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Abstract

We perform a thorough analysis of RNA velocity methods, with a view towards understanding
the suitability of the various assumptions underlying popular implementations. In addition to
providing a self-contained exposition of the underlying mathematics, we undertake simulations and
perform controlled experiments on biological datasets to assess workflow sensitivity to parameter
choices and underlying biology. Finally, we argue for a more rigorous approach to RNA velocity,
and present a framework for Markovian analysis that points to directions for improvement and
mitigation of current problems.
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1 Introduction

1.1 Background

The method of RNA velocity [1] aims to infer directed differentiation trajectories from snapshot
single-cell transcriptomic data. Although we cannot observe the transcription rate, we can count
molecules of spliced and unspliced mRNA. The unspliced mRNA content is a leading indicator of
spliced mRNA, meaning that it is a predictor of the spliced mRNA content in the cell’s near future.
This causal relationship can be usefully exploited to identify directions of differentiation pathways
without prior information about cell type relationships: “depletion” of nascent RNA suggests the
gene is downregulated, whereas “accumulation” suggests it is upregulated. This qualitative premise
has profound implications for the analysis of single-cell RNA sequencing (scRNA-seq) data. The
experimentally observed transcriptome is a snapshot of a biological process. By carefully combining
snapshot data with a causal model, it is for the first time possible to reconstruct the dynamics and
direction of this process without prior knowledge or dedicated experiments.

The bioinformatics field has recognized this potential, widely adopting the method and generating
numerous variations on the theme. The roots of the theoretical approach date to 2011 [2], but
the two most popular implementations for scRNA-seq were released in 2017–2018: velocyto by La
Manno et al. [1], which introduced the method, and scVelo by Bergen et al. [3], which extended
it to fit a more sophisticated dynamical model. Aside from these packages, numerous auxiliary
methods have been developed, including protaccel [4] for incorporating newly available protein
data, MultiVelo [5] and Chromatin Velocity [6] for incorporating chromatin accessibility, VeTra [7],
CellPath [8], Cytopath [9], CellRank [10], and Revelio [11] for investigating coarse-grained global
trends, scRegulosity [12] for identifying local trends, Dynamo [13] for estimating the differentiation
landscape curvature in metabolic labeling experiments, Velo-Predictor [14] for incorporating ma-
chine learning, dyngen [15] and VeloSim [16] for simulation, and VeloViz [17] and evo-velocity [18]
for constructing velocity-inspired visualizations. This profusion of computational extensions has
been accompanied by a much smaller volume of analytical work, including discussions of potential
extensions and pitfalls [19–22], as well as theoretical studies based on optimal transport [23,24] and
stochastic differential equations [25]. However, at their core, these auxiliary methods are built on
top of the theory and code base from velocyto or scVelo.

These two most popular software implementations emphasize usability and integration with stan-
dard visualization methods. The typical user-facing workflows, with internal logic abstracted away,
are shown in Figure 1: a set of reads is converted to cell × gene matrices derived from spliced
and unspliced mRNA molecule measurements, the matrices are processed to generate phase plots
describing a dynamical transcription process, and finally the transcriptional dynamics are fit, ex-
trapolated, and displayed in a low-dimensional embedding.

Despite the popularity of RNA velocity [14,28] and increasingly sophisticated attempts to combine
it with more traditional methods for trajectory inference [8, 10], there has been no comprehensive
investigation of the modeling assumptions that underlie the seemingly simple workflow. This is
an impediment to applying, interpreting, and refining the methods, as problems arise even in the
simplest cases. Consider, for example, the result displayed in Figure 1, where the outputs of the
two most popular RNA velocity programs applied to human embryonic forebrain data generated
by La Manno et al. [1] (“forebrain data”) are qualitatively different. The inferred directions in the
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Figure 1: A summary of the user-facing workflow of a typical RNA velocity workflow. Initial
processing of sequencing reads produces spliced and unspliced counts for every cell, across all
genes. Inference procedures, implemented in velocyto and scVelo, fit a model of transcription, and
predict cell-level velocities. The final embedding of cells and smoothed velocities is displayed in the
top two principal component dimensions. Visualizations adapted from [26,27]; dataset from [1].

example should recapitulate a known differentiation trajectory from radial glia to mature neurons.
However, scVelo, which “generalizes” velocyto, fails to identify, and even reverses the trajectory,
suggesting totally different causal relationships between cell types. This type of problematic result
has been reported elsewhere (Figs. 2-3 of [3], Fig. 2 of [22], Fig. 4B of [5], Fig. 5A of [9], Fig. 5
of [10], and Fig. 3 of [13]).

Motivated by such discrepancies, we wondered whether either velocyto or scVelo are reliable for
standard use in applications where ground truth may be unknown. An examination of their the-
oretical foundations, and those of related methods, revealed that they are largely informal. Even
the term “RNA velocity” is not precisely defined, and is used for the following distinct concepts:

• A generic method to infer trajectories and their direction using relative unspliced and spliced
mRNA abundances by leveraging the causal relationship between the two RNA species, which
is the interpretation in [25].

• A set of tools implementing this method or parts of it, as in an “RNA velocity workflow
implemented in kallisto|bustools”, which is the interpretation in [29].

• A gene- and cell-specific quantity under a continuous model of transcription, as in “the RNA
velocity of a cell is ds

dt = βu− γs”, which is the interpretation in [19,28].

• A gene- and cell-specific quantity under a probabilistic model of transcription, as in “the
RNA velocity of a cell is dE[St]

dt = βu− γs”, which is the interpretation in [4].

• A gene-specific average quantity, as in “the total RNA velocity of a gene is
∑

i(βui − γsi)”,
which is the interpretation in [12,28].

• A cell-specific vector composed of gene-specific velocity components, as in “the vector RNA
velocity of a cell is βjuij − γjsij”, which is the interpretation in [7, 9, 28].

• The cell-specific linear or nonlinear embedding of a cell-specific vector in a low-dimensional
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space, which is the interpretation in [9].

• A local property, such as curvature, of a theorized cell landscape computed either from an
embedding or a set of velocities, which is the interpretation in [13,23].

These discrepancies and, more broadly, the limitations of current theory, stem from historical dif-
ferences between sub-fields, which have calcified over the past twenty years of single-cell biology.
On the one hand, fluorescence transcriptomics methods, including single-molecule fluorescence in
situ hybridization and live-cell MS2 tagging, which target small, well-defined systems with a narrow
set of probes [30–32], have motivated the development of interpretable stochastic models of bio-
logical variation [33, 34]. On the other hand, “sequence census” methods [35], such as scRNA-seq,
provide genome-wide quantification of RNA, but the associated challenges of exploratory, high-
dimensional data analysis have not, for the most part, been addressed with mechanistic models.
Instead, descriptive summaries, such as graph representations and low-dimensional embeddings,
are the methods of choice [36]. Nevertheless, descriptive analyses, even if ad hoc, can still facilitate
biological discovery: RNA velocity has been used to produce plausible trajectories [37–45], and our
simulations show that it can recapitulate key information about differentiation trajectories in best-
case scenarios (Figure S1). These results highlight the potential of RNA velocity, and motivated
us to review its assumptions, understand its current failure modes, and to solidify its foundations.

Towards this end, we found it helpful to contrast the sub-fields of fluorescent transcriptomics
and sequencing, which have analogous goals, albeit disparate origins that have led to analytical
methods with distinct philosophies and mathematical foundations. The sub-fields have, at times,
interacted. Fluorescence transcriptomics can now quantify thousands of genes at a time, and this
scale of data is now occasionally presented using visual summaries popular for RNA sequencing
data, such as principal component analysis (PCA) [46], Uniform Manifold Approximation and Pro-
jection (UMAP) [47], and t-distributed stochastic neighbor embedding (t-SNE) [48,49]. Conversely,
the commercial introduction of scRNA-seq protocols with unique molecular identifiers (UMIs) has
spurred the adoption of theoretical results from fluorescence transcriptomics for sequence cen-
sus analysis [50–54]. Sequencing studies frequently use count distribution models that arise from
stochastic processes, such as the negative binomial distribution, albeit without explicit derivations
or claims about the data-generating mechanism [50,55,56]. These connections highlight the promise
of mechanistic gene expression models: in principle, parameters can be fit to sequencing data to
produce a physically interpretable, genome-scale model of transcriptional regulation in living cells,
and some steps have been taken in this direction over the past decade [51–54,57].

RNA velocity methods are products of the sequence census paradigm: they draw heavily on low-
dimensional embeddings and graphs derived from the raw data. Their current limitations stem from
viewing biology through the lens of signal processing, where noise is something to be eliminated
or smoothed out. We posit that it is more appropriate to view the data through the lens of
quantitative fluorescence transcriptomics, in which noise is a biophysical phenomenon in its own
right. Through this lens, modeling that decomposes variation into single-molecule (intrinsic) and
cell-to-cell (extrinsic) [58] components, in addition to technical noise [59], is key. Beyond this
conceptual issue, we find that an assessment of the impact of hyper-parameterized, heuristic data
pre-processing and visualization in current RNA velocity workflows is useful for developing more
reliable analyses.
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1.2 Goals and findings

To fully describe what RNA velocity does, why it may fail, and how it can be improved, requires
work on several fronts:

In Section 2, we describe an idealized “standard” RNA velocity workflow. We introduce the bio-
physical foundations presented in the original publication, outline the methodological choices im-
plemented in the software packages, and enumerate the tunable hyperparameters left to the user.

In Section 3, we probe the logic of the assumptions made in the workflow and describe potential
failure points. This analysis revisits the outline through complementary critical lenses, adapted to
the mechanistic and phenomenological steps. To characterize its biological coherence, we compare
the concrete and implicit biophysical models to those standard in the field of fluorescence tran-
scriptomics, and discuss the implications of assumptions that do not appear to be backed by a
biophysical or mathematical argument. To characterize its stability, we test the quantitative effects
of tuning hyperparameters and using different software implementations on real datasets.

Our findings on RNA velocity have implications for other scRNA-seq analyses. On one hand, the
theory behind RNA velocity is not sufficiently robust. The models disagree with known biophysics:
they do not recapitulate bursty production, and place needlessly restrictive constraints on regulatory
trends. They are also internally inconsistent, as they do not preserve cell identities. Furthermore,
the embedding processes are ad hoc and heavily rely on error cancellation, apparently discarding
much of the data in the process. These problems are intrinsic, and derived methods inherit them.

Fortunately, better options, inspired by fluorescence transcriptomics models, are available. In
order to develop a meaningful foundation for RNA velocity, we formalize its stochastic model and
describe an inferential procedure that can be internally coherent and consistent with transcriptional
biophysics. Furthermore, by examining the assumptions underpinning RNA velocity and reframing
them in terms of stochastic dynamics, we find that the velocyto and scVelo procedures naturally
emerge as approximations to our solutions. Our approach, presented in Section 4, provides an
alternative to current trajectory inference methods: instead of using physically uninterpretable
adjacency metrics and fitting a narrow set of topologies, it is relatively straightforward to solve
any combination of transient or stationary topologies and apply standard Bayesian methods to
identify the best fit. Conceptually, instead of “denoising” data, our approach proposes fitting the
molecule distributions and preserving the uncertainty inherent in noisy biological and experimental
processes.

2 Workflow and implementations

We begin with a conceptual overview of an idealized RNA velocity workflow, with a description
of implementation-specific choices. We focus on datasets with cell barcodes and UMIs, such as
those generated by the 10x Genomics Chromium platform [60], as they provide the most natural
comparison to discrete stochastic models later in the discussion (Section 4.2). We summarize the
workflow in Fig. 2, giving particular attention to the parameter choices required at each step.
To clarify the information transfer in the process, we report the manipulations performed and the
variables defined in a single run of the processing workflow in Fig. S2 (as used to generate Fig. 4
of [1]).
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Figure 2: An RNA velocity workflow, beginning with read processing and ending with two-
dimensional projection, and the parameters that must be specified by the user.

2.1 Pre-processing

RNA velocity analysis begins by processing raw sequencing data to distinguish spliced and unspliced
molecules. This is a genomic alignment problem. For example, reads aligning to intronic references
are assigned to unspliced molecules, whereas reads spanning exon-exon splice junctions are assigned
to spliced molecules. Data from reads associated with a single UMI are combined to generate an
label of “spliced,” “unspliced,” or “ambiguous” for each read. “Ambiguous” reads are omitted from
downstream analysis, so the assignments are effectively binary.

Until recently, traditional alignment and UMI counting software, such as Cell Ranger from 10x
Genomics, discarded intronic information [60]. The same was true of pseudoalignment methods,
as they identify transcript classes consisting of annotated, and presumably terminal, isoforms [61].
The explicit quantification of transient intron-containing molecules appears to have been introduced
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in the velocyto command-line interface [1]. Since then, existing workflows have added functionality
for unspliced transcript quantification [28]. In particular, alignment can be performed via STAR-
solo [62] and dropEst [63], whereas pseudoalignment can be performed via kallisto|bustools [29] or
salmon [28]. Benchmarking has shown discrepancies between the outputs of these workflows [28,29],
apparently due to differences in filtering, thresholding, and counting ambiguous reads. However,
there is currently little principled reason to prefer one program’s results to another, as quantification
rules largely follow velocyto, and assume a two-species model is sufficient.

2.2 Count processing

The raw count data are processed to smooth out noise contributions that can skew the downstream
analysis. This step is generally combined with the standard quality control techniques for scRNA-
seq [36]. First, cells with extremely low expression are filtered out. Then, a subset of several
thousand genes with the highest expression and variation are selected. The counts are normalized
by the number of cell UMIs to counteract technical and cell size effects. At this point, the PCA
projection is computed from log-transformed spliced RNA counts. Finally, the normalized counts
are smoothed out by nearest-neighbor pooling. To accomplish this, the algorithm computes the k
nearest cell neighbors in a PCA space for each cell, then replaces the abundance with the neighbors’
average. This step is crucial, as it produces the cyclic or near-cyclic “phase portraits” used in the
inference procedure.

The implementation specifics vary even between the two most popular packages, the Python versions
of velocyto and scVelo. For example, there appears to be no consensus on the appropriate k or
neighborhood definition for imputation. The original publication reports k between 5 and 550,
calculated using Euclidean distance in 5-19 top PC dimensions [1]. By default, scVelo uses k = 30
in the top 30 PC dimensions [3].

