway rather than for ATP synthesis (Painter et al., 2007).

73 ETC Complex III is the target of many anti-parasitic agents, including the clinically used
74 therapeutic atovaquone and the pre-clinical ‘endochin-like quinolone’ (ELQ) compounds (Fry
75 and Pudney, 1992, Doggett et al., 2012, Stickles et al., 2015). Many Complex III-targeting
76 compounds are CoQ analogs that bind to the Q_o and/or Q_i sites of Complex III (Barton et al.,
77 2010). The ability of these compounds to selectively target parasite Complex III lies in
78 differences in the CoQ binding site residues between parasites and the mammalian hosts they
79 infect, specifically in the cytochrome *b* protein of the complex (Vaidya et al., 1993, Fisher et
80 al., 2012, Fisher et al., 2020). For instance, the Q_o site inhibitor atovaquone has an IC₅₀ value
81 in the nanomolar range against Complex III activity in *T. gondii* and *P. falciparum*, but inhibits

82 the mammalian complex 13- to 230-fold less effectively (Siregar et al., 2015, Nilsen et al.,
83 2013, Doggett et al., 2012). Although it is a potent and selective inhibitor of Complex III in
84 apicomplexans, resistance to atovaquone can readily emerge as the result of mutations in the
85 cytochrome *b* protein (McFadden et al., 2000, Srivastava et al., 1999), limiting its use in
86 treating the diseases caused by these parasites. Identifying Complex III inhibitors that remain
87 effective against atovaquone-resistant parasites is therefore desirable.

88 Strategies to identify new anti-parasitic compounds often use high throughput screening of
89 small molecule libraries to identify inhibitors of parasite proliferation (Smilkstein et al., 2004,
90 Gamo et al., 2010, Adeyemi et al., 2018, Spalenka et al., 2018). Adapting such high throughput
91 screens to more specific assays offers a route to identifying inhibitors that target particular
92 processes in the parasite. For example, researchers have exploited the observation that the *P.*
93 *falciparum* ETC becomes dispensable when a cytosolic, CoQ-independent form of DHODH
94 from yeast (yDHODH) is introduced into the parasite (Painter et al., 2007), to develop a more
95 target-based screening approach (Dong et al., 2011). This study identified compounds that have
96 reduced potency against yDHODH-expressing parasites compared to WT *P. falciparum*, and
97 hence are on-target inhibitors of the ETC of these parasites (Dong et al., 2011). Parasite ETC
98 inhibitors have been identified through screening of a compound library using a fluorescence-
99 based Oxygen Biosensor System to directly measure oxygen consumption in erythrocytes
100 infected with *Plasmodium yoelii* (Gomez-Lorenzo et al., 2018). Although this approach is a
101 powerful means of identifying candidate ETC inhibitors, shortcomings of this assay include
102 that it has limited ability to distinguish between on-target ETC inhibitors and off-target
103 compounds that cause parasite death (and therefore lead indirectly to decreased oxygen
104 consumption) (Gomez-Lorenzo et al., 2018), and secondary assays are required to locate the
105 target of identified inhibitors from these screens. An assay in which oxygen consumption and
106 parasite viability could simultaneously be assessed would enable on- and off-target compounds

107 to be differentiated more rigorously, and screening assays that pinpoint the molecular target/s
108 of candidate ETC inhibitors would provide a valuable means of identifying novel targets in the
109 ETC.

110 Here, we screened the Medicines for Malaria Venture (MMV) ‘Pathogen Box’ small molecule
111 library to identify inhibitors of the *T. gondii* parasite ETC using a Seahorse XFe96 flux
112 analyzer. The Seahorse XFe96 flux analyzer simultaneously measures the oxygen consumption
113 rate (OCR) and extracellular acidification rate (ECAR) of parasites to assess ETC function and
114 general metabolism, respectively, thereby allowing us to distinguish between on- and off-target
115 inhibitors. We identified seven compounds that inhibited *T. gondii* OCR, six of which were on-
116 target ETC inhibitors, and a seventh that simultaneously inhibited ECAR, causing rapid
117 parasite death in an off-target manner. Among these compounds were two chemically novel
118 ETC inhibitors, one of which (MMV688853) was previously characterized as an inhibitor of
119 the parasite calcium dependent protein kinase-1 (CDPK1) protein, and which our data therefore
120 indicate has dual targets. We provide evidence that most of the identified inhibitors are also
121 on-target inhibitors of the *P. falciparum* ETC, illustrating that these compounds have broad
122 utility in targeting this important phylum of parasites. We adapted the Seahorse XFe96 flux
123 analyzer assays to identify the targets of these inhibitors, and determined that most target ETC
124 Complex III in these parasites. We also demonstrate that atovaquone-resistant mutants in both
125 *T. gondii* and *P. falciparum* show limited cross-resistance to some of the identified Complex
126 III inhibitors. Taken together, our work establishes a scalable pipeline to both identify and
127 characterize the targets of inhibitors of the ETC in apicomplexan parasites.

128 **Results**

129 **Screening the MMV ‘Pathogen Box’ identifies 7 inhibitors of oxygen consumption in *T.***
130 ***gondii***

131 Apicomplexan parasites require oxygen for one key purpose – to act as the terminal electron
132 acceptor in the mitochondrial ETC. In previous studies, we utilized a Seahorse XFe96
133 extracellular flux analyzer assay to measure the mitochondrial oxygen consumption rate (OCR)
134 in extracellular tachyzoites (Seidi et al., 2018, Hayward et al., 2021, Hayward et al., 2022).
135 These assays enable the injection of compounds into wells of a 96-well plate prior to measuring
136 parasite OCR, and we demonstrated that injection of the Complex III inhibitor atovaquone
137 rapidly inhibits OCR (Seidi et al., 2018, Hayward et al., 2021). We reasoned that this approach
138 could be used to screen large compound libraries to identify new inhibitors of the parasite ETC.
139 To investigate this, we screened the MMV ‘Pathogen Box’ compound library (a library of
140 ‘diverse, drug-like molecules active against neglected diseases’) for inhibitors of parasite
141 mitochondrial OCR. Of the 400 compounds tested, seven were found to inhibit OCR by more
142 than 30% at 1 μ M (Fig. 1).

143 Chemically diverse compound scaffolds were represented among the identified hits (Fig. 1),
144 including the known apicomplexan parasite ETC inhibitors MMV689480 (buparvaquone) and
145 the endochin-like quinolone (ELQ) family compound MMV671636. The anti-fungal agents
146 MMV688754 and MMV021057 (trifloxystrobin and azoxystrobin, respectively) were also
147 identified; these compounds bind to the Q_o site of Complex III in fungi (Bartlett et al., 2002)
148 and have been shown previously to inhibit *P. falciparum* proliferation (Witschel et al., 2012),
149 likely via binding to the Q_o site of Complex III (Vallierès et al., 2013). Other compounds
150 identified in our screen have not yet been shown to be ETC inhibitors and included
151 MMV688853, an aminopyrazole carboxamide compound previously identified as an inhibitor

152 of *T. gondii* calcium-dependent protein kinase 1 (*TgCDPK1*) (Zhang et al., 2014, Huang et al.,
153 2015), MMV024397 which has been shown to inhibit proliferation of *P. falciparum* (Tougan
154 et al., 2019), and MMV688978 (auranofin). Auranofin is a gold-containing compound used
155 clinically for the treatment of rheumatoid arthritis (Kean et al., 1997), which also inhibits the
156 proliferation of many parasites including *T. gondii* (Ma et al., 2021) and *P. falciparum*
157 (Sannella et al., 2008).

158 **Identified compounds inhibit proliferation and oxygen consumption in both *T. gondii* and**
159 ***P. falciparum***

160 We next tested whether the identified compounds could inhibit proliferation of *T. gondii*
161 parasites. We measured the proliferation of RH strain *T. gondii* tachyzoites expressing a tandem
162 dimeric Tomato (tdTomato) red fluorescent protein using a previously described fluorescence-
163 based 96-well plate proliferation assay (Rajendran et al., 2017). All seven compounds inhibited
164 *T. gondii* proliferation with sub- to high-nanomolar IC₅₀ values, with buparvaquone (IC₅₀ ±
165 SEM = 0.7 ± 0.1 nM, n = 3) and the ELQ MMV671636 (IC₅₀ ± SEM = 3.0 ± 0.2 nM, n = 3)
166 the most potent, and azoxystrobin (IC₅₀ ± SEM = 310 ± 32 nM, n = 3) the least (Table 1a; Fig.
167 S1). Given that ELQ compounds are well-characterized ETC inhibitors (Doggett et al., 2012,
168 Stickles et al., 2015), we did not include MMV671636 in further experiments.

169 The ETC is a validated drug target in *P. falciparum* parasites (Barton et al., 2010), and we
170 reasoned that the identified inhibitors of OCR in *T. gondii* may also act against the ETC of *P.*
171 *falciparum*. We first tested whether the identified compounds could inhibit proliferation of the
172 disease-causing asexual blood stage of 3D7 strain *P. falciparum*. Five of the six compounds
173 inhibited 3D7 *P. falciparum* proliferation, most with sub- to high-nanomolar IC₅₀ values (Table
174 1b; Fig. 2). While MMV688853 was an effective inhibitor of *T. gondii* proliferation, we found
175 that it had little effect on the proliferation of *P. falciparum* at the concentration range we tested

176 (up to 6.25 μ M) (Fig. 2h). As an initial measure for whether they act specifically on the ETC
177 of *P. falciparum* or whether they have broader cellular targets, we tested the ability of the
178 identified compounds to inhibit the proliferation of yDHODH-expressing 3D7 strain *P.*
179 *falciparum* parasites, which are no longer dependent on the ETC for proliferation (Painter et
180 al., 2007). We observed that yDHODH-expressing parasites grew better than WT in the
181 presence of four of the compounds (buparvaquone, trifloxystrobin, azoxystrobin and
182 MMV024397) and the known ETC inhibitor atovaquone (Table 1b; Fig. 2), consistent with
183 these compounds acting primarily on the ETC in *P. falciparum*. By contrast, yDHODH and
184 WT parasites were equally inhibited in the presence of auranofin and the control compound
185 chloroquine, which does not target the ETC (Table 1b; Fig. 2). This observation suggests that
186 auranofin perturbs parasite proliferation independently of ETC inhibition. Together, these
187 results indicate that most of the identified compounds are selective inhibitors of the ETC in *P.*
188 *falciparum*.

189 To explore their potency at inhibiting OCR in *T. gondii*, we investigated the effects of a range
190 of concentrations of each compound on parasite OCR using the Seahorse XFe96 flux analyzer.
191 All compounds inhibited the OCR of *T. gondii* tachyzoites in a dose-dependent manner (Table
192 2; Fig. S2c-i). Most of the tested compounds showed rapid inhibition of OCR at the higher
193 concentrations tested (as shown for atovaquone, Fig. S2a). By contrast, inhibition of OCR by
194 auranofin occurred more gradually over time, even at the highest concentration tested (Fig.
195 S2b), suggesting that the effects of auranofin on OCR may occur in a different manner to the
196 other identified compounds.

197 In addition to measuring OCR, the Seahorse XFe96 extracellular flux analyzer simultaneously
198 measures the extracellular acidification rate (ECAR), which provides a general measure of
199 parasite metabolic activity (Seidi et al., 2018, Hayward et al., 2021). We observed that most of
200 the test compounds inhibited OCR without inhibiting ECAR (Fig. 3a), suggesting that they

201 selectively target the ETC of the parasite. By contrast, treatment with auranofin resulted in a
202 concomitant decrease in both OCR and ECAR (Fig. 3a). This provides additional evidence that
203 auranofin acts in a different manner to the other identified compounds. To explore this further,
204 we assessed the viability of parasites upon auranofin treatment. We treated *T. gondii* parasites
205 with 1, 20 or 100 μ M auranofin, or 10 μ M atovaquone as a control, stained parasites with
206 propidium iodide (PI), and quantified parasite viability by flow cytometry. We observed that
207 treatment with auranofin led to a rapid, dose-dependent decrease in parasite viability over the
208 140-minute time course of the assay (Fig. 3b). By contrast, treatment with the selective ETC
209 inhibitor atovaquone caused minimal loss of parasite viability within this timeframe (Fig. 3b),
210 suggesting the decreased viability observed upon auranofin treatment is not due to ETC
211 inhibition. These data suggest that auranofin is not a selective inhibitor of the ETC but instead
212 perturbs broader parasite metabolic functions, resulting in a decrease in parasite viability and
213 a secondary impairment of ETC activity.

214 We conclude that most of the compounds identified in our initial screen inhibit the proliferation
215 of *T. gondii* and *P. falciparum* parasites, and act selectively on the ETC of these parasites. A
216 strength of the Seahorse XFe96 flux analyzer-based screening approach is its ability to
217 simultaneously measure OCR and ECAR, and thereby enable the differentiation of compounds
218 that directly inhibit the ETC from those – such as auranofin – that have a broader effect on
219 parasite metabolism or viability.

220 **MMV688853 inhibits the ETC in a *TgCDPK1*-independent manner**

221 One of the hit compounds identified in our ETC inhibitor screen was the aminopyrazole
222 carboxamide scaffold compound MMV688853, which has been reported previously to be an
223 inhibitor of *T. gondii* calcium-dependent protein kinase 1 (*TgCDPK1*) (Zhang et al., 2014,
224 Huang et al., 2015). *TgCDPK1* is a cytosolic protein that has been shown to be critical for

225 parasite invasion of host cells (Lourido et al., 2010). We hypothesized that either *TgCDPK1*
226 has an additional role in the ETC or that MMV688853 has a second target in these parasites.
227 *TgCDPK1* has a glycine residue at the mouth of the pocket where MMV688853 and other
228 *TgCDPK1* inhibitors bind (Fig. 4a). Mutation of this so-called ‘gatekeeper’ residue to a bulky
229 amino acid like methionine renders *TgCDPK1* resistant to inhibition by aminopyrazole
230 carboxamide scaffold compounds like MMV688853 (Huang et al., 2015), as well as to
231 pyrazolopyrimidine scaffold compounds such as 3-MB-PP1 (Lourido et al., 2010) (Fig. 4a).
232 To test our hypotheses, we generated a tdTomato⁺ *T. gondii* strain wherein the gatekeeper
233 glycine residue at position 128 was mutated to methionine (*TgCDPK1*^{G128M}; Fig. 4a).
234 *TgCDPK1* is an important regulator of parasite invasion (Lourido et al., 2010), a critical step
235 in the lytic cycle of the parasite. Previous studies have shown that *TgCDPK1* inhibitors impair
236 host cell invasion by WT but not *TgCDPK1*^{G128M} parasites (Lourido et al., 2010). To validate
237 this, we tested the ability of MMV688853 to inhibit the invasion of WT and *TgCDPK1*^{G128M}
238 parasites. While invasion of WT parasites was significantly inhibited by both MMV688853
239 and the control *TgCDPK1* inhibitor 3-MB-PP1, *TgCDPK1*^{G128M} parasites were able to invade
240 in the presence of either compound (Fig. 4b). By comparison, the ETC inhibitor atovaquone
241 did not inhibit the invasion of either parasite strain (Fig. 4b). These results indicate that
242 MMV688853 inhibits *T. gondii* invasion in a *TgCDPK1*-dependent manner.
243 We next tested the ability of MMV688853 to inhibit intracellular proliferation of WT and
244 *TgCDPK1*^{G128M} parasites. We allowed parasites to invade host cells in the absence of inhibitors,
245 then grew parasites for ~20 h in the presence of MMV688853 or various control inhibitors and
246 quantified the number of parasites per vacuole. MMV688853 inhibited intracellular
247 proliferation of both WT and *TgCDPK1*^{G128M} parasites, with most vacuoles having only a
248 single parasite (Fig. 4c). Treatment with atovaquone resulted in similar impairment of
249 intracellular proliferation (Fig. 4c), with the majority of vacuoles containing 1-2 parasites.

250 These data indicate that MMV688853 can inhibit intracellular proliferation independently of
251 *TgCDPK1*. Unexpectedly, the majority of both WT and *TgCDPK1*^{G128M} parasites grown in the
252 presence of 3-MB-PP1 exhibited abnormal morphology (defined as vacuoles that contained
253 misshapen parasites, possibly resulting from defects in cell division; Fig. 4c), suggesting an
254 additional off-target effect of 3-MB-PP1.

255 As a test for whether the inhibition of oxygen consumption by MMV688853 occurs through
256 inhibition of *TgCDPK1*, we assessed the OCR of intact WT and *TgCDPK1*^{G128M} parasites after
257 addition of increasing concentrations of MMV688853. We observed a similar IC₅₀ for OCR
258 inhibition in both WT and *TgCDPK1*^{G128M} parasites (Fig. 4d). We also examined the ability of
259 the alternative *TgCDPK1* inhibitor 3-MB-PP1 to inhibit OCR of WT and *TgCDPK1*^{G128M}
260 parasites. In contrast to atovaquone and MMV688853, 3-MB-PP1 did not inhibit OCR in either
261 WT or *TgCDPK1*^{G128M} parasites (Fig. 4e). Together, these data indicate that MMV688853 acts
262 on the ETC independently of *TgCDPK1*, and that *TgCDPK1* does not have a role in the ETC.

263 Finally, we measured the effects of MMV688853 on the overall proliferation of WT and
264 *TgCDPK1*^{G128M} *T. gondii* parasites through the lytic cycle. We measured parasite proliferation
265 in the presence of increasing concentrations of MMV688853 over six days using a fluorescence
266 proliferation assay. We observed a similar IC₅₀ for both WT and *TgCDPK1*^{G128M} parasites (Fig.
267 4f). Taken together, our data indicate that while MMV688853 inhibits parasite invasion by
268 targeting *TgCDPK1* (Fig. 4b), MMV688853 also has a second target in the ETC of the parasite
269 (Fig. 4d-e), and this second target is likely a major contributor to impairment of intracellular
270 proliferation of the parasite by this compound (Fig. 4f).

