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ABSTRACT

RNAs are a powerful therapeutic class. However their inherent transience impacts their
activity both as an interacting moiety as well as a template. Circularization of RNA has
been demonstrated as a means to improve persistence, however simple and scalable
approaches to achieve this are lacking. Utilizing autocatalytic RNA circularization, here
we engineer in situ circularized RNAs (icRNAs). This approach enables icRNA delivery
as simple linear RNA that is circularized upon delivery into the cell, thus making them
compatible with routine synthesis, purification, and delivery formulations. We confirmed
extensive protein translation from icRNAs both in vitro and in vivo and explored their
utility in three contexts: first, we delivered the SARS-CoV-2 Omicron spike protein in
vivo as icRNAs and showed corresponding induction of humoral immune responses;
second, we demonstrated robust genome targeting via zinc finger nucleases delivered
as icRNAs; and third, to enable compatibility between persistence of expression and
immunogenicity, we developed a novel long range multiplexed (LORAX) protein
engineering methodology to screen progressively deimmunized Cas9 proteins, and
demonstrated efficient genome and epigenome targeting via their delivery as icRNAs.
We anticipate this highly simple and scalable icRNA methodology could have broad

utility in basic science and therapeutic applications.
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INTRODUCTION

RNAs have emerged as a powerful therapeutic class. However their typically short
half-life impacts their activity both as an interacting moiety (such as siRNA), as well as a
template (such as mRNAs). Towards this, RNA stability has been modulated using a
host of approaches, including engineering untranslated regions, incorporation of cap
analogs, nucleoside modifications, and codon optimality (7-5). More recently, novel
circularization strategies, which remove free ends necessary for exonuclease-mediated
degradation thereby rendering RNAs resistant to most mechanisms of turnover, have
emerged as a particularly promising methodology (6—73). However, simple and scalable
approaches to achieve efficient in vitro production and purification of circular RNAs are

lacking, thus limiting their broader application in research and translational settings.

Utilizing work on autocatalytic RNA circularization by Litke and colleagues (74), we
recently engineered circular guide RNAs for programmable RNA editing (75). The
primary approach for generating these was via delivery of encoding DNA molecules
where the guide RNAs were expressed using pol-lll promoters, and thereby were both
generated and circularized in cells. However, we also made the observation that in vitro
transcribed RNAs delivered in linear form could successfully circularize in situ in cells
upon entry and were similarly functional as guide RNAs. Motivated by the extreme
simplicity of this latter approach, and its compatibility with routine in vitro synthesis and
purification processes, we explored if this framework could also be used to generate
circular messenger RNAs. Indeed, we show below that thus engineered in situ
circularized RNAs (icRNAs) enable extensive protein translation, and we demonstrate
their versatility via a range of in vitro and in vivo applications spanning from RNA

vaccines to genome and epigenome targeting.

Common to all these applications via icRNA delivery is the critical importance of their
immune system interactions. Although for some applications, such as vaccines, robust
immune responses to the therapeutic are desirable, for other applications such as
genome and epigenome targeting, immune responses can instead inhibit therapeutic

effect. Inducing immune responses through RNA delivery has been extensively
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researched in vaccine development and proven through the success of COVID vaccines
based on this technology (76—79). However, despite substantial engineering efforts,
deimmunization remains a tougher problem to crack. Thus, to facilitate compatibility
between persistence of expression and immunogenicity especially when delivering
non-human payloads via icRNAs, we also concurrently developed a long-range
multiplexed (LORAX) protein engineering methodology based on high-throughput
screening of combinatorially deimmunized protein variants. We applied it to identify a
Cas9 variant with seven key HLA-restricted epitopes simultaneously immunosilenced
after a single round of screening, and showed that icRNA mediated delivery of the same

enabled robust genome targeting.
RESULTS

To engineer icRNAs, we generate in vitro transcribed linear RNAs that bear a twister
ribozyme flanked internal ribosome entry site (IRES)(20, 21) coupled to a messenger
RNA of interest (Figure 1a). Once transcribed, the flanking twister ribozymes rapidly
self-cleave, enabling hybridization of the complementary ligation stems to one another.
Upon delivery into cells, these linear RNAs are then circularized in situ by the ubiquitous
RNA ligase RtcB. To evaluate this approach, we first assayed green fluorescent protein
(GFP) translation via flow cytometry in the icRNA format in vitro in HEK293T cells. As a
side-by-side comparison, we also engineered linear in situ circularization defective
RNAs (icdRNAs) by utilizing catalytically inactive mutants of the twister ribozymes.
Specifically, HEK293Ts were transfected with circular GFP icRNA or linear icdRNA and
RNA was isolated at 6 hours, 1 day, 2 days and 3 days after transfection. We observed
similar amounts of GFP RNA at 6 hours (Figure 1b, left panel), confirming that
approximately equal quantities of icRNA and icdRNA were delivered to cells. However,
GFP RNA with functional circularization was significantly higher at days 1, 2, and 3 than
icdRNA, indicating improved RNA persistence via circularization (Figure 1b, middle
panel). This improved RNA persistence also correlated with increased GFP translation
after 3 days (Figure 1b, right panel). To confirm icRNAs were covalently circularized in
cells upon delivery in vitro, we performed via RT-PCR by designing outward facing

primers that selectively amplified only the circularized RNA molecules. Indeed, we only
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observed a PCR product for icRNAs, confirming circularization (Figure 1c). Next, to
extend these results in vivo, lipid nanoparticles (LNPs) (22, 23) containing circular
icRNA and linear icdRNA were generated. No difference in LNP size was observed
between icRNA and icdRNA (Supplementary Figure 1a). 10 ug of LNPs were
retro-orbitally injected into C57BL/6 mice, livers were isolated 3 and 7 days later, and
RNA was extracted. RT-PCR confirmed circularization of icRNA in vivo, with persistence
extending to at least 7 days (Supplementary Figure 1b). Finally, we screened a panel
of IRES sequences, ligation stems, and 3’ untranslated regions (UTRs) to optimize
protein translation (Supplementary Figure 1c) (24-28). These studies demonstrated
the ability to tune protein translation from icRNAs over an order of magnitude. Among
the examined constructs, the medium yielding UTR version 2 was chosen for all

subsequent studies.

