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Abstract

Mesenchymal stromal cell (MSC) heterogeneity clouds biological understanding and hampers their
clinical development. In MSC cultures most commonly used in research and therapy, we have
identified an MSC subtype characterised by CD317 expression (CD317°° (29.77+3.00% of the total
MSC population), comprising CD3179™ (28.10+4.60%) and CD317""&" (1.67+0.58%) MSCs) and a
constitutive interferon signature linked to human disease. We demonstrate that CD317"° MSCs
induced cutaneous tissue damage when applied a skin explant model of inflammation, whereas
CD317"8 MSCs had no effect. Only CD317" MSCs were able to suppress proliferative cycles of
activated human T cells in vitro, whilst CD317P°° MSCs increased polarisation towards pro-
inflammatory Th1 cells and CD317"¢ cell lines did not. Using an in vivo peritonitis model, we found
that CD317"8 and CD317P° MSCs suppressed leukocyte recruitment but only CD317"6 MSCs
suppressed macrophage numbers. Using MSC-loaded scaffolds implanted subcutaneously in
immunocompromised mice we were able to observe tissue generation and blood vessel formation
with CD317"8 MSC lines, but not CD317P° MSC lines. Our evidence is consistent with the
identification of an immune stromal cell, which is likely to contribute to specific physiological and

pathological functions and influence clinical outcome of therapeutic MSCs.
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Introduction

Mesenchymal stromal cells (MSCs, frequently referred to as “mesenchymal stem cells”) exist in bone
marrow at a frequency of approximately 0.001-0.01%* and are typically self-renewing for 10-50
population doublings®3. MSCs can differentiate into skeletal lineages (osteogenic, adipogenic,
chondrogenic) and regulate immune cell function* predominantly through the release of cytokines
and other immunosuppressive factors®. The International Society for Cell & Gene Therapy (ISCT)
guidelines identifies MSCs as cells that exhibit tri-lineage differentiation in vitro and plastic
adherence, alongside an expression profile of selected cell surface epitopes (e.g. typically presence
of CD105, CD73 and CD90, and absence of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and
HLA-DR)®. There has been some progress in identifying in vivo markers of MSC populations in mouse
and human systems, which include LEPR, nestin, CD271, CD146 and CD164’, however, no single
marker for MSCs exists in general use. Cells labelled as “MSCs” are used internationally in clinical
trials but are rarely characterised (using ISCT or any other criteria®) and delivery variable success®.
The majority of trials assessing efficacy of MSCs currently aim to harness immunomodulatory
properties', though widespread clinical translation is greatly hindered by insufficient data
demonstrating strong and consistent clinical effect, mechanisms of action and diverse application of
selection criteria®®. In addition, MSCs from different origins have been applied in clinical trials with

12-15

varied outcomes for disorders including osteoarthritis'?1°, osteoporotic fracture repair?®,

rheumatoid arthritis?’%, type 1 diabetes mellitus?, diabetic kidney disease??, multiple sclerosis?*%,

24-26

liver failure?*2%, amyotrophic lateral sclerosis?’-3® and COVID-19%%%3, Notably, although serious

adverse events are extremely rare, mild, transient or acute adverse events occurring are often

13-16,19,21,25, 19,22,24,26,30,34

related to acute inflammation 2930 fever (pyrexia)t” , infection!216:21.2330 3|lergic
reactions/hypersensitivity'*1>1%1% and haematoma?3, all of which are implicated in immune

responses.
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Studies examining heterogeneity in MSCs have identified multiple subpopulations of MSCs with
varied potency for both differentiation and immunomodulation°, Heterogeneous populations of
MSC-like cells have been isolated from both adult and neonatal sources (e.g. bone marrow**2,
peripheral blood®, adipose tissue****, synovial membrane and fluid*®*’, dental pulp*,
endometrium?, periodontal ligament®, tendon®?, trabecular bone>?, umbilical cord®***, umbilical
cord blood®>°%, placenta®’). There are further indications that MSC-like cells may be present in most
vascularised tissues in some form>®>°, This widespread distribution of MSC-like cells with varied
differentiation capacities and fluctuations in the expression levels of characterising surface markers
has prompted increasing reports of unipotent tissue-specific MSCs, yet bone marrow-derived MSCs
are generally considered to be a population composed entirely of cells possessing tripotent
differentiation capacity®. This raises the hypothesis that heterogeneous cell populations may
collectively characterise as MSCs using ISCT (and other) criteria but comprise subsets of cells
specialised to perform different functions. The widespread reporting of immunomodulatory
capacities of MSCs and the impact of immune responses during tissue formation and comorbidity in
degenerative disease highlights the likelihood of a nascent, endogenous population of cells that

operate primarily to convey or control immune function. This population has the potential to

support tissue regeneration rather than contributing to it.

We previously demonstrated the heterogeneity of human MSCs through the identification of
multiple subpopulations using a clonal isolation and immortalisation strategy that enabled in-depth
and reproducible characterisation®. These populations included an immune-primed MSC subtype
identifiable through positive expression of CD317 (bone marrow stromal antigen-2 (BST2) or
tetherin) and possessing enhanced immunomodulatory capacity. Here, we tested the hypothesis
that CD317 positive (CD317"°) stromal cells function primarily to direct the immune response and
do not contribute to tissue generation or repair in both physiological and pathological processes and

therefore represent an identifiable MSC subtype.
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Results

MSC identity of CD317-expressing stromal cells

In our previous work we isolated nullipotent, CD317P° MSC lines (Y102 and Y202) alongside
differentiation-competent, CD317" MSC lines (Y101 and Y201) from the same heterogeneous donor
source suggesting that a subpopulation of stromal cells exists in typical MSC preparations but may
not contribute to ‘classic’ MSC functions. Here, we examined the stromal phenotype the CD3177°*
and CD317"& MSC lines. An in silico assessment using the Rohart Test®! was applied to accurately
discriminate MSCs from fibroblasts, other adult stem/progenitor cell types and differentiated
stromal cells. This test uses 16 key MSC marker genes as a proven panel of identifiers that has
independently confirmed MSC status with 97.85% accuracy in 635 cell samples®®. All of the
immortalised CD317"8 and CD317P° stromal cell lines maintained gene expression patterns that

independently confirmed their MSC status (Figure S1A and Table S1).

Next, we used mass spectrometry to determine cell surface protein expression profiles across the
different cell lines. We identified a high number of commonly expressed proteins alongside cell line-
specific variations. Using a false detection rate of 3%, we found 2678 proteins expressed across all
MSC lines, with 584 (65.2%) of these commonly expressed (Figure S1B), which may reveal a common
stromal surfaceome signature. Percentage similarity at the surfaceomic level ranged from 76.0% to
83.5% (Figure S1C). Unique proteins were identified in Y101 (20 proteins, 2.2%); Y102 (30 proteins,
3.3%); Y201 (36 proteins, 4.0%); and Y202 (21 proteins, 2.3%). These analyses also confirmed that
CD317 (BST2) was only identified on Y102 and Y202 MSC lines. Principle component analysis (PCA)
was used to aid interpretation of mass spectrometry data through dimensionality reduction. Analysis

highlighted that MSC lines clustered distinctly within the whole population but were on a similar
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spectrum of observation, with Y102 and Y202 lines lying further from the mean of the whole
population (Figure S1D). Together, these data demonstrate that the CD317"€ Y101 and Y201 cell
lines, and the CD317"° Y102 and Y202 cell lines have broadly similar protein expression profiles in

common with other MSC preparations and may be used as models for different MSC subtypes.