2.3 Inference

The normalized and smoothed count matrices are fit to a biophysical model of transcription. The
model structure for a single gene is outlined in Figure 3a. α(t) is a transcription rate, which has
pulse-like behavior over the course of the trajectory. The constant parameters are β, the splicing
rate, and γ, the degradation rate. Driving by α(t) induces continuous trajectories µu(t) and µs(t),
which informally represent instantaneous averages, µ, of the unspliced, u, and spliced, s, species,
governed by the following ordinary differential equations (ODEs):

dµu(t)

dt
= α(t)− βµu(t),

dµs(t)

dt
= βµu(t)− γµs(t).

(1)

The qualitative behaviors of these functions are shown in Figure 3b. By fitting smoothed count
data for a single gene, now interpreted as samples from a dynamical phase portrait governed by
Equation 1 (Figure 3c), it is possible to estimate the ratio γ/β. Finally, with this ratio in hand,
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Figure 3: a. The continuous model of transcription, splicing, and degradation used for RNA velocity
analysis. b. Plots of α(t), µu(t), and µs(t) over time t and the corresponding governing equations
for the system. Dashed lines indicate time of transcription event. c. Outline of the common phase
portrait representation, with both steady state and dynamical models denoted. Adapted from [1]

the velocity vi may be computed for each cell i:

vi :=
∆si
∆t

= (βui − γsi) ∝ ui −
γ

β
si, (2)

where si and ui are cell-specific counts, ∆t is an arbitrary small time increment, and ∆si is the
change in spliced counts achieved over that increment.

The popular packages differ on the appropriate way to fit the rate parameters. The velocyto
procedure presupposes that the system reaches equilibria at the low- and high-expression states
of α(t), and approximates them by the extreme quantiles of the phase plots. By computing the
slope of a linear fit to these quantiles, it obtains the parameter γ/β (Fig. 3c). On the other
hand, scVelo relaxes the assumption of equilibrium and implements a “dynamical” model, which
fits the solution of Equation 1 to the entire phase portrait to obtain γ and β separately. This
methodological difference corresponds to conceptual differences in the interpretation of imputed
data. In velocyto, imputation appears to be an ad hoc procedure for filtering technical effects,
in line with the usual usage [64, 65]. On the other hand, in scVelo, the imputed data are called
“moments” and treated as identical to the instantaneous averages µu(t) and µs(t) of the process.
In addition, scVelo offers a “stochastic” model, which posits pooled second moments are equivalent
to the instantaneous second moments (e.g., the sum of s2 over neighbors is equal to σ2

s(t) + µ2
s(t)).

The genes are analyzed independently, generating a velocity vij for each cell i and gene j. As the
velocyto procedure cannot separately fit βj and γj , its velocities have different units for different
genes. On the other hand, the scVelo procedure does separately fit the rate parameters, albeit by
assigning a latent time tij to each cell, distinct for each gene’s fit.

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.12.480214doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.12.480214
http://creativecommons.org/licenses/by/4.0/


2.4 Embedding

Low-dimensional representations are generated using one of the conventional algorithms, such as
PCA, t-SNE, or UMAP. These algorithms can be conceptualized as functions that map from a
high-dimensional vector si to a low-dimensional vector E(si). The original publication offers two
methods to convert cell’s velocity vector vi to a low-dimensional representation [1].

If the embedding is deterministic (e.g., E is PCA on log-transformed counts), one can define a source
point E(si), compute a destination point E(si + vi∆t) = E(si + ∆si), and take the difference of
these two low-dimensional vectors to obtain a local vector displacement:

Vi = ∆E(si) = E(si + ∆si)− E(si). (3)

This displacement is then interpreted as a scalar multiple of the cell-specific embedded velocity.

If the embedding is non-deterministic, one can apply an ad hoc nonlinear procedure. This procedure
essentially computes an expected embedded vector by weighting the directions to k embedding
neighbors; neighbors that align with ∆si are considered likely destinations for cell state transitions
in the near future:

Vi =
k∑
q=1

(E(sq)− E(si))w(sq − si,∆si), (4)

where w is a composition of the softmax operator (with a tunable kernel width parameter) with
a measure of concordance between the arguments. Once an average direction is computed, it
undergoes a set of corrections, e.g., to remove bias toward high-density regions in the embedded
space. Finally, the cell-specific embedded vectors are aggregated to find the average direction over
a region of the low-dimensional projection.

The packages almost exclusively use the nonlinear embedding procedure. There is no consensus
on the appropriate choice of embedding, number of neighbors, or measure of concordance. PCA,
t-SNE, and UMAP have been used to generate low-dimensional visualizations [1, 3]. The original
publication uses k between 5 and 300 and applies square-root or logarithmic transformations prior
to computing the Pearson correlation between the velocity and neighbor directions [1]. In contrast,
scVelo uses a recursive neighbor search by averaging over neighbors and neighbors of neighbors
(with k = 30), and implements several variants of cosine similarity [3]. An optional step adjusts
the embedded velocities by subtracting a randomized control; this correction is usually omitted in
demonstrations of velocyto and implemented but apparently undocumented in scVelo.

As demonstrated in Figure 2, the linear PCA embedding is the simplest dimensionality reduction
technique; it consists of a projection and requires fewer parameter choices than other methods.
However, it is only consistently used in Revelio [11]. The velocyto package does not appear to
have a native implementation of this procedure, although it is briefly demonstrated in the original
article (Fig. 2d and SN2 Figs. 8–9 of [1]). On the other hand, scVelo does implement the PCA
velocity projection, but disclaims the results of using it as unrepresentative of the high-dimensional
dynamics.
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3 Logic and methodology

To understand the implications of the choices implemented in various RNA velocity workflows, we
examined the procedures from a biophysics perspective, with a view towards understanding the
mechanistic and statistical meaning of methods implemented. In this section, we broadly discuss
potential challenges, problematic assumptions, and contradictory results. In the following section,
we draw on lessons learned and propose a modeling approach of our own.

3.1 Pre-processing

As outlined in Section 2.1, several workflows are available for converting raw reads to molecule
counts. These workflows largely follow the logic set out in the original implementation [1]; how-
ever, as pointed out by Soneson et al. [28], they produce different outputs from the same data.
We reproduced their analysis on a broader selection of datasets (Section 6.9) in Figure S3, accord-
ing to the procedure in Section 6.1. The performance was broadly consistent with the previous
benchmarking and the description in Section 2.1: the methods agreed on the definition of “spliced”
molecules, but different rules for the assignment of “unspliced” molecules led to discrepancies in
counts. These discrepancies were particularly pronounced when comparing datasets one gene at
a time, likely due to noise in tens of thousands of low-expressed genes (ρ by cell in Figure S3; cf.
lower triangle of Fig. S10 in [28]).

However, a simple comparison between the software outputs obscures a far more fundamental
challenge: the binary classification of transcripts as either spliced or unspliced is necessarily incom-
plete. The average human transcript has 4–7 introns [66], and a combinatorial number of potential
transient and terminal isoforms. The vast majority of genes are alternatively spliced [67–69].

Figure 4: A two-intron mRNA species may not have well-defined “unspliced” and “spliced” forms.

We can consider the hypothetical example of a nascent transcript with the structure E1I1E2I2E3,
where Ii are introns and Ei are exons, as shown in Figure 4. If we place all UMIs with intronic
reads into the “unspliced” category, we conflate the parent and intermediate transcripts. On the
other hand, if we place all UMIs with splice junctions into the “spliced” category, we conflate
the intermediate and terminal transcripts. Adding more complexity, some isoforms may retain
introns through alternative splicing mechanisms; for example, the intermediate transcripts may be
exported, translated, and degraded alongside the terminal.

The binary model is not large enough to include the diversity of possible splicing dynamics, but ap-
proximately holds under fairly restrictive conditions: the predominance of a single terminal isoform,
as well as the existence of a single rate-limiting step in the splicing process. Previous work reports
that minor isoforms are non-negligible [67,69], differential isoform expression is physiologically sig-
nificant [69–71], and intron retention in particular is implicated in regulation and pathology [72–75].
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Splicing rate data are more challenging to obtain, but targeted experiments [76], genome-wide imag-
ing [77], and our preliminary mechanistic investigations [78] suggest that selection and removal of
individual introns is stochastic, but the overall splicing process has rather complex kinetics, not
reducible to a single step.

3.2 RNA velocity biophysics

We will first inspect the complexity obscured by the simple schema given in Figure 3a. The velocity
manuscripts use several distinct models for the transcription rate α(t). Furthermore, the amounts
of molecular species U and S (previously denoted informally by u and s) have incompatible inter-
pretations. The following models make fundamentally different claims about the data-generating
process and imply fundamentally different inference procedures.

1. α(t) is piecewise constant over a finite time horizon; u and s are discrete (SN2 pp. 2-3, Fig.
1a-b of [1]).

2. α(t) is continuous and periodic; u and s are discrete (SN2 pp. 2-3, Fig. 1e of [1]).

3. α, β, and γ all smoothly vary over a finite time horizon according to an undisclosed function,
with α exhibiting pulse behavior; u and s are discrete (SN2 Fig. 5 of [1]).

4. α, β, and γ all smoothly vary over a finite time horizon according to an arbitrary function; u
and s are continuous (Fig. 3 of [22]).

5. α(t) is piecewise constant over a finite time horizon; u and s are continuous (Fig. 1 of [1],
Methods of [3]).

6. α(t) is piecewise constant over a finite time horizon; u and s are continuous-valued but may
contain discontinuities (Methods of [3]).

7. α is constant; u and s are continuous (Fig. 1b and SN1 pp. 1-2 of [1]). This formulation
yields the reaction rate equation, and cannot produce the bimodal phase plots of interest.

8. α is constant; u and s are discrete (SN1 pp. 2-3 of [1]). This is the stochastic extension [79]
of the previous model, and cannot produce the bimodal phase plots of interest, as explicitly
shown on page 3 of SN1 in [1].

These discrepancies make a comprehensive analysis challenging. Models 7-8 do not contain differ-
entiation dynamics. Certain models are contrived; models 3-4 propose transcription rate variation
without motivating the specific form, and model 6 introduces nonphysical discontinuities. Model
2 alludes to limit cycles in stochastic systems under periodic driving, an intriguing phenomenon in
its own right [80, 81], but not otherwise explored in the scVelo and velocyto publications. For the
rest of this report, we focus on the discrete formulation (model 1) and its continuous analog (model
5).

For the discrete formulation, the RNA velocity v should be interpreted as the time derivative of
the expectation of a random variable St that tracks the number of spliced RNA, conditional on the
current state:

v = ∂tE[St|S0 = s, U0 = u]|t=0 = βu− γs. (5)
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For the continuous formulation, it should be interpreted as the time derivative of the deterministic
variable st that tracks the amount of spliced RNA, initialized at the current state:

v = ∂tst|t=0 [such that s0 = s, u0 = u]

= βu− γs.
(6)

These formulations happen to be mathematically identical, which creates ambiguity. Nevertheless,
both are legitimate, if narrow, statements about the near future of a process initialized at a state
with u unspliced and s spliced molecules. The questions that arise immediately before, and imme-
diately after, the velocity computation procedure, are (1) what generative model should be fit to
obtain β and γ and (2) even with a v, how much use can one make of it?

3.3 Model definition

Continuous, deterministic models are fundamentally inappropriate in the low-copy number regime,
which is predominant across the transcriptome [82–84]. Although continuous equations such as
Equation 1 can represent the evolution of moments, they are insufficient for inference, as fitting
average mRNA abundance amounts to invoking the central limit theorem for a very small, strictly
positive quantity [85–89]. A comprehensive understanding of the stochastic noise model is necessary
prior to making such approximations. Therefore, simulation methods that use a continuous model
are immediately suspect [16]. We describe implementation-specific concerns in Sections 3.4 and
3.5.

The motivation behind a pulse model of transcriptional regulation is obscure. Although dynamic
processes certainly have transiently expressed genes [90–92, 92, 93], it is far from clear that this
model applies across the transcriptome, to thousands of potentially irrelevant genes. Indeed, it is
not even coherent with genes showcased in the original report (Fig. 4d and Extended Data Fig.
8b of [1]): only ELAVL4 appears to show a symmetric pulse of expression. Finally, even when
this model does apply, the assumption of constant splicing and degradation rates across the entire
lineage is a potentially severe source of error, with no simple way to diagnose it [22].

Most problematic is that even the discrete model is incoherent with known mammalian tran-
scriptional dynamics. If we suppose induction and repression periods are relatively long, as for a
stationary, terminal, or unregulated cell population, we arrive at genome-wide constitutive tran-
scription, in which the rate of RNA production is constant. This contradicts numerous sources
that suggest transcriptional activity varies with time even in stationary cells [87, 94–101], and is
effectively described by a telegraph model that stochastically switches between active and inactive
states [102,103].

Thus, we must impose basic consistency criteria. Using the models in Section 3.3 requires the
assumption that stationary, homogeneous cell populations are Poisson-distributed. This assumption
contradicts at least thirty years of evidence for widespread bursty transcription [95,103]. We have
obtained the answer to question (1) in Section 3.2: the model must be coherent with known
biophysics, and provide a robust way to identify cases when its assumptions fail.

3.4 Count processing

Some standard properties of constitutive systems appear to at least qualitatively motivate gene
filtering. Only genes with spliced–unspliced Pearson correlation above 0.05 are used for fitting

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.12.480214doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.12.480214
http://creativecommons.org/licenses/by/4.0/


parameters (as on p. 4 of SN2 in [1]); if the correlation is below this threshold, the gene is
removed from procedure and presumed stationary. This is valid for the constitutive model, but
inappropriate for broader model classes: for example, bursty transcription yields strictly positive
correlations, making this statistic ineffective for identifying dynamics [78,104].

Normalization relative to the cell’s molecular count is a standard feature of sequencing workflows
[36, 105, 106], but reduces interpretability. Normalization converts absolute discrete count data
to a proportion of the total cellular counts, ostensibly to account for the compositional nature of
read-data data [107]. Several recent studies strongly discourage normalization of UMI-based counts
[108, 109], although this perspective is not universal [110, 111]. It is clear that continuous-valued
normalized data are incompatible with discrete mechanistic models. Moreover, the suitability of
continuous models (such as Equation 1) is never explicitly justified, but merely assumed. Since
normalization nonlinearly transforms the molecule distributions [65,109] and introduces a coupling
even between independent genes, the precise interpretation of single-gene ODE models is unclear.

