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Abstract 
Circulating tumour-derived DNA (ctDNA) carries the genetic and epigenetic 
characteristics of the tumour from which it is derived and can give information about 
the biology and tissue origins of the underlying tumour. DNA methylation is an 
epigenetic mark that is specific to individual tissues and, as methylation profiles are 
disrupted in tumours, they can indicate the tissue of origin and cancer type of ctDNA. 
We have developed a set of methylation biomarkers for detecting breast cancer in 
plasma cell-free DNA (cfDNA). First, we mined publicly available methylation datasets 
to create synthetic methylation profiles that were modelled to reflect cfDNA from 
healthy subjects and cancer patients. These profiles were restricted to the most 
differentially methylated CpGs between breast tumour samples and haematopoietic 
cells. Regularised logistic regression models were trained using 10-fold cross-
validation on synthetic cfDNA datasets with distinct fractions of breast tumour DNA 
spiked in silico into healthy cfDNA with the addition of 10% of a mix of different tissues. 
Initial validation with synthetic cfDNA permitted detection of breast cancer-derived 
DNA with as little as 0.25% tumour DNA spiked in silico into healthy subject cfDNA 
with an area under ROC curve (AUC) of 0.63. Performances of classifiers increased 
with increased fractions of spike-in tumour DNA (AUCs 0.77 and 0.93 at tumour DNA 
fractions 0.5% and 1% respectively). We then combined the most discriminative CpG 
markers from our models with methylation markers of breast cancer that had already 
been published to obtain a single marker set. In vitro testing of MCF-7 breast cancer 
cell line DNA spiked into leukocyte DNA showed highly significant correlation for 
individual markers between laboratory-measured and published methylation data for 
MCF-7 and leukocytes (R > 0.89, P < 2.2 x 10-16). These preliminary data indicate 
promising results for detection of breast cancer cell line DNA using this methylation 
marker set, which now require testing in cfDNA from breast cancer patients and healthy 
controls.  
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Introduction 
Cancer is a leading cause of death, accounting for nearly 10 million deaths worldwide 
in 2020 (Sung et al., 2021). Female breast cancer is the most prevalent cancer, with 
2.3 million women diagnosed with breast cancer and 685,000 deaths globally in 2020, 
with breast cancer surpassing lung cancer as the most commonly diagnosed cancer 
(Sung et al., 2021). A key challenge in reducing mortality is to detect the disease and 
any potential residual disease or recurrence as early as possible. Early detection and 
treatment is widely viewed as being central to improving patient survival (Hawkes, 
2019; CRUK, 2020).  
The last decade has seen steadily increasing interest in the potential of liquid biopsy, 
through the analysis of plasma cell-free DNA (cfDNA), to detect diseases such as 
cancer (Corcoran and Chabner, 2018; Keller et al., 2021). Indeed, a non-invasive, 
sensitive, specific, and readily repeatable test would be of significant clinical value. 
Much work has been undertaken aiming to detect tumour-derived mutations in DNA 
that has been released from tumour cells into the circulation, the fraction of cfDNA that 
is known as circulating tumour DNA (ctDNA). cfDNA is found at low concentrations in 
plasma with a short half-life of less than an hour and, in patients with small or early-
stage cancer, ctDNA comprises a small, often tiny fraction of total circulating cfDNA. 
Of importance in cancer management, ctDNA retains the genetic and epigenetic 
characteristics of the tissue from which it was derived, including the carriage of somatic 
mutations and tissue-specific methylation profile. 
Different tissues and cell types have consistent genome-wide methylation profiles 
although such profiles show some inter-individual variation. In addition, since tumours 
have disrupted methylation patterns, the analysis of methylation patterns of plasma 
cfDNA can permit identification of tumour-derived DNA in patients with cancer, as well 
as the tissue(s) of origin of an individual's circulating cfDNA. Several groups have 
already investigated methylation in cfDNA to detect its tissue-of-origin, with generally 
encouraging results (Moss et al. 2020; Liu et al. 2020). 
cfDNA in healthy people originates mostly from the blood cell lineage, comprising 
around 55% leukocyte-derived DNA, and 30% from erythroblast DNA with additional 
smaller contributions from other tissues (Lam et al. 2017; Moss et al. 2018). In this 
report, we aimed to design a set of CpG biomarkers that could reliably detect breast 
cancer DNA in liquid biopsy samples by mining of public DNA methylation databases 
and by searching for markers of breast cancer that are already published. 
 