Identification of CD317%™ and CD317°9" populations in primary MSCs

We previously reported a CD317P°° MSC subset with average frequency of 1-3% in low passage
primary MSCs®. Here, using flow cytometry analysis with Y201 and Y202 populations gating for
primary cells as either CD317"¢ or CD317°°, we were able to demonstrate that CD317 positivity can
be subdivided into CD317%™ and CD317""€" populations in primary MSC cultures (Figure 1A, S1E).
Further examination of n=24 primary MSC populations recorded proportions at CD317"
(70.57+5.09%) and CD317P° (29.77+3.00%), comprising CD317%™ (28.10+4.60%) and CD317°""
(1.67+0.58%) (Figure 1B). We observed a decrease in CD317 expression over time in culture
(passages 1-4), however this trend did not reach statistical significance due to the variability of initial
proportions of CD317°° cells when CD3179™ was included as a CD317 positive result (means passage
1=50.66127.63%, passage 2 = 30.35+6.03%, passage 3 =26.07+11.78%, passage 4 = 22.18+12.26%;
n=2,12,7,3) (Figure S1F). We made a similar observation when examining subsets of CD3174™ and
CD317"&t cells, with CD317°8" cells almost absent by passage 4 (Figure 1C). CD317 expression in
isolated primary MSCs from passage 3 to 4 reduced by 49.01 + 11.84% (n=5); with a freeze/thaw
cycle at passage 3, this reduction was recorded at 63.94 + 3.64% in the same cells (n=5) (Figure S1G).
Therefore, human primary MSC isolates express CD317 on a spectrum that varies from cell to cell
and from individual to individual; the overall proportion of CD317P° MSCs, as a composite of
CD3179™ and CD3171&"t is 28-29% in heterogeneous MSC cultures (combining all analyses of
primary cell donors, percent CD317°° MSCs is 28.44+3.82% (mean + SEM), range of 0.01-93.03%;
median=19.89%; n=52). Within CD317P* cells, there was no difference in percentage CD317

expression based upon donor gender (mean expression female 40.02+5.27; male 24.77+6.51; Mann
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Whitney T-test p=0.051, n=52) or correlation between donor age and CD317 expression (mean age:
69.7511.29 years; range 45-88; Pearson correlation p=0.141, n=52),) (Figure 1D, 1E). There was,
however, a significant negative correlation between CD317 expression and BMI (mean 28.0610.78;

range 17-44; Spearman correlation p<0.05, n=52) (Figure 1F).

We previously demonstrated that the hTERT immortalised MSC lines display typical (ISCT) surface
marker profiles®®. Here, we also examined surface markers commonly associated with human
stromal progenitor cells or subsets, including CD146, CD271 and CD164, within CD317" and
CD317"° primary MSC populations. Isolated MSCs from human primary donors showed CD317%
(CD3179™ and CD317°&" populations combined) with mean % expression values of CD317°°
(52.9045.89%), CD146P° (19.46+3.07%), CD271°° (4.025+0.71%) and CD164°° (95.03+2.11%) (n=27)
(Figure 1G). Examination of the CD317°° population only showed similar proportions of each marker
to those seen in the whole population: CD146P% (24.21+3.23%), CD271P° (7.78+1.35%) and CD164°°*
(97.18+0.66%) (n=27) (Figure 1H). These findings demonstrate that expression of these markers is

independent of CD317 positivity and that CD164 identifies virtually all CD317™and CD317P° MSCs.

Comparative gene expression analysis has previously demonstrated a correlation between murine
peri-sinusoidal stromal cells and CD317°° MSCs®2. LEPR has been shown to mark peri-sinusoidal
stromal cells in mouse tissue®®. Here we investigated CD317°°/LEPRP* stromal cells in mouse bone
marrow to identify the in vivo location of this subpopulation. CD317 expression was detected
throughout the bone marrow with low frequency colocalisation of CD317 with LEPR restricted to

peri-sinusoidal regions adjacent to CD31-positive endothelial cells (Figure 11).
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159 Figure 1. Analysis of CD317-expressing MSC populations within primary cell isolates. (A) The

160  CD317 expressing populations can be divided into CD317°"€" and CD317™ with CD317°€"t MSCs. (B)
161  Average proportions of CD317"°¢ and CD317°°, comprising CD317%™ and CD317°&"t, in primary MSCs
162 lines. (C) Expression of CD317 over early passages 1 to 4 in Primary MSCs with CD317"*¢ increasing,
163 CD3179™ and CD317°"&"t decreasing during in vitro culture (n=2-12). Variation of CD317 expression
164  with gender (D), age (E) and BMI (F) in primary donors (n=52). (G) Isolated MSCs from human

165  primary donors showed CD317P° (CD3179™ and CD317"€" combined) with mean values of CD317°°,
166  CD146P°%, CD271°° and CD164P* (n=27). (H) Examination of the CD317"° population only, showed
167  similar proportions of each marker to those seen in the whole population (n=27). (1) CD317

168 expression was detected throughout the bone marrow of mice with low frequency colocalization of
169  CD317 and LEPR+ in peri-sinusoidal regions (arrows).

170

171 Immune profile of CD317P° MSCs

172 Our previous transcriptomic data indicated that CD317P°° Y102 and Y202 MSC lines display a
173  constitutive immunostimulatory expression profile®®, which we sought to define here using the MSC
174  lines and primary cells sorted based on CD317 expression. We confirmed by qPCR that ICAM1 (CD54)

175 MRNA levels were significantly elevated in CD317°° Y102/Y202 compared to CD317"# Y101 (Figure
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2A). Although ICAM1 mRNA expression levels appeared similar in primary MSCs sorted for CD317
positivity (Figure 2A), flow cytometric analysis demonstrated that cell surface ICAM1 expression, as
shown by mean fluorescence intensity (MFI), was significantly increased on CD317° primary MSCs
versus CD317"8 MSCs and CD317°°° Y102/Y202 versus CD317"8 Y101/Y201 (Figure 2B). Comparative
analysis of CXCL10 and CXCL11 mRNA levels in immortalised MSC lines and primary MSCs sorted for
CD317 demonstrated significantly increased expression in all CD317-positive MSCs compared to

CD317-negative counterparts (n=7; experiments performed in triplicate) (Figure 2C, 2D).

