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Abstract

Epigenetic modifications are dynamic control mechanisms involved in
the regulation of gene expression. Unlike the DNA sequence itself,
they vary not only between individuals but also between different
cell types of the same individual. Exposure to environmental fac-
tors, somatic mutations, and ageing contribute to epigenomic changes
over time, which may constitute early hallmarks or causal factors of
disease. Epigenetic changes are reversible and, therefore, promising
therapeutic targets. However, mapping efforts to determine an individ-
ual’s cell-type-specific epigenome are constrained by experimental costs.
We developed eDICE, an attention-based deep learning model, to
impute epigenomic tracks. eDICE achieves improved overall performance
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compared to previous models on the reference Roadmap epigenomes.
Furthermore, we present a proof of concept for the imputation of person-
alised epigenomic measurements on the ENTEx dataset, where eDICE
correctly predicts individual- and cell-type-specific epigenetic patterns.
This case study constitutes an important step towards robustly employ-
ing machine-learning-based approaches for personalised epigenomics.

Keywords: Epigenome Imputation, Histone Modifications, Self-Attention,
Deep Learning, Transfer Learning

Epigenetic mechanisms play an essential role in developmental biology and
human disease [1, 2]. They act at the intersection of genetic and environmen-
tal factors to control, regulate, and propagate cellular responses, significantly
contributing to diverse cellular phenotypes. Importantly, their influence on
gene activity is reversible without altering the underlying DNA sequence.
They, therefore, provide unique diagnostic and therapeutic opportunities and
offer promising targets for precision medicine approaches [3-5], with particular
interest for applications in cancer treatment [6, 7]. However, crucial challenges
remain, mainly because epigenomes are cell-type specific and dynamically
changing on different time scales - for example during the cell cycle, devel-
opment, or ageing. Therefore, decoding epigenetic patterns is particularly
laborious, expensive, and data-intensive.

A deeper understanding of epigenetic modifications has shed new light on
the mechanisms involved in certain neurological and neurodegenerative dis-
eases, developmental disorders, and some forms of cancer [3, 8-10]. Large-scale
efforts to map the functional properties of human epigenomes proved essen-
tial for these developments and have provided a crucial resource to understand
how the interplay between genetic and epigenetic factors affects cellular iden-
tity and function [11, 12]. While these projects aim to profile diverse cell types
using various epigenetic assays comprehensively, the experimental costs impose
constraints that inevitably lead to incomplete maps, with many cell types still
sparsely analysed.

As a result, computational approaches that can leverage existing epige-
nomic data to impute the results of as-yet unperformed assays are of
considerable interest. To this end, imputation models seek to exploit the cor-
relations between sets of epigenomic marks within and between cell types to
predict unobserved signal values across the genome. The challenge the impu-
tation problem presents is one of combinatorial generalisation: given existing
genome-wide measurements for a set of combinations of tissue or cell type
and experimental assay, these methods seek to generate genome-wide pre-
dictions for the combinations of cell type and assay for which experimental
measurements are currently unavailable.



Springer Nature 2021 I TEX template

Getting Personal with Epigenetics 3

Results

eDICE and previous work on epigenomic imputation

In 2015, Ernst and Kellis pioneered work in the field of large-scale epigenomic
imputation by introducing ChromImpute [13], offering exciting possibilities
for epigenomic profiling at scale, quality control, improvement of downstream
analysis, and the optimisation of biological experiments [13, 14]. ChromImpute
employs a regression framework that continues to show strong performance
in accurately predicting unobserved epigenomic tracks. Despite its excellent
performance, ChromImpute’s design presents two significant drawbacks. First,
it requires the training of a new ensemble model for each target cell-assay
combination, which is a severe computational constraint when considering the
dimensionality of complete personalised and cell-type specific epigenomic maps
[15]. Second, ChromImpute’s use of track-specific feature sets means infor-
mation is not readily shared between predictive models for different tracks,
limiting the extent to which it is able to exploit the increasingly large amount
of data gathered by consortia such as ENCODE [16].

Overcoming these limitations, other imputation models have recently been
developed which are based on factorisation frameworks and can generate
genome-wide predictions for arbitrary combinations. Here, the complete set of
possible epigenomic measurements (i.e. the set of all possible combinations of
cell line, epigenomic assays and genomic locations) are represented as a single
data tensor, and missing entries of this tensor are reconstructed via combi-
nations of learned vector embeddings (‘factors’) representing the index along
each of the dimensions. In particular, PREDICTD [17] trains an ensemble of
linear tensor factorisation models, in which learned vectors representing cell
line, assay type and genomic position are combined linearly via a generalised
inner product to produce predicted values. Subsequently, Avocado [18] intro-
duced the use of a neural network to output a nonlinear combination of the
cell, assay and position embeddings, leading to improved performance. While
the simplicity and relative parsimony of these approaches is appealing, and
the ability to share information between tracks suggests greater potential to
exploit the full array of available epigenomic measurements, the performance
of these methods is competitive with ChromImpute on only a subset of met-
rics [18]. Furthermore, the requirement to independently learn embeddings to
represent each position in the human genome, even at 25 base-pair resolution,
imposes daunting memory demands.

