

1 **Title:** The global exposure of species ranges and protected areas to forest management

2

3 **Running Title:** Conservation and forest management

4

5

6 Authors: Martin Jung^{1*}, Matt Lewis¹, Myroslava Lesiv², Andy Arnell³, Steffen Fritz² &

7 Piero Visconti¹

8

9 1 Biodiversity Ecology and Conservation Research Group, International Institute for Applied

10 Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria

11 2 Novel Data Ecosystems For Sustainability Research Group, International Institute for

12 Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria

13 3 UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC),

14 219 Huntingdon Road, Cambridge CB3 0DL, United Kingdom

15

16 * Corresponding Author (jung@iiasa.ac.at)

17

18 **Abstract:**

19

20 The majority of vertebrate species globally are dependent on forests, most of which require

21 active protection to safeguard global biodiversity. Forests, however, are increasingly either

22 being disturbed, planted or managed in the form of timber or food plantations. Because of a

23 lack of spatial data, forest management has commonly been ignored in previous conservation

24 assessments. Here we show – using a new global map of forest management - that disturbed

25 and human managed forests cover the distributional ranges of most forest-associated species.

26 Even more worrying, protected areas are increasingly being established in areas dominated by

27 disturbed forests. Our results imply that species extinction risk and habitat assessments might

28 have been overly optimistic with forest management practices being ignored. With forest

29 restoration being in the centre of climate and conservation policies in this decade, we caution

30 that policy makers should explicitly consider forest management.

31

32 **Keywords:** Species distribution, Forest management, Extinction risk, Threat mapping,

33 Forest specialism, Vertebrate diversity, Forest restoration, Plantations

34

35

36 **Introduction:**

37 Forests cover approximately 27% of the earth's land surface (Buchhorn et al. 2020;

38 Jung et al. 2020). They are the exclusive habitat of 54.5% of terrestrial vertebrate and many

39 other plant, fungi and invertebrate species (Gibson et al. 2011; IUCN 2012; Hill et al. 2019),

40 and can directly or indirectly benefit humankind through ecosystem services such as food or

41 water, something particular relevant for the over 1.6 billion living within close proximity of a

42 forest (Newton et al. 2020). Increases in human population and demand for food, non-timber
43 and timber products, are resulting in forests in tropical, temperate and boreal regions being
44 increasingly disturbed or modified by humans (Lewis et al. 2015; Curtis et al. 2018). Changes
45 in forest use and management can affect the structural integrity of forests (Ghazoul et al. 2015;
46 Lewis et al. 2015), ultimately reducing the size and connectivity of forest patches (Haddad et
47 al. 2015) and affecting forest biodiversity (Hill et al. 2019). Yet, while a loss in forest cover
48 can reduce local species richness (Melo et al. 2018) and increase the extinction risk of many
49 species (Tracewski et al. 2016; Santini et al. 2019), it is not fully understood to what extent
50 biodiversity is exposed to forest disturbances and management globally.

51 Forests are commonly disturbed and anthropogenically managed (Lewis et al. 2015).
52 Forest disturbances can be caused by both natural causes (Thom & Seidl 2016), such as
53 wildfires or insect outbreaks, and anthropogenic causes, such as selective logging and edge
54 effects (Dantas de Paula et al. 2016; Matricardi et al. 2020), both of which can drive a forest to
55 a ‘degraded’ state (Ghazoul et al. 2015; Chazdon et al. 2016). Edge effects include roads or
56 nearby artificial land-use types that can reduce forest carbon biomass (Silva Junior et al. 2020)
57 and affect local microclimates (Ewers & Banks-Leite 2013; Hardwick et al. 2015). Increasingly
58 disturbed and degraded forests have become the focus of policy attention (Hansen et al. 2020;
59 Newton et al. 2020), with a recent study having found that the amount of ongoing forest
60 degradation already surpasses deforestation in the Brazilian Amazon (Matricardi et al. 2020).
61 In addition to natural forest disturbance, many forests across the world are anthropogenically
62 managed, for instance by active planting of forests for production of timber and non-timber
63 products (Chazdon et al. 2016). Anthropogenically exploited trees and timber plantations cover
64 most of western Europe, Southern China, Japan and America (Jung et al. 2020), and
65 agroforestry has long been recognized as a traditional form of land management, often using

66 many native tree species (Zomer et al. 2016). Yet, the extent to which forest-associated
67 biodiversity is exposed to different forest management types is unclear.

68 Owing to the reduction and simplification of structural complexity, disturbed and
69 planted forests often have considerably lower biodiversity value (Chazdon et al. 2016).
70 Disturbances and edge effects are commonly identified as a driver of worsening conditions in
71 protected areas (Laurance et al. 2012), impacting local biodiversity (Pfeifer et al. 2017). And
72 while (even exotic) forest plantations can potentially connect or form a tree-covered buffer
73 around natural forest patches (Brokerhoff et al. 2008; Pellikka et al. 2009), there is mounting
74 evidence that especially mono-culture plantations, such as pine or oil palm plantations, provide
75 little or only reduced benefits for biodiversity (Farwig et al. 2008; Newbold et al. 2015).
76 Although mixed, traditional management forms such as agroforestry can provide critical
77 habitat (Hemp 2006; Bhagwat et al. 2008) and maintain a comparable high level of biodiversity
78 (Jung et al. 2017), they also commonly have an altered species composition (Harvey &
79 González Villalobos 2007). Yet, most current global forest pressure maps (Malhi et al. 2014;
80 Lewis et al. 2015; Grantham et al. 2020) or frameworks for conservation or restoration
81 assessments have ignored managed forests (Grantham et al. 2020; Hansen et al. 2020), or
82 included them for a limited number of countries (Hill et al. 2019), presumably because of a
83 lack of spatial data.

84 Remote sensing can assist in reliably identifying forest disturbances and management
85 types. Fine-scale differences in remote sensing observations combined with visual evidence of
86 selective logging or human structures nearby allow the separation of (visually) undisturbed
87 from disturbed forests (Dantas de Paula et al. 2016; Curtis et al. 2018). Similarly, trees that
88 were planted in regular spacing, such as timber or fruit plantations can be identified and
89 delineated from high-resolution satellite imagery. Here previous studies have used single or
90 multiple satellite observations to map the world's intact forests (Potapov et al. 2008), small-

91 scale disturbances caused by selective logging (DeVries et al. 2015) or regional gradients of
92 different management (Pfeifer et al. 2016). Yet, until recently, no global remote-sensing
93 derived maps of forest management types existed, with earlier attempts instead relying on
94 several environmental predictors, little independent training or validation data (Schulze et al.
95 2019), or only being available at coarse scale (Curtis et al. 2018). The Nature Map Initiative
96 has produced a new global high-resolution layer describing not only undisturbed and disturbed
97 forests, but also several types of forest management identifiable from remote sensing.