Nearest-neighbor averaging is used to smooth the data after normalization. Though it effaces
much of the stochastic noise to give an “averaged” trajectory, it introduces distortions of unknown
magnitude. As discussed in Section 2.3, the imputation step does not have a consistent interpre-
tation. The original report [1] defines it as “kNN pooling” in the manuscript and “imputation”
in the documentation (and figure 17 of SN2), placing the emphasis on denoising. On the other
hand, scVelo interprets the local average as an estimate of the expectations µu(t), µs(t). Neither
approach appears to be justified by previous studies or benchmarking on ground truth, and both
are circular as the neighborhood is computed based on the observed counts. A probabilistic analy-
sis in Section S1.1 formalizes more deep-seated issues with using model-agnostic point estimates to
“correct” data. Although these claims may hold and simply require more theoretical work to prove,
our simulations in Section 4.3 strongly suggest they are invalid even in the best-case scenario: the
phase portraits are smoothed out, but fail to capture the underlying dynamics in a way coherent
with those claims.

To illustrate these problems, we performed a simple test of self-consistency, illustrated in Figure
5. We reprocessed the forebrain dataset (Fig. 4 of [1]) using the velocyto workflow, varying k, and
investigated its effect on the appearance of the phase plots and the inferred parameters. As the
neighborhood size was increased, the phase plot was distorted, with no apparent “optimal” choice
of k.

3.5 Inference

Broadly speaking, velocyto-like moment estimates for γ/β are legitimate if the system has time
to equilibrate (Section 4.2). However, moment-based estimation underperforms maximum likeli-
hood estimation in general. The two approaches are in concordance under the highly restrictive
assumptions of error normality and homoscedasticity. These assumptions are routinely violated in
the low-copy number regime [85].

Regression on top and bottom quantiles inherits all of the issues of regression on the entire dataset,
but compounds them by discarding a large fraction of data. Extremal quantile regression is oth-
erwise a well-developed method [112–115], but it is generally applied to processes with nontrivial
tail effects. For the quantile computation the filtering criterion is ad hoc, and not amenable to
theoretical investigation. The order statistics of discrete distributions are notoriously challenging

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.12.480214doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.12.480214
http://creativecommons.org/licenses/by/4.0/


Figure 5: Distortions in data and instabilities in the inferred γ/β values introduced by the imputa-
tion procedure on the forebrain data from [1]. Column 1: Raw data (points: spliced and unspliced
counts with added jitter; color: cell type, as in Figure 1; line: best fit line u = γs/β + q, esti-
mated from the entire dataset). Columns 2-4: Normalized and imputed data under various values
of k (points: spliced and unspliced counts; color: cell type, as in Figure 1; line: best linear fit
u = γs/β+ q, estimated from extreme quantiles). Column 5: Inferred values of γ/β (red, left axis)
and inferred fraction of upregulated cells, defined as

∑
i ui − (γsi/β + q) > 0 (blue, right axis).

to compute [116–118], and even the simplest Poisson case exhibits complex trends [119]. In other
words, the extrema themselves may be affected by noise, introducing more uncertainty into infer-
ence. Although the original article does perform some validation (SN2, Sec. 3 of [1]), it focuses on
cell-specific velocities rather than parameter values, and only provides relative performance metrics
rather than actual comparisons to simulated ground truth.

Even without testing the inference procedures against simulations, we can characterize their per-
formance in terms of internal controls. As we demonstrate in Figure 5, the inferred γ/β values
were unstable under varying k: the velocyto parameter inference procedure was highly sensitive to
a user-defined neighborhood hyperparameter. On the other hand, using a simple ratio of the means
(as in the first column and the k = 0 case in the fifth column of Figure 5) produced biases [1].

Interestingly, the fraction of cells predicted to be upregulated is qualitatively more stable, suggesting
that the inference step is best understood as an ad hoc binary classifier, rather than a quantitative
descriptor of system state. Given the stability of this classifier, as well as our preliminary discussion
of similar results in the context of validating protaccel [4], we used this binary classifier as a
benchmark in Sections 3.6 and 4.10.
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Regression of the piecewise deterministic “dynamical” model in scVelo asserts the imputed counts
have normal noise with equal residuals for spliced and unspliced species, once again implausible in
the low-copy number regime. More fundamentally, it fails to preserve gene-gene coherence. If a
cell is predicted to lie at the beginning of a trajectory for one gene, this estimate does not inform
fitting for any other gene. The “dynamical” model appears to address this discrepancy in a post
hoc fashion. First, the algorithm identifies putative “root cells,” which are themselves computed
from the velocity embedding. Then, the disparate gene-specific times are aggregated into one by
computing a quantile near the median. This procedure presupposes that the velocity graph is self-
consistent and physically meaningful, and that the point estimate of pseudotime is sufficient, but
does not mathematically prove these points or test them by simulation.

3.6 Embedding

After inference and evaluation of ∆s for every cell and gene, the array is converted to an embedding-
specific representation. In the single-cell sequencing field, low-dimensional projections are more
than a visualization method: they are ubiquitous tools for inference and discovery. Transcriptomics
workflows convert large data arrays to human-parsable visuals; these visuals are then used to explore
gene expression and validate cell type relationships, under the assumption that they represent the
underlying data well enough to draw conclusions. However, the embedding procedures involve
several distortive steps, which should be recognized and questioned.

For such visuals, the goal is to recapitulate local and global cell-cell relationships. However, ac-
curately representing desired properties such as pairwise relationships between many points is
inherently difficult, requiring dimensions several orders of magnitudes larger than two to faith-
fully represent the data [120]. Thus distortion of cell-cell relationships is naturally induced in
two-dimensional embeddings, and grows as O(

√
M) for M cells [120, 121]. Both linear (PCA)

and nonlinear (t-SNE/UMAP) methods exhibit these distortions, and warp existing cell-cell re-
lationships or suggest new ones not present in the underlying data [120, 122]. Tuning algorithm
parameters can slightly improve some distortion metrics, though often at the expense of others [123].
Essentially, nonlinear embeddings utilize sensitive hyperparameters that can be tuned, but do not
provide well-defined criteria for an “optimal” choice [122, 123]. Using visualizations for discovery
thus risks confirmation bias.

The velocity algorithms present a particularly natural criterion for quantifying the embedding
distortion. The nonlinear embedding procedure generates weights for vectors defined with reference
to embedding neighbors. Therefore, we can reasonably investigate the effect of the embedding on
the neighborhood definitions. In other words, if the velocity arrows quantify the probability of
transitioning to a set of cells, what relationship does this set have to the set of neighbors in the
pre-embedded data?

This relationship is conventionally [122] quantified by the Jaccard distance, defined by the following
formula:

dJ =
|A ∪B| − |A ∩B|

|A ∪B|
, (7)

which reports the normalized overlap between the original sets of cell neighbors (A) and embedded
cell sets (B). This dissimilarity metric ranges from 0 to 1, where 1 (or 100%) denotes completely
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non-overlapping sets. We applied standard steps of dimensionality reduction and smoothing to
the forebrain dataset (Fig. 4 of [1]) and computed their effect on the neighborhoods (taken to be
k = 150 for consistency with the velocity embedding process). We report the Jaccard distance
distributions in Figure 6, and observe the gradual degradation of neighborhoods. On average,
moving from the ambient high-dimensional space to a two-dimensional representation induced a dJ
of 70-75%. Therefore, cell embedding substantially distorts precisely the local structure relevant to
velocity embedding.

Figure 6: Normalization followed by two rounds of dimensionality reduction introduce distortions
in the local neighborhoods. a.–d. Histograms of Jaccard distances between intermediate embed-
dings. e. Empirical cumulative distribution functions of Jaccard distances between intermediate
embeddings, as well as the overall distortion (Ambient vs. PCA 2 and Ambient vs. tSNE 2).

The two-dimensional arrows in Figure 1 combine three sources of error: the intrinsic information
loss of low-dimensional projections, the instabilities in upstream processing and inference, and
any additional error incurred by the nonlinear procedure outlined in Section 2.4. The softmax
kernel-based procedure exhibits an inherent tension that merits closer inspection. On one hand, it
is explicitly designed [1] to mitigate error incurred by cell- and gene-specific noise by performing
several steps of pooling and smoothing. On the other hand, it is technically questionable: if we
assume differentiation processes are largely governed by a small set of “marker genes,” pooling
them with thousands of non-marker genes amounts to hoping that variation in an orthogonal
data-generating process cancels out well enough to recapture latent dynamics. Certain processes
may involve the modulation of large sets of genes, e.g., if expression overall increases over the
transcriptome. However, the velocity workflows are intrinsically unable to identify such trends,
as they use normalized data. As we demonstrate later, a model with no latent dynamics at all
(Figure S6) can generate apparent signal in the embedded space, illustrating the dangers of relying
on error cancellation. When multiple data-generating processes are present, näıve aggregation risks
obscuring rather than revealing signal.

Aside from this high-level inconsistency, other problems emerge upon investigating the embedding
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procedure closer, even prior to performing any numerical controls. The nonlinear embedding ap-
proach introduced by La Manno et al. (Equation 4) is highly hyperparametrized, not motivated
by any previous theory, has no physical interpretation, and does not appear to have been formally
validated against linear or simulated ground truth. Just as with the cell embedding, the procedure
is dependent on an arbitrary number of nearest neighbors and velocity transformation functions,
with no clearly optimal choices. These hyperparameters can be tuned to correct for such instabili-
ties, potentially resulting in overfitting to a pre-determined hypothesis. Since the procedure has no
physical basis, potential false discoveries are challenging to diagnose. Furthermore, it reduces the
limited biophysical interpretability of the result. The velocity derivation is model-informed and,
as discussed in Sections 4.2 and 4.4, can be informally viewed as an approximation under several
strong assumptions about the process biophysics. The embedding, on the other hand, is ad hoc
and can only degrade the information content.

A final theoretical point remains before we can begin quantitatively validating the embeddings: as
suggested by Equation 2, and discussed in Section 2.3, the velocyto gene-specific vj have different
units. Therefore, the aggregation in Equation 4 is questionable. The standard velocyto workflow
assumes that the splicing rates are close enough to neglect differences, which appears to contradict
other results reported in the same paper (Extended Data Fig. 2f of [1]).

To bypass this limitation in a self-consistent way, we implemented a “Boolean” or binary measure
of velocity, as motivated by validation in the original manuscript (Sec. 3 in SN2 of [1]), intro-
duced in the context of validating protaccel [4], and implied by resampling β values from a uniform
distribution in an investigation of latent landscapes (p. 3 in Supplementary Methods of [13]).
Essentially, instead of computing transition probabilities based on the velocity values, we com-
puted them based on signs, bypassing the unit inconsistency. The algorithm used to produce this
embedding is described in Section 6.8.

The Boolean procedure offers a natural internal benchmark. If this approach largely recapitulates
findings from the standard methods, the embedding process serves as an information bottleneck: the
inference procedure performs as well as a binary classifier, and the complexities of the dynamics
are effaced by embedding. We used this approach as a trivial baseline and compared it to the
standard suite of variance-stabilizing transformations implemented in velocyto. In addition, we
tested the effects of neighborhood sizes, in the vein of the stability analysis performed in the original
manuscript (Sec. 11 in SN2 of [1]). In Figure S4, we plot the distributions of angle deviations
between a linear baseline, obtained by projecting the extrapolated cell state and computing E(si +
∆si) − E(si) using PCA, and the nonlinear velocity embedding. This control has not previously
been investigated in any detail, but seems key to the claim that the nonlinear velocity embedding
is meaningful: intuitively, we expect it to recapitulate the simplest baseline, at least on average.
To avoid any confusion, we reiterate that the linear embedding is given by Equation 3, and not the
identity nonlinear embedding implemented in velocyto (i.e., %(x) = x in SN1, pp. 9-10 of [1]).

The angle deviations in arrow directions were all severely biased relative to the linear baseline.
The different normalization methods were distortive to approximately the same degree. The per-
formance of the Boolean embedding, which discards nearly all of the quantitative information, was
nearly identical to the built-in methods, which suggests that the choice of normalization methods is
a red herring: quantitative velocity magnitudes have little effect on the embedding quality. This is
consistent with previous investigations (cf. Fig. S52 in [4]). On the other hand, the neighborhood
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sizes did not appear to matter much, at least over the modest range explored here (in contrast
to Sec. 11 in SN2 of [1]). Therefore, the directions reported in embeddings were unrepresentative
of the actual velocity magnitudes in high-dimensional space, as well as severely distorted relative
to the linear projection. These discrepancies are a potential cause for concern. Observing the
qualitative similarity of Figs. 2d and 2h in the original report [1], the reasonable performance of
the linear extrapolation in t-SNE in its supplement (SN2 Fig. 9a of [1]), as well as the cell cycle
dynamics explored with the linear embedding in Revelio [11], a casual reading of the RNA velocity
literature would suppose these embeddings to be largely interchangeable.

Finally, we visualized the aggregated velocity vectors in Figure 7 to assess the local and global
structures. This visualization served as both an internal and an external control. The internal
control demonstrated the local structure and the stability of the velocity-specific methods, i.e., the
actual directions of the arrows on the grid. We compared the conventional nonlinear projection
to the Boolean method, as well as the linear embedding. The external control concerned the
global structure, which can be analyzed in light of known physiological relationships: radial glia
differentiate through neuroblasts into neurons [1]. If this global relationship is not captured by
the embedding, the inferred trajectories are a priori physically uninterpretable, in a way that is
particularly challenging to diagnose.

In the PCA embedding, the global structure was retained and the arrows were fairly robust, even
when the non-quantitative Boolean method was used. However, the various projection options
suggested drastically different relationships between the cell types, with PCA presenting more
continuous representations of cell relationships faithful to ground truth, and UMAP and t-SNE
presenting more local images, with distinct and discrete clusters of cells. Clearly, if the relationship
between progenitor and descendant is lost, the velocity workflow cannot infer it. The t-SNE and
UMAP parameters can be adjusted by the user; however, adding a new set of tuning steps and
optimizations provides an opportunity for confirmation bias to overrule the data.

3.7 Summary

The standard RNA velocity framework presupposes that the evolution of every gene’s transcrip-
tional activity throughout a differentiation or cycling process can be described by a continuous
model with a single upregulation event and a single downregulation event. It proceeds to nor-
malize and smooth the data until the rough edges of single-molecule noise are filed off, fitting the
continuous model assuming Gaussian residuals.

