

1 **Identification of CD317-Positive Pro-inflammatory Immune Stromal Cells in Human Mesenchymal
2 Stromal Cell Preparations**

3 Alasdair G Kay¹, James M Fox¹, James Hewitson¹, Andrew Stone², Sophie Robertson¹, Sally James¹,
4 Xiao-nong Wang³, Elizabeth Kapasa⁴, Xuebin Yang⁴ and *Paul G Genever¹

5

6 ¹York Biomedical Research Institute and Department of Biology, University of York, York, YO10 5DD,
7 UK.

8 ²Boston Children's Hospital / Harvard Medical School, Boston MA, USA

9 ³Translational and Clinical Research Institute, Newcastle University, Newcastle, NE2 4HH

10 ⁴Department of Oral Biology, School of Dentistry, University of Leeds, St James's University Hospital,
11 Leeds, LS9 7TF

12

13 **Corresponding author:**

14 Paul Genever, Email: paul.genever@york.ac.uk, Tel: +44 (0)1904 328649

15

16 **Short title:**

17 Characterising MSC subtypes

18 **Keywords:**

19 Mesenchymal stromal cells; MSC subtypes; heterogeneity; immunomodulation; CD317, BST2,
20 tetherin

21 **Abstract**

22 Mesenchymal stromal cell (MSC) heterogeneity clouds biological understanding and hampers their
23 clinical development. In MSC cultures most commonly used in research and therapy, we have
24 identified an MSC subtype characterised by CD317 expression (CD317^{pos} (29.77±3.00% of the total
25 MSC population), comprising CD317^{dim} (28.10±4.60%) and CD317^{bright} (1.67±0.58%) MSCs) and a
26 constitutive interferon signature linked to human disease. We demonstrate that CD317^{pos} MSCs
27 induced cutaneous tissue damage when applied a skin explant model of inflammation, whereas
28 CD317^{neg} MSCs had no effect. Only CD317^{neg} MSCs were able to suppress proliferative cycles of
29 activated human T cells *in vitro*, whilst CD317^{pos} MSCs increased polarisation towards pro-
30 inflammatory Th1 cells and CD317^{neg} cell lines did not. Using an *in vivo* peritonitis model, we found
31 that CD317^{neg} and CD317^{pos} MSCs suppressed leukocyte recruitment but only CD317^{neg} MSCs
32 suppressed macrophage numbers. Using MSC-loaded scaffolds implanted subcutaneously in
33 immunocompromised mice we were able to observe tissue generation and blood vessel formation
34 with CD317^{neg} MSC lines, but not CD317^{pos} MSC lines. Our evidence is consistent with the
35 identification of an immune stromal cell, which is likely to contribute to specific physiological and
36 pathological functions and influence clinical outcome of therapeutic MSCs.

37

38

39

40 **Introduction**

41 Mesenchymal stromal cells (MSCs, frequently referred to as “mesenchymal stem cells”) exist in bone
42 marrow at a frequency of approximately 0.001-0.01%¹ and are typically self-renewing for 10-50
43 population doublings^{2,3}. MSCs can differentiate into skeletal lineages (osteogenic, adipogenic,
44 chondrogenic) and regulate immune cell function⁴ predominantly through the release of cytokines
45 and other immunosuppressive factors⁵. The International Society for Cell & Gene Therapy (ISCT)
46 guidelines identifies MSCs as cells that exhibit tri-lineage differentiation *in vitro* and plastic
47 adherence, alongside an expression profile of selected cell surface epitopes (e.g. typically presence
48 of CD105, CD73 and CD90, and absence of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and
49 HLA-DR)⁶. There has been some progress in identifying *in vivo* markers of MSC populations in mouse
50 and human systems, which include LEPR, nestin, CD271, CD146 and CD164⁷, however, no single
51 marker for MSCs exists in general use. Cells labelled as “MSCs” are used internationally in clinical
52 trials but are rarely characterised (using ISCT or any other criteria⁸) and delivery variable success⁹.
53 The majority of trials assessing efficacy of MSCs currently aim to harness immunomodulatory
54 properties¹⁰, though widespread clinical translation is greatly hindered by insufficient data
55 demonstrating strong and consistent clinical effect, mechanisms of action and diverse application of
56 selection criteria¹¹. In addition, MSCs from different origins have been applied in clinical trials with
57 varied outcomes for disorders including osteoarthritis¹²⁻¹⁵, osteoporotic fracture repair¹⁶,
58 rheumatoid arthritis¹⁷⁻¹⁹, type 1 diabetes mellitus²⁰, diabetic kidney disease²¹, multiple sclerosis^{22,23},
59 liver failure²⁴⁻²⁶, amyotrophic lateral sclerosis²⁷⁻³⁰ and COVID-19³¹⁻³³. Notably, although serious
60 adverse events are extremely rare, mild, transient or acute adverse events occurring are often
61 related to acute inflammation^{13-16,19,21,25,29,30}, fever (pyrexia)^{17,19,22,24,26,30,34}, infection^{12,16,21,23,30}, allergic
62 reactions/hypersensitivity^{13,15,16,19} and haematoma¹³, all of which are implicated in immune
63 responses.

64 Studies examining heterogeneity in MSCs have identified multiple subpopulations of MSCs with
65 varied potency for both differentiation and immunomodulation³⁵⁻⁴⁰. Heterogeneous populations of
66 MSC-like cells have been isolated from both adult and neonatal sources (e.g. bone marrow^{41,42},
67 peripheral blood⁴³, adipose tissue^{44,45}, synovial membrane and fluid^{46,47}, dental pulp⁴⁸,
68 endometrium⁴⁹, periodontal ligament⁵⁰, tendon⁵¹, trabecular bone⁵², umbilical cord^{53,54}, umbilical
69 cord blood^{55,56}, placenta⁵⁷). There are further indications that MSC-like cells may be present in most
70 vascularised tissues in some form^{58,59}. This widespread distribution of MSC-like cells with varied
71 differentiation capacities and fluctuations in the expression levels of characterising surface markers
72 has prompted increasing reports of unipotent tissue-specific MSCs, yet bone marrow-derived MSCs
73 are generally considered to be a population composed entirely of cells possessing tripotent
74 differentiation capacity⁶. This raises the hypothesis that heterogeneous cell populations may
75 collectively characterise as MSCs using ISCT (and other) criteria but comprise subsets of cells
76 specialised to perform different functions. The widespread reporting of immunomodulatory
77 capacities of MSCs and the impact of immune responses during tissue formation and comorbidity in
78 degenerative disease highlights the likelihood of a nascent, endogenous population of cells that
79 operate primarily to convey or control immune function. This population has the potential to
80 support tissue regeneration rather than contributing to it.

81 We previously demonstrated the heterogeneity of human MSCs through the identification of
82 multiple subpopulations using a clonal isolation and immortalisation strategy that enabled in-depth
83 and reproducible characterisation⁶⁰. These populations included an immune-primed MSC subtype
84 identifiable through positive expression of CD317 (bone marrow stromal antigen-2 (BST2) or
85 tetherin) and possessing enhanced immunomodulatory capacity. Here, we tested the hypothesis
86 that CD317 positive (CD317^{pos}) stromal cells function primarily to direct the immune response and
87 do not contribute to tissue generation or repair in both physiological and pathological processes and
88 therefore represent an identifiable MSC subtype.

89

90

91 **Results**

92 *MSC identity of CD317-expressing stromal cells*

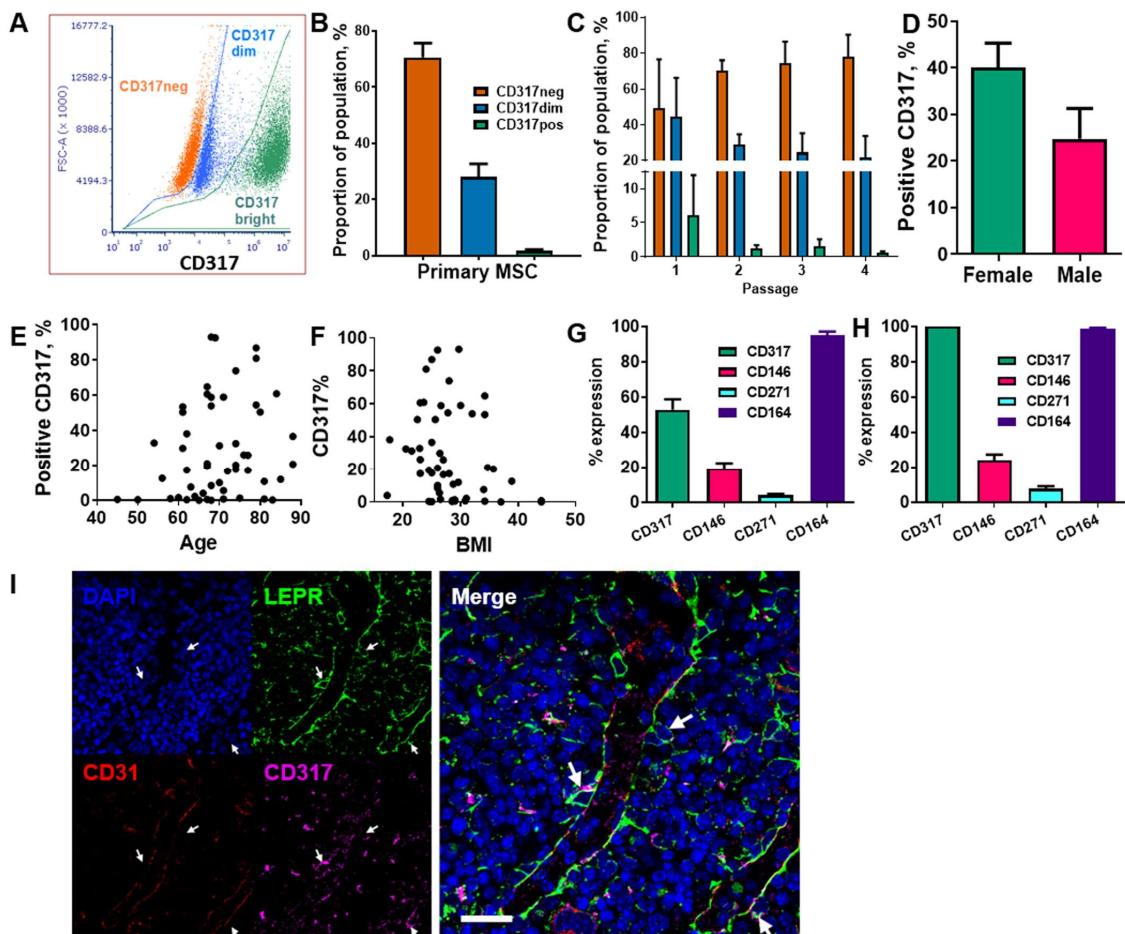
93 In our previous work we isolated nullipotent, CD317^{pos} MSC lines (Y102 and Y202) alongside
94 differentiation-competent, CD317^{neg} MSC lines (Y101 and Y201) from the same heterogeneous donor
95 source suggesting that a subpopulation of stromal cells exists in typical MSC preparations but may
96 not contribute to 'classic' MSC functions. Here, we examined the stromal phenotype the CD317^{pos}
97 and CD317^{neg} MSC lines. An *in silico* assessment using the Rohart Test⁶¹ was applied to accurately
98 discriminate MSCs from fibroblasts, other adult stem/progenitor cell types and differentiated
99 stromal cells. This test uses 16 key MSC marker genes as a proven panel of identifiers that has
100 independently confirmed MSC status with 97.85% accuracy in 635 cell samples⁶¹. All of the
101 immortalised CD317^{neg} and CD317^{pos} stromal cell lines maintained gene expression patterns that
102 independently confirmed their MSC status (Figure S1A and Table S1).

103 Next, we used mass spectrometry to determine cell surface protein expression profiles across the
104 different cell lines. We identified a high number of commonly expressed proteins alongside cell line-
105 specific variations. Using a false detection rate of 3%, we found 2678 proteins expressed across all
106 MSC lines, with 584 (65.2%) of these commonly expressed (Figure S1B), which may reveal a common
107 stromal surfaceome signature. Percentage similarity at the surfaceomic level ranged from 76.0% to
108 83.5% (Figure S1C). Unique proteins were identified in Y101 (20 proteins, 2.2%); Y102 (30 proteins,
109 3.3%); Y201 (36 proteins, 4.0%); and Y202 (21 proteins, 2.3%). These analyses also confirmed that
110 CD317 (BST2) was only identified on Y102 and Y202 MSC lines. Principle component analysis (PCA)
111 was used to aid interpretation of mass spectrometry data through dimensionality reduction. Analysis
112 highlighted that MSC lines clustered distinctly within the whole population but were on a similar

113 spectrum of observation, with Y102 and Y202 lines lying further from the mean of the whole
114 population (Figure S1D). Together, these data demonstrate that the CD317^{neg} Y101 and Y201 cell
115 lines, and the CD317^{pos} Y102 and Y202 cell lines have broadly similar protein expression profiles in
116 common with other MSC preparations and may be used as models for different MSC subtypes.

