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Abstract

Transcriptome-wide association studies (TWAS) are a powerful approach to identify genes
whose expression associates with complex disease risk. However, non-causal genes can
exhibit association signals due to confounding by linkage disequilibrium patterns (LD) and eQTL
pleiotropy at genomic risk regions which necessitates fine-mapping of TWAS signals. Here, we
present MA-FOCUS, a multi-ancestry framework for the improved identification of genes
underlying traits of interest. We demonstrate that by leveraging differences in ancestry-specific
patterns of LD and eQTL signals, MA-FOCUS consistently outperforms single-ancestry fine-
mapping approaches with equivalent total sample size across multiple metrics. We perform 15
blood trait TWAS using genome-wide summary statistics (average Nega=511k, Naa=13k) and
lymphoblastoid cell line eQTL data from cohorts of primarily European and African continental
ancestries. We recapitulate evidence demonstrating shared genetic architectures for eQTL and
blood traits between the two ancestry groups and observe that gene-level effects correlate 20%
more strongly across ancestries compared with SNP-level effects. We perform fine-mapping
using MA-FOCUS and find evidence that genes at TWAS risk regions are more likely to be
shared across ancestries rather than ancestry-specific. Using multiple lines of evidence to
validate our findings, we find gene sets produced by MA-FOCUS are more enriched in
hematopoietic categories compared to alternative approaches (P = 1.73 x 1071¢). Our work
demonstrates that including, and appropriately accounting for, genetic diversity can drive deeper

insights into the genetic architecture of complex traits.

Introduction

Genome-wide association studies (GWAS) have identified genomic risk regions for numerous
complex traits and diseases but leave unclear the underlying causal mechanisms responsible
for risk. Multiple lines of evidence have suggested that genomic risk is imparted through
perturbed regulation of nearby target genes, which predicts that the steady-state abundance of
expression levels at target genes is associated with disease risk'™®. Transcriptome-wide
association studies (TWAS)"?, which explicitly test this hypothesis, have been successful in
identifying novel genomic risk regions and specific genes that influence complex diseases’.
Much of TWAS’ recent success is due to the use of genetically predicted, rather than directly
assayed, gene expression, which enables its application to existing large-scale GWAS, thus
greatly increasing statistical power. Recently, we and others have demonstrated that TWAS

also suffer from confounding due to eQTL pleiotropy and LD, which can induce correlation in
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test statistics between causal and non-causal genes in an analogous manner to causal and
tagging variants in GWAS'°.

Despite these recent breakthroughs, our understanding of the genetic architecture of
complex traits has been limited by a lack of diversity in human genetics studies: individuals with
primarily European genetic ancestry comprise 79% of all GWAS participants, despite
representing only 16% of the global population®’. Although risk loci frequently replicate across

ancestries!® %

, the linkage disequilibrium (LD) patterns, minor allele frequencies (MAF), and the
number of causal variants and their effect sizes can vary across genetic ancestries®’. This
heterogeneity in genetic architecture hinders clinical applications of GWAS such as polygenic
risk scores (PRS), an issue that has been highlighted by the poor portability of PRS models

across ancestries®®?*

. On the other hand, recent trans-ancestry design of GWAS have
highlighted the benefits of taking an integrative, multi-ancestry approach to studying complex
disease biology, both by leveraging genetic heterogeneity across human groups to aid in fine-
mapping, and by enabling the discovery of ancestry-specific disease etiologies®??>?". As with
GWAS, we expect the integration of genetically diverse datasets into TWAS methodologies will
improve our understanding of trait architectures that are both shared and unique to particular
genetic ancestries®3°3?,

In this work, we present MA-FOCUS (Multi-Ancestry Fine-mapping Of CaUsal gene
Sets), an approach that integrates GWAS, expression quantitative trait loci (eQTL), and LD data
from multiple ancestries to assign a posterior inclusion probability (PIP) that a given gene
explains the TWAS signals at a risk region®****. |t uses inferred PIPs to compute credible sets
of causal genes at a predefined confidence level p (Figure 1). A key feature of MA-FOCUS is
that it does not assume that the eQTL architecture underlying gene expression is shared across

ancestries®*°

. Instead, MA-FOCUS assumes only that the causal genes for a focal trait or
disease are shared across ancestries. It is expected that gene-level effects are likely more
transferable across ancestry groups than SNP-level effects as genes are inherently a more
meaningful biological unit*®. As a result, MA-FOCUS leverages cross-ancestry heterogeneity in
LD patterns and eQTL associations to identify causal genes with improved precision and
accuracy when compared with alternative approaches.

By performing extensive simulations, we demonstrate that MA-FOCUS consistently
outperforms the analogous single-ancestry method with equivalent total sample size, as well as
a ‘baseline’ approach based on meta-analyzed GWAS statistics from different ancestries®’%. In
addition, we show that MA-FOCUS is robust in simulations where the trait-relevant tissue is

missing, and a proxy tissue is used instead. To illustrate its applicability on real multi-ancestry
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data, we conduct multiple TWAS and fine-mapping analyses with MA-FOCUS for 15 blood traits
in European and African ancestry cohorts using large-scale GWAS summary statistics'®
(average Nea=511k, Naxn=13k) and eQTL weights calculated from the Genetic Epidemiology
Network of Arteriopathy (GENOA) study®® (Nea=373, Naa=441). We recapitulate results
demonstrating the shared genetic architecture for gene expression and blood traits between the
two ancestries. We also find evidence that gene-level effects inferred from TWAS correlate 20%
more strongly across ancestries when compared with SNP-level effects. Fine-mapping the 22
genomic regions that contain TWAS signals for both ancestry groups, we find MA-FOCUS
identifies genes relevant to hematopoietic and cardiovascular disease etiology that are missed
by the baseline approach. Using multiple validation strategies®°, we show genes in MA-FOCUS
credible sets are more strongly enriched for hematological measurement categories (meta-
analysis P-value of 1.73 x 1071¢ compared to 2.91 x 10~11) compared to the baseline approach.
Overall, our analyses using MA-FOCUS emphasize the importance of incorporating genetic
information from diverse genetic ancestries to drive new insights into the genetic architecture of

complex traits.

Materials and methods
Multi-ancestry FOCUS Model

For the it" of k total ancestries, we model a centered and standardized complex trait y; € R™
from n; individuals as a linear combination of gene expression levels G; € R™*™ at m genes as
yi=G6Gia + €
where @ € R™ are the causal effects of gene expression on the complex trait, which are shared
across all ancestry groups, and ¢; € R™ is random environmental noise with E(e;) =0 and
Var(e;) = Iniaéi . Additionally, we model ancestry-specific gene expression as a linear

combination of genotypes X; as
Gi=XW; +¢;

where X; € R™*Pi is the centered and standardized genotype matrix at p; single-nucleotide
polymorphisms (SNPs), W; € RPi*™ is the ancestry-specific eQTL effect-size matrix, and
€4, € R™ ™ is random environmental noise.