98 In this study we investigate the exposure of forest-associated biodiversity to different
99 types of forest management globally. Specifically, we combine estimates of the distribution of
100 forest-associated vertebrate species with a novel, remote-sensing derived global map of forest
101 management for the year 2015 (Fig. 1). We hypothesize that *(i)* the distributional range of
102 forest-associated species is to a large degree covered by forests that are either disturbed or
103 under some form of forest management, *(ii)* species threatened by extinction or threats
104 associated with disturbances or forest extraction are disproportionately affected by parts of
105 their range covered by disturbed or managed forests, and that *(iii)* protected areas are
106 increasingly established in forests that cannot be considered undisturbed. Collectively, these
107 hypotheses would suggest that several forest-associated species are confined to marginal intact
108 habitats and addressing the management of these forests is critical to revert global biodiversity
109 declines and improve the ecological state of forests globally.

110

111 **Methods:**

112

113 Data on disturbed and planted forests came from a novel global forest management layer
114 produced for the year 2015 at 100m resolution (Lesiv et al. submitted, 2020). The global forest
115 management layer has in total six different classes, namely undisturbed (no visual signs of

116 human impact), disturbed (visual impacts such as selective logging, clear cuts or built-up roads
117 and human structures), and replanted forest (with a rotation period longer than 20 years), as
118 well as woody plantations (with a rotation period of up to 15 years) and oil palm plantations,
119 and agroforestry (which includes fruit tree plantations, shelterbelts or isolated trees on tropical
120 pastures). We stress that the identification of managed forests was limited to those forms that
121 are visually identifiable by remote sensing. The forest management layer was created entirely
122 from remote sensing, combining high resolution training data, satellite time series and machine
123 learning and shows overall good accuracy (81%) with independent validation data. The layer
124 is described in full elsewhere and we refer to (Lesiv et al. submitted, 2020) for a more detailed
125 description.

126 From the forest management layer we only considered plantations that had at least 10%
127 tree cover fraction according to the global Copernicus Land cover product (Buchhorn et al.
128 2020) and following FAO definitions of forest. Opposed to other products of human impact on
129 forests (Grantham et al. 2020), the forest management layer does not depend on any ‘scores’,
130 stacking of arbitrarily selected land-use layers or definitions of ‘intactness’, but instead
131 identifies forest management and disturbances directly from remote sensing. While this makes
132 the mapped classes in our opinion more transparent, robust and replicable, we acknowledge
133 that many forms of fine-scale forest disturbance can not reliably be detected from satellite
134 imagery alone (Peres et al. 2006), which makes any estimates presented conservative.

135 For data on forest-associated vertebrate species distribution, we used spatial data on the
136 ranges of amphibians (5,547), birds (8,434), reptiles (4,369, although we stress that not all
137 reptiles globally have been assessed yet) and mammals (4,032) from the global IUCN Red List
138 (ver 2019-2, (IUCN 2019)). We filtered the IUCN provided range data using standard criteria,
139 e.g. by selecting only those parts of a species’ range where (i) it is extant or possibly extinct,
140 2) where it is native or reintroduced and 3) where the species is seasonally resident, breeding,

141 non-breeding, migratory or where the seasonal occurrence is uncertain. Lastly, we limited our
142 analyses only to those species that are ‘forest-associated’, which we define as any species for
143 which ‘Forest’ is listed as known habitat preference according to IUCN. Lastly we obtained
144 data on the threat status (e.g. CR, EN, VU, NT, LC, DD) of all selected species as well as -
145 where available - data on IUCN listed threat types, such as for example ‘2.2 Wood & Pulp
146 Plantations’ or ‘5.1 Hunting & trapping terrestrial animals’, which we broadly grouped into
147 threat groups (See SI Table 1) and those with medium or high impact on a species.

148 In addition to data on the potential distribution of forest-associated vertebrate species,
149 we also extracted similar statistics for all protected areas designated in or after 1995 available
150 through the World Database on Protected Areas (IUCN & UNEP-WCMC 2020) from Google
151 Earth Engine. We only selected established protected areas and furthermore excluded
152 UNESCO-MAB Biosphere Reserves, following WDPA guidelines (Bingham et al. 2019).

153 We then summarized for each forest-associated species and protected area the amount
154 of forest area (in ha) under each form of forest management. Protected areas which had no
155 forest cover within their boundary were excluded from the analyses. To test whether forest area
156 and management type differed among threatened (i.e. all CR, EN and VU) and non-threatened
157 species, we used a logistic regression model fitted in a Bayesian framework using default
158 uninformative priors (Bürkner 2018). Conditional model estimates were derived by
159 summarizing the posterior in a mean estimate and 95% credible interval. We investigated
160 model convergence by assessing the rhat statistic (all ~1.0) and the Markov chain Monte Carlo
161 (MCMC) chains visually (SI Fig. 2). All data extractions and preprocessing were conducted on
162 Google Earth Engine (Gorelick et al. 2017) and visualized in R (Wickham 2016; R Core Team
163 2019).

164

165 **Results:**

166 About 55% of the world's forests were disturbed or managed in 2015. We found that 12,293
167 forest-associated vertebrate species (or 55.5% of all considered species) had disturbed or
168 human managed forests as the most common type of forest within their range (Fig. 2, SI Table
169 2), and among reptiles, twice as many forest-associated species had most of their range now
170 occupied by disturbed or planted forests (Fig. 2). Worryingly, forests within the ranges of 1,122
171 forest-associated species were predominantly of woody and oil-palm plantation and
172 agroforestry type (SI Fig. 1, SI. Tab. 1).

173 The amount of forest under different management types available to forest-associated species
174 affected whether a species was classified as threatened by extinction. We found that an increase
175 in forest area decreased extinction risk across all forest-associated species (SI Fig. 1). However
176 species with a greater amount of undisturbed, disturbed and agroforestry forested areas in their
177 range were more likely to be classified as non-threatened (Fig. 3a). In contrast, an increase in
178 woody or oil palm plantation area did not decrease extinction risk probability nor did any
179 difference in the amount of replanted forest (Fig. 3a). Species classified as non-threatened had
180 overall larger amounts of undisturbed and disturbed forest within their range as well as a greater
181 proportion of replanted small forest fragments present than for comparable threatened species
182 (Fig. 3b, SI Fig. 3). Critically, the amount and distribution of forest area under different
183 management types for data deficient species mirrored that of threatened species (Fig. 3b). If
184 the distribution of unmanaged, disturbed and managed forests in a species range is any
185 indication, this suggests that forest-associated data deficient vertebrate species are, in average,
186 more likely to be at high risk of extinction than not.

187 Furthermore, we found that, for species with available threat information, disturbed
188 forests were the most common forest management type (SI Fig. 4). Agroforestry tended to be
189 more often the dominant type of forest management within the range of species threatened by
190 wood harvesting, persecution and subsistence farming (SI Fig. 4). Interestingly, many species

191 which - according to IUCN - are strongly impacted by wood harvesting, did not have
192 significantly more woody or fruit plantations in their ranges than the other forest management
193 types.