117 *Identification of CD317^{dim} and CD317^{bright} populations in primary MSCs*

118 We previously reported a CD317^{pos} MSC subset with average frequency of 1-3% in low passage
119 primary MSCs⁶⁰. Here, using flow cytometry analysis with Y201 and Y202 populations gating for
120 primary cells as either CD317^{neg} or CD317^{pos}, we were able to demonstrate that CD317 positivity can
121 be subdivided into CD317^{dim} and CD317^{bright} populations in primary MSC cultures (Figure 1A, S1E).


122 Further examination of n=24 primary MSC populations recorded proportions at CD317^{neg}
123 (70.57±5.09%) and CD317^{pos} (29.77±3.00%), comprising CD317^{dim} (28.10±4.60%) and CD317^{bright}
124 (1.67±0.58%) (Figure 1B). We observed a decrease in CD317 expression over time in culture
125 (passages 1-4), however this trend did not reach statistical significance due to the variability of initial
126 proportions of CD317^{pos} cells when CD317^{dim} was included as a CD317 positive result (means passage
127 1 = 50.66±27.63%, passage 2 = 30.35±6.03%, passage 3 = 26.07±11.78%, passage 4 = 22.18±12.26%;
128 n=2,12,7,3) (Figure S1F). We made a similar observation when examining subsets of CD317^{dim} and
129 CD317^{bright} cells, with CD317^{bright} cells almost absent by passage 4 (Figure 1C). CD317 expression in
130 isolated primary MSCs from passage 3 to 4 reduced by 49.01 ± 11.84% (n=5); with a freeze/thaw
131 cycle at passage 3, this reduction was recorded at 63.94 ± 3.64% in the same cells (n=5) (Figure S1G).

132 Therefore, human primary MSC isolates express CD317 on a spectrum that varies from cell to cell
133 and from individual to individual; the overall proportion of CD317^{pos} MSCs, as a composite of
134 CD317^{dim} and CD317^{bright}, is 28-29% in heterogeneous MSC cultures (combining all analyses of
135 primary cell donors, percent CD317^{pos} MSCs is 28.44±3.82% (mean ± SEM), range of 0.01-93.03%;
136 median=19.89%; n=52). Within CD317^{pos} cells, there was no difference in percentage CD317
137 expression based upon donor gender (mean expression female 40.02±5.27; male 24.77±6.51; Mann

138 Whitney T-test $p=0.051$, $n=52$) or correlation between donor age and CD317 expression (mean age:
139 69.75 ± 1.29 years; range 45-88; Pearson correlation $p=0.141$, $n=52$), (Figure 1D, 1E). There was,
140 however, a significant negative correlation between CD317 expression and BMI (mean 28.06 ± 0.78 ;
141 range 17-44; Spearman correlation $p<0.05$, $n=52$) (Figure 1F).

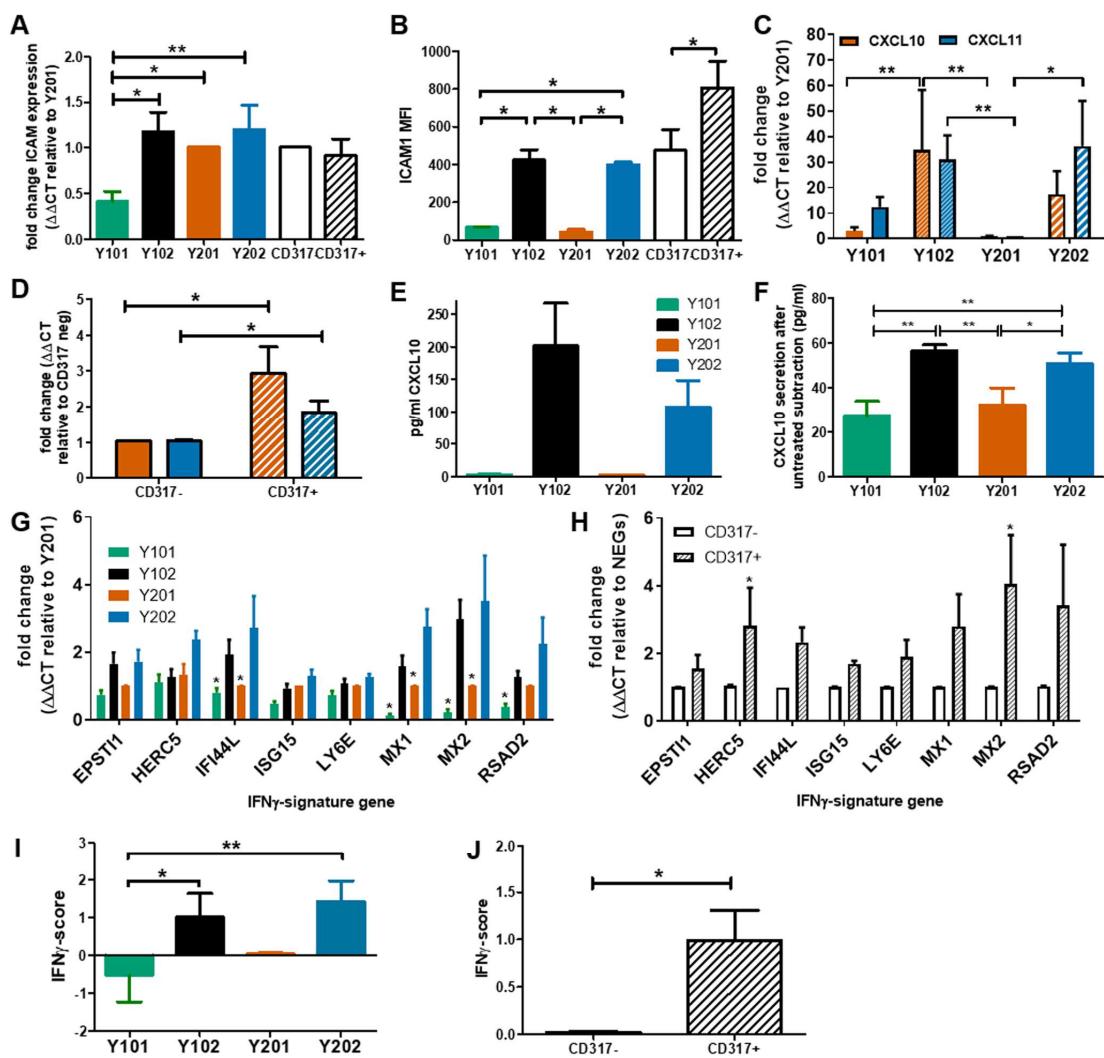
142 We previously demonstrated that the hTERT immortalised MSC lines display typical (ISCT) surface
143 marker profiles⁶⁰. Here, we also examined surface markers commonly associated with human
144 stromal progenitor cells or subsets, including CD146, CD271 and CD164, within CD317^{neg} and
145 CD317^{pos} primary MSC populations. Isolated MSCs from human primary donors showed CD317^{pos}
146 (CD317^{dim} and CD317^{bright} populations combined) with mean % expression values of CD317^{pos}
147 ($52.90\pm5.89\%$), CD146^{pos} ($19.46\pm3.07\%$), CD271^{pos} ($4.025\pm0.71\%$) and CD164^{pos} ($95.03\pm2.11\%$) ($n=27$)
148 (Figure 1G). Examination of the CD317^{pos} population only showed similar proportions of each marker
149 to those seen in the whole population: CD146^{pos} ($24.21\pm3.23\%$), CD271^{pos} ($7.78\pm1.35\%$) and CD164^{pos}
150 ($97.18\pm0.66\%$) ($n=27$) (Figure 1H). These findings demonstrate that expression of these markers is
151 independent of CD317 positivity and that CD164 identifies virtually all CD317^{neg} and CD317^{pos} MSCs.

152 Comparative gene expression analysis has previously demonstrated a correlation between murine
153 peri-sinusoidal stromal cells and CD317^{pos} MSCs⁶². LEPR has been shown to mark peri-sinusoidal
154 stromal cells in mouse tissue⁶³. Here we investigated CD317^{pos}/LEPR^{pos} stromal cells in mouse bone
155 marrow to identify the *in vivo* location of this subpopulation. CD317 expression was detected
156 throughout the bone marrow with low frequency colocalisation of CD317 with LEPR restricted to
157 peri-sinusoidal regions adjacent to CD31-positive endothelial cells (Figure 1I).

158

159 **Figure 1. Analysis of CD317-expressing MSC populations within primary cell isolates.** (A) The
160 CD317 expressing populations can be divided into CD317^{bright} and CD317^{dim} with CD317^{bright} MSCs. (B)
161 Average proportions of CD317^{neg} and CD317^{pos}, comprising CD317^{dim} and CD317^{bright}, in primary MSCs
162 lines. (C) Expression of CD317 over early passages 1 to 4 in Primary MSCs with CD317^{neg} increasing,
163 CD317^{dim} and CD317^{bright} decreasing during in vitro culture (n=2-12). Variation of CD317 expression
164 with gender (D), age (E) and BMI (F) in primary donors (n=52). (G) Isolated MSCs from human
165 primary donors showed CD317^{pos} (CD317^{dim} and CD317^{bright} combined) with mean values of CD317^{pos},
166 CD146^{pos}, CD271^{pos} and CD164^{pos} (n=27). (H) Examination of the CD317^{pos} population only, showed
167 similar proportions of each marker to those seen in the whole population (n=27). (I) CD317
168 expression was detected throughout the bone marrow of mice with low frequency colocalization of
169 CD317 and LEPR+ in peri-sinusoidal regions (arrows).

170


171 *Immune profile of CD317^{pos} MSCs*

172 Our previous transcriptomic data indicated that CD317^{pos} Y102 and Y202 MSC lines display a
173 constitutive immunostimulatory expression profile⁶⁰, which we sought to define here using the MSC
174 lines and primary cells sorted based on CD317 expression. We confirmed by qPCR that ICAM1 (CD54)
175 mRNA levels were significantly elevated in CD317^{pos} Y102/Y202 compared to CD317^{neg} Y101 (Figure

176 2A). Although ICAM1 mRNA expression levels appeared similar in primary MSCs sorted for CD317
177 positivity (Figure 2A), flow cytometric analysis demonstrated that cell surface ICAM1 expression, as
178 shown by mean fluorescence intensity (MFI), was significantly increased on CD317^{pos} primary MSCs
179 versus CD317^{neg} MSCs and CD317^{pos} Y102/Y202 versus CD317^{neg} Y101/Y201 (Figure 2B). Comparative
180 analysis of CXCL10 and CXCL11 mRNA levels in immortalised MSC lines and primary MSCs sorted for
181 CD317 demonstrated significantly increased expression in all CD317-positive MSCs compared to
182 CD317-negative counterparts (n=7; experiments performed in triplicate) (Figure 2C, 2D).

183 CD317, ICAM-1 and CXCL10 are regulated by interferon-gamma (IFN- γ). We analysed expression
184 levels of the IFN- γ receptor by flow cytometry and demonstrated that it was expressed at similar
185 levels in all four MSC lines, independent of CD317 expression (MFI, Y101=9.11, Y201=8.41,
186 Y102=9.60, Y202=9.84; p>0.05) (Figure S2A). This finding suggested that all MSC lines were capable
187 of responding to IFN- γ stimulation in a similar manner, but CD317-positive MSCs may be primed to
188 transduce IFN- γ stimulation more effectively. Secretion of CXCL10 was measured with (Figure 2E)
189 and without (Figure 2F) IFN- γ exposure. Under basal, unstimulated conditions, CD317^{pos} Y102/Y202
190 MSCs secrete larger amounts of CXCL10 compared to CD317^{neg} Y101/Y201. Following IFN- γ priming,
191 CD317^{pos} MSC lines demonstrate a significantly increased ability to secrete additional amounts of
192 CXCL10 compared to CD317^{neg} MSC lines. However, IFN- γ has a proportionally much larger
193 stimulatory effect on CXCL10 secretion by CD317^{neg} Y101/Y201 cells, suggesting that constitutive
194 interferon signalling is a feature of CD317^{pos} MSC lines (Figure 2F).

195 Examination of a further panel of eight IFN- γ related genes showed remarkably different expression
196 between CD317^{pos} and CD317^{neg} MSCs (Figure 2G, 2H). Using a method described by Raterman *et*
197 *al*⁶⁴, we generated an IFN- γ signature score for CD317^{pos} and CD317^{neg} MSCs using the average of the
198 log base-2 normalised relative fold changes of the eight IFN- γ related genes. We demonstrated that
199 CD317^{pos} MSC lines and primary MSCs had a significantly increased IFN- γ signature score compared
200 to CD317^{neg} MSCs (Figure 2I & 2J).