Performing a TWAS using predicted gene expression requires the latent ancestry-
matched eQTL weights W;, which are unknown. In practice, we use expression weights £;
estimated from an independent, ancestry-matched eQTL reference panel using penalized linear

models (or Bayesian counterparts)*?. We model the i"" ancestry’s marginal TWAS summary
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statistics for the gene j with complex trait y; as z;,4s, ; = ﬁ

predicted expression imputed by the eQTL panel. By algebraic expansion for m genes, we have

Gl ;y; where G;; = X;22, ; is the

Ziwas,i = ﬂiTViWi)li + — .QTXTel

Ue LV

where we re-parameterize the causal effects of gene expression as 4; =

N

~—a and the ancestry-

matched LD at p; SNPs as V; = n;1X7 X; . Assuming expression weights 2; and causal effects
a are fixed, we can compute the sampling distribution of z,,,,, ; as
Zowasi | 2,V ~ N,V W2, 2[V,2),
and as sample size increases, 27V, 02; asymptotically approaches 2, V,W;.
Next, we model a prior for the causal effects as 4; | c, nia(fi ~ N(0,D.;) where D.; =

lCl

dlag( -¢), cis anm x 1 causal configuration binary vector where ¢; = 1 if the j*" gene at

the region is causal (0 otherwise), |c| denotes the length of ¢, and n;0,;* denotes the sample-
size scaled causal effect prior variance'®. We marginalize ; out to obtain the TWAS sampling
distribution conditioned on a causal gene set as
Zywas,i| 2:, Vi, ¢,n00 ~ N(O, WD, W + %)),

where ¥; = 27V, 0, is the estimated expression correlation matrix. We assume that the causal
genes underlying a complex trait are shared across ancestries, which we model by sharing the ¢
vector across ancestries. Since we do not know the causal genes indicated by ¢ beforehand, we
adopt a Bayesian approach and compute the posterior for a given causal configuration c as

Pr(c|f) Hl 1 N(OW ;D ;¥i+¥;)
Zeree Pric|f) H 1NOY¥D;¥Pi+¥;)

PI‘(C | {thas u-Ql ’ Vl'n O-Cl}l l’f)

where Pr(c|f) = fl€l(1 — /)M ~1¢D for some prior causal probability f and C is the space of
causal gene configurations. In practice we set f to be % where m’ > m denotes the number of
known, and not necessarily tested, genes at the region. Intuitively, this reflects the naive

expectation that a given risk locus contains a single causal gene. For computational tractability,

we constrain the space defined by € to exclude complex configurations with |¢| > 3. In addition,
our likelihood, and thus posterior, depends on niaéi which governs the variance of scaled
causal gene effects 4;. Previously, we recommended using a genome-wide mean z%,,, as a
heuristic, which works well under polygenic architectures™, but may perform poorly in sparser
situations. Motivated by ref**, here we describe a local heuristic that estimates nia(fi as

2 _ -1
NiGg; = thas,iqli Ziwas,i — |C|
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which is an unbiased estimator of causal effect variance a’ ¥;a (see Appendix). In the case of
negative estimates, we instead use z{,,,s ;¥ ™" Zuyas,i-

Computing Posterior Inclusion Probabilities and p-Credible Sets

Our model describes the posterior probability for a given causal configuration ¢ across
ancestries; however, we are more interested in the probability that a specific gene is causal
across ancestries. We define the posterior inclusion probability (PIP) for the j* gene by

marginalizing over all causal configurations ¢ where ¢; = 1 as:
PIP(c; = 1| {Zrwas i 2i, Vi 002 o1, f) = Lereeier;=1 Pr(€’ | {Zowas i, i, Vinol 3y ).
To capture the probability that none of the genes included in our analysis explain the observed

TWAS Z-scores at a risk region, we include the null model as a possible outcome in the credible

293133 "where p reflects the

k .
set, Pr(c' =0 | {ztwas‘i,[)i,,vi,niaﬁi i=1)' To compute a p-credible set
desired confidence that a gene set contains a causal gene, we take a greedy approach that
traverses genes ordered decreasingly by their locus-normalized PIPs until the cumulative sum

reaches at least p.

Overview of the simulation pipeline

Here we provide a high-level summary of our multi-ancestry TWAS simulation pipeline, which is
described by five main steps (Figure S1), with details for each step described in the following
sections. First, we computed approximately independent LD blocks and sampled genotypes for
GWAS and eQTL reference panels in two ancestry groups. Second, we simulated ancestry-
matched eQTL data using simulated eQTL reference genotypes from the first step, sampled
eQTL effects under a sparse architecture, and simulated gene expression at causal and non-
causal genes. Third, we simulated a complex trait in the ancestry-matched GWAS data as a
linear function of eQTL effects of the causal gene from the second step and simulated GWAS
genotypes from the first step. Fourth, we performed ancestry-matched TWAS using penalized
models fitted in the respective eQTL reference panels. Fifth, we performed fine-mapping using

single-ancestry FOCUS and MA-FOCUS. We provide details for each step below.

Computing independent LD blocks and simulating reference eQTL panels

We performed simulations using genotype data from phase 3 of the 1000 Genomes Project for
individuals of European (EUR; N=490) and African (AFR; N=639) ancestries (see Table S1)*.
We restricted genotypes to high-quality HapMap SNPs and filtered for missingness (> 1%),
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minor allele frequency (MAF < 1%), and violations of Hardy-Weinberg equilibrium (HWE mid-
adjusted P-value < 1e-5). To identify approximately independent regions that are consistent with
both EUR and AFR ancestries, we used a recently described extension of LDetect that
considers LD information from multiple ancestries®**. Briefly, we constructed chromosome-
wide ancestry-matched LD matrices V;, and computed a chromosome-wide trans-ancestry LD
matrix V,,4ns Such that it incorporates shared recombination loci across ancestries (see ref?}).

21,43

Applying LDetect to V,qns resulted in 1278 approximately independent LD blocks. We
sampled 100 blocks that carried between 5 and 8 annotated genes (based on hgl9 RefSeq
release 63) as risk regions. Additionally, we extended each LD block 500kb upstream of the first
gene’s transcription start site (TSS) and 500kb downstream of the last gene’s transcription end
site (TES) and updated V; accordingly.