In the process, the stochastic dynamics that predominate in the low-copy number regime, and
characterize nearly all of mammalian transcription, are lost and cannot be recovered. Although
parameters can be fit, they are distorted to an unknown extent, due to a combination of data
transformation, suboptimal inference, and unit incompatibilities. The gene-specific components
of velocity are underspecified due to their direct dependence on the imputation neighborhood
and splicing timescale. In scVelo, parameters are estimated under a highly restrictive model,
yet applied to make broad claims about complex topologies. In velocyto, only the sign of the
velocity is physically interpretable. It can still be used to calculate low-dimensional directions, and
this binary velocity embedding is seemingly as good as any other, suggesting the other methods
lose information. However, the embedding process itself is not based on biophysics, and is not
guaranteed to be stable or robust. Fortunately, the natural match between stochastic models and
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Figure 7: Performance of cell and velocity embeddings on the forebrain data. Top: PCA embedding
with linear baseline and nonlinear aggregated velocity directions. Bottom: UMAP and t-SNE
embeddings with nonlinear velocity projections.
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UMI-aided molecule counting offers the hope for quantitative and interpretable RNA velocity.

4 Prospects and solutions

Is there no balm in Gilead? Given the foundational issues we have raised, how can the RNA
velocity framework be reformulated to provide meaningful, biophysically interpretable insights?
We propose that discrete Markov modeling can directly and naturally address the fundamental
issues. In particular, transient and stationary physiological models can be defined and solved via the
chemical master equation (CME), which describes the time evolution of a discrete stochastic process.
Since the “noise” is the data of interest, in such an approach smoothing is not required. Rather,
technical and extrinsic noise sources can be treated as stochastic processes in their own right, and
explicit modeling of them can improve the understanding of batch and heterogeneity effects. Finally,
within this framework, parameters can be inferred using standard and well-developed statistical
machinery.

4.1 Pre-processing

The diversity of potential intermediate and terminal transcripts suggests that simplistic splicing
models are inadequate for physiologically faithful descriptions of transcription dynamics. What
is needed is a treatment of the types of transcripts listed in Section 3.1 as distinct species. This
approach immediately leads to several significant challenges, relating to quantification, biophysics,
and identifiability.

Transient, low-abundance intermediate transcripts are substantially less characterized than coding
isoforms. Some data are available from fluorescence transcriptomics with intron-targeted probes
[46], but such imaging is impractical on a genome-wide scale. Unfortunately, the references and
computational infrastructure necessary to identify intermediate transcripts do not yet exist.

Even if intermediate isoforms could be perfectly quantified, single-cell RNA-seq data do not gen-
erally contain enough information to identify the order of intron splicing. The problem of splicing
network inference has been examined; however, experimental approaches [124, 125] are challeng-
ing to scale, whereas computational approaches [126] do not generally have enough information to
resolve ambiguities.

Furthermore, even with complete annotations and a well-characterized splicing graph at hand,
large-scale short-read sequencing cannot fully resolve transcripts. This limitation gives rise to a
challenging inference problem. For example, if transcripts A := E1I1E2I2E3 and B := E1E2I2E3

are indistinguishable whenever only the 3’ end of each molecule is sequenced, it is necessary to fit
parameters through the random variable XA+XB, i.e., from aggregated data. The functional form
of this random variable is not analytically tractable in general.

We have described a preliminary method that can partially bypass these problems [78]. Sequencing
“long” reads, which at this time is possible with technologies such as Oxford Nanopore [69], or
sequencing of “full-length” libraries produced with methods such as Smart-seq3 [127], enhances
identifiability and facilitates the construction of new annotations based on presence or absence
of intron sequences. Finally, even though additional data are required to specify entire splicing
networks, sequencing data are sufficient to constrain parts of these networks; for example, if two
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transcripts differ by one intron, the longer one cannot possibly be generated from the shorter.

Defining more species leads to inferential challenges in downstream analysis. Even if sequencing
data are available, their relationship to the biological counts is nontrivial: some intermediate tran-
scripts may not be observable using certain technologies because they do not contain sequences
necessary to initiate reverse priming, whereas others may be over-represented in the data because
they contain many. In a preliminary investigation [128], which adopts the binary categories of
“spliced” and “unspliced” defined in the original RNA velocity publication, we found that unspliced
molecules originating from long genes are overrepresented in short-read sequencing datasets. This
suggests that multiple priming occurs at intronic poly(A) sequences. To “regress out” this effect,
a simple length-based proxy for the number of poly(A) stretches can be used, but a more granular
description would require a sequence-based kinetic model for each intermediate transcript’s capture
rate.

4.2 Occupation measures provide a theoretical framework for scRNA-seq

The data simulated in the exposition of RNA velocity [1] comes from a particular set of what are
called Markov chain occupation measures. As an illustration of what this means, we consider the
simplest, univariate model of transcription, a classical birth-death process:

∅ α−→ X β−→ ∅, (8)

where α is a constant transcription rate and β is a constant efflux rate. Depending on the system,
β may have various biophysical interpretations, such as splicing, degradation, or export from the
nucleus [78,104].

Formally, the exact solution to this system is given by the chemical master equation (CME), an
infinite series of coupled ordinary differential equations that describe the flux of probability between
microstates x, which specify the integer abundance of X , defined on N0:

dP (x, t)

dt
= α[P (x− 1, t)− P (x, t)] + β[(x+ 1)P (x+ 1, t)− xP (x, t)]. (9)

This equation encodes a full characterization of the system: transcription is zeroth-order, efflux is
first-order, and the dynamics are memoryless, i.e., depend only on the state at t. We define the
quantity y, namely the solution to the underlying reaction rate equation that governs the average
of the X copy number distribution:

dy

dt
= α− βy,

⇒ y(t) = y0e
−βt +

α

β

(
1− e−βt

)
,

(10)

where y0 is the average at time t = 0. To simplify the analysis, we assume that the initial condition
is Poisson-distributed. Per classical results [79], the distribution of counts P (x, t) is described by a
Poisson law for all t, and converges to Poisson(α/β) as t→∞. Quantitatively, the time-dependent
distribution is given by P (x, t) ∼ Poisson(y(t)):

P (x, t) =
1

x!
y(t)xe−y(t). (11)
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However, this is not the correct model class for distributions observed in scRNA-seq datasets. To
appreciate these subtleties, we delve into and interrogate assumptions that underpin the use of such
distributions.

The sequencing process does not “know” anything about the transcriptional dynamics and their
time t. This stands in contrast to transcriptomics performed in vitro, with a physically meaningful
experiment start time. For example, in many standard protocols, a stimulus is applied to the cells
at time t = 0, and populations of cells are chemically fixed and profiled at subsequent time points,
potentially up to a nominal equilibrium state [2,33,85,129]. However, if there is no experimentally
imposed timescale, and we adopt the standard assumption that cell dynamics are mutually indepen-
dent, the process time decouples from experiment time. Although cells are sampled simultaneously,
their process times t are draws from a random variable that must be defined.

Formalizing this framework requires introducing the notion of occupation measures. Considering a
single cell, we designate its process time t as a latent pseudotime. Our definition of this term is at
odds with standard use. In brief, “pseudotime” conventionally denotes a one-dimensional coordinate
along a putative cell trajectory, which parameterizes a principal curve in a space based on RNA
counts [36]. In our case, we use this term to denote a real time coordinate, which governs the process
“clock.” This difference is fundamental. The Markov chain pseudotime is physically interpretable
as the progress of a process that induces the observations in expression space. Conversely, the
expression pseudotime is purely phenomenological, and we are unaware of any trajectory inference
methods that explicitly parameterize the underlying stochastic model using the CME; instead, all
available implementations appear to use isotropic or continuous noise models [36,106,130–138]. As
we emphasize in Section 3.3, these models are inappropriate for low-abundance molecular species.

By construction, cell trajectories are observed at times t ∈ R. This requires introducing a sampling
distribution f(t), which describes the probability of observing a cell at a particular underlying
pseudotime. Therefore, the probability of observing x molecules of X in the constitutive case takes
the following form:

P (x) =

∫
P (x, t)df(t) = Ef [P (x, t)], (12)

i.e., the expectation of P (x, t) under the sampling law. P (x) is called the occupation measure of
the process, and reports the probability that a trajectory is observed to be in state x, a slight
generalization of the usual definition [139–141].

Next, we must encode the assumption that cell observations are desynchronized from the sequencing
process and each other. This assumption leads us to a choice consistent with the previous reports
[1, 22], namely df = T−1dt, where [0, T ] is the pseudotime interval observable by the sequencing
process. This constrains the probability of observing state x to be the actual fraction of time the
system spends in that state. Then, we take T →∞, yielding

P (x) = lim
T→∞

1

T

∫ T

0
P (x, t)dt = lim

t→∞
P (x, t), (13)

which is a statement of the ergodic theorem [142]. Under mild conditions, this theorem guarantees
that samples from unsynchronized trajectories converge to the same distribution as the far more
tractable ensembles of synchronized trajectories.
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With this discussion, we have clarified that the application of stationary distributions limt→∞ P (x, t)
to describe ostensibly unsynchronized cells naturally emerges from assumptions about biophysics
and the nature of the sampling process. However, these assumptions may be violated; for example,
RNA velocity describes molecules sampled from a transient process. This distinction is key: limits
such as limt→∞ P (x, t) may not even exist, and we expect to capture only a portion of the trajec-
tory. A rigorous probabilistic model must treat the occupation measure directly, which remains
valid without those assumptions. Formally, this amounts to relaxing the assumption of desyn-
chronization: the sequencing process is time-localized to a particular interval of the underlying
biological process.

To stay consistent, we continue using the sampling law df = T−1dt on [0, T ], but infinite supports
are valid so long as they decay rapidly enough to be integrable. As scRNA-seq data are atemporal,
this time coordinate is unitless and cannot be assigned a scale without prior information, so T can
be defined arbitrarily without loss of generality.

The occupation measure of the birth-death process takes the following form:

P (x) =
1

T

∫ T

0
P (x, t)dt =

1

Tx!

∫ T

0
y(t)xe−y(t)dt. (14)

This integral can be solved exactly; however, this solution does not easily generalize to more complex
systems. Instead, we can consider the probability-generating function (PGF), which also takes a
remarkably simple form:

G(z, t) := E[zX ] =
∞∑
x=0

P (x)zx,

H(z) = Ef [G(z, t)] =

∞∑
x=0

∫
P (x, t)zxdf

=
1

T

∫ T

0

∞∑
x=0

P (x, t)zxdt =
1

T

∫ T

0
G(z, t)dt.

(15)

By linearity, the generating function H(z) of the occupation measure is simply the expectation
of the generating function G(z, t) of the original process with respect to the sampling measure f .
From standard properties of the birth-death process, this yields:

y(t) = (y0 − α/β)e−βt + α/β := ce−βt + α/β,

G(z, t) = e(z−1)y(t) := euy(t),

H(z) = Ef [G(z, t)] =
1

T

∫ T

0
euy(t)dt

=
1

T
euα/β

∫ T

0
exp

(
uce−βt

)
dt

=
euα/β

βT

[
Ei(uc)− Ei

(
uce−βT

)]
,

(16)
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where Ei is the exponential integral [143]. This is the solution to the system of interest. Although
straightforward to evaluate, it does not appear to belong to any well-known parametric family. At
this point, several properties relevant to the standard definition of velocity stand out:

Extending the solution to multiple species merely requires defining the correct multivariate G(z, t).
This is tractable for all directed acyclic graphs of splicing [78]. However, the broader set of models
does not have an analytical solution, even in terms of the exponential integral, because it requires
integrals of the following intractable form:∫

exp

(∑
i

Aie
−rit

)
dt. (17)

Extending the solution to piecewise constant transcription rates, as in Figure 3, or to any piecewise
constant parameter values, only requires computing the appropriate y(t). This is straightforward
to do by using the initial conditions on disjoint intervals, and generalizes to multi-species reaction
systems.

The model is broad enough to describe cell type distinctions and cell fate stochasticity simply by
defining a discrete mixture model over transcription rate trajectories. For example, if a cell can
choose to enter cell fate A with probability wA or cell fate B with probability 1− wA, the overall
generating function takes the following form:

G(z, t) = wAGA(z, t) + (1− wA)GB(z, t)

G(z) = wAGA(z) + (1− wA)GB(z),
(18)

where each branch’s generating function is induced by distinct driving functions, αA(t) 6= αB(t).

Finally, as discussed in Section 3.3, the constitutive model is problematic. Fortunately, the occupa-
tion measure formulation is robust enough to deal with more general systems. For example, we can
consider the classical example of a bursty system, extended to include deterministic transcriptional
modulation. The following chemical schema represents the system dynamics:

∅ α(t)−−→ B(t)× U β−→ S γ−→ ∅, (19)

where α(t) is the burst frequency and B is the burst size, a random variable drawn from a geometric
distribution on N0 with expectation b(t). The log PGF of the system takes the following form:

φ := lnG(uU , uS ; t) =

∫ t

0
α(s)

[
1

1− b(s)U1(uU , uS ; s)
− 1

]
ds, (20)

where uU and uS are generating function arguments and U1 is a tractable exponential sum [104].
By linearity, the generating function of the occupation measure takes the simple form G(uU , uS) =
Ef [G(uU , uS ; t)]. Just like the underlying generating function, this expression cannot be solved
analytically and requires quadrature. For example, for f defined over a finite time horizon, it is
straightforward to construct a discrete grid of ti ∈ [0, T ], evaluate the integrand at these times, and
apply the trapezoidal rule to estimate the iterated integral through matrix-vector operations. With
this mathematical formulation, we can elaborate on the answer to the first question in Section 3.2:
the class of models with bursty transcription is consistent with known biophysics.
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4.3 Count processing

Selecting and solving a model allows for a quantitative comparison of the predictions of the inference
process to a meaningful baseline. Consider the simplest analytically tractable model, where α(t)
is piecewise constant over a finite time horizon, with its dynamics given by a single positive or
negative pulse:

α(t) = α1 if t ∈ (0, τ1),

α2 if t ∈ (τ1, τ2),

α1 if t ∈ (τ2, T ),

(21)

and α1 6= α2. Different genes have different α, but synchronization is enforced enforced: all genes
switch at identical times τ1, τ2. Physically, this description corresponds to a perturbation being
applied to, then removed from the cells, resulting in the modulation shown in Figure 8a. We
simulated this model using the procedure outlined in Section 6.2.

We investigated this class of phenomenological models for transcription variation as opposed to
fully mechanistic descriptions (e.g., dyngen [15]) for three reasons. First, they provide the best-
case baseline scenario for the validation of RNA velocity, as the inference procedure is predicated on
this model. For example, Equation 21 is the pulse stimulus model proposed by La Manno et al. [1].
Second, they offer the analytical solutions discussed in Section 4.2, whereas more complicated
schema do not. Finally, mechanistic models of regulation are underdetermined relative to scRNA-
seq data, as they rely on signal transfer through proteins. We anticipate that comprehensive future
models will introduce further mechanistic details, as in the causal schema proposed in Figure 4
of [22]. However, here we abstract away the specific details of how this perturbation is effected,
and focus on its effects on the observable transcriptome.