201

202 **Figure 2 Examination of the immune profile of CD317pos MSCs** (A) Comparative mRNA expression
203 of ICAM-1 in MSC lines and primary cells sorted by CD317 expression (RNA was extracted from 3
204 different donors or 5 cell line passages; qPCR performed in triplicate, mean shown \pm SEM). (B) Mean
205 fluorescence intensity of ICAM-1 expression on the cell surface of MSC lines and primary MSCs
206 differentially gated by CD317 staining (MSCs from 5 different donors or 4 different passages of MSC
207 lines were stained for flow cytometry, mean shown \pm SEM). (C)/(D) Comparative (mean \pm SEM)
208 mRNA expression of CXCL10 (red) and CXCL11 (blue) in MSC lines/ primary MSCs sorted for CD317
209 expression (RNA was extracted from 7 different donors/7 different cell passages; experiments were
210 performed in triplicate). (E/F) CXCL10 secretion by MSC lines prior to IFN- γ priming and after priming
211 with baseline (unprimed) secretion subtracted (mean \pm SEM, n=2). (G/H) Comparative mRNA
212 expression of 8 IFN- γ signature genes in MSC lines/primary MSCs sorted by CD317 expression (RNA
213 was extracted from 5 different donors/5 different cell passages; experiments were performed in
214 triplicate, mean shown \pm SEM). (I)/(J) IFN- γ score for MSC lines/primary MSCs sorted by CD317
215 expression (n=5)*/** = significance at P<0.05/0.01 using an appropriate statistical test.

216

217 Bioinformatics analysis of differentially expressed genes (DEGs) using combined transcriptomic

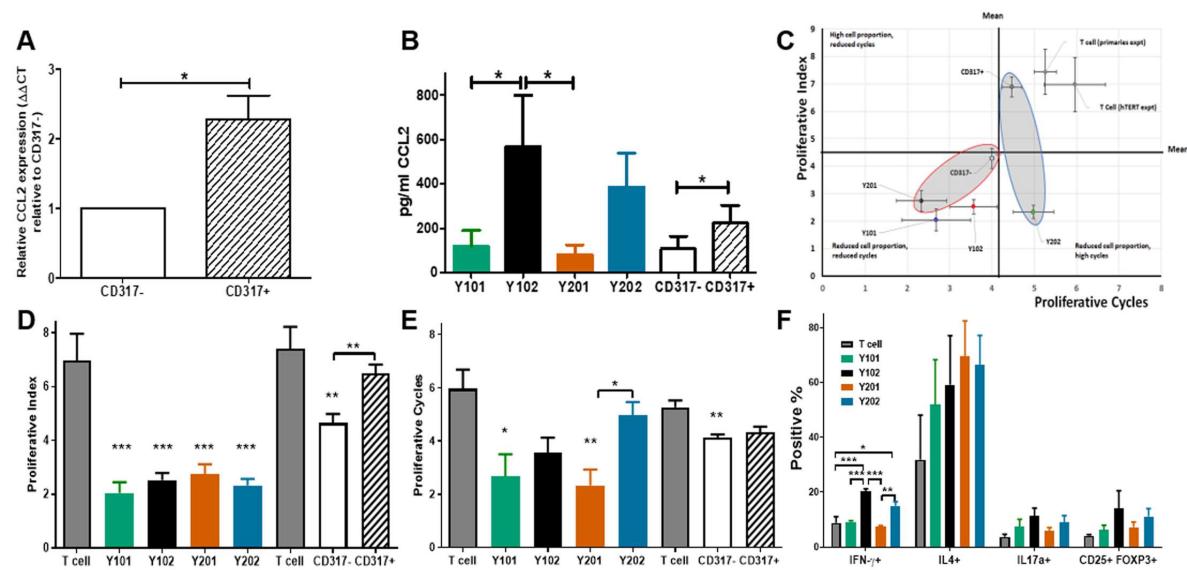
218 data⁶⁰ from CD317^{neg} (Y101 & Y201) and CD317^{pos} (Y102 & Y202) MSC lines identified 2340

219 significantly upregulated genes in CD317^{pos} MSC samples (FC>2, p<0.05) with clear clustering of the
220 Y01 group (Y101, Y201) and the Y02 group (Y102, Y202) (Figure S2B). The 10 most significantly
221 upregulated genes in the CD317^{pos} group were immune-related and/or interferon-regulated,
222 including OAS1, OASL, RSAD2 and CD317 (BST2) (Figure S2C). IFN signalling and elevated IFN-
223 signatures are associated with different human disease states⁶⁵. When comparing the upregulated
224 Y102/Y202 gene sets with six publicly available transcriptomic databases for autoimmune and
225 related disorders (Table S2), we identified a significant association between DEGs and GO terms that
226 were enriched in Y102/Y202 MSC lines and psoriasis, eczema and, to a lesser extent, rheumatoid
227 arthritis and osteoporosis (Table S3). Similar observations were made when comparing enriched
228 signalling pathways across Y102/Y202 and disease datasets (Table S4).

229 Therefore, a resident MSC subtype can be identified as CD317^{pos}ICAM-1^{hi}CXCL10^{hi} with apparent
230 constitutive interferon signalling, which is likely to contribute to specific physiological and pathological
231 immune functions.

232 *Roles of CD317^{pos} and CD317^{neg} MSCs in monocyte and T cell function*

233 Immunomodulation may be affected through paracrine signalling altering cell recruitment and
234 retention in response to signalling molecule expression. The CCL2 receptor, CCR2, is a monocyte
235 chemoattractant receptor protein involved in macrophage activation in cells expressing high levels
236 of CCL2. Significantly higher CCL2 mRNA expression and protein secretion was detected in CD317
237 expressing MSCs versus CD317-negatives (Figure 3A & B).


238 In the presence of an antagonist for CCR2, migration of monocytic cells (THP-1) towards supernatant
239 from CD317-expressing MSC lines was selectively inhibited compared to CD317-negative MSC lines
240 (Y101, Y201 vs Y102, Y202; 19.37±9.57, 19.61±8.89 vs 39.01±6.57, 41.02±4.79) (Figure S3A). We
241 tested whether the supernatant of CD317^{pos} and CD317^{neg} MSCs could induce the migration of both
242 monocytic (THP-1) and T cell (HUT-78) lines in transwell assays. We demonstrated that both THP-1

243 and HUT-78 cells migrated towards MSC supernatants suggesting that MSCs secrete both monocyte
244 and T cell chemoattractants (Figure S3B).

245 MSCs have previously been shown to suppress activated T cell proliferation whilst maintaining
246 inactivated T cell viability in co-culture⁶⁶. Several mechanisms are proposed that provide evidence
247 for IFN- γ mediated immunosuppression⁶⁷, potentially achieving MSC deactivation of T cells through
248 IFN- γ receptor targeting or IFN- γ -mediated induction of indoleamine 2,3-dioxygenase (IDO) from
249 MSCs, whereby tryptophan is catabolised leading to suppression of T cell proliferation and
250 subsequent apoptosis of activated T cells, leaving inactivated T cells in a viable state^{68,69}. In this work,
251 T cell proliferation was assessed for peaks of gradual division (proliferative index)⁷⁰ and proliferative
252 cycles (population doublings)⁷¹ over 5 days of co-culture with or without CD317^{pos} and CD317^{neg} MSC
253 cell lines (Figure S3C). T cells do not proliferate in culture, unless activated with anti-CD3/CD28, and
254 undergo cell death in absence of IL-2, which is produced *in vivo* by activated T cells⁷². Compared to T
255 cells alone, all MSC lines and CD317^{neg} primary MSCs significantly reduced proliferative index scores,
256 whereas CD317^{pos} primary MSCs had no significant effect on T cell proliferative index (Figure 3C, 3D).
257 Assessment of T cell proliferative cycles showed significant reductions when cultured with CD317^{neg}
258 Y101/Y201 and CD317^{neg} primary MSCs (Figure 3C, 3E) compared to T cells alone. However, CD317^{pos}
259 Y102/Y202 MSCs and CD317^{pos} primary MSCs did not significantly reduce the number of proliferative
260 cycles, although a decline was observed (Figure 3C, 3E). These results demonstrate that CD317^{pos}
261 MSCs are capable of inactivating a proportion of proliferating T cells, although this effect is not
262 sufficient to reduce the number of proliferative cycles that the residual activated cells achieve,
263 pointing to a diminished immunosuppressive function for CD317^{pos} MSCs.

264 Next, we determined the effect of CD317^{neg} and CD317^{pos} MSCs on the polarisation of naïve T cells
265 into effector lineages with immunosuppressive/anti-inflammatory function. CD317^{pos} MSC lines
266 induced a significant increase in the development of pro-inflammatory Th1 cells. Both Y102 (20.32 ±
267 0.92%, p<0.001) and Y202 (15.11 ± 1.46%, p<0.05) increased Th1 polarisation, as indicated by IFN- γ

268 expression, in comparison to T cells alone ($8.79 \pm 2.30\%$), CD317^{neg} Y101 ($9.25 \pm 0.42\%$, $p < 0.001$)
269 (Y102) and Y201 ($7.31 \pm 0.60\%$, $p < 0.001$ (Y102), $p < 0.01$ (Y202)) (One way ANOVA with Bonferroni
270 post hoc test). An increase was also observed in Th2 cells for all MSC lines ($p > 0.05$, n.s.). Both Th17
271 and Treg cells, as indicated by IL17a and CD25/FOXP3 expression respectively, increased slightly with
272 CD317^{pos} MSC lines, but not statistically significantly. By examining total proportions of
273 differentiating cells, it was notable that a large proportion of CD4+ T cells cultured alone did not
274 commit to any lineage when compared to co-culture with MSC lines. When proportions are
275 summated, only 48.49% of T cells cultured alone differentiated into the 4 lineages examined, whilst
276 approximately 75% (Y101), 90% (Y201) and 100% (Y102, Y202) differentiation into these lineages
277 was observed when T cells were co-cultured with MSC lines (Figure 3F).

278

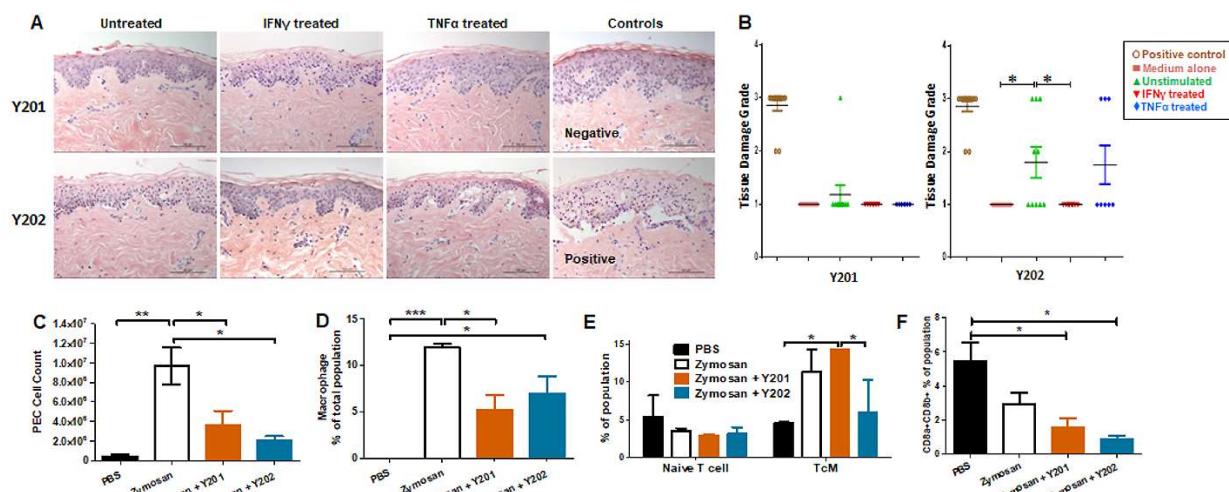
279 **Figure 3 Influence of CD317^{neg} MSCs and of CD317^{pos} MSCs on immune cell function (A)**
280 Comparative mRNA expression of CCL2 in primary MSCs sorted by CD317 expression (RNA was
281 extracted from 7 different donors; experiments performed in triplicate, mean shown \pm SEM). (B)
282 CCL2 secretion in primary MSCs sorted by CD317 expression and MSC lines (from 4 different
283 donors/4 different cell line passages; experiments performed in triplicate, mean shown \pm SEM). (C)
284 In vitro co-culture of hTERT immortalised lines Y201 and Y202 and primary CD317^{neg} and CD317^{pos}
285 cells with activated T cells. CD317^{neg} cells reduce proportion of proliferating T cells and number of
286 cell cycles achieved (D) hTERT cell lines significantly reduce proportion of proliferating cells as
287 demonstrated through proliferative index (E) CD317^{neg} cell lines reduce proliferative cycles achieved
288 by activated T cells in comparison to CD317^{pos} or T cell alone controls. (F) assessment of the
289 influence of MSC on T cell polarisation in co-culture demonstrates CD317^{pos} cells influence activated
290 T cells to preferentially polarise towards IFN- γ expressing (Th1) subset with indications of increased
291 IL17a+ and CD25+FOXP3+ expressing cells.