CD317, ICAM-1 and CXCL10 are regulated by interferon-gamma (IFN-y). We analysed expression
levels of the IFN-y receptor by flow cytometry and demonstrated that it was expressed at similar
levels in all four MSC lines, independent of CD317 expression (MFI, Y101=9.11, Y201=8.41,
Y102=9.60, Y202=9.84; p>0.05) (Figure S2A). This finding suggested that all MSC lines were capable
of responding to IFN-y stimulation in a similar manner, but CD317-positive MSCs may be primed to
transduce IFN-y stimulation more effectively. Secretion of CXCL10 was measured with (Figure 2E)
and without (Figure 2F) IFN-y exposure. Under basal, unstimulated conditions, CD317P°° Y102/Y202
MSCs secrete larger amounts of CXCL10 compared to CD317"8 Y101/Y201. Following IFN-y priming,
CD317"° MSC lines demonstrate a significantly increased ability to secrete additional amounts of
CXCL10 compared to CD317" MSC lines. However, IFN-y has a proportionally much larger
stimulatory effect on CXCL10 secretion by CD317"8 Y101/Y201 cells, suggesting that constitutive

interferon signalling is a feature of CD317P°° MSC lines (Figure 2F).

Examination of a further panel of eight IFN-y related genes showed remarkably different expression
between CD317P° and CD317"¢ MSCs (Figure 2G, 2H). Using a method described by Raterman et
al®®, we generated an IFN-y signature score for CD317°° and CD317"¢ MSCs using the average of the
log base-2 normalised relative fold changes of the eight IFN-y related genes. We demonstrated that
CD317"° MSC lines and primary MSCs had a significantly increased IFN-y signature score compared

to CD317"& MSCs (Figure 21 & 21J).
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202 Figure 2 Examination of the immune profile of CD317pos MSCs (A) Comparative mRNA expression
203 of ICAM-1 in MSC lines and primary cells sorted by CD317 expression (RNA was extracted from 3
204 different donors or 5 cell line passages; gPCR performed in triplicate, mean shown + SEM). (B) Mean
205 fluorescence intensity of ICAM-1 expression on the cell surface of MSC lines and primary MSCs

206 differentially gated by CD317 staining (MSCs from 5 different donors or 4 different passages of MSC
207 lines were stained for flow cytometry, mean shown = SEM). (C)/(D) Comparative (mean + SEM)

208  mRNA expression of CXCL10 (red) and CXCL11 (blue) in MSC lines/ primary MSCs sorted for CD317
209  expression (RNA was extracted from 7 different donors/7 different cell passages; experiments were
210  performed in triplicate). (E/F) CXCL10 secretion by MSC lines prior to IFN-y priming and after priming
211 with baseline (unprimed) secretion subtracted (mean £ SEM, n=2). (G/H) Comparative mRNA

212 expression of 8 IFN-y signature genes in MSC lines/primary MSCs sorted by CD317 expression (RNA
213  was extracted from 5 different donors/5 different cell passages; experiments were performed in
214  triplicate, mean shown + SEM). (1)/(J) IFN-y score for MSC lines/primary MSCs sorted by CD317

215  expression (n=5)*/** = significance at P<0.05/0.01 using an appropriate statistical test.

216

217 Bioinformatics analysis of differentially expressed genes (DEGs) using combined transcriptomic
218  data®® from CD317"€ (Y101 & Y201) and CD317"° (Y102 & Y202) MSC lines identified 2340
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significantly upregulated genes in CD317P° MSC samples (FC>2, p<0.05) with clear clustering of the
Y01 group (Y101, Y201) and the Y02 group (Y102, Y202) (Figure S2B). The 10 most significantly
upregulated genes in the CD317°° group were immune-related and/or interferon-regulated,
including OAS1, OASL, RSAD2 and CD317 (BST2) (Figure S2C). IFN signalling and elevated IFN-
signatures are associated with different human disease states®®. When comparing the upregulated
Y102/Y202 gene sets with six publicly available transcriptomic databases for autoimmune and
related disorders (Table S2), we identified a significant association between DEGs and GO terms that
were enriched in Y102/Y202 MSC lines and psoriasis, eczema and, to a lesser extent, rheumatoid
arthritis and osteoporosis (Table S3). Similar observations were made when comparing enriched

signalling pathways across Y102/Y202 and disease datasets (Table S4).

Therefore, a resident MSC subtype can be identified as CD317°*ICAM-1"CXCL10" with apparent
constitutive interferon signalling, which is likely to contribute to specific physiological and pathological

immune functions.

Roles of CD3177° and CD317"8 MSCs in monocyte and T cell function

Immunomodulation may be affected through paracrine signalling altering cell recruitment and
retention in response to signalling molecule expression. The CCL2 receptor, CCR2, is a monocyte
chemoattractant receptor protein involved in macrophage activation in cells expressing high levels
of CCL2. Significantly higher CCL2 mRNA expression and protein secretion was detected in CD317

expressing MSCs versus CD317-negatives (Figure 3A & B).

In the presence of an antagonist for CCR2, migration of monocytic cells (THP-1) towards supernatant
from CD317-expressing MSC lines was selectively inhibited compared to CD317-negative MSC lines
(Y101, Y201 vs Y102, Y202; 19.37+9.57, 19.61+8.89 vs 39.0116.57, 41.02+4.79) (Figure S3A). We
tested whether the supernatant of CD317P°° and CD317"¢ MSCs could induce the migration of both

monocytic (THP-1) and T cell (HUT-78) lines in transwell assays. We demonstrated that both THP-1
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and HUT-78 cells migrated towards MSC supernatants suggesting that MSCs secrete both monocyte

and T cell chemoattractants (Figure S3B).

MSCs have previously been shown to suppress activated T cell proliferation whilst maintaining
inactivated T cell viability in co-culture®®. Several mechanisms are proposed that provide evidence
for IFN-y mediated immunosuppression®’, potentially achieving MSC deactivation of T cells through
IFN-y receptor targeting or IFN-y-mediated induction of indoleamine 2,3-dioxygenase (IDO) from
MSCs, whereby tryptophan is catabolised leading to suppression of T cell proliferation and
subsequent apoptosis of activated T cells, leaving inactivated T cells in a viable state®®. In this work,
T cell proliferation was assessed for peaks of gradual division (proliferative index)’® and proliferative
cycles (population doublings)’ over 5 days of co-culture with or without CD317°° and CD317"%¢ MSC
cell lines (Figure S3C). T cells do not proliferate in culture, unless activated with anti-CD3/CD28, and
undergo cell death in absence of IL-2, which is produced in vivo by activated T cells’. Compared to T
cells alone, all MSC lines and CD317"8 primary MSCs significantly reduced proliferative index scores,
whereas CD317P° primary MSCs had no significant effect on T cell proliferative index (Figure 3C, 3D).
Assessment of T cell proliferative cycles showed significant reductions when cultured with CD317"
Y101/Y201 and CD317"&primary MSCs (Figure 3C, 3E) compared to T cells alone. However, CD317°°
Y102/Y202 MSCs and CD317P° primary MSCs did not significantly reduce the number of proliferative
cycles, although a decline was observed (Figure 3C, 3E). These results demonstrate that CD317P%
MSCs are capable of inactivating a proportion of proliferating T cells, although this effect is not
sufficient to reduce the number of proliferative cycles that the residual activated cells achieve,

pointing to a diminished immunosuppressive function for CD317°° MSCs.