We initially explored icRNA application across two distinct therapeutic transgene
delivery contexts: one, to enable immunization via proteins delivered in the icRNA

format, and two, to enable genome targeting via delivery of proteins.

Towards the former, we assessed the production of IgG binding antibodies against
SARS-CoV-2 Omicron variant spike protein in BALB/c mice via ELISA. icRNAs and
icdRNAs bearing the Omicron spike (K986P, V987P) protein were generated (29),
encapsulated in LNPs, and delivered via a single intramuscular injection at a dose of
2ug icRNA or icdRNA/mouse. We confirmed robust induction of anti-spike IgG in the
sera of animals receiving icRNA at 3 weeks post injection compared to other groups
(Figure 1d).

Towards the latter, we generated zinc finger nuclease (ZFN) icRNAs and icdRNAs
targeting the GFP and CCR5 genes(30, 37). Being a fully protein based genome
engineering toolset we anticipated ZFNs would be particularly suited for this mode of
delivery, and indeed observed robust genome editing via icRNAs compared to icdRNAs

upon their delivery into HEK293T cells (Figure 1e).

Spurred by these results, we next explored if icRNAs could be used to deliver the

CRISPR-Cas9 systems. We conjectured that the prolonged expression via icRNAs
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could facilitate genome and especially epigenome targeting. However, this same feature
of persistence could also aggravate immune responses in therapeutic settings as
CRISPR systems are derived from prokaryotes (32—34). Thus, to enable compatibility
between persistence of expression and immunogenicity, we sought first to develop a
methodology to screen progressively deimmunized SpCas9 proteins by combinatorially

mutating particularly immunogenic epitopes (35).

While variant library screening has proven to be an effective approach to protein
engineering, applying it to deimmunization faces three important technical challenges.
One, the need to mutate multiple sites simultaneously across the full length of the
protein; two, reading out the associated combinatorial mutations scattered across large
(>1kb) regions of the protein via typical short read sequencing platforms; and three,
engineering fully degenerate combinatorial libraries which can very quickly balloon to
unmanageable numbers of variants. To overcome these challenges we developed
several methodological innovations which, taken together, comprise a novel long range
multiplexed (LORAX) protein engineering platform capable of screening millions of
combinatorial variants simultaneously with mutations spread across the full length of

arbitrarily large proteins (Figure 2a).

Towards library design, in order to narrow down the vast mutational space associated
with combinatorial libraries, we utilize an approach guided by evolution and natural
variation (36, 37). As deimmunizing protein engineering seeks to alter the amino acid
sequence of a protein without disrupting functionality, it is extremely useful to narrow
down mutations to those less likely to result in non-functional variants. To identify these
mutants we generated large alignments of Cas9 orthologs from publicly available data
to identify low-frequency SNPs that have been observed in natural environments. Such
variants are likely to have limited effect on protein function, as highly deleterious alleles
would tend to be quickly selected out of natural populations (if Cas9 activity is under
purifying selection) and therefore not appear in sequencing data (38). To further subset
these candidate mutations, we evaluated for immunogenicity in silico using the netMHC
epitope prediction software (39, 40), in order to determine to what degree the candidate

mutations are likely to result in the deimmunization of the most immunogenic epitopes in


https://paperpile.com/c/Cr94qh/A22B+Z47g+aL73
https://paperpile.com/c/Cr94qh/e6ji
https://paperpile.com/c/Cr94qh/37OB+2GEl
https://paperpile.com/c/Cr94qh/sEIb
https://paperpile.com/c/Cr94qh/4WmL+ypx5
https://doi.org/10.1101/2022.02.11.480072
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.11.480072; this version posted February 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

which they appear. This is a critical step as many mutations may have little effect on
overall immunogenicity. Screening for decreased peptide-MHC class | binding filters out
amino acid substitutions which are likely immune-neutral, substantially increasing the
likelihood of functional hits with enough epitope variation to evade immune induction
(41, 42).

Next, to enable readout, we applied long-read nanopore sequencing to measure the
results of the screens of our combinatorial libraries. This circumvents the limit of short
target regions and obviates the need for barcodes altogether by single-molecule
sequencing of the entire target gene, enabling library design strategies which can
explore any region of the protein in combination with any other region without any
complicated cloning procedures required to facilitate barcoding. To date, the adoption of
nanopore sequencing has been limited by its high error rate, around 95% accuracy per
DNA base (43), as compared to established short read techniques which are multiple
orders of magnitude more accurate. To address this challenge, we designed our
libraries such that each variant we engineered would have multiple nucleotide changes
for each single target amino acid change, effectively increasing the sensitivity of
nanopore based readouts with increasing numbers of nucleotide changes per library
member. The large majority of amino acid substitutions are amenable to a library design
paradigm in which each substitution is encoded by two, rather than one, nucleotide
changes, due to the degeneracy of the genetic code and the highly permissive third

“‘wobble” position of codons.