292

293 *Pro-inflammatory and Immuno-regulatory potential of CD317^{neg} and CD317^{pos} MSCs in vitro and in*
294 *vivo*

295 Considering the stark differences in immune profiles of CD317^{neg} and CD317^{pos} MSCs, we tested their
296 effects in different inflammatory models. Prior to *in vitro* and *in vivo* testing, we confirmed the
297 representative CD317^{neg} and CD317^{pos} MSCs (Y201, Y202) were not affected by viral contamination
298 as a potential origin or contributor to constitutive IFN- γ expression. All cell samples were tested in
299 triplicate and returned negative results for molecular diagnostics of infectious diseases (Human
300 Comprehensive CLEAR Panel, Charles River) using PCR for RNA representing a panel of 26 virions.

301 Initially, we investigated the potential pro-inflammatory property of CD317^{neg} Y201 and CD317^{pos}
302 Y202 MSCs in a skin explant model, which is an *in vitro* tool to detect the presence of cutaneous
303 tissue damage following a pro-inflammatory insult^{73,74}. CD317^{neg} Y201 and CD317^{pos} Y202 MSCs were
304 primed with IFN- γ or TNF- α and co-cultured *in vitro* with skin explants.


305 In this assessment, no tissue damage was observed after skin co-incubation with CD317^{neg} Y201 cells
306 in all conditions tested (Figure 4A top panel and Figure 4B left panel). In contrast, cutaneous tissue
307 damage was detected when skin was co-cultured with unstimulated or TNF- α stimulated CD317^{pos}
308 Y202 cells showing clear cleft formation in the basal layer between the dermis and epidermis (Figure
309 4A bottom panel and Figure 4B right panel). When comparing the ability to cause tissue damage,
310 Y202 cells caused significantly increased damage compared to Y201 cells in unstimulated and TNF- α
311 stimulated conditions ($p<0.05$) whilst no cutaneous tissue damage was observed when skin was co-
312 cultured with IFN- γ stimulated Y202 cells.

313 Interferon signalling genes are regulated by interferon in host-pathogen interactions. It is
314 hypothesised that constitutive interferon signalling occurs to provide a rapid response to pathogen
315 infections through pre-established interferon signature⁶⁵, such as that observed here in CD317^{pos}

316 MSCs. To investigate the potential for constitutive IFN- γ related signalling on innate immune
317 responses *in vivo*, we evaluated immune regulation by CD317^{neg} and CD317^{pos} MSCs in a zymosan-
318 induced peritonitis model of acute inflammation that promotes the recruitment of monocytes and
319 neutrophils to the peritoneal cavity. Following zymosan treatment, peritoneal exudate cells (PEC)
320 were collected by lavage and analysis performed on the cell content. A gating strategy was devised
321 for flow cytometric analysis of multiple PEC cell types focusing on haematopoietic, myeloid and
322 lymphoid cells including monocytes, macrophages and T cells (Figure S4A & S4B). Treatment with
323 either Y201 or Y202 MSC lines suppressed the recruitment of inflammation-related cells to the area.
324 There was a significant reduction in total cells recruited in both Y201 ($3.552 \pm 1.543 \times 10^6$) and Y202
325 ($2.076 \pm 0.421 \times 10^6$) treated conditions compared to zymosan-induced peritonitis without treatment
326 ($9.686 \pm 1.894 \times 10^6$) ($p < 0.05$), with no significant difference between MSC-treated animal PEC
327 numbers and PBS controls ($4.420 \pm 1.790 \times 10^5$) (Figure 4C).

328 Examination of the composition of PEC showed that zymosan-induced peritonitis prompted a
329 significant increase in haematopoietic cells ($p < 0.05$). No difference in recruitment of eosinophils or
330 neutrophils was observed in MSC-treated mice when compared to zymosan alone or PBS controls
331 (Figure S4C & S4D). Examination of the production of monocytes and macrophages in PEC samples
332 showed no differences in monocyte recruitment, however both zymosan alone and zymosan plus
333 Y202 showed significant increases in macrophage proportions compared to PBS controls ($p < 0.001$,
334 $p < 0.05$ respectively) whilst Y201 treatment suppressed macrophage numbers ($p < 0.05$) (Figure 4D).
335 Within these monocyte and macrophage populations, the proportions of Ly6C positive and negative
336 cells matched the proportions seen in zymosan treatment only animals (Figure S4F & S4G). Ly6C
337 positive monocytes and macrophages are linked with pro-inflammatory responses by CCR2/CCL2
338 mediated homing to sites of tissue injury, whilst Ly6C low or negative monocytes and macrophages
339 are reparative, guided by VCAM-1 and other adhesion proteins^{75,76}.

340 Spleens retrieved from MSC-treated and control mice were homogenised and analysed for naïve and
341 polarised T cells, and memory T cells. No differences were found in the mass or cellularity of spleens
342 between controls and MSC-treated animals (data not shown). When tested, a significant increase
343 was found in activated CD4+ central memory T cells (TcM) in CD317^{neg} Y201 cell treated conditions
344 (14.23±0.06%) in comparison to PBS controls (4.53±0.18%) or Y202 treated animals (5.89±4.30)
345 (Figure 4E). CD4+ effector T cell polarisation was not altered by introduction of zymosan or MSC
346 treatments within the 24 hour time period measured. However, treatment with either CD317^{neg} Y201
347 (1.51 ± 0.57%) or CD317^{pos} Y202 (0.84 ± 0.25%) MSCs suppressed CD8a/b+ expression representative
348 of cytotoxic T cell production in mice in comparison to CD8a/b+ expression in untreated animals
349 (5.42 ± 1.10%) (Figure 4F).

350

351 **Figure 4 In vitro and in vivo immunomodulation by CD317^{neg} Y201 or CD317^{pos} Y202 MSCs.** (A)
352 Representative images of skin explants independently assessed for damage to tissues, examining
353 keratinocytes, basal cells, keratotic bodies, the appearance of sub-epidermal clefts at the junction
354 with the dermis and in highly damaged tissue the appearance of complete epidermal separation
355 following treatment with MSCs primed with IFN-γ or TNF-α and co-cultured *in vitro*. (B) Y201 co-
356 culture did not prompt damage to the tissue in any conditions whilst Y202 cell line demonstrated
357 marked tissue damage in untreated cells and TNF-α treated cell lines. Both Y201 and Y202 cell lines
358 retained the ability to inhibit tissue damage when primed with IFN-γ. (C) MSCs subsequently applied
359 to an *in vivo* peritonitis model of inflammation showed immunomodulation through reduced
360 immune cell recruitment, (D) reduced macrophage development following Y201 treatment, (E)
361 increased central memory T cell development following Y201 treatment and (F) reduced CD8+
362 cytotoxic T cell development following Y202 treatment. n=3, *p<0.05, **p<0.01, ***p<0.001

363 *In vivo tissue formation is enhanced in CD317^{neg} MSC lines when compared to CD317^{pos}*

364 *subpopulations*

365 We hypothesised that the immunomodulatory enhancements observed in CD317-positive MSCs

366 would impact on their tissue-forming capacity. To test this hypothesis, CD317^{neg} (Y201) and CD317^{pos}

367 (Y202) MSC lines were loaded onto hydroxyapatite (HA) scaffolds and implanted subcutaneously in

368 nude mice. Scaffolds were retrieved at 3 and 8 weeks post-implantation and examined using

369 histological analysis for *de novo* tissue formation by deposition of extracellular matrix (ECM),

370 collagen and neoangiogenesis.

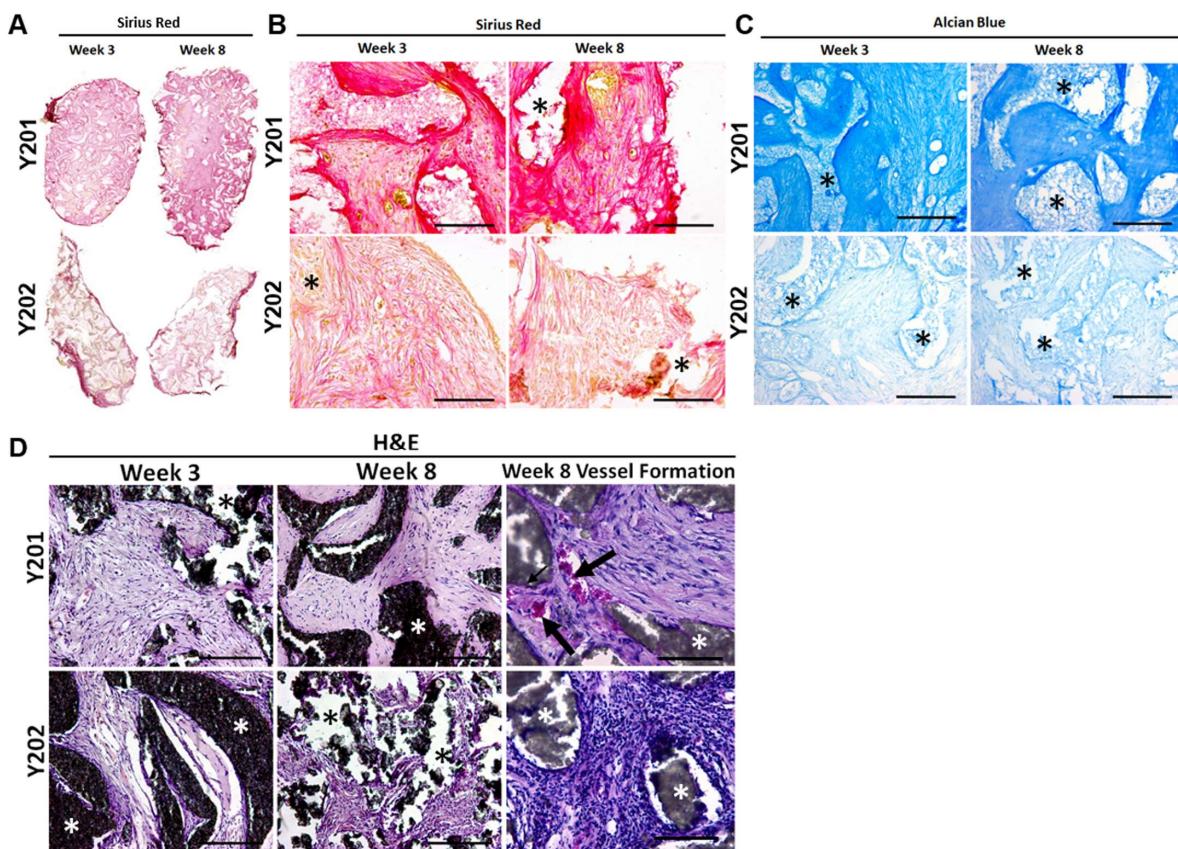
371 CD317^{neg} Y201 MSCs showed clearly advanced ECM and collagen deposition in histological stains

372 using Sirius Red for collagen formation and Alcian Blue for proteoglycan synthesis (Figure 5A, 5B &

373 5C), suggestive of a more stable capacity for tissue formation. Haematoxylin and eosin staining

374 showed evidence of tissue formation from 3 weeks post implantation in CD317^{neg} MSCs alongside

375 evidence at 8 week timepoints of capillary tube structures containing blood cells indicative of


376 neoangiogenesis (Figure 5D). Although there was some evidence of tissue formation in CD317^{pos}

377 Y202-loaded scaffolds, the tissue formed was less continuous or cohesive compared to CD317^{neg}

378 Y201 samples and by 8 weeks post-implantation there was clear evidence of disaggregation and cleft

379 formation at the surface of HA particle clusters following histological staining for ECM formation

380 (Alcian Blue and Sirius Red) with no detectable vessel formation (Figure 5A, 5B, 5C & 5D).

381

382 **Figure 5. In vivo tissue generation in HA scaffolds loaded with CD317^{neg} Y201 or CD317^{pos} Y202**
383 **MSCs.** (A, B) Histological staining of recovered implants using Sirius Red for collagen formation and
384 (C) Alcian Blue for proteoglycan synthesis at 3 and 8 weeks post-implantation in HA scaffolds loaded
385 with either CD317^{neg} Y201 MSCs and CD317^{pos} Y202 MSCs. (D) Haematoxylin and eosin staining
386 comparing tissue and blood vessel formation at 3 and 8 weeks post-implantation in HA scaffolds
387 loaded with CD317^{neg} Y201 MSCs and CD317^{pos} Y202 MSCs. Scale bars = 250µm. Asterisks = HA
388 particles, arrows = blood vessels.