271 **Defining the targets of the candidate ETC inhibitors in *T. gondii* and *P. falciparum***

272 Having characterized the inhibitory properties of the candidate ETC inhibitors, we next sought
273 to identify which component of the ETC these compounds target. To do this, we utilized a

274 Seahorse XFe96 analyzer-based assay that we developed previously to pinpoint where a defect
275 in the *T. gondii* ETC is occurring (Hayward et al., 2021, Hayward et al., 2022) (Fig. 5a). Briefly,
276 *T. gondii* parasites were starved for 1 h to deplete endogenous substrates. The plasma
277 membrane of the parasites was permeabilized using a low concentration of the detergent
278 digitonin, and parasites were incubated with one of two substrates that independently feed
279 electrons to CoQ in the mitochondrion: 1) malate, which donates electrons to the ETC via a
280 reaction catalyzed by the TCA cycle enzyme malate:quinone oxidoreductase; or 2) glycerol 3-
281 phosphate (G3P), which donates electrons to the ETC independently of the TCA cycle via a
282 reaction catalyzed by G3P dehydrogenase. Following substrate addition, the candidate inhibitor
283 was added at a concentration that we previously showed completely inhibited OCR (Fig. S2)
284 and the change in OCR was measured. If OCR elicited by both substrates was inhibited, this
285 provided evidence that the inhibitor was acting downstream of CoQ (*i.e.* on ETC Complexes
286 III or IV) (Hayward et al., 2021) (Fig. 5a). To differentiate between Complex III and Complex
287 IV inhibition, samples were next treated with the substrate *N,N,N',N'*-tetramethyl-*p*-
288 phenylenediamine dihydrochloride (TMPD), which donates electrons directly to CytC and
289 consequently bypasses Complex III (Fig. 5a). If inhibition of OCR was rescued by addition of
290 TMPD, this provided evidence that the inhibitor was acting upstream of CytC (*e.g.* on ETC
291 Complex III). Finally, samples were treated with the Complex IV inhibitor sodium azide
292 (NaN₃) to validate that the observed TMPD-dependent OCR was a result of Complex IV
293 activity.

294 We observed that most compounds inhibited OCR regardless of whether the parasites were
295 utilizing malate or G3P as ETC substrates (Fig. 5b-h), suggesting that inhibition by these
296 compounds was occurring downstream of CoQ. While most compounds inhibited OCR almost
297 immediately, auranofin inhibition was more gradual (Fig. 5d), consistent with our previous
298 evidence of indirect inhibition of the ETC by this compound (Fig. 3). Furthermore, OCR could

299 be rescued by TMPD for all compounds except auranofin (Fig. 5b-h), which indicates that these
300 compounds inhibit upstream of CytC. Together, these data indicate that the on-target
301 compounds identified in our screen all act via inhibition of ETC Complex III.

302 To validate these results, we performed a direct, spectrophotometric-based Complex III
303 enzymatic assay on parasite extracts in the absence or presence of inhibitors. We observed that
304 Complex III activity was significantly lower in the presence of all tested on-target inhibitors
305 than in the no-drug control (Fig. 5i; Fig. S3), suggesting that the identified compounds are
306 indeed Complex III inhibitors. The inhibitory activity of auranofin could not be assessed via
307 this assay since we observed apparent enzyme activity upon auranofin addition even in the
308 absence of parasite extract (Fig. S3a).

309 To begin to define the targets of the identified compounds in *P. falciparum*, we tested the ability
310 of the compounds to inhibit OCR in permeabilized *P. falciparum* parasites that were supplied
311 malate as a substrate (Fig. 6a). We observed that all compounds except auranofin (Fig. 6c) and
312 MMV688853 (Fig. 6g) could inhibit OCR of *P. falciparum* parasites, and that TMPD restored
313 OCR in all cases (Fig. 6b-g). These results are consistent with most of the compounds that
314 inhibited Complex III in *T. gondii* inhibiting the same complex in *P. falciparum*, although our
315 assay cannot rule that they targeting malate oxidation instead. To investigate the potency of
316 each compound in inhibiting OCR of *P. falciparum*, we performed a dose-response experiment
317 (Fig. S4). All compounds except MMV688853 (Fig. S4f) and auranofin (Fig. S4b) inhibited
318 OCR of digitonin-permeabilized *P. falciparum* in a dose-dependent manner, with IC₅₀ values
319 in the sub-micromolar range (Table 2). Together, our data provide evidence that most identified
320 compounds are potent inhibitors of the ETC in both *T. gondii* and *P. falciparum*, and that these
321 compounds likely target Complex III. Our data also point to some differences in the activity of
322 these compounds between *T. gondii* and *P. falciparum*, most notably with MMV688853, which

323 inhibits Complex III in *T. gondii*, but is inactive against the ETC in *P. falciparum* at the
324 concentrations tested.

325 **Atovaquone-resistant *T. gondii* and *P. falciparum* exhibit limited cross-resistance to most
326 of the identified MMV compounds**

327 Atovaquone resistance is known to arise rapidly in apicomplexans, both in the field and the
328 laboratory (Looareesuwan et al., 1996, Cottrell et al., 2014, McFadden et al., 2000).
329 Atovaquone acts by binding the Q_o CoQ binding site of Complex III, which is a pocket formed
330 by the cytochrome *b* protein of Complex III. Mutations in Q_o site residues of cytochrome *b*, a
331 gene encoded on the mitochondrial genome of apicomplexan parasites, confer varying degrees
332 of atovaquone resistance in both *T. gondii* and *Plasmodium* spp. (McFadden et al., 2000,
333 Srivastava et al., 1999, Syafruddin et al., 1999). We tested whether atovaquone-resistant strains
334 of *T. gondii* and *P. falciparum* parasites exhibited cross-resistance to any of the Complex III
335 inhibitors identified in our screen.

336 We first tested the effects of the identified inhibitors on a previously described atovaquone-
337 resistant (ATV^R) ME49 strain of *T. gondii* which has an isoleucine to leucine substitution at
338 position 254 (I254L) of cytochrome *b* (McFadden et al., 2000). We integrated tdTomato into
339 WT (ME49 WT) and ATV^R *T. gondii* and performed fluorescence proliferation assays to
340 compare the ability of atovaquone and the test compounds to inhibit proliferation of these two
341 strains. As demonstrated for RH strain parasites (Table 1), all six compounds inhibited WT
342 ME49 strain *T. gondii* proliferation at sub-micromolar concentrations (Table 1a; Fig. 7). As
343 expected, the ATV^R strain was resistant to atovaquone, with a ~20-fold higher IC₅₀ than WT
344 parasites ($p = 0.017$; Table 1 a; Fig. 7a). ATV^R parasites were cross-resistant to buparvaquone
345 (~233-fold, $p = 0.0076$; Table 1 a; Fig. 7b). Interestingly, ATV^R *T. gondii* parasites were
346 slightly sensitized to the antifungal strobilurin family compounds azoxystrobin (~2.5-fold, $p =$

347 0.025; Table 1a; Fig. 7e) and trifloxystrobin (~2.5-fold, $p = 0.077$; Table 1a; Fig. 7d), and
348 showed minimal cross-resistance against the other tested inhibitors.

349 We next tested whether an atovaquone resistance-conferring mutation in *P. falciparum* would
350 result in similar changes in sensitivity to the inhibitors identified from our screen. We generated
351 an atovaquone-resistant (ATV^R) *P. falciparum* parasite strain by drug pressure which had a
352 valine to leucine substitution at position 259 (V259L) in cytochrome *b*, and compared their
353 proliferation in the presence of the candidate ETC inhibitors to WT parasites (Fig. 8). As
354 expected, the ATV^R *P. falciparum* strain was resistant to atovaquone, with ~24-fold higher IC₅₀
355 than WT parasites ($p = 0.0087$; Table 1b; Fig. 8a), but not to chloroquine (Table 1b; Fig. 8b).
356 Like in *T. gondii*, we observed cross-resistance to buparvaquone (~106-fold, $p = 0.017$; Table
357 1b; Fig. 8c). We observed little to no cross-resistance of ATV^R *P. falciparum* parasites to
358 auranofin (no change; Table 1b; Fig. 8d), trifloxystrobin (~4-fold, $p = 0.012$; Table 1b; Fig.
359 8e), azoxystrobin (~1.5 fold, $p = 0.055$; Table 1b; Fig. 8f), or MMV024397 (~1.5 fold, $p =$
360 0.028; Table 1b; Fig. 8g). MMV688853 exhibited minimal inhibition of parasite proliferation
361 in the ATV^R strain even at the highest concentration tested (40 μ M; Table 1b; Fig. 8h),
362 consistent with the previous assays with WT *P. falciparum* (Fig. 2h). Together, these data
363 indicate that ATV^R parasites do not exhibit a great degree of cross-resistance to most of our
364 compounds (with the exception of buparvaquone, which belongs to the same hydroxy-
365 naphthoquinone class as atovaquone).

366

367 **Discussion**

368 In this study, we screened the MMV ‘Pathogen Box’ compound library to identify inhibitors
369 of the *T. gondii* ETC using a Seahorse XFe96 flux analyzer (Fig. 1). One key benefit of using
370 the Seahorse XFe96 flux analyzer as a drug-screening platform is that it simultaneously
371 measures the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of
372 parasites to assess ETC function and general metabolism, respectively. This enables on-target
373 ETC inhibitors (*i.e.* those that inhibit OCR but not ECAR) to be differentiated from off-target
374 compounds wherein the defect in OCR is a secondary effect resulting from rapid parasite death
375 or otherwise impaired parasite metabolism (*i.e.* those that inhibit both OCR and ECAR). This
376 is exemplified by the compound auranofin, which inhibited both OCR and ECAR of *T. gondii*
377 and was subsequently shown to induce rapid parasite death (Fig. 3). Furthermore, auranofin
378 inhibited the proliferation of WT and yDHODH-expressing *P. falciparum* to a similar extent
379 (Fig. 2), providing additional evidence that auranofin is unlikely to kill apicomplexan parasites
380 via a direct effect on the ETC. Auranofin has been recently linked to the production of reactive
381 oxygen species (ROS) in *T. gondii* (Ma et al., 2021). Mitochondrial ROS can lead to
382 impairment of ETC function in other organisms (Paradies et al., 2000), which could explain
383 the effects of auranofin on the ETC of *T. gondii*.

384 Another benefit of the screening approach that we have established is its scalability. By
385 injecting three test compounds sequentially into each well, we were able to screen the entire
386 400 compound MMV ‘Pathogen Box’ using two 96-well Seahorse XFe96 plates. We note that
387 it is possible to screen much larger compound libraries using this approach.

388 In addition to compound identification, our approach enables a determination of where in the
389 ETC identified inhibitors target. Using an assay to pinpoint the location of ETC defects in *T.*
390 *gondii* (Hayward et al., 2021, Hayward et al., 2022), we demonstrated that most compounds

391 identified in our screen (with the exception of auranofin) likely target ETC Complex III (Fig.
392 5). Specifically, we demonstrated that: 1) the identified compounds inhibited OCR regardless
393 of the electron source (malate or glycerol 3-phosphate) that was donating electrons to CoQ,
394 implying that the inhibition occurred downstream of CoQ; and 2) a substrate that donates
395 electrons directly to CytC (TMPD), and thereby bypasses Complex III, restored OCR, implying
396 that the inhibition occurred upstream of CytC. The druggability of ETC Complex III in
397 apicomplexan parasites has been noted before (Barton et al., 2010). For instance, all seven
398 novel hits identified in a screen for *Plasmodium* ETC inhibitors were found to target Complex
399 III (Gomez-Lorenzo et al., 2018). Our data do not rule out the possibility that, in addition to
400 inhibition of Complex III, the identified compounds also inhibit targets upstream in the ETC
401 (e.g. one or more of the dehydrogenases that donate electrons to coenzyme Q). For instance,
402 while the ETC inhibitor 1-hydroxy-2-dodecyl-4(*IH*)quinolone can target Complex III, it can
403 also inhibit DHODH and the single subunit NADH dehydrogenases of apicomplexan parasites
404 (Saleh et al., 2007, Vallieres et al., 2012, Hegewald et al., 2013, Ke et al., 2019), likely by
405 binding the CoQ binding sites of each.

406 *P. falciparum* rapidly develops resistance to the Complex III inhibitor atovaquone when used
407 in a clinical setting (Looareesuwan et al., 1996, Cottrell et al., 2014), and although atovaquone-
408 resistant clinical isolates of *T. gondii* have not been observed, patients treated with atovaquone
409 frequently experience reactivation of toxoplasmosis (Winterhalter et al., 2010, Chirgwin et al.,
410 2002, Baatz et al., 2006). Atovaquone resistance arises from mutations in the Q_o site of the
411 cytochrome *b* protein of Complex III (Vaidya et al., 1993, Srivastava et al., 1999, Syafruddin
412 et al., 1999, McFadden et al., 2000). We tested our identified inhibitors against atovaquone-
413 resistant strains of both *T. gondii* and *P. falciparum* (Fig. 7 and 8). We found that ATV^R
414 parasites exhibited extensive cross-resistance to buparvaquone, a structural analog of
415 atovaquone (Hudson et al., 1985), in both *T. gondii* (~223-fold; Fig. 7b) and *P. falciparum*

416 (~106-fold; Fig. 8c). Notably, we found minimal cross-resistance to the other tested compounds
417 (maximum 4-fold change in resistance to trifloxystrobin; Table 1). For example, ATV^R *P.*
418 *falciparum* parasites have only mild cross-resistance, and ATV^R *T. gondii* parasites have
419 slightly increased sensitivity, to the strobilurin compounds trifloxystrobin and azoxystrobin
420 (Fig. 7d-e; Fig. 8e-f; Table 1). Strobilurins have been shown to target the Q_o site of Complex
421 III in fungi (Bartlett et al., 2002), and a study that introduced *P. falciparum* Q_o site residues
422 into the yeast Q_o site indicated that azoxystrobin may also target this site in apicomplexans
423 (Vallieres et al., 2013). Given the small shifts in IC₅₀ observed, our data suggest that if the
424 strobilurins bind the Q_o site, they may do so in a different manner to atovaquone and
425 buparvaquone. The chemically diverse compounds that we identified in our screen may,
426 therefore, be useful in the treatment of ATV^R parasitic infections. However, we note that
427 several other Q_o site mutations can confer atovaquone resistance (Korsinczky et al., 2000,
428 McFadden et al., 2000, Srivastava et al., 1999), and as such further studies could test whether
429 these compounds are effective against other ATV^R strains.

430 Our screen identified two compounds that, to our knowledge, have not been characterized as
431 ETC inhibitors before. The first of these is MMV024397 (6-(4-Benzylpiperidin-1-yl)-*N*-
432 cyclopropylpyridine-3-carboxamide), a compound that is listed under the ‘malaria’ disease set
433 of the MMV ‘Pathogen Box’ and shown to inhibit the proliferation of *P. falciparum* (Fig. 2g)
434 (Tougan et al., 2019), but for which very little other information exists. We demonstrated that
435 MMV024397 inhibited ETC function in both *T. gondii* and *P. falciparum* in a manner
436 consistent with Complex III inhibition. Future studies exploring exactly how this compound
437 inhibits Complex III are warranted.

438 The second novel ETC inhibiting compound we identified is the aminopyrazole carboxamide
439 compound MMV688853, which has been characterized previously as an inhibitor of *TgCDPK1*
440 (Zhang et al., 2014, Huang et al., 2015). The Huang *et al.* (2015) study generated a parasite

441 strain in which the ‘gatekeeper’ residue of *TgCDPK1* was mutated (*TgCDPK1*^{G128M}) to render
442 *TgCDPK1* resistant to aminopyrazole carboxamides. They found that, despite this mutation,
443 parasite proliferation could still be impaired by several aminopyrazole carboxamide derivatives
444 of MMV688853, suggesting a second target. Our data reveal that the second target of
445 MMV688853 is Complex III of the ETC. Given that we observe no noticeable shift in the IC₅₀
446 of MMV688853 in parasites where *TgCDPK* has been engineered to be resistant to this
447 compound (Fig. 4f), our data suggest that Complex III is a major target of MMV688853 in the
448 parasite. Mutations in cytochrome *b* can lead to the rapid emergence of resistance to Complex
449 III inhibitors such as atovaquone (McFadden et al., 2000), and it will be of interest to explore
450 whether the dual-targeting properties of MMV688853 make *T. gondii* less prone to developing
451 resistance. It will also be of interest to screen other aminopyrazole carboxamide compounds
452 and/or perform structure-activity relationship studies to determine the chemical basis for
453 MMV688853’s dual inhibition of *TgCDPK* and Complex III.

454 We found that MMV688853 failed to inhibit the proliferation (Fig. 2h) and oxygen
455 consumption (Fig. 6g; Fig. S4f) of *P. falciparum* at the concentration ranges we tested (up to
456 40 μ M for proliferation and 50 μ M for oxygen consumption). The difference in activity of this
457 compound against *T. gondii* and *P. falciparum* is curious. It is conceivable that these
458 differences are due to impaired uptake of MMV688853 into *P. falciparum* parasites. However,
459 given that we performed the OCR assays with plasma membrane-permeabilized *P. falciparum*
460 parasites (Fig. 6g; Fig. S4f), this explanation is unlikely. A previous study found that
461 MMV688853 was particularly potent against the ookinete stage of *P. berghei* (IC₅₀ 220 nM)
462 (Calit et al., 2018). The ookinete is the motile zygote that forms in the midgut of the mosquito
463 vector shortly after transmission of the parasite from the vertebrate host. The potency of
464 MMV688853 against ookinetes was suggested to result from its targeting the *Plasmodium*
465 homolog of *TgCDPK1*, which is proposed to play a key role in transmission of the parasite into

466 the insect stages of the life cycle (Billker et al., 2004). However, given its dual activity, it is
467 also conceivable that MMV688853 targets the ETC of *Plasmodium*, which becomes more
468 important in the insect stages of the parasite life cycle (Ke et al., 2019, Hino et al., 2012). At
469 odds with this hypothesis is that Complex III is essential in both insect and vertebrate life stages
470 of *Plasmodium* (Ke et al., 2019, Hino et al., 2012, Painter et al., 2007). A final possibility is
471 that MMV688853 targets a site on *T. gondii* Complex III that is not conserved (or potentially
472 not accessible) in Complex III in *P. falciparum* parasites. Whether there are structural
473 differences between Complex III in *T. gondii* and *P. falciparum* that could explain the
474 insensitivity of *P. falciparum* parasites to MMV688853 remains to be seen, but will be a
475 priority for future research.

476 In summary, our work has developed a scalable pipeline to screen compound libraries to
477 identify inhibitors of the ETC in apicomplexan parasites and characterize their targets. We
478 identified chemically diverse Complex III inhibitors, including MMV688853, which our data
479 suggest is a dual Complex III and *TgCDPK1* inhibitor. As many of the identified Complex III
480 inhibitors were active against atovaquone-resistant *T. gondii* and *P. falciparum*, these findings
481 will aid in the development of much-needed new therapeutics against these parasites.