Next, we determined the effect of CD317"¢and CD317°° MSCs on the polarisation of naive T cells
into effector lineages with immunosuppressive/anti-inflammatory function. CD317°° MSC lines
induced a significant increase in the development of pro-inflammatory Th1 cells. Both Y102 (20.32 +

0.92%, p<0.001) and Y202 (15.11 + 1.46%, p<0.05) increased Th1 polarisation, as indicated by IFN-y
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expression, in comparison to T cells alone (8.79+2.30%), CD317"¢ Y101 (9.25+0.42%, p < 0.001
(Y102)) and Y201 (7.314£0.60%, p <0.001 (Y102), p <0.01 (Y202)) (One way ANOVA with Bonferroni
post hoc test). An increase was also observed in Th2 cells for all MSC lines (p>0.05, n.s.). Both Th17
and Treg cells, as indicated by IL17a and CD25/FOXP3 expression respectively, increased slightly with
CD317P° MSC lines, but not statistically significantly. By examining total proportions of
differentiating cells, it was notable that a large proportion of CD4+ T cells cultured alone did not
commit to any lineage when compared to co-culture with MSC lines. When proportions are
summated, only 48.49% of T cells cultured alone differentiated into the 4 lineages examined, whilst
approximately 75% (Y101), 90% (Y201) and 100% (Y102, Y202) differentiation into these lineages

was observed when T cells were co-cultured with MSC lines (Figure 3F).
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Figure 3 Influence of CD317"8 MSCs and of CD317P°° MSCs on immune cell function (A)
Comparative mRNA expression of CCL2 in primary MSCs sorted by CD317 expression (RNA was
extracted from 7 different donors; experiments performed in triplicate, mean shown + SEM). (B)
CCL2 secretion in primary MSCs sorted by CD317 expression and MSC lines (from 4 different
donors/4 different cell line passages; experiments performed in triplicate, mean shown + SEM). (C)
In vitro co-culture of hTERT immortalised lines Y201 and Y202 and primary CD317"€ and CD317P°
cells with activated T cells. CD317"¢ cells reduce proportion of proliferating T cells and number of
cell cycles achieved (D) hTERT cell lines significantly reduce proportion of proliferating cells as
demonstrated through proliferative index (E) CD317"¢ cell lines reduce proliferative cycles achieved
by activated T cells in comparison to CD317P° or T cell alone controls. (F) assessment of the
influence of MSC on T cell polarisation in co-culture demonstrates CD317P° cells influence activated
T cells to preferentially polarise towards IFN-y expressing (Th1) subset with indications of increased
IL17a+ and CD25+FOXP3+ expressing cells.
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Pro-inflammatory and Immuno-regulatory potential of CD317" and CD317°°° MSCs in vitro and in

vivo

Considering the stark differences in immune profiles of CD317"8 and CD317°° MSCs, we tested their
effects in different inflammatory models. Prior to in vitro and in vivo testing, we confirmed the
representative CD317" and CD317"° MSCs (Y201, Y202) were not affected by viral contamination
as a potential origin or contributor to constitutive IFN-y expression. All cell samples were tested in
triplicate and returned negative results for molecular diagnostics of infectious diseases (Human

Comprehensive CLEAR Panel, Charles River) using PCR for RNA representing a panel of 26 virions.

Initially, we investigated the potential pro-inflammatory property of CD317" Y201 and CD317"**
Y202 MSCs in a skin explant model, which is an in vitro tool to detect the presence of cutaneous
tissue damage following a pro-inflammatory insult’>74, CD317"€ Y201 and CD317°° Y202 MSCs were

primed with IFN-y or TNF-a and co-cultured in vitro with skin explants.

In this assessment, no tissue damage was observed after skin co-incubation with CD317"8 Y201 cells
in all conditions tested (Figure 4A top panel and Figure 4B left panel). In contrast, cutaneous tissue
damage was detected when skin was co-cultured with unstimulated or TNF-a stimulated CD317P°
Y202 cells showing clear cleft formation in the basal layer between the dermis and epidermis (Figure
4A bottom panel and Figure 4B right panel). When comparing the ability to cause tissue damage,
Y202 cells caused significantly increased damage compared to Y201 cells in unstimulated and TNF-a
stimulated conditions (p<0.05) whilst no cutaneous tissue damage was observed when skin was co-

cultured with IFN-y stimulated Y202 cells.

Interferon signalling genes are regulated by interferon in host-pathogen interactions. It is
hypothesised that constitutive interferon signalling occurs to provide a rapid response to pathogen

infections through pre-established interferon signature®, such as that observed here in CD317°%
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MSCs. To investigate the potential for constitutive IFN-y related signalling on innate immune
responses in vivo, we evaluated immune regulation by CD317"8 and CD317P°° MSCs in a zymosan-
induced peritonitis model of acute inflammation that promotes the recruitment of monocytes and
neutrophils to the peritoneal cavity. Following zymosan treatment, peritoneal exudate cells (PEC)
were collected by lavage and analysis performed on the cell content. A gating strategy was devised
for flow cytometric analysis of multiple PEC cell types focusing on haematopoietic, myeloid and
lymphoid cells including monocytes, macrophages and T cells (Figure S4A & S4B). Treatment with
either Y201 or Y202 MSC lines suppressed the recruitment of inflammation-related cells to the area.
There was a significant reduction in total cells recruited in both Y201 (3.552+1.543 x 10°) and Y202
(2.076+0.421 x 10°) treated conditions compared to zymosan-induced peritonitis without treatment
(9.686+1.894 x 10°) (p<0.05), with no significant difference between MSC-treated animal PEC

numbers and PBS controls (4.420+1.790 x 10°) (Figure 4C).

Examination of the composition of PEC showed that zymosan-induced peritonitis prompted a
significant increase in haematopoietic cells (p<0.05). No difference in recruitment of eosinophils or
neutrophils was observed in MSC-treated mice when compared to zymosan alone or PBS controls
(Figure S4C & S4D). Examination of the production of monocytes and macrophages in PEC samples
showed no differences in monocyte recruitment, however both zymosan alone and zymosan plus
Y202 showed significant increases in macrophage proportions compared to PBS controls (p<0.001,
p<0.05 respectively) whilst Y201 treatment suppressed macrophage numbers (p<0.05) (Figure 4D).
Within these monocyte and macrophage populations, the proportions of Ly6C positive and negative
cells matched the proportions seen in zymosan treatment only animals (Figure S4F & S4G). Ly6C
positive monocytes and macrophages are linked with pro-inflammatory responses by CCR2/CCL2
mediated homing to sites of tissue injury, whilst Ly6C low or negative monocytes and macrophages

are reparative, guided by VCAM-1 and other adhesion proteins’>’®,
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340  Spleens retrieved from MSC-treated and control mice were homogenised and analysed for naive and
341 polarised T cells, and memory T cells. No differences were found in the mass or cellularity of spleens
342 between controls and MSC-treated animals (data not shown). When tested, a significant increase
343 was found in activated CD4+ central memory T cells (TcM) in CD317"€ Y201 cell treated conditions
344  (14.23+0.06%) in comparison to PBS controls (4.53+£0.18%) or Y202 treated animals (5.89+4.30)