194 Forests in terrestrial protected areas were under differing management types. Globally,
195 protected areas contained 301 million ha of undisturbed forest (1.17% of all undisturbed forest),
196 121 million ha disturbed forest (0.5% of all disturbed forest) as well as 36.1 million ha of
197 planted or managed forest (0.3% of all managed forest). Yet, irrespective of any IUCN assigned
198 category of protection, the dominant forest management type within protected areas was
199 disturbed forest, followed by replanted and then undisturbed forests (Fig. 4a). Interestingly, the
200 majority of new protected areas designated between the years 2000 and 2010 are dominated by
201 disturbed and replanted forest in the year 2015 (Fig. 4b), while few protected areas
202 predominantly contain undisturbed forest. Predictably, few protected areas were established
203 over predominantly woody or fruit plantations, indicating that protection measures mainly
204 aimed at conserving forest that is not under intensive use by humans.

205

206 **Discussion:**

207 Humans have altered the majority of forests across the world, with 55% of forests being either
208 disturbed or managed by humans. Our results show that over half of the ranges of forest-
209 associated vertebrate species across the world are covered by either disturbed or human
210 managed forests (Fig. 2), with the amount being particularly high for species threatened by
211 extinction (Fig. 3). Furthermore, we show that many designated protected areas are already
212 dominated by disturbed and replanted forests (Fig. 4), highlighting both the value of past forest
213 restoration measures as well as the need to step up protection of remaining undisturbed forests.

214 Replanting forest is considered to be a primary target for restoring degraded habitats.

215 Interestingly, our results indicate that increasing or decreasing the amount of planted forest

216 within forest-associated species ranges has little influence on whether the species is currently

217 classified as threatened by extinction (Fig. 3). This could indicate that most previous forest

218 restoration efforts have either not yet explicitly benefitted forest-associated vertebrate species,

219 or lag effects due to outdated IUCN assessments or past land use change affect the conservation

220 status (Chazdon et al. 2008; Jung et al. 2019; Veldman et al. 2019). For example, areas

221 previously covered by native tree species in Kenya have been increasingly afforested using

222 exotic pine trees, often with little benefit for native species (Farwig et al. 2008; Pellikka et al.

223 2009). Human planted forests are not necessarily bad for biodiversity (Carnus et al. 2006), they

224 are in fact essential if we are to subject large tracts of degraded, previously forested land to

225 habitat restoration (Chazdon 2008; Chazdon et al. 2008) and climate mitigation efforts. Yet

226 those planted forests need to be established in places where they do not displace natural

227 habitats, such as forests or savannas (Veldman et al. 2019), or native tree species, and do not

228 negatively impact the livelihood of local communities in developing countries (Malkamäki et

229 al. 2018). Thus, further afforestation and reforestation efforts should be carefully evaluated

230 with regards to local contexts and their potential benefits for biodiversity conservation.

231 Our results also have important implications for conservation applications that use

232 species habitat preferences and land-cover maps to refine species ranges to Area of Habitat

233 (AOH) maps (Brooks et al. 2019). Because, most existing AOH use exclusively land cover

234 products (Rondinini et al. 2011; Ficetola et al. 2015), thus ignoring forest management, it

235 follows that AOH might be grossly overestimated if populations of forest-associated species

236 are not able to persist in disturbed or managed forests. Novel hybrid maps have been developed

237 that alleviate some of these issues by accounting for both land-cover and land-use (Jung et al.

238 2020), however, these maps do not thematically consider all possible forms of management

239 that might be relevant for ecological or conservation studies. We suggest that more evidence is
240 needed on the persistence of forest-associated species in disturbed and managed forests to
241 ensure that maps of habitat-based refinements are fit for purpose.

242 While the global forest management map is the most detailed spatial-explicit
243 quantification to date, we acknowledge that not all forms of anthropogenic disturbances can
244 likely be detected from remote sensing (Peres et al. 2006), thus our estimates will likely be an
245 underestimate. This is exemplified by the fact that although many forest-associated species are
246 known to be sensitive to anthropogenic threats (Maxwell et al. 2016), we found few differences
247 between species threatened by disturbances or wood harvesting (SI Fig. 4). We can also not
248 rule out that some types of forests have been misclassified, which can impact our analyses
249 (Sexton et al. 2016; Estes et al. 2018). Furthermore, we also highlight that our analysis does
250 not take into account species occurrence and relative abundance across forest management
251 types (we performed only range overlaps) and many - particularly disturbance sensitive -
252 species do not necessarily inhabit all forests everywhere (Pfeifer et al. 2017). More work is
253 needed on the impact of disturbances and wood harvesting on species local occurrence,
254 population density and persistence, as well as more detailed mapping of forest management
255 types at national and regional scales.

256 As we move into a decade of ecosystem restoration, we urge conservationists and policy
257 makers to consider different types of forest management. Critically, ignoring forest
258 management and focussing on forest cover alone, can give the misleading impression of no-
259 net forest loss when in fact native, undisturbed forests are being replaced by woody plantations
260 or getting disturbed (Tropek et al. 2014). With an increasing proportion of the Earth's forests
261 being disturbed or managed, we need to better account for and investigate the impact of forest
262 management on the persistence of species populations and the effectiveness of conservation
263 efforts.

264 **Code availability** Code used for the analysis and extracted data will be made openly
265 available upon acceptance <To be inserted >

266 **Data availability** The global forest management layer will be made openly available as part
267 of another article. Data on the distribution of vertebrate species and protected areas can be
268 requested from the respective data providers, namely IUCN and Birdlife International. Data on
269 threats status and existing threats are available from the IUCN Red List. Extracted data for each
270 species is made available in SI Table 2 and the code repository.

271

272

273 **References:**

- 274 Bhagwat, S. a., Willis, K.J., Birks, H.J.B. & Whittaker, R.J. (2008). Agroforestry: a refuge
275 for tropical biodiversity? *Trends Ecol. Evol.*, 23, 261–7.
- 276 Bingham, H.C., Juffe Bignoli, D., Lewis, E., MacSharry, B., Burgess, N.D., Visconti, P.,
277 Deguignet, M., Misrachi, M., Walpole, M., Stewart, J.L., Brooks, T.M. & Kingston,
278 N. (2019). Sixty years of tracking conservation progress using the World Database on
279 Protected Areas. *Nat. Ecol. Evol.*
- 280 Brockerhoff, E.G., Jactel, H., Parrotta, J. a., Quine, C.P. & Sayer, J. (2008). Plantation forests
281 and biodiversity: oxymoron or opportunity? *Biodivers. Conserv.*, 17, 925–951.
- 282 Brooks, T.M., Pimm, S.L., Akçakaya, H.R., Buchanan, G.M., Butchart, S.H.M., Foden, W.,
283 Hilton-Taylor, C., Hoffmann, M., Jenkins, C.N., Joppa, L., Li, B.V., Menon, V.,
284 Ocampo-Peñuela, N. & Rondinini, C. (2019). Measuring Terrestrial Area of Habitat
285 (AOH) and Its Utility for the IUCN Red List. *Trends Ecol. Evol.*, 34, 977–986.
- 286 Buchhorn, M., Lesiv, M., Tsendbazar, N., Herold, M., Bertels, L. & Smets, B. (2020).
287 Copernicus Global Land Cover Layers—Collection 2. *Remote Sens.*, 12, 1044.