We propose a novel method, eDICE (epigenomic Data Imputation through
Contertualized Embeddings), based on a new formulation of the epigenomic
imputation problem designed to combine the strengths of the regression and
tensor factorisation frameworks. Similar to regression approaches, eDICE uses
the signal values of observed tracks at the target position as inputs. However,
by using these signal values to build separate representations of (i) the local
epigenomic state of each cell and (ii) the local enrichment of each mark, eDICE
also adopts the principle of factorised representation learning which underlies
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the combinatorial generalisation capacity of tensor factorisation approaches.
At the same time, we remove the need to learn explicit embeddings of genomic
position. The rationale behind this is that genomic locations can implicitly
be grouped through shared functional properties, e.g. inaccessible intergenic
regions or active promoters, enhancers. These shared local properties are
reflected in the partially observed marks, which we use directly to infer the
remaining marks. In contrast, PREDICTD and Avocado use the observed
marks to explicitly learn individual genomic embeddings along the complete
genome, which are subsequently exploited for the actual imputation task.

A single compact model with reduced memory
requirements

The goal of imputation methods is to predict the signal values 3 (c, a) for
epigenomic tracks generated by performing assay a in cell type ¢ at all binned
genomic locations k. To achieve combinatorial generalisation we seek to learn
an imputation function having the factorised form §*)(c;, a;) = go(c®,a®),
where ¢®) and a(®) are local representations of the cell type and assay, reflect-
ing their properties at the k' genomic bin, and gg is a neural network. The
crucial difference from previous tensor factorisation models is that this func-
tion operates on local rather than global representations of cell types and
assays, thereby avoiding the need for explicit representations of each genomic
location. Following this factorised form, there remains the problem of how to
produce the relevant embeddings.

Intuitively, we would like the local cell type embeddings to reflect the latent
epigenomic state of each cell type and, similarly, the assay embeddings to
reflect a latent ‘profile’ summarising the signal observed when applying the
assay across different cell types at the given genomic location. To infer these
latent representations, we use the measured local signal values in each cell type
and assay to produce embeddings that are a function not only of this cell type
or assay-specific signal but also of the observed contert of measurements in
related cell types and assays. For example, a cell type in which a measurement
of a particular histone modification is missing might then nonetheless be asso-
ciated with a representation that encodes whether similar cell types carry that
histone modification at the position in question. The problem is thus viewed as
producing contextualised embeddings for each of a set of cell types and each of a
set, of assays, which is the kind of set-based representation learning problem for
which self-attention and in particular the Transformer architecture has been
shown to provide a powerful inductive bias [19, 20]. We therefore use separate
Transformer-style networks to map the local signal associated with each cell
type and each assay to sets of contextualised local cell type and assay embed-
dings, which are thus conditioned on the local signal in all observed tracks
(i.e. the set of values y*)(c, a) for all observed pairs (¢, a)). To produce a pre-
diction, the contextualised cell type and assay embeddings corresponding to
the desired output track are combined via the network gy for which, following
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Avocado, we use a multi-layer perceptron (MLP). Full details of the architec-
ture are provided in the Online Methods and schematised in Figure la. We
note that as a result of not requiring learned embeddings for all genomic bins,
our model’s parameter count is significantly smaller than other single-model
imputation approaches based on full tensor factorisation (Table 1).

To train the model, we simulate the imputation problem it will encounter at
test time by randomly masking out a fixed fraction of the training signal values
and using the remaining observed values to predict these simulated targets.
This type of self-supervised task has been shown to be a meaningful training
method for computer vision models[21]. This procedure is also reminiscent
of few-shot regression approaches [22], where sets of observed input-target
pairs sampled from a training distribution of regression tasks are used to learn
models capable of producing task-conditioned predictions.

Model # models  # parameters per model
ChromImpute 203 /
PREDICTD 8 ~11.5B
Avocado 1 ~34B
eDICE 1 ~6M

Table 1 Number of models and parameters per model required to make genome-wide
predictions on the Roadmap test set. While PREDICTD and Avocado require several
billion parameters for genome-wide prediction, eDICE requires only 6 million to obtain
competitive performance.

eDICE imputations are highly accurate on the reference
epigenomes

For direct comparison with previous imputation work, we evaluate the accu-
racy of eDICE imputations on a dataset of epigenomic tracks collated by the
Roadmap project [23] and used in previous studies [13, 17, 18]. This dataset
consists of 1014 signal tracks from 24 epigenomic assays in 127 cell types.
All but one of the assays target histone modifications, with the remaining
assay profiles chromatin accessibility via DNase-seq. A core set of five assays
(H3K4mel, H3K4me3, H3K36me3, H3K27me3 and H3K9me3) is available in
most cell types, while coverage of the cell types with the remaining assays
varies widely. We use the first train/test split defined by [17], which consists of
709 training tracks, 102 validation tracks, and 203 test tracks. To compare the
performance of imputation methods, we report a series of metrics assessing the
quality of imputations of the tracks in the test set by models trained on tracks
in the training and validation sets (and optionally using these tracks to pro-
vide inputs at test time). The metrics are computed across chromosome 21 of
the hg19 assembly, the smallest human chromosome spanning about 48 million
base pairs. As baselines, we report results for the prior methods ChromImpute
and PREDICTD. We do not report metrics for Avocado since the publicly
available imputations for the test tracks result from a model trained on the
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Fig. 1 Schematic representation of the eDICE model. For each cell type we collect all mea-
sured signal values from assays performed in that cell type at the target bin, and project this
set of values into a shared embedding space, where it is combined with a global embedding
representing the cell type (1). We do likewise for assays, projecting the sets of values mea-
sured in different cell types from each assay into a distinct embedding space. We then apply
self-attention over both sets of embeddings, allowing the network to capture relationships
between cell types and assays to produce ‘contextualised’ embeddings which are functions
of the local signal values in all observed tracks (2). Finally, a feed-forward neural network
combines the contextual embeddings for a target cell type-assay combination to generate a
prediction for the local signal value (3). (b) On the left, a transfer learning scheme used for
the imputation of personalised epigenomes. On the right, the data matrix of the epigenomic
tracks selected for the ENTEx case study is shown. It includes 29 tissue-assay combinations
shared by all four individuals (for a total of 116 tracks).