At each risk region, we simulated 10 genes whose expression is under partial genetic
control by first sampling the number of eQTLs for the j** gene, k; = max(1, Poisson(2)). Next,

we assigned k; SNPs uniformly at random to be eQTLs (out of p total for a given locus) and
2
simulated p x 1 effect-sizes vector W;; ~ N(O’%IP) at the k; causal eQTLs and O at the p — k;

non-causal SNPs where hf, € {0.01,0.05,0.1} is the proportion of variance in gene expression
attributable to cis-eQTLs (i.e. SNP heritability of gene expression)>**. In addition, we simulated
eQTLs as either independent or shared across ancestries; in the former case, SNPs and their
effect sizes were chosen for each ancestry individually (under shared hg and k parameters) as
described above, while in the latter, these were chosen once and then fixed for all

ancestries®**°,

Then, we simulated a n;.or, Xp centered and standardized continuous
genotype matrix X;.or;, Using a multivariate normal distribution N(0,V;) where n; o7, is the

ancestry-matched eQTL panel sample size. For gene j, we calculated expression &G;; according

1 . . .
10 Gij = X; .oriWij + €4, Where €,,;; ~ N(O, s;,ij(@ — 1I,,) is random environmental noise for

2
ij» ANd 5,55

expression G = w}}viwu. To estimate ancestry-matched expression weights €;;, we
regressed G;; on X;.or;, using least absolute shrinkage and selection operator (LASSO)
regularization. To simulate eQTL effects when only a genetically correlated proxy tissue is
available, we sampled proxy eQTL effects W7 ; under a bivariate normal distribution as
2
g gxil
where W;; are the causal tissue eQTLs and Ty € {0,0.3,0.6,0.9,1} is the genetic covariance

between two tissues.
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Simulating complex traits and statistical fine-mapping of TWAS
To reflect the practical reality that participants in GWAS and eQTL panels are usually different,
we re-simulated genotypes Xg,qs; ~ N(0,V;) at the risk region to compute GWAS summary
statistics while keeping eQTLs W;; of the 10 simulated genes from the previous step. Then, we
randomly sampled one gene as causal and used its eQTLs to simulate complex trait y; as

y; = Gi’ja]- + € =ngas‘iWi’jaj + €

where a; ~ N(0,1) is the causal gene expression effect, €; ~ N(0, Siz(é_ DI,) is random

environmental noise for complex trait y; where s? =WiT’jViWi']-aj2, and hZ; €{0,1.71 x
1075,1.14 x 107%,7.57 x 107%,5.03 x 1073} is the proportion of complex trait variation explained
by the genetic component of gene expression. Next, to compute ancestry-matched GWAS
summary statistics, we performed linear regression on the complex trait y; marginally for each

SNP in X;,,4,,; and calculated GWAS Z-scores z,,,,,; Using the resulting Wald test statistic. We
then performed an ancestry-matched summary-based TWAS using predicted expression z,,,s ;
for each gene With z;,,45; = 2] Zgyas -

Lastly, we performed TWAS fine-mapping using single-ancestry FOCUS and multi-
ancestry MA-FOCUS on z.,,,; to generate 90% credible sets for each ancestry and under the
joint model, respectively. To determine whether the improvement of MA-FOCUS is solely due to
increased sample sizes, we also evaluated a ‘baseline’ approach®’. Specifically, the baseline

approach consists of computing meta-analyzed GWAS statistics as

5 __ VEURBgwas,EURT VAFR Bgwas,AFR
was —
9 (VEUR + varr)Y/?

, Where v; = 1/595was,i is the inverse variance weight.

Rather than constructing meta-analysis expression weights, Z,,,,s 1S then computed by using
the EUR expression weights 2,,;. Finally, fine-mapping is conducted on Z,,,, using single-
ancestry FOCUS and 90% credible sets are computed. In all, we ran four methods (EUR
FOCUS, AFR FOCUS, baseline, and MA-FOCUS) on 100 LD blocks to output one credible set
per LD block per method. To test whether including information from additional ancestries of
diverse genetic ancestries increases the performance of MA-FOCUS, we evaluated scenarios
that also include individuals simulated using 1000G East Asian (EAS; N=481) ancestry data*?
(Table S1), and performed MA-FOCUS on three ancestries by fixing per-ancestry eQTL sample

size, hg, and hZ; and allowing the total GWAS sample size to vary.

Simulating ancestry-specific genetic architectures and data-missing cases
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A central assumption of MA-FOCUS is that different ancestries share the same causal genes
and their effect sizes. To characterize the performance of MA-FOCUS in cases where this
assumption is partially violated, we simulated cases where the mediating gene-trait effects h2;
are ancestry-specific as a heuristic to represent heterogeneity in genetic architectures.
Additionally, in practice, eQTL panels for a particular tissue of interest may be either unavailable
or underpowered due to small sample size. To evaluate the performance of MA-FOCUS in
cases where relevant eQTL data are unavailable*, we tested two scenarios that used different
types of “proxy” data>®!%3*3>% First, we simulated cases where the trait-relevant tissue was
unavailable in AFR, and a proxy tissue from the same ancestry with correlated gene expression
was substituted. Second, we simulated cases where eQTL weights for AFR were entirely
unavailable, and weights from EUR were used instead. The latter differs from the baseline
approach in that the TWAS and FOCUS were conducted with ancestry-matched, not meta-

analyzed, GWAS results.

Description of simulation parameters and fine-mapping performance metrics

We compared MA-FOCUS results to single-ancestry FOCUS results for EUR and AFR, and the
baseline approach across multiple simulations, which varied according to whether eQTLs were
shared or not. We also varied four additional parameters: GWAS sample sizes, eQTL panel

sample sizes, cis-SNP heritability of gene expression (cis—h_f,), and the proportion of trait

variance explained by genetically-regulated gene expression (h2;). Unless stated otherwise, the
simulation parameters were set to defaults of 100,000 for the per-ancestry GWAS sample size,
200 for the per-ancestry eQTL panel size, expression cis-h5 = 0.05 and trait h; = 7.57 x 107*,
We evaluated fine-mapping performance based on three metrics: mean PIP of the causal
genes, mean 90% credible set size, and frequency in which the causal genes are included in
100 90% credible sets per simulation (sensitivity). We fit linear regression adjusted for

corresponding parameters to report one-sided Wald test P-value.