482 **Materials and methods**

483 **Host cell and parasite culture, and genetic manipulation**

484 Tachyzoite-stage *T. gondii* parasites were cultured in human foreskin fibroblasts (HFF) in
485 Dulbecco's modified Eagle's medium (DMEM) containing 2 g/L NaHCO₃, supplemented with
486 1% (v/v) fetal calf serum, 50 units/mL penicillin, 50 µg/mL streptomycin, 10 µg/mL
487 gentamicin, 0.25 µg/mL amphotericin B, and 0.2 mM L-glutamine. RH strain *T. gondii*
488 parasites expressing the tandem dimeric Tomato (tdTomato) red fluorescent protein (Chtanova
489 et al., 2008) were used in the initial drug screening assays and for most subsequent *T. gondii*
490 experiments. For the atovaquone resistance experiments, we used wild type ME49 strain
491 parasites or atovaquone-resistant ME49 strain parasites (clone R32), both described previously
492 ((McFadden et al., 2000); a kind gift from Michael Panas and John Boothroyd, Stanford
493 University). To allow us to undertake fluorescence proliferation assays with these ME49 strain
494 parasites, we introduced a tdTomato-encoding vector (Rajendran et al., 2017) into these lines.

495 To introduce a glycine to methionine mutation at residue 128 of the *TgCDPK1* protein of *T.*
496 *gondii* parasites (*TgCDPK1*^{G128M}), we used a CRISPR-Cas9-based genome editing strategy.
497 We introduced a single guide RNA (sgRNA) targeting the desired region of the open reading
498 frame of the *tgcdpk1* gene into the pSAG1::Cas9-U6-UPRT vector (Addgene plasmid 54467;
499 (Shen et al., 2014)) using Q5-site directed mutagenesis according to the manufacturer's
500 instructions (New England Biolabs). We performed the Q5 reaction using the following
501 primers 5'-AAAGGCTACTTCTACCTCGTGTAGAGCTAGAAATAGCAAG-3' and
502 5'-AACTTGACATCCCCATTAC-3'. We also generated a double stranded donor DNA
503 encoding the *TgCDPK1*^{G128M} mutation flanked by 42-45 bp of homologous flanks to either side
504 of the target site. To do this, we annealed the oligonucleotides 5'-
505 CTGTATGAATTCTCGAGGACAAAGGCTACTTCTACCTCGTCatgGAAGTGTACAC

506 GGGAGGCGAGTTGTCGACGAGATCATTCCCGC-3' and 5'-
507 GCGGGAAATGATCTCGTCGAACAACTCGCCTCCGTGTACACTCcatGACGAGGT
508 AGAAGTAGCCTTGTCCCTCGAAGAATTACATACAG-3' (mutated base pairs are indicated
509 by the lower case letters). We combined the sgRNA expressing plasmid (which also encodes
510 Cas9-GFP) and donor DNA and transfected them into TATi Δ ku80/Tomato⁺ parasites by
511 electroporation as described previously (Jacot, 2020). Two days after transfection, we selected
512 and cloned GFP⁺ parasites by flow cytometry. We PCR-amplified the genomic DNA of several
513 clones using the primers 5'-AGTGAAGCAGAAGACGGACAAG-3' and 5'-
514 GAGGTCCCGATGTACGATTAA-3', and checked for successful modification by Sanger
515 sequencing. We termed the resulting parasite strain '*TgCDPK1*^{G128M}'.

516 3D7 strain *P. falciparum* parasites were maintained in synchronous continuous culture in
517 Roswell Park Memorial Institute (RPMI)-1640 medium supplemented with 25 mM HEPES,
518 20 mM D-glucose, 200 μ M hypoxanthine, 24 mg/L gentamicin and Albumax II (0.6% w/v), as
519 described previously (de Villiers et al., 2013, Allen and Kirk, 2010). Atovaquone-resistant
520 parasites were generated by maintaining cultures at 1% parasitaemia in the presence of
521 atovaquone at an initial concentration equivalent to the IC₅₀ of atovaquone (0.5 nM). Fresh
522 medium, erythrocytes and atovaquone were added every 2 days and parasitaemia was adjusted
523 to 1%. The atovaquone concentration was increased by 0.5 nM every week for 12 weeks. Once
524 parasites were proliferating in the presence of 10 nM atovaquone (\sim 20 \times IC₅₀), clonal
525 populations were selected by limiting dilution cloning. We PCR-amplified the cytochrome *b*
526 gene of *P. falciparum* using primers described previously (Goodman et al., 2016): 5'-
527 CTCTATTAATTAGTTAAAGCACAC-3' and 5'-ACAGAATAATCTCTAGCACC-3'. We
528 checked for mutations in the amplified cytochrome *b* gene by Sanger sequencing using the
529 following primers: 5'-AGCAGTAATTGGATATGTGGAGG-3' and 5'-
530 AATTTTAATGCTGTATCATACCCT-3'. 3D7 strain *P. falciparum* parasites expressing

531 yeast dihydroorotate dehydrogenase (yDHODH) were a kind gift from Emily Crisafulli and
532 Stuart Ralph (University of Melbourne), and were maintained on 10 nM WR99210 (which was
533 removed prior to growth assays) as described previously (Dickerman et al., 2016).

534 **Compounds**

535 The ‘Pathogen Box’ compounds were kindly provided by MMV in 96-well plates containing
536 10 mM stock solutions dissolved in DMSO. Additional amounts of several compounds were
537 purchased from Sigma Aldrich and dissolved in DMSO (stock concentration given in brackets),
538 including azoxystrobin (31697-100MG; 50 mM), trifloxystrobin (46447-100MG; 50 mM),
539 auranofin (A6733-10MG; 50 mM), buparvaquone (SML1662-25MG; 3 mM), and atovaquone
540 (A7986-10MG; 10 mM). 3MB-PP1 was purchased from Cayman Chemical (17860; 10 mM).
541 Additional MMV688853 (BKI-1517; 10 mM) was a kind gift from Wes van Voorhis
542 (University of Washington). Additional MMV024397 was also provided by MMV. The
543 DMSO concentration introduced when using these compounds in assays was < 0.2% (v/v),
544 except MMV688853 when used at the higher concentrations (up to 50 μ M) in the *Plasmodium*
545 assays (up to 0.5% (v/v) DMSO).

546 **Screening compounds using Seahorse XFe96 extracellular flux assay**

547 The MMV ‘Pathogen Box’ compounds were screened for their ability to inhibit O₂
548 consumption of intact *T. gondii* parasites using a Seahorse XFe96 flux assay described
549 previously (Hayward et al., 2022) with slight modifications. Parasites (tdTomato-expressing
550 RH strain *T. gondii* tachyzoites) were mechanically egressed from host cells by passing them
551 through a 26-gauge needle, then filtered through a 3 μ m polycarbonate filter to remove host
552 cell debris, counted using a hemocytometer, and pelleted by centrifugation (1500 \times g, 10 min,
553 RT). The medium was aspirated and parasites were washed once in Base Medium (Agilent)
554 supplemented with 1 mM L-glutamine and 5 mM D-glucose (termed supplemented Base

555 Medium), then resuspended in supplemented Base Medium to 1.5×10^7 parasites/mL. Parasites
556 (1.5×10^6) were seeded into wells of a Seahorse XFe96 cell culture plate coated with 3.5
557 $\mu\text{g}/\text{cm}^2$ CellTak cell adhesive (Corning) and attached to the bottom by centrifugation ($800 \times g$
558 for 3 min). The final well volume was 175 μL , achieved by adding supplemented Base Medium.
559 MMV ‘Pathogen Box’ compounds were prepared such that the final concentration upon
560 injection (25 μL injection volumes) would be 1 μM (8 μM for compounds to be injected from
561 port A; 9 μM for compounds to be injected from port B; and 10 μM for compounds to be
562 injected from port C). During the XFe96 assay, three compounds were sequentially injected
563 into each well (from ports A-C) and the OCR measured for three cycles of 30 s mixing followed
564 by 3 min measuring. A final injection of the known ETC Complex III inhibitors antimycin A
565 (10 μM) and atovaquone (1 μM) from port D was used as a control to validate that the assay
566 was measuring mitochondrial OCR, and to enable determination of non-mitochondrial OCR.
567 In instances where ‘hit’ compounds were injected from ports A or B, compounds injected from
568 later ports in that particular well were retested in a subsequent assay to ensure compounds
569 injected after the ‘hit’ compound were not missed. Percent inhibition of OCR by each of the
570 400 compounds was calculated relative to the antimycin A- and atovaquone-treated control (set
571 to 100% inhibition). An arbitrary cut-off of >30% inhibition of OCR was applied in selecting
572 candidate ETC inhibitors from the screen.

573 **Seahorse XFe96 extracellular flux analysis of intact *T. gondii* parasites**

574 The inhibitory activity of selected MMV ‘Pathogen Box’ compounds against the OCR of intact
575 *T. gondii* parasites was assessed using a previously described Seahorse XFe96 flux assay
576 (Hayward et al., 2022) with slight modifications. *T. gondii* parasites were prepared and seeded
577 into wells of a Cell-Tak coated Seahorse XFe96 cell culture plate as described above. The final
578 well volume was 175 μL , achieved with supplemented Base Medium. Carbonyl cyanide 4-
579 (trifluoromethoxy)phenylhydrazone (FCCP) was prepared in Base Medium such that the final

580 concentration upon injection would be 1 μ M (8 μ M for injection from port A). A serial dilution
581 of the test compounds as well as a no-drug (DMSO) control was performed in supplemented
582 Base Medium, and loaded into port B at 9 \times the desired final concentrations. Supplemented
583 Base Medium was injected from port C, and a final injection of the known ETC Complex III
584 inhibitor atovaquone (5 μ M final concentration) from port D was used as a control to
585 completely inhibit mitochondrial OCR. The OCR and ECAR were measured for three cycles
586 of 30 s mixing followed by 3 min measuring at baseline after injections from port A and port
587 C, and for six cycles of 30 s mixing followed by 3 min measuring after injections from port B
588 and port D. Mitochondrial OCR (mOCR) was calculated by subtracting the last OCR reading
589 after atovaquone injection (port D) from the last OCR reading after test compound injection
590 (port B). Percent mOCR relative to the drug-free control was plotted against the test compound
591 concentration, and a sigmoidal four parameter logistic (4PL) curve was fitted using nonlinear
592 regression in GraphPad Prism to yield the compound concentration required for 50% inhibition
593 (IC₅₀) of *T. gondii* OCR.

594 **Seahorse XFe96 extracellular flux analysis of plasma membrane-permeabilized parasites**
595 Measurement of substrate-elicited OCR of digitonin-permeabilized *T. gondii* parasites was
596 performed as described previously (Hayward et al., 2021, Hayward et al., 2022). Briefly,
597 freshly egressed *T. gondii* parasites were passed through a 3 μ m filter to remove host cell debris,
598 counted using a hemocytometer, and pelleted by centrifugation (1500 \times g, 10 min, RT).
599 Parasites were washed once in non-supplemented Base Medium, resuspended in non-
600 supplemented Base Medium to 1.5 \times 10⁷ parasites/mL and incubated at 37°C for approximately
601 1 hour to deplete endogenous substrates. Parasites (1.5 \times 10⁶) were added to the wells of a Cell-
602 Tak-coated Seahorse cell culture plate and centrifuged (800 \times g, 10 min, RT) to adhere parasites
603 to the bottom of the wells. Just before the beginning of the assay, Base Medium was removed
604 and replaced with 175 μ L mitochondrial assay solution (MAS) buffer (220 mM mannitol, 70

605 mM sucrose, 10 mM KH₂PO₄, 5 mM MgCl₂, 0.2% (w/v) fatty acid-free bovine serum albumin
606 (BSA), 1 mM EGTA and 2 mM HEPES-KOH pH 7.4) containing 0.002% (w/v) digitonin to
607 permeabilize the parasite plasma membrane. The following compounds were prepared in MAS
608 buffer (final concentration after injection given in brackets) and loaded into ports A-D of the
609 XFe96 sensor cartridge: Port A, ETC substrates malate (Mal; 10 mM) or sn-glycerol 3-
610 phosphate bis(cyclohexylammonium) salt (G3P; 25 mM) plus FCCP (1 µM); Port B, the test
611 compounds atovaquone (1.25 µM), auranofin (10 µM), azoxystrobin (20 µM), trifloxystrobin
612 (2.5 µM), MMV688853 (20 µM), buparvaquone (5 µM) or MMV024397 (20 µM); Port C,
613 N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD; 0.2 mM) mixed with
614 ascorbic acid (3.3 mM); Port D, sodium azide (NaN₃; 10 mM). The OCR was assessed for three
615 cycles of 30 s mixing followed by 3 min measuring to establish baseline OCR before substrate
616 injection, for three cycles of 30 s mixing followed by 3 min measuring after the injection of
617 substrates from ports A and C, and for six cycles of 30 s mixing followed by 3 min measuring
618 after the injections of compounds from ports B and D. A minimum of four background wells
619 (containing no parasites) were used in each plate, and 3 technical replicates were used for each
620 condition.

621 OCR measurements of digitonin-permeabilized *P. falciparum* parasites were performed using
622 a protocol modified from one described previously (Sakata-Kato and Wirth, 2016). On the day
623 of the assay, 200 mL of *P. falciparum* culture at 4% (v/v) hematocrit and at least 5%
624 parasitaemia was enriched for trophozoites by passing through a MACS CS column placed in
625 the magnetic field of a SuperMACS II (Miltenyi Biotec) separator according to the
626 manufacturer's instructions. The trophozoites were freed from erythrocytes by treating with
627 0.05% (w/v) saponin at 37 °C for 5 minutes. The obtained parasite pellets were washed with
628 phosphate buffered saline (PBS) until the supernatant was no longer red (*i.e.* until most host
629 cell hemoglobin had been removed). Parasites were counted using a hemocytometer and

630 prepared at 5×10^7 parasites/mL in MAS buffer supplemented with 10 mM malate and 0.002%
631 (w/v) digitonin. Parasites were seeded at a density of 5×10^6 cells in a Cell-Tak-coated XFe96
632 cell culture plate and centrifuged ($800 \times g$, 10 min, RT) to adhere the parasites to the bottom
633 of the wells. Supplemented MAS buffer (75 μ L) was carefully added to the wells without
634 disturbing the cell monolayer. The following compounds were prepared in MAS buffer (final
635 concentration after injection given in brackets) and loaded into ports A-C of the XFe96 sensor
636 cartridge: Port A, a 2-fold serial dilution of the test compounds; Port B, TMPD (0.2 mM) mixed
637 with ascorbic acid (2 mM); Port C, sodium azide (NaN₃; 10 mM). The OCR was measured for
638 five cycles of 20 s mixing, 1 min waiting, 2.5 min measuring at baseline and after each
639 injection. Percent mOCR relative to the drug-free control was plotted against the test compound
640 concentration, and a variable slope (four parameters) curve was fitted using nonlinear
641 regression in GraphPad Prism to yield the IC₅₀ for *P. falciparum* OCR.

642 ***T. gondii* fluorescence proliferation assays**

643 The anti-parasitic activity of selected MMV ‘Pathogen Box’ compounds was assessed by
644 fluorescence proliferation assays, measuring the proliferation of tdTomato-expressing *T.*
645 *gondii* parasites as described previously (Rajendran et al., 2017). Briefly, 2000 parasites were
646 added to wells of a clear bottom, black 96-well plate containing HFF cells, in phenol red-free
647 DMEM supplemented with 1% (v/v) fetal calf serum, 50 units/mL penicillin, 50 μ g/mL
648 streptomycin, 10 μ g/mL gentamicin, 0.25 μ g/mL amphotericin B, and 0.2 mM L-glutamine. A
649 serial dilution of the desired compounds was performed and added to wells of the plate.
650 Parasites were allowed to proliferate and fluorescence was measured daily using a FLUOstar
651 OPTIMA Microplate Reader (BMG LABTECH). Percent parasite proliferation relative to the
652 no-drug control at mid-log phase was plotted against the compound concentration, and a
653 variable slope (four parameters) curve was fitted using nonlinear regression in GraphPad Prism,
654 enabling calculation of the IC₅₀ of compound against *T. gondii* proliferation.

655 ***P. falciparum* proliferation assays**

656 The anti-plasmodial activity of selected MMV ‘Pathogen Box’ compounds was assessed using
657 a SYBR Safe-based fluorescence assay described previously (Smilkstein et al., 2004, Spry et
658 al., 2013). Assays were set up using ring-stage *P. falciparum*-infected erythrocytes in culture
659 medium at a hematocrit of 1% and parasitemia of 0.5%. Parasites were allowed to proliferate
660 for 96 h, after which the percentage parasite proliferation was plotted against the compound
661 concentration. A variable slope (four parameters) curve was fitted to the data using nonlinear
662 regression in GraphPad Prism, enabling calculation of the IC₅₀ of the compound against *P.*
663 *falciparum* proliferation.

664 **Flow cytometry analysis of *T. gondii* viability**

665 Freshly egressed RHΔhxgprt strain *T. gondii* parasites were passed through a 3 µm filter to
666 remove host cell debris. Parasites were pelleted by centrifugation (1500 × g, 10 min, RT) and
667 resuspended in phenol red-free DMEM containing 5 mM D-glucose and 1 mM L-glutamine.
668 Parasites were incubated (37°C, 5% CO₂) for various times (15 to 120 min) in the presence of
669 DMSO (vehicle control), auranofin (1 µM, 20 µM or 100 µM) or atovaquone (10 µM).
670 Propidium iodide (PI, 15 µM) was then added and parasites were incubated for a further 20
671 min (RT, protected from light), before being analyzed on a BD LSR II Flow Cytometer. FSC
672 and SSC parameters were used to gate for single parasites. PI fluorescence was excited using
673 the 488 nm laser and detected with a 670/14nm filter. Acquired data were exported for further
674 analysis using FlowJO 10 (BD) software.

675 **Complex III enzymatic assay**

676 To measure Complex III enzymatic activity in *T. gondii*, we adapted an assay previously
677 established for mammalian cells (Spinazzi et al., 2012). Egressed parasites were passed through
678 a 5 µm polycarbonate filter to remove host cell debris, counted using a hemocytometer, and

679 pelleted by centrifugation (10 min, 1500 × g, RT). Pellets were washed in 1 mL cold PBS and
680 centrifuged (1 min, 12000 × g, RT). Parasites were resuspended to 2.5×10^8 parasites/mL in
681 MAS buffer containing 0.2% (w/v) digitonin, and lysed on a spinning wheel (30 min, 4°C).
682 Complex III assay buffer (25 mM KH₂PO₄ pH 7.5, 75 µM oxidised equine heart cytochrome
683 *c*, 100 µM EDTA, 0.025% (v/v) Tween-20 and 1.21 mM sodium azide) was prepared and
684 aliquoted into the wells of a 24-well plate. The following compounds (or DMSO as a no-drug
685 vehicle control) were added to three wells each at the indicated final concentrations:
686 atovaquone (1.25 µM), auranofin (10 µM), azoxystrobin (20 µM), trifloxystrobin (2.5 µM),
687 MMV688853 (20 µM), buparvaquone (5 µM), MMV024397 (20 µM).