M Female 51 years old (ENCDO2710UW)
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whole set of Roadmap tracks. However, Avocado’s performance on a similar
set of metrics on the same dataset was reported to be very close to that of
PREDICTD, with differences in performance tending to favour Avocado on
MSE metrics and PREDICTD on measures of correlation and identification
of peaks [18]. Finally, as a standard baseline, we also report predictions made
by averaging the signal of the target assay in all other cell types except the
target cell type (AVG).

Previous studies of imputation methods have varied in the choice of the
primary metrics by which to assess performance [13, 17, 18]. In an attempt to
provide a balanced view of model quality, we report performance on a selection
of metrics designed to capture three desirable characteristics of imputations:
(i) global similarity between imputations and ground truth values, (ii) similar-
ity between imputations and ground truth values focusing on relevant subsets
of the signal (e.g. high activity regions) and (iii) discrimination accuracy for
a peak vs non-peak classification task. Metrics targeting the first category
include the mean squared error and the Pearson correlation coefficient com-
puted on the arcsinh-transformed signal for the whole genome. For the second
category, we distinguish between foreground (Fg) and background (Bg) bins,
where Fg bins correspond to the enrichment peaks detected by MACS2 [24]),
and Bg bins correspond to the remaining bins, the complement to the fore-
ground. For the third category, we rely on two different strategies for treating
the continuous imputations as the outputs of a classifier. First, to test the
ability of models to retain the semantic significance of the transformed p-value
signal tracks, we use MACS2 as peak caller to detect the predicted peaks
and compare them to the peaksets in the Roadmap dataset via precision and
recall. Second, we use the threshold-agnostic area under the precision-recall
curve (AUPRC) to offer a balanced view of the overall tendency of the mod-
els to produce imputations under which ground truth peak regions are ranked
higher than non-peak regions, irrespective of the absolute predicted values.
Additional details on all metrics are found in Supplementary Section S3.2.

The performance of the models is presented in Figure 2a and Supple-
mentary Table S1. eDICE outperforms PREDICTD across all metrics, and
ChromImpute across the majority, although ChromImpute shows strong per-
formance for the prediction of peak height in the foreground. eDICE’s relative
disadvantage here suggests a tendency to systematically underestimate the
absolute signal values within peaks, which is exemplified in the trade-off
between precision and recall compared to ChromImpute. However, it ranks
peak and non-peak regions relative to each other more accurately than
ChromImpute, as demonstrated by the fact that it outperforms all base-
lines on the AUPRC metric, thereby offering the best overall imputation in
terms of global discriminatory power. We emphasise that while PREDICTD
imputations were generated respecting the same data split, the ChromImpute
imputations were produced in a leave-one-out fashion, so our model’s improved
performance comes despite a considerable handicap relative to ChromImpute
in terms of the available training data. Qualitatively, eDICE presents many
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of the characteristics that were present in its predecessors, such as a general
smoothing of the imputed tracks, which is especially notable in the background
regions (Figure 2a). Additionally, the imputed tracks reduce the impact of
outlier values, such as the extremely high peaks present in a few tracks for
H3K4me3. Such peaks are not necessarily a direct representation of the high
significance of the local enrichment but can be heavily affected by the con-
trol samples’ coverage and quality, which, when low, can bias the estimated
p-values towards extreme values.

To confirm that these aggregate results were not unduly influenced by
variation in the range of metric values across different types of assay, we also
examined the metrics at the level of individual tracks (Figures 2b and Supple-
mentary Figures S4, S5) and aggregated by assay (Figure 2d). The track-level
comparisons confirm that eDICE’s performance improvements are consistent
across cell type-assay combinations. However, grouping tracks by assay reveals
significant differences in the performance depending on the type of epigenetic
mark. For example, all models tend to perform relatively poorly when predict-
ing H3K27me3 and H3K9me3 (Figure 2¢ and Supplementary Figures S6 and
S7). Comparing the average assay-level performance of each model shows that
the improvements brought by eDICE are consistent across the board despite
these discrepancies between assays (Supplementary Figure S2).

Finally, we further explored whether differences in performance between
types of assays could be related to differences in specific properties of the epige-
netic marks. Some histone modifications can be classified as either narrow-peak
(H3K27ac, H3K4me2, H3K4me3, H3K9ac) or broad-peak marks (H3K27me3,
H3K36me3, H3K4mel, H3K79me2, H4K20mel). Comparing the performance
of eDICE on test tracks across these two groups, we observed that perfor-
mance tended to be higher on narrow-peak than on broad-peak marks for
correlation and classification metrics (Figure 2d). Furthermore, a similar divide
is observed when splitting histone modifications into repressive (H3K27me3,
H3K9me3) and activating marks (the active promoter-associated H3K9ac,
H3K4me2, H3K4me3, active enhancer associated H3K4mel and H3K27ac and
DNAse-seq, Figure 2e). As repressive marks are often linked to heterochro-
matin configurations, this discrepancy is possibly due to biases introduced by
the processing pipelines because of systematic sequencing differences in these
regions. However, as repressive marks also tend to display broad peaks, it is
challenging to pinpoint the precise reason for the observed differences.