345 (Figure 4E). CD4+ effector T cell polarisation was not altered by introduction of zymosan or MSC

346  treatments within the 24 hour time period measured. However, treatment with either CD317"8Y201
347 (1.51 £ 0.57%) or CD317°°° Y202 (0.84 + 0.25%) MSCs suppressed CD8a/b+ expression representative
348  of cytotoxic T cell production in mice in comparison to CD8a/b+ expression in untreated animals

349  (5.42 £1.10%) (Figure 4F).
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351 Figure 4 In vitro and in vivo immunomodulation by CD317"8 Y201 or CD317"°° Y202 MSCs. (A)
352 Representative images of skin explants independently assessed for damage to tissues, examining
353 keratinocytes, basal cells, keratotic bodies, the appearance of sub-epidermal clefts at the junction
354  with the dermis and in highly damaged tissue the appearance of complete epidermal separation
355 following treatment with MSCs primed with IFN-y or TNF-a and co-cultured in vitro. (B) Y201 co-
356  culture did not prompt damage to the tissue in any conditions whilst Y202 cell line demonstrated
357 marked tissue damage in untreated cells and TNF-a treated cell lines. Both Y201 and Y202 cell lines
358 retained the ability to inhibit tissue damage when primed with IFN-y. (C) MSCs subsequently applied
359  toanin vivo peritonitis model of inflammation showed immunomodulation through reduced

360 immune cell recruitment, (D) reduced macrophage development following Y201 treatment, (E)

361 increased central memory T cell development following Y201 treatment and (F) reduced CD8+

362  cytotoxic T cell development following Y202 treatment. n=3, *p<0.05, **p<0.01, ***p<0.001
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In vivo tissue formation is enhanced in CD317"¢9 MSC lines when compared to CD317P%

subpopulations

We hypothesised that the immunomodulatory enhancements observed in CD317-positive MSCs
would impact on their tissue-forming capacity. To test this hypothesis, CD317"¢ (Y201) and CD317"°*
(Y202) MSC lines were loaded onto hydroxyapatite (HA) scaffolds and implanted subcutaneously in
nude mice. Scaffolds were retrieved at 3 and 8 weeks post-implantation and examined using
histological analysis for de novo tissue formation by deposition of extracellular matrix (ECM),

collagen and neoangiogenesis.

CD317™& Y201 MSCs showed clearly advanced ECM and collagen deposition in histological stains
using Sirius Red for collagen formation and Alcian Blue for proteoglycan synthesis (Figure 5A, 5B &
5C), suggestive of a more stable capacity for tissue formation. Haematoxylin and eosin staining
showed evidence of tissue formation from 3 weeks post implantation in CD317"¢ MSCs alongside
evidence at 8 week timepoints of capillary tube structures containing blood cells indicative of
neoangiogenesis (Figure 5D). Although there was some evidence of tissue formation in CD317P%
Y202-loaded scaffolds, the tissue formed was less continuous or cohesive compared to CD317"¢#
Y201 samples and by 8 weeks post-implantation there was clear evidence of disaggregation and cleft
formation at the surface of HA particle clusters following histological staining for ECM formation

(Alcian Blue and Sirius Red) with no detectable vessel formation (Figure 5A, 5B, 5C & 5D).
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Figure 5. In vivo tissue generation in HA scaffolds loaded with CD317"¢ Y201 or CD317°° Y202
MSCs. (A, B) Histological staining of recovered implants using Sirius Red for collagen formation and
(C) Alcian Blue for proteoglycan synthesis at 3 and 8 weeks post-implantation in HA scaffolds loaded
with either CD317"8Y201 MSCs and CD317°° Y202 MSCs. (D) Haematoxylin and eosin staining
comparting tissue and blood vessel formation at 3 and 8 weeks post-implantation in HA scaffolds
loaded with CD317"8Y201 MSCs and CD317P° Y202 MSCs. Scale bars = 250um. Asterisks = HA
particles, arrows = blood vessels.

Discussion

This study investigated the characteristics and properties of a CD317"° subpopulation within
heterogeneous MSCs and their ability to contribute to immune responses and tissue repair. We used
immortalised MSC model lines and primary MSCs isolates to elucidate the biology and potential
impact on the therapeutic application of these cells. Here, we confirm CD317P° MSCs represent a
subpopulation of cells commonly found in human MSCs preparations with an equal distribution in a

range of demographic groups and health conditions. Using in vitro and in vivo functional assays, we
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demonstrate that CD317P° MSCs have reduced immunomodulatory and tissue-forming capacity
compared to CD317"8 MSCs, suggesting that CD317P* cells will not contribute to tissue repair or de
novo tissue formation. Any contribution of CD317P* cells in therapy, when delivered within an
undefined heterogeneous MSC culture, is therefore likely to be through immunomodulatory
influence, and the contribution to the regenerative process is dependent upon the therapeutic
target and the inflammatory environment present in the recipient at the time of transplantation.
Given the potential for CD317P° MSCs to respond to the inflammatory environment in vivo, these
cells may serve a positive function in assisting the repair of damaged tissues by CD317"8 MSCs when
transplanted as part of a heterogeneous population. However, our in vivo results demonstrate that
CD317"& cells are capable of inducing both anti-inflammatory immunomodulation and tissue
regeneration in the absence of CD317P% counterparts, suggesting the support function is not vital to
successful repair of damaged tissue by CD317" MSCs alone. Of note, when supplied in sufficient
numbers CD317°° MSCs are capable of causing tissue damage, as observed in our skin explant

model, which may be linked to their pro-inflammatory characteristics.

Inflammation serves a dual role in tissue repair. Cells in the immune response, such as neutrophils,
function to initiate the repair process. Neutrophils cause tissue breakdown during inflammation but
in the absence of neutrophils, macrophages rapidly recruited to the site of injury will display reduced
rate of tissue regeneration owing to the presence of cell debris normally phagocytosed by
neutrophils’’. Our results from MSC treatment of zymosan-induced peritonitis in mice showed a
neutrophil population present in PEC suspensions from PBS injected mice, and significantly increased
neutrophils present in the PEC of both zymosan-only and MSC-treated mice. However, examination
of subsequent macrophage populations showed that whilst no macrophages were detected in the
PBS control mice, both zymosan-only and CD317P° MSC plus zymosan conditions displayed
significant increases in macrophage numbers. Significantly fewer cells, including macrophages, were
recruited in the presence of CD317" MSCs compared to zymosan only induction, therefore
CD317P° MSCs fail to inhibit macrophage recruitment.
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The influence of CD317P°° MSCs on T cells appears to be highly modulated in comparison to CD317"
MSCs. MSCs have been widely shown to deactivate T cells in vitro and suppress T cell proliferation
whilst directing CD4+ effector T cells from Th1 to Th2 profile®®’885 However, in activated T cells in
cell to cell contact with CD317P°° MSCs, we observed minimal deactivation of T cells and continued T
cell proliferation, in conjunction with an active increase in Th1 polarisation, contrary to the widely
accepted immunosuppressive properties of MSCs. IFN-y stimulation of MSCs has been shown to
induce activation through upregulation of HLA class I, pushing the MSC towards antigen-presenting
capability for immune regulation, promoting T cell interactions and potentially influencing CD8+ T
cell activation®. This may go towards explaining the results we observe when CD317°° cells interact
with T cells in vitro and T and B cells in vivo. CD317P° MSCs show minimal interaction with T cells in
vitro, yet function more effectively in a pro-inflammatory in vivo environment. CD317 promotes an
immune response through stimulating activation of NFkB® which in turn contributes to B cell
development®. MSC immunomodulation is intrinsically tied to interactions with dendritic cells (DCs),
with MSCs inhibiting DC maturation, resulting in reduced migration, cytokine secretion, antigen
presentation to T helper cells and cross-presentation to cytotoxic T cells®® through interrupting entry
into the cell cycle, inhibiting DC differentiation and function®. DCs also mediate the MSC