The scale of engineering which would be required to generate an effectively
deimmunized Cas9 is not fully understood, as combinatorial deimmunization efforts at
the scale of proteins thousands of amino acids long have not yet been possible.
Therefore, to roughly estimate these parameters we developed an immunogenicity
scoring metric which takes into account all epitopes across a protein and the known
diversity of MHC variants in a species weighted by population frequency to generate a
single combined score representing the average immunogenicity of a full-length protein
as a function of each of its immunogenic epitopes (44). Formally, this score is calculated

as:
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where [, = Immunogenicity score of protein x, i = epitopes, j = HLA alleles, ] = allele
specific standardization coefficient, w; = HLA allele weights, k; = predicted binding
affinity of epitope i to allele j, and y = protein specific scaling factor. We then predicted
the overall effect of mutating the top epitopes in several Cas9 orthologs
(Supplementary Figure 2a). As might be expected, this analysis suggests that
single-epitope strategies are woefully inadequate to deimmunize a whole protein for
multiple HLA types, and also that there are diminishing returns as more and more
epitopes are deimmunized. Our analysis suggests that it may require on the order of
tens of deimmunized epitopes to make a significant impact on overall, population-wide
protein immunogenicity. The scale of engineering demanded by these immunological
facts has previously been intractable, but by applying LORAX we conjectured one could
now make substantial steps, several mutations at a time, through the mutational

landscape of the Cas9 protein.

Specifically, applying the procedure above, we designed a library of Cas9 variants
based on the SpCas9 backbone containing 23 different mutations across 17
immunogenic epitopes (Figure 2b). Combining these in all possible combinations yields
a library of 1,492,992 unique elements. With this design, we then constructed the library
in a stepwise process. First, the full-length gene was broken up into short blocks of no
more than 1000 bp, which overlap by 30 bp on each end. Each block is designed such
that it contains no more than 4 target epitopes to mutagenize. With few epitopes per
block and few variant mutations per epitope, it becomes feasible to chemically
synthesize each combination of mutations for each block. Each of these combinations
was then synthesized and mixed at equal ratios to make a degenerate block mix. This
was repeated for each of the blocks necessary to complete the full-length protein
sequence. Oxford Nanopore (ONT) MinlON sequencing confirmed the majority of the
pre-screened library consists of Cas9 sequences with significant numbers of mutations,
with most falling into a broad peak between 6 and 14 mutations per sequence, each of

which knocking out a key immunogenic epitope (Supplementary Figure 2c).
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To identify functional variants still capable of editing DNA, we next designed and carried
out a positive selection screen targeting the hypoxanthine phosphoribosyltransferase 1
(HPRT1) gene (45). In the context of the screen, HPRT1 converts 6-thioguanine (6TG),
an analogue of the DNA base guanine, into 6-thioguanine nucleotides that are cytotoxic
to cells via incorporation into the DNA during S-phase (46). Thus, only cells containing
functional Cas9 variants capable of disrupting the HPRT1 gene can survive in
6 TG-containing cell culture media. To first identify the optimal 6TG concentration, HelLa
cells were transduced with lentivirus particles containing wild-type Cas9 and either a
HPRT1-targeting guide RNA (gRNA) or a non-targeting guide. After selection with
puromycin, cells were treated with 6TG concentrations ranging from 0-14 pg/mL for one
week. Cells were stained with crystal violet at the end of the experiment and imaged. 6
Mg/mL was selected as all cells containing non-targeting guide had died while cells

containing the HPRT1 guide remained viable (Supplementary Figure 2b).

To perform the screen, replicate populations of HelLa cells were transduced with
lentiviral particles containing the variant SpCas9 library along with the HPRT1-targeting
gRNA at 0.3 MOI and at greater than 75-fold coverage of the library elements. Cells
were selected using puromycin after two days and 6TG was added once cells reached
75% confluency. After two weeks, genomic DNA was extracted from remaining cells and

full-length Cas9 amplicons were nanopore sequenced on the MinlON platform.

Sequencing revealed that the library was significantly shifted in the mutation density
distribution, suggesting that the majority of the library with large (>4) numbers of
mutations resulted in non-functional proteins which were unable to survive the screen.
Meanwhile, wild-type, single, and double mutants were generally enriched as these
proteins proved more likely to retain functionality and pass through the screen
(Supplementary Figure 2c¢). Additionally, the two independent replicates of the screen
showed strong correlation (R? = 0.925) providing further evidence of robustness (Figure
2c). We also analyzed the change in overall frequency of mutations in the pre- and
post-screen libraries to see if a pattern of mutation effects could be inferred. Although
the wild-type allele was enriched at every site in the post-screen sequences, nearly

every site retained a significant fraction of mutated alleles, suggesting that the
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mutations, at least individually, are fairly well-tolerated and do not disrupt Cas9

functionality (Supplementary Figure 2d).

In order to select hits for downstream validation and analysis, we devised a method for
differentiating high-support hits likely to be real from noise-driven false positive hits. To
do this we hypothesized that the fitness landscape of the screen mutants is likely to be
smooth, i.e. variants that contain similar mutations are more likely to have similar
fitnesses in terms of editing efficiency compared to randomly selected pairs (47). We
confirmed this by computing a predicted screen score for each variant based on a
weighted regression of its nearest neighbors in the screen. This metric correlates well
with the actual screen scores and approaches the screen scores even more closely as
read coverage increases. This provides good evidence that the fitness landscape is
indeed somewhat smooth (Supplementary Figure 3a). Next, we reasoned that
because the fitness landscape is smooth, real hits should reside in broad fithess peaks
which include many neighbors that also show high screen scores, whereas hits that are
less supported by near neighbors are more likely to be spurious as they represent
non-smooth fitness peaks. Formalizing this logic, we performed a network analysis to
differentiate noise-driven hits from bona fide hits by looking at the degree of connectivity
with other hits (Figure 2d).