Imputations accurately capture significant differences
between tissues

Epigenomic patterns differ between cell types to control and register cell
function and identity. It is critical that imputations accurately capture these
differences if they are to constitute valuable resources of cell-type-specific
epigenomic landscapes. However, within the scale of the whole genome, these
cell-type-specific differences are subtle and global evaluation metrics such
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Fig. 2 (a) Performance metrics for the imputation of the 203 test tracks on chromosome
21 for each model. (b) Percentages of test tracks on which eDICE outperforms the baselines
for each metric. ChromImpute shows good performance on tasks related to the height of
the peaks, while eDICE outperforms PREDICTD on all metrics. (¢) Examples of observed
epigenomic tracks with the signals imputed by eDICE. Below the tracks, the peaks detected
with MACS2 highlight how the imputations accurately capture enriched regions. (d) Group-
ing the tracks by assay reveals significant differences in the imputation performance. This
phenomenon is observed in the previous models as well, indicating that is most likely due to
the nature of the specific modifications and the biases that their signal includes. The colour
of each dot indicates the number of support tracks that share the cell type with that specific
test track, while the light blue bars in the background show the number of support tracks
that share the same assay. (e) Assays split into broad- and narrow-peak marks show consis-
tently different performance for the imputation task. For each metric, we performed a 2-sided
Welch’s t-test under the null hypothesis that both sets of metrics have the same mean, and
reported the resulting p-value at the bottom of each plot. (f) Splitting the histone marks
by functionality (repressive vs. activating) shows a similar bias as the comparison in (d).

as those considered above are dominated by regions which have a shared
functionality across cell types, such as large intergenic regions.

We next seek to evaluate the usefulness of our imputations in identifying
cell-type-specific variability. As a test case, we identify differential peaks across
two imputed H3K9ac tracks from the test set (corresponding to Roadmap
cell types Adipose-Derived Mesenchymal Stem Cell Cultured Cells (E025) and
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Muscle Satellite Cultured Cells (E052)). Notably, experimental protocols to
identify differential patterns explicitly require several biological replicates to
estimate local variability, which is essential for robust statistical hypothesis
testing [25] (Figures 3a and 3b). Typical imputation methods, however, pool
biological replicates and focus on predicting the mean signal (bottom parts of
Figures 3a and 3b).

We first note that the overall shape of individual peaks is remarkably
conserved between individual experimental replicates for corresponding tracks
(Figure 3a). In the case of tissue-specific peaks, on the other hand, the signal
shapes are distinct between replicated measurements derived from different
tissues (Figure3b). We have previously exploited this observation for differ-
ential peak calling [26], where we considered the genomic region of the peak
as a metric space and treated the pile-up of sequenced reads like a sample
from a hidden probability distribution on that space. This strategy dramati-
cally improves the test’s statistical power compared to methods based on total
counts alone. We also note that the shape differences are well captured by
the mean signals (Figures 3a and 3b bottom panels). To quantify differences
in peak shapes across the two cell types, we computed the Wasserstein (WS)
distance between the pooled ground truth signals across the two cell types,
and likewise between the imputed signals. Figure 3¢ shows that the distances
in imputed and ground truth tracks are strongly correlated, indicating that
the imputations accurately capture cell-type-specific differences in the shape
of signal enrichment at peak regions.

As an independent analysis, we next took advantage of the robustness of
the existing differential peak analysis method, DiffBind [27], which, however,
requires replicates for statistical testing. We have therefore estimated the local
variability of cell-type-specific test tracks. Assuming a negative binomial dis-
tribution, the estimated variance parameters are subsequently used to simulate
replicates from the imputed mean signal tracks on chromosome 21. While an
arbitrary number of replicates can readily be generated in this way, we chose to
use three simulated replicates, similar to typical experimental scenarios. Those
tracks were fed into the standard differential analysis pipeline, and the out-
come is compared with the results obtained from the corresponding analysis of
actual replicated measurements. Further details on the simulation procedure
are provided in Supplementary Section S3.4. We emphasize that the simula-
tion procedure employs only replicates from the training set and tissue-specific
control samples in addition to the imputed tracks and makes no use of any
information from the test set.

Employing the DiffBind library [27] we compare binding affinity scores,
which are indicative of the strength of interaction between DNA and
biomolecules (such as modified histones). Figure 3d shows a correlation
heatmap for the similarity of affinity scores for different samples. The block
structure highlights the expected relationship between the replicates derived
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Fig. 3 Differential peak analysis using imputed epigenomic tracks. (a) and (b) show exam-
ples of nonspecific and tissue-specific peaks respectively for H3K9ac in the two chosen tissues
(E025 and E052). The upper part shows the measured replicates, emphasising the need to
account for the biological variability in future improvements of epigenomic imputation mod-
els. (c) A scatterplot of the Wasserstein distance between the signal in the two tissues, for
each peak in the enriched peakset of E025. The x axis displays the WS distance between
observed signals, while the y axis between imputed signals. The imputations retrieve most
of the information contained in the measurements, especially for the stronger differences
between tissues. We highlighted the two points corresponding to the peaks shown in figures
(a) and (b). (d) Correlation heatmap of the affinity scores for different replicates. The sim-
ulated replicates correctly retrieve the expected relationships to the measured replicates,
although they show a high degree of similarity between themselves, likely an artefact of the
simulation procedure. (e) Venn diagram representing the peaks that are detected as differ-
entially enriched between tissues using imputed and measured signals. The imputed signal
retrieves 66% of the true peaks. (f) Binding affinity heatmaps for the measured repli-
cates and the imputed pseudo-replicates. Each row corresponds to one of 1609 differentially
enriched peaks detected in either of measurements and imputations. The imputed replicates
display the same global block structure as the measurement replicates.
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from different tissues; however, the simulated replicates show high similar-
ity across tissues, possibly due to the adopted procedure underestimating the
biological variance between samples.