Fitting SNP-based prediction models of LCL expression in the GENOA study

To calculate ancestry-specific gene expression weights in real data, we used genotype and
lymphoblastoid cell line (LCL) derived gene expression data from European ancestry (EA) and
admixed African American (AA) individuals from the GENOA study®®. Genotype data were
generated using Affymetrix and lllumina genotyping arrays; in total, 1,384 EA and 1,263 AA
individuals were assayed on the Affymetrix 6.0 array, 20 EA and 269 AA on the lllumina 1M

array, and 103 EA on the Illumina 660k array. All genotype data analyses were conducted using
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PLINK 1.9, vcftools, and bcftools*”~*°. We imputed genotype data using the TOPMed server,
implementing minimac4 v1.0.2 and eagle v2.4 phasing®’. Each ancestry dataset was imputed
separately, except for EA individuals assayed on Illumina arrays, which we merged prior to
imputation. We retained bi-allelic SNPs with good imputation quality (r? > 0.6) for both EA and
AA cohorts, filtered for MAF < 1% and for HWE P-value <1 x 107° resulting in 1,160,917 and
1,330,340 quality-controlled (QC) SNPs for EA and AA, respectively. We used GCTA* to
compute genotype principal components (PCs) and genetic relatedness matrices within the EA
and AA cohorts after further filtering for SNPs with imputation 72 > 0.9 and low pairwise LD
(using --indep-pairwise 200 1 0.3 in PLINK*®). For computing genotype PCs, we filtered out
individuals such that no pair exhibited a relatedness coefficient greater than 0.05, resulting in
373 EA and 441 AA individuals. For downstream eQTL model fitting, we used only HapMap
SNPs*%,

Expression data for the EA and AA cohorts were assayed at 16,944 and 32,881 genes
(overlap of 14,797) on the Affymetrix Human Exon 1.0 and Affymetrix Human Transcriptome 2.0
arrays, respectively, and processed by Shang et al*°. In this context, genes refer to any regions
that express RNA, and not necessarily the ones that have protein-coding function. After lifting
over the expression data to GRCh38, for each gene in its respective ancestry, we ran

FUSION™"? to estimate genetic variance cis-cf; and cis—hg, and to calculate ancestry-specific

eQTL weights, limiting the analysis to SNPs falling within a window including 500kb up and
downstream of each gene’s transcription start-site and transcription end-site, as defined in hg19
RefSeq release 63. We included 30 gene expression PCs, 5 genotype PCs, age, sex, and
genotyping platform as covariates in building these SNP models"°. We identified 3,680 and
4,291 genes in EA and AA, respectively, with an estimated cis-hg of at least 0.01 (nominal p-
value < 0.01) of which 2,496 genes overlapped both ancestries. We limited our downstream
analyses to 4,646 unique genes that had evidence for significant cis-h2, as defined above, in

either ancestry and non-zero weights in both ancestries™’”.

Validation of LCL prediction models in GEUVADIS

To validate our estimated ancestry-specific gene expression weights derived from the GENOA
study®, we obtained paired genotypes and LCL-derived mRNA expression data at 22,721
genes for 373 EUR participants and 89 Yoruba in Ibadan (YRI) participants from the GEUVADIS
study®. We performed the same relatedness- and variant-based filtering as described above,
which resulted in 358 EUR and 89 YRI participants and 8,403,216 and 14,855,241 SNPs,

10
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respectively. Restricting to the 4,581 genes that overlapped with GENOA, we estimated cis-a;
and cis- hg of LCL gene expression in GEUVADIS using the Genome-based restricted

maximum likelihood (GREML) approach, with genotypes limited to 500kb up and downstream
window around each gene as described above, and adjusted for participants’ sex and 3
genotype PCs®?. Next, we predicted LCL expression for GEUVADIS participants using GENOA-
based expression weights and calculated the coefficients of determination (%) between

predicted and measured expression levels.

TWAS and fine-mapping of 15 blood traits from GWAS summary data
We obtained published GWAS summary statistics for 15 blood traits (Table S2) from Chen et
al’®. After lifting SNPs over to GRCh38 and updating their identifiers to dbSNP v153, we used
LDSC munge®* to perform quality control filtering of summary statistics, based on imputation
INFO scores > 0.9, MAF > 0.01, and chi-squared statistics < 80 to limit the influence of outlier
SNPs. We flipped alleles as necessary for consistent orientation across European ancestry and
African ancestry GWAS statistics. The average GWAS sample size was 511,471 for European
and 13,298 for African ancestries across all SNPs and all 15 blood traits, reflecting ~40-fold
difference in sample sizes.

As in our simulations, we calculated TWAS z scores® of EA, AA, and baseline approach
for each trait by leveraging corresponding GWAS summary statistics'®, FUSION-fitted LCL

139 and estimated LD from 1000 Genomes*?. To shed light on ancestry

eQTL reference weights
similarity in genetic architecture, we computed cross-ancestry correlation of GWAS and TWAS
effect-size estimates for genome-wide SNPs and genes using a blocked jack-knife approach; to
adjust for sample size differences, we normalized GWAS and TWAS effect sizes by dividing by
square root of GWAS sample sizes. To compute an average across all 15 blood traits, we meta-
analyzed individual correlations across 15 blood traits and tested the difference with pooled
standard error. Next, we fine-mapped the original resulting TWAS Z-scores using MA-FOCUS,
single-ancestry FOCUS, and the baseline approach, focusing on independent genomic regions
which exhibited transcriptome-wide significant signals (P < 0.05/4579, the number of genes
with TWAS statistics) in both EA-specific and AA-specific TWAS, and annotated them based on
their inclusion in the 90% credible set, as described above. To provide evidence of the causal
genes being shared, rather than ancestry-specific, we performed Bayesian model comparison

and calculated log-Bayes factors for each gene in a MA-FOCUS credible set as

_ PIPya-Focus
log BF = 10g (PIPEA(1_plpAA)+PIPAA(1—PIPEA))-
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Validation of blood trait fine-mapping results

To determine if the genes prioritized by MA-FOCUS are more biologically meaningful than those
prioritized by other methods, we validated credible sets using four different approaches. First,
we performed a gene set enrichment analysis for genes identified in credible sets (i.e.
aggregating genes identified across all loci) for a given fine-mapping method and blood trait
using the R package enrichR®°®. We manually selected 20 trait categories related to
hematological measurement in DisGeNET, a database of curated gene-trait associations®’,
based on the most relevant body system using MeSH (see Web resources) and EFO*’
ontology hierarchies (Table S3). We counted the number of significantly enriched categories
with Bonferroni correction (P < 0.05/n where n is the number of enrichment testing) for each
method and performed meta-analysis on these categories using Fisher's Method. Second, we
performed enrichment analyses comparing each blood-trait and fine-mapping specific gene set
with the DisGeNET-curated gene set for the equivalent blood trait. Third, we evaluated gene
sets using a previously published “silver standard” (see Web resources), to determine whether
they better predict causal genes of 159 blood-related mendelian and rare diseases (Table S4).
Since these diseases are monogenic or oligogenic, their causal genes are affirmative in high
confidence and are likely to have moderate effects on blood-related complex traits. Leveraging
database from Online Mendelian Inheritance in Man (OMIM) and Orphanet, we performed
logistic regression to calculate areas under the ROC curve within each method, and each blood-

related trait in Chen et al.