Applying these analyses to the screen output led us to select and construct 20 variants
(V1-20) (Supplementary Figure 3b) for validation and characterization. We applied two
independent methods to quantify editing of the deimmunized Cas9 variants. First, we
performed a gene-rescue experiment using low frequency homology directed repair
(HDR) to repair a genetically encoded broken green fluorescent protein (GFP) gene (48)
(Figure 2e). And second, we quantified NHEJ mediated editing by genomic DNA
extraction and lllumina next generation sequencing (NGS) using the CRISPResso2
package (Supplementary Figure 3b). Variants highly connected to neighbors were
capable of editing, whereas those not connected were non-functional, validating the
network-based approach we used to select hits as enriching for truly functional
sequences. Among the screen hits was the L614G mutation first identified by Ferdosi

and colleagues (14) as a functional Cas9 variant with a critical immunodominant epitope


https://paperpile.com/c/Cr94qh/Gtz1
https://paperpile.com/c/Cr94qh/1lx0
https://doi.org/10.1101/2022.02.11.480072
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.11.480072; this version posted February 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

de-immunized (V1). This concordance with previous work provided further confidence in
our screening method. Interestingly, we discovered another deimmunizing mutation
within the same epitope, L622Q, which similarly retains Cas9 functionality, but appears
to be more epistatically permissive, as many of our multi-mutation hits combine this
mutation with other deimmunized epitopes. From these multi-mutation hits we chose
V4, which demonstrated high editing capability while still bearing simultaneous
mutations across seven distinct epitopes, as well as family members V3, a variant
bearing two mutations, and V5, a variant bearing the seven changes from V4 plus one
additional mutation. We then further evaluated the efficacy of these mutants
side-by-side with WT SpCas9 across a panel of genes and cell types, and assessed V4
activity across both targeted genome editing and epigenome regulation experiments
(Supplementary Figure 4a-c) (49). Together, these results confirmed that leveraging
our unique combinatorial library design and screening strategy, we were able to produce
Cas9 variants with multiple top immunogenic epitopes simultaneously mutated
(Supplementary Figure 3c) while still retaining significant genome targeting

functionality.

Based on this, we next evaluated delivery of WT SpCas9 and SpCas9v4 and
CRISPROoff versions of the same as icRNAs. CRISPROoff represents one of the newest
additions to the CRISPR toolbox with the exciting capability to permanently silence gene
expression upon transient expression (50). We conjectured that wtCas9 and CRISPRoff
would represent exciting applications of icRNAs for hit-and-run genome and epigenome
targeting, as the prolonged persistence could potentially boost targeting, while the use
of partially deimmunized Cas9 proteins would enable greater safety in therapeutic
contexts. Specifically, icRNA for WT SpCas9 or SpCas9v4, along with sgRNA targeting
the AAVS1 locus, or icRNA for CRISPRoff versions along with sgRNA targeting the B2M
gene were transfected into HEK293T (57). Excitingly, we observed both robust genome

and epigenome targeting via the icRNA delivery format (Figure 2f,g).
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DISCUSSION

Utilizing autocatalytic RNA circularization we engineered in situ circularized RNAs
(icRNAs). This extremely simple approach enables icRNA delivery as simple linear
RNA, thus making them compatible with routine laboratory synthesis, purification, and
delivery formulations. We confirmed extensive protein translation and persistence from
icRNAs both in vitro and in vivo, and confirmed their versatility and activity in
applications spanning from RNA vaccines to genome and epigenome targeting. Notably,
the icRNA strategy allowed for generation and delivery of large constructs, such as
CRISPRoff, which would be more cumbersome to deploy via lentiviral and

adeno-associated virus (AAVs) due to packaging limits (50).

Concurrently, to enable compatibility between persistence of expression and
immunogenicity, we also developed the LORAX protein engineering platform that can
be applied iteratively to tackle particularly challenging multiplexed protein engineering
tasks by exploring huge swaths of combinatorial mutation space unapproachable using
previous techniques. We demonstrated the power of this technique by creating a Cas9
variant with seven simultaneously deimmunized epitopes which still retains robust
functionality in a single round of screening. This opens up a critical door in applying
gene editing to long-persistence therapeutic modalities such as AAV or icRNA delivery.
Furthermore, while this methodology is particularly suited to the unique challenges of
protein deimmunization, it is also applicable to any potential protein engineering goal, so
long as there exists an appropriate screening procedure to select for the desired

functionality.

While icRNAs are a versatile platform with broad application, we anticipate three major
avenues for further engineering their efficacy: one, comprehensive screens of
nucleobase modifications, IRESs and UTRs to systematically boost protein translation
(52-56); two, further ligation stem engineering could enable greater in situ cyclized
fractions of the icRNAs, which in turn would positively impact the yields and durability of
protein translation; and three, the impact of icRNA delivery on the innate immune

response and approaches to modulate the same will need investigation (9, 57, 58).
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Similarly, the versatility of the LORAX platform comes with a set of limitations and
tradeoffs that must be managed to leverage its utility. Naturally, library design is of
critical importance. Here we have leveraged several features such as Cas9 evolutionary
diversity, MHC-binding predictions, HLA allele frequencies, and calculated
immunogenicity scores to generate a useful library of variants to test. Other approaches
may bring in more sources of information from places like protein structure (59),
coevolutionary epistatic constraints (60), amino acid signaling motifs (67), or T-/B-cell
receptor binding repertoires (62), among other possibilities. Another critical factor is
careful selection of hits downstream of screening. Here we have developed a
network-based method for differentiating spurious from bona fide hits leveraging known
aspects of protein epistasis and fithess landscapes. Similar customizations and tweaks
relevant to the specific biology of a given problem may yield substantial returns in
applying LORAX or other large-scale combinatorial screening methods to various

protein engineering challenges.