Within DiffBind, we used DESeq2 to identify peaks of differential enrich-
ment with default parameters. Specifically, we used a ‘local’ fittype to estimate
dispersion and used a Wald test for negative binomial distribution (‘nbi-
nomWaldTest’) to identify statistical significant peaks. A total of 1165 and
1299 peaks were detected as differentially enriched in measurement and impu-
tations, respectively (FDR threshold of 0.05). 855 peaks (~ 73% of the
measured peaks) are shared between the two sets, resulting in a Positive
Predictive Value of 0.66 (Figure 3e).

Details of the binding affinity scores for each differentially enriched peak in
the consensus peakset derived from imputations and measurements are shown
in Figure 3F, where the block structure of the measurements (left side) is
replicated in the imputations (right side).

In summary, we conclude that the imputations accurately capture cell-
type-specific differences, both in terms of altered shapes of signal enrichment
at peak regions and also with regard to integrated total counts in the peak
regions, when considering local variability.

eDICE accurately predicts global histone modification
patterns from individual donors

Recently, a collaboration between the ENCODE [16, 28] and the Genotype-
Tissue Expression (GTEx) consortia created new data sets that include
extensive individual-specific histone modification measurements from four
donors. This constitutes an important resource and a significant step towards
personalized functional genomics. However, the large-scale measurement of
comprehensive epigenomic maps for individual healthy donors or patients con-
tinues to be prohibitively expensive and imputation methods, like eDICE, are
opening up the possibility of expanding personalised epigenomic maps using
only a small set of assayed marks.

The ENTEx data set includes data across 25 different tissues from two adult
males, 37 and 54 years old, and two adult females, 53 and 51 years old. To test
eDICE’s capability to impute individual-specific tracks we have selected 29
tissue-assay combinations available for all four individuals (Figure 1b). These
tracks are chosen so that the histone marks and tissues approximately overlap
with those present in the Roadmap dataset. We extract data from chromosome
21 to be used in the following experiments. Additional details on the selected
sets can be found in Supplementary Section S3.5, together with the accession
codes for the ENTEx experiments (Supplementary Table S2).

We first note that many individual-specific tracks are largely similar across
the four different individuals, as seen for instance for the H3K4me3 tracks
in E106 (Figure 4a). We also find that cell identity is a dominant determi-
nant of epigenomic patterns, in particular for marks H3K27ac, H3K4mel and
H3K9me3 (Figure 4b). However, there are also individual-specific epigenomic
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signatures, most notable for H3K9me3, with local enrichment unique to only
one or a subset of individuals (Figure 4c). These personal epigenomic differ-
ences may either reflect underlying DNA sequence variants, in which case they
may be observable across different tissues of the same individual, or they may
result as a consequence of ageing or due to interactions with external stimuli,
potentially in a tissue-specific manner. Three-dimensional histograms of co-
occurrences across tissues and individuals show striking differences between
histone marks (Figure 4d and Supplementary Figures S15-S19); overall we find
indivdual-specific enrichments that are shared across all examined tissues to
be rare. However, there is a large number of individual-specific peaks that are
uniquely found in one tissue, particularly for mark H3K9me3. While individ-
ual epigenomic signatures are rare in the whole genome-wide context, they
may be highly informative, and could be used for personalised predictions for
risk stratification [29], drug resistance [30, 31], or personalised therapies [32].
Therefore, when imputing epigenomic tracks in an individual-specific manner
we want to accurately recapitulate the overall cell-type signatures, while at
the same time capturing the subtle individual differences.

We first examine the global similarity between imputations and measured
tracks using MSE and Pearson correlation. Subsequently, we focus on the
detection of individual-specific signatures, quantifying performance using area
under the precision-recall curve (AUPRC).

As baseline methods, we include several imputation-free strategies. Firstly,
we consider the signals in the corresponding tracks in the Roadmap data set;
secondly, we average signal values in the target cell-type-assay track across
the three non-target individuals (TrackAVG, see Figure 4e). By design, these
baselines reflect the characteristic signatures of the target assay and tissue,
but not the individual-specific enrichment that characterises each person. As
a third baseline, we take the average value of the target assay in all other cell
types for which it is available in the chosen individual (AVG) (Figure 4d). This
last strategy is able to capture individual-specific signatures, however, it is not
cell-type specific.

We next explore several training strategies for eDICE. In each case we
assume a leave-one-out (LOO) setting where we have 28 tracks available from
the target individual and wish to predict the remaining track (Figure 4d)).
Three models are trained from scratch on the complete Roadmap dataset
(eDICE Train Roadmap), the target individual only (eDICE Train Target), or
the three off-target individuals (eDICE Train Other Ind.), to then use the 28
tracks from the target individual only as input. Two models adopt a transfer
learning (TL) approach where they are first trained on either the complete
Roadmap dataset (eDICE Roadmap TL) or the three off-target individuals
(eDICE Other Ind. TL), and then fine-tuned using the 28 available tracks
before predicting the target track. For both TL configurations, we tune the sig-
nal embedder and the final MLP while freezing the global assay and cell type
embeddings and the transformer block, with the aim of preserving as much
information about the relationships between assays and cell types as possible.
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Figure 4f shows the MSE and Pearson correlation for the LOO imputation
of the 29 ENTEx tracks on chromosome 21.

We first note how the TrackAVG baseline performs remarkably well for this
task, indicating that global cell-type-specific enrichment patterns are highly
conserved across individuals. Several configurations of eDICE offer competitive
performance, specifically the transfer learning approaches. On the other hand,
the models that do not use any data from the target individual for training
or fine tuning (eDICE Train Roadmap and eDICE Train other Ind.), display
sub-optimal performance, highlighting the need to account for the individual-
specific biases. These may include genuine individual-specific patterns, as well
as systematic errors (such as batch effects) that may affect the measurement
for that specific individual.