- 288 Bürkner, P.-C. (2018). Advanced Bayesian Multilevel Modeling with the R Package *brms*. *R*
289 *J.*, 10, 395.
- 290 Carnus, J.M., Parrotta, J., Brockerhoff, E., Arbez, M., Jactel, H., Kremer, A., Lamb, D.,
291 O'Hara, K. & Walters, B. (2006). Planted forests and biodiversity. *J. For.*, 104, 65–
292 777.
- 293 Chazdon, R.L. (2008). Beyond Deforestation: Restoring Forests and Ecosystem Services on
294 Degraded Lands. *Science*, 320, 1458–1460.
- 295 Chazdon, R.L., Brancalion, P.H.S., Laestadius, L., Bennett-Curry, A., Buckingham, K.,
296 Kumar, C., Moll-Rocek, J., Vieira, I.C.G. & Wilson, S.J. (2016). When is a forest a
297 forest? Forest concepts and definitions in the era of forest and landscape restoration.
298 *Ambio*, 45, 538–550.
- 299 Chazdon, R.R.L., Harvey, C.C.A., Komar, O., Griffith, D.M., Ferguson, B.G., Mart??nez-
300 Ramos, M., Morales, H., Nigh, R., Soto-Pinto, L., Van Breugel, M. & Philpott, S.M.
301 (2008). Beyond reserves: A research agenda for conserving biodiversity in human-
302 modified tropical landscapes. *Biotropica*, 41, 142–153.
- 303 Curtis, P.G., Slay, C.M., Harris, N.L., Tyukavina, A. & Hansen, M.C. (2018). Classifying
304 drivers of global forest loss. *Science*, 361, 1108–1111.
- 305 Dantas de Paula, M., Groeneveld, J. & Huth, A. (2016). The extent of edge effects in
306 fragmented landscapes: Insights from satellite measurements of tree cover. *Ecol.*
307 *Indic.*, 69, 196–204.
- 308 DeVries, B., Verbesselt, J., Kooistra, L. & Herold, M. (2015). Robust monitoring of small-
309 scale forest disturbances in a tropical montane forest using Landsat time series.
310 *Remote Sens. Environ.*, 161, 107–121.
- 311 Estes, L., Chen, P., Debats, S., Evans, T., Ferreira, S., Kuemmerle, T., Ragazzo, G.,
312 Sheffield, J., Wolf, A., Wood, E. & Caylor, K. (2018). A large-area, spatially

- 313 continuous assessment of land cover map error and its impact on downstream
314 analyses. *Glob. Change Biol.*, 24, 322–337.
- 315 Ewers, R.M. & Banks-Leite, C. (2013). Fragmentation Impairs the Microclimate Buffering
316 Effect of Tropical Forests. *PLoS ONE*, 8, e58093.
- 317 Farwig, N., Sajita, N. & Böhning-Gaese, K. (2008). Conservation value of forest plantations
318 for bird communities in western Kenya. *For. Ecol. Manag.*, 255, 3885–3892.
- 319 Ficetola, G.F., Rondinini, C., Bonardi, A., Baisero, D. & Padoa-Schioppa, E. (2015). Habitat
320 availability for amphibians and extinction threat: a global analysis. *Divers. Distrib.*,
321 21, 302–311.
- 322 Ghazoul, J., Burivalova, Z., Garcia-Ulloa, J. & King, L.A. (2015). Conceptualizing Forest
323 Degradation. *Trends Ecol. Evol.*, 30, 622–632.
- 324 Gibson, L., Lee, T.M., Koh, L.P., Brook, B.W., Gardner, T. a., Barlow, J., Peres, C. a.,
325 Bradshaw, C.J. a., Laurance, W.F., Lovejoy, T.E. & Sodhi, N.S. (2011). Primary
326 forests are irreplaceable for sustaining tropical biodiversity. *Nature*, 478, 378–381.
- 327 Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. & Moore, R. (2017).
328 Google Earth Engine: Planetary-scale geospatial analysis for everyone. *Remote Sens.*
329 *Environ.*, 202, 18–27.
- 330 Grantham, H.S., Duncan, A., Evans, T.D., Jones, K., Beyer, H., Schuster, R., Walston, J.,
331 Ray, J., Robinson, J., Callow, M., Clements, T., Costa, H.M., DeGemmis, A., Elsen,
332 P.R., Ervin, J., Franco, P., Goldman, E., Goetz, S., Hansen, A., Hofsvang, E., Jantz,
333 P., Jupiter, S., Kang, A., Langhammer, P., Laurance, W.F., Lieberman, S., Linkie, M.,
334 Malhi, Y., Maxwell, S., Mendez, M., Mittermeier, R., Murray, N., Possingham, H.,
335 Radachowsky, J., Samper, C., Silverman, J., Shapiro, A., Strassburg, B., Stevens, T.,
336 Stokes, E., Taylor, R., Tear, T., Tizard, R., Venter, O., Visconti, P., Wang, S. &
337 Watson, J.E.M. (2020). Modification of forests by people means only 40% of

- 338 remaining forests have high ecosystem integrity. *bioRxiv*.
- 339 Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., Lovejoy,
340 T.E., Sexton, J.O., Austin, M.P., Collins, C.D., Cook, W.M., Damschen, E.I., Ewers,
341 R.M., Foster, B.L., Jenkins, C.N., King, A.J., Laurance, W.F., Levey, D.J., Margules,
342 C.R., Melbourne, B.A., Nicholls, A.O., Orrock, J.L., Song, D.-X. & Townshend, J.R.
343 (2015). Habitat fragmentation and its lasting impact on Earth's ecosystems. *Sci. Adv.*,
344 1, e1500052–e1500052.
- 345 Hansen, A.J., Burns, P., Ervin, J., Goetz, S.J., Hansen, M., Venter, O., Watson, J.E.M., Jantz,
346 P.A., Virnig, A.L.S., Barnett, K., Pillay, R., Atkinson, S., Supples, C., Rodríguez-
347 Buritica, S. & Armenteras, D. (2020). A policy-driven framework for conserving the
348 best of Earth's remaining moist tropical forests. *Nat. Ecol. Evol.*
- 349 Hardwick, S.R., Toumi, R., Pfeifer, M., Turner, E.C., Nilus, R. & Ewers, R.M. (2015). The
350 relationship between leaf area index and microclimate in tropical forest and oil palm
351 plantation: Forest disturbance drives changes in microclimate. *Agric. For. Meteorol.*,
352 201, 187–195.
- 353 Harvey, C. & González Villalobos, J. a. (2007). Agroforestry systems conserve species-rich
354 but modified assemblages of tropical birds and bats. *Biodivers. Conserv.*, 16, 2257–
355 2292.
- 356 Hemp, A. (2006). The Banana Forests of Kilimanjaro: Biodiversity and Conservation of the
357 Chagga Homegardens. *Biodivers. Conserv.*, 15, 1193–1217.
- 358 Hill, S.L.L., Arnell, A., Maney, C., Butchart, S.H.M., Hilton-Taylor, C., Ciccarelli, C., Davis,
359 C., Dinerstein, E., Purvis, A. & Burgess, N.D. (2019). Measuring Forest Biodiversity
360 Status and Changes Globally. *Front. For. Glob. Change*, 2.
- 361 IUCN. (2012). Habitats Classification Scheme, Version 3.1, 1–14.
- 362 IUCN. (2019). IUCN 2019. The IUCN Red List of Threatened Species. Version 2019.2