Results

Multi-Ancestry FOCUS improves power to identify causal genes in simulations

We first evaluated the performance of MA-FOCUS in simulations and compared it with the
baseline approach, which consists of GWAS meta-analysis across ancestries followed by
TWAS and fine-mapping with a single ancestry’'s weights (see Methods). Briefly, we simulated
a complex trait as a function of genetically-regulated gene expression for both ancestries when
the causal tissue was known (see Methods) while varying GWAS and eQTL sample sizes and
features of the underlying genetic architecture. Across all simulation scenarios where causal
eQTLs were independent across ancestries, we found MA-FOCUS reported higher PIPs for
causal genes than the baseline approach (0.62 compared with 0.45; P = 9.05 x 107%%), smaller
credible sets (4.89 compared to 6.62; P =2.13 x 107131), and higher sensitivity (88.30%
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compared to 81.30%; P = 9.35 x 10™°). Specifically, consistent with previous TWAS and TWAS

fine-mapping simulation studies™*°

, we observed performance improved as GWAS and eQTL
sample sizes increased, likely reflecting increased statistical power (Figures 2, S2). We found
that increasing eQTL panel size affected MA-FOCUS sensitivity more dramatically than
increasing GWAS sample size. For instance, increasing the eQTL panel size two-fold, from 200
to 400, improved sensitivity by 6% from 91% to 97% while a same proportionate increase in the
GWAS sample size, from 100,000 to 200,000, only increased sensitivity by 2% to 93% (Figure
2, S2). We re-performed these simulations assuming that the causal eQTLs are shared across
ancestries and observed that MA-FOCUS consistently outperformed the baseline (Figure S3).
However, this performance advantage was slightly attenuated compared to the independent
eQTL setting, highlighting the ability of MA-FOCUS to improve performance while being
agnostic to eQTL architecture. Hereafter, we focus on presenting results where eQTLs were
simulated independently in each ancestry to highlight MA-FOCUS’ potential advantage in real-
world applications where eQTLs exhibit heterogeneity across ancestries®.

Next, we sought to quantify the increases in fine-mapping power that could be gained by
including individuals from diverse genetic ancestries, rather than increasing the sample size of a
single-ancestry GWAS. Specifically, we assumed an existing eQTL panel of 200 individuals for
AFR and EUR ancestries and compared the performance of MA-FOCUS with single-ancestry
fine-mapping, given a fixed number of total GWAS participants. We found that MA-FOCUS
placed more posterior density on causal genes with a mean of 0.67 compared to 0.57 (P = 0.01)
and produced smaller credible sets with a mean of 4.86 compared to 5.33 (P = 0.03) with better
sensitivity of 0.91 compared to 0.83 (P = 0.01) when compared with FOCUS applied to
equivalently powered EUR-only TWAS data (Figure S4). This relative performance advantage
held when we compared two- to three-ancestry scenarios (Figure S5). Consistent with previous

multi-ancestry SNP-based fine-mapping approaches®®?°

, our results suggest that incorporating
additional ancestry genetic diversity in GWAS drives larger payoffs in fine-mapping performance
than simply increasing the sample sizes of GWAS on previously studied ancestries.

To evaluate the performance of MA-FOCUS as a function of the underlying genetic
architecture, we next performed simulations varying the cis-SNP heritability of gene expression
(cis—hj) and the proportion of trait heritability attributable to a causal gene (hZ;). Across
architectures, MA-FOCUS significantly outperformed the baseline (P = 2.52 x 10~* for PIP
metric, P = 7.45 x 10™*° for credible set metric, and P = 3.61 x 10~* for sensitivity; Figure S6-
S7). Moreover, when there is no causal gene effect (i.e. hZ; = 0), we found that MA-FOCUS

returned larger PIPs for the null model (P = 2.88 x 10~°) and smaller credible sets (P = 1.64 X
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1072%) on average compared with the baseline (Figure S7). Our results show that MA-FOCUS
is better-powered than the baseline to identify the true causal model, including the null model,

across a range of heritabilities for gene expression and the overall trait.

Multi-Ancestry FOCUS is robust to genetic-architectural and data-dependent
assumptions

Next, we sought to characterize the performance of MA-FOCUS when assumptions of the
underlying model are partially violated. First, we simulated a complex trait where the mediating
gene-trait effects differed across ancestries by setting ancestry-specific hZ; values (i.e. fixed for
EUR and varying for AFR across a range; see Methods). Again, we found that MA-FOCUS
consistently reported higher PIPs for causal genes (P = 3.42 x 10711) and smaller 90% credible
sets (P = 6.80 x 10733) compared with the baseline (Figure 3, S8). Furthermore, the sensitivity
of gene sets reported by MA-FOCUS were robust to up to 7-fold differences in ancestry-specific
h2g (i.e. 7.57 x 10~* for EUR compared to 1.14 x 10~* for AFR). Only when the AFR h2; was
~2% of the EUR h2; (7.57 x 10~* for EUR compared to 1.71 x 10> for AFR) did we find MA-
FOCUS performance to degrade, which is consistent with reduced statistical power under a
fixed sample size. Together these results show that MA-FOCUS is generally robust to ancestry-
specific architectures.

To investigate the impact of imbalanced GWAS sample sizes, we performed simulations
matching the sample sizes of a recent multi-ancestry blood trait GWAS'® (Np, = 511,471 and
Ny4q = 13,298; see Methods). In this setting MA-FOCUS computed credible sets that were
smaller compared to the baseline (P = 3.54 x 10~°; Figure S9B) with similar mean PIPs at the
causal genes (P = 0.13 Figure S9A) and sensitivity (P = 0.17; Figure S9C). This demonstrates
that, even when GWAS sample sizes vary by an order of magnitude across ancestries, MA-
FOCUS provides improved fine-mapping performance.

Next, we performed simulations where the trait-relevant tissue for AFR was unavailable
and was substituted with eQTL data quantified in a proxy tissue with correlated genetic effects
(see Methods). Performance of MA-FOCUS was highly dependent on the underlying correlation
between proxy and causal tissue, and increased with increasing inter-tissue genetic covariance,
as expected (Figure S10). We again observed that MA-FOCUS outperformed the baseline
approach as well as single-pop FOCUS on AFR across all metrics (P < 1 x 10~7 for all PIP and
credible set metrics, and P = 0.02 with MA-FOCUS Baseline comparison and P = 0.09 with
MA-FOCUS AFR-FOCUS comparison for sensitivity; Figure S10).
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Finally, we performed simulations where eQTL reference panels for AFR are not
available and EUR weights are used instead for both TWAS and fine-mapping. We found that
MA-FOCUS' relative performance was mixed across different metrics, estimating similar causal
PIPs and sensitivity (P = 0.69 and P = 0.90; Figure S11A, C) and smaller credible sets size
(P =3.73x107%; Figure S11B). In all, this highlights the importance of multi-ancestry study

design collecting gene expression data from different ancestries when possible.