389

390 **Discussion**

391 This study investigated the characteristics and properties of a CD317^{pos} subpopulation within
392 heterogeneous MSCs and their ability to contribute to immune responses and tissue repair. We used
393 immortalised MSC model lines and primary MSCs isolates to elucidate the biology and potential
394 impact on the therapeutic application of these cells. Here, we confirm CD317^{pos} MSCs represent a
395 subpopulation of cells commonly found in human MSCs preparations with an equal distribution in a
396 range of demographic groups and health conditions. Using *in vitro* and *in vivo* functional assays, we

397 demonstrate that CD317^{pos} MSCs have reduced immunomodulatory and tissue-forming capacity
398 compared to CD317^{neg} MSCs, suggesting that CD317^{pos} cells will not contribute to tissue repair or *de*
399 *novo* tissue formation. Any contribution of CD317^{pos} cells in therapy, when delivered within an
400 undefined heterogeneous MSC culture, is therefore likely to be through immunomodulatory
401 influence, and the contribution to the regenerative process is dependent upon the therapeutic
402 target and the inflammatory environment present in the recipient at the time of transplantation.
403 Given the potential for CD317^{pos} MSCs to respond to the inflammatory environment *in vivo*, these
404 cells may serve a positive function in assisting the repair of damaged tissues by CD317^{neg} MSCs when
405 transplanted as part of a heterogeneous population. However, our *in vivo* results demonstrate that
406 CD317^{neg} cells are capable of inducing both anti-inflammatory immunomodulation and tissue
407 regeneration in the absence of CD317^{pos} counterparts, suggesting the support function is not vital to
408 successful repair of damaged tissue by CD317^{neg} MSCs alone. Of note, when supplied in sufficient
409 numbers CD317^{pos} MSCs are capable of causing tissue damage, as observed in our skin explant
410 model, which may be linked to their pro-inflammatory characteristics.

411 Inflammation serves a dual role in tissue repair. Cells in the immune response, such as neutrophils,
412 function to initiate the repair process. Neutrophils cause tissue breakdown during inflammation but
413 in the absence of neutrophils, macrophages rapidly recruited to the site of injury will display reduced
414 rate of tissue regeneration owing to the presence of cell debris normally phagocytosed by
415 neutrophils⁷⁷. Our results from MSC treatment of zymosan-induced peritonitis in mice showed a
416 neutrophil population present in PEC suspensions from PBS injected mice, and significantly increased
417 neutrophils present in the PEC of both zymosan-only and MSC-treated mice. However, examination
418 of subsequent macrophage populations showed that whilst no macrophages were detected in the
419 PBS control mice, both zymosan-only and CD317^{pos} MSC plus zymosan conditions displayed
420 significant increases in macrophage numbers. Significantly fewer cells, including macrophages, were
421 recruited in the presence of CD317^{neg} MSCs compared to zymosan only induction, therefore
422 CD317^{pos} MSCs fail to inhibit macrophage recruitment.

423 The influence of CD317^{pos} MSCs on T cells appears to be highly modulated in comparison to CD317^{neg}
424 MSCs. MSCs have been widely shown to deactivate T cells *in vitro* and suppress T cell proliferation
425 whilst directing CD4+ effector T cells from Th1 to Th2 profile^{66,78-85}. However, in activated T cells in
426 cell to cell contact with CD317^{pos} MSCs, we observed minimal deactivation of T cells and continued T
427 cell proliferation, in conjunction with an active increase in Th1 polarisation, contrary to the widely
428 accepted immunosuppressive properties of MSCs. IFN- γ stimulation of MSCs has been shown to
429 induce activation through upregulation of HLA class II, pushing the MSC towards antigen-presenting
430 capability for immune regulation, promoting T cell interactions and potentially influencing CD8+ T
431 cell activation⁸⁶. This may go towards explaining the results we observe when CD317^{pos} cells interact
432 with T cells *in vitro* and T and B cells *in vivo*. CD317^{pos} MSCs show minimal interaction with T cells *in*
433 *vitro*, yet function more effectively in a pro-inflammatory *in vivo* environment. CD317 promotes an
434 immune response through stimulating activation of NF κ B⁸⁷ which in turn contributes to B cell
435 development⁸⁸. MSC immunomodulation is intrinsically tied to interactions with dendritic cells (DCs),
436 with MSCs inhibiting DC maturation, resulting in reduced migration, cytokine secretion, antigen
437 presentation to T helper cells and cross-presentation to cytotoxic T cells⁸⁹ through interrupting entry
438 into the cell cycle, inhibiting DC differentiation and function⁹⁰. DCs also mediate the MSC
439 immunosuppressive effect through the induction of regulatory T cells^{91,92}.

440 Deeper analysis of the CD317^{pos} subset of MSCs identified a heightened interferon signature that
441 was not related to IFN- γ receptor expression levels, suggestive of constitutive IFN signalling. Pre-
442 established, low level constitutive IFN signalling contributes to rapid pathogen responses in the
443 innate immune system and conveys a protective effect to de novo IFN exposure in these cells⁹³.
444 CD317^{pos} MSCs, if maintained at appropriate levels, may therefore contribute to enhanced innate
445 immunomodulation. Of interest, CD317^{pos} MSCs may also serve as a useful tool in the investigation
446 of host tropism in viral infection, a particularly prevalent issue with the advent of COVID-19. Indeed,
447 the presence of BST2/CD317 on the cell surface has been shown to convey a protective effect by
448 tethering coronavirus virions to the cell surface or intracellular membranes and decreasing budding

449 of progeny virus⁹⁴. These cells may therefore provide an enhanced response to viral infection that
450 facilitates tissue regeneration as well as immunomodulation. However, whilst constitutive IFN
451 signalling may convey a protective effect to cells experiencing *de novo* IFN in the *in vivo*
452 environment, there also exists the potential for a link between unregulated constitutive IFN
453 signalling and tissue damage in human disease conditions including autoimmunity. It is therefore
454 highly significant that we show the baseline gene expression levels of CD317^{pos} MSCs aligns them
455 with cells present in autoimmune and related conditions.

456 In this report we characterise a subset of human MSCs that favour immunomodulatory interactions
457 over tissue regeneration, yet identify as MSCs through both independent tests (e.g. Rohart and ISCT
458 guidelines⁹⁵. These cells display a distinct immune profile and operate in contrast to the
459 expectations of MSC's immunosuppressive function. We have demonstrated that the proportion of
460 CD317^{pos} MSCs varies considerably between donor MSC preparations, which could reflect individual
461 inflammatory state and/or infection history. We propose that the success of therapeutic applications
462 for tissue regeneration is dependent on the numbers of CD317^{pos} MSCs present in the administered
463 cell dose. There is also the possibility that CD317^{pos} MSCs can bring therapeutic benefits in the
464 inflamed environment. The expression of CD317 on MSCs serves as a positive marker for cells that
465 display all the characteristics of an immune stromal cell and targeted therapies should aim to
466 harness the knowledge of this cell type as novel approaches to the treatment of degenerative, and
467 inflammatory conditions.

468

469 **Materials and Methods**

470 *Cell culture*

471 *Immortalised MSC lines and primary bone marrow derived human MSCs*

472 MSC lines immortalised with human telomerase reverse transcriptase (hTERT) were maintained in
473 culture as previously described⁶⁰. Clonal hTERT-MSCs included the CD317^{pos} Y202 and Y102 lines, and
474 the CD317^{neg} Y201 and Y101 lines. Low-passage (p1-p5) primary MSCs were isolated from femoral
475 heads, obtained with informed consent during routine hip replacement or as explant cultures from
476 human tibial plateaux after routine knee replacement⁶⁰. Primary MSCs were also established from
477 bone marrow aspirates purchased from Lonza. Cells were cultured at 37°C in 5% CO₂ humidified
478 atmosphere incubators using DMEM (Gibco) culture medium supplemented with 10% foetal bovine
479 serum and 1% penicillin-streptomycin. Cells were routinely passaged at 80% confluence.

480 *Isolation of primary T cells from tonsillectomy tissue*

481 Primary donor T cells were retrieved from tonsillectomy donations according to ethical approval. For
482 primary MSC co-cultures, cryopreserved CD4+ human cord blood T cells were purchased from Stem
483 Cell Technologies. T cells were isolated from mixed T and B cell cultures using nylon wool
484 separation⁹⁶. T cells were seeded at a density of 1.0 x 10⁶ cells/ml in an appropriately sized tissue
485 culture flask. MSC co-cultures with isolated T cells were set up within 24 hours or cells were
486 cryopreserved in 10% dimethylsulfoxide (DMSO) in RPMI1640 medium and re-established in culture
487 a minimum of 24 hours prior to use.

488 *Rohart test for independent confirmation of MSC status*

489 The Rohart MSC test was used as an independent measure for distinguishing MSCs from non-MSCs⁶¹.
490 The classifier has previously been validated against 1,291 samples from 65 studies derived on 15
491 different platforms, with >95% accuracy with 97.7% accuracy⁶¹.

492 *Flow cytometry*

493 MSCs were labelled using optimised concentrations of the required primary antibody or isotype
494 control. After washing, cells were stained with a fluorescent secondary antibody, where conjugated

495 primaries were not used. As appropriate, cells were washed as required prior to incubation with
496 1:1000 diluted sytox blue for 5 minutes. Analysis was conducted immediately following staining.

497 Intracellular flow cytometry of MSC was performed on 4% paraformaldehyde (PFA) fixed cells in the
498 presence of 0.1% saponin (Sigma). All flow cytometry was performed on a Beckman Coulter CyAn
499 ADP flow cytometer and analysed with Summit v4.3 software, or using a Cytoflex S or LX and
500 analysed with FCS Express 7. Cell sorting was undertaken using a Beckman Coulter MoFlo Astrios and
501 analysed with summit v6.2 software or FCS Express 7.

502 *Processing of mouse femurs*

503 Femurs were dissected from C57BL/6J female mice at ages 8-12 weeks immediately after sacrificing.
504 All work was carried out under ethical approval from the University of York Department of Biology
505 Ethics Committee and Animal Welfare Ethical Review Body. Muscle tissue was removed and femurs
506 were fixed in 4% PFA for 24 hours at 4°C, followed by washing with PBS. Bones were then decalcified
507 using 10% EDTA in PBS at pH 7.5 for 24 hours at 4°C. After decalcification, femurs were
508 cryoprotected by submerging in 30% sucrose in PBS for 24 hours at 4°C. Bones were embedded in
509 Optimal Cutting Temperature compound and sectioned using an OTF5000 cryostat (Bright
510 Instruments Ltd.). Sections were collected on SuperFrost plus microscope slides (Thermofisher) and
511 stored at -70°C.

512 *Immunofluorescent staining of mouse bone tissues*

513 Slides were allowed to reach room temperature. Sections were blocked for 45 minutes in 10% goat
514 serum (Sigma) + 0.1% Tween-20 in PBS (10% donkey serum (Sigma) + 0.1% Tween-20 in PBS where
515 goat primary antibody was used). Primary antibodies (LEPR, CD31, CD317) were diluted in 1% IgG-
516 free Bovine Serum Albumin (Sigma) + 0.05% Tween-20 (Sigma) in PBS and sections incubated in the
517 dark at 4°C overnight in a humidified chamber. All secondary antibodies were added at 1:300
518 dilution in PBS for 1 hour at room temperature in the dark then stained for 10 minutes with 0.2

519 μ g/ml 4',6-diamidino-2-phenylindole (DAPI) in PBS. Dried slides were mounted with Prolong Gold
520 antifade mounting medium (Invitrogen) and #1.5 thickness glass coverslip (Scientific Laboratory
521 Supplies). Slides were left to cure at room temperature in the dark for 24 hours prior to image
522 capture using LSM880 or LSM780 (Zeiss) confocal microscopes with excitation wavelengths of 405
523 nm, 488 nm, 561 nm and 633 nm.

524 *Proteomic analysis of MSC plasma membranes*

525 Plasma membranes were isolated from the hTERT immortalised clonal lines following the protocol of
526 Holley *et al*⁹⁷ before mass spectrometry and comparative proteomic analyses were performed by the
527 Proteomics laboratory within the University of York Bioscience Technology Facility using LC-MS/MS⁹⁸
528 and Scaffold 4 proteome software for initial analysis using 3% false discovery rate. Further in-depth
529 examination of protein expression was conducted using the Knime analytics platform and
530 ProteoWizard MSOpen technology⁹⁹.

531 *Transwell cell migration assays*

532 Migration assays were performed in transwell polycarbonate membrane cell culture inserts with a
533 5 μ m pore (Corning, Sigma-Aldrich) using 1.25x10⁵ hTERT and primary MSCs, and monocyte-like THP-
534 1 and T cell-like HUT-78 (ECACC 88041901) cells in 6 well plates with 1.5 ml of serum-free DMEM.
535 After 24 hours, 600 μ l of supernatant or DMEM was added in duplicate to the wells of the transwell
536 plates. Polycarbonate filters were carefully placed above supernatant and 2.5x10⁵ of the appropriate
537 cells in 100 μ l serum-free RPMI-1640 were applied to the top of the filter and incubated for 5 hours
538 before removing transwells. Migrated cells were assessed by flow cytometry. The percentage cells
539 undergoing migration towards stimuli was calculated. For CCR2 testing, 500 nM CCR2 inhibitor was
540 used (Teijin compound 1) in supernatant. Inhibition of migration was calculated as a percentage of
541 cell total.