Predictably, the marginal distributions of the simulated data were bimodal, and matched the ana-
lytical solutions for the occupation measure (Figure 8b). The count processing workflow distorted
the data in complex, nonlinear ways. Compared to the raw data, imputation did lower dispersion
(Figure 8c). However, we did not find support for treating the imputed data as merely µu(t) and
µs(t) with a Gaussian perturbation. For any particular gene, the relationship between the two was
nontrivial and exhibited biases. The sample gene demonstrated in the figure produced an approxi-
mately smooth trace that did not resemble the true process average. At best, the imputed estimate
appeared to be unbiased over the entire dataset, and tended to fall within of factor of ten of the
true mean (Figure 8d i-ii). Interpreting the local observed variance as the true process moment
σ2 is even less appropriate: the relationship between local and true variance exhibited unintuitive,
nonlinear effects (Figure 8d iii-iv).

Normalization for the total number of UMI counts per cell is standard, and La Manno et al. do use
it in their validation of velocyto (p. 6 in SN2 of [1]). On the other hand, it could be argued that
such scaling is an ad hoc procedure intended to eliminate underlying variation in UMI counts due to
differences in which genes are expressed in cells, or technical noise. As such, it may be inappropriate
to apply it to simulated datasets that do not have these phenomena. We repeated the analysis
without scaling counts by total molecule counts per cell in Figure S5. This means that raw counts
were pooled, using the k nearest neighbors obtained from PCA, which was itself computed from the
log-transformed raw, spliced counts. Qualitatively, the gene-specific imputed trajectories did not
exhibit the severe biases of Figure 8. However, they still produced errors in the transient regimes
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Figure 8: The RNA velocity count processing and inference workflow, applied to data generated by
stochastic simulation. a. Schematic of the impulse model of gene modulation. b. Demonstration
of the concordance between simulation and analytical solution for the occupation measure. i.:
nascent mRNA counts; ii.: mature mRNA counts (gray: simulation; blue: occupation measure). b.
Smoothing and imputation introduce distortions into the data. i.: raw data; ii.: data normalized
to total counts; iii. imputed data (points: raw or processed observations; lines: ground truth
averages µs and µu; red: spliced; yellow: unspliced). c. Local averages obtained by imputation
are not interpretable as instantaneous averages. i.: mean unspliced; ii.: mean spliced; iii. variance
unspliced; iv.: variance unspliced (black points: true moment vs. pooled moment; blue line:
identity; blue region: factors of ten around identity). d. Smoothing and imputation improve the
inference on extrema. i.: moment-based inference from raw data; ii.: extremal inference from
normalized data; iii.: extremal inference from imputed data (black points: true vs. inferred values
of γ/β; blue line: identity; blue region: factors of ten around identity).
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of interest, and scale- and species-dependent errors elsewhere, violating the assumptions of the
scVelo “dynamical” inference procedure (as outlined in Section 3.5). Furthermore, the relationship
between true moments and pooled moments was nearly identical in Figure 8d and Figure S5d.

We can conclude that even the best-case scenario, with matching model assumptions and no tech-
nical noise, does not justify using imputed data in place of the process average: the imputation
procedure is circular, and can give rise to biases (as in Section S1.1). Although these biases may
cancel on average, this cannot be relied on for any particular gene. Therefore, instead of smoothing,
which is fundamentally unstable and challenging to validate, we recommend explicitly construct-
ing and solving error models (as in [128]). Such an approach provides insights into the system
biophysics and enables the quantification of uncertainty through standard statistical methods.

4.4 Inference from occupation measure data

With the groundwork outlined in Sections 4.2 and 4.3, one can begin to tackle the problem of
inference from sequencing data. We start by carefully inspecting the models set up in the velocity
publications, enumerating their assumptions about the transcriptional processes, and writing down
their formal solutions without making any further approximations. In general, the resulting prob-
lems are intractable. However, it is instructive to write down the exact forms, as they clarify the
origin of the complexity and can point to solution strategies.

First, we define the global structure of the transient system, which represents the parameters shared
between different genes. This global structure is encoded in the vector θG, which we assume to
be finite-dimensional. For example, if the differentiation process is linear and deterministic, with
no branching, with K distinct cell types, θG gives the times τk of the cell type transitions (where
τ0 := 0 and τK := T , which we set to 1 with no loss of generality). On the other hand, if it is non-
deterministic, with diverging cell fates, θG can encode topologies and fates’ probabilities (such as
wA from Equation 18). Conversely, a unipotent differentiation trajectory can be encoded by setting
wA = 1, i.e., simpler topologies are degenerate cases of more complex topologies. Finally, this vector
may also encode non-biological phenomena, such as batch-specific technical noise parameters [128]
and the specific form of the generalized occupation measure f .

In addition to θG, the system also involves vectors θj , j ∈ {1, ..., N}, where j ranges over the
genes. The θj are gene-specific parameter vectors that parameterize physiological processes, such
as transcriptional bursting, splicing, and degradation, as well as initial conditions. For simplicity,
we make two crucial assumptions, consistent with the previous velocity publications. First, we
suppose the transcriptional parameters are piecewise constant throughout the process, and all
other parameters are strictly constant. Second, we suppose that different genes’ transcription
and processing reactions are statistically independent. We define the full parameter set as Θ :=
{θ1, ..., θN , θG}. For completeness, we note that in previous publications the cell type transition
times are gene-specific parameters, i.e., τjk ∈ θj , but since we assume that all genes switch at
identical times they are global parameters, i.e., τk ∈ θG, in the model we propose here.

Finally, we formalize the data variables. The full dataset is given by the data matrix D, with cell-
specific arrays Di and gene-specific arrays Dj . Thus, Dij reports the spliced and unspliced counts
for gene j in cell i. Under this model and the assumption of gene independence, the following
equation gives the likelihood of a particular cell’s observation:
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L(Θ;Di) = P (Di; Θ) =

∫
P (D, t; Θ)df(t; Θ) =

∫ ∏
j

P (Dij , t; θj , θG)df(t; θG). (22)

The assumption of cell independence suggest the following total likelihood:

L(Θ;D) =
∏
i

Li(Θ;Di) =
∏
i

∫ ∏
j

P (Dij , t; θj , θG)df(t; θG). (23)

To fully characterize this system under the foregoing model assumptions, we need to optimize the
likelihood with respect to the parameters. This is generally intractable; even evaluating Equation
23 can be non-trivial. However, we can make a series of simplifying approximations.

4.5 A combinatorial optimization approach to inference

Ultimately, we would like to understand the behavior of Equation 23 across the entire domain of
parameters, compute the maximum likelihood estimate (MLE) of Θ, and characterize its stability
by calculating its confidence region. However, this is not yet feasible. Therefore, we restrict the
discussion to writing down a formula for the MLE that can be treated using standard algorithms.

Our strategy is to exploit the “latent” distribution of cell-specific process times, condition on this
distribution, and find an approximate MLE. Assuming that cells are observed uniformly across
pseudotime, i.e., df = dt, the latent time of each cell i is given by ti ∈ (0, 1). These times are
almost surely distinct, and induce a cell ranking in order of increasing pseudotime. This ranking is
unknown and has to be inferred from the data.

Assume, for the moment, that the ranking is known and given by σ, a permutation of the M cell
indices {1, 2, ...,M − 1,M} corresponding to their pseudotime order statistics. Given a cell’s order
statistic σi, we can use f to estimate its latent time ti, which is distributed according to a rather
complex multivariate Beta distribution [144]: even if each cell’s rank in the total order is known,
we have to account for the uncertainty in pseudotime. However, we can exploit the fact that this
uncertainty decreases as the number of cells grows. The marginal order statistics are distributed
according to Beta(σi,M + 1− σi), a random variable with law fU(i)

(t) and the following variance:

V[U(i)] =
σi(M + 1− σi)

(M + 1)2(M + 2)
, (24)

which tends to zero with the rate M−1. Therefore, we find that ti ≈ E[U(i)] = σi
M+1 .

Thus, if we have enough cells, and know their pseudotime ordering, we can exploit the fact that
fU(i)

(t) converges to a Dirac delta functional:

L(Θ;Di, σi) =

∫ ∏
j

P (Dij , t; θj , θG)fU(i)
(t)dt ≈

∏
j

P (Dij , ti; θj , θG). (25)

This amounts to using a plug-in point estimate to compute the likelihood of a cell’s data. The
same approach can be applied to each cell in turn:

L(Θ;D, σ) ≈
∏
i

∏
j

P (Dij , ti; θj , θG) =
∏
j

∏
i

P (Dij , ti; θj , θG). (26)

30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.12.480214doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.12.480214
http://creativecommons.org/licenses/by/4.0/


However, optimizing this quantity, even when conditioning on σ, is impractical because it requires
simultaneously optimizing (potentially thousands of) gene-specific parameters along with the (rela-
tively few) global parameters. The interchange of product operations is helpful because it allows us
to write down a more tractable loss function for the MLE, which exploits the conditional separability
of θj :

Θ̂|σ = argmaxθG

∑
j

argmaxθj

∑
i

lnP (Dij , ti; θj , θG). (27)

Optimizing this quantity over σ guarantees to return the global MLE:

Θ̂ = argmaxσ argmaxθG

∑
j

argmaxθj

∑
i

lnP (Dij , ti; θj , θG). (28)

The parameters θ1, ..., θN , θG can be found by standard continuous optimization methods, but esti-
mating σ requires a combinatorial optimization, namely finding an optimal traversal path between
cells. In other words, even this approximate approach requires solving the problem of pseudo-
time inference, which produces a one-dimensional ordering of cells [145]. However, unlike standard
pseudotime inference, which describes a set of purely phenomenological relationships informed by
proximity between cell expression states, the current theoretical framework endows the solution
with a concrete biological interpretation, which is informed by a specific microscopic model of
transcription.

The trajectory inference literature treats this class of problems by graph traversal algorithms,
generally by constructing a minimum spanning tree or an optimal traversal on the clusters or
individual cells [15, 137]. Under fairly severe modeling assumptions, which generally rely on error
isotropy, the optimal traversal of cell states reduces to the traveling salesman problem (TSP) via
the Hamiltonian path problem with some minor differences [130,146,147]. The current approach is
considerably more complicated, because the weights between the “nodes”, i.e., the observed cells,
cannot be generally written down in closed form, and require optimization for every σ.

Nevertheless, the specific form of the required combinatorial optimization has several useful im-
plications for inference. It is possible to subsample or filter the data to obtain rough estimates
of the parameters by sampling a subset of genes. This facilitates the estimation of θG, which can
be reused for an entire dataset. If only a fraction of genes are systematically modulated across a
trajectory, technical noise parameters within θG can be estimated from the far more easily tractable
fits to the stationary genes. Furthermore, sampling a subset of cells enables the construction of
approximate σ and estimation of θj . The validity of such approximations can be assessed with
relatively simple controls. For example, if a best-fit “trajectory” over cells σ is as good as a random
or inverted permutation, the transient model is likely overfit. Finally, existing trajectory inference
methods can be exploited to obtain an ordering σ for the purpose of testing whether it can give
results consistent with the stochastic model by calculating the optimal parameters in Equation 27,
plugging them into the appropriate CME, and comparing the process occupation measure to the
true molecule distributions.

It is plausible that many standard trajectory inference methods can be represented as approxi-
mations to the exact solution under particular assumptions about the form of biological model
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and priors imposed on the trajectory structure. However, a complete discussion of the trajectory
inference field is beyond the scope of this paper. Instead, we restrict ourselves to discussing how
existing velocity methods, as well as certain clustering algorithms, can be represented as special
cases of the exact solution in Equation 23.

4.6 Clustering as a special case

First, consider the ergodic case of f on [0, T ] with T →∞, and suppose there are K cell types at
equilibrium. These cell types are distinguished by gene-specific parameter vectors θkj , k = 1, ...,K.
Assume only a single RNA species per gene exists, and all genes are independently expressed in a
single cell type, without yet imposing a specific biological model. This yields the likelihood

L(Θ;Di) =

∫ ∏
j

P (Dij ; θj)df =
∑
k

P (k)
∏
j

P (Dij ; θkj ), (29)

where P (Dij ; θj) is the probability of observing the data Dij and P (k) ∈ θG is the probability
of cell i being in cell type k. The process time t is no longer necessary, because all cell types are
stationary: the likelihoods are evaluated at the ergodic limit t =∞. Equation 29 amounts to saying
that the likelihood of a cell’s observation can be represented by using the law of total probability
and conditioning on the cell type:

P (Di; Θ) =
∑
k

P (k)P (Di; θk) =
∑
k

P (k)
∏
j

P (Dij ; θkj ). (30)

To optimize this likelihood, we need to specify P (Dij ; θj), which is informed by the biophysics of
transcription and mathematical tractability. The log-normal distribution is particularly common:
if we treat log-counts lnD, the law of P (lnDj ; θj) is Gaussian. The lognormal distribution can
emerge from several hypothesis: through a common, if ad hoc approximation to the gamma dis-
tribution which emerges from the mesoscopic limit of the CME [148], from the exact solution of
a deterministic, macroscopic model with log-normally distributed transcriptional rates [149], and
by mere assertion that the negative binomial distribution is similar to the lognormal distribution,
without further discussion [147].

The lognormal approximation implies that each “cell type” is essentially a high-dimensional normal
distribution in logarithmic state space. This induces a set of gene- and cluster-specific log-means
µkj , log-standard deviations skj , and a cluster assignment vector σ, such that σi ∈ {1, ...,K}. The

problem of characterizing cell types, i.e., fitting P (k), µk, and sk, and providing an optimal point
estimate of σ, under this model is equivalent to using the expectation-maximization algorithm to fit
a Gaussian mixture model to the logarithmic data [150]. However, some caveats deserve mention.
The model choice requires careful consideration. The log-normal heuristic is incoherent with the
standard velocity model, which tends to a normal distribution with equal mean and variance in the
continuous limit. Furthermore, although the Gaussian mixture model formulation can be justified
as an approximation of a particular class of models, it is unlikely that this approximation holds
generally.
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For completeness, we note that the standard alternative to Gaussian mixture model clustering is
community detection based on a graph constructed by defining a neighborhood criterion among
cell vectors [36]. However, it has not yet been shown that such an approach can be afforded any
well-defined probabilistic meaning. The literature contains numerous assertions that a meaningful
Markovian transition probability matrix can be defined on observed cell states [1, 9, 10, 25, 138].
However, the constructed Markov chains have not been demonstrated to possess any particular
relationship to an actual biological process.