- 363 [WWW Document]. *IUCN Redlist*. URL www.iucnredlist.org
- 364 IUCN & UNEP-WCMC. (2020). Protected Planet: The World Database on Protected Areas
- 365 (WDPA) [On-line] [WWW Document]. URL www.protectedplanet.net
- 366 Jung, M., Dahal, P.R., Butchart, S.H.M., Donald, P.F., De Lamo, X., Lesiv, M., Kapos, V.,
- 367 Rondinini, C. & Visconti, P. (2020). A global map of terrestrial habitat types. *Sci.*
- 368 *Data*, 7, 256.
- 369 Jung, M., Hill, S.L.L., Platts, P.J., Marchant, R., Siebert, S., Fournier, A., Munyekeny, F.B.,
- 370 Purvis, A., Burgess, N.D. & Newbold, T. (2017). Local factors mediate the response
- 371 of biodiversity to land use on two African mountains. *Anim. Conserv.*, 20, 370–381.
- 372 Jung, M., Rowhani, P. & Scharlemann, J.P.W. (2019). Impacts of past abrupt land change on
- 373 local biodiversity globally. *Nat. Commun.*, 10, 5474.
- 374 Laurance, W.F., Useche, D.C., Rendeiro, J., Kalka, M., Bradshaw, C.J. a, Sloan, S.P.,
- 375 Laurance, S.G., Campbell, M., Abernethy, K., Alvarez, P., Arroyo-Rodriguez, V.,
- 376 Ashton, P., Benítez-Malvido, J., Blom, A., Bobo, K.S., Cannon, C.H., Cao, M.,
- 377 Carroll, R., Chapman, C., Coates, R., Cords, M., Danielsen, F., De Dijn, B.,
- 378 Dinerstein, E., Donnelly, M.A., Edwards, D., Edwards, F., Farwig, N., Fashing, P.,
- 379 Forget, P.-M., Foster, M., Gale, G., Harris, D., Harrison, R., Hart, J., Karpanty, S.,
- 380 Kress, W.J., Krishnaswamy, J., Logsdon, W., Lovett, J., Magnusson, W., Maisels, F.,
- 381 Marshall, A.R., McClearn, D., Mudappa, D., Nielsen, M.R., Pearson, R., Pitman, N.,
- 382 van der Ploeg, J., Plumptre, A., Poulsen, J., Quesada, M., Rainey, H., Robinson, D.,
- 383 Roetgers, C., Rovero, F., Scatena, F., Schulze, C., Sheil, D., Struhsaker, T., Terborgh,
- 384 J., Thomas, D., Timm, R., Urbina-Cardona, J.N., Vasudevan, K., Wright, S.J., Arias-
- 385 G, J.C., Arroyo, L., Ashton, M., Auzel, P., Babaasa, D., Babweteera, F., Baker, P.,
- 386 Banki, O., Bass, M., Bila-Isia, I., Blake, S., Brockelman, W., Brokaw, N., Brühl,
- 387 C.A., Bunyavejchewin, S., Chao, J.-T., Chave, J., Chellam, R., Clark, C.J., Clavijo, J.,

388 Congdon, R., Corlett, R., Dattaraja, H.S., Dave, C., Davies, G., Beisiegel, B.D.M., da
389 Silva, R.D.N.P., Di Fiore, A., Diesmos, A., Dirzo, R., Doran-Sheehy, D., Eaton, M.,
390 Emmons, L., Estrada, A., Ewango, C., Fedigan, L., Feer, F., Fruth, B., Willis, J.G.,
391 Goodale, U., Goodman, S., Guix, J.C., Guthiga, P., Haber, W., Hamer, K., Herbinger,
392 I., Hill, J., Huang, Z., Sun, I.F., Ickes, K., Itoh, A., Ivanauskas, N., Jackes, B.,
393 Janovec, J., Janzen, D., Jiangming, M., Jin, C., Jones, T., Justiniano, H., Kalko, E.,
394 Kasangaki, A., Killeen, T., King, H., Klop, E., Knott, C., Koné, I., Kudavidanage, E.,
395 Ribeiro, J.L.D.S., Lattke, J., Laval, R., Lawton, R., Leal, M., Leighton, M., Lentino,
396 M., Leonel, C., Lindsell, J., Ling-Ling, L., Linsenmair, K.E., Losos, E., Lugo, A.,
397 Lwanga, J., Mack, A.L., Martins, M., McGraw, W.S., McNab, R., Montag, L.,
398 Thompson, J.M., Nabe-Nielsen, J., Nakagawa, M., Nepal, S., Norconk, M., Novotny,
399 V., O'Donnell, S., Opiang, M., Ouboter, P., Parker, K., Parthasarathy, N., Pisciotta,
400 K., Prawiradilaga, D., Pringle, C., Rajathurai, S., Reichard, U., Reinartz, G., Renton,
401 K., Reynolds, G., Reynolds, V., Riley, E., Rödel, M.-O., Rothman, J., Round, P.,
402 Sakai, S., Sanaiotti, T., Savini, T., Schaab, G., Seidensticker, J., Siaka, A., Silman,
403 M.R., Smith, T.B., de Almeida, S.S., Sodhi, N., Stanford, C., Stewart, K., Stokes, E.,
404 Stoner, K.E., Sukumar, R., Surbeck, M., Tobler, M., Tscharntke, T., Turkalo, A.,
405 Umapathy, G., van Weerd, M., Rivera, J.V., Venkataraman, M., Venn, L., Verea, C.,
406 de Castilho, C.V., Waltert, M., Wang, B., Watts, D., Weber, W., West, P., Whitacre,
407 D., Whitney, K., Wilkie, D., Williams, S., Wright, D.D., Wright, P., Xiankai, L.,
408 Yonzon, P. & Zamzani, F. (2012). Averting biodiversity collapse in tropical forest
409 protected areas. *Nature*, 489, 290–4.
410 Lesiv et al. (submitted). Global forest management data for 2015 at a 100 m resolution. *Nat.*
411 *Sci. Data*.
412 Lesiv, M., Schepaschenko, D., Buchhorn, M., See, L., Duerauer, M., Georgieva, I., Jung, M.,