542 *Examination of Gene Ontology (GO) terms in disease states for comparison with hTERT MSC lines*

543 A bioinformatics comparison of the hTERT MSC lines gene expression data with publicly available
544 transcriptomic data from a range of autoimmune and related disorders was undertaken to identify
545 disease states that correlated with upregulated GO terms associated with the CD317^{pos} Y102 and
546 Y202 clonal MSC lines⁶⁰. Cross-platform validation was performed using Python and GeneSpring
547 software was used to analyse outcomes. Differentially expressed genes were identified as greater
548 than 2-fold upregulation in disease state compared to healthy controls, and GeneSpring was used to
549 identify significance ($p<0.05$) in GO term occurrence. The 10 most upregulated GO terms were
550 identified and comparisons made between autoimmune disease states and hTERT immortalised MSC
551 lines.

552 *Quantitative polymerase chain reaction (qPCR)*

553 RNA was isolated from cells using TRIzol for cell lysis and Machery-Nagel RNA Nucleospin II kit for
554 RNA isolation, with RNA converted to cDNA for gene expression analyses using Superscript IV
555 reverse transcriptase enzymes (Invitrogen). Specific primers for gene expression analyses were
556 designed and optimised and are described in Table S5. Gene expression analyses were performed as
557 previously described⁶⁰. Gene expression of eight IFN- γ regulated genes, namely *Ly6E*, *HERC5*, *IFI44L*,
558 *ISG15*, *Mx1*, *Mx2*, *EPSTI1* and *RSAD2* were amplified in qPCR and fold changes were calculated
559 relative to the expression of the housekeeping gene RPS27a and relative to the Y201 cell line or
560 CD317^{neg} cells. The $\Delta\Delta CT$ fold changes were log2-transformed and averaged to calculate IFN- γ scores,
561 as previously described^{64,100}.

562 *Enzyme-linked immunosorbent assays*

563 To detect secreted proteins, supernatants from 100,000 cells incubated in 2.5 ml of serum free
564 DMEM for 24 hours was analysed for secreted proteins by enzyme-linked immunosorbent assays
565 (ELISA) using ELISA kits for CXCL10, CXCL11 (BioLegend); CCL2 (eBioscience); and SAA4 (Stratech)
566 following manufacturers instructions.

567 *PCR molecular diagnostics for infectious disease*

568 Samples of hTERT lines Y201 and Y202 were tested externally and independently (Charles River) for
569 viral contaminants using the Human Comprehensive cell line examination and report (CLEAR) Panel
570 to detect RNA transcripts for 26 viral components, including virions commonly linked with
571 autoimmune disorders (HIV, hepatitis, herpes simplex and herpesvirus, Epstein-Barr virus, BK virus,
572 human T-Lymphotropic virus, Lymphocytic choriomeningitis virus and Cytomegalovirus)^{101,102}. A low
573 copy exogenous nucleic acid was added to sample lysis prior to nucleic acid isolation to serve as both
574 a control to monitor for nucleic acid recovery and PCR inhibition. An RNA NRC was used to monitor
575 reverse transcription for RNA virus assays. Nucleic acid recovery and PCR inhibition was monitored
576 by a PCR assay specific for the NRC template.

577 *T cell activation assay to assess MSC immunomodulation for deactivation and suppression of T cell
578 proliferation*

579 Co-culture of primary human tonsil T cells with hTERT MSC lines was used to assess the potential
580 immunomodulatory impact of CD317^{neg} (Y101, Y201) and CD317^{pos} (Y102, Y202) cell lines on T cell
581 proliferation and T helper differentiation. Continual proliferative capacity was used as a measure of
582 T cell deactivation. hTERT MSC lines or CD317-sorted primary MSCs were seeded at a ratio of 1:10
583 with T cells with 1.0x10⁴ MSCs seeded into a 96-well U bottomed plate and cultured for 24 hours at
584 37°C, 5% CO₂. Primary human MSC were sorted for CD317 expression and co-cultured with
585 commercially sourced cryopreserved CD4+ human cord blood T cells (Stem Cell Technologies).

586 For assessment of proliferation, T cells were stained for 15 minutes at 37°C using 1 uM VPD450
587 Violet proliferation dye (eBioscience, Inc.). Unstained cells were used as a control. T cells were
588 activated using anti-CD3ε/CD28 Dynabeads (Thermo Fisher) at a bead-to-cell ratio of 1:1 then
589 seeded onto the MSC at a density of 1.0x10⁵/well (ratio 10:1) in 200 µl RPMI-1640 with 10% FBS,
590 0.05 µg/mL IL-2 (Peprotech, Inc) or seeded alone (no MSCs) as a control. Plates were cultured for 5

591 days at 37°C. T cell proliferation was assessed following removal of Dynabeads with the DynaMag-2
592 as per manufacturer's recommendations. Plates were cultured for 5 days at 37°C. T cell proliferation
593 was assessed with flow cytometry, with reduction in signal intensity visualised for repeated
594 proliferation peaks. Proliferation was assessed through VPD450 dilution (diminished staining
595 intensity) described through a proliferative index (PI) calculated from the fluorescence intensity at
596 each cell division as described previously⁷⁰. Proliferative cycles undertaken were calculated on 50%
597 fluorescence intensity reduction peaks, measuring from fluorescence intensity of the first division
598 and the final division detected.

599 *T cell activation assay to assess MSC immunomodulation to direct effector T cell polarisation*
600 For assessment of T helper differentiation, T cells were activated and cultured with hTERT MSC
601 monolayers, as described above. The following reagents and antibodies for reactivation, transport
602 inhibition and staining were sourced from eBioscience. Following 5 days of culture, T cells were re-
603 stimulated using a combination of phorbol 12-myristate 13-acetate (PMA) (50 ng/ml) (Sigma Aldrich)
604 and Ionomycin (1 µg/ml) (Invitrogen) and intracellular cytokines retained using transport inhibitor
605 cocktail with 10 µg/ml brefeldin A and 2 µM Monensin (Invitrogen). Cells were cultured for 4 hours
606 at 37°C then stained for surface marker CD4. Intracellular staining for helper T cells was undertaken
607 for anti-human IFN-γ (Th1), IL-4 (Th2) or IL17a (Th17) or CD4 and CD25 then
608 fixation/permeabilisation and staining for nuclear protein FOXP3 for regulatory T cells. All cells were
609 measured using the CyAn ADP or Cytoflex LX flow cytometer and analysed with FCS Express 7.
610 Comparisons were drawn for percentage of T helper differentiation within the CD4+ cell population
611 and signal intensity (Median) for each antibody tested.

612 *In vitro human skin explant model to assess cutaneous tissue damage*
613 The human skin explant assay is an *in vitro* model previously used for evaluation of tissue damage
614 induced by T cell or pro-inflammatory cytokine mediated immunopathological responses^{103,104}. We

615 used this assay to investigate the *in situ* activities of CD317^{neg} Y201 and CD317^{pos} Y202 MSCs. Skin
616 samples were obtained with informed consent and approval of the local research ethics committee
617 (REC14/NE/1136, NRES Committee North East, IRAS project ID 129780). Following 48 hours
618 stimulation with IFN- γ or TNF- α (both at 5 ng/ml), Y201 and Y202 MSCs were harvested, washed and
619 plated at a density of 1x10⁵ cells/well in a 96 well round-bottomed plate. The cells were incubated
620 for 3-4 hours to allow for adherence to the plastic. Two punch skin biopsies at 4 mm diameter taken
621 from healthy volunteers were dissected into 10-12 sections of equal size. Each section was co-
622 cultured with stimulated or unstimulated Y201 or Y202 in duplicate in a 200 μ l total volume of
623 DMEM supplemented with 20% heat-inactivated pooled human AB serum at 37°C and 5% CO₂. Skin
624 sections cultured in the culture medium containing 200 ng/ml IFN- γ or culture media alone were
625 used as positive and background controls respectively. After 3-day culture, the skin sections were
626 fixed in 10% formalin, then paraffin embedded and sectioned at 5 μ m onto microscopic slides. The
627 skin sections were stained with haematoxylin and eosin (H&E) following routine protocols. The
628 severity of histopathological tissue damage was evaluated by two independent evaluators according
629 to the Lerner scoring criteria¹⁰⁵ as follows: grade 0, normal skin; grade I, mild vacuolization of
630 epidermal basal cells; grade II, diffuse vacuolization of basal cells with scattered dyskeratotic bodies;
631 grade III, subepidermal cleft formation; grade IV, complete epidermal separation¹⁰⁵. Grade II or
632 above were considered positive while Grade I changes considered as background, which is observed
633 in skin sections cultured in medium alone.

634 *In vivo assessment of immunomodulatory capacity of hTERT MSC lines in a murine peritonitis model*
635 To determine the immunomodulatory properties of hTERT MSC lines, an *in vivo* zymosan-induced
636 peritonitis model was used in C57BL/6J mice aged 8-10 weeks as described previously^{106,107}. These
637 experiments were carried out in accordance with the Animals and Scientific Procedures Act 1986,
638 under UK Home Office Licence (project licence number PPL PFB579996 approved by the University
639 of York Animal Welfare and Ethics Review Board). At day 0, mice were administered with an
640 intraperitoneal infusion of 1 mg of zymosan A (Merck) in 100 μ l of PBS. Immediately following the

641 administration of zymosan, test condition mice were administered an intraperitoneal infusion of
642 2.0x10⁶ cells of either Y201 (CD317^{neg}) or Y202 (CD317^{pos}) in 100 µl of PBS; negative control mice
643 were given PBS vehicle only.

644 After 24 hours, mice were euthanised using CO₂ overdose and cervical dislocation. Intraperitoneal
645 injection of 4 ml of ice cold RPMI-1640 was administered as peritoneal lavage. The process was
646 repeated with a second 4 ml RPMI-1640 wash and wash solutions pooled to form the peritoneal
647 exudate cells (PEC).

648 For each animal tested, red blood cells were lysed using Red Cell Lysis buffer (Merck) and a cell
649 count performed. Spleens were retrieved from the mice and cell counts were recorded and a
650 measure of spleen cellularity calculated. PEC samples were initially stained for Ly6C (APC), Ly6G
651 (FITC), F4/80 (PE-Cy7) CD45 (PerCP-Cy5.5) (BioLegend) and Ly6G (FITC), CD11b (BUV395) and SiglecF
652 (BV421) (BD). Both PEC and spleen samples were then stained for TCRb (AF488), CD3 (APC-Cy7), CD4
653 (PerCP-Cy5.5), CD62L (APC) and CD44 (PE) (BioLegend). Although at an early timepoint, spleen
654 samples were additionally examined for T cell polarisation looking at T effector cells CD8 (PerCP-
655 Cy5.5), CD4 (APC), IL4 (AF488), IFN-γ (PE) and IL17a (BV421) (BioLegend) and T reg cells using CD8
656 (PerCP-Cy5.5), CD4 (APC), CD25 (PE) and FOXP3 (AF488) (BioLegend). For all tests, Zombie Aqua
657 (BioLegend) was used to exclude dead cells.

658 *In vivo assay to assess tissue forming capacity of hTERT MSC lines*

659 All procedures used were approved by the University of Leeds Ethics Committee and under the UK
660 Home Office Project License (PPL:70/8549). The tissue-forming capacity of CD317^{neg} and CD317^{pos}
661 hTERT cell lines CD317^{neg} Y201 and CD317^{pos} Y202 was assessed in CD1 nude mice (Charles River)
662 aged 8-10 weeks in an *in vivo* transplantation assay¹⁰⁸. 2.0 x 10⁶ MSC cell suspension in 1 ml medium
663 was added to 40 mg hydroxyapatite (HA) synthetic bone particles (Zimmer Biomet) of 250-1000 µm
664 size and rotated at approximately 25 rpm at 37°C for 100 minutes to allow cells to attach. HA

665 particles were bound using fibrin glue comprising 30 μ l thrombin (400 I.U./ml in DMEM medium)
666 mixed 1:1 with fibrinogen (115 mg/ml in 0.85% saline solution). Implants were delivered
667 subcutaneously into immunocompromised nude mice with two constructs placed into each mouse.
668 Transplants were harvested at 3 and 8 weeks, fixed in 4% PFA, decalcified for 7 days in 10% EDTA then
669 stored overnight in 70% ethanol prior to paraffin embedding, sectioning and staining with H&E, Alcian
670 Blue and Syrius Red (Thermo Fisher).

671 *Statistical analysis*

672 Data were tested for equal variance and normality using D'Agostino & Pearson omnibus normality
673 test. Differences between groups were compared using two-tailed 1-way ANOVA for parametric data
674 or Kruskall-Wallis for non-parametric testing. For two factor analysis, data was analysed with a two-
675 tailed 2-way ANOVA. Bonferroni post-hoc testing was conducted to compare between groups. All
676 statistical analysis was carried out using IBM SPSS Statistics 24.0, or GraphPad Prism version 5.0-9.0
677 with $P<0.05$ deemed statistically significant. Results are annotated as * $p<0.05$, ** $p<0.01$,
678 *** $p<0.001$ and all averaged values are expressed as mean \pm standard error of the mean (SEM).