Looking ahead, in addition to its core utility in applications entailing transgene delivery,
we anticipate that icRNAs will be particularly useful in scenarios where a longer duration
pulse of protein production is required. These include, for instance, epigenome
engineering and cellular reprogramming, as well as transient healing and rejuvenation
applications. Taken together, we anticipate the highly simple and scalable icRNA

methodology could have broad utility in basic science and therapeutic applications.
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Figure 1: Robust protein translation via icRNAs, and application to RNA vaccines

and genome editing. (a) Schematic describing the production of icRNAs. These are
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generated via in vitro transcription of linear RNAs that bear a twister ribozyme flanked
internal ribosome entry site (IRES) coupled to a messenger RNA of interest. Once
transcribed, the flanking twister ribozymes rapidly self-cleave, enabling hybridization of
the complementary ligation stems to one another, and upon delivery into cells, these
linear RNAs are then circularized in situ by the ubiquitous RNA ligase RtcB. (b)
HEK293T cells were transfected with circular GFP icRNA and linear icdRNA and GFP
mRNA amount was measured over time. The 6-hour time point was included to assess
initial RNA input (left panel, n=3, p=.414; t-test, two-tailed). Data from days 1, 2, and 3
illustrate persistence of icRNA (middle panel). Values represented as mean +/- SEM
(n=3, p=0.000143 for day 1, p<0.0001 for day 2, p<0.0001 for day 3 t-test, two-tailed).
Values were normalized to the 6-hour time point. GFP protein expression was largely
gone by day 3 in linear icdRNA transfected cells (right panel). (¢) RT-PCR based
confirmation of icRNA circularization in cells. (d) Lipid nanoparticles containing circular
icRNA or linear icdRNA for the COVID Omicron spike were injected intramuscularly into
Balb/c mice. After 21 days, sera were isolated from mice and IgG antibody production
against the spike protein was quantified by ELISA. Values represented as mean +/-
SEM (n=6, p=0.0005 for icRNA compared to icdRNA; one-way ANOVA, post-hoc Tukey
test). (e) Editing efficiency of circular icRNA or linear icdRNA zinc finger nucleases
targeting a stably integrated GFP gene or the endogenous CCR5 gene in HEK293T
cells is plotted. Values represented as mean +/- SEM (n=3, p=0.0051 for GFP and
p<0.0001 for CCR5; unpaired t-test, two-tailed).
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Figure 2: LORAX combinatorial protein engineering to screen progressively
deimmunized Cas9 variants, and their delivery as circular icRNAs. (a) Schematic of
the LORAX protein engineering methodology. (b) Location of epitopes that were
combinatorially mutated and screened is shown. (c) Post-screen library element
frequencies across two independent replicates is shown. Replicate correlation was
calculated excluding the over-represented wild-type sequence. (d) Network
reconstruction connecting Cas9 variants with similar mutational patterns. Node colors
indicate the number of deimmunized epitopes (dark blue < 3, light blue = 3, white = 4,
yellow = 5, pink > 5). Circles in red represent tested variants and labeled with their
respective names. (e) HEK293T bearing a GFP coding sequence disrupted by the
insertion of a stop codon and a 68-bp genomic fragment of the AAVS1 locus were used
as a reporter line. Wildtype (WT) or Cas9 variants, a sgRNA targeting the AAVS1 locus,
and a donor plasmid capable of restoring GFP function via homology directed repair
(HDR) were transfected into these cells and flow cytometry was performed on day 3.
Relative quantification of GFP expression restoration by HDR is plotted. Values
represented as mean +/- SEM (n=3). (f) Circular icRNA for Cas9 wildtype or variant V4,
along with a sgRNA targeting the AAVS1 locus, were introduced into HEK293T and
K562 cells. Editing efficiency at the AAVS1 locus in the two cell lines are plotted. Values
represented as mean +/- SEM (n=3). (g) Circular icRNA for CRISPRoff wildtype or
variant V4, along with a sgRNA targeting the B2M gene, were introduced into HEK293T
cells. B2M gene repression of CRISPRoff constructs in the presence or absence of

sgRNA is plotted. Values represented as mean +/- SEM (n=3).
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Supplementary Figure 1: icRNA delivery and engineering. (a) Characterization of

lipid nanoparticles (LNPs) encapsulating icRNA by dynamic light scattering. No
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differences in size were observed for LNPs containing circular icRNA or linear icdRNA.
(b) LNPs containing either circular icRNA or linear icdRNA were injected into C57BL/6J
mice and RNA was isolated from livers on days 3 and 7. RT-PCR confirmed icRNA
circularization and persistence in vivo. (¢) HEK293Ts were transfected with GFP
icRNAs bearing differing UTRs. Flow cytometry was performed and GFP intensity is
plotted for day 1 and day 3. Values represented as mean +/- SEM (n=3, p=0.0125 for
V1 compared to V2, p<0.0001 for V1 compared to V3 and V2 compared to V3 for day 1;
n=3, p=0.03, for V1 compared to V2, p<0.0001 for V1 compared to V3 and V2
compared to V3 for day 3).
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Supplementary Figure 2: LORAX screen design and results. (a) Immunogenicity
scores for Cas orthologs, demonstrating reduced immunogenicity (averaged across
HLA types) as the number of mutated epitopes increases. (b) Presence of HPRT1
converts 6TG into a toxic nucleotide analog. HeLa cells transduced with wildtype Cas9
and either a HPRT1 targeting or nontargeting (NTC) guide. Only cells where the HPRT1
gene is disrupted are capable of living in various concentrations of 6TG. 6 ug/mL 6TG
was used for the screen as this concentration was sufficient for complete killing of
NTC-bearing cells. (¢) Variant Cas9 sequences were amplified from the plasmid library
or genomic DNA post-screen. Long-read nanopore sequencing was performed and the
mutational density distribution for the predicted library, the constructed Cas9 variant
library, and the two replicates post-screen are plotted. (d) Cas9 block composition and
pre- and post-screen allele frequencies at each of the 18 mutational sites. Each block
and site shows enrichment of the wild-type allele, but all sites retain a substantial

fraction of mutant alleles.
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Supplementary Figure 3: Validations of LORAX screen identified Cas9 variants.
(a) Correlation between the fold change of a Cas9 variant and its predicted fold-change
based on a k-nearest neighbors regression. Neighboring variants are those that share

similar mutational patterns. The strong correlation suggests a smooth fitness landscape
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in which variants with similar mutation patterns will be more similar in fitness, on
average, than those with divergent mutation patterns. (b) Cas9 wildtype or variants
V1-20 and sgRNA targeting the AAVS1 locus were introduced into HEK293T cells.
NHEJ mediated editing at the AAVS1 locus was quantified via NGS for Cas9 WT and
variants V1-20 is plotted. Variant genotypes are listed in the lower panel. (¢) Predicted
mutation-specific reduction in immunogenicity based on the epitope mutated and the