Materials and Methods 
 
Public data download and processing 
All analyses were performed using the R statistical package (Core Development Team, 
2020). Global methylation profiles from biological samples hybridised onto the Illumina 
Infinium HumanMethylation450K BeadChip were downloaded from The Cancer 
Genome Atlas (TCGA) using the TCGAbiolinks R package (Colaprico et al., 2016; 
Silva et al., 2016; Mounir et al., 2019) and from Gene Expression Omnibus (GEO) 
(Edgar et al., 2002; Barrett et al., 2013) (Table 1). The idat binary files were pre-
processed together using the subset-quantile within array normalization (SWAN) 
method, mapped to the hg19 genome, and ratio-converted into β-values (ratio of 
methylated to unmethylated cytosines in the target CpG motif) and M-values (the 
logarithmic transformation of β-values) using the Bioconductor minfi package (version 
1.22.1) (Maksimovic et al., 2012; Aryee et al., 2014). Probes containing a SNP at the 
CpG interrogation and/or at the single nucleotide extension, for any minor allele 
frequency were removed from the dataset. 
 
Differential methylation analysis 
We chose to restrict synthetic cfDNA assembly to the most differentially methylated 
features in the 450K methylation array. We performed differential methylation analysis 
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by comparing methylation profiles from haematopoietic cells (leukocytes and 
erythroblasts, n=350) (Demetriou et al., 2013; de Goede et al., 2015) with breast 
tumour samples (n=793) using the dmpFinder function of the minfi package. The 450K 
array features were ranked by decreasing q-value and then by the difference of the 
medians of the β-values and the top 3000 features were retained. This follows the 
widely used method of comparing tumour samples to leukocytes to detect cancer using 
liquid biopsy (Lehmann-Werman et al., 2016). 
 
In silico generation of synthetic cfDNA 
We assembled synthetic methylation profiles simulating cfDNA assuming that the 
origin of healthy cfDNA is mostly haematopoietic DNA, with minor contributions from 
other tissue types (Figure 1). By further compounding healthy synthetic cfDNA 
samples with a range of fractions of tumour methylation profiles, we aimed to set up 
an in silico detection test for cancer DNA in liquid biopsies, by training a model on 
methylation features to discriminate between healthy and cancer synthetic cfDNA 
profiles. Synthetic cfDNA samples were derived as the result of mixing healthy and 
cancer β-value profiles according to pre-defined proportions, or mixture coefficients. 
Samples were mixed by multiplying each sample vector of β-values by its mixture 
coefficient, and then adding up the resulting CpG methylation values. 
Haematopoietic profiles were first assembled by mixing each of the 329 available 
leukocyte profiles with a random erythroblast profile, in a 70:30 ratio. Then, a single 
random healthy profile from breast, colon, liver, kidney, lung or pancreas (with equal 
probability of selection across the six tissue types), was mixed with the haematopoietic 
profile, in 90:10 ratio, yielding a set of 329 healthy synthetic cfDNA profiles. Another 
set of 329 healthy cfDNA samples was constructed in the same way and then mixed 
with a single randomly sampled breast tumour methylation profile, in a set of tumour 
DNA proportions of 0.01%, 0.1%, 0.25%, 0.5%, 0.75%, 1% and 10%. This resulted in 
7 different hypotheses tested on healthy and cancer-derived cfDNA. For each 
scenario, there were thus 329 simulated healthy cfDNA profiles, and 329 simulated 
cancer patient cfDNA profiles (Figure 1). The construction of the 658 cfDNA samples 
was repeated to obtain 10 replicates for each percentage of tumour DNA, using the 
same random profiles for each replicate across the 7 percentages of tumour DNA 
tested. 
 
Model training and testing on synthetic cfDNA 
Seventy models (10 for each tumour DNA proportion) were trained on methylation 
profiles of synthetic cfDNA samples to classify cfDNA as coming from either breast 
cancer patients or healthy people. Each set of 329 cfDNA samples was divided into a 
training set with approximately 80% of the data and a testing set with the remaining 
20%. There are therefore 263 healthy cfDNA and 263 cancer cfDNA profiles in the 
training set, and 66 healthy cfDNA and 66 cancer cfDNA profiles in the testing set. 
We trained generalised linear models on the training set via penalised maximum 
likelihood with 10-fold cross-validation provided in the glmnet R package (Friedman et 
al., 2010). L1 penalised logistic regression provides an efficient lasso regularization 
path for logistic regression, which results in models with less features and smaller 
coefficients. The regularization path was computed for the lasso penalty for a range of 
values for the regularization parameter lambda. The models corresponding to the 
largest value of lambda such that error is within 1 standard deviation of the minimum 
were then retained and used to classify synthetic cfDNA samples. 
Each of the 70 models was used to classify cancer cfDNA from the test data set. We 
computed the area under the receiver operating characteristic (ROC) curve (AUC) as 
a metric for the classification performance of the models. For each given tumour 
fraction, ten AUCs were computed based on ten sets of 329 synthetic cfDNA samples 
assembled independently (Table 2, Supplementary Figure 1). 
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To obtain a set of CpGs to test on physiological cfDNA, we counted for each CpG the 
number of models in which that CpG had a non-zero coefficient, and then ranked the 
CpGs to pick the CpGs appearing in the largest number of models. Since each model 
has 10 replicates, the maximum number of models a CpG could be found in was 70. 
This method assumes that CpGs that are selected by glmnet in many different models 
are likely to be good discriminants of cancer in cfDNA. We selected the 100 CpGs that 
were found in the most models for experimental analysis. 
 