679

680 **Data Availability**

681 Data will be made available in a publically accessible repository prior to publication.

682

683 **Author contributions**

684 AGK designed, performed and analysed T cell experiments. AGK and JPH designed, performed and
685 analysed peritonitis experiments. AS designed, performed and analysed MSC localisation
686 experiments. JMF, SR and SJ designed, performed and analysed ELISA, Interferon signature, Rohart
687 testing, cell migration experiments and bioinformatics. XY and EK performed subcutaneous HA

688 scaffold implantation *in vivo* whilst AGK performed the associated cell culture and analysis of
689 explants. PG designed experiments and was responsible for conceptualisation, funding acquisition,
690 supervision and writing (review and editing). XW designed, performed and analysed the *in vitro* skin
691 explant model. AK, JMF and PG wrote the paper.

692 **Acknowledgments**

693 The authors thank the staff and patients of Clifton Park Hospital for samples. We are grateful to the
694 University of York Technology Facility for support with flow cytometry, cell sorting, confocal
695 microscopy bioinformatics and proteomic analysis. We thank Emily Taylor for assistance in isolating
696 primary T cells. This work was funded by the Biotechnology and Biological Sciences Research Council
697 (BBSRC) United Kingdom, Doctoral Training Partnership grant (BB/M011151/1) and the Tissue
698 Engineering and Regenerative Therapies Centre Versus Arthritis (21156). LK and XY are partially
699 funded by funding by the 'EPSRC CDT in Tissue Engineering and Regenerative Medicine' at the
700 University of Leeds (Grant number EP/L014823/1). The York Centre of Excellence in Mass
701 Spectrometry was created thanks to a major capital investment through Science City York,
702 supported by Yorkshire Forward with funds from the Northern Way Initiative, and subsequent
703 support from EPSRC (EP/K039660/1; EP/M028127/1).

704

705 **Competing interests**

706 There are no competing interests with respect to this work.

707

708 **Materials & Correspondence**

709 Requests and correspondence should be addressed to Professor Paul Genever.

710

711 **References**

- 712 1 Pittenger, M. F. *et al.* Multilineage potential of adult human mesenchymal stem cells.
713 *Science* **284**, 143-147 (1999).
- 714 2 Colter, D. C., Class, R., DiGirolamo, C. M. & Prockop, D. J. Rapid expansion of recycling stem
715 cells in cultures of plastic-adherent cells from human bone marrow. *Proc Natl Acad Sci U S A*
716 **97**, 3213-3218, doi:10.1073/pnas.070034097 (2000).
- 717 3 Bonab, M. M. *et al.* Aging of mesenchymal stem cell in vitro. *BMC Cell Biol* **7**, 14,
718 doi:10.1186/1471-2121-7-14 (2006).
- 719 4 Wilson, A., Hodgson-Garms, M., Frith, J. E. & Genever, P. Multiplicity of Mesenchymal
720 Stromal Cells: Finding the Right Route to Therapy. *Front Immunol* **10**, 1112,
721 doi:10.3389/fimmu.2019.01112 (2019).
- 722 5 Najar, M. *et al.* Mesenchymal stromal cells and immunomodulation: A gathering of
723 regulatory immune cells. *Cytotherapy* **18**, 160-171, doi:10.1016/j.jcyt.2015.10.011 (2016).
- 724 6 Dominici, M. *et al.* Minimal criteria for defining multipotent mesenchymal stromal cells. The
725 International Society for Cellular Therapy position statement. *Cytotherapy* **8**, 315-317,
726 doi:10.1080/14653240600855905 (2006).
- 727 7 Kuntin, D. & Genever, P. Mesenchymal stem cells from biology to therapy. *Emerg Top Life
728 Sci*, doi:10.1042/ETLS20200303 (2021).
- 729 8 Wilson, A. J., Rand, E., Webster, A. J. & Genever, P. G. Characterisation of mesenchymal
730 stromal cells in clinical trial reports: analysis of published descriptors. *Stem Cell Research &
731 Therapy* **12**, doi:10.1186/s13287-021-02435-1 (2021).
- 732 9 Prockop, D. J., Prockop, S. E. & Bertoncello, I. Are clinical trials with mesenchymal
733 stem/progenitor cells too far ahead of the science? Lessons from experimental hematology.
734 *Stem cells* **32**, 3055-3061, doi:10.1002/stem.1806 (2014).
- 735 10 Wilson, A., Webster, A. & Genever, P. Nomenclature and heterogeneity: consequences for
736 the use of mesenchymal stem cells in regenerative medicine. *Regen Med* **14**, 595-611 (2019).
- 737 11 Plant, A. L. & Parker, G. C. Translating stem cell research from the bench to the clinic: a need
738 for better quality data. *Stem Cells Dev* **22**, 2457-2458, doi:10.1089/scd.2013.0188 (2013).
- 739 12 Jo, C. H. *et al.* Intra-articular injection of mesenchymal stem cells for the treatment of
740 osteoarthritis of the knee: a proof-of-concept clinical trial. *Stem Cells* **32**, 1254-1266,
741 doi:10.1002/stem.1634 (2014).
- 742 13 Migliorini, F. *et al.* Improved outcomes after mesenchymal stem cells injections for knee
743 osteoarthritis: results at 12-months follow-up: a systematic review of the literature. *Arch
744 Orthop Trauma Surg* **140**, 853-868, doi:10.1007/s00402-019-03267-8 (2020).
- 745 14 Ma, W. *et al.* Efficacy and safety of intra-articular injection of mesenchymal stem cells in the
746 treatment of knee osteoarthritis: A systematic review and meta-analysis. *Medicine
(Baltimore)* **99**, e23343, doi:10.1097/MD.0000000000023343 (2020).
- 748 15 Gupta, P. K. *et al.* Efficacy and safety of adult human bone marrow-derived, cultured,
749 pooled, allogeneic mesenchymal stromal cells (Stempeucel(R)): preclinical and clinical trial in
750 osteoarthritis of the knee joint. *Arthritis Res Ther* **18**, 301, doi:10.1186/s13075-016-1195-7
751 (2016).
- 752 16 Shim, J. *et al.* Safety and efficacy of Wharton's jelly-derived mesenchymal stem cells with
753 teriparatide for osteoporotic vertebral fractures: A phase I/IIa study. *Stem Cells Transl Med*
754 **10**, 554-567, doi:10.1002/sctm.20-0308 (2021).
- 755 17 Wang, L. *et al.* Efficacy and Safety of Umbilical Cord Mesenchymal Stem Cell Therapy for
756 Rheumatoid Arthritis Patients: A Prospective Phase I/II Study. *Drug Des Devel Ther* **13**, 4331-
757 4340, doi:10.2147/DDDT.S225613 (2019).
- 758 18 El-Jawhari, J. J., El-Sherbiny, Y., McGonagle, D. & Jones, E. Multipotent Mesenchymal
759 Stromal Cells in Rheumatoid Arthritis and Systemic Lupus Erythematosus; From a Leading

- 811 36 Gullo, F. & De Bari, C. Prospective purification of a subpopulation of human synovial
812 mesenchymal stem cells with enhanced chondro-osteogenic potency. *Rheumatology*
813 (*Oxford*) **52**, 1758-1768, doi:10.1093/rheumatology/ket205 (2013).
- 814 37 Yang, Z. X. *et al.* CD106 identifies a subpopulation of mesenchymal stem cells with unique
815 immunomodulatory properties. *PLoS One* **8**, e59354, doi:10.1371/journal.pone.0059354
816 (2013).
- 817 38 Blazquez-Martinez, A. *et al.* c-Kit identifies a subpopulation of mesenchymal stem cells in
818 adipose tissue with higher telomerase expression and differentiation potential.
819 *Differentiation* **87**, 147-160, doi:10.1016/j.diff.2014.02.007 (2014).
- 820 39 Mo, M., Wang, S., Zhou, Y., Li, H. & Wu, Y. Mesenchymal stem cell subpopulations:
821 phenotype, property and therapeutic potential. *Cell Mol Life Sci* **73**, 3311-3321,
822 doi:10.1007/s00018-016-2229-7 (2016).
- 823 40 Li, N. *et al.* The Sca1+ mesenchymal stromal subpopulation promotes dendritic cell
824 commitment in the niche. *Turkish Journal of Biology* **41**, 58-65, doi:10.3906/biy-1510-81
825 (2017).
- 826 41 Friedenstein, A. J. *et al.* Precursors for fibroblasts in different populations of hematopoietic
827 cells as detected by the in vitro colony assay method. *Exp Hematol* **2**, 83-92 (1974).
- 828 42 Friedenstein, A. J., Gorskaja, J. F. & Kulagina, N. N. Fibroblast precursors in normal and
829 irradiated mouse hematopoietic organs. *Exp Hematol* **4**, 267-274 (1976).
- 830 43 Tondreau, T. *et al.* Mesenchymal stem cells derived from CD133-positive cells in mobilized
831 peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. *Stem Cells* **23**,
832 1105-1112, doi:10.1634/stemcells.2004-0330 (2005).
- 833 44 Eirin, A. *et al.* Adipose tissue-derived mesenchymal stem cells improve revascularization
834 outcomes to restore renal function in swine atherosclerotic renal artery stenosis. *Stem Cells*
835 **30**, 1030-1041, doi:10.1002/stem.1047 (2012).
- 836 45 Zuk, P. A. *et al.* Human adipose tissue is a source of multipotent stem cells. *Mol Biol Cell* **13**,
837 4279-4295, doi:10.1091/mbc.e02-02-0105 (2002).
- 838 46 De Bari, C., Dell'Accio, F., Tylzanowski, P. & Luyten, F. P. Multipotent mesenchymal stem cells
839 from adult human synovial membrane. *Arthritis Rheum* **44**, 1928-1942, doi:10.1002/1529-
840 0131(200108)44:8<1928::AID-ART331>3.0.CO;2-P (2001).
- 841 47 Hermida-Gomez, T. *et al.* Quantification of cells expressing mesenchymal stem cell markers
842 in healthy and osteoarthritic synovial membranes. *J Rheumatol* **38**, 339-349,
843 doi:10.3899/jrheum.100614 (2011).
- 844 48 Gronthos, S., Mankani, M., Brahim, J., Robey, P. G. & Shi, S. Postnatal human dental pulp
845 stem cells (DPSCs) in vitro and in vivo. *Proc Natl Acad Sci U S A* **97**, 13625-13630,
846 doi:10.1073/pnas.240309797 (2000).
- 847 49 Schwab, K. E., Hutchinson, P. & Gargett, C. E. Identification of surface markers for
848 prospective isolation of human endometrial stromal colony-forming cells. *Hum Reprod* **23**,
849 934-943, doi:10.1093/humrep/den051 (2008).
- 850 50 Park, J. C. *et al.* Isolation and characterization of human periodontal ligament (PDL) stem
851 cells (PDLSCs) from the inflamed PDL tissue: in vitro and in vivo evaluations. *J Clin*
852 *Periodontol* **38**, 721-731, doi:10.1111/j.1600-051X.2011.01716.x (2011).
- 853 51 Bi, Y. *et al.* Identification of tendon stem/progenitor cells and the role of the extracellular
854 matrix in their niche. *Nat Med* **13**, 1219-1227, doi:10.1038/nm1630 (2007).
- 855 52 Noth, U. *et al.* Multilineage mesenchymal differentiation potential of human trabecular
856 bone-derived cells. *J Orthop Res* **20**, 1060-1069, doi:10.1016/S0736-0266(02)00018-9 (2002).
- 857 53 Romanov, Y. A., Svintsitskaya, V. A. & Smirnov, V. N. Searching for alternative sources of
858 postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord.
859 *Stem Cells* **21**, 105-110, doi:10.1634/stemcells.21-1-105 (2003).