- 413 Hofhansl, F., Schulze, K., Bilous, A., Blyshchyk, V., Mukhortova, L., Muñoz Brenes,
414 C., Krivobokov, L.V., Ntie, S., Tsogt, K., Pietsch, S., Tikhonova, E., Kim, M., Su, Y.-
415 F., Zadorozhniuk, R., Sirbu, F., Panging, K., Bilous, S., Kovalevskii, S.B., Harb
416 Rabia, A., Vasylyshyn, R., Ahmed, R., Diachuk, P., Kovalevskyi, S.S., Bungnamei,
417 K., Bordolo, K., Churilov, A., Vasylyshyn, O., Sahariah, D., Tertyshnyi, A.P., Saikia,
418 A., Žiga, M., Singha, K., Feshchenko, R., Prestele, R., Akhtar, I.H., Sharma, K.,
419 Domashovets, G., Spawn, S., Blyshchyk, O., Slyva, O., Ilkiv, M., Melnyk, O.,
420 Sliusarchuk, V., Karpuk, A., Terentiev, A., Bilous, V., Blyshchyk, K., Bilous, M.,
421 Bogovyk, N. & Blyshchyk, I. (2020). *Methodology for generating a global forest*
422 *management layer*. Zenodo.
- 423 Lewis, S.L., Edwards, D.P. & Galbraith, D. (2015). Increasing human dominance of tropical
424 forests. *Science*, 349, 827–832.
- 425 Malhi, Y., Gardner, T.A., Goldsmith, G.R., Silman, M.R. & Zelazowski, P. (2014). Tropical
426 Forests in the Anthropocene. *Annu. Rev. Environ. Resour.*, 39, 125–159.
- 427 Malkamäki, A., D'Amato, D., Hogarth, N.J., Kanninen, M., Pirard, R., Toppinen, A. & Zhou,
428 W. (2018). A systematic review of the socio-economic impacts of large-scale tree
429 plantations, worldwide. *Glob. Environ. Change*, 53, 90–103.
- 430 Matricardi, E.A.T., Skole, D.L., Costa, O.B., Pedlowski, M.A., Samek, J.H. & Miguel, E.P.
431 (2020). Long-term forest degradation surpasses deforestation in the Brazilian
432 Amazon. *Science*, 369, 1378–1382.
- 433 Maxwell, S.L., Fuller, R.A., Brooks, T.M. & Watson, J.E.M. (2016). Biodiversity: The
434 ravages of guns, nets and bulldozers. *Nature*, 536, 143–145.
- 435 Melo, I., Ochoa-Quintero, J.M., Oliveira Roque, F. & Dalsgaard, B. (2018). A review of
436 threshold responses of birds to landscape changes across the world. *J. Field Ornithol.*,
437 89, 303–314.

- 438 Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L.,
439 Bennett, D.J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-
440 Londoño, S., Edgar, M.J., Feldman, A., Garon, M., Harrison, M.L.K., Alhusseini, T.,
441 Ingram, D.J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., Correia,
442 D.L.P., Martin, C.D., Meiri, S., Novosolov, M., Pan, Y., Phillips, H.R.P., Purves,
443 D.W., Robinson, A., Simpson, J., Tuck, S.L., Weiher, E., White, H.J., Ewers, R.M.,
444 Mace, G.M., Scharlemann, J.P.W. & Purvis, A. (2015). Global effects of land use on
445 local terrestrial biodiversity. *Nature*, 520, 45–50.
- 446 Newton, P., Kinzer, A.T., Miller, D.C., Oldekop, J.A. & Agrawal, A. (2020). The Number
447 and Spatial Distribution of Forest-Proximate People Globally. *One Earth*, 3, 363–370.
- 448 Pellikka, P.K.E., Lötjönen, M., Siljander, M. & Lens, L. (2009). Airborne remote sensing of
449 spatiotemporal change (1955–2004) in indigenous and exotic forest cover in the Taita
450 Hills, Kenya. *Int. J. Appl. Earth Obs. Geoinformation*, 11, 221–232.
- 451 Peres, C.A., Barlow, J. & Laurance, W.F. (2006). Detecting anthropogenic disturbance in
452 tropical forests. *Trends Ecol. Evol.*, 21, 227–9.
- 453 Pfeifer, M., Kor, L., Nilus, R., Turner, E., Cusack, J., Lysenko, I., Khoo, M., Chey, V.K.,
454 Chung, A.C. & Ewers, R.M. (2016). Mapping the structure of Borneo's tropical
455 forests across a degradation gradient. *Remote Sens. Environ.*, 176, 84–97.
- 456 Pfeifer, M., Lefebvre, V., Peres, C.A., Banks-Leite, C., Wearn, O.R., Marsh, C.J., Butchart,
457 S.H.M., Arroyo-Rodríguez, V., Barlow, J., Cerezo, A., Cisneros, L., D'Cruze, N.,
458 Faria, D., Hadley, A., Harris, S.M., Klingbeil, B.T., Kormann, U., Lens, L., Medina-
459 Rangel, G.F., Morante-Filho, J.C., Olivier, P., Peters, S.L., Pidgeon, A., Ribeiro,
460 D.B., Scherber, C., Schneider-Maunoury, L., Struebig, M., Urbina-Cardona, N.,
461 Watling, J.I., Willig, M.R., Wood, E.M. & Ewers, R.M. (2017). Creation of forest
462 edges has a global impact on forest vertebrates. *Nature*, 551, 187–191.

- 463 Potapov, P., Yaroshenko, A., Turubanova, S., Dubinin, M., Laestadius, L., Thies, C.,
- 464 Aksenov, D., Egorov, A., Yesipova, Y., Glushkov, I., Karpachevskiy, M., Kostikova,
- 465 A., Manisha, A., Tsybikova, E. & Zhuravleva, I. (2008). Mapping the world's intact
- 466 forest landscapes by remote sensing. *Ecol. Soc.*, 13.
- 467 R Core Team. (2019). *R: A Language and Environment for Statistical Computing*. R
- 468 Foundation for Statistical Computing, Vienna, Austria.
- 469 Rondinini, C., Di Marco, M., Chiozza, F., Santulli, G., Baisero, D., Visconti, P., Hoffmann,
- 470 M., Schipper, J., Stuart, S.N., Tognelli, M.F., Amori, G., Falcucci, A., Maiorano, L. &
- 471 Boitani, L. (2011). Global habitat suitability models of terrestrial mammals. *Philos.*
- 472 *Trans. R. Soc. B Biol. Sci.*, 366, 2633–2641.
- 473 Santini, L., Butchart, S.H.M., Rondinini, C., Benítez-López, A., Hilbers, J.P., Schipper,
- 474 A.M., Cengic, M., Tobias, J.A. & Huijbregts, M.A.J. (2019). Applying habitat and
- 475 population-density models to land-cover time series to inform IUCN Red List
- 476 assessments. *Conserv. Biol.*, 00, cobi.13279.
- 477 Schulze, K., Malek, Ž. & Verburg, P.H. (2019). Towards better mapping of forest
- 478 management patterns: A global allocation approach. *For. Ecol. Manag.*, 432, 776–
- 479 785.
- 480 Sexton, J.O., Noojipady, P., Song, X.-P., Feng, M., Song, D.-X., Kim, D.-H., Anand, A.,
- 481 Huang, C., Channan, S., Pimm, S.L. & Townshend, J.R. (2016). Conservation policy
- 482 and the measurement of forests. *Nat. Clim. Change*, 6, 192–196.
- 483 Silva Junior, C.H.L., Aragão, L.E.O.C., Anderson, L.O., Fonseca, M.G., Shimabukuro, Y.E.,
- 484 Vancutsem, C., Achard, F., Beuchle, R., Numata, I., Silva, C.A., Maeda, E.E., Longo,
- 485 M. & Saatchi, S.S. (2020). Persistent collapse of biomass in Amazonian forest edges
- 486 following deforestation leads to unaccounted carbon losses. *Sci. Adv.*, 6, eaaz8360.
- 487 Thom, D. & Seidl, R. (2016). Natural disturbance impacts on ecosystem services and