Another advantage that the TL eDICE models offer compared to models
trained from scratch is a considerably reduced computational cost for train-
ing. The fine tuning or transfer learning process is significantly faster than the
training process, and optimises a smaller number of parameters. For example,
the eDICE Train Target model required 50 epochs of training for optimal per-
formance, while the eDICE Other Ind. TL model achieved better performance
with only 5 epochs of tuning.

Among the eDICE configurations, the transfer from other individuals
offered the best results, both in terms of performance metrics and com-
putational costs, which suggests that personalised imputation models are
potentially impacted by several sources of bias. Previous applications of deep
learning to epigenomic measurements have highlighted how model performance
is significantly affected by distributional shifts [33]. In this case, transfers
between datasets need to account for large changes in experimental condi-
tions (evidenced in the models trained on Roadmap) but even within the
same dataset individual-specific biases are significant (clearly shown in the
performance of eDICE Train Other Ind.).

Analysing the performance at the level of individual assays (Figure 4G)
reveals significant differences between histone modifications. The H3K9me3
assays, for example, are the most difficult to predict as they exhibit many
individual-specific as well as tissue-specific patterns (Figure 4 D). However,
on this mark, the eDICE transfer learning strategy is particularly effective,
showing improved performance relative to the baselines.

eDICE captures epigenetic variation between individuals

Defining individual-specific epigenomic signatures is far from trivial; a robust
analysis would require more than four individuals to properly understand the
overlap of enriched regions and what external factors influence it. Here, we
define individual-specific signatures as the set of enriched regions detected from
the measured samples that span at least 150bp and which are present only
in one individual. This definition aims to capture peaks such as the example
shown in Figure 5a, where H3K4me3 is clearly found in one individual but
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Fig. 4 (a) E106-H3K4me3 track spanning 800kb and showing consistent patterns for
all four individuals. For the central peak we display a slice across the epigenomic tensor
demonstrating signal conservation across tissues and individuals. (b) Occupancy histograms
for the enriched bins across tissues. ¢) Occupancy histograms for the overlap of enriched
bins across individuals. (d) Occupancy across tissues and individuals for each enriched bins
in the tracks for Male 37 for the E079 tissue. (e) Data and configurations used for the
baselines and the eDICE models. AVG averages the respective assay tracks over tissues from
a given individual. TrackAVG averages cell-specific tracks from different individuals. The
latter 2 plots highlight the leave-one out and the out-of tissue strategy used to train and test
eDICE models. (f) MSE and Pearson correlation for the LOO imputation of chromosome 21
using a variety of training schemes. TrackAVG demonstrates good genome-wide performance.
Among the eDICE setups, the best performing model is trained on 3 individuals and tuned
to the target individual. (g) Performance metrics split by assay for the task in (e). The
imputations show large variations between the various histone modifications.
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genomic location, we display a slice of the epigenomic tensor for each of the four individuals,
highlighting the challenge of imputing these varied patterns. (b) Observed and imputed
tracks for the H3K4me3 assay in Male 37 across tissues in the same genomic region as
(a). (c) AUPRC for the prediction of individual-specific enrichment in the LOO ENTEx
imputations, where the peaks shared with other individuals have been masked out. (d)
Track-level AUPRC for the prediction of individual-specific enriched bins. eDICE improves
on the AVG baseline on almost 90% and on 78% of the tracks when compared to TrackAVG.

not the others. This task presents significant challenges due to the small por-
tion of epigenetic enrichments that meaningfully differ between individuals and
because of the complex epigenetic patterns that arise in these regions of vari-
ability, exemplified by the heatmaps displayed in the lower portion of Figure
5a). In these cases, local variability is observed not just between individuals
but also between tissues within the same individual (Figure 5b).

We mask out the enriched regions shared between individuals and measure
the capability of imputation models to correctly classify the individual-specific
signal using the area under the precision-recall curve (AUPRC). Here we test
the best eDICE configuration from the previous experiment (eDICE Other
Ind. TL). For completeness, we included the fraction of positive samples (Pos.
Fraction) as a reference baseline for the AUPRC measure [34]. The results,
presented in Figure 5¢, show that eDICE considerably improves the prediction
of individual-specific enrichment compared to the AVG and TrackAVG base-
lines. A track-level comparison of eDICE’s improvement over AVG is shown
in Figure 5d.
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eDICE generalises to unseen tissues through transfer
learning

The transfer learning procedure allows us to test the imputation performance
of eDICE when imputing epigenomic marks for cell types that were not
observed for the target individual. We extend the LOO procedure to exclude
all tracks for a specific tissue at one time, which are then imputed using the
remaining data (last configuration presented in Figure 4e).

We test both TL configurations, generalising from the Roadmap dataset
and from the off-target individuals, against the AVG and TrackAVG baselines
unaltered from the previous experiments.

Figure 6a displays the MSE and Pearson correlation for the imputation
of the 116 ENTEx tracks with the previously described procedure. Notably,
the Roadmap data is a pure approximation of the respective measurements
from individual donors. Again, averaging strategies either across tissues of the
same individual or within the same cell type across different individuals result
in tracks that are overall very similar to the actual measurement, however
at the cost of loosing individual- or tissue- specificity. The transfer learning
strategy from the Roadmap dataset still offers some improvements over the
baselines, which opens up prospects for generalising to a large set of tissues
when mapped in large-scale efforts such as Roadmap. Consistent with expecta-
tions, the transfer between individuals outperforms the Roadmap TL (Figure
6b), most likely due to the shared experimental conditions within the same
dataset that require a much less extensive adaptation in the fine-tuning of the
model when compared to changes between datasets.