688 A baseline reading was taken by measuring the absorbance at 550 nm every 15 s for 2 min
689 using a TECAN Infinite 200 PRO plate reader warmed to 37°C. Parasite lysate (an equivalent
690 of 6.25×10^6 parasites per mL) was then added to two of the three wells per drug (duplicate
691 technical experimental wells) while MAS buffer was added to the remaining well (as a ‘no
692 parasite lysate’ background control), and a further baseline reading was taken every 15 s for 2
693 min. To start the reaction, 5 µM reduced decylubiquinol in DMSO was added to each well, and
694 absorbance at 550 nm was measured every 15 s for 60 min.

695 To calculate enzymatic activity, absorbance was plotted as a function of time. The initial rate
696 was estimated from the first 5 minutes after adding decylubiquinol, and divided by the
697 extinction coefficient for reduced cytochrome *c* ($18.5 \text{ mM}^{-1} \text{ cm}^{-1}$) according to the Beer-
698 Lambert Law. For each condition, the background (initial rate in the absence of parasite lysate)
699 was subtracted from the observed value to yield the calculated activity.

700 ***T. gondii* invasion assay**

701 To determine the effects of compounds on parasite invasion, we undertook invasion assays
702 based on a modified version of a previously described protocol (Kafsack et al., 2004).

703 TATi Δ ku80/Tomato $^+$ strain *T. gondii* parasites were cultured in HFF cells such that most
704 parasites were still intracellular prior to the assay. Extracellular parasites were removed by
705 washing the flask three times with warm intracellular (IC) buffer (5 mM NaCl, 142 mM KCl,
706 2 mM EGTA, 1 mM MgCl₂, 5.6 mM D-glucose and 25 mM HEPES, pH 7.4). Infected host
707 cells were then scraped from the flasks, passed through a 26-gauge needle to mechanically
708 egress the parasites, and filtered through a 3 μ m polycarbonate filter to remove host cell debris.
709 Parasites were counted using a hemocytometer and diluted to 5×10^5 parasites per mL in IC
710 buffer with either DMSO (vehicle control), MMV688853 (5 μ M), 3MB-PP1 (5 μ M) or
711 atovaquone (1 μ M), added to wells of a 24-well plate containing confluent HFF cells cultured
712 on coverslips, and incubated at 37°C for 45 min to allow parasites to attach to host cells. To
713 induce invasion, IC buffer was removed and replaced with DMEM containing DMSO/drug
714 added at the above concentrations. Parasites were allowed to invade for 25 min at 37°C, before
715 being fixed in 3% (w/v) paraformaldehyde (PFA) and 0.1% (w/v) glutaraldehyde in PBS for
716 20 min at RT. After fixation, coverslips were blocked in 2% (w/v) BSA in PBS. To identify
717 uninvaded extracellular parasites, we conducted immunofluorescence assays. We labelled
718 uninvaded extracellular parasites with the *T. gondii* cell surface marker mouse anti-SAG1
719 primary antibody (Abcam, Ab8313; 1:1000 dilution) and a goat anti-mouse Alexa Fluor 488
720 Plus secondary antibody (Thermo Fisher Scientific, A32723; 1:500 dilution). Coverslips were
721 mounted onto slides, the identity of the samples blinded to the observer, and invaded vs non-
722 invaded parasites were quantified on a DeltaVision Elite deconvolution microscope (GE
723 Healthcare) fitted with a 100 \times UPlanSApo oil immersion objective lens (NA 1.40). Parasites
724 that were both red (Tomato $^+$) and green (SAG1 $^+$) were considered to be extracellular, while
725 those that were red but not green were considered as having invaded a host cell. At least 100
726 parasites were counted per condition.

727 ***T. gondii* intracellular proliferation assay**

728 TATi Δ ku80/Tomato⁺ strain *T. gondii* parasites were prepared in a similar way to the invasion
729 assay. Following mechanical egress in IC buffer, parasites were counted and diluted to 5×10^4
730 parasites/mL in IC buffer, added to wells of a 24-well plate containing confluent HFF cells
731 cultured on coverslips, and incubated at 37°C for 45 min to allow the parasites to attach to host
732 cells. IC buffer was removed and replaced with 1 mL DMEM, and parasites were allowed to
733 invade and begin to proliferate for 4 h at 37°C in the absence of drug. Medium was then
734 removed, cells were washed twice to remove uninvaded parasites, and replaced with 1 mL
735 DMEM with either DMSO (vehicle control), MMV688853 (5 μ M), 3MB-PP1 (5 μ M) or
736 atovaquone (1 μ M). Parasites were cultured for a further 19 h at 37°C, then fixed in 3% (w/v)
737 PFA in PBS for 15 min. Coverslips were mounted onto slides, and the identity of each was
738 blinded to the observer. The number of parasites per vacuole were quantified on a DeltaVision
739 Elite deconvolution microscope (GE Healthcare). At least 100 vacuoles were counted per
740 condition.

741 Acknowledgements

742 This work was supported by a Research School of Biology innovation grant to ER, DC, AGM
743 and GGvD, a National Health and Medical Research Council Ideas Grant (GNT1182369) to
744 GGvD, AGM and KJS, an Australian Research Council Discovery project (DP1801032) to
745 AGM, and an Australian Government Research Training Program Scholarship to JAH. The
746 funders had no role in study design, data collection and analysis, decision to publish, or
747 preparation of the manuscript. The authors declare that they have no conflicts of interest.

748 We would like to thank the Medicines for Malaria Venture for supplying the ‘Pathogen Box’
749 compounds, Wes van Voorhis (University of Washington) for supplying extra MMV688853
750 (BKI-1517) compound, John Boothroyd and Michael Panas (Stanford University) for
751 supplying atovaquone-resistant *T. gondii* parasites, Emily Crisafulli and Stuart Ralph
752 (University of Melbourne) for supplying yDHODH-expressing *P. falciparum* parasites,
753 Harpreet Vohra and Michael Devoy (ANU) for assistance with flow cytometry, Michael Devoy
754 for assistance with establishing the XFe96 assays, Teresa Neeman from the ANU Statistical
755 Consulting Unit for assistance with data analysis, the 2020 ANU Parasitology Course
756 (BIOL3142) for contributing to trial experiments with MMV688853, Adele Lehane (ANU)
757 and the ANU parasitology journal club for comments on the manuscript, and the Canberra
758 Branch of the Australian Red Cross Lifeblood for the provision of erythrocytes.

759 References

760 ADEYEMI, O. S., SUGI, T., HAN, Y. & KATO, K. 2018. Screening of chemical compound libraries identified
761 new anti-*Toxoplasma gondii* agents. *Parasitol Res*, 117, 355-363.

762 ALDAY, P. H. & DOGGETT, J. S. 2017. Drugs in development for toxoplasmosis: advances, challenges,
763 and current status. *Drug Des Devel Ther*, 11, 273-293.

764 ALLEN, R. J. & KIRK, K. 2010. *Plasmodium falciparum* culture: the benefits of shaking. *Mol Biochem
765 Parasitol*, 169, 63-5.

766 BAATZ, H., MIRSHAH, A., PUCHTA, J., GÜMBEL, H. & HATTENBACH, L. O. 2006. Reactivation of
767 toxoplasma retinochoroiditis under atovaquone therapy in an immunocompetent patient.
768 *Ocul Immunol Inflamm*, 14, 185-7.

769 BARTLETT, D. W., CLOUGH, J. M., GODWIN, J. R., HALL, A. A., HAMER, M. & PARR-DOBRZANSKI, B.
770 2002. The strobilurin fungicides. *Pest Manag Sci*, 58, 649-62.

771 BARTON, V., FISHER, N., BIAGINI, G. A., WARD, S. A. & O'NEILL, P. M. 2010. Inhibiting *Plasmodium*
772 cytochrome bc1: a complex issue. *Curr Opin Chem Biol*, 14, 440-6.

773 BILLKER, O., DECHAMPS, S., TEWARI, R., WENIG, G., FRANKE-FAYARD, B. & BRINKMANN, V. 2004.
774 Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito
775 transmission in a malaria parasite. *Cell*, 117, 503-14.

776 CALIT, J., DOBRESCU, I., GAITAN, X. A., BORGES, M. H., RAMOS, M. S., EASTMAN, R. T. & BARGIERI, D.
777 Y. 2018. Screening the Pathogen Box for Molecules Active against *Plasmodium* Sexual Stages
778 Using a New Nanoluciferase-Based Transgenic Line of *P. berghei* Identifies Transmission-
779 Blocking Compounds. *Antimicrob Agents Chemother*, 62, e01053-18.

780 CHIRGWIN, K., HAFNER, R., LEPORT, C., REMINGTON, J., ANDERSEN, J., BOSLER, E. M., ROQUE, C.,
781 RAJICIC, N., MCAULIFFE, V., MORLAT, P., JAYAWEERA, D. T., VILDE, J. L. & LUFT, B. J. 2002.
782 Randomized phase II trial of atovaquone with pyrimethamine or sulfadiazine for treatment of
783 toxoplasmic encephalitis in patients with acquired immunodeficiency syndrome: ACTG
784 237/ANRS 039 Study. AIDS Clinical Trials Group 237/Agence Nationale de Recherche sur le
785 SIDA, Essai 039. *Clin Infect Dis*, 34, 1243-50.

786 CHTANOVA, T., SCHAEFFER, M., HAN, S. J., VAN DOOREN, G. G., NOLLMANN, M., HERZMARK, P., CHAN,
787 S. W., SATIJA, H., CAMFIELD, K., AARON, H., STRIEPEN, B. & ROBEY, E. A. 2008. Dynamics of
788 neutrophil migration in lymph nodes during infection. *Immunity*, 29, 487-96.

789 COTTRELL, G., MUSSET, L., HUBERT, V., LE BRAS, J. & CLAIN, J. 2014. Emergence of resistance to
790 atovaquone-proguanil in malaria parasites: insights from computational modeling and clinical
791 case reports. *Antimicrob Agents Chemother*, 58, 4504-14.

792 DE VILLIERS, M., MACUAMULE, C., SPRY, C., HYUN, Y. M., STRAUSS, E. & SALIBA, K. J. 2013. Structural
793 modification of pantothenamides counteracts degradation by pantetheinase and improves
794 antiplasmodial activity. *ACS Med Chem Lett*, 4, 784-9.

795 DICKERMAN, B. K., ELSWORTH, B., COBBOLD, S. A., NIE, C. Q., MC CONVILLE, M. J., CRABB, B. S. &
796 GILSON, P. R. 2016. Identification of inhibitors that dually target the new permeability
797 pathway and dihydroorotate dehydrogenase in the blood stage of *Plasmodium falciparum*. *Sci
798 Rep*, 6, 37502.

799 DOGGETT, J. S., NILSEN, A., FORQUER, I., WEGMANN, K. W., JONES-BRANDO, L., YOLKEN, R. H.,
800 BORDON, C., CHARMAN, S. A., KATNENI, K., SCHULTZ, T., BURROWS, J. N., HINRICHES, D. J.,
801 MEUNIER, B., CARRUTHERS, V. B. & RISCOE, M. K. 2012. Endochin-like quinolones are highly
802 efficacious against acute and latent experimental toxoplasmosis. *Proc Natl Acad Sci U S A*, 109,
803 15936-41.

804 DONG, C. K., URGAONKAR, S., CORTESE, J. F., GAMO, F. J., GARCIA-BUSTOS, J. F., LAFUENTE, M. J.,
805 PATEL, V., ROSS, L., COLEMAN, B. I., DERBYSHIRE, E. R., CLISH, C. B., SERRANO, A. E.,
806 CROMWELL, M., BARKER, R. H. JR., DVORIN, J. D., DURAISINGH, M. T., WIRTH, D. F., CLARDY,

807 J. & MAZITSCHEK, R. 2011. Identification and validation of tetracyclic benzothiazepines as
808 *Plasmodium falciparum* cytochrome *bc*₁ inhibitors. *Chem Biol*, 18, 1602-10.

809 FAIRHURST, R. M. & DONDORP, A. M. 2016. Artemisinin-Resistant *Plasmodium falciparum* Malaria.
810 *Microbiol Spectr*, 4, 10.1128/microbiolspec.EI10-0013-2016.

811 FISHER, N., ABD MAJID, R., ANTOINE, T., AL-HELAL, M., WARMAN, A. J., JOHNSON, D. J., LAWRENSON,
812 A. S., RANSON, H., O'NEILL, P. M., WARD, S. A. & BIAGINI, G. A. 2012. Cytochrome *b* mutation
813 Y268S conferring atovaquone resistance phenotype in malaria parasite results in reduced
814 parasite *bc*₁ catalytic turnover and protein expression. *J Biol Chem*, 287, 9731-41.

815 FISHER, N., MEUNIER, B. & BIAGINI, G. A. 2020. The cytochrome *bc*₁ complex as an antipathogenic
816 target. *FEBS Lett*, 594, 2935-2952.

817 FRY, M. & PUDNEY, M. 1992. Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4'-
818 chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). *Biochem Pharmacol*, 43,
819 1545-53.

820 GAMO, F. J., SANZ, L. M., VIDAL, J., DE COZAR, C., ALVAREZ, E., LAVANDERA, J. L., VANDERWALL, D. E.,
821 GREEN, D. V., KUMAR, V., HASAN, S., BROWN, J. R., PEISHOFF, C. E., CARDON, L. R. & GARCIA-
822 BUSTOS, J. F. 2010. Thousands of chemical starting points for antimalarial lead identification.
823 *Nature*, 465, 305-10.

824 GOMEZ-LORENZO, M. G., RODRIGUEZ-ALEJANDRE, A., MOLINER-CUBEL, S., MARTINEZ-HOYOS, M.,
825 BAHAMONTES-ROSA, N., GONZALEZ DEL RIO, R., RODENAS, C., FUENTE, J., LAVANDERA, J. L.,
826 GARCIA-BUSTOS, J. F. & MENDOZA-LOSANA, A. 2018. Functional screening of selective
827 mitochondrial inhibitors of *Plasmodium*. *Int J Parasitol Drugs Drug Resist*, 8, 295-303.

828 GOODMAN, C. D., BUCHANAN, H. D. & MCFADDEN, G. I. 2017. Is the Mitochondrion a Good Malaria
829 Drug Target? *Trends Parasitol*, 33, 185-193.

830 GOODMAN, C. D., SIREGAR, J. E., MOLLARD, V., VEGA-RODRIGUEZ, J., SYAFRUDDIN, D., MATSUOKA,
831 H., MATSUZAKI, M., TOYAMA, T., STURM, A., COZIJNSEN, A., JACOBS-LORENA, M., KITA, K.,
832 MARZUKI, S. & MCFADDEN, G. I. 2016. Parasites resistant to the antimalarial atovaquone fail
833 to transmit by mosquitoes. *Science*, 352, 349-53.

834 HAYWARD, J. A., RAJENDRAN, E., MAKOTA, F. V., BASSETT, B. J., DEVOY, M., NEEMAN, T. & VAN
835 DOOREN, G. G. 2022. Real-time analysis of mitochondrial electron transport chain function in
836 *Toxoplasma gondii* parasites using a Seahorse XFe96 extracellular flux analyzer. *Bio-protocol*,
837 12, e4288.

838 HAYWARD, J. A., RAJENDRAN, E., ZWAHLEN, S. M., FAOU, P. & VAN DOOREN, G. G. 2021. Divergent
839 features of the coenzyme Q:cytochrome *c* oxidoreductase complex in *Toxoplasma gondii*
840 parasites. *PLoS Pathog*, 17, e1009211.

841 HAYWARD, J. A. & VAN DOOREN, G. G. 2019. Same same, but different: Uncovering unique features
842 of the mitochondrial respiratory chain of apicomplexans. *Mol Biochem Parasitol*, 232, 111204.

843 HEGEWALD, J., GROSS, U. & BOHNE, W. 2013. Identification of dihydroorotate dehydrogenase as a
844 relevant drug target for 1-hydroxyquinolones in *Toxoplasma gondii*. *Mol Biochem Parasitol*,
845 190, 6-15.

846 HINO, A., HIRAI, M., TANAKA, T. Q., WATANABE, Y., MATSUOKA, H. & KITA, K. 2012. Critical roles of
847 the mitochondrial complex II in oocyst formation of rodent malaria parasite *Plasmodium*
848 *berghei*. *J Biochem*, 152, 259-68.

849 HUANG, W., OJO, K. K., ZHANG, Z., RIVAS, K., VIDADALA, R. S., SCHEELE, S., DEROCHER, A. E., CHOI, R.,
850 HULVERSON, M. A., BARRETT, L. K., BRUZUAL, I., SIDDARAMAIAH, L. K., KERCHNER, K. M.,
851 KURNICK, M. D., FREIBERG, G. M., KEMPF, D., HOL, W. G., MERRITT, E. A., NECKERMANN, G.,
852 DE HOSTOS, E. L., ISOHERRANEN, N., MALY, D. J., PARSONS, M., DOGGETT, J. S., VAN VOORHIS,
853 W. C. & FAN, E. 2015. SAR Studies of 5-Aminopyrazole-4-carboxamide Analogues as Potent
854 and Selective Inhibitors of *Toxoplasma gondii* CDPK1. *ACS Med Chem Lett*, 6, 1184-1189.

855 HUDSON, A. T., RANDALL, A. W., FRY, M., GINGER, C. D., HILL, B., LATTER, V. S., MCHARDY, N. &
856 WILLIAMS, R. B. 1985. Novel anti-malarial hydroxynaphthoquinones with potent broad
857 spectrum anti-protozoal activity. *Parasitology*, 90 (Pt 1), 45-55.

858 JACOT, D. L., S.; MARKUS, M.; SHEINER, L.; SOLDATI-FAVRE, D.; STRIEPEN, B. 2020. Genetic
859 manipulation of *Toxoplasma gondii*. In: WEISS, L. M. K., K. (ed.) *Toxoplasma gondii the model*
860 *apicomplexan - perspectives and methods*. Third edition ed. London: Academic Press.

861 KAFSACK, B. F., BECKERS, C. & CARRUTHERS, V. B. 2004. Synchronous invasion of host cells by
862 *Toxoplasma gondii*. *Mol Biochem Parasitol*, 136, 309-11.