- 488 biodiversity in temperate and boreal forests. *Biol. Rev.*, 91, 760–781.
- 489 Tracewski, Łukasz, Butchart, S.H.M., Di Marco, M., Ficetola, G.F., Rondinini, C., Symes,
490 A., Wheatley, H., Beresford, A.E. & Buchanan, G.M. (2016). Toward quantification
491 of the impact of 21st-century deforestation on the extinction risk of terrestrial
492 vertebrates. *Conserv. Biol.*, 30, 1070–1079.
- 493 Tropek, R., Sedláček, O., Beck, J., Keil, P., Musilová, Z., Símová, I. & Storch, D. (2014).
494 Comment on “High-resolution global maps of 21st-century forest cover change”.
495 *Science*, 344, 981.
- 496 Veldman, J.W., Aleman, J.C., Alvarado, S.T., Anderson, T.M., Archibald, S., Bond, W.J.,
497 Boutton, T.W., Buchmann, N., Buisson, E., Canadell, J.G., Dechoum, M. de S., Diaz-
498 Toribio, M.H., Durigan, G., Ewel, J.J., Fernandes, G.W., Fidelis, A., Fleischman, F.,
499 Good, S.P., Griffith, D.M., Hermann, J.-M., Hoffmann, W.A., Le Stradic, S.,
500 Lehmann, C.E.R., Mahy, G., Nerlekar, A.N., Nippert, J.B., Noss, R.F., Osborne, C.P.,
501 Overbeck, G.E., Parr, C.L., Pausas, J.G., Pennington, R.T., Perring, M.P., Putz, F.E.,
502 Ratnam, J., Sankaran, M., Schmidt, I.B., Schmitt, C.B., Silveira, F.A.O., Staver, A.C.,
503 Stevens, N., Still, C.J., Strömberg, C.A.E., Temperton, V.M., Varner, J.M. &
504 Zaloumis, N.P. (2019). Comment on “The global tree restoration potential.” *Science*,
505 366, eaay7976.
- 506 Wickham, H. (2016). *ggplot2: elegant graphics for data analysis. UseR!*, Use R! 2nd edn.
507 Springer International Publishing, New York, NY.
- 508 Zomer, R.J., Neufeldt, H., Xu, J., Ahrends, A., Bossio, D., Trabucco, A., van Noordwijk, M.
509 & Wang, M. (2016). Global Tree Cover and Biomass Carbon on Agricultural Land:
510 The contribution of agroforestry to global and national carbon budgets. *Sci. Rep.*, 6,
511 29987.
- 512

513

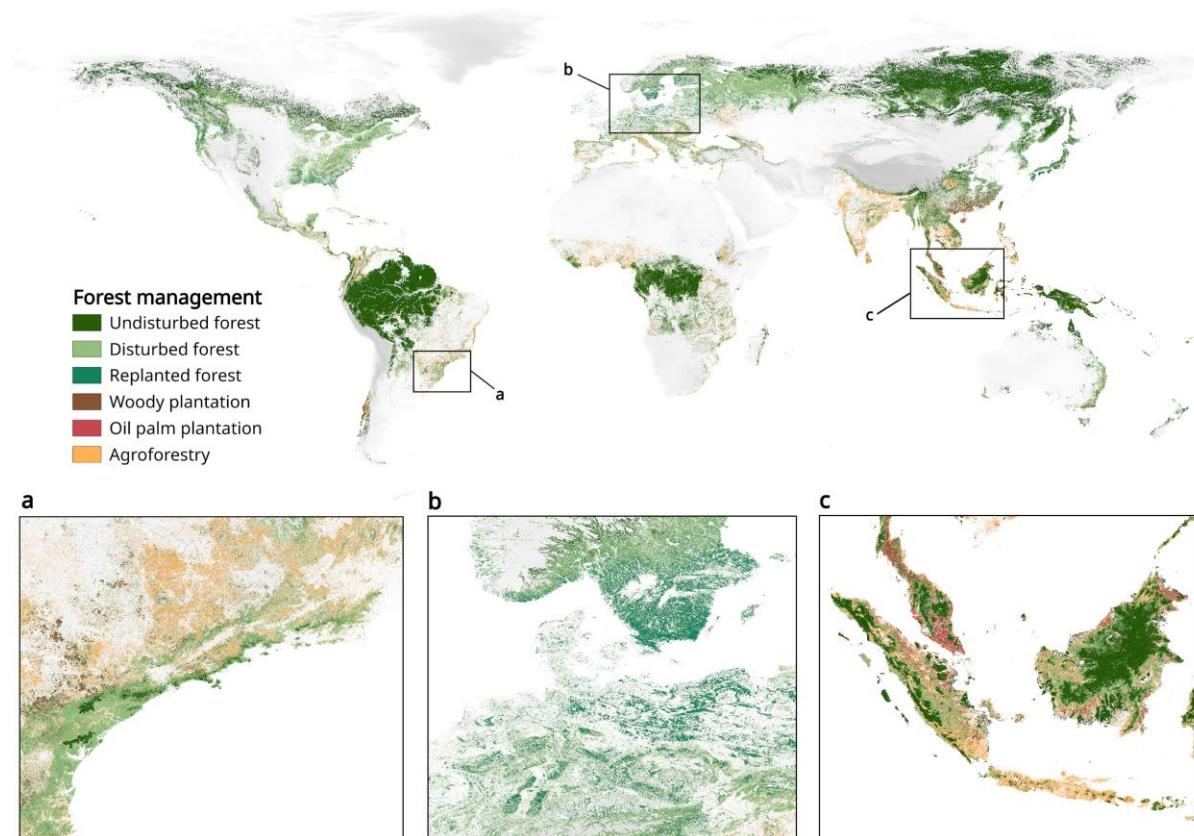
514 **Figure legends**

515 Fig. 1: Global map of forest management types at ~100m resolution. Insets highlight the (a)
516 remaining undisturbed forest in the Atlantic Forest region, (b) planted forests in
517 central and northern Europe and (c) undisturbed forest amid palm oil and fruit
518 plantations in Malaysia and Indonesia. Background shows a half-transparent Digital
519 Elevation Model.