HLA typing is depicted for each mutation included in the screen.
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Supplementary Figure 4: Characterization of Cas9 variants V3, V4, and V5 across
genome and epigenome targeting assays. (a) Cas9 wild-type or variants V3, V4, or
V5, along with sgRNAs targeting the respective genes, were introduced into HEK293T
and K562 cells. Editing efficiency of variants across 4 loci in HEK293Ts and 5 loci in
K562s is plotted. (b) ASCL1 mRNA expression in cells transfected with dCas9 WT-VPR
or dCas9 V4-VPR and sgRNA or no sgRNA is shown. Values represented as mean +/-
SEM (n=3). (c) CXCR4 mRNA expression in cells transfected with dCas9 WT-KRAB or
dCas9 V4-KRAB and sgRNA or no sgRNA is shown. Values represented as mean +/-
SEM (n=3).
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METHODS

Cell culture: HEK293T and HelLa cells were cultured in DMEM supplemented with 10%
FBS and 1% Antibiotic-Antimycotic (Thermo Fisher). K562 cells were cultured in RPMI
supplemented with 10% FBS and 1% Antibiotic-Antimycotic (Thermo Fisher). All cells
were cultured in an incubator at 37°C and 5% CO..

DNA transfections were performed by seeding HEK293T cells in 12 well plates at 25%
confluency and adding 1 pg of each DNA construct and 4 L of Lipofectamine 2000
(Thermo Fisher). RNA transfections were performed by adding 1 ug of each RNA
construct and 3.5 pL of Lipofectamine MessengerMax (ThermoFisher). Electroporations
were performed in K562 cells using the SF Cell Line 4D-Nucleofector X Kit S (Lonza)

per manufacturer’s protocol.

In vitro transcription: DNA templates for generating desired RNA products were created
by PCR amplification from plasmids or gBlock gene fragments (IDT) and purified using
a PCR purification kit (Qiagen). Plasmids were then generated with these templates
containing a T7 promoter followed by 5’ ribozyme sequence, a 5’ ligation sequence, an
IRES sequence linked to the product of interest, a 3 UTR sequence, a 3’ ligation
sequence, a 3’ ribozyme sequence, and lastly a poly-T tail to terminate transcription.
Linearized plasmids were used as templates and RNA products were then produced

using the HiScribe T7 RNA Synthesis Kit (NEB) per manufacturer’s protocol.

In vitro persistence experiments: To assess persistence of circular icRNA, HEK293T

cells were transfected with circular icRNA GFP or linear icdRNA and RNA was isolated
6 hours, one day, two days, and three days after transfection. gqPCR was performed to
assess the amount of GFP RNA and RT-PCR was performed to confirm circular RNA

persistence in cells receiving icRNA.

Flow cytometry experiments: GFP intensity, defined as the median intensity of the cell

population, was quantified after transfection using a BD LSRFortessa Cell Analyzer.
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Lipid nanoparticle formulations:

(6Z,92,282,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl-4-(dimethylamino)  butanoate
(DLin-MC3-DMA) was purchased from BioFine International Inc.
1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and
1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 (DMG-PEG-2000) were
purchased from Avanti Polar Lipids. Cholesterol was purchased from Sigma-Aldrich.
MRNA LNPs were formulated with DLin-MC3-DMA:cholesterol:DSPC:DMG-PEG at a
mole ratio of 50:38.5:10:1.5 and a N/P ratio of 5.4. To prepare LNPs, lipids in ethanol
and mRNA in 25 mM acetate buffer, pH 4.0 were combined at a flow rate of 1:3 in a
PDMS staggered herringbone mixer (63, 64). The dimensions of the mixer channels
were 200 by 100 um, with herringbone structures 30 um high and 50 um wide.
Immediately after formulation, 3-fold volume of PBS was added and LNPs were purified
in 100 kDa MWCO centrifugal filters by exchanging the volume 3 times. Final
formulations were passed through a 0.2 um filter. LNPs were stored at 4°C for up to 4
days before use. LNP hydrodynamic diameter and polydispersity index were measured
by dynamic light scattering (Malvern NanoZS Zetasizer). The mRNA content and
percent encapsulation were measured with a Quant-it RiboGreen RNA Assay

(Invitrogen) with and without Triton X-100 according to the manufacturer’s protocol.

Animal experiments: All animal procedures were performed in accordance with
protocols approved by the Institutional Animal Care and Use Committee of the

University of California, San Diego. All mice were acquired from Jackson Labs.