Multi-ancestry TWAS identifies shared architecture in blood traits

After confirming that MA-FOCUS outperforms other methods of TWAS fine-mapping, we next
sought to apply it to real data from cohorts of European- (EA) and African-ancestries (AA)
ancestries. We performed ancestry-matched TWAS for 15 blood traits using GWAS summary
statistics®® (Table S2, S5; Nga=511,471, Naa=13,298) together with an eQTL reference panel of
LCLs from the GENOA study®® (eQTL: Nga=373, Naa=441; see Methods). First, we estimated
cis-genetic variance (cis-a;) and SNP-heritability (cis-hé) for expression at 14,797 genes
assayed in both EA and AA GENOA cohorts (see Methods). We observed that, across all
genes, CiS-O'gz was significantly non-zero with an average of 0.018 for EA compared to 0.024 for
AA (P < 1 x 10710 for both tests). Furthermore, focusing on the 4,646 genes whose expression
was significantly heritable in at least one of the cohorts, cis—ag2 estimates were positively
correlated across ancestries with r = 0.54 (P < 1 x 107199 for both tests against 0 and 1; Figure
4A), which is consistent with previous results suggesting that the genetic architecture of gene
expression is significantly shared across ancestries®®. Next, we trained prediction models using
the FUSION pipeline and performed 5-fold cross-validation (CV; see Methods). We found CV
r? was significantly non-zero (AA CV r? =0.11; EA CV r?=0.10; < 1 x 107190 for both), which

were strongly correlated with cis-g; estimates (r=0.72 for EA with P < 1 x 107*°%; r=0.76 for AA

with P < 1 x 1071%0; Figure S12AB), suggesting that in-sample prediction models perform well
and are consistent with theory where heritability provides a predictive upper bound®>°%°°,

Next, we further validated the predictive performance of LCL expression models by
evaluating their out-of-sample performance in the European- and Yoruba-ancestry cohorts
(EUR and YRI, compared with GENOA EA and GENOA AA, respectively) of the independent
GEUVADIS study (see Methods)®. While YRI are not an ideal ancestry proxy for admixed
African Americans, we expect a significant degree of genetic similarity between the two given
the high mean West-African component of African Americans (~80%), which YRI is commonly

used to represent®. Consistent with our GENOA-based findings, we found that the estimates of
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CiS-O'gz in GEUVADIS were significantly non-zero with an average of 0.062 for EUR compared to

0.077 for YRI (P < 1 x 107100 for both tests). We then calculated the 2 between measured LCL
gene expression from GEUVADIS individuals and expression predicted using our GENOA-
based weights. We found an average out-of-sample r? estimate of 0.04 for EUR and 0.05 for
YRI (P <1 x 10719 for both tests; Figure S13), which while decreased compared to within-
GENOA estimates, suggests our predictive models accurately capture the genetic component of
gene expression for ancestry groups. Estimates were significantly correlated with estimates of
GEUVADIS cis-g, with r = 0.79, 0.54 for EUR and YRI (P < 1 x 107'°° for both tests against 0;
Figure 4BC). The comparatively poorer cis-ogz-adjusted performance of our AA expression
weights in the GEUVADIS YRI is not unexpected, given the ancestry differences between the
Yoruba and African-Americans, discussed above, which likely impact the genetic regulation of
gene expression. Indeed, we found that cis—og2 for AA and YRI are less correlated than EA and
EUR (r=0.30 and 0.55 with P < 1 x 107190 for both tests against 0; P <1 x 10~*® for testing
correlation difference)®®. Next, we evaluated across-ancestry prediction performance by
predicting LCL gene expression levels for GEUVADIS EUR individuals using GENOA AA
weights (similarly for GEUVADIS YRI and GENOA EA) and estimated an average r2 0.039 for
EUR and 0.033 for YRI (P <1 x 1071° for both tests; Figure S13). Consistent with previous
works®®, we found a decrease in accuracy for GEUVADIS YRI individuals compared to within-
ancestry results (P = 1.75 x 10731) and similar levels of accuracy for GEUVADIS EUR (P =
0.09). Together, these results demonstrate that our prediction models capture accurately the
heritable component of gene expression within ancestry groups and recapitulate previous
findings on the limited transportability of cross-ancestry prediction models for gene
expression®¥*°.

Having validated our SNP-based LCL expression prediction models, we next conducted
multi-ancestry TWAS for each of the 15 blood traits on 4,579 heritable genes in 995 unique
independent regions (see Methods). Across all traits, we identified a total of 6,236 (2,009
unique), 116 (57 unique) genome-wide TWAS significant genes in EA and AA, respectively, of
which 28 were shared (17 unique) in 3029 (623 unique) regions (P < 0.05/4579; 3.29 unique
genes per region; Figure 5A; Table S6; see Data Availability for the full results). Of the 8,416
(1064 unique) LD blocks that contain GWAS signal (P <5 x 107%) in either ancestry or the
meta-analysis, 2,933 (623 unique) also exhibited TWAS signals. Conversely, 96 (78 unique) LD
blocks that contain TWAS signal do not exhibit GWAS signals, suggesting that TWAS identified
novel risk regions for 15 blood traits. Of the 3,029 (623 unique) regions containing TWAS hits,
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1,335 (319 unique) contain multiple TWAS significant associations, motivating the use of gene
fine-mapping. We found that both normalized GWAS and TWAS effect size correlations
between EA and AA are significantly non-zero for all traits, suggesting shared architecture at the
individual SNP- and gene-effect level (Table S7; Figure S14; see Methods). Interestingly, we
found that across-ancestry correlations are 20% higher on average for TWAS compared to
GWAS (r = 0.061 and 0.052, respectively, P = 0.027; Figure 5B; Table S7), which is
consistent with previous findings demonstrating that predicted transcriptomic risk scores
better correlate across ancestry groups® and suggests that gene-level effects on average

better reflect shared biology compared with SNP-level effects.

Trans-ancestry fine-mapping prioritizes likely causal genes in blood traits
Next, we applied MA-FOCUS to TWAS results for 10 blood traits focusing on 163 genes
overlapping the 11 unique regions that contained TWAS signals for both EA and AA ancestry for
a given trait (see Methods). Across these 11 regions, each contained on average 7.45 TWAS
significant associations and 3.05 genes in the credible set, none of which contained the null-
model. We estimated an average 2.85 causal genes per region by summing over local PIPs in
credible sets, with 20 out of 22 credible sets containing three or fewer genes (Table S8; see
Data Availability). The average maximum PIP across credible sets was 0.99 (SD=0.03) and
retained similar PIPs for second, and third rank (Figure S15). While estimated PIPs across
methods were correlated, when comparing the credible sets output by MA-FOCUS and other
multi-ancestry approaches, we observed higher means and smaller standard deviations of PIPs
for MA-FOCUS than other approaches (Figure 6, S16). For 67 trait-gene pairs in MA-FOCUS
credible gene sets, 59 are not detected by EA-FOCUS; out of 22 top genes in credible sets, 7
are not detected by EA-FOCUS, respectively, which suggests that incorporating non-European
data in well-powered loci can prioritize additional putative causal genes (Figure S17). Next, to
determine the extent to which prioritized genes are likely to be shared or ancestry-specific, we
performed model comparison using Bayes factors from MA-FOCUS and FOCUS (see
Methods). We observed an average log-scale BF of 1.48, suggesting that credible-set genes
underlying these blood traits are much more likely to be shared across ancestries than ancestry-
specific (Figure S18).