4.7 The “deterministic” velocyto model as a special case

Strictly speaking, we only need to solve Equation 23 if we want to exploit useful properties of
likelihood landscapes and estimators. However, if we are willing to forgo these advantages, we can
use a moment-based estimate.

The linearity of the occupation measure can be used to compute summary statistics. For example,
we can treat the RNA velocity model defined in Equation 1, with µu(t) and µs(t) giving the
instantaneous process averages. The following relations hold at each instant t and over the entire
trajectory:

dµs(t)

dt
= βµu(t)− γµs(t),∫

dµs(t)

dt
df = β

∫
µu(t)df − γ

∫
µs(t)df.

(31)

Each species’ mean occupation measure µ can be related to the instantaneous mean µ(t):

µ =
∞∑
x=0

xP (x) =
∞∑
x=0

x

∫
P (x, t)df

=

∞∑
x=0

∫
xP (x, t)df =

∫ ( ∞∑
x=0

xP (x, t)

)
df

=

∫
µ(t)df.

(32)

This implies the following identity: ∫
dµs(t)

dt
df = βµu − γµs, (33)

which holds regardless of the transcriptional dynamics encoded in α(t).

The identity formalizes the moment-based approximation to the biological parameters: if the left-
hand side (the net velocity of the process) is sufficiently close to zero, the right-hand side gives
an estimate for γ/β. Conversely, if this condition is violated, a näıve fit based on the moments
(equivalently, a least-squares fit with zero intercept) will be biased by transient contributions,
motivating the use of the extrema fitting procedure (as in Fig. 2 in SN2 of [1]).

We can investigate the behavior of the net velocity in a simple model system. Suppose β = 1,
df = T−1dt, and α is piecewise constant. We define αk, with k ∈ {1, ...,K}, constant on each
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interval Ik ∈ [τk−1, τk]; the bounds are τ0 := 0 and τK := T . We define the length of an interval as
∆k = τk − τk−1. The following equations hold for every interval:

µu(t) = αk(1− e−t) + u0e
−t,

µs(t) =
e−γt

γ(γ − 1)

(
αk(γ − 1)eγt − αkγe(γ−1)t + αk + (γ − 1)γs0 + γu0(e(γ−1)t − 1)

)
,∫

Ik

dµs(t)

dt
df =

s0

∆k

(
e−γ∆k − 1

)
+

1

∆kγ(γ − 1)

(
γ(αi[1− e−∆k ] + u0[e−∆k − e−γ∆k ]) + αi(e

−γ∆k − 1)
)
.

(34)

In each interval Ik, the integral approaches zero as ∆k grows. This result has a qualitative inter-
pretation: as interval duration grows, the process settles into its ergodic equilibrium attractor, and
that attractor provides an effective estimator of γ. On the other hand, if the interval is short-lived
relative to mRNA lifetime, the integral is dominated by the initial condition, and the system is
largely out of equilibrium.

In practice, this means that the degradation rate is identifiable through moments only if the lifetimes
of the mRNA species are short relative to the interval lengths, i.e., the net velocity is low enough.
On the other hand, if the lifetimes are too short, the transient regimes are sparse and steady states
are approached rapidly, giving no information about dynamics (and reducing the problem to the
formulation in Equation 29). The quantile fit procedure is simply a heuristic method to winnow the
data for near-equilibrium populations under the informal prior that these populations are present
in the data. Unfortunately, this approach is subject to the usual pitfall of moment-based methods:
if the prior is wrong, there is no easy way to identify its failure.

We have omitted the discussion of normalization and imputation, as they are not amenable to
analysis. However, their impact can be evaluated by generating data from the model and processing
it with the velocyto workflow. The intuition outlined above concords with our simulations: in Figure
8e, we fit the simple model introduced in Section 4.3 using three different methods. In i., we use
simple linear regression on the raw data; in ii. and iii. we apply a quantile fit to normalized and
imputed data respectively. In spite of the distortions in the overall phase portrait (Figure 8c),
the extrema are stable enough under imputation to generate fairly reliable estimates of γ/β, up
to roughly an order of magnitude, whereas the ratio of averages is significantly less precise. This
is consistent with the performance reported in Figure 5 (as in the k = 0 case, which uses linear
regression on the entire dataset).

In light of the formalization, the fitting procedure is contingent rather than stable, necessitating
careful study of limitations. Using the average of the full occupation measure is contingent on the
net velocity being near zero (∆k sufficiently large for all k). Using the average of the extrema
is contingent on those extrema having equilibrated (∆k sufficiently large for k with largest and
smallest αk). Furthermore, it provides no information about the relative timescales βj of different
genes.

The “stochastic” model, which was introduced in scVelo, is practically identical, but exploits addi-
tional information from the second moments of the extremal observations. This approach inherits
the same issues, such as the reliance on the existence of extrema, and omission of βj , and intro-
duces new ones, such as the assumption of identical error terms for first and second moments and
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the inference of error covariance parameters. In principle, further investigation may characterize
whether these issues improve or worsen moment-based inference. However, we suggest that these
details are marginal compared to the more fundamental limitations, as well as the discrepancies
observed in simulation (Figure 8d iii-iv).

4.8 The “dynamical” scVelo model as a special case

The modeling approach we have presented can be used to contextualize part of the “dynamical”
algorithm proposed in scVelo. First, assume that cell type transition times τjk ∈ θj , i.e., no global
parameters shared by multiple genes exist (θG = ∅). This reduces Equation 23 to the following
form:

L(Θ;D) =
∏
i

∫ ∏
j

P (Dij , t; θj)df(t). (35)

Omitting the uncertainty represented in the integral by assigning a time ti to each cell we obtain:

L(Θ;D) ≈
∏
i

∏
j

P (Dij , ti; θj). (36)

Since time assignments ti are now deterministic, rather than probabilistic, likelihood landscapes
become inaccessible. In principle, finding the maximum of Equation 36 can still provide a point
estimate of Θ, although this may not be practical: now, f has to be inferred empirically by fitting
ti. Applying the logarithm, we get

lnL(Θ;D) ≈
∑
i

∑
j

lnP (Dij , ti; θj) =
∑
j

∑
i

lnP (Dij , ti; θj). (37)

Using a Gaussian kernel centered on µu and µs, with standard deviation sj for both species, as an
approximation to the likelihood, we can interpret P as a probability density function:

P (Dij , ti; θj) =
1

2πs2
j

exp

(
− 1

2s2
j

[
(Duij − µu(ti; θj))

2 + (Dsij − µs(ti; θj))2
])

. (38)

The question of what this kernel means, i.e., what biophysical phenomena it models, is subtler than
it appears. On the one hand, there are certain regimes where stochastic spliced and unspliced counts
are approximately distributed about the true averages µu and µs according to normal laws, such as
in the high-concentration limit of certain jump processes explored by Van Kampen [142]. However,
this limit yields time-dependent and concentration-dependent sj , incompatible with Equation 38
and the “stochastic” model described in the scVelo manuscript. Instead, this form presupposes µu
and µs are the true deterministic amounts of mRNA, corrupted by Gaussian isotropic error without
an explicitly named source. This model exemplifies the signal processing paradigm, which attempts
to identify an underlying “signal” by regressing out incidental Gaussian “noise,” with various levels
of biological justification [151–153].

For a particular gene, the log-likelihood of Equation 38 takes the following form:

lnP (Dij , ti; θj) = − ln 2πs2
j −

1

2s2
j

[
(Duij − µu(ti; θj))

2 + (Dsij − µs(ti; θj))2
]

= − ln 2πs2
j −

1

2s2
j

‖Dij − µ(ti; θj)‖2,
(39)
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i.e., we can use a simple two-dimensional Euclidean norm to estimate the log-likelihood of the
observation. For M independent observations of gene j with identical parameters θj but distinct
times ti, we find that

lnP (Dj ; θj) =
M∑
i=1

lnP (Dij , ti; θj)

= −M ln 2πs2
j −

1

2s2
j

M∑
i=1

‖Dij − µ(ti; θj)‖2.

(40)

The optimum of this function is invariant under scaling, so we can work with the normalized
negative log-likelihood:

− 1

M
lnP (Dj ; θj) = `(θj ;Dj) = ln 2πs2

j +
1

2s2
jM

M∑
i=1

‖Dij − µ(ti; θj)‖2. (41)

This contradicts Equations 7-8 of [3], which use a univariate, rather than bivariate, Gaussian error
term. On the other hand, the actual implementation appears to use separate sj for the two species,
computed from the extremal points, and combine them in an ad hoc fashion.

In principle, solving Equation 37 with the likelihood indicated in 39, i.e., iteratively inferring ti and
θj , yields a coherent maximum likelihood estimate of the system parameters. However, the method
goes one step further, essentially taking Equation 37 and rewriting it in terms of the negative
log-likelihood:

− 1

M
lnL(Θ;D) = `(Θ;D)

?
=
∑
j

`(θj ;Dj). (42)

This approach posits that likelihood optimization over N genes be split into N independent prob-
lems, which can be parallelized. However, it is incorrect, as the times ti are incoherent between
different genes j, and the results are uninterpretable. This issue has been tacitly acknowledged,
e.g., in a post hoc approach adopted to make times “agree” in scVelo [3] and a similar proposal by
Li et al. [25], although without any rigorous justification.

The actual implementation does not use the raw data Dij . Rather, it uses a normalized and
imputed version of the data. Again, the effect of these transformations is challenging to characterize
analytically. However, the simulations shown in Figure 8c-d and Figure S5 suggest that there is no
compelling reason to believe the imputed data reliably estimate the underlying averages µu and µs
for a stochastic system out of equilibrium. Furthermore, the noise-corrupted deterministic model
used in the likelihood computation is biologically implausible.

4.9 Prospects for inferential procedures

In Section 4.2, we have presented a framework for the description of transient stochastic systems.
This framework is versatile enough to describe a range of problems in single-cell sequencing, from
clustering to trajectory inference. The methods presented in previous RNA velocity publications
are best understood as approximations to exact solutions under fairly strong, informal priors about
the process biophysics. The velocyto algorithm uses a moment approximation, which assumes the
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system has effectively equilibrated. The scVelo algorithm uses a Gaussian-perturbed ODE model,
which assumes the mRNA counts do not have any intrinsic noise, only isotropic measurement noise.
The latter yields considerably more information from the data, but imposes considerably stronger
assumptions, making the obtained information essentially uninterpretable.

However, our formalization immediately presents options for likelihood-based parameter estimation.
We introduced an approximate method that does maintain cell identities and motivated it using
the properties of order statistics. This method is challenging because it requires a fairly involved
combinatorial optimization. However, it does lend itself to developing further approximations, and
provides routes for falsifying hypotheses. We believe that such biophysical models, amenable to
approximation and testing, are crucial for the future interpretation of dynamics predictions from
sequencing data.

4.10 Embedding

To complement the internal controls discussed in Section 3.6, we performed a set of comparisons
with data simulated with no unknown sources of noise. We embedded a simulation of the system
introduced in Section 4.3 and illustrated in Figure 8 into a two-dimensional principal component
space. The results are shown in Figure 9. Even the ground truth velocity arrows (Figure 9a)
only retained a small amount of information after the transition from 100 dimensions to two. This
experiment provides us with the answer to the second question in Section 3.2: even if we have
“true” velocity directions, they only contain a limited amount of highly local information. As
expected from the fair performance in Figure 8e iii, the inferred linear embedding (Figure 9b)
was globally and locally (Figure 9f) faithful: the model precisely matches the assumptions of the
parameter inference workflow. However, the estimates were rapidly distorted upon applying the
nonlinear embedding procedure (Figure 9c), rotating many cell-specific directions and suggesting
transitions from the green reverting population to the light blue perturbed population, whereas,
the true trajectory is from light blue to green. The results of the Boolean procedure were slightly
more faithful to the linear projection (Figure 9f) but otherwise qualitatively similar (Figure 9d).
This is the method’s best-case performance.

Even in the PCA projection, the performance of the nonlinear velocity embedding leaves much to
be desired: the procedure is biophysically uninterpretable, discards the vast majority of informa-
tion, and risks failure when model assumptions are violated. For example, it can generate false
positive velocity fields when the ground truth is completely static (Figure S6, as simulated using
the procedure in Section 6.2); even directly inspecting the phase plots may be insufficient diagnose
to this problem (e.g., compare Figure S7 to Extended Data Figs. 6c and 7c of [1] and Figs. 2c and
3g of [3]).

The nonlinear, non-deterministic embeddings ubiquitous in the analysis of scRNA-seq data degrade
the performance further. In Figure 10, we embedded a system with three potential terminal states,
generated by the simulation procedure described in Section 6.2. Cell projection into PCA appeared
to conflate two of the branches; the nonlinear embeddings effaced causal relationships altogether.
As before, the arrows were broadly coherent whether or not they included quantitative informa-
tion. Finally, as described in Section 1.1, the embedding procedure has previously demonstrated
catastrophic failure to capture known dynamics in biological datasets [5, 9, 10, 13, 22]. Therefore,
although embeddings are qualitatively appealing, they are unstable, challenging to validate, and
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Figure 9: Performance of cell and velocity embeddings on simulated data, compared to ground
truth velocity directions. a. Linear PCA embedding of ground truth velocities. b. Linear PCA
embedding of inferred velocities. c. Nonlinear PCA embedding of inferred velocities. d. Nonlinear,
Boolean PCA embedding of inferred velocities. e. Embedding of ground truth principal curve;
trajectory directions displayed to guide the eye. f. Distribution of cell-specific angle deviations
relative to ground truth velocity directions.

harbor intrinsic global- and local-scale pitfalls that arise even in simple scenarios.