- 860 54 Baksh, D., Yao, R. & Tuan, R. S. Comparison of proliferative and multilineage differentiation
861 potential of human mesenchymal stem cells derived from umbilical cord and bone marrow.
862 *Stem Cells* **25**, 1384-1392, doi:10.1634/stemcells.2006-0709 (2007).
- 863 55 Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M. & Davies, J. E. Human umbilical cord
864 perivascular (HUCPV) cells: a source of mesenchymal progenitors. *Stem Cells* **23**, 220-229,
865 doi:10.1634/stemcells.2004-0166 (2005).
- 866 56 Martin-Rendon, E. *et al.* 5-Azacytidine-treated human mesenchymal stem/progenitor cells
867 derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes
868 in vitro at high frequencies. *Vox Sang* **95**, 137-148, doi:10.1111/j.1423-0410.2008.01076.x
869 (2008).
- 870 57 Fukuchi, Y. *et al.* Human placenta-derived cells have mesenchymal stem/progenitor cell
871 potential. *Stem Cells* **22**, 649-658, doi:10.1634/stemcells.22-5-649 (2004).
- 872 58 Meirelles, L. D. S., Chagastelles, P. C. & Nardi, N. B. Mesenchymal stem cells reside in
873 virtually all post-natal organs and tissues. *Journal of Cell Science* **119**, 2204-2213,
874 doi:10.1242/jcs.02932 (2006).
- 875 59 Crisan, M. *et al.* A perivascular origin for mesenchymal stem cells in multiple human organs.
876 *Cell Stem Cell* **3**, 301-313, doi:10.1016/j.stem.2008.07.003 (2008).
- 877 60 James, S. *et al.* Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies
878 Distinct Immunomodulatory and Differentiation-Competent Subtypes. *Stem Cell Reports* **4**,
879 1004-1015, doi:10.1016/j.stemcr.2015.05.005 (2015).
- 880 61 Rohart, F. *et al.* A molecular classification of human mesenchymal stromal cells. *PeerJ* **4**,
881 e1845, doi:10.7717/peerj.1845 (2016).
- 882 62 Balzano, M. *et al.* Nidogen-1 Contributes to the Interaction Network Involved in Pro-B Cell
883 Retention in the Peri-sinusoidal Hematopoietic Stem Cell Niche. *Cell Rep* **26**, 3257-3271
884 e3258, doi:10.1016/j.celrep.2019.02.065 (2019).
- 885 63 Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing
886 mesenchymal stromal cells represent the main source of bone formed by adult bone
887 marrow. *Cell Stem Cell* **15**, 154-168, doi:10.1016/j.stem.2014.06.008 (2014).
- 888 64 Raterman, H. G. *et al.* The interferon type I signature towards prediction of non-response to
889 rituximab in rheumatoid arthritis patients. *Arthritis research & therapy* **14**, R95,
890 doi:10.1186/ar3819 (2012).
- 891 65 Mostafavi, S. *et al.* Parsing the Interferon Transcriptional Network and Its Disease
892 Associations. *Cell* **164**, 564-578, doi:10.1016/j.cell.2015.12.032 (2016).
- 893 66 Kay, A. G. *et al.* Mesenchymal Stem Cell-Conditioned Medium Reduces Disease Severity and
894 Immune Responses in Inflammatory Arthritis. *Sci Rep* **7**, 18019, doi:10.1038/s41598-017-
895 18144-w (2017).
- 896 67 Ren, G. *et al.* Mesenchymal stem cell-mediated immunosuppression occurs via concerted
897 action of chemokines and nitric oxide. *Cell Stem Cell* **2**, 141-150,
898 doi:10.1016/j.stem.2007.11.014 (2008).
- 899 68 Keating, A. Mesenchymal stromal cells. *Current Opinion in Hematology* **13**, 419-425,
900 doi:10.1097/01.moh.0000245697.54887.6f (2006).
- 901 69 Nauta, A. J. & Fibbe, W. E. Immunomodulatory properties of mesenchymal stromal cells.
902 *Blood* **110**, 3499-3506, doi:10.1182/blood-2007-02-069716 (2007).
- 903 70 Angulo, R. & Fulcher, D. A. Measurement of Candida-specific blastogenesis: comparison of
904 carboxyfluorescein succinimidyl ester labelling of T cells, thymidine incorporation, and CD69
905 expression. *Cytometry* **34**, 143-151 (1998).
- 906 71 Que, J., Lian, Q., El Oakley, R. M., Lim, B. & Lim, S. K. PI3 K/Akt/mTOR-mediated translational
907 control regulates proliferation and differentiation of lineage-restricted RoSH stem cell lines. *J
908 Mol Signal* **2**, 9, doi:10.1186/1750-2187-2-9 (2007).

- 909 72 Sivanathan, K. N. *et al.* Interleukin-17A-Induced Human Mesenchymal Stem Cells Are
910 Superior Modulators of Immunological Function. *Stem Cells* **33**, 2850-2863,
911 doi:10.1002/stem.2075 (2015).
- 912 73 Bibby, L., Ribeiro, A., Ahmad, S. F. & Dickinson, A. M. A novel in-vitro human skin explant test
913 to predict adverse immune reactions to biologics and aggregated monoclonal antibodies.
914 *Toxicology Letters* **295**, S66-S67, doi:10.1016/j.toxlet.2018.06.072 (2018).
- 915 74 Dickinson, A., Wang, X. N. & Ahmed, S. in *Alternatives for Dermal Toxicity Testing* (eds
916 Chantra Eskes, Erwin van Vliet, & Howard I. Maibach) 437-448 (Springer International
917 Publishing, 2017).
- 918 75 Wynn, T. A. & Vannella, K. M. Macrophages in Tissue Repair, Regeneration, and Fibrosis.
919 *Immunity* **44**, 450-462, doi:10.1016/j.immuni.2016.02.015 (2016).
- 920 76 Shechter, R. *et al.* Recruitment of beneficial M2 macrophages to injured spinal cord is
921 orchestrated by remote brain choroid plexus. *Immunity* **38**, 555-569,
922 doi:10.1016/j.immuni.2013.02.012 (2013).
- 923 77 Butterfield, T. A., Best, T. M. & Merrick, M. A. The Dual Roles of Neutrophils and
924 Macrophages in Inflammation: A Critical Balance Between Tissue Damage and Repair.
925 *Journal of Athletic Training* **41**, 457-465 (2006).
- 926 78 Augello, A. *et al.* Bone marrow mesenchymal progenitor cells inhibit lymphocyte
927 proliferation by activation of the programmed death 1 pathway. *Eur J Immunol* **35**, 1482-
928 1490, doi:10.1002/eji.200425405 (2005).
- 929 79 Bloom, D. D. *et al.* A reproducible immunopotency assay to measure mesenchymal stromal
930 cell-mediated T-cell suppression. *Cytotherapy* **17**, 140-151, doi:10.1016/j.jcyt.2014.10.002
931 (2015).
- 932 80 Chinnadurai, R., Copland, I. B., Patel, S. R. & Galipeau, J. IDO-independent suppression of T
933 cell effector function by IFN-gamma-licensed human mesenchymal stromal cells. *J Immunol*
934 **192**, 1491-1501, doi:10.4049/jimmunol.1301828 (2014).
- 935 81 Cuerquis, J. *et al.* Human mesenchymal stromal cells transiently increase cytokine
936 production by activated T cells before suppressing T-cell proliferation: effect of interferon-
937 gamma and tumor necrosis factor-alpha stimulation. *Cytotherapy* **16**, 191-202,
938 doi:10.1016/j.jcyt.2013.11.008 (2014).
- 939 82 Di Nicola, M. *et al.* Human bone marrow stromal cells suppress T-lymphocyte proliferation
940 induced by cellular or nonspecific mitogenic stimuli. *Blood* **99**, 3838-3843,
941 doi:10.1182/blood.v99.10.3838 (2002).
- 942 83 Saldanha-Araujo, F. *et al.* Mesenchymal stromal cells up-regulate CD39 and increase
943 adenosine production to suppress activated T-lymphocytes. *Stem Cell Res* **7**, 66-74,
944 doi:10.1016/j.scr.2011.04.001 (2011).
- 945 84 Sattler, C. *et al.* Inhibition of T-cell proliferation by murine multipotent mesenchymal stromal
946 cells is mediated by CD39 expression and adenosine generation. *Cell Transplant* **20**, 1221-
947 1230, doi:10.3727/096368910X546553 (2011).
- 948 85 Tobin, L. M., Healy, M. E., English, K. & Mahon, B. P. Human mesenchymal stem cells
949 suppress donor CD4(+) T cell proliferation and reduce pathology in a humanized mouse
950 model of acute graft-versus-host disease. *Clin Exp Immunol* **172**, 333-348,
951 doi:10.1111/cei.12056 (2013).
- 952 86 van Megen, K. M. *et al.* Activated Mesenchymal Stromal Cells Process and Present Antigens
953 Regulating Adaptive Immunity. *Front Immunol* **10**, 694, doi:10.3389/fimmu.2019.00694
954 (2019).
- 955 87 Hotter, D., Sauter, D. & Kirchhoff, F. Emerging role of the host restriction factor tetherin in
956 viral immune sensing. *J Mol Biol* **425**, 4956-4964, doi:10.1016/j.jmb.2013.09.029 (2013).
- 957 88 ISHIKAWA, J. *et al.* Molecular Cloning and Chromosomal Mapping of a Bone Marrow Stromal
958 Cell Surface Gene, BSTZ, That May Be Involved in Pre-B-Cell Growth. *Genomics* **26**, 527-534
959 (1995).

- 960 89 Chiesa, S. *et al.* Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. *Proc Natl Acad Sci U S A* **108**, 17384-17389, doi:10.1073/pnas.1103650108 (2011).
- 961 90 Ramasamy, R. *et al.* Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. *Transplantation* **83**, 71-76, doi:10.1097/01.tp.0000244572.24780.54 (2007).
- 962 91 Choi, Y. S., Jeong, J. A. & Lim, D. S. Mesenchymal stem cell-mediated immature dendritic cells induce regulatory T cell-based immunosuppressive effect. *Immunol Invest* **41**, 214-229, doi:10.3109/08820139.2011.619022 (2012).
- 963 92 Zhao, Z. G. *et al.* Immunomodulatory function of regulatory dendritic cells induced by mesenchymal stem cells. *Immunol Invest* **41**, 183-198, doi:10.3109/08820139.2011.607877 (2012).
- 964 93 Sarhan, J. *et al.* Constitutive interferon signaling maintains critical threshold of MLKL expression to license necroptosis. *Cell Death Differ* **26**, 332-347, doi:10.1038/s41418-018-0122-7 (2019).
- 965 94 Wang, S. M., Huang, K. J. & Wang, C. T. BST2/CD317 counteracts human coronavirus 229E productive infection by tethering virions at the cell surface. *Virology* **449**, 287-296, doi:10.1016/j.virol.2013.11.030 (2014).
- 966 95 Friedenstein, A. J., Piatetzky-Shapiro, I. & Petrakova, K. V. Osteogenesis in transplants of bone marrow. *Journal of Embryology and Experimental Morphology* **16**, 581-590 (1966).
- 967 96 Trizio, D. & Cudkowicz, G. Separation of T and B Lymphocytes by Nylon Wool Columns: Evaluation of Efficacy by Functional Assays in Vivo. *The Journal of Immunology* **113**, 1093-1097 (1974).
- 968 97 Holley, R. J. *et al.* Comparative quantification of the surfaceome of human multipotent mesenchymal progenitor cells. *Stem cell reports* **4**, 473-488, doi:10.1016/j.stemcr.2015.01.007 (2015).
- 969 98 Dowle, A. A., Wilson, J. & Thomas, J. R. Comparing the Diagnostic Classification Accuracy of iTRAQ, Peak-Area, Spectral-Counting, and emPAI Methods for Relative Quantification in Expression Proteomics. *J Proteome Res* **15**, 3550-3562, doi:10.1021/acs.jproteome.6b00308 (2016).
- 970 99 Berthold, M. R. *et al.* *Knime: The Konstanz Information Miner*. (Springer, 2007).
- 971 100 de Jong, T. D. *et al.* Effect of prednisone on type I interferon signature in rheumatoid arthritis: consequences for response prediction to rituximab. *Arthritis research & therapy* **17**, 78, doi:10.1186/s13075-015-0564-y (2015).
- 972 101 Smatti, M. K. *et al.* Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. *Viruses* **11**, doi:10.3390/v11080762 (2019).
- 973 102 Sundsfjord, A. *et al.* BK and JC viruses in patients with systemic lupus erythematosus: prevalent and persistent BK viruria, sequence stability of the viral regulatory regions, and nondetectable viremia. *J Infect Dis* **180**, 1-9, doi:10.1086/314830 (1999).
- 974 103 Dickinson, A. M., Sviland, L., Dunn, J., Carey, P. & Proctor, S. J. Demonstration of direct involvement of cytokines in graft-versus-host reactions using an in vitro human skin explant model. *Bone Marrow Transplant* **7**, 209-216 (1991).
- 975 104 Dickinson, A. M. *et al.* In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens. *Nat Med* **8**, 410-414, doi:10.1038/nm0402-410 (2002).
- 976 105 Lerner, K. G. *et al.* Histopathology of graft-vs.-host reaction (GvHR) in human recipients of marrow from HL-A-matched sibling donors. *Transplant Proc* **6**, 367-371 (1974).
- 977 106 Choi, H., Lee, R. H., Bazhanov, N., Oh, J. Y. & Prockop, D. J. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. *Blood* **118**, 330-338, doi:10.1182/blood-2010-12-327353 (2011).

- 1010 107 Bianco, P., Kuznetsov, S. A., Riminucci, M. & Gehron Robey, P. in *Adult Stem Cells Methods*
1011 *in Enzymology* 117-148 (2006).
- 1012 108 Kuznetsov, S. A. *et al.* The interplay of osteogenesis and hematopoiesis: expression of a
1013 constitutively active PTH/PTHrP receptor in osteogenic cells perturbs the establishment of
1014 hematopoiesis in bone and of skeletal stem cells in the bone marrow. *J Cell Biol* **167**, 1113-
1015 1122, doi:10.1083/jcb.200408079 (2004).

1016