863 KE, H., GANESAN, S. M., DASS, S., MORRISEY, J. M., POU, S., NILSEN, A., RISCOE, M. K., MATHER, M. W.
864 & VAIDYA, A. B. 2019. Mitochondrial type II NADH dehydrogenase of *Plasmodium falciparum*
865 (PfNDH2) is dispensable in the asexual blood stages. *PLoS One*, 14, e0214023.

866 KEAN, W. F., HART, L. & BUCHANAN, W. W. 1997. Auranofin. *Br J Rheumatol*, 36, 560-72.

867 KORSINCZKY, M., CHEN, N., KOTECKA, B., SAUL, A., RIECKMANN, K. & CHENG, Q. 2000. Mutations in
868 *Plasmodium falciparum* cytochrome *b* that are associated with atovaquone resistance are
869 located at a putative drug-binding site. *Antimicrob Agents Chemother*, 44, 2100-8.

870 LOOAREESUWAN, S., VIRAVAN, C., WEBSTER, H. K., KYLE, D. E., HUTCHINSON, D. B. & CANFIELD, C. J.
871 1996. Clinical studies of atovaquone, alone or in combination with other antimalarial drugs,
872 for treatment of acute uncomplicated malaria in Thailand. *Am J Trop Med Hyg*, 54, 62-6.

873 LOURIDO, S., SHUMAN, J., ZHANG, C., SHOKAT, K. M., HUI, R. & SIBLEY, L. D. 2010. Calcium-dependent
874 protein kinase 1 is an essential regulator of exocytosis in *Toxoplasma*. *Nature*, 465, 359-62.

875 MA, C. I., TIRTORAHARDJO, J. A., JAN, S., SCHWEIZER, S. S., ROSARIO, S. A. C., DU, Y., ZHANG, J. J.,
876 MORRISSETTE, N. S. & ANDRADE, R. M. 2021. Auranofin Resistance in *Toxoplasma gondii*
877 Decreases the Accumulation of Reactive Oxygen Species but Does Not Target Parasite
878 Thioredoxin Reductase. *Front Cell Infect Microbiol*, 11, 618994.

879 MCFADDEN, D. C., TOMAVO, S., BERRY, E. A. & BOOTHROYD, J. C. 2000. Characterization of
880 cytochrome *b* from *Toxoplasma gondii* and Q_o domain mutations as a mechanism of
881 atovaquone-resistance. *Mol Biochem Parasitol*, 108, 1-12.

882 MITCHELL, P. 1975. The protonmotive Q cycle: a general formulation. *FEBS Lett*, 59, 137-9.

883 MONTOYA, J. G. & LIESENFELD, O. 2004. Toxoplasmosis. *Lancet*, 363, 1965-76.

884 NILSEN, A., LACRUE, A. N., WHITE, K. L., FORQUER, I. P., CROSS, R. M., MARFURT, J., MATHER, M. W.,
885 DELVES, M. J., SHACKLEFORD, D. M., SAENZ, F. E., MORRISEY, J. M., STEUTEN, J., MUTKA, T.,
886 LI, Y., WIRJANATA, G., RYAN, E., DUFFY, S., KELLY, J. X., SEBAYANG, B. F., ZEEMAN, A. M.,
887 NOVIYANTI, R., SINDEN, R. E., KOCKEN, C. H. M., PRICE, R. N., AVERY, V. M., ANGULO-
888 BARTUREN, I., JIMENEZ-DIAZ, M. B., FERRER, S., HERREROS, E., SANZ, L. M., GAMO, F. J.,
889 BATHURST, I., BURROWS, J. N., SIEGL, P., GUY, R. K., WINTER, R. W., VAIDYA, A. B., CHARMAN,
890 S. A., KYLE, D. E., MANETSCH, R. & RISCOE, M. K. 2013. Quinolone-3-diarylethers: a new class
891 of antimalarial drug. *Sci Transl Med*, 5, 177ra37.

892 PAINTER, H. J., MORRISEY, J. M., MATHER, M. W. & VAIDYA, A. B. 2007. Specific role of mitochondrial
893 electron transport in blood-stage *Plasmodium falciparum*. *Nature*, 446, 88-91.

894 PARADIES, G., PETROSILLO, G., PISTOLESE, M. & RUGGIERO, F. M. 2000. The effect of reactive oxygen
895 species generated from the mitochondrial electron transport chain on the cytochrome *c*
896 oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles.
897 *FEBS Lett*, 466, 323-6.

898 RAJENDRAN, E., HAPUARACHCHI, S. V., MILLER, C. M., FAIRWEATHER, S. J., CAI, Y., SMITH, N. C.,
899 COCKBURN, I. A., BROER, S., KIRK, K. & VAN DOOREN, G. G. 2017. Cationic amino acid
900 transporters play key roles in the survival and transmission of apicomplexan parasites. *Nat
901 Commun*, 8, 14455.

902 SAKATA-KATO, T. & WIRTH, D. F. 2016. A Novel Methodology for Bioenergetic Analysis of *Plasmodium*
903 *falciparum* Reveals a Glucose-Regulated Metabolic Shift and Enables Mode of Action Analyses
904 of Mitochondrial Inhibitors. *ACS Infect Dis*, 2, 903-916.

905 SALEH, A., FRIESEN, J., BAUMEISTER, S., GROSS, U. & BOHNE, W. 2007. Growth inhibition of
906 *Toxoplasma gondii* and *Plasmodium falciparum* by nanomolar concentrations of 1-hydroxy-2-
907 dodecyl-4(1H)quinolone, a high-affinity inhibitor of alternative (type II) NADH
908 dehydrogenases. *Antimicrob Agents Chemother*, 51, 1217-22.

909 SANNELLA, A. R., CASINI, A., GABBANI, C., MESSORI, L., BILIA, A. R., VINCERI, F. F., MAJORI, G. &
910 SEVERINI, C. 2008. New uses for old drugs. Auranofin, a clinically established antiarthritic
911 metallodrug, exhibits potent antimalarial effects in vitro: Mechanistic and pharmacological
912 implications. *FEBS Lett*, 582, 844-7.

913 SCHMIDT, O., PFANNER, N. & MEISINGER, C. 2010. Mitochondrial protein import: from proteomics to
914 functional mechanisms. *Nat Rev Mol Cell Biol*, 11, 655-67.

915 SEIDI, A., MUELLNER-WONG, L. S., RAJENDRAN, E., TJHIN, E. T., DAGLEY, L. F., AW, V. Y., FAOU, P.,
916 WEBB, A. I., TONKIN, C. J. & VAN DOOREN, G. G. 2018. Elucidating the mitochondrial proteome
917 of *Toxoplasma gondii* reveals the presence of a divergent cytochrome *c* oxidase. *Elife*, 7,
918 e38131.

919 SHEN, B., BROWN, K. M., LEE, T. D. & SIBLEY, L. D. 2014. Efficient gene disruption in diverse strains of
920 *Toxoplasma gondii* using CRISPR/CAS9. *MBio*, 5, e01114-14.

921 SIREGAR, J. E., KURISU, G., KOBAYASHI, T., MATSUZAKI, M., SAKAMOTO, K., MI-ICHI, F., WATANABE,
922 Y., HIRAI, M., MATSUOKA, H., SYAFRUDDIN, D., MARZUKI, S. & KITA, K. 2015. Direct evidence
923 for the atovaquone action on the Plasmodium cytochrome *bc*₁ complex. *Parasitol Int*, 64, 295-
924 300.

925 SMILKSTEIN, M., SRIWILAIJAROEN, N., KELLY, J. X., WILAIRAT, P. & RISCOE, M. 2004. Simple and
926 inexpensive fluorescence-based technique for high-throughput antimalarial drug screening.
927 *Antimicrob Agents Chemother*, 48, 1803-6.

928 SPALENKA, J., ESCOTTE-BINET, S., BAKIRI, A., HUBERT, J., RENAULT, J. H., VELARD, F., DUCHATEAU, S.,
929 AUBERT, D., HUGUENIN, A. & VILLENA, I. 2018. Discovery of New Inhibitors of *Toxoplasma*
930 *gondii* via the Pathogen Box. *Antimicrob Agents Chemother*, 62, e01640-17.

931 SPINAZZI, M., CASARIN, A., PERTEGATO, V., SALVIATI, L. & ANGELINI, C. 2012. Assessment of
932 mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. *Nat Protoc*,
933 7, 1235-46.

934 SPRY, C., MACUAMULE, C., LIN, Z., VIRGA, K. G., LEE, R. E., STRAUSS, E. & SALIBA, K. J. 2013.
935 Pantothenamides are potent, on-target inhibitors of *Plasmodium falciparum* growth when
936 serum pantetheinase is inactivated. *PLoS One*, 8, e54974.

937 SRIVASTAVA, I. K., MORRISEY, J. M., DARROUZET, E., DALDAL, F. & VAIDYA, A. B. 1999. Resistance
938 mutations reveal the atovaquone-binding domain of cytochrome *b* in malaria parasites. *Mol*
939 *Microbiol*, 33, 704-11.

940 STICKLES, A. M., DE ALMEIDA, M. J., MORRISEY, J. M., SHERIDAN, K. A., FORQUER, I. P., NILSEN, A.,
941 WINTER, R. W., BURROWS, J. N., FIDOCK, D. A., VAIDYA, A. B. & RISCOE, M. K. 2015. Subtle
942 changes in endochin-like quinolone structure alter the site of inhibition within the cytochrome
943 *bc*₁ complex of *Plasmodium falciparum*. *Antimicrob Agents Chemother*, 59, 1977-82.

944 SYAFRUDDIN, D., SIREGAR, J. E. & MARZUKI, S. 1999. Mutations in the cytochrome *b* gene of
945 *Plasmodium berghei* conferring resistance to atovaquone. *Mol Biochem Parasitol*, 104, 185-
946 94.

947 TOUGAN, T., TOYA, Y., UCHIHASHI, K. & HORII, T. 2019. Application of the automated haematology
948 analyzer XN-30 for discovery and development of anti-malarial drugs. *Malar J*, 18, 8.

949 VAIDYA, A. B., LASHGARI, M. S., POLOGE, L. G. & MORRISEY, J. 1993. Structural features of *Plasmodium*
950 cytochrome *b* that may underlie susceptibility to 8-aminoquinolines and
951 hydroxynaphthoquinones. *Mol Biochem Parasitol*, 58, 33-42.

952 VALLIERES, C., FISHER, N., ANTOINE, T., AL-HELAL, M., STOCKS, P., BERRY, N. G., LAWRENSON, A. S.,
953 WARD, S. A., O'NEILL, P. M., BIAGINI, G. A. & MEUNIER, B. 2012. HDQ, a potent inhibitor of
954 *Plasmodium falciparum* proliferation, binds to the quinone reduction site of the cytochrome
955 *bc*₁ complex. *Antimicrob Agents Chemother*, 56, 3739-47.

956 VALLIERES, C., FISHER, N. & MEUNIER, B. 2013. Reconstructing the Q_o site of *Plasmodium falciparum*
957 *bc*₁ complex in the yeast enzyme. *PLoS One*, 8, e71726.

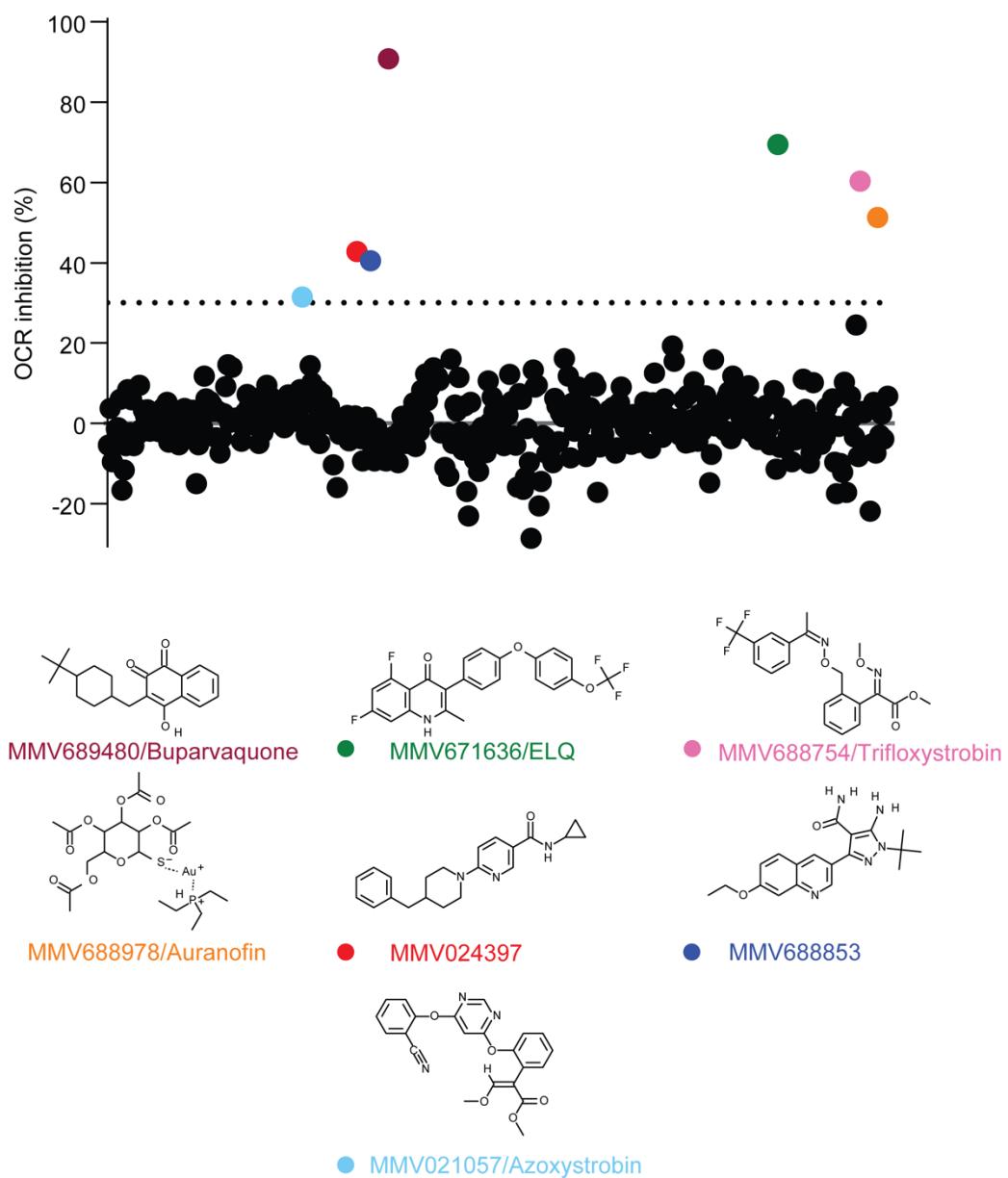
958 WHO 2020. World malaria report 2020: 20 years of global progress and challenges. Geneva.

959 WINTERHALTER, S., SEVERING, K., STAMMEN, J., MAIER, A. K., GODEHARDT, E. & JOUSSEN, A. M. 2010.
960 Does atovaquone prolong the disease-free interval of toxoplasmic retinochoroiditis? *Graefes
961 Arch Clin Exp Ophthalmol*, 248, 1187-92.
962 WITSCHEL, M., ROTTMANN, M., KAISER, M. & BRUN, R. 2012. Agrochemicals against malaria, sleeping
963 sickness, leishmaniasis and Chagas disease. *PLoS Negl Trop Dis*, 6, e1805.
964 ZHANG, Z., OJO, K. K., VIDADALA, R., HUANG, W., GEIGER, J. A., SCHEELE, S., CHOI, R., REID, M. C.,
965 KEYLOUN, K. R., RIVAS, K., SIDDARAMAIAH, L. K., COMESS, K. M., ROBINSON, K. P., MERTA, P.
966 J., KIFLE, L., HOL, W. G., PARSONS, M., MERRITT, E. A., MALY, D. J., VERLINDE, C. L., VAN
967 VOORHIS, W. C. & FAN, E. 2014. Potent and selective inhibitors of CDPK1 from *T. gondii* and
968 *C. parvum* based on a 5-aminopyrazole-4-carboxamide scaffold. *ACS Med Chem Lett*, 5, 40-44.

969

970

971 **Table 1. Effects of the identified MMV ‘Pathogen Box’ compounds on *T. gondii* and *P. falciparum* proliferation. (a)** Determination of the
 972 inhibitory properties of the identified compounds on the proliferation of wild type (WT) RH strain, WT ME49 strain, or atovaquone-resistant
 973 (ATV^R) ME49 strain *T. gondii* parasites. **(b)** Determination of the inhibitory properties of the identified compounds on the proliferation of WT
 974 3D7 strain, yeast dihydroorotate dehydrogenase (yDHODH)-expressing 3D7 strain, or ATV^R 3D7 strain *P. falciparum* parasites. As the yDHODH
 975 and ATV^R strains were generated in different laboratories, proliferation of the WT 3D7 background strain of each was determined for comparisons.
 976 Data are reported as average IC₅₀ (nM) ± SEM from three or more independent experiments. The fold change (FC) was calculated by dividing the
 977 IC₅₀ against ATV^R ME49 parasites by the IC₅₀ against WT ME49 *T. gondii* parasites, or the IC₅₀ against ATV^R 3D7 parasites by the IC₅₀ against
 978 WT *P. falciparum* parasites, with FC values >1 indicating increased resistance and FC values <1 indicating increased sensitivity of the ATV^R
 979 strains to the tested compounds. Paired t-tests were performed to compare the IC₅₀ of WT and ATV^R parasites, and *p*-values are depicted as ns =
 980 not significant (*p* > 0.05), * *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001, **** *p* < 0.0001. ND = not determined. NA = not applicable.