Once again, clear differences between histone marks emerge from these
plots, suggesting that the use of imputation models might be more suitable
for certain epigenetic marks than others.

Following the same setup for the prediction of individual-specific enrich-
ment, we observe that eDICE retains a small advantage over the AVG baseline
when generalising to unseen tissues (Figures 6¢ and 6d).

This result highlights that imputation models offer the possibility of cap-
turing personalised epigenomic signatures even in more restrictive conditions,
which is a promising direction for the application of epigenomic imputations
for precision medicine.

Discussion

We have presented eDICE, a novel epigenomic imputation framework that
outperforms state-of the art methods on several metrics, while combining the
advantages of its predecessor models. Like ChromImpute, eDICE uses the
local signal of observed tracks to encode information on the genomic position,
removing the need to learn explicit embeddings for each genomic position.
Similar to the tensor factorisation models PREDICTD and Avocado, eDICE
uses factorised representations for computational efficiency, and readily gener-
alizes to cell type-assy combinations unseen during training, while at the same
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Fig. 6 (a) MSE and Pearson correlation for the imputation of tracks for unseen cell
types. Transfer learning between individuals offers the best performance, but remarkably
a model trained on the Roadmap dataset and tuned to the target individual still offers
improvements compared to the AVG baseline. (b) Track-level comparison of the imputation
metrics for the generalisation to unseen cell types, highlighting the percentage of tracks in
which eDICE outperforms each model. (¢) AUPRC for the prediction of individual-specific
enrichment in the imputed tracks for unseen cell types. (d) Comparison of the AUPRC for
the predictions of individual-specific enrichment in (c¢). Transfer learning between individuals
clearly outperforms the AVG baseline and the transfer learning from the Roadmap dataset.

time requiring a three orders of magnitude lower number of parameters than
Avocado.

The choice of evaluation metrics for epigenomic models is far from triv-
ial. We selected a wide array of metrics that capture information relevant to
possible downstream tasks in which epigenomic imputations would be used;
on most metrics eDICE outperforms all baselines, with the exception of a few
where ChromImpute shows great performance.

We emphasize the need for imputation models to be trained and designed
with the aim of including imputations in established bioinformatics processes.
As a case study, we explored the possibility of simulating biological repli-
cates from the imputed data, which are then used for differential peak calling
obtaining results compatible to the measured replicates. We pose that future
developments in the field of epigenomic imputation should account for and
predict not only the average value of measurements, but also the intrinsic
biological variability of different samples. Explicitly modelling the variance of
epigenomic measurements would allow for more robust analysis to distinguish
the differences caused by fluctuations due to the natural variability of the
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samples from the true differences between tissues and marks that encode the
functional variations of cell profiles.

Finally, we demonstrated the possibility of imputing personalized epige-
nomic tracks with eDICE. Simple baselines obtain competitive performance in
capturing the global patterns shared across tissues and individuals. However,
this case study shows that eDICE is better able to predict the individual-
specific enrichment that is not captured in those baselines. While still a proof of
concept, the transfer learning framework adopted allowed eDICE to generalise
to unseen cell types while still retaining improved prediction of individual-
specific enrichment. The extremely small number of individuals in the ENTEx
dataset is a severe constraint for a robust study of machine-learning-assisted
personalised epigenomics. Nevertheless, imputation models such as eDICE
open up exciting opportunities for future precision medicine workflows, in
which a small set of measurements from a patient would be used to obtain a
more complete epigenomic map.

Future developments of eDICE and other imputation methods should
include explicit modelling of the natural variance present in biological repli-
cates. Additionally, much work remains to be done to understand the system-
atic biases introduced by bioinformatics pipelines used to process sequencing
data; it is possible that a shift from p-value signals to read counts could improve
the robustness of the methods and reduce the noise caused by shallow control
replicates. We suggest that in-depth analysis of the shifts between datasets
is key for the practical applications of epigenomic imputations. Supplement-
ing the limited information contained in small experiments with the large
scale maps gathered by international consortia offers a promising methodol-
ogy to overcome the experimental constraints that limit our understanding of
epigenetic marks.

Online Methods
Data

The dataset chosen to evaluate eDICE is the set of epigenomic measurements
from the Roadmap Consortium [12]. The Roadmap dataset consists of 1014
signal tracks from 24 types of epigenomic assay in 127 cell types. All but one
of the assays target histone modifications, with the remaining assay profil-
ing chromatin accessibility via DNase-seq. A core set of five assays, targeting
H3K4mel, H3K4me3, H3K36me3, H3K27me3 and H3K9me3, is available in
each cell type, while coverage of the cell types with the remaining assays
varies widely. We use the first train/test split defined by [17], which consists of
709 training tracks, 102 validation tracks, and 203 test tracks. Supplementary
Figure S1 gives an overview of the data splits over train, validation and test.

These signal tracks are obtained by mapping a set of sequence reads to a
genome to form a genome-wide activity profile. A signal track is identified by
the assay used to generate reads and the cell type for which the assay was
performed. Given a set of observed tracks that are the result of performing
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at least one of a set of n, assays (a1,...,a,,) in each of a set of n. cell
types (c1,...,¢n, ), the goal is to generate imputations for all assay-cell type
combinations which are not represented by tracks in the observed set.

Following previous imputation work, we work with signals in the form of
—log 10 p-value tracks, which indicate the statistical significance of a mark at
each genomic position, and seek to impute the average —log 10 p-value within
each non-overlapping 25 base pair interval in a given subset of the genome.

We additionally preprocess the —log 10 p-value signal using an arcsinh
transform, which reduces the impact of outliers and differences in distribution
between different types of assay, again inspired by prior work [17, 18, 35].