Methylation biomarkers from the literature 
We selected papers describing methylation biomarkers to detect breast cancer. We 
searched recent scientific articles mentioning breast cancer methylation biomarkers 
and identified 11 articles with methylation biomarkers of potential interest. Out of these, 
3 articles had listed CpGs from the Illumina Infinium Methylation 450 arrays (Uehiro et 
al., 2016; de Almeida et al., 2019; Fackler et al., 2020). From de Almeida et al.’s study 
(de Almeida et al., 2019), we selected the top 55 CpGs as ranked by differential 
methylation p-value. From Fackler et al.’s study (Fackler et al., 2020), we selected their 
panel of 30 CpGs with β < 0.01 in all normal breast samples, as well as β > 0.015 in 
at least 4 of 110 tumours. From Uehiro et al.’s study (Uehiro et al., 2016), we used all 
12 loci. In addition, 13 CpGs were provided by the Moss group on a collaborative basis 
(Moss et al. 2020). We used the markers derived from these sources to compile a list 
of 110 CpGs in our experimental assay that were added to the markers derived from 
data mining and modelling to create a panel of 210 marker CpGs (Supplementary 
Table 1). There were no overlapping CpGs between the literature-derived markers and 
those derived from our data mining and model training. 
 
Input DNA for laboratory in-house developed targeted methylation assay 
Commercial gDNA was used for the assay validation: MCF-7 cell line (Merck, 
#86012803), leukocyte (AMS Bio, #D1234148) and CpG Methylated HeLa (NEB, 
#N4007). The RepliG mini kit (Qiagen, #150023) was used to generate fully non-
methylated HeLa DNA. 1 µg of DNA per sample was sheared to the average fragment 
size of 160 bp using a Covaris S220 sonicator (Covaris, #500217). DNA quality was 
validated using the TapeStation 4200 system (Agilent, #G2991BA) and Genomic DNA 
ScreenTape (Agilent, #5067-5365). DNA quantity was estimated using Qubit 
fluorometer (Invitrogen, #Q33226) and Qubit dsDNA BR Assay (ThermoFisher, 
#Q32850). 20 ng of sheared DNA was used for library preparation. MCF-7 spike-in 
samples were prepared by adding MCF-7 DNA to leukocyte DNA at 1%, 5%, 12.5%, 
and 25%. 
 
Library preparation and sequencing 
20 ng of sheared DNA was used to prepare target enrichment libraries incorporating 
error suppression including unique molecular indexes (UMIs) and unique dual indexes 
(UDIs) which remove PCR and sequencing errors as well as index hopping events, 
providing uniformity of coverage. DNA fragments were end-repaired and A-tailed using 
Cell3TM Target: DNA Target Enrichment kit (Nonacus Ltd, #C3212RK), dual 
methylated adapters including UMIs were ligated to repaired fragments. The 
constructs were subjected to treatment with NEBNext® Enzymatic Methyl-seq (EM-
seq™) (NEB, #E7125) according to the manufacturer’s protocol. The method provides 
an enzyme-based alternative to bisulfite conversion. Following amplification using 
Cell3TM Target: DNA Target Enrichment kit and NEBNext® Q5U® Master Mix (NEB, # 
M0597), DNA quality and quantity were measured using TapeStation 4200 system, 
D1000 ScreenTape (Agilent, # 5067-5582), Qubit fluorometer and Qubit dsDNA BR 
Assay Kit (ThermoFisher, #Q32850), individual libraries were pooled to a total amount 
of 1 μg and enriched using Cell3 TM Target Hybridization and Capture Kit (Nonacus 
Ltd, #C3CUST) and double-stranded DNA baits, in-house developed targeted 
methylation assay, to target 210 CpG biomarkers. The quality of the final libraries was 
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validated using the TapeStation 4200 system, High Sensitivity D1000 ScreenTape 
(Agilent, # 5067-5584), Qubit fluorometer and Qubit dsDNA HS Assay (ThermoFisher, 
# Q32851). Finally, libraries were sequenced using MiSeq (Illumina), generating 150 
bp paired-end reads. 
 