Compound	(a) <i>T. gondii</i>				(b) <i>P. falciparum</i>				
	RH WT	ME49 WT	ME49 ATV ^R		WT	yDHODH	WT	ATV ^R	
	IC ₅₀ (nM)	IC ₅₀ (nM)	IC ₅₀ (nM)	FC	IC ₅₀ (nM)	IC ₅₀ (nM)	IC ₅₀ (nM)	IC ₅₀ (nM)	FC
Atovaquone	10.4 ± 0.5	14 ± 4	284 ± 34	20 *	0.13 ± 0.02	> 10	0.31 ± 0.04	7.6 ± 0.9	24 **
Trifloxystrobin	28 ± 2	67 ± 18	24 ± 5	0.4 ns	44 ± 16	> 250	33 ± 7	131 ± 12	4 *
Azoxystrobin	310 ± 32	579 ± 48	232 ± 36	0.4 *	23 ± 9	> 125	12 ± 1	31 ± 7	2.6 ns
MMV024397	238 ± 30	153 ± 18	441 ± 92	2.9 ns	308 ± 18	3740 ± 1280	400 ± 48	602 ± 93	1.5 *
MMV688853	69 ± 12	178 ± 14	133 ± 4	0.7 ns	> 6250	> 6250	>40 000	>40 000	NA
Buparvaquone	0.7 ± 0.1	0.7 ± 0.2	163 ± 14	233 **	1.2 ± 0.3	> 12.5	10.9 ± 1.2	1160 ± 215	106 *
Auranofin	102 ± 27	92 ± 13	191 ± 44	2 ns	2040 ± 410	1810 ± 490	2831 ± 503	2783 ± 362	1 ns
MMV671636	3.0 ± 0.2	ND	ND	ND	ND	ND	ND	ND	ND
Chloroquine	ND	ND	ND	ND	6.6 ± 1.3	7.70 ± 0.07	19 ± 2	19 ± 3	0 ns

981

982 **Table 2. Inhibitory activities of MMV 'Pathogen Box' compounds against OCR in *T. gondii* and *P. falciparum*.** WT *T. gondii* (RH strain)
983 and WT *P. falciparum* (3D7 strain) oxygen consumption rates were assessed using a Seahorse XFe96 flux analyzer. Data are reported as average
984 IC₅₀ (μM) ± SEM from three or more independent experiments. ND = not determined.

Compound	<i>T. gondii</i> IC ₅₀ (μM)	<i>P. falciparum</i> IC ₅₀ (μM)
Atovaquone	0.18 ± 0.05	0.022 ± 0.008
Trifloxystrobin	0.50 ± 0.02	0.042 ± 0.017
Azoxystrobin	7.05 ± 3.08	0.015 ± 0.002
MMV024397	2.81 ± 0.66	0.413 ± 0.051
MMV688853	2.76 ± 0.48	>10
Buparvaquone	1.18 ± 0.69	ND
Auranofin	2.48 ± 0.46	>100

985

987 **Figure 1. Screening the MMV ‘Pathogen Box’ for inhibitors of O₂ consumption in *T.***

988 ***gondii*.** The oxygen consumption rate (OCR) of extracellular *T. gondii* parasites was measured

989 in a 96-well plate using a Seahorse XFe96 extracellular flux analyzer. Compounds from the

990 MMV ‘Pathogen Box’ were added to wells at a final concentration of 1 μM, and the change in

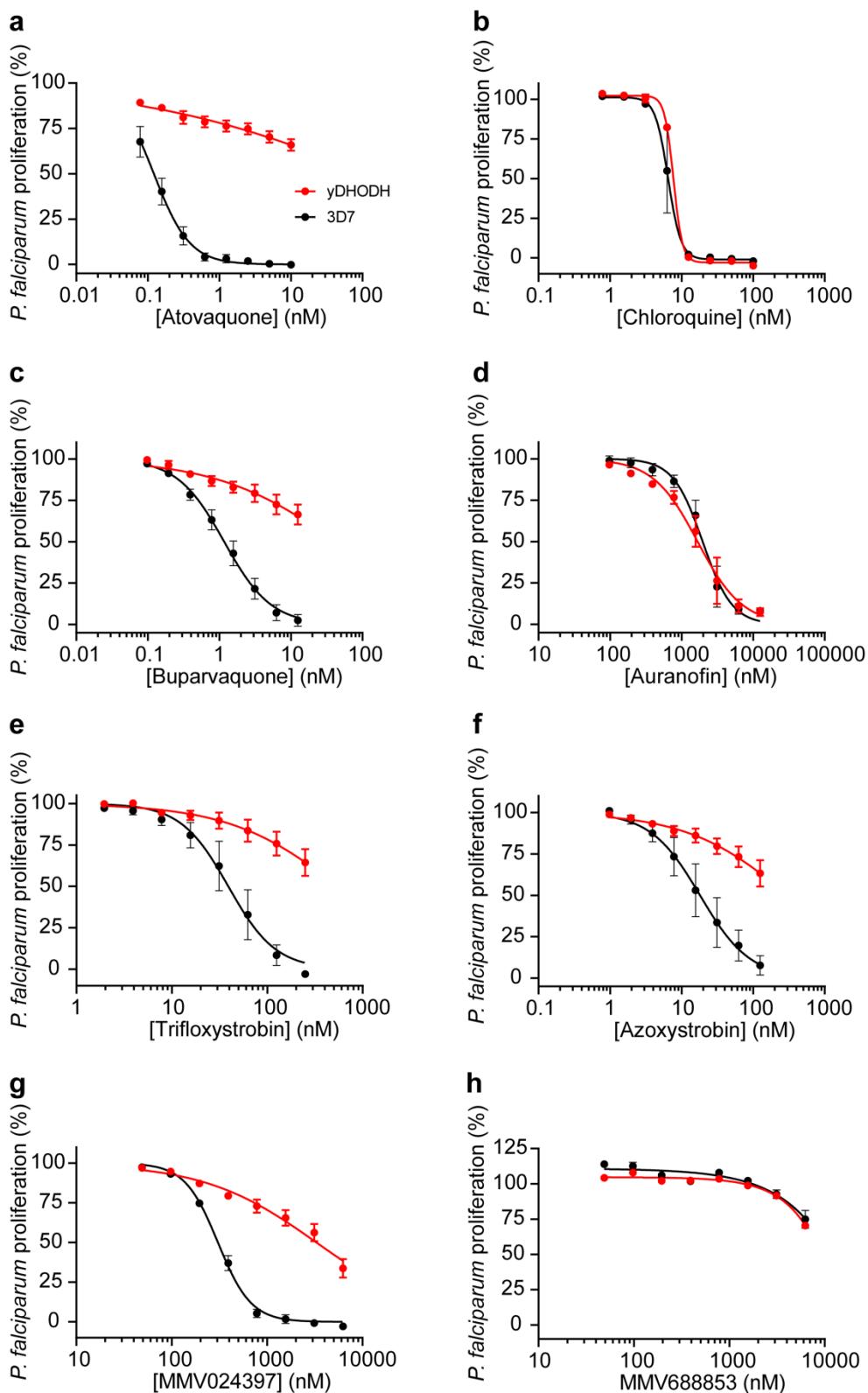
991 OCR was monitored in real time after each addition. Percent inhibition of OCR by each of the

992 400 compounds was calculated relative to complete inhibition observed after addition of 1 μM

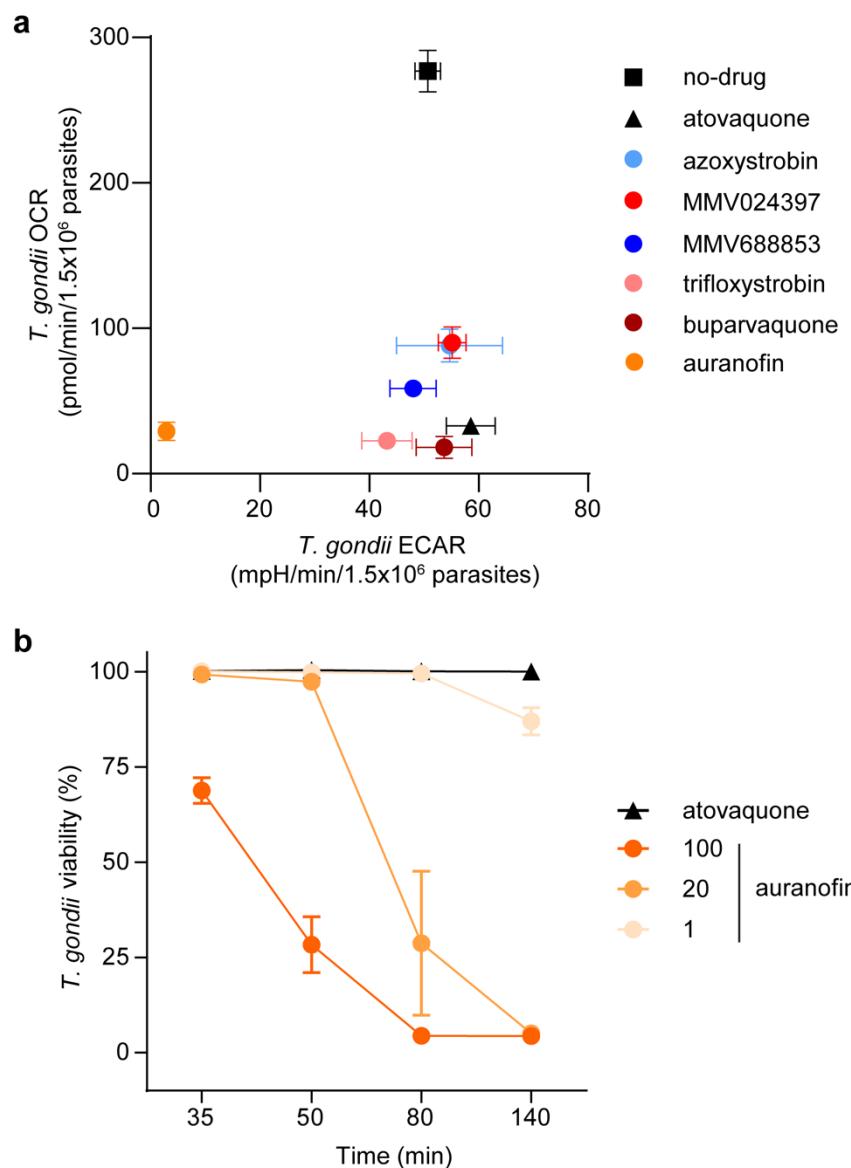
993 of the known OCR inhibitor atovaquone, with each compound represented by a dot. A >30%

994 inhibition cut off was applied (dotted line), with seven compounds inhibiting OCR by >30% at

995 1 μM (coloring of dots corresponds to coloring of labels of the chemical structures shown


996 below). Data are from a single experiment. These hits included MMV689480/buparvaquone

997 (burgundy), the endochin-like quinolone (ELQ) MMV671636 (green),


998 MMV688754/trifloxytrobin (pink), MMV688978/auranofin (orange), MMV024397 (red), the

999 aminopyrazole carboxamide MMV688853 (dark blue), and MMV021057/azoxytrobin (light

1000 blue).

1002 **Figure 2. Identification of selective inhibitors of the ETC in *P. falciparum*.** Dose-response
1003 curves depicting the proliferation of WT (black) or yeast dihydroorotate dehydrogenase
1004 (yDHODH)-expressing (red) *P. falciparum* parasites in the presence of increasing
1005 concentrations of (a) the known ETC inhibitor atovaquone, (b) chloroquine, a compound that
1006 does not inhibit the ETC, (c) buparvaquone, (d) auranofin, (e) trifloxystrobin, (f) azoxystrobin,
1007 (g) MMV024397, or (h) MMV688853 after 96 h of culture. Values are expressed as a
1008 percentage of the average proliferation of the drug-free control, and represent the mean \pm SEM
1009 of three independent experiments performed in triplicate; error bars that are not visible are
1010 smaller than the symbol.

1012 **Figure 3. Identification of selective and off-target inhibitors of the ETC in *T. gondii***

1013 **parasites. (a)** Oxygen consumption rate (OCR) versus extracellular acidification rate (ECAR)

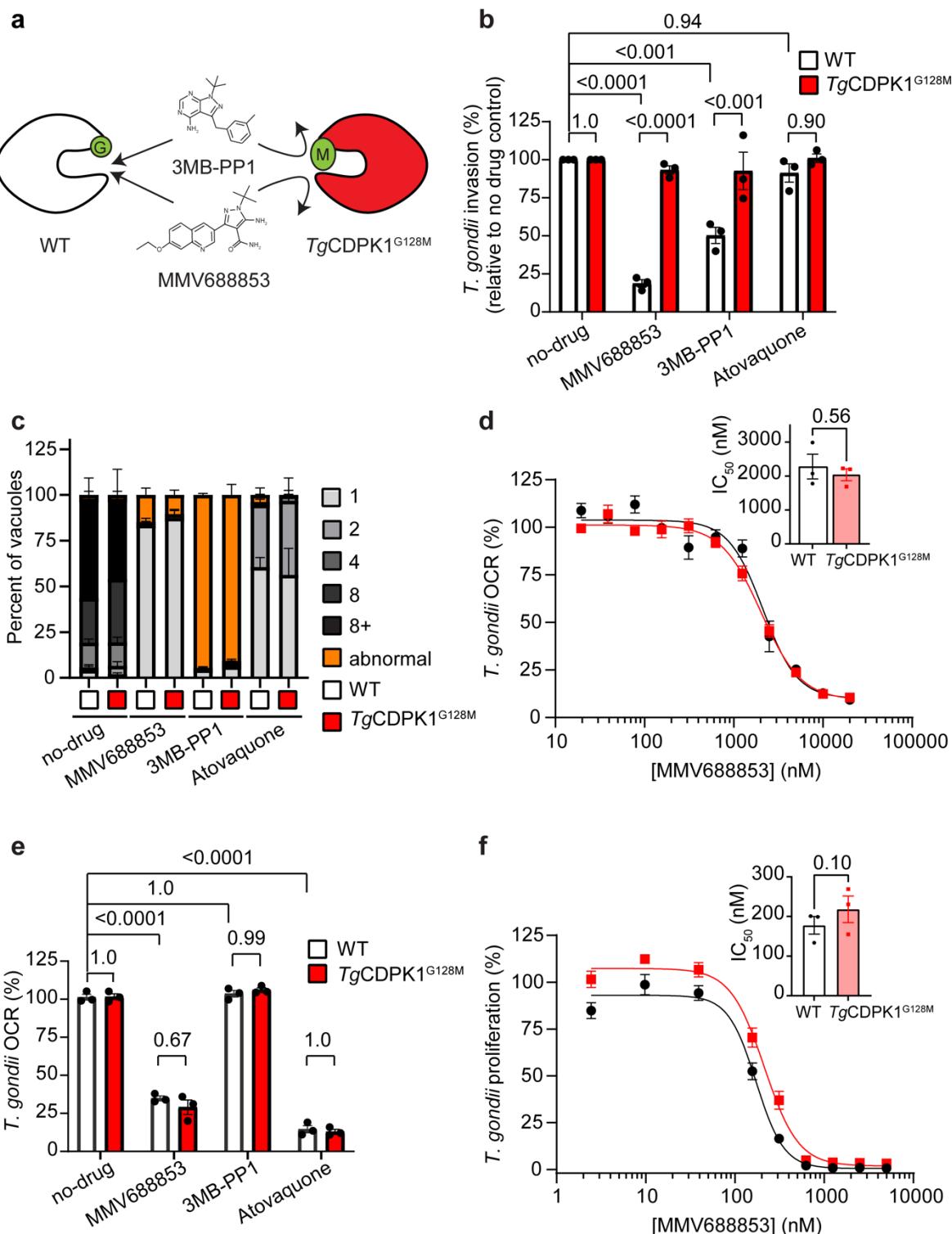
1014 of *T. gondii* parasites treated with either no-drug (black square), atovaquone (black triangle; 10

1015 μM), azoxystrobin (light blue; 80 μM), MMV024397 (red; 20 μM), MMV688853 (dark blue;

1016 20 μM), trifloxystrobin (pink; 10 μM), buparvaquone (burgundy; 20 μM) or auranofin (orange;

1017 80 μM) assessed using a Seahorse XFe96 flux analyzer. Data represent the mean OCR and

1018 ECAR \pm SEM of three independent experiments, and are derived from the top concentration


1019 of inhibitor tested in Fig. S2. **(b)** Viability of extracellular *T. gondii* parasites treated with

1020 atovaquone (black triangles, 10 μM) or auranofin (orange circles, 1-100 μM) for 35 – 140

1021 minutes. Viability was assessed by flow cytometry of propidium iodide-stained parasites and

1022 normalized to a DMSO-treated vehicle control. Data represent the mean \pm SEM of three

1023 independent experiments; error bars that are not visible are smaller than the symbol.

1025 **Figure 4. MMV688853 dually targets *TgCDPK1* and the ETC in *T. gondii* parasites. (a)**

1026 Schematic depicting the small glycine gatekeeper residue of WT *TgCDPK1* (white) which

1027 enables inhibition by 3MB-PP1 and MMV688853. Mutation of this residue to a larger

1028 methionine (*TgCDPK1*^{G128M}, red) blocks inhibitor access to the binding site and thereby

1029 confers resistance to these compounds. **(b)** Percent invasion of parasites expressing WT

1030 *TgCDPK1* (white) or *TgCDPK1*^{G128M} (red) into host cells in the absence of drug (DMSO

1031 vehicle control), or the presence of MMV688853 (5 μ M), 3MB-PP1 (5 μ M) or atovaquone (1

1032 μ M), normalized relative to the no-drug control. At least 100 parasites were counted per

1033 experiment, with data representing the mean \pm SEM of three independent experiments (each

1034 experiment shown as a dot). ANOVA followed by Tukey's multiple comparisons test was

1035 performed with relevant *p*-values shown. **(c)** Intracellular proliferation assays depicting the

1036 percent of vacuoles containing 1-8+ (gray tones) or abnormal (orange) parasites when parasites

1037 expressing WT *TgCDPK1* (white) or *TgCDPK1*^{G128M} (red) were cultured in the absence of drug

1038 (DMSO vehicle control), or the presence of MMV688853 (5 μ M), 3MB-PP1 (5 μ M) or

1039 atovaquone (1 μ M) for 20 h. Abnormal morphology was defined as vacuoles that contained

1040 misshapen parasites. At least 100 vacuoles were counted per condition, with data representing