The 116 tracks selected from the ENTEx dataset (Supplementary Table
S2) have been processed in the same manner.

Factorised representation learning

The imputation problem can be seen as one of combinatorial generalisation in
which, given a set of combinations of cell types and assays for which signal
tracks are fully observed, we predict full signal tracks for unobserved combina-
tions of cell types and assays at test time. Such problems are naturally solved
using a factorised approach, in which predictions are generated as a function
modelling the interaction between separate representations for each element
of the combination.

One such method is the tensor factorisation framework adopted by PRE-
DICTD and Avocado, in which the factorisation is extended to the genomic
position axis. Learned cell type embeddings, c, assay type embeddings, a, and
bin embeddings, b, are combined via a parametric function gy to reconstruct
or impute tensor elements:

Jk(c,a) = go(c,a, by) (1)

We follow the use of a factorised structure for representing cells and assays,
but instead of learning independent embeddings for each bin, we allow the
observed signal values from all tracks at a given genomic position to condition
the cell and assay representations at that position. Let YO(IZ) represent the set

of signal values in all observed tracks at the k** bin. We propose a (local)
factorisation of the form:

N k k
1 (c,a) = go (V). a(v)) (2)
in which cell type and assay representations are independently conditioned
by the local signal before being combined by an output network. We refer to

the observed tracks in Yo(lfs) that are fed as input to the model as support tracks,
and to tracks whose values are predicted as target tracks.

eDICE model
The model produces the local embeddings c(Yo(bZ)) and a(Y(k)) by mapping

obs
input vectors representing the local signal associated with each cell type and
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each assay to sets of contextualised local cell type and assay embeddings via
separate Transformer-style self-attention block which act separately on cell
types and assays. We describe the architecture below and schematise the main
steps in Figure 1.

We first describe the construction of the inputs to the self-attention blocks.
Let ygk) denote a partially observed signal vector characterising the signal in
all assays in cell type c in the kth bin. Then

3)

where N, denotes the number of observed pairs (c, a;) in the local signal

data, i.e. the number of non-zero elements in the vector ygk). This scaling
factor limits the changes in the norm of this local signal vector due to uneven
mapping of the epigenome, and is equivalent to the activation scaling used in
Dropout [36].

This cell-specific local signal vector is mapped to an embedding space
through a non-linear function f,,, shared by all cell types, and implemented
through a fully connected layer with parameters ¢ and a ReLU activation
function. To allow the network to combine the local signal representation with
knowledge of the global properties of the cell type, we add to the local signal
embedding a learned global cell type embedding u., which plays the role of a
position embedding in the standard Transformer architecture.

(y((jk))j _ {y(k)]E,iaJ) if (¢, a;) in observed set

0 otherwise

he = f50(y) + ue (4)

We note that in order to keep the notation simple, we are suppressing the

bin superscript in the intermediate cell type embeddings h.. These embeddings

are passed as input to a multiheaded self attention block (SAB)(e), which has

the same structure as that used in the Set Transformer architecture except for
the omission of layer normalisation.

(Cl,...,Cnc):SABc(hl,...,hnc) (5)
The same methodology is applied to produce the contextual embeddings
for the assays a:

h, = f¢>A (ygzk)) + Ug; (6)
(al,...,anﬂ):SABA(hl,...,h"a) (7)

The result of the factorised self-attention is a set of cell representa-
tions (c1,...,¢n,) and a set of assay representations (aj,...,an,), each
of which is a function of the identity of the particular entity being rep-
resented and the full set of local signal values in all observed tracks

(ci =c; (ci, Y(k)> and a; = a; (aj, Y(k))) Given these representations, the

obs obs

prediction for a given cell type-assay pair is obtained by passing the
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corresponding contextual cell type and assay representations through the
fully-connected neural network gy (Equation 2).

Hyperparameters and training details

The model uses cell and assay embeddings of dimension 256 at all stages in
processing. Within the self-attention block we use 4 attention heads, that are
then fed to a feed-forward neural network with a single hidden layer with 128
neurons and a 256-dimensional output. Finally, the combination of cell and
assay representations are fed to a multilayer perceptron with 2 hidden layers
with ReLU activations and 2048 neurons per layer. During training Dropout
with rate 0.3 is applied to each hidden layer in the output MLP.

The hyperparameter configuration was selected based on the best per-
formance on the validation set, and the final model was retrained on the
combination of training and validation sets.

The model is trained to reconstruct the signal values for randomly selected
subsets of the observed tracks, whose values are masked from the inputs. The
number of masked tracks is constant. This training objective can be seen as a
kind of self-supervised learning, similar to that employed by denoising autoen-
coders [37]. The model used to analyse the eDICE performance in the Results
section was trained on the union of the training and validation set for 50
epochs, using the Adam optimiser with a learning rate of 3 *x 1074, and using
120 randomly selected tracks as targets for each training bin.

For the ENTEx imputations, the ”eDICE Train Roadmap” model was
trained with the same exact configuration just described but including all 1014
Roadmap tracks in the training set. "eDICE Roadmap TL” used the same
model as starting point and further tuned the signal embedder and MLP for
20 epochs with a learning rate of 10~%. The best performing ”eDICE Train
Other Ind.” model used an embedding dimension of 64 and 512-dimensional
hidden layers in the MLP and was trained for 20 epochs with a learning rate
of 107*. The ”eDICE Other Ind. TL” used the same pre-trained model to tune
for 5 epochs with a learning rate of 107°. ”eDICE Train Target” was trained
for 50 epochs with a learning rate of 3 * 10~

Supplementary information. Additional information for this paper is
offered in the Supplementary Materials.
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