To assess persistence of RNA constructs in vivo, 10 ug of circular GFP icRNA or linear
GFP icdRNA LNPs were injected retro-orbitally into C57BL/6J mice. After 3 days and 7
days, livers were isolated and placed in RNAlater (Sigma-Aldrich). RNA was later
isolated using QIAzol Lysis Reagent and purified using RNeasy Mini Kit (Qiagen)
according to the manufacturer's protocol. Amount of circularized RNA were assessed by
RT-gPCR.
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To investigate the ability of circular icRNA and linear icdRNA COVID RNA to elicit an
immune response, BALB/c mice were injected intramuscularly into the gastrocnemius
muscle with PBS, or 2 ug of Omicron Spike (2P) circular icRNA or linear icdRNA. Blood
draws were performed on days 0 and 21, serum was separated using blood collection
tubes (Sarstedt), and antibody production was then assessed by a sandwich
enzyme-linked immunosorbent assay (ELISA). ELISA was performed using the ELISA
Starter Accessory Kit (Bethyl, E101) per manufacturer’s instructions. Briefly, 96-well
MaxiSorp well plates were coated with recombinant SARS-COV-2 Spike protein S1,
Omicron variant (GenScript Biotech) diluted in 1x coating buffer (Bethyl) to a
concentration of 2 yg/mL overnight at 4C. Plates were washed five times with 1x
washing buffer (Bethyl), followed by the addition of 1x blocking buffer for 1 hour at RT.
Samples were diluted 1:50 in sample/conjugate diluent (Bethyl) and added to the plate
for 2 hours at RT. Sample/conjugate diluent was used as a blank. Plates were washed
five times with 1x washing buffer and incubated in secondary antibody (horseradish
peroxidase (HRP)-conjugated goat anti-mouse IgG antibody, Southern Biotech 1036-05,
diluted 1:5000 in sample/conjugate diluent) for 1 hour at RT. After five washes, 50
puL/well TMB One Component HRP Microwell Substrate (Bethyl) was added and
incubated at RT in the dark. 50 pL/well of 0.2M H,SO, was added to terminate color
development and absorbance was measured at 450 nm in a SpectraMax iD5

Multi-Mode Microplate Reader (Molecular Devices).

Identification of SpCas9 MHC binding epitopes: Two approaches were used to identify

MHC binding epitopes. First, large amounts of available sequencing data were analyzed
to identify low-frequency single nucleotide polymorphism, which represent mutational
changes that are unlikely to induce non-functional variants. Secondly, potential
mutations were screened in silico using the netMHC epitope prediction software. Using

these strategies, we identified 23 different mutations across 17 immunogenic epitopes.

Identification of HPRT1 Guide: The lentiCRISPR-v2 plasmid (Addgene #52961) was
first digested with Esp3l and a guide targeting the HPRT1 gene was cloned in via

Gibson assembly. After lentivirus production, HelLa cells were seeded at 25%
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confluency in 96 well plates and transduced with virus (lentiCRISPR-v2 with or without
HPRT1 guide) and 8 pg/mL polybrene (Millipore). Virus was removed the next day and
2.5 pyg/mL puromycin was added to remove cells that did not receive virus two days
later. After 2 days of puromycin selection, 0-14 ug/mL 6-TG was added. After 5 days,
cells were stained with crystal violet, solubilized using 1% sodium dodecyl sulfate, and
absorbance was measured at 595 nm on a plate reader. 6 pg/mL was chosen due to the

lack of cells in the negative control.

Generation of variant Cas9 library: Cas9 variant sequences were generated by

separating the full-length gene sequence into small sections, where each section
contained wildtype or variant Cas9 sequences. Degenerate pools of these gBlocks were
PCR amplified and annealed together, yielding a final library size of 1,492,992
elements. The lentiCRISPR-v2 plasmid containing the HPRT1 guide was digested with
BamHI and Xbal and Gibson assembly was used to clone elements into the vector. The
Gibson reactions were then transformed into electrocompetent cells and cultured at 37C
overnight. Plasmid DNA was isolated using the Qiagen Plasmid Maxi Kit and library
coverage was estimated by calculating the number of colonies found on LB-carbenicillin

plates. DNA was then used to create lentivirus containing the variant Cas9 library.

Cas9 Screen: HelLa cells were seeded in 15 15-cm plates and transduced with virus
containing the variant Cas9 library and 8 ug/mL polybrene. Media was changed the next
day and 2.5 yg/mL puromycin was added to remove cells that did not receive virus two
days later. 6 ug/mL 6-TG was added to media once cells reached 90% confluency.
Media was changed every other day for ten days to allow for selection of cells
containing functional Cas9 variants. After ten days, cells were lifted from the plates and

DNA was isolated using the DNeasy Blood & Tissue Kit per manufacturer’s protocol.

Nanopore Sequencing: Pre-screen analysis of the Cas9 variant library elements was
performed by amplifying the sequence from the plasmid. 1 ug of the variant Cas9
sequences was used for library preparation using the Ligation Sequencing Kit (Oxford

Nanopore Technologies, SQK-LSK109) per manufacturer’s instructions. DNA was then
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loaded into a MinlON flow cell (Oxford Nanopore Technologies, R9.4.1). Post-screen
analysis of library elements was performed by amplifying the Cas9 sequences from 75
Mg of genomic DNA. 1 ug of the variant Cas9 sequences was similarly prepared using

the Ligation Sequencing Kit and sequenced on a MinlON flow cell.

Base calling and genotyping: Raw reads coming off the MinlON flow cell were

base-called using Guppy 3.6.0 and aligned to an SpCas9 reference sequence
containing non-informative NNN bases at library mutation positions, so as not to bias
calling towards wild-type or mutant library members, using Minimap2’s map-ont presets.
Reads covering the full length of the Cas9 gene with high mapping quality were
genotyped at each individual mutation site and tabulated to the corresponding library

member. Reads with ambiguous sites were excluded from further analysis.

Cas9 alignment and mutation selection: Naturally occurring variation in Cas9 sequence
space was explored by aligning BLAST hits of the SpCas9 amino acid sequence. This
set was then pruned by removing truncated, duplicated, or engineered sequences, and
those sequences whose origin could not be determined. At specified immunogenic
epitopes and key anchor residues, top alternative amino acids were obtained using
frequency in the alignment weighted by overall sequence identity to the wild type
SpCas9 sequence, such that commonly occurring amino acid substitutions appearing in
sequences highly similar to the wild-type were prioritized for further analysis and

potential inclusion in the LORAX library.