immunosuppressive effect through the induction of regulatory T cells9°2,

Deeper analysis of the CD317P° subset of MSCs identified a heightened interferon signature that
was not related to IFN-y receptor expression levels, suggestive of constitutive IFN signalling. Pre-
established, low level constitutive IFN signalling contributes to rapid pathogen responses in the
innate immune system and conveys a protective effect to de novo IFN exposure in these cells®.
CD317P°% MSCs, if maintained at appropriate levels, may therefore contribute to enhanced innate
immunomodulation. Of interest, CD317P° MSCs may also serve as a useful tool in the investigation
of host tropism in viral infection, a particularly prevalent issue with the advent of COVID-19. Indeed,
the presence of BST2/CD317 on the cell surface has been shown to convey a protective effect by

tethering coronavirus virions to the cell surface or intracellular membranes and decreasing budding
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of progeny virus®. These cells may therefore provide an enhanced response to viral infection that
facilitates tissue regeneration as well as immunomodulation. However, whilst constitutive IFN
signalling may convey a protective effect to cells experiencing de novo IFN in the in vivo
environment, there also exists the potential for a link between unregulated constitutive IFN
signalling and tissue damage in human disease conditions including autoimmunity. It is therefore
highly significant that we show the baseline gene expression levels of CD3177°° MSCs aligns them

with cells present in autoimmune and related conditions.

In this report we characterise a subset of human MSCs that favour immunomodulatory interactions
over tissue regeneration, yet identify as MSCs through both independent tests (e.g. Rohart) and ISCT
guidelines®. These cells display a distinct immune profile and operate in contrast to the
expectations of MSC’s immunosuppressive function. We have demonstrated that the proportion of
CD317P° MSCs varies considerably between donor MSC preparations, which could reflect individual
inflammatory state and/or infection history. We propose that the success of therapeutic applications
for tissue regeneration is dependent on the numbers of CD317°° MSCs present in the administered
cell dose. There is also the possibility that CD317P° MSCs can bring therapeutic benefits in the
inflamed environment. The expression of CD317 on MSCs serves as a positive marker for cells that
display all the characteristics of an immune stromal cell and targeted therapies should aim to
harness the knowledge of this cell type as novel approaches to the treatment of degenerative, and

inflammatory conditions.

Materials and Methods

Cell culture

Immortalised MSC lines and primary bone marrow derived human MSCs
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MSC lines immortalised with human telomerase reverse transcriptase (hTERT) were maintained in
culture as previously described®. Clonal hTERT-MSCs included the CD317°° Y202 and Y102 lines, and
the CD317™8 Y201 and Y101 lines. Low-passage (p1-p5) primary MSCs were isolated from femoral
heads, obtained with informed consent during routine hip replacement or as explant cultures from
human tibial plateaux after routine knee replacement®. Primary MSCs were also established from
bone marrow aspirates purchased from Lonza. Cells were cultured at 37°C in 5% CO, humidified
atmosphere incubaters using DMEM (Gibco) culture medium supplemented with 10% foetal bovine

serum and 1% penicillin-streptomycin. Cells were routinely passaged at 80% confluence.

Isolation of primary T cells from tonsillectomy tissue

Primary donor T cells were retrieved from tonsillectomy donations according to ethical approval. For
primary MSC co-cultures, cryopreserved CD4+ human cord blood T cells were purchased from Stem
Cell Technologies. T cells were isolated from mixed T and B cell cultures using nylon wool
separation®. T cells were seeded at a density of 1.0 x 10° cells/ml in an appropriately sized tissue
culture flask. MSC co-cultures with isolated T cells were set up within 24 hours or cells were
cryopreserved in 10% dimethylsulfoxide (DMSO) in RPMI1640 medium and re-established in culture

a minimum of 24 hours prior to use.

Rohart test for independent confirmation of MSC status

The Rohart MSC test was used as an independent measure for distinguishing MSCs from non-MSCs®?.
The classifier has previously been validated against 1,291 samples from 65 studies derived on 15

different platforms, with >95% accuracy with 97.7% accuracy®™.

Flow cytometry

MSCs were labelled using optimised concentrations of the required primary antibody or isotype

control. After washing, cells were stained with a fluorescent secondary antibody, where conjugated
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primaries were not used. As appropriate, cells were washed as required prior to incubation with

1:1000 diluted sytox blue for 5 minutes. Analysis was conducted immediately following staining.

Intracellular flow cytometry of MSC was performed on 4% paraformaldehyde (PFA) fixed cells in the
presence of 0.1% saponin (Sigma). All flow cytometry was performed on a Beckman Coulter CyAn
ADP flow cytometer and analysed with Summit v4.3 software, or using a Cytoflex S or LX and
analysed with FCS Express 7. Cell sorting was undertaken using a Beckman Coulter MoFlo Astrios and

analysed with summit v6.2 software or FCS Express 7.

Processing of mouse femurs

Femurs were dissected from C57BL/6J female mice at ages 8-12 weeks immediately after sacrificing.
All work was carried out under ethical approval from the University of York Department of Biology
Ethics Committee and Animal Welfare Ethical Review Body. Muscle tissue was removed and femurs
were fixed in 4% PFA for 24 hours at 4°C, followed by washing with PBS. Bones were then decalcified
using 10% EDTA in PBS at pH 7.5 for 24 hours at 4°C. After decalcification, femurs were
cryoprotected by submerging in 30% sucrose in PBS for 24 hours at 4’C. Bones were embedded in
Optimal Cutting Temperature compound and sectioned using an OTF5000 cryostat (Bright
Instruments Ltd.). Sections were collected on SuperFrost plus microscope slides (Thermofisher) and

stored at -70°C.

Immunofluorescent staining of mouse bone tissues

Slides were allowed to reach room temperature. Sections were blocked for 45 minutes in 10% goat
serum (Sigma) + 0.1% Tween-20 in PBS (10% donkey serum (Sigma) + 0.1% Tween-20 in PBS where
goat primary antibody was used). Primary antibodies (LEPR, CD31, CD317) were diluted in 1% IgG-
free Bovine Serum Albumin (Sigma) + 0.05% Tween-20 (Sigma) in PBS and sections incubated in the
dark at 4°C overnight in a humidified chamber. All secondary antibodies were added at 1:300

dilution in PBS for 1 hour at room temperature in the dark then stained for 10 minutes with 0.2
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pg/ml 4',6-diamidino-2-phenylindole (DAPI) in PBS. Dried slides were mounted with Prolong Gold
antifade mounting medium (Invitrogen) and #1.5 thickness glass coverslip (Scientific Laboratory
Supplies). Slides were left to cure at room temperature in the dark for 24 hours prior to image
capture using LSM880 or LSM780 (Zeiss) confocal microscopes with excitation wavelengths of 405

nm, 488 nm, 561 nm and 633 nm.