520

521 Fig. 2: Dominant forest management type across all forested areas within each vertebrate
522 species range. Numbered labels and x-axis show the total number of species. Colours
523 and legend as in Fig. 1. Icons are public domain from phylopic.org

524

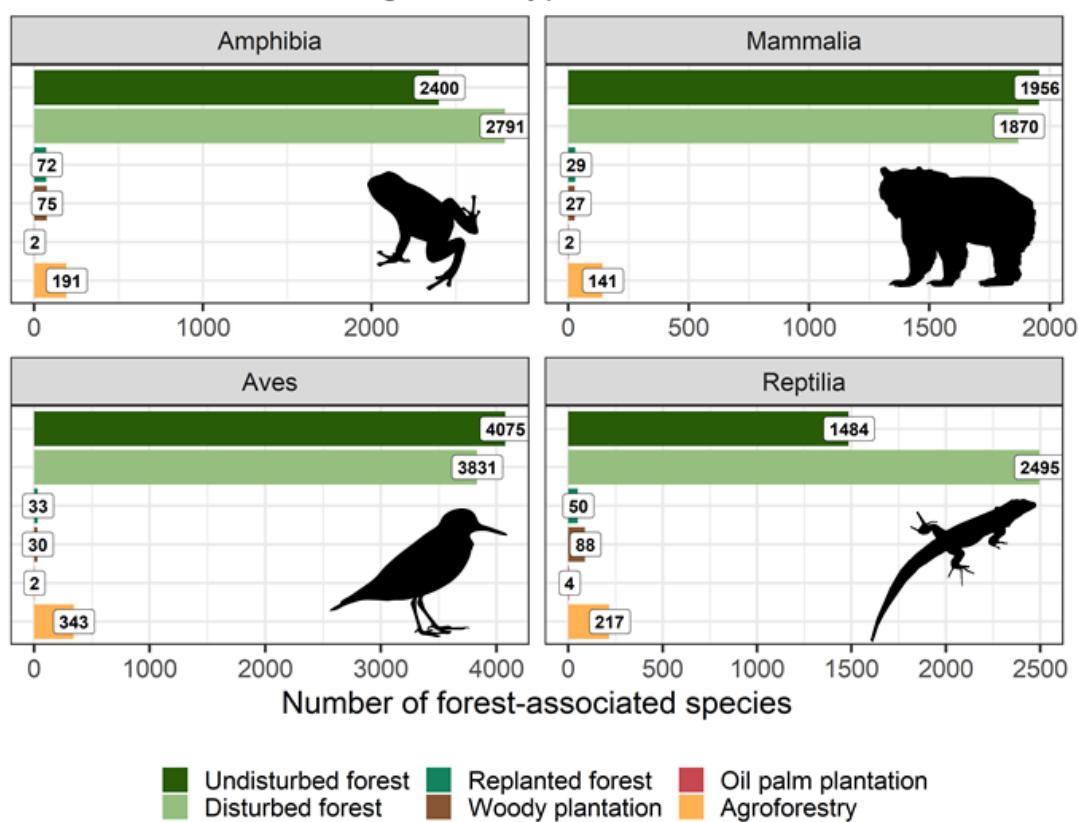

525 Fig. 3: Marginal effect of an increase in forest area (log-transformed) on extinction risk
526 probability, i.e. the probability that a species is classified as threatened according to
527 IUCN. (a) Lines are mean estimates sampled from the model posterior with
528 uncertainty bands showing the 95% credible interval. (b) Distribution of log10-
529 transformed forested area estimates across species with different threat statuses
530 according to IUCN. Colours as in Fig. 1

531

532 Fig. 4: Dominant forest management type across (a) protected areas with different IUCN
533 categorization and (b) number of newly designated protected areas in the last 25 years
534 grouped by dominant forest management type. Colours as in Fig. 1.

535

536 **Figures**



537

538 *Figure 1: Global map of forest management types at ~100m resolution. Insets highlight the*
539 *(a) remaining undisturbed forest in the Atlantic Forest region, (b) planted forests in central*
540 *and northern Europe and (c) undisturbed forest amid palm oil and fruit plantations in*
541 *Malaysia and Indonesia. Background shows a half-transparent Digital Elevation Model.*

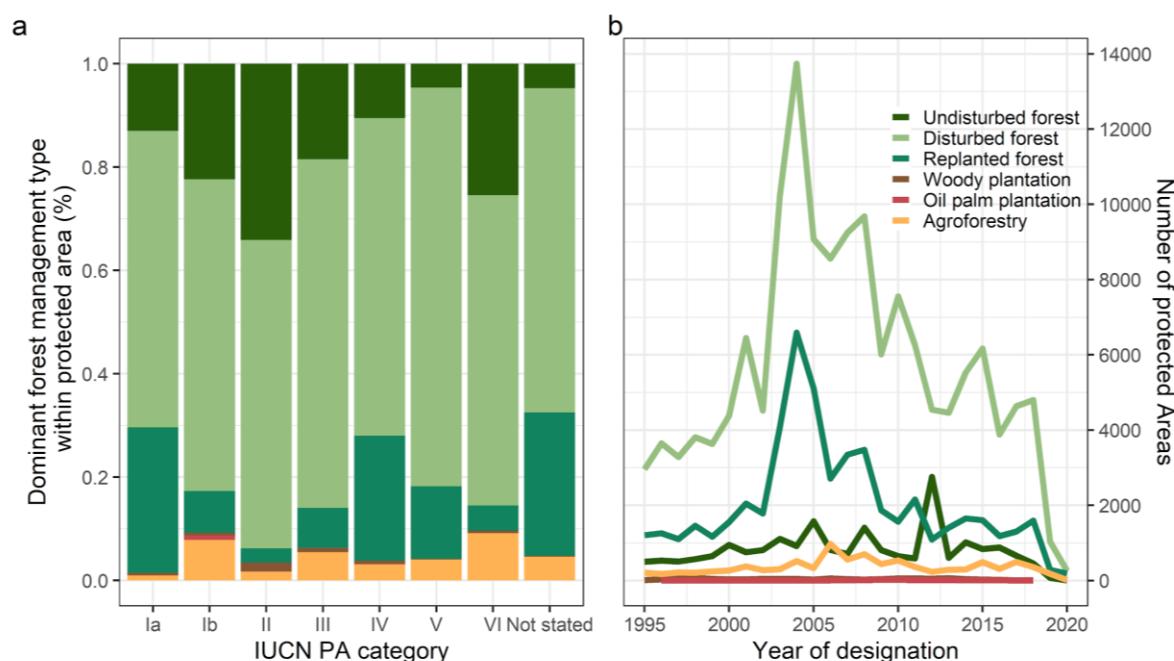
542


Dominant forest management type

543

544 *Figure 2: Dominant forest management type across all forested areas within each vertebrate*
545 *species range. Numbered labels and x-axis show the total number of species. Colours and*
546 *legend as in Fig. 1. Icons are public domain from phylopic.org*

547



548

549 *Figure 3: Marginal effect of an increase in forest area (log-transformed) on extinction risk*

550 *probability, i.e. the probability that a species is classified as threatened according to IUCN.*

551 *(a) Lines are mean estimates sampled from the model posterior with colours as in Fig 1.*

552

553 Figure 4: Dominant forest management type across (a) protected areas with different IUCN
554 categorization and (b) number of newly designated protected areas in the last 25 years
555 grouped by dominant forest management type. Colours as in Fig. 1.