Sequence analysis 
Raw BCL (base call files) generated using Illumina MiSeq instrument were 
downloaded from BaseSpace which were then processed using bcl2fastq v2.17.10 to 
generate paired-end fastq files for each sample. During BCL to fastq conversion 
procedure, the RunInfo.xml file was edited to obtain an additional fastq file for 
sequenced UMI codes associated with each read, resulting to a total of three fastq files 
per sample (Read 1, Read 2 and UMI sequence). 
Each read name of the paired-end fastq file was associated with its corresponding UMI 
sequence to create new set of fastq files using a custom script. The UMI was attached 
to be the last element of the read name. Quality control visualisation was performed 
using FASTQC v0.11.9. TrimGalore v0.4.1 was used with parameters --paired -q 30 -
-clip_R1 10 --clip_R2 20 for removing adapters, low quality bases from 5’ end of the 
reads. Trimmed paired-end fastq files were aligned to the converted versions (C->T 
and G->A converted) of the human genome (GRCh38) using bismark v0.22.3 with --
pbat (align reads only to complementary to (converted) top strand and bottom strands) 
and --local options. UMI based deduplication was performed on the resulting BAM file 
using deduplicate_bismark v0.22.3 script with –paired and –barcode options. Finally, 
the bismark_methylation_extractor v0.22.3 script was used to extract methylation 
values for every single C analysed. The output files were converted to bedGraph form 
using bismark2bedGraph v0.22.3. The bedGraph files were further processed using 
custom script to obtain methylation values for both forward and reverse strands for all 
sequenced CpGs. 
To generate methylation percentage values per target region of interest, a custom Perl 
script was written which utilised a bed file containing coordinate information of targeted 
CpGs in the marker set +/-100 bp along with the bedGraph file produced above. This 
script in turn utilised a custom R script that performed the actual methylation % value 
calculation. Methylation percentage was calculated for each CpG site present in the 
target region which had >= 5 reads and an average was calculated of the resulting 
values to calculate methylation percentage per target region. Further downstream 
analysis and visualisation was performed using custom R scripts. 
 
Comparison of in vitro data with 450k array 
The methylation percentage values of CpG sites from in silico modelling were 
compared to their expected pattern seen in a 450K methylation array. This was done 
by calculating the correlation between in vitro methylation percentage of our CpG sites 
of interest and methylation percentage (calculated from beta values) of the same sites 
in the 450K array. Pure MCF-7 control cell line idat files were downloaded from GEO 
with accession number: GSM2492223. Leukocyte idat files, containing methylation 
profile of peripheral leukocytes from 117 healthy controls, were downloaded from GEO 
with accession number: GSE67393. Both sets of data were processed using the minfi 
R package (Aryee et al., 2014).  
Briefly, for MCF-7, the idat files were first pre-processed and normalised using the 
ssNoob (single sample normal-exponential using out-of-band probes) method (Fortin 
et al., 2017) from the minfi package. Before normalisation, a check was done to ensure 
that the mean detection p-value for the sample was > 0.01. Probe level filtering was 
performed whereby failed probes with detection p-value < 0.01 were filtered out and 
probes present on sex chromosomes were also filtered out to remove sex-based 
effects on methylation profile. Further probe filtering was performed as recommended 
by Zhou et al. (Zhou et al., 2017). Specifically, those probes were removed which were 
marked TRUE for the MASK_GENERAL (recommended general purpose masking) 
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column in the probe annotation file provided by Zhou et al. 
(https://zhouserver.research.chop.edu/InfiniumAnnotation/20180909/HM450/HM450.
hg38.manifest.tsv.gz). Beta values were then obtained for those probes whose target 
CpG sites were common to our set under study. 
The exact same procedure was followed to pre-process leukocyte samples. In addition 
to probe filtering, sample filtering was performed where samples were removed which 
had median intensity < 10.5. Since there were multiple samples in the dataset, the 
mean was calculated for all the beta values across the samples for each CpG locus. 
Using the beta values from MCF-7 and leukocyte dataset, in silico MCF-7 and 
leukocyte spike-in was created which was then compared with the in vitro data by 
calculating the correlation coefficient. Beta values were multiplied by 100 to get the 
actual methylation percentage value before correlation calculation. All analysis were 
done using custom scripts in R. 
 