Next, we investigated genes to which MA-FOCUS assigned a high PIP (> 0.75) and
included in a credible set, but that were not identified by the baseline approach. We refer to
these genes hereafter as the ‘MA-FOCUS-specific genes’. We also looked at the converse

situation: that is, genes that the baseline approach found strong support for, but that were not
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prioritized by MA-FOCUS, and refer to these at the ‘baseline-specific genes’. Importantly, we
found that all 21 baseline-specific genes had low PIPs (< 0.1) from ancestry-specific fine-
mapping in at least one ancestry, while 10 of these genes had a low PIP in both ancestries. On
the other hand, only two out of 31 total MA-FOCUS-specific genes had PIPs below 0.1 in both
AA and EA. Five out of 31 total MA-FOCUS-specific genes achieved a moderate PIP of at least
0.4 in both EA and AA ancestry-specific fine-mapping (Figure S19). These five genes are
ARNT, BAK1, NPRL3, PHTF1, and TARS2. A literature search uncovered additional evidence
for roles in cardiovascular system disease and development (specifically, blood cell and
vasculature formation, diabetes, leukemia, and cardiomyopathy) among these MA-FOCUS-
specific genes (Figure S20)%%2%4%97L72 Qyerall, this result suggests that by appropriately
modelling across-ancestry heterogeneity, MA-FOCUS can prioritize disease-relevant genes that
would otherwise be missed from naive meta-analyses.

To validate genes prioritized by MA-FOCUS and the baseline approach, we next
performed a series of validation tests comparing the credible sets (see Methods). First, we
performed gene set enrichment analysis on the credible set genes using the DisGeNET dataset
across all 15 blood traits. We found that MA-FOCUS’ credible sets are enriched more in
hematological measurement categories compared to the baseline approach (25 and 13
categories, meta-analysis P-value of 1.73 x 10716 compared to 2.91 x 10~!; Figure 7; Table
S9). Second, by restricting our focus to trait-matched DisGeNET enrichment categories, we
observed that MA-FOCUS output more significantly enriched credible gene sets compared to
the baseline approach (meta-analysis P-value of 7.56 x 10~° compared to 1.3 x 10~3; Figure 7;
Table S10). Third, using curated “silver standard” databases consisting of Online Mendelian
Inheritance in Man (OMIM) and Orphanet for 159 blood-related diseases (see Web Resources;
see Methods), we observed MA-FOCUS outputs a higher average AUROC curve with 0.57
compared to 0.43, suggesting improved performance in predicting causal genes of monogenic
and oligogenic blood-related Mendelian and rare diseases (Table S11). Altogether, we find that
credible set genes computed using MA-FOCUS better reflect relevant disease biology

compared to single-ancestry and alternative approaches.

Discussion

In this work, we present MA-FOCUS, a Bayesian fine-mapping method that incorporates GWAS
and eQTL data together with LD reference panels from multiple ancestries of diverse genetic
ancestries to estimate credible sets of causal genes for complex traits. Our method is unique in

that it explicitly accounts for, and takes advantage of, heterogeneity in LD and the genetic
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architecture of gene expression to improve TWAS fine-mapping performance. Importantly, our
method assumes only that causal genes for complex traits are shared across ancestries while
making no assumptions on underlying eQTL architectures across ancestries. This is an
important feature of our method considering recent findings that SNP-level replication across
genetic ancestries is weaker than gene-level replication®®, and that only ~30% of SNP-gene
expression associations are shared between European- and African- American ancestry®.
Through extensive simulations, we demonstrate that MA-FOCUS’ ability to identify causal genes
is superior to baseline approaches and is robust to data-dependent limitations (see Methods).

We perform ancestry-specific TWAS and apply MA-FOCUS to 15 blood traits using
GWAS statistics in Chen et al. and lymphoblastoid cell line eQTL data in GENOA from cohorts
of primarily European and African continental ancestry. We report 3.29 TWAS significant genes
per region in 623 regions across all blood traits. The cross-ancestry heritability analysis on LCL
gene expression data, together with correlation analysis on blood traits of GWAS and TWAS
statistics, recapitulate evidence for shared genetic architecture of blood traits between the two
ancestries, and provide evidence for gene-level effects correlating better across ancestries
compared with SNP-level effects. Next, in 22 regions that contain TWAS signals for both
ancestries, MA-FOCUS reports 3.05 genes in the credible sets and estimated 2.85 putative
causal genes per region across all blood traits. We validate MA-FOCUS’ credible sets by
performing enrichment analyses and referencing the results of functional studies. We show that
MA-FOCUS’ credible sets are more strongly enriched for relevant genes associated with
hematological traits in the DisGeNET platform, a database of genotype-phenotype associations
compiled from various sources (Figures 7). Importantly, MA-FOCUS identifies genes that are
known to have functional relevance for cardiovascular system disease and development but are
not identified by the baseline approach.

Despite MA-FOCUS’ advantages in performance, as demonstrated through extensive
simulations, we note several limitations to our analysis of blood traits. First, we find that MA-
FOCUS’ performance advantage is attenuated when the EA sample size is approximately 40
times greater than the AA sample size (Figure S6). Across the 10 blood traits evaluated for fine-
mapping, all methods outputted similarly sized 90% credible sets (Figure 6). Additionally, the
MA-FOCUS’ PIPs are overall strongly correlated with all three of these approaches (Figure
S16). Despite this, as discussed previously, we find evidence that MA-FOCUS is more
successful than other approaches at identifying genes that are functionally associated with
blood traits. Secondly, the gene expression data for our eQTL reference panel was derived from

immortalized cell lines*® which differ from complex living organisms in fundamental ways.
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Therefore, this tissue type may not be the most appropriate tissue for identifying causal
relationships with blood traits. When we explored this scenario using simulations, we found that
both causal gene PIPs and calibration were substantially reduced when poorly correlated tissue
was used for one of the ancestries (Figure S10). We expect this effect would be exacerbated if
a poorly correlated tissue was used to estimate weights for both ancestries. Thirdly, our eQTL
reference panel and GWAS cohort for the AA ancestry represent genetically admixed
individuals whose genomes are a combination of (West) African and European ancestry.
Therefore, when estimating weights for this ancestry, the local ancestry at any given locus
would include some proportion of European-derived genotypes. This likely introduces noise and
further reduces the power of our weight estimates. In total, our analysis limitations motivate us
to perform large-scale GWAS and eQTL study on non-European ancestry and admixed
populations with comprehensive types of tissues and cell-types.