Nevertheless, some human-interpretable visualization is desirable. In light of the frustrating dearth
of theory and interpretability for the commonly used embedding procedures, we note that the
stochastic formulation we have presented can be used to speculate about more rigorous and sta-
ble embedding methods that would use rather than discard quantitative information. Instead of
individual cells, which inevitably exhibit noise, we suggest constructing and emphasizing the un-
derlying graph governing parameter values (as in, e.g., Fig. 1F of [138]). Alternatively, since
the current low-dimensional embeddings are used to support claims about presence of a priori
human-interpretable features such as equilibrium cell types, limit cycles, and transient differen-
tiation trajectories, it may be better to fit a hierarchical model consisting of those features and
reporting the best-fit model. For example, if the goal is to cluster data, then it makes sense to fit
Equation 29. On the other hand, if the goal is an elucidation of tree-like differentiation trajectories,
it may be better to incrementally grow a trajectory mixture model until its complexity outweighs

38

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.12.480214doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.12.480214
http://creativecommons.org/licenses/by/4.0/


Figure 10: Performance of cell and velocity embeddings on simulated data, compared to ground
truth principal curve. Top: PCA embedding with linear baseline and nonlinear aggregated velocity
directions, as well as ground truth principal curve; trajectory directions displayed to guide the eye.
Bottom: UMAP and t-SNE embeddings with nonlinear velocity projections.

its likelihood per a statistical information criterion. Formally, this would correspond to optimizing
the likelihood of samples from analogs of Equation 18. If a method has succeeded in inferring the
underlying topology and dynamics, a meaningful and well-defined principal curve induced by the
underlying mechanism, as shown in Figure 9e and the PCA in Figure 10, could be plotted.

5 Conclusion

5.1 Summary

The two main steps in RNA velocity, namely the model estimation and embedding, originate from
different approaches to data analysis that can be at odds with each other. The count processing and
inference steps, which comprise the model estimation procedure, serve to identify parameters for
a transcription model under some fairly strong assumptions, such as constitutive production and
approximately Gaussian noise. This procedure can be treated as an informal approximation of a
method to solve a system implied by the simulation design in the original publication. However, as
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we have seen, this system abstracts away many aspects of the technical artifacts present in single-
cell RNA sequencing, and the transcriptional dynamics that drive the molecular biology of cells.
The embedding processes used, which are entirely ad hoc, discard nearly all of the quantitative
information, and can occasionally fail. Particularly problematic is that the failures, when they
occur, are difficult to identify. Moreover, failure may result from many problems, including overlaps
in the embedding and erroneous clustering. Such problems may be mitigated or exacerbated by
tuning hyperparameters. These challenges, contradictions, and the assumptions inherent in the
many choices that are made for each of the steps, have not been previously characterized in full
detail, and they add up to a mixed picture. On the one hand, at least in some simulated cases, the
RNA velocity method does work, and the latent signal is strong enough to capture broad trends. On
the other hand, catastrophic failure can lurk at any step of the velocity workflow, and there are no
theorems to alert users to failure modes, or to diagnose or delimit the extent of failures. Instability
and reliance on user-tuned hyperparameters are not grounds for abandoning the method; the same
problems crop up with kernel density estimation, k-means clustering, histogram binning, time
series smoothing, and many other analysis tasks. However, the tendency to compensate for lack of
theorems with more ad hoc filters and more sophisticated modeling that requires optimization of
neighborhood sizes, normalization procedures, and thresholds only exacerbates the problems.

The mathematical foundations of stochastic biophysics have been studied for several decades; they
are well-understood, and amenable to generalizations and approximations. The chemical master
equation allows for the elucidation of technical noise [128], and the quantitative exploration of
transcriptional regulation [148] and splicing [78]. As discussed in Section 4.2, the same modeling
framework can be used to describe general classes of differentiation processes. Rather than starting
with heuristics and then seeking to unravel their meaning, in this approach one begins by mo-
tivating, defining, and solving a general system, and only subsequently deriving approximations
and statistical summaries. These can range from simple moment expressions to low-dimensional
principal curves as illustrated in Figure 10. Furthermore, with such an approach, one can leverage
the machinery of Bayesian inference to directly fit full distributions, with the advantages of inter-
pretability and statistical robustness. This highlights that the primary challenge in RNA velocity
is not its extension via additional heuristics, but rather the development of tractable inference
procedures.

5.2 Proposals

We conclude with a summary of the main steps of an RNA velocity workflow, along with some
insights and proposals that emerged from our work:

Pre-processing: As demonstrated in Section 3.1, the specific choice of processing software does
produce discrepancies in results, although the small, and largely arbitrary, variations in assignment
rules do not provide compelling reasons to select one method over another, pending the development
of more detailed splicing network definitions. There are, however, substantial processing time
differences [28,29] that can affect reproducibility of results, leading us to prefer fast pseudoalignment
methods.

Filtering: This step is necessary for tractability, since full spliced and unspliced matrices can be
challenging to analyze. While caution must be applied in selecting thresholding criteria, we find no
reason to deviate from the standards typically applied in RNA velocity analyses.
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Model definition: RNA velocity methods have been inspired by stochastic models of transcrip-
tion. However there has not been a strong link between the models and the implemented methods,
which are based on loose analogies and heuristics. We believe that explicit construction and dis-
cussion of biophysical models is imperative when developing RNA velocity methods, so that results
can be meaningful and interpretable. In particular, we caution against the class of continuous and
constitutive models implemented in velocity packages thus far; as discussed above, bursty models
are tractable [78] and substantially more plausible according to live-cell data.

Normalization and imputation: The normalization and averaging of data to produce continu-
ous curves is intended to remove cell size effects and to denoise the data. We found several problems
with this approach. Firstly, this assertion is not motivated by theory, and our theoretical concerns
in Section S1.1 suggest that model-agnostic “correction” is inappropriate. Secondly, as discussed
in Section 4.3 and illustrated in Figure 8, the imputed data do not accurately recapitulate the
supposed ground truth even in the simplest case. Finally, imputation prevents the most natural
interpretation of counts as discrete random variables. Based on Kim et al. [108] and [128], we
advise against normalization; it is more meaningful and accurate to apply parameterized models of
extrinsic noise and gene–gene coupling. The interpretability afforded by discrete models outweighs
the potential benefits of ad hoc normalization. Furthermore, we strongly recommend against im-
putation more generally: studies such as [65, 108, 154] have revealed distortions, and the approach
possesses fundamental instabilities (as in Figure 5).

Inference: From a probabilistic perspective, current inference procedures are problematic. Instead
of currently implemented procedures, it is more appropriate to build and solve mechanistic, fully
stochastic models that allow for fitting copy numbers. This can be computationally facilitated by
a data selection process coherent with the “marker gene” paradigm: if a gene does not need to
be fit to a transient model, one should not try to fit one. Thus, we recommend fitting ergodic
distributions to genes that are not meaningfully modulated across the dataset, ergodic mixture
distributions to (fewer) genes that vary across disjoint cell types, and occupation measures to (even
fewer) genes that exhibit transient behaviors. Although joint inference is relatively challenging, we
believe that a formulation that can exploit existing combinatorial optimization frameworks may be
a productive avenue for exploration.

Embedding: RNA velocity embedding procedures inherit problems accrued with the steps dis-
cussed above. However, even in an idealized situation where an interpretable and well-fit model
is used, current embedding practices are counter-productive for interpreting the data, as discussed
with reference to controls in Sections 3.6 and 4.10. Despite the implication of causal relationships
between cells encoded by cell–cell transition probabilities, embedding procedures are currently ad
hoc. Moreover, it has been shown that current methods distort local neighborhoods and the global
topology in an unpredictable manner [120,122]. Directed graphs over the cells are attractive, but do
not have a coherent interpretation relative to the underlying biophysics. Instead of such methods,
we recommend directly working with the latent process governing the transcriptional variation.
Nevertheless, two-dimensional visuals may be useful for summarizing the raw data; using simula-
tions, we demonstrate an interpretable method for embedding a true principal curve in deterministic
principal component space in Section 4.10.
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6 Methods and Data

6.1 Pre-processing concordance

There is no well-defined “ground truth” for mRNA counts in arbitrary datasets. However, to obtain
a qualitative understanding of potential pitfalls, we performed controlled experiments to analyze
the discrepancies between outputs produced by popular software implementations.

The concordance analysis was heavily inspired by the benchmarking of Soneson et al. [28]; how-
ever, our goals and scope differ. First, we sought to analyze the reproducibility of the findings
across several datasets; the original analysis only treated a single dataset generated using the 10x
v2 chemistry. To this end, we analyzed ten datasets that used the 10x Genomics v2 and v3 pro-
tocols. Second, we sought to focus on the processing workflows most relevant to casual use. The
original analysis examined thirteen quantification workflows, whereas we examined three: velocyto,
kallisto|bustools, and salmon. These were run with default settings. We have made available all the
scripts and loom files generated by the workflows (Section 6.9).

We obtained ten datasets generated with the 10x Genomics scRNA-seq platform. Two were released
as part of a study by Desai et al. and used v2 chemistry [155]. Eight were released by 10x Genomics
and used v3 chemistry. The dataset metadata are outlined in Section 6.9.

To implement the velocyto workflow, we ran CellRanger on the datasets using human and mouse
reference genomes, pre-built by 10x Genomics (GRCh38 and mm10 2020-A). We then processed
the aligned outputs using the run10x command provided in velocyto.

To implement the kallisto|bustools workflow, we ran the ref command on the pre-built genomes to
build references, using the standard --workflow lamanno option. We then processed the raw data
with the count command, passing in the generated reference and using the --workflow lamanno

option.

To implement the salmon alevin-fry workflow, we ran the alevin-fry velocity workflow documented
at https://combine-lab.github.io/alevin-fry-tutorials/2021/alevin-fry-velocity/, from
the initial reference construction to the final anndata output. This output was converted directly
to loom files for the comparative analysis. We used the same pre-built 10x Genomics reference
genomes (GRCh38 and mm10 2020-A) as above.

6.2 Simulation

Transient constitutive model: perturbation and reversion

To generate Figure 8, we simulated data from the constitutive transcription model with the “cell
type” structure ABA. In this model all cells start out in state A at t = 0, switch to state B
at t = τ1, and revert back to state A at t = τ2. We generated 2000 cells and 100 genes. As
shown in Figure 8a and formalized in Equation 21, we defined three time periods corresponding
to each cell type. The simulation time horizon was set to T = 10, with synchronized transition
times τ1 = 3 and τ2 = 7. The gene-specific transcription rates α1 and α2 were generated from a
lognormal distribution with log-mean 0 and log-standard deviation 1. The gene-specific splicing
rates β were generated from a lognormal distribution with log-mean 1 and log-standard deviation
0.5. The gene-specific degradation rates γ were generated from a lognormal distribution with log-
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mean 0.5 and log-standard deviation 0.25, to reflect the intuition that splicing is somewhat faster
than degradation. Sampling times were generated from a continuous uniform random variable on
the interval [0, T ].

The solutions in Figure 8b were computed from an approximation to the generating function. We
did not account for the initial condition, which suffices because the transcription rate on (0, τ1) is
low. The true values of µu and µs were computed from the solutions to the governing ordinary
differential equation. The true values of σ2

u and σ2
s were set to µu and µs, respectively, as the mean

of a Poisson distribution is identical to its variance. To generate Figure 9, we simulated data from
the same model, with 2000 cells and 100 genes.

Transient constitutive model: multipotent differentiation

To generate Figure 10, we simulated data from the constitutive transcription model with the “cell
type” structure AB(C/D/E). In this model all cells start out in state A at t = 0, switch to state B
at t = τ1, and then transition to one of the terminal states C, D, or E at t = τ2. We generated 2000
cells for 100 genes. The gene parameter and observation time distributions, as well as switching
times, were identical to those reported in Section 6.2. Each cell fate was assigned randomly, with
equal probabilities of 1/3. We used an identical procedure for Figure S1.

Steady-state bursty model

To generate Figures S6 and S7, we generated synthetic data assuming that RNA transcription is at
an equilibrium, but has heterogeneity due to different cell types. The bursty transcription model
(Equation 19) was implemented using the PGF schema in Equation 20, using the approach outlined
in its derivation [104]. We specified parameters for 100 genes, with cell-independent burst sizes b
and splicing rates β. Burst sizes b were generated from a lognormal distribution with log-mean
0.3 and log-standard deviation 0.8, clipped to stay in the range [0.05, 25]. The splicing rates β
were set to 1 with no loss of generality. We simulated 10 cell types distinguished by average burst
frequencies α and degradation rates γ, with 300 cells per cell type.

Average gene-specific log-degradation rates 〈γ〉 were generated from a normal distribution with
mean −0.3 and log-standard deviation 0.3, to reflect the intuition that splicing is somewhat faster
than degradation [1]. Gene- and cell type-specific degradation rates γ were generated from a
lognormal distribution with log-mean 〈γ〉 and log-standard deviation 0.1, clipped to stay in the
range [0.08, 4], to reflect the intuition that extrinsic noise in degradation rates is low relative to
that in transcription rates.

Burst frequencies were generated from a lognormal distribution with log-mean −1 and log-standard
deviation 0.5, clipped to stay in the range [0.005, 1], to encode the intuition that transcriptional
activity is relatively rare. Analytical means µu, µs and standard deviations σu, σs were computed
for spliced and unspliced distributions. Histograms were generated up to µ+ 5σ in each direction,
clipped to be no lower than 10. To keep molecule counts realistically low and the histograms
tractable, we rejected and regenerated parameter sets that produced (µu + 5σu) × (µs + 5σs) >
1.5× 104. To generate observations, we sampled directly from the histograms.

The phase plots displayed in Figure S7 were manually selected after sorting for simulated genes
with the highest

∑
i ∆si and −

∑
i ∆si.
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6.3 Filtering

In Figures 5-7, we analyzed the forebrain dataset. To pre-process it, we implemented a procedure
largely identical to that used to generate Figure 4a of the original publication [1]. We performed
several rounds of filtering:

For the forebrain dataset, we used the following sequence of thresholds:

1. Discarding cells in the 0.5th percentile of total unspliced counts.

2. Discarding genes with fewer than 40 spliced counts, or expressed in fewer than 30 cells.

3. Selecting the top 2000 genes by coefficient of variation vs. mean, as implemented in the
velocyto function score_cv_vs_mean, with maximum expression average of 35 (based on
spliced counts).

In all other figures, we analyzed simulated data and omitted filtering, as all genes a priori had the
correct dynamics.

6.4 Normalization

After importing forebrain data, we normalized and log-transformed spliced and unspliced counts
using the default schema implemented in the velocyto function normalize:

sij ←
1
M

∑
i,j sij∑
j sij

uij ←
1
M

∑
i,j uij∑
j uij

,

(43)

i.e., the “cell sizes” or total counts of spliced and unspliced molecules were separately normalized
so each cell’s total was set to the mean over the dataset.