Results 
We used an in silico modelling approach to build 70 linear models to classify breast 
cancer patient cfDNA from healthy people cfDNA for a range of 7 breast tumour 
percentages using synthetic methylation profiles (Table 2, Supplementary Table 2). 
This approach shows that, as expected, the areas under the ROC curve (AUC) 
increase as the percentage of tumour DNA in the cfDNA increases. We can classify 
between synthetic cfDNA from healthy people and synthetic cfDNA from cancer 
patients when there is as little as 0.25% of tumour DNA in the cfDNA with mean AUC 
of 0.63 (Table 2). For increased fractions of breast tumour DNA in cfDNA from 0.5% 
to 1%, classification performance increases with mean AUC of 0.77 to 0.93 
respectively. At 10% of spike-in breast tumour DNA, the models show the highest 
classification performances (AUC of 1) with perfect discrimination between tumour and 
healthy cfDNA samples. Examples of ROC curves for the models trained to classify 
synthetic cfDNA into healthy or breast cancer at seven different percentages of breast 
tumour DNA are shown in Supplementary Figure 1.  
 
We selected the 100 CpGs that were a feature in the highest numbers of models as a 
proxy for good classification power. A set of these 100 CpGs from our in silico 
modelling approach and 110 CpGs from our literature search was tested on our 
experimental assay on the breast cancer cell line MCF-7 DNA, normal breast DNA and 
serial dilutions of MCF-7 into leukocyte DNA. 
 
We generated sequencing libraries for methylated and non-methylated control DNAs, 
and for, MCF-7 cell line DNA with 1%, 5%, 12.5%, and 25% MCF-7 spike-in on a 
leukocyte background. We obtained 120-450 ng per pre-capture library yielding 
enough to pool 1 μg of combined DNA for sequencing. Following enrichment and 
amplification a final library was generated with average fragment size 330 bp. Library 
sequencing and demultiplexing yielded a median of 798,700 paired-end reads (range 
601,685 - 1,300,303) per sample; a median coverage of 504 x per sample (range 325 
- 704 x) was obtained, with 0.9 – 2.2 million total mapped reads per sample 
(Supplementary Tables 3 and 4).  
 
Looking for evidence of our assay’s potential to discriminate between samples from 
breast cancer patients and samples from healthy people, we plotted heatmaps of the 
methylation percentage values for all CpGs together (Figure 2) and for CpGs from in 
silico modelling and literature separately (Figure 3). The control DNA samples 
indicated a high conversion rate for the enzymatic conversion protocol, with 0.2% 
methylation called on RepliG-amplified unmethylated control DNA and 96% 
methylation percentage on HeLa DNA. In addition, a large proportion of markers from 
both sets of CpGs are indicative of the percentage of MCF-7 and leukocyte DNA 
(Figure 3). Similarly, when markers derived by data mining and modelling are 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.11.480085doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.11.480085
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

	 7	

separated into those expected to show hypermethylation (hyperM) or hypomethylation 
(hypoM) in breast cancer compared to leukocytes, marked differences were seen 
between samples according to percentage of MCF-7 and leukocyte DNA (Figure 4), 
with differences visible from the smallest percentages of MCF-7 between 1% and 5%. 
The differences between samples can be clearly observed in correlation score 
heatmaps (Supplementary Figure 2). When looking only at the CpGs from the in silico 
modelling, we can compare the methylation data generated in vitro with the expected 
pattern of these CpGs from 450K data. HyperM CpGs should have high methylation in 
breast tumour and low methylation in leukocytes, with the converse expected for 
HypoM CpGs. This is well reflected in our experimental data, with highly significant 
correlation for individual CpGs between the in vitro data at 100% MCF-7 DNA and 1% 
MCF-7 DNA and 450K data for these markers in published MCF-7 and leukocyte 450K 
array data (Figure 5). 
 
We anticipated that, in the data we generated in vitro, the CpGs with the highest and 
most significant correlations between measured methylation percentage and the 
percentage of MCF-7 DNA in each sample will have the best power to distinguish 
between cfDNA from healthy people and cfDNA from breast cancer patients. A 
correlation analysis of the measured methylation percentage against percentage of 
MCF-7 DNA spiked into leukocyte DNA suggests that most CpGs have a high absolute 
value of correlation coefficient, for which the six most significant correlations are shown 
in Figure 6. In addition, when comparing the correlation coefficients of markers derived 
from modelling and those derived from the literature, there was no significant 
difference in the absolute value of correlation coefficients or p-values between the 
CpGs from either source (Figure 7, p>0.6). The subset of CpGs associated with 
numerically low correlation coefficients in both modelling and literature-derived marker 
sets might indicate MCF-7 specific CpGs with MCF-7 cell lines representing only a 
subset of the heterogeneity of breast cancer methylation profiles. 
 