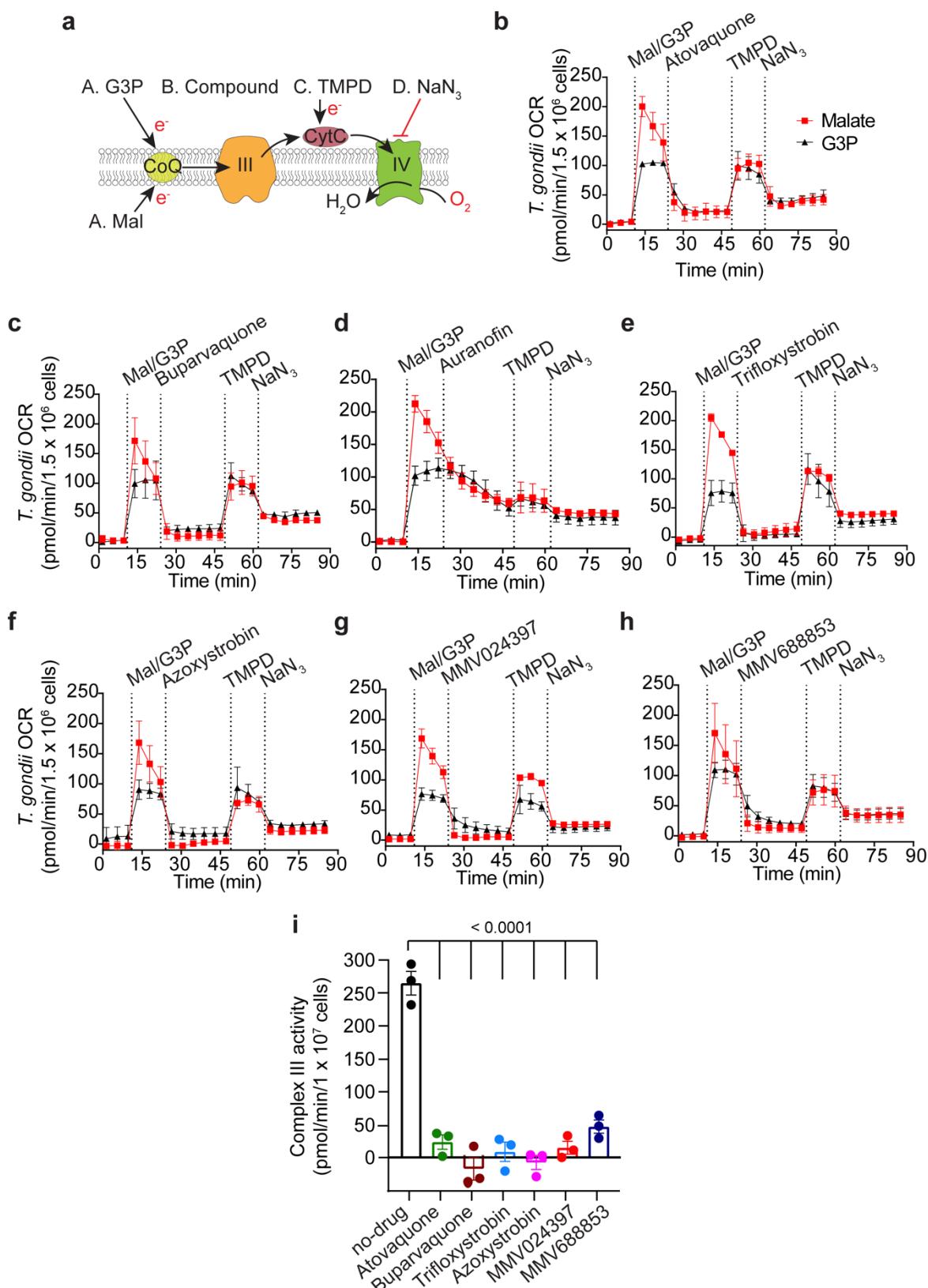
1041 the mean \pm SEM of three independent experiments. **(d)** Dose-response curves depicting the

1042 oxygen consumption rate (OCR) of parasites expressing WT *TgCDPK1* (black) or

1043 *TgCDPK1*^{G128M} (red) incubated with increasing concentrations of MMV688853 as a

1044 percentage of a no-drug (DMSO vehicle) control. Data represent the mean \pm SEM of three

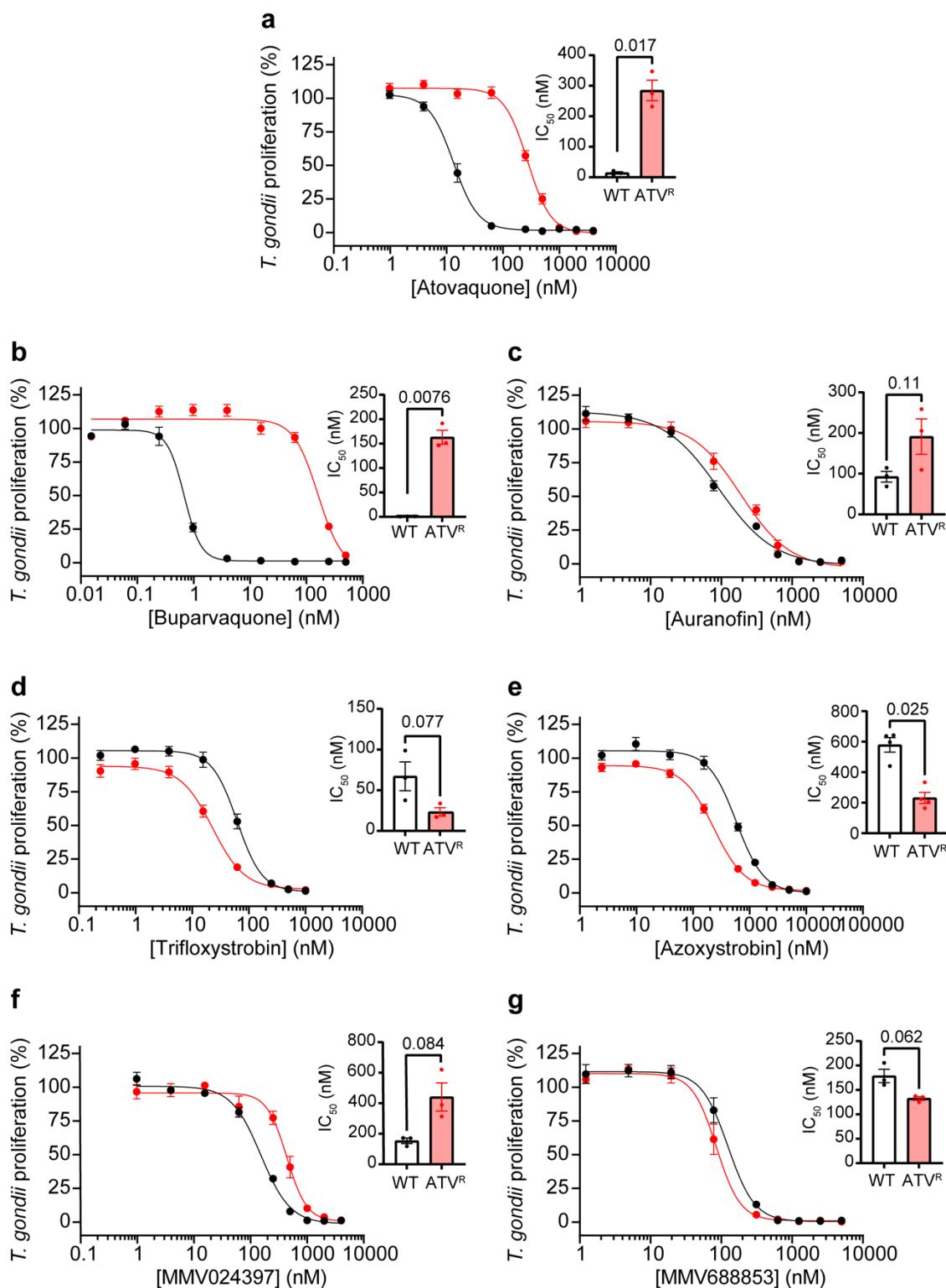
1045 independent experiments. Inset bar graph depicts the IC₅₀ \pm SEM (nM) of three independent


1046 experiments (each experiment shown as a dot). The *p*-value from a paired t-test is shown. **(e)**

1047 OCR of parasites expressing WT *TgCDPK1* (white) or *TgCDPK1*^{G128M} (red) incubated in the

1048 absence of drug (DMSO vehicle control), or in the presence of MMV688853 (5 μ M), 3MB-

1049 PP1 (5 μ M) or atovaquone (1 μ M), expressed as a percentage of the OCR prior to addition of


1050 compounds. Data represent the mean \pm SEM of three independent experiments. ANOVA
1051 followed by Tukey's multiple comparisons test was performed with relevant *p*-values shown.
1052 (f) Dose-response curves depicting the percentage proliferation of parasites expressing WT
1053 *TgCDPK1* (black) or *TgCDPK1*^{G128M} (red) in the presence of increasing concentrations of
1054 MMV688853 over 6 days. Values are expressed as a percent of the average fluorescence from
1055 the no-drug control at mid-log phase growth in the fluorescence proliferation assay, and
1056 represent the mean \pm SEM of three independent experiments; error bars that are not visible are
1057 smaller than the symbol. Inset bar graph depicts the IC₅₀ \pm SEM (nM) of three independent
1058 experiments (each experiment shown as a dot). The *p*-value from a paired t-test is shown.

1060 **Figure 5. An assay to characterize the targets of the candidate ETC inhibitors identifies**
1061 **chemically diverse Complex III inhibitors. (a)** Schematic of the assay measuring the oxygen
1062 consumption rate (OCR) of plasma membrane-permeabilized *T. gondii* parasites. Parasites
1063 were starved for 1 hour to deplete endogenous substrates then permeabilized with digitonin
1064 before the addition of the following substrates and inhibitors: Port A, the substrates malate
1065 (Mal) or glycerol 3-phosphate (G3P); Port B, the test compound; Port C, TMPD; Port D,
1066 sodium azide (NaN₃). CoQ, coenzyme Q; III, Complex III; CytC, cytochrome *c*; IV, Complex
1067 IV; e⁻, electrons. **(b-h)** Traces depicting parasite OCR over time when supplying Mal (red
1068 squares) or G3P (black triangles) as a substrate. The candidate ETC inhibitors were **(b)**
1069 atovaquone (1.25 μ M), **(c)** buparvaquone (5 μ M), **(d)** auranofin (10 μ M), **(e)** trifloxystrobin
1070 (2.5 μ M), **(f)** azoxystrobin (80 μ M), **(g)** MMV024397 (20 μ M), **(h)** MMV688853 (20 μ M).
1071 Values represent the mean \pm SD of three technical replicates and are representative of three
1072 independent experiments; error bars that are not visible are smaller than the symbol. **(i)** *T.*
1073 *gondii* Complex III enzymatic activity was assessed in the presence of DMSO (no-drug),
1074 atovaquone (1.25 μ M), buparvaquone (5 μ M), trifloxystrobin (2.5 μ M), azoxystrobin (80 μ M),
1075 MMV024397 (20 μ M) or MMV688853 (20 μ M). Data represent the mean \pm SEM of three
1076 independent experiments each conducted in duplicate, with the mean of each experiment
1077 represented by a dot. ANOVA followed by Dunnett's multiple comparisons test were
1078 performed and *p*-values are shown.

1080 **Figure 6. Most of the candidate ETC inhibitors target the ETC upstream of cytochrome**
1081 ***c* in *P. falciparum* parasites. (a)** Schematic of the assay measuring the oxygen consumption
1082 rate (OCR) of permeabilized *P. falciparum* parasites supplied malate (Mal) as a substrate. The
1083 following addition of substrates and inhibitors were performed: Port A, the test compound; Port
1084 B, TMPD; Port C, sodium azide (NaN₃). CoQ, coenzyme Q; III, Complex III; CytC,
1085 cytochrome *c*; IV, Complex IV; e⁻, electrons. **(b-g)** Traces depicting parasite OCR over time
1086 when supplying Mal as a substrate. The candidate ETC inhibitors tested (all at 10 µM) were
1087 **(b)** atovaquone, **(c)** auranofin, **(d)** trifloxystrobin, **(e)** azoxystrobin, **(f)** MMV024397, **(g)**
1088 MMV688853. Values represent the mean ± SD of three technical replicates and are
1089 representative of three independent experiments; error bars that are not visible are smaller than
1090 the symbol.

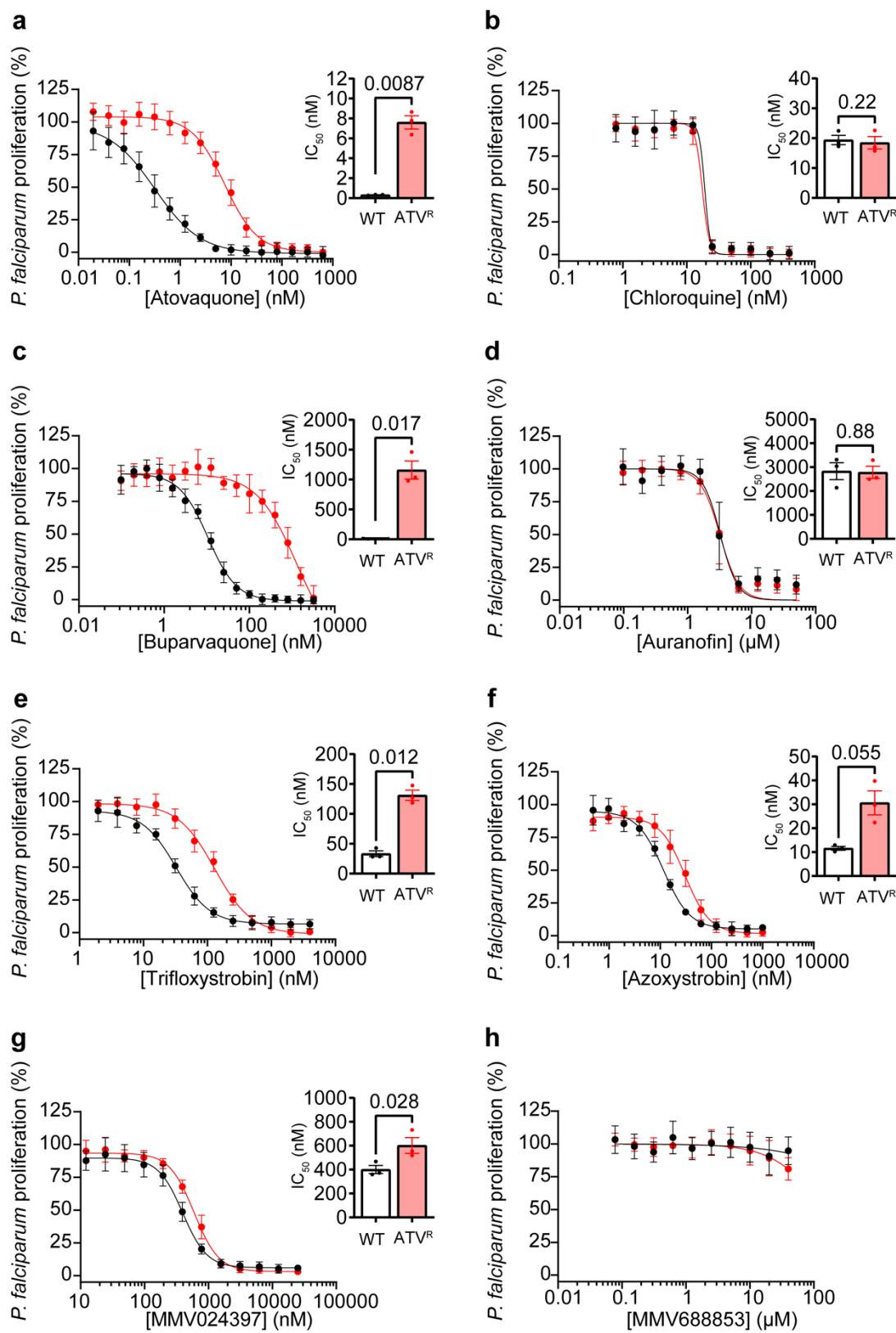
1092 **Figure 7. Assessing the activity of ETC inhibitors against atovaquone-resistant *T. gondii***

1093 **parasites. (a-g)** Dose-response curves depicting the percent proliferation of WT (black) or

1094 atovaquone-resistant (ATV^R, red) *T. gondii* parasites in the presence of increasing

1095 concentrations of **(a)** atovaquone, **(b)** buparvaquone, **(c)** auranofin, **(d)** trifloxystrobin, **(e)**

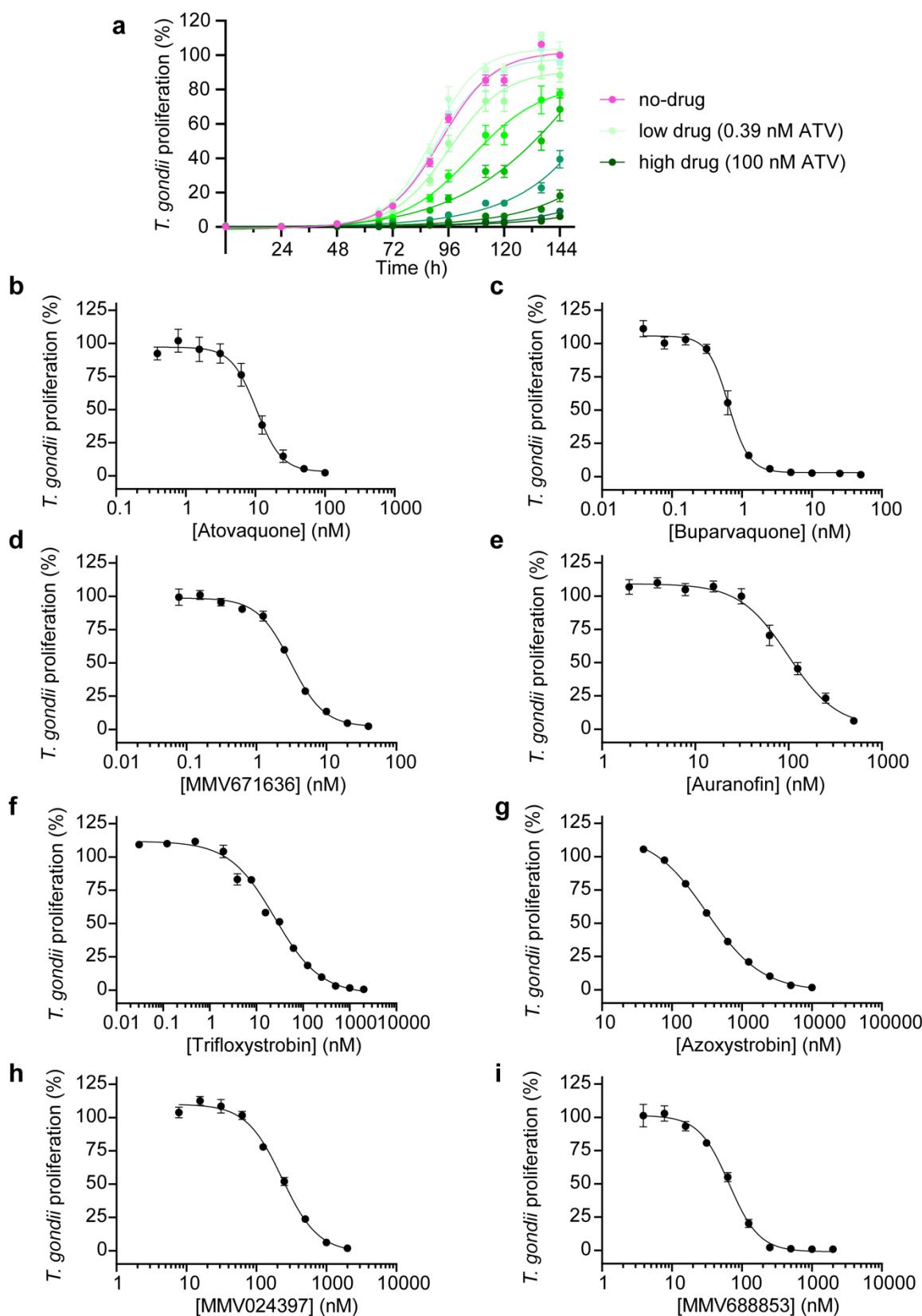
1096 azoxystrobin, **(f)** MMV024397, or **(g)** MMV688853. Values are expressed as a percent of the


1097 average fluorescence from a no-drug control at mid-log phase growth in the fluorescence

1098 proliferation assay, and represent the mean \pm SEM of three (or four for (e)) independent

1099 experiments performed in triplicate; error bars that are not visible are smaller than the symbol.