Proteomic analysis of MSC plasma membranes

Plasma membranes were isolated from the hTERT immortalised clonal lines following the protocol of
Holley et al”” before mass spectrometry and comparative proteomic analyses were performed by the
Proteomics laboratory within the University of York Bioscience Technology Facility using LC-MS/MS%
and Scaffold 4 proteome software for initial analysis using 3% false discovery rate. Further in-depth
examination of protein expression was conducted using the Knime analytics platform and

ProteoWizard MSOpen technology®.

Transwell cell migration assays

Migration assays were performed in transwell polycarbonate membrane cell culture inserts with a
5um pore (Corning, Sigma-Aldrich) using 1.25x10° hTERT and primary MSCs, and monocyte-like THP-
1 and T cell-like HUT-78 (ECACC 88041901) cells in 6 well plates with 1.5 ml of serum-free DMEM.
After 24 hours, 600 pl of supernatant or DMEM was added in duplicate to the wells of the transwell
plates. Polycarbonate filters were carefully placed above supernatant and 2.5x10° of the appropriate
cells in 100 ul serum-free RPMI-1640 were applied to the top of the filter and incubated for 5 hours
before removing transwells. Migrated cells were assessed by flow cytometry. The percentage cells
undergoing migration towards stimuli was calculated. For CCR2 testing, 500 nM CCR2 inhibitor was
used (Teijin compound 1) in supernatant. Inhibition of migration was calculated as a percentage of

cell total.

Examination of Gene Ontology (GO) terms in disease states for comparison with hTERT MSC lines
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A bioinformatics comparison of the hTERT MSC lines gene expression data with publicly available
transcriptomic data from a range of autoimmune and related disorders was undertaken to identify
disease states that correlated with upregulated GO terms associated with the CD317°° Y102 and
Y202 clonal MSC lines®. Cross-platform validation was performed using Python and GeneSpring
software was used to analyse outcomes. Differentially expressed genes were identified as greater
than 2-fold upregulation in disease state compared to healthy controls, and GeneSpring was used to
identify significance (p<0.05) in GO term occurrence. The 10 most upregulated GO terms were
identified and comparisons made between autoimmune disease states and hTERT immortalised MSC

lines.

Quantitative polymerase chain reaction (qPCR)

RNA was isolated from cells using TRIzol for cell lysis and Machery-Nagel RNA Nucleospin Il kit for
RNA isolation, with RNA converted to cDNA for gene expression analyses using Superscript IV
reverse transcriptase enzymes (Invitrogen). Specific primers for gene expression analyses were
designed and optimised and are described in Table S5. Gene expression analyses were performed as
previously described®. Gene expression of eight IFN-y regulated genes, namely Ly6E, HERC5, IFI44L,
ISG15, Mx1, Mx2, EPSTI1 and RSAD2 were amplified in qPCR and fold changes were calculated
relative to the expression of the housekeeping gene RPS27a and relative to the Y201 cell line or
CD317" cells. The AACT fold changes were log2-transformed and averaged to calculate IFN-y scores,

as previously described®1%,

Enzyme-linked immunosorbent assays

To detect secreted proteins, supernatants from 100,000 cells incubated in 2.5 ml of serum free
DMEM for 24 hours was analysed for secreted proteins by enzyme-linked immunosorbent assays
(ELISA) using ELISA kits for CXCL10, CXCL11 (BioLegend); CCL2 (eBioscience); and SAA4 (Stratech)

following manufacturers instructions.
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PCR molecular diagnostics for infectious disease

Samples of hTERT lines Y201 and Y202 were tested externally and independently (Charles River) for
viral contaminants using the Human Comprehensive cell line examination and report (CLEAR) Panel
to detect RNA transcripts for 26 viral components, including virions commonly linked with
autoimmune disorders (HIV, hepatitis, herpes simplex and herpesvirus, Epstein-Barr virus, BK virus,
human T-Lymphotropic virus, Lymphocytic choriomeningitis virus and Cytomegalovirus)°>192, A low
copy exogenous nucleic acid was added to sample lysis prior to nucleic acid isolation to serve as both
a control to monitor for nucleic acid recovery and PCR inhibition. An RNA NRC was used to monitor
reverse transcription for RNA virus assays. Nucleic acid recovery and PCR inhibition was monitored

by a PCR assay specific for the NRC template.

T cell activation assay to assess MSC immunomodulation for deactivation and suppression of T cell

proliferation

Co-culture of primary human tonsil T cells with hTERT MSC lines was used to assess the potential
immunomodulatory impact of CD317"¢ (Y101, Y201) and CD3177° (Y102, Y202) cell lines on T cell
proliferation and T helper differentiation. Continual proliferative capacity was used as a measure of
T cell deactivation. hTERT MSC lines or CD317-sorted primary MSCs were seeded at a ratio of 1:10
with T cells with 1.0x10* MSCs seeded into a 96-well U bottomed plate and cultured for 24 hours at
37°C, 5% CO,. Primary human MSC were sorted for CD317 expression and co-cultured with

commercially sourced cryopreserved CD4+ human cord blood T cells (Stem Cell Technologies).

For assessment of proliferation, T cells were stained for 15 minutes at 37°C using 1 uM VPD450
Violet proliferation dye (eBioscience, Inc.). Unstained cells were used as a control. T cells were
activated using anti-CD3¢/CD28 Dynabeads (Thermo Fisher) at a bead-to-cell ratio of 1:1 then
seeded onto the MSC at a density of 1.0x10°/well (ratio 10:1) in 200 ul RPMI-1640 with 10% FBS,

0.05 pg/mL IL-2 (Peprotech, Inc) or seeded alone (no MSCs) as a control. Plates were cultured for 5
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days at 37°C. T cell proliferation was assessed following removal of Dynabeads with the DynaMag-2
as per manufacturer’s recommendations. Plates were cultured for 5 days at 37°C. T cell proliferation
was assessed with flow cytometry, with reduction in signal intensity visualised for repeated
proliferation peaks. Proliferation was assessed through VPD450 dilution (diminished staining
intensity) described through a proliferative index (PI) calculated from the fluorescence intensity at
each cell division as described previously’. Proliferative cycles undertaken were calculated on 50%
fluorescence intensity reduction peaks, measuring from fluorescence intensity of the first division

and the final division detected.