 
Discussion 
Our in silico modelling showed that the markers we derived by data mining of publicly 
available data were able to detect the presence of breast cancer DNA when this DNA 
contributes to as little as 0.25% of synthetically modelled cfDNA. This is encouraging 
but remains to be tested on healthy people and breast cancer patient cell-free DNA 
samples, as the 450K array data will have different properties compared with our 
assay’s sequencing data, and the modelled tissue data may not accurately reflect 
physiological cfDNA. However, the strong correlations that we found between 
measured and modelled methylation percentages for individual markers suggests that 
our data will be robust to such limitations. In addition, we found no differences in the 
correlation between measured methylation percentage and cell-line content of each 
sample between the markers that we derived by in silico modelling and the markers 
for breast cancer detection derived from the literature, suggesting again that the 
markers we developed may have comparable discriminatory utility to the markers 
developed in other studies. 
 
Although the synthetic cfDNA methylation profiles we created followed the latest 
knowledge in healthy cfDNA composition (Lam et al. 2017; Moss et al. 2018), the 
origins of cfDNA in healthy subjects and cancer patients are still not well understood 
and therefore the composition that we used may not be as accurate as we intend. 
Further, while the biological noise we introduced here by adding 10% of a mix of six 
different tissues should make the models somewhat robust to various biological 
conditions, especially to degenerative or destructive breast lesions, as normal breast 
is included, only a limited range of tissues was included in our modelling, so even our 
best CpGs may not be applicable to people with underlying conditions affecting other 
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tissues. Finally, we used regularised linear modelling to derive our in silico marker set 
which led to models with predictive power to detect tumour DNA in cfDNA, with as little 
as 0.25% of tumour DNA fraction in synthetic cfDNA. As a follow-up to this study, 
investigating non-linear modelling strategies might lead to additional improvement in 
model performances, although as the complexity of models increases so does their 
likelihood of overfitting the data. Opportunities to apply alternative modelling strategies 
will further expand as the number of publicly available breast tumour samples 
increases. 
 
The methylation markers that were derived from the literature came from several 
different sources, each with different approaches to marker development. The study 
by de Almeida et al. provided 368 CpG markers to distinguish breast tumour from 
normal breast tissue (de Almeida et al., 2019). They used TCGA methylation data and 
filtered the CpGs so that only CpGs located within gene bodies and proximal gene 
regions were included. They ranked their CpGs based on OncoScore to determine 
cancer-related genes and then used Kaplan-Meier survival curves and log-rank tests 
to compare the survival curves. They also looked at the correlation between 
methylation and gene expression from the METABRIC database. This is therefore a 
well curated gene-centric marker set including CpGs in proximal gene regions. Fackler 
et al. reported two panels, one of 100 CpGs, and a more selected panel of 30 CpGs in 
which higher levels of methylation were associated with greater probability of 5-year 
recurrence following therapy (Fackler et al., 2020). Log-rank and logistic regression 
models were used to determine the association between DNA methylation and 
recurrence. These models used a filtered set of beta values (β value ratio ≥1.5) from 
the 450K data from their samples. It is worth noting that this study was designed to 
detect recurrence, so it might not have the same power for early detection. Moss et al. 
focussed on three regions arbitrarily selected from 13 candidate sites identified from 
TCGA 450K data to show differential methylation between breast cancer samples, 
other cancer samples and 16 normal tissues (Moss et al. 2020). Only markers with at 
least 5 CpGs in a 165bp interval were considered as suitable markers. The three 
markers published in the paper by Moss et al. and the remaining 10 candidate sites 
are all included in the marker set published here. Uehiro et al. (Uehiro et al., 2016) 
developed a marker set of 12 CpGs, derived from a screen of breast cancer tissues 
and cell lines compared to non-cancer tissues and validated in cfDNA from breast 
cancer patients and healthy volunteers. The four markers showing best detection 
performance were then validated in an independent set of cfDNA samples. 
 
The 100 markers that we derived by data mining and modelling showed no overlap 
with the 110 markers that we derived from the literature. However, when the correlation 
between the in vitro methylation data for individual markers that we generated and the 
450K data for MCF-7 and leukocytes were compared, we found no difference between 
the correlations observed for the data mining set and the literature derived set of 
markers. This suggests that the data mining and literature-derived markers may 
provide independent yet complementary ability to detect breast cancer DNA in a 
complex mix such as is encountered in cfDNA. 
 