Here, we describe general caveats of our multi-ancestry TWAS fine-mapping approach.
First, MA-FOCUS assumes that genes causal for complex traits are shared across ancestries,
which neglects the possibility of ancestry-specific causal genes. However, because several
large-scale multi-ancestry GWAS studies have shown that the majority of risk signals replicate
in ancestries, we believe this to be a relatively minor issue'®??. Second, MA-FOCUS models
complex traits as a linear combination of steady-state gene expression, which neglects potential
gene-environment interaction (GXE) or gene-gene interaction (GxG). While several works have

supported linear assumptions for complex traits through large-scale GWAS results®®"°

, recent
work analyzing large-scale GWAS from multiple ancestries has provided evidence that allelic
heterogeneity across ancestries may be due to GXE'°, and we acknowledge this as a potential
interesting direction.

Overall, MA-FOCUS provides Bayesian inference on gene causality for complex traits in
specific genomic regions leveraging GWAS data, eQTL data, and LD data of multiple
ancestries. It improves the precision in gene fine-mapping by accounting eQTL and LD
heterogeneity across different ancestral groups and sheds light on the genetic architecture of

complex traits.

Appendix

Estimating TWAS causal effect prior variance
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Here we describe an estimator for the prior causal effect-size variance (i.e. aﬁi) similar to the
HESS model for local heritability**. Our model assumes that marginal TWAS z statistics for m

genes have a sampling distribution given by

\/Ellf-a v)
o'e,i ot

Ziwasi | Vi 2y, ~ N(

where ¥; = 27V,0;. We would like to define an unbiased estimator for the variance explained
by (fixed) causal effects a. Specifically, Var(G;a) = a"Var(G)a = o'W, V;Wa = a"¥;a. As a

result, an intuitive (but biased) estimator for aéi would be

2
o-e,i Ue,i

Tei gy 1 Ty, ol -1 = p, !
( i thas,i) i i thas,i - ztwas,i i thas,i

In practice aéi is extremely close to 1, hence an unbiased estimator for the sample-size scaled

causal effect prior variance n;o,;* is given by

1 _ _ N -1 "
E(n; ;thas,iqli YZiwasi) = r(PTW) + (nPia)TY (i)

L
=m+ niaT'Pia
1 —_
E (ni o Zowas i ¥ 1thas,i) -m=na"V;a=n;o};.
In practice when the estimator is negative (e.g., when little TWAS signal exists), we use the

biased estimator to ensure positivity.
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PLINK: https://www.cog-genomics.org/plink/

MESH: https://www.nIm.nih.gov/mesh/meshhome.html
Bedtools: https://bedtools.readthedocs.io/en/latest/
FUSION: http://gusevlab.org/projects/fusion/
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GCTA: https://cnsgenomics.com/software/gcta/

Silver standard TWAS analysis: https://github.com/hakyimlab/silver-standard-performance
UpsetR: https://github.com/hms-dbmi/UpSetR

EnrichR: https://cran.r-project.org/web/packages/enrichR/index.html

Data and code availability

MA-FOCUS software: https://github.com/mancusolab/focus

LCL prediction models and complete TWAS fine-mapping results:
https://www.mancusolab.com/ma-focus

Analysis codes: https://github.com/mancusolab/MA-FOCUS-data-code
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Figure 1. Example of correlated TWAS associations at a shared risk region.

Toy example of TWAS Manhattan plots for EUR and AFR ancestries illustrating association
signals at a locus for the causal gene (in red) and tagging genes (in black). The correlation
among association signals is a combined result of eQTL signals and linkage disequilibrium (LD;
see Methods). By accounting for heterogeneity in eQTL effect sizes and LD across different
ancestries, MA-FOCUS produces smaller gene credible set with more posterior probability
assigned to the causal gene.
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Figure 2. MA-FOCUS outperforms baseline approach in all three metrics as GWAS
sample sizes vary when eQTLs are independent across ancestries.

PIPs for 100 simulated causal genes (A), the distribution of 90% credible set sizes for 100
simulated gene regions (B), and the sensitivity (C) from MA-FOCUS, and baseline approach,
varying GWAS sample sizes across multi-ancestry ancestries. See Methods section for default
parameters. The black dashed lines indicate 90%. Error bars are constructed using a 95%
confidence interval.
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Figure 3. MA-FOCUS remains robust in having higher causal gene PIPs when trait
heritability mediated by gene expression differs across ancestries.

Distribution of inferred PIPs at the causal gene when the trait architecture varies across
ancestries. We fixed trait variation explained by causal gene expression to for
simulated EUR individuals while varying its amount in AFR individuals. The orange and purple

dotted line indicate the mean and the median of PIPs using EUR FOCUS. The black dashed
lines indicate 90%.
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Figure 4. Heritability and correlation analysis reveal evidence for shared genetic

architecture for expression in LCLs.

(A). The scatter plot for the genetic variance (cis- ) of LCL gene expression for AA and EA

ancestry in GENOA study. (B) (C). The scatter plots where the y-axis is a squared correlation
between measured LCL gene expression in GEUVADIS and predicted by eQTL panels from
GENOA, and x-axis is cis- . Each point represents a gene. The blue line is estimated using

ordinary linear regression.
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Figure 5. The TWAS Manhattan Plot indicates highly correlated genes at certain regions.
(A). The upper plot is the Manhattan plot for EA TWAS, and the lower is for AA TWAS across all
15 traits. Colors differentiate adjacent chromosomes. (B). Cross-ancestry correlation of TWAS
and GWAS effect sizes (see Methods). The correlations are higher on average for TWAS
compared to GWAS (r = 0.061 and 0.052, respectively, ). Each point represents a trait
and the red line is the identity line.
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Figure 6. Credible sets output by MA-FOCUS have higher mean PIPs and lower standard
deviation while exhibiting similar credible set size of EUR FOCUS and the baseline
approach.

The distribution of (A) the mean of gene PIPs in credible sets, (B) the standard deviation (SD) of
gene PIPs in credible sets, (C) credible set size. Calculations do not include null models. Mean
and median are represented by blank and black boxes for the metric distribution.
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Figure 7. Genes prioritized by MA-FOCUS are enriched in hematological categories more
often than other methods.

(A) The bar plot shows the number of enriched categories in DisGeNET identified by each

method within the hematological-measurement-related category. The enriched category is

defined as Bonferroni-corrected P-value less than 0.05. (B) The dot plot shows enrichment
by categories in DisGeNET corresponding to 7 blood traits.
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