T cell activation assay to assess MSC immunomodulation to direct effector T cell polarisation

For assessment of T helper differentiation, T cells were activated and cultured with hTERT MSC
monolayers, as described above. The following reagents and antibodies for reactivation, transport
inhibition and staining were sourced from eBioscience. Following 5 days of culture, T cells were re-
stimulated using a combination of phorbol 12-myristate 13-acetate (PMA) (50 ng/ml) (Sigma Aldrich)
and lonomycin (1 pg/ml) (Invitrogen) and intracellular cytokines retained using transport inhibitor
cocktail with 10 ug/ml brefeldin A and 2 pM Monensin (Invitrogen). Cells were cultured for 4 hours
at 37°C then stained for surface marker CD4. Intracellular staining for helper T cells was undertaken
for anti-human IFN-y (Th1), IL-4 (Th2) or IL17a (Th17) or CD4 and CD25 then
fixation/permeabilisation and staining for nuclear protein FOXP3 for regulatory T cells. All cells were
measured using the CyAn ADP or Cytoflex LX flow cytometer and analysed with FCS Express 7.
Comparisons were drawn for percentage of T helper differentiation within the CD4+ cell population

and signal intensity (Median) for each antibody tested.

In vitro human skin explant model to assess cutaneous tissue damage

The human skin explant assay is an in vitro model previously used for evaluation of tissue damage

induced by T cell or pro-inflammatory cytokine mediated immmunopathological responses!®®1%, we
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used this assay to investigate the in situ activities of CD317"8 Y201 and CD317"° Y202 MSCs. Skin
samples were obtained with informed consent and approval of the local research ethics committee
(REC14/NE/1136, NRES Committee North East, IRAS project ID 129780). Following 48 hours
stimulation with IFN-y or TNF-a. (both at 5 ng/ml), Y201 and Y202 MSCs were harvested, washed and
plated at a density of 1x10° cells/well in a 96 well round-bottomed plate. The cells were incubated
for 3-4 hours to allow for adherence to the plastic. Two punch skin biopsies at 4 mm diameter taken
from healthy volunteers were dissected into 10-12 sections of equal size. Each section was co-
cultured with stimulated or unstimulated Y201 or Y202 in duplicate in a 200 pl total volume of
DMEM supplemented with 20% heat—inactivated pooled human AB serum at 37°C and 5% CO.. Skin
sections cultured in the culture medium containing 200 ng/ml IFN-y or culture media alone were
used as positive and background controls respectively. After 3-day culture, the skin sections were
fixed in 10% formalin, then paraffin embedded and sectioned at 5 pum onto microscopic slides. The
skin sections were stained with haematoxylin and eosin (H&E) following routine protocols. The
severity of histopathological tissue damage was evaluated by two independent evaluators according
to the Lerner scoring criterial® as follows: grade 0, normal skin; grade I, mild vacuolization of
epidermal basal cells; grade I, diffuse vacuolization of basal cells with scattered dyskeratotic bodies;
grade lll, subepidermal cleft formation; grade 1V, complete epidermal separation'®. Grade Il or
above were considered positive while Grade | changes considered as background, which is observed

in skin sections cultured in medium alone.

In vivo assessment of immunomodulatory capacity of hTERT MSC lines in a murine peritonitis model

To determine the immunomodulatory properties of hTERT MSC lines, an in vivo zymosan-induced
peritonitis model was used in C57BL/6J mice aged 8-10 weeks as described previously!®®!%7, These
experiments were carried out in accordance with the Animals and Scientific Procedures Act 1986,
under UK Home Office Licence (project licence number PPL PFB579996 approved by the University
of York Animal Welfare and Ethics Review Board). At day 0, mice were administered with an
intraperitoneal infusion of 1 mg of zymosan A (Merck) in 100 ul of PBS. Immediately following the
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administration of zymosan, test condition mice were administered an intraperitoneal infusion of
2.0x10° cells of either Y201 (CD317"€) or Y202 (CD317P*) in 100 pl of PBS; negative control mice

were given PBS vehicle only.

After 24 hours, mice were euthanised using CO; overdose and cervical dislocation. Intraperitoneal
injection of 4 ml of ice cold RPMI-1640 was administered as peritoneal lavage. The process was
repeated with a second 4 ml RPMI-1640 wash and wash solutions pooled to form the peritoneal

exudate cells (PEC).

For each animal tested, red blood cells were lysed using Red Cell Lysis buffer (Merck) and a cell
count performed. Spleens were retrieved from the mice and cell counts were recorded and a
measure of spleen cellularity calculated. PEC samples were initially stained for Ly6C (APC), Ly6G
(FITC), F4/80 (PE-Cy7) CD45 (PerCP-Cy5.5) (BioLegend) and Ly6G (FITC), CD11b (BUV395) and SiglecF
(Bv421) (BD). Both PEC and spleen samples were then stained for TCRb (AF488), CD3 (APC-Cy7), CD4
(PerCP-Cy5.5), CD62L (APC) and CD44 (PE) (BioLegend). Although at an early timepoint, spleen
samples were additionally examined for T cell polarisation looking at T effector cells CD8 (PerCP-
Cy5.5), CD4 (APC), IL4 (AF488), IFN-y (PE) and IL17a (BV421) (BioLegend) and T reg cells using CD8
(PerCP-Cy5.5), CD4 (APC), CD25 (PE) and FOXP3 (AF488) (BioLegend). For all tests, Zombie Aqua

(BioLegend) was used to exclude dead cells.

In vivo assay to assess tissue forming capacity of hTERT MSC lines

All procedures used were approved by the University of Leeds Ethics Committee and under the UK
Home Office Project License (PPL:70/8549). The tissue-forming capacity of CD317"8 and CD317P
hTERT cell lines CD317"& Y201 and CD317° Y202 was assessed in CD1 nude mice (Charles River)
aged 8-10 weeks in an in vivo transplantation assay?®. 2.0 x 10® MSC cell suspension in 1 ml medium
was added to 40 mg hydroxyapatite (HA) synthetic bone particles (Zimmer Biomet) of 250-1000 um

size and rotated at approximately 25 rpm at 37°C for 100 minutes to allow cells to attach. HA
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particles were bound using fibrin glue comprising 30 pl thrombin (400 I.U./ml in DMEM medium)
mixed 1:1 with fibrinogen (115 mg/ml in 0.85% saline solution). Implants were delivered

subcutaneously into immunocompromised nude mice with two constructs placed into each mouse.

Transplants were harvested at 3 and 8 weeks, fixed in 4% PFA, decalcified for 7 days in 10% EDTA then
stored overnight in 70% ethanol prior to paraffin embedding, sectioning and staining with H&E, Alcian

Blue and Syrius Red (Thermo Fisher).

Statistical analysis

Data were tested for equal variance and normality using D'Agostino & Pearson omnibus normality
test. Differences between groups were compared using two-tailed 1-way ANOVA for parametric data
or Kruskall-Wallis for non-parametric testing. For two factor analysis, data was analysed with a two-
tailed 2-way ANOVA. Bonferroni post-hoc testing was conducted to compare between groups. All
statistical analysis was carried out using IBM SPSS Statistics 24.0, or GraphPad Prism version 5.0-9.0
with P<0.05 deemed statistically significant. Results are annotated as *p<0.05, **p<0.01,

***p<0.001 and all averaged values are expressed as mean * standard error of the mean (SEM).

Data Availability

Data will be made available in a publically accessible repository prior to publication.
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