The experimental method developed here used enzymatic conversion of unmethylated 
cytosine rather than bisulphite conversion, because enzymatic conversion results in 
less damage and loss to the input DNA (Vaisvila et al., 2021). Our protocol combines 
target selection of converted DNA with amplification, deep sequencing and barcoding 
to achieve more than 500x coverage per sample in target regions, which was sufficient 
for the spike-in range used here though this could be increased for analysis of cfDNA 
samples with low or very low ctDNA content. The protocol achieved high conversion 
rates, with 0.2% methylation called on RepliG-amplified unmethylated control DNA and 
96% methylation percentage on HeLa DNA. The high correlations observed between 
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MCF-7 percentage DNA input and measured methylation percentage, and between 
measured methylation percentage and in silico modelled methylation percentage 
derived from 450K array data indicate the accuracy of the assay and its potential for 
use in measuring methylation in plasma cfDNA from breast cancer patients.  
 
To date, we have only tested our marker sets for their ability to distinguish leukocyte 
DNA from MCF-7 DNA and normal breast tissue. While these results show promise, 
we now aim to test the assay with our set of 210 CpGs on DNA from breast cancer 
tissue and cfDNA samples from breast cancer patients and healthy subjects to confirm 
its sensitivity and specificity for detection of breast cancer ctDNA in a direct clinical 
context. 
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Tables 
 

Tissue Neoplastic 
Status 

Source Number of 
samples 

breast cancer TCGA-
BRCA 

793 

breast normal TCGA-
BRCA 

97 

lung normal TCGA-
LUAD 

32 

liver normal TCGA-
LIHC 

50 

kidney normal TCGA-
KIRC 

160 

colon normal TCGA-
COAD 

38 

pancreas normal TCGA-
PAAD 

10 

leukocytes normal GSE51057 329 
erythroblasts normal GSE68456 12 
erythroblasts normal GSE82084 9 

 
Table 1. DNA methylation samples (450K methylation array) from published TCGA 
and GEO (Demetriou et al., 2013; de Goede et al., 2015) datasets used in this study. 
 
 

Percentage of tumour DNA Mean AUC 
Standard 
Deviation 

0.01 0.508 0.007 
0.1 0.526 0.034 
0.25 0.628 0.001 
0.5 0.771 0.013 
0.75 0.873 0.004 

1 0.931 0.01 
10 1 0 

 
Table 2. Performances of linear models based on synthetic cell-free DNA methylation 
profiles for distinct percentages of breast tumour DNA. A total of 70 linear models were 
built using our in silico classification analysis accounting for 7 different percentages of 
breast tumour DNA and 10 replicates. Mean area under the ROC curve (AUC) and 
standard deviation were calculated across 10 replicates per percentage of tumour 
DNA. Performances of each of the 70 classifiers along with the number of features 
(CpGs) selected are available in Supplementary Table 2. 
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Figures  

 
Figure 1: Synthetic cfDNA construction. Synthetic cfDNA samples were assembled by 
mixing global methylation profiles of different tissue types in controlled proportions. 
First, haematopoietic synthetic profiles were created by mixing a single leukocyte and 
a single erythroblast profile in a 70:30 ratio. Then, a non-haematopoietic "other tissues" 
profile (a single random healthy profile of each of breast, lung, liver, kidney, colon or 
pancreas) was added to make up 10% of the resulting healthy cfDNA synthetic profile. 
Finally, cancer synthetic cfDNA profiles were the result of mixing a single cancer 
methylation profile, in a pre-defined fraction, to a healthy profile. 
 

 
 
Figure 2: Heatmap showing methylation percentage values, determined by our in vitro 
methylation assay, of 210 selected target regions containing our CpGs of interest. The 
experiment used MCF-7 DNA spiked with different percentages of leukocyte DNA 
(99%, 95%, 87.5%, and 75%) along with methylated (HeLa_Methylated) and 
unmethylated (RepliG_Unmethylated) control samples and a pure MCF-7 sample 
(100_MCF7). CpG markers were derived from both the data mining/modelling methods 
and the published literature. Hierarchical clustering of methylation percentage values 
of the target region containing CpGs of interest revealed clear distinction between 
different samples. Control samples (fully methylated and unmethylated) showed high 
and low methylation percentage values, respectively. 
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A 

 
B 

 
 