1100 Inset bar graphs depict the $IC_{50} \pm SEM$ (nM) of three (or four for (e)) independent experiments,


1101 with each repeat shown as a dot. Paired t-tests were performed and *p*-values are shown.

1103 **Figure 8: Assessing the activity of ETC inhibitors against atovaquone-resistant *P.***
1104 ***falciparum* parasites. (a-g)** Dose-response curves depicting the percent proliferation of WT
1105 (black) or atovaquone-resistant (ATV^R, red) *P. falciparum* parasites in the presence of
1106 increasing concentrations of **(a)** atovaquone, **(b)** chloroquine, **(c)** buparvaquone, **(d)** auranofin,
1107 **(e)** trifloxytrobin, **(f)** azoxystrobin, **(g)** MMV024397, or **(h)** MMV688853 after 96 h of
1108 culture, as measured using the SYBR Safe-based growth assay. Values are expressed as a
1109 percent of the average fluorescence from the no-drug control, and represent the mean \pm SEM
1110 of three independent experiments performed in triplicate; error bars that are not visible are
1111 smaller than the symbol. Inset bar graphs depict the IC₅₀ \pm SEM (nM) of three independent
1112 experiments, with each repeat shown as a dot. Paired t-tests were performed and *p*-values are
1113 shown.

1114

1115 **Supplementary Figures**

1116

1117

1118 **Supplementary Figure 1. Candidate ETC inhibitors inhibit proliferation of *T. gondii***

1119 **parasites. (a)** Proliferation of tdTomato-expressing *T. gondii* parasites cultured in the absence

1120 of drug (pink circles), or in the presence of atovaquone (two fold serial dilution from highest

1121 concentration (100 nM; dark green) to lowest concentration (0.39 nM; light green)) over a 6-

1122 day period. Values are expressed as a percent of the average fluorescence from the no-drug

1123 control on the final day of the experiment, and represent the mean \pm SD of three technical

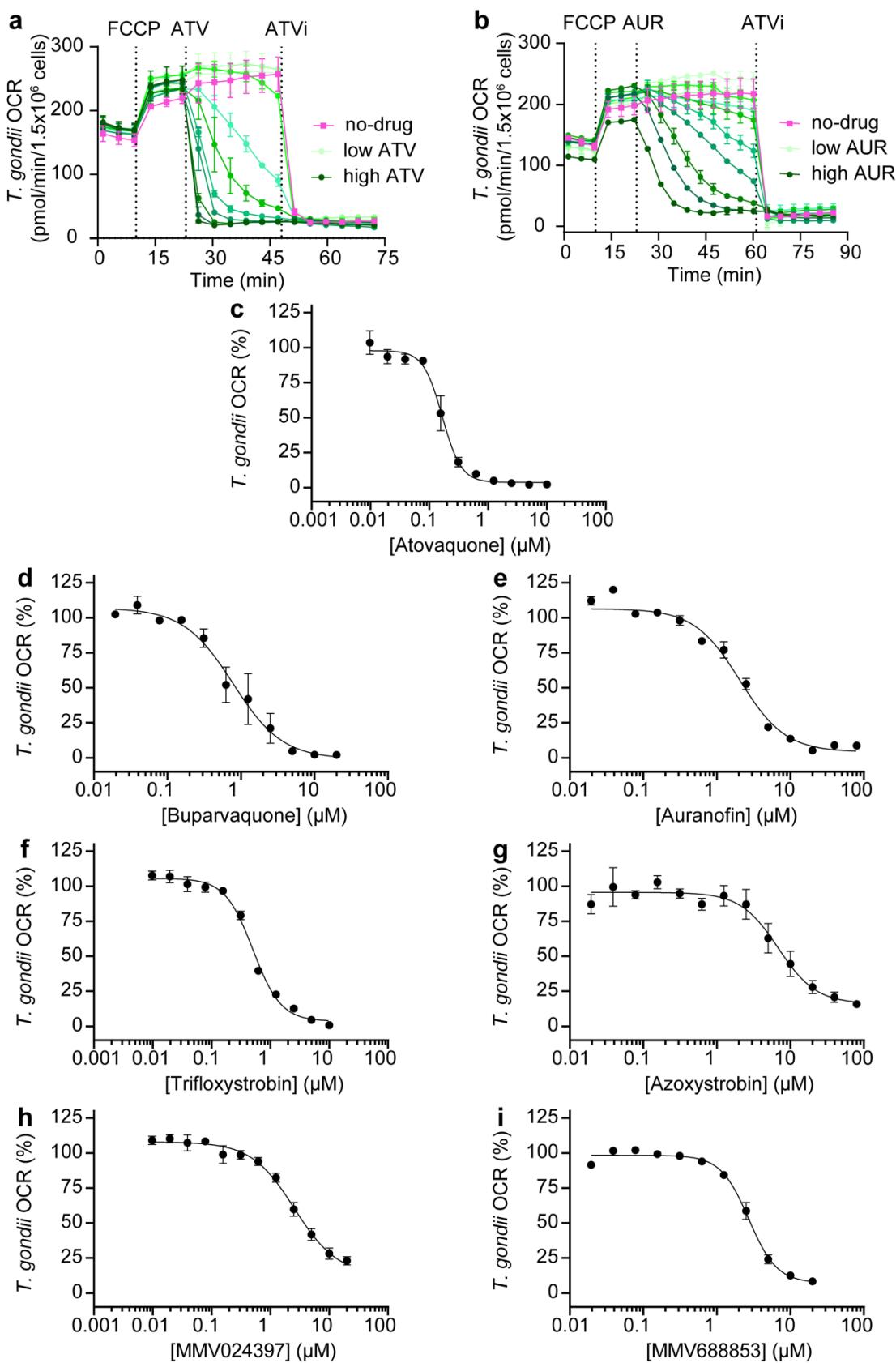
1124 replicates. Data are from one experiment and are representative of three independent

1125 experiments. Similar proliferation curves were obtained for each test compound but are not

1126 shown. **(b-i)**. Dose-response curves depicting the percent of *T. gondii* parasite proliferation in

1127 the presence of a range of concentrations of **(b)** atovaquone, **(c)** buparvaquone, **(d)**

1128 MMV671636, **(e)** auranofin, **(f)** trifloxystrobin, **(g)** azoxystrobin, **(h)** MMV024397, or **(i)**


1129 MMV688853. Values are expressed as a percent of the average fluorescence from the no drug

1130 control at mid-log phase growth, and represent the mean \pm SEM of three independent

1131 experiments, each conducted in triplicate; error bars that are not visible are smaller than the

1132 symbol.

1133

1134

1135

1136 **Supplementary Figure 2. Identified compounds inhibit O₂ consumption in *T. gondii*. (a-**

1137 **b)** Traces depicting the changes in oxygen consumption rate (OCR) over time of intact *T.*

1138 *gondii* parasites incubated with no drug (pink) or with **(a)** atovaquone (ATV) (two fold serial

1139 dilution from highest concentration (10 μ M; dark green) to lowest concentration (0.01 μ M;

1140 light green)) or **(b)** auranofin (AUR) (two fold serial dilution from highest concentration (80

1141 μ M; dark green) to lowest concentration (0.08 μ M; light green)). FCCP (1 μ M) was injected

1142 into the well to uncouple electron transport from ATP synthesis and thus elicit the maximal

1143 OCR. A range of concentrations of the test compounds were then injected and the inhibition of

1144 OCR measured over time. A final injection of an inhibitory concentration of atovaquone

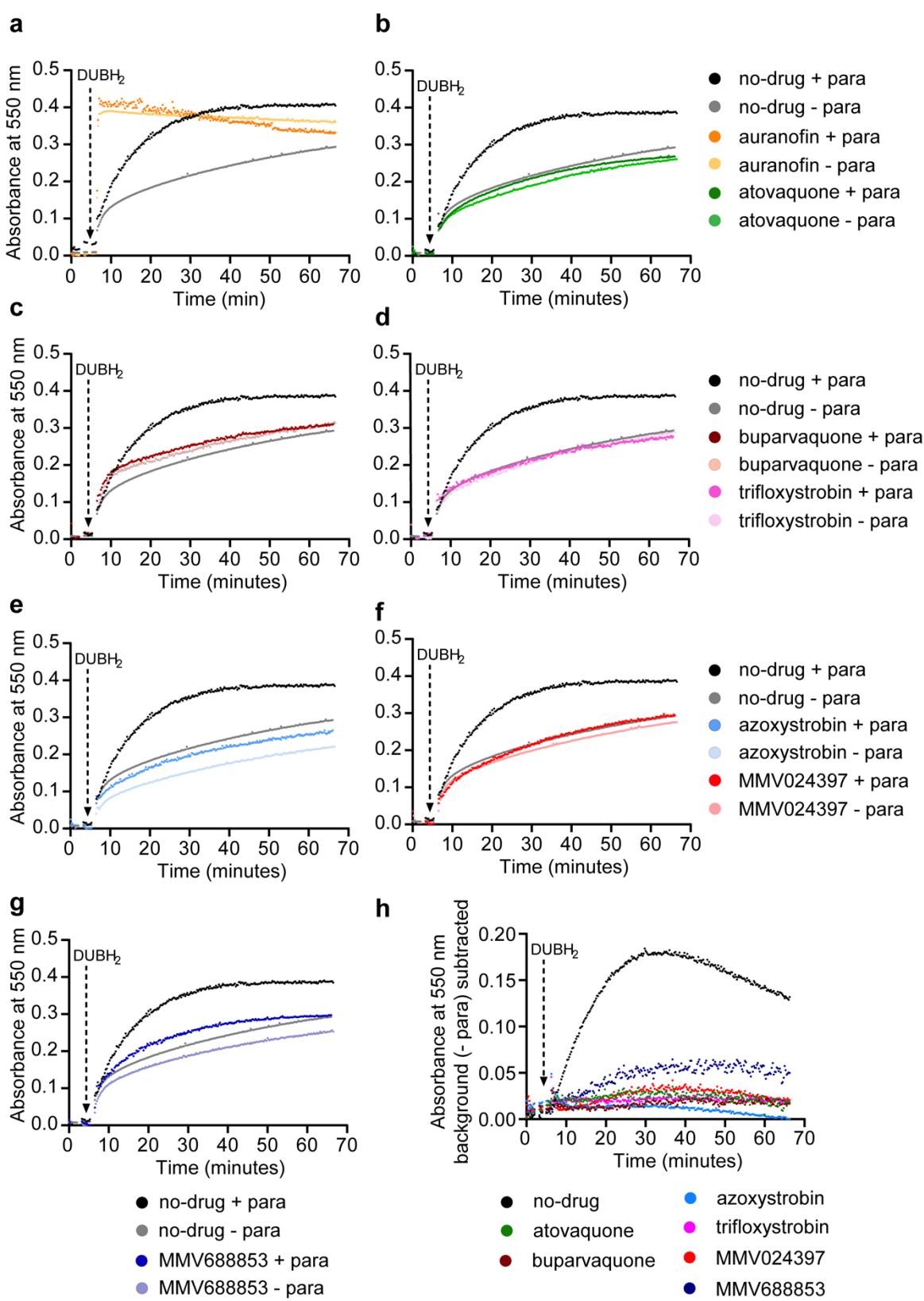
1145 (ATVi; 5 μ M) fully inhibited mitochondrial OCR. Values represent the mean \pm SD of two

1146 technical replicates from a single experiment and are representative of three independent

1147 experiments. Similar OCR inhibition traces were obtained for each test compound but are not

1148 shown. **(c-i)** Dose-response curves depicting the percent of *T. gondii* OCR in the presence of

1149 increasing concentrations of **(c)** atovaquone, **(d)** buparvaquone, **(e)** auranofin, **(f)**

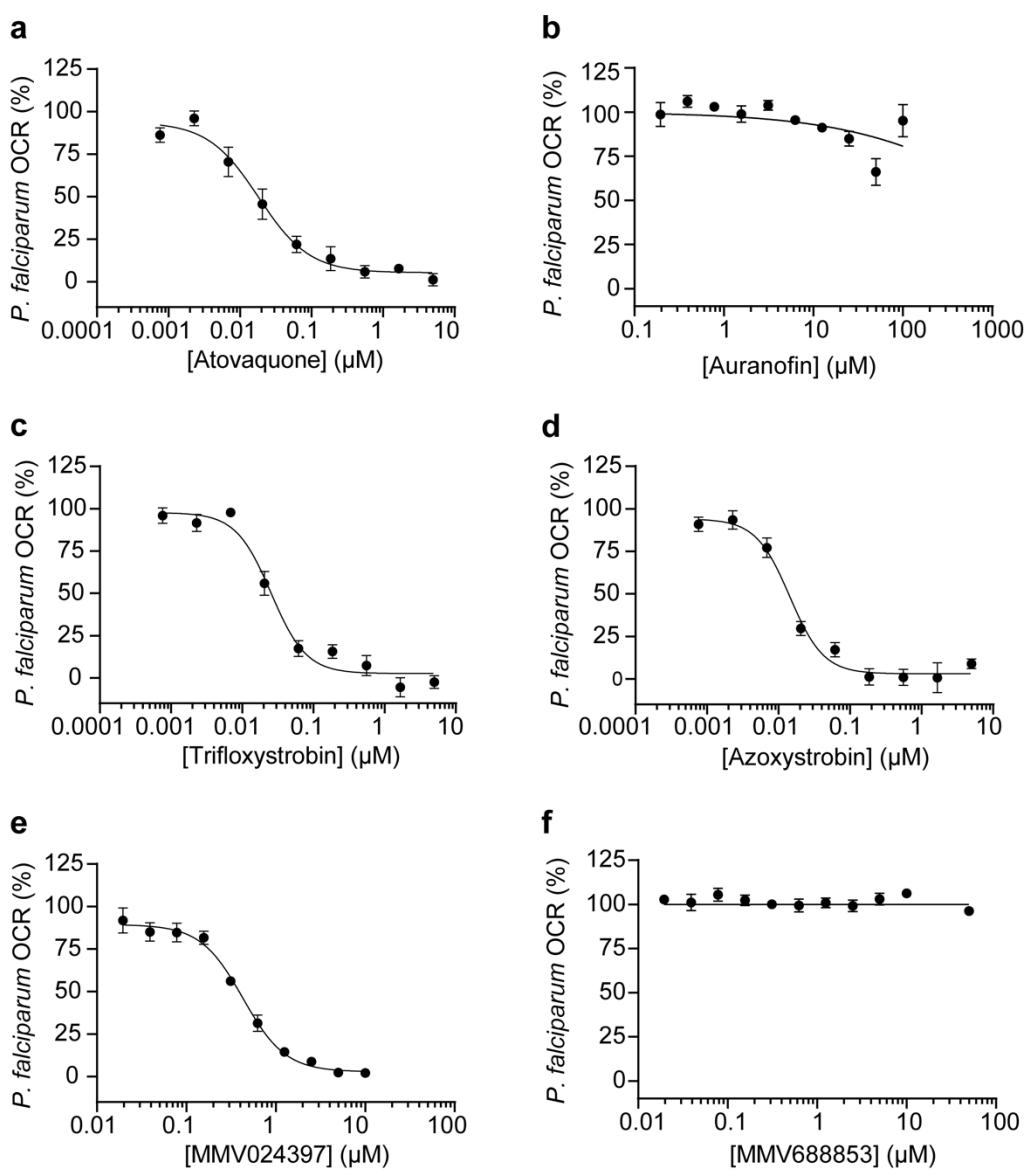

1150 trifloxystrobin, **(g)** azoxystrobin, **(h)** MMV024397 or **(i)** MMV688853. Values represent the

1151 percent OCR relative to the no-drug (100% OCR) and inhibitory atovaquone-treated (0% OCR)

1152 controls, and depict the mean \pm SEM of three independent experiments, each conducted in

1153 duplicate; error bars that are not visible are smaller than the symbol.

1154


1156 **Supplementary Figure 3. Characterizing Complex III inhibition by the candidate ETC**
1157 **inhibitors in *T. gondii*.** (a-g) Complex III activity assays showing the change in absorbance
1158 of equine heart CytC at 550 nm over time (measured every 15 s) in the presence (+ para, dark
1159 shade) or absence (- para, light shade) of parasite extracts, and in the presence of no drug
1160 (DMSO vehicle control, black or gray), or (a) auranofin (orange, 10 μ M), (b) atovaquone
1161 (green, 1.25 μ M), (c) buparvaquone (burgundy, 5 μ M), (d) trifloxystrobin (pink, 2.5 μ M), (e)
1162 azoxystrobin (light blue, 80 μ M), (f) MMV024397 (red, 20 μ M) or (g) MMV688853 (dark
1163 blue, 20 μ M). Data are from a single experiment and are representative of three independent
1164 experiments. (h) Complex III activity assays showing the change in absorbance of equine heart
1165 CytC at 550 nm over time where change in absorbance in the absence of parasite extracts (*i.e.*
1166 background absorbance) was subtracted from the change in absorbance in the presence of
1167 parasite extracts. Data are from a single experiment and are representative of three independent
1168 experiments. Compounds are depicted using the same coloring as in b-g.

1169

1170

1171

1172

1173

1174

1175 **Supplementary Figure 4: Identified compounds inhibit O₂ consumption in *P. falciparum*.**

1176 **(a-f)** Dose-response curves depicting *P. falciparum* OCR in the presence of increasing
1177 concentrations of **(a)** atovaquone, **(b)** auranofin, **(c)** trifloxytrobin, **(d)** azoxystrobin, **(e)**
1178 MMV024397 or **(f)** MMV688853. Values represent the percent OCR relative to the no drug
1179 (100% OCR) and atovaquone-treated (0% OCR) controls, and are depicted as the mean \pm SEM
1180 of three independent experiments; error bars that are not visible are smaller than the symbol.