For the simulated data, we did not use normalization. This approach was inconsistent with previous
simulated benchmarks [1], but we had three reasons for omitting it. First, as discussed in Section
4.3, normalization purports to “regress out” systematic technical and biological effects. We did not
include these phenomena in the model. Second, the ground truth principal curves we constructed for
the analyses in Section 4 (e.g., in Figure 9e) relied on evaluating the true gene-specific µs(t) on a grid
over [0, T ], then log-transforming and projecting them to the two-dimensional principal component
space. This was straightforward to do when the PC space was computed from raw counts, but more
challenging otherwise. Finally, our omission made the velocity embedding procedure coherent: with
the PC projection based on raw counts, we used the same underlying space to imputed counts and
extrapolate velocities.

6.5 Embedding construction

For the forebrain dataset, we used size- and log-normalized spliced counts to construct the principal
component projection. The UMAP and t-SNE embeddings were calculated from the top 25 principal
components (as illustrated in Figure 6). For the simulated data, we used the log-normalized spliced
counts to compute the same embeddings.
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6.6 Imputation

Prior to fitting the models, data were smoothed by pooling across 50 nearest neighbors in the 25-
dimensional principal component space constructed in Section 6.5, as quantified by Euclidean dis-
tance. To implement this step, we used the default parameters of the velocyto function knn_imputation.
The choice of neighborhood space was arbitrary, and we imposed it for consistency. The original
report used an adaptive principal component space based on the fraction of explained variance,
whereas scVelo uses a default of 30 principal components. We observed no substantial difference in
results between the adaptive and fixed schema. For the forebrain dataset, we pooled the normalized
counts. In case of the simulations, we pooled the raw counts. In Figures 8 and S5, we deviated
from this procedure to investigate the impact and suitability of normalizing simulated data. The
figures demonstrate the respective effects of pooling the normalized and raw counts.

6.7 Inference and extrapolation

By default, the parameter γ/β was fit to the extrema of the imputed dataset: imputed unspliced
counts were regressed as a linear function of imputed spliced counts with an offset. The extrema
selection procedure used the defaults implemented in the velocyto function fit_gammas.

In Figure 8e, we deviated from this procedure to investigate the suitability and stability of inference
from pooled data. In Figure 8e i, we performed linear regression on the raw counts of the entire
dataset, whereas in Figure 8e ii, we performed linear regression on the quantiles of the normalized
dataset. Finally, in the “Raw” or k = 0 cases illustrated in Figure 5, we performed linear regression
on the raw counts of the entire dataset to contrast with regression on the extrema.

The standard inference procedure produced two parameters per gene j: the slope, a putative
estimate of γ/β, and the intercept, which we denote as q. To compute the velocity of gene j in cell
i for the nonlinear velocity embedding, we used the following formula:

vij = uij −
(
γj
βj
sij + qj

)
, (44)

where u and s denote imputed quantities. To extrapolate the velocity and predict the spliced
abundance after a time interval ∆t, we calculated ∆sij = vij∆t. This time interval was set to
1, for consistency with the velocyto implementation. The extrapolated value sij + ∆sij does not
appear to be used in velocyto, as ∆sij contains the directional information used in the nonlinear
embedding.

The schema described above is consistent with that of velocyto, but cannot be used to compute
linear velocity embeddings (as given in Equation 3). The initial condition (uij , sij) used for extrap-
olation must be in the space used to build the PCA representation. Therefore, for linear velocity
embeddings, we used Equation 44 in the corresponding space: normalized counts for the forebrain
dataset and raw counts for simulated data.

However, if ∆sij < 0, the näıve extrapolation sij + ∆sij was not guaranteed to give a non-negative
value that could be log- and PCA-transformed. In principle, we could have used an arbitrary ∆t,
and clip any sij + ∆sij < 0 to zero. However, this approach, though closer in spirit to velocyto,
would have risked extrapolating beyond the physical regime and could have introduced biases.
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Instead, we chose an extrapolation time ∆t∗ guaranteed to stay in the physical regime:

∆t∗ = argmax∆t

⋂
i,j

[sij + vij∆t > 0]

= mini,j
sij
|vij |

,
(45)

where we filtered for vij < −10−6. Finally, we set ∆sij to zero whenever sij < 10−6 and vij < −10−6,
to avoid extrapolation into the negative regime: this fairly rare case occurs due to nonzero qj .

6.8 Velocity embedding

For the nonlinear velocity embeddings, we used 150 embedding neighbors and the square-root
transformation by default. We deviated from this procedure in Figure S4 to investigate the impact
of transformation and neighborhood choices. We used the default hyperparameter σ = 0.05 to
calculate the softmax over directions to embedding neighbors (as described on pp. 7-8 in SN1 of [1]).
To implement the embeddings, we called the velocyto functions estimate_transition_prob and
calculate_embedding_shift, which automatically correct for cell density. We did not use the
neighborhood downsampling, randomization, or expression scaling options for the figures in this
report; we observed no substantial difference in results between these schema and our standard
procedure. The “high-dimensional space,” used to evaluate the displacements sq − si in Equation
4, was the matrix of imputed spliced counts. The extrapolations ∆si were obtained from the
procedure in Section 6.7.

For the linear velocity embeddings, we log- and PCA-transformed the matrix sij +vij∆t
∗, with the

timescale obtained by the procedure in Equation 45.

The “Boolean” schema for velocity embedding is qualitatively similar to the schema proposed in the
original publication; we previously proposed it to bypass the unit inconsistency between different
genes’ βj (and thus vectors vj) in the context of the protaccel package [4]. Instead of computing a
correlation coefficient, we simply calculated the fraction of concordant signs between the velocity
and the displacements to neighbors. In the parlance of Equation 4:

r(sq − si,∆si) =
1

N

N∑
j=1

(δ(sign(sq,j − si,j), sign(∆si,j)))

w(sq − si,∆si) =
exp (r(sq − si,∆si)/σ)∑k
q=1 exp (r(sq − si,∆si)/σ)

,

(46)

where δ is the Kronecker delta operating on inputs in {−1, 0, 1}.

We plotted cell-specific arrows for the linear baseline and aggregated the nonlinear velocity ar-
rows using a 20× 20 grid. We used this convention to distinguish the embedding methods, which
are conceptually and quantitatively different, in plots that showed several velocity fields at once
(e.g., the PCA plot in Figure 7). The grid directions were computed using the velocyto function
calculate_grid_arrows, which applies a Gaussian kernel to average over the cell-specific embed-
ded velocities nearest the grid point. We used the default parameters for the kernel, with 100
neighbors and a smoothing parameter of 0.5. We aggregated linear velocity projections in Figure
9a-b. As the arrow scale did not appear to have a quantitative interpretation, we set it manually
to match the plot proportions.
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6.9 Data availability

The datasets analyzed for Section 3.1, as outlined in Section 6.1, are listed in Table 1. The datasets
released by Desai et al. were collated from the Sequence Read Archive (runs SRR14713295 for
dmso and SRR14713295 for idu) [155]. The datasets released by 10x Genomics were obtained from
https://support.10xgenomics.com/single-cell-gene-expression/datasets. The processed
human forebrain dataset generated by La Manno et al. [1] was obtained from http://pklab.

med.harvard.edu/velocyto/hgForebrainGlut/hgForebrainGlut.loom, as used in the velocyto
documentation.

Dataset ID Description Biology Source

desai_dmso Embryonic stem cells, control E14 mouse [155]
desai_idu Embryonic stem cells, with IdU disruption E14 mouse [155]
pbmc_1k_v3 Peripheral blood mononuclear cells Healthy human 10x Genomics
pbmc_10k_v3 Peripheral blood mononuclear cells Healthy human 10x Genomics
heart_1k_v3 Heart cells E18 mouse 10x Genomics
heart_10k_v3 Heart cells E18 mouse 10x Genomics
heart_1k_v3 Brain cells E18 mouse 10x Genomics
heart_10k_v3 Brain cells E18 mouse 10x Genomics
brain_5k_v3 Brain cells E18 mouse 10x Genomics

brain_nuc_5k_v3 Brain nuclei E18 mouse 10x Genomics

Table 1: The datasets used to compare performance of molecule quantification software.

The processed loom files generated by the three workflows are available at the CaltechData repos-
itory, at https://data.caltech.edu/records/20030.

All Python scripts and notebooks necessary to reproduce the results of this study are available at
https://github.com/pachterlab/GFCP_2022.
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Akusjärvi, Ulf Landegren, and Mats Nilsson. Single molecule analysis of combinatorial splic-
ing. Nucleic Acids Research, 38(16):e163–e163, September 2010.

[69] Luyi Tian, Jafar S. Jabbari, Rachel Thijssen, Quentin Gouil, Shanika L. Amarasinghe, Hasaru
Kariyawasam, Shian Su, Xueyi Dong, Charity W. Law, Alexis Lucattini, Jin D. Chung, Timur
Naim, Audrey Chan, Chi Hai Ly, Gordon S. Lynch, James G. Ryall, Casey J.A. Anttila,
Hongke Peng, Mary Ann Anderson, Andrew W. Roberts, David C.S. Huang, Michael B.
Clark, and Matthew E. Ritchie. Comprehensive characterization of single cell full-length iso-
forms in human and mouse with long-read sequencing. Preprint, bioRxiv: 2020.08.10.243543,
August 2020.

[70] A. Sina Booeshaghi, Zizhen Yao, Cindy van Velthoven, Kimberly Smith, Bosiljka Tasic,
Hongkui Zeng, and Lior Pachter. Isoform cell-type specificity in the mouse primary motor
cortex. Nature, 598(7879):195–199, October 2021.

53

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.12.480214doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.12.480214
http://creativecommons.org/licenses/by/4.0/


[71] Xin Liu, Matthew V. Andrews, Jarrod P. Skinner, Timothy M. Johanson, and Mark M.W.
Chong. A comparison of alternative mRNA splicing in the CD4 and CD8 T cell lineages.
Molecular Immunology, 133:53–62, May 2021.

[72] Harold Pimentel, Marilyn Parra, Sherry L. Gee, Narla Mohandas, Lior Pachter, and John G.
Conboy. A dynamic intron retention program enriched in RNA processing genes regulates gene
expression during terminal erythropoiesis. Nucleic Acids Research, 44(2):838–851, January
2016.

[73] Heidi Dvinge and Robert K. Bradley. Widespread intron retention diversifies most cancer
transcriptomes. Genome Medicine, 7(1):45, December 2015.

[74] Justin J.-L. Wong, Amy Y. M. Au, William Ritchie, and John E. J. Rasko. Intron retention
in mRNA: No longer nonsense: Known and putative roles of intron retention in normal and
disease biology. BioEssays, 38(1):41–49, January 2016.

[75] Pedro Alexandre Favoretto Galante, Noboru Jo Sakabe, Natanja Kirschbaum-Slager, and
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S1 Supplementary Derivations

S1.1 Model-agnostic count correction is impossible

In the body of this report, we discuss problems with the heavy-handed data treatment in the
velocity workflows. In Section 3.4, we point out that it is inappropriate to fit an ODE model to
normalized, pooled data: doing so amounts to presupposing a result that should be proven using
careful theoretical analysis. In Section 4.3, we look for at least informal signs of this result in
simulated data, and find nothing of the sort: imputation makes plausible-looking trajectories that
nevertheless have very little in common with the ground truth. In the current supplement, we
point out a much more general, yet elementary result that implies that count “correction” through
imputation can be arbitrarily wrong.

Suppose we have a data point Dij and the corresponding true mRNA abundance nij for a particular
molecular species, cell i, and gene j. Sequencing is not perfect: the data point Dij is generated
from nij according to a non-deterministic schema, with an unknown probability law P (Dij |nij).

Two problems emerge. First, a point estimate of nij based on observed Dij is necessarily incomplete:
the sequencing process induces an entire distribution of possible nij . This distribution is given by
Bayes’ formula:

P (nij |Dij) =
P (Dij |nij)P (nij)

P (Dij)
. (47)

Assigning a single value is questionable, and downplays the effects of uncertainty. This remains a
problem even if a theoretically optimal choice is taken, such as the point estimate argmaxnij

P (nij |Dij).

Second, Equation 47 depends on P (nij), the actual ground truth distribution. This distribution is
unknown and needs to be identified and fit based on the data. Therefore, an imputation procedure
that assigns a point estimate without considering the underlying distribution is a priori distortive.

In other words, this Bayesian argument illustrates that meaningful count correction is impossible
without identifying and fitting the data-generating model, which encodes biological effects in P (nij)
and technical effects in P (nij |Dij). Count correction is strictly less powerful than parameter esti-
mation for the biological and technical models, because count correction requires those parameters,
whereas knowledge of the parameters immediately implies the entire distribution of the biological
and observed variables.
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S2 Supplementary Figures

Figure S1: RNA velocity, as implemented in velocyto, can recapitulate the differentiation trajec-
tories latent in data simulated from a tripotent trajectory. Trajectory directions are displayed to
guide the eye (dark blue: cells in the source state; light blue: cells in the intermediate state; yel-
low, brown, and dark red: cells in one of the terminal states; black arrows: velocity embeddings
produced using the standard velocyto workflow; lines with arrows: ground truth principal curves).
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Figure S2: A summary of the data manipulations performed in a single run of the velocyto workflow.
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Figure S3: Distribution of Spearman correlation coefficients between outputs of velocyto (vcy),
kallisto|bustools (kb), and salmon, as obtained from the 10 datasets enumerated in Section 6.9.
Calculation “by cell” considers each gene in turn and computes correlation over all cells. Calculation
“by gene” considers each cell in turn and computes correlation over all genes. Cells that only
occur in a single software output and genes observed in fewer than four cells are omitted from
analysis (Color: dataset; ρ: Spearman correlation value; violin plot: kernel density estimate of
correlation distribution; horizontal lines: 25th percentile, median, and 75th percentile of correlation
distribution).
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Figure S4: Nonlinear transformations and modulation of neighborhood sizes introduce distortions in
the arrow directions with respect to the simplest PCA projection (subplots: different transformation
procedures applied before kernel density estimation; histograms: distribution of cell-specific angle
deviations under different pooling neighborhood sizes k).

Figure S5: The RNA velocity count processing and inference workflow, applied to data generated
by stochastic simulation, as in Figure 8 but without normalization with respect to the total number
of molecules in the simulated cell.
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Figure S6: Erroneous velocity arrows resulting from a set of ten disjoint cell types with simulated
bursty transcription (colors: ground truth cell types; arrows: velocity directions from default
nonlinear embedding procedure).
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Figure S7: Phase plots resulting from applying the standard velocyto count processing workflow
to data consisting of a set of disjoint cell types with bursty transcriptional dynamics (as in Figure
S6).
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