Figure 3: (A) Heatmap showing methylation percentage values, determined by our in 
vitro methylation assay, of 110 selected target regions containing our CpG of interest 
sourced from literature. (B) Heatmap showing methylation percentage values, 
determined by our in vitro methylation assay, of 100 selected target regions containing 
our CpG of interest sourced from data mining and modelling. Additional annotation 
provides information about if the target region is hypo or hyper methylated 
(HypoM_tum and HyperM_tum respectively) in breast cancer in the sourced data 
compared to haematopoietic cell DNA. HyperM_tum indicates markers with breast 
tumour methylation higher than leukocytes and converse in HypoM_tum. medDiff is 
the median difference in methylation percentage: positive numbers indicate breast 
tumour markers with higher methylation compared with Buffy coat. HyperM_tum and 
HypoM_tum CpGs form two main clusters which clearly correlate with medDiff values. 
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Figure 4: Heatmap of methylation percentage values of 100 CpG target regions, 
determined by our in vitro methylation assay, that were expected to be 
hypermethylated (hyperM; Upper Panel) or hypomethylated (hypoM; Lower Panel) in 
breast tumour compared to haematopoietic cells. Hela and RepliG control samples 
show respectively very high and low methylation percentage values. 100_MCF7 
sample are distinct from Normal_Breast sample. In hyperM CpGs, methylation 
percentage decreases as MCF-7 percentage decreases and leukocyte percentage 
increases in sample mixtures. In hypoM CpGs, methylation percentage for most 
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markers decreases with increasing percentage of MCF-7. The genomic coordinates of 
each target region are shown to the right of the heatmap. 

 

 

 
 
Figure 5: Scatter plots showing the correlation of individual marker CpG methylation 
percentage for pure MCF-7 DNA between in vitro generated data in this study and 
published 450K data for MCF-7 (A) and for the in vitro mixture of 1% MCF-7 with 99% 
leukocyte DNA and in silico modelled 450K MCF-7 and leukocyte methylation profile 
with the same tissue proportions (B). The blue line represents the line of best linear fit, 
with Pearson correlation coefficient and p-value shown. 
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Figure 6: Methylation percentage from our in-house developed targeted methylation 
assay plotted against percentage of MCF-7 DNA spiked into leukocyte DNA for each 
of the 6 CpGs with the lowest p-value for Pearson’s product-moment correlation test. 
The blue line represents the regression line fitted to the data using a linear model. The 
grey area represents the 95% confidence level interval for predictions from a linear 
model. 
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Figure 7: Boxplot of the absolute value of the Pearson’s product moment correlation 
coefficients between methylation percentage measured in vitro and percentage of 
MCF-7 in each sample, for each source of CpGs in the methylation assay. 
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Legends for supplementary materials 
 
 
Supplementary Table 1. Genomic coordinates of the 210 CpG markers on the 
GRCh38 genome reference. Source indicates whether the CpG marker was extracted 
from the literature (with reference to publications by first author) or from our modelling 
strategy, as described in the Methods section. The column cg_id refers to the CpG 
unique identifier associated with each marker.  
 
Supplementary Table 2. Linear models selected on synthetic cell-free DNA 
methylation profiles. We show the area under the ROC curve (AUC) and number of 
features (non-zero coefficients associated with a single CpG) for each of the 70 models 
obtained from our in silico classification analysis for 7 different percentages or breast 
tumour DNA and 10 replicates of each. 
 
Supplementary Table 3. Total number of fragments sequenced per sample. A 
fragment (or read pair) is composed of 150 bp paired-end reads. Each fragment is 
counted only once, with the total number of fragments corresponding to the total 
number of Read 1 (or Read 2) reads. The composition of each sample is indicated in 
the ‘Sample content’ column. The ‘Sample names’ column refers to the names 
associated with each sample. 
 
Supplementary Table 4. Mapping statistics per sample. The depth of coverage and 
total number of mapped reads are indicated for each sample. The composition of each 
sample is indicated in the ‘Sample content’ column. The ‘Sample names’ column refers 
to the names associated with each sample. 
 
 
Supplementary Figure 1: Examples of receiver operating characteristic (ROC) curves 
for models trained for breast cancer detection in synthetic cfDNA under the assumption 
of 10% random other tissue contribution. For each replicate, a set of 658 synthetic 
cfDNA samples was assembled, half of which were supplemented with increasing 
breast cancer profile percentages (0.01%, 0.1%, 0.25%, 0.5%, 0.75%, 1% and 10%). 
Here we show the ROC curves for replicate 1 only. Also shown are the areas under 
the ROC curve (AUC) for the predictions of each optimal model, obtained according to 
the procedure depicted in the Methods section. 
 
 
Supplementary Figure 2. Heatmaps showing Pearson correlation coefficient scores 
between samples for marker panel CpGs selected to show (A) hypermethylation 
(Hyper_M) or (B) hypomethylation (Hypo_M) in breast cancer DNA. 
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