HLA frequency estimation and binding predictions: HLA-binding predictions were carried
out using netMHC4.1 or netMHCpan3.1. Global HLA allele frequencies were estimated

from data at allelefrequencies.net as follows. Data was divided into 11 geographical
regions. Allele frequencies for each of those regions were estimated from all available
data from populations therein. These regional frequencies were then averaged weighted
by global population contribution. Alleles with greater than 0.001% frequency in the
global population, or those with greater than 0.01% in any region, were included for

further analysis and predictions.
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Immunogenicity scores: The vector of predicted nM affinities output by netMHC were

first normalized across alleles to account for the fact that some alleles have higher
affinity across all peptides, and to allow for the relatively equivalent contribution of all
alleles. These values were then transformed using the 1-log(affinity) transformation also
borrowed from netMHC such that lower nM affinities will result in larger resulting values.
These transformed, normalized affinities are then weighted by population allele
frequency and summed across all alleles and epitopes. Finally, the scores are

standardized across proteins to facilitate comparison.

Cluster analysis: Network analysis was performed by first thresholding genotypes to
include only those identified as hits from the screen. These were genotypes appearing
in the pre-screen plasmid library, both post-screen replicates, and having a fold-change
enrichment larger than the wild-type sequence (4.5 fold enrichment). These hits were
used to create a graph with nodes corresponding to genotypes and node sizes
corresponding to fold change enrichment. Edges were placed between nodes at most 4
mutations distant from each other, and edge weights were defined by 1/d where d is
distance between genotypes. Network analysis was done using python bindings of
igraph. Plots were generated using the Fruchterman-Reingold force-directed layout

algorithm.

HDR validation: Lentivirus was produced from a plasmid containing a GFP sequence
with a stop codon and 68 bp AAVS1 fragment. HEK293T cells were treated with 8

pMg/mL polybrene and lentivirus. After puromycin selection to create a stable line, cells

were transfected with plasmids containing variant Cas9 sequences, a guide targeting
the AAVS locus and a GFP repair donor plasmid. After 3 days, FACS was performed

and percent GFP positive cells were quantified.

Genome engineering experiments: To validate variant Cas9 functional cutting, variant
Cas9 and guides were transfected into HEK293T cells. After two days, genomic DNA

was isolated. Genomic DNA was also isolated after two days from K562 cells after
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electroporation. To assess activity of CCR5 ZFNs delivered as icRNAs, HEK293Ts were
transfected with circular icRNA or linear icdRNA and genomic DNA was isolated after
three days. Assessment of GFP ZFN was performed by transfecting HEK293Ts stably
expressing a broken GFP with circular icRNA or linear icdRNA and isolating genomic
DNA after three days. To assess activity of Cas9 delivered as icRNAs, HEK293Ts and
K562 were transfected or nucleofected with Cas9 WT or Cas9 v4 along with a guide

RNA (synthesized via Synthego) and genomic DNA was isolated after three days.

Epigenome engineering experiments: dCas9-VPR experiments were performed by
transfecting HEK293T cells with dCas9wt-VPR or dCas9v4-VPR with or without a gRNA
targeting the ASCL1 gene. Likewise, KRAB-dCas9 experiments were performed by
transfecting cells with KRAB-dCas9wt or KRAB-dCas9v4 with or without a gRNA
targeting the CXCR4 gene. CRISPRoff experiments were performed by transfecting
HEK293T cells with circular icRNA CRISPRoffwt or CRISPRoffv4 with or without a
gRNA targeting the B2M gene (Synthego). RNA was isolated three days later and

repression or activation of genes was assessed by qPCR.

uantification of editing using NGS: After extraction of genomic DNA, PCR was
performed to amplify the target site. Amplicons were then indexed using the NEBNext
Multiplex Oligos for lllumina kit (NEB). Amplicons were then pooled and sequenced
using a Miseq Nano with paired end 150 bp reads. Editing efficiency was quantified
using CRISPResso02.

Lentivirus production: HEK293FT cells were seeded in 1 15-cm plate and transfected
with 36 pL Lipofectamine 2000, 3 ug pMD2.G (Addgene #12259), 12 ug pCMV delta
R8.2 (Addgene #12263), and 9 pug of the lentiCRISPR-v2 plasmid. Supernatant
containing viral particles was harvested after 48 and 72 hours, filtered with 0.45 pm
Steriflip filters (Millipore), concentrated to a final volume of 1 mL using an Amicon
Ultra-15 centrifugal filter unit with a 100,000 NMWL cutoff (Millipore), and frozen at
-80C.
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RT-gPCR: cDNA was synthesized from RNA using the Protoscript Il First Strand cDNA
Synthesis Kit (NEB). qPCR was performed using a CFX Connect Real Time PCR

Detection System (Bio-Rad). All samples were run in triplicates and results were

normalized against GAPDH expression. Primers for qPCR are listed in Table 1 below.

Table 1: gPCR primers

CXCR4_F GAAGCTGTTGGCTGAAAAGG
CXCR4_R CTCACTGACGTTGGCAAAGA
ASCL1_F CGCGGCCAACAAGAAGATG
ASCL1_R CGACGAGTAGGATGAGACCG
B2M_F TATGCCTGCCGTGTGAACCATGT
B2M_R GGCATCTTCAAACCTCCATGATGCT
GAPDH_F ACAGTCAGCCGCATCTTCTT
GAPDH_R ACGACCAAATCCGTTGACTC
GFP_F ACGTAAACGGCCACAAGTTC
GFP_R AAGTCGTGCTGCTTCATGTG
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