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ABSTRACT

Autoimmune inflammation is characterized by tissue infiltration and expansion of
antigen-specific T cells. Although this inflammation is often limited to specific target
tissues, it remains yet to be explored whether distinct affected sites are infiltrated with
the same, persistent T cell clones. Here we performed CyTOF analysis and T cell
receptor (TCR) sequencing to study immune cell composition and (hyper-)expansion
of circulating and joint-derived Tregs and non-Tregs in Juvenile Idiopathic Arthritis
(JIA). We studied different joints affected at the same time, as well as over the course
of relapsing-remitting disease. We found that the composition and functional
characteristics of immune infiltrates are strikingly similar between joints within one
patient, and observed a strong overlap between dominant T cell clones, especially
Treg, of which some could also be detected in circulation and persisted over the course
of relapsing remitting disease. Moreover, these T cell clones were characterized by a
high degree of sequence similarity, indicating the presence of TCR clusters responding
to the same antigens. These data suggest that in localized autoimmune disease there
is auto-antigen driven expansion of both Teffector and Treg clones, that are highly
persistent and are (re)circulating. These dominant clones might represent interesting

therapeutic targets.
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INTRODUCTION

Inflammation, often localized to specific target tissues, is a hallmark of
autoimmune diseases. In these diseases, multiple sites within specific tissues can be
inflamed in tandem. An example of this phenomenon includes the inflammation of
multiple joints in Juvenile Idiopathic Arthritis (JIA). Multiple lines of evidence implicate
T cells as key players of this tissue specific autoimmune inflammation. Firstly, many
autoimmune diseases are associated with the expression of specific MHC (HLA) class
Il alleles, which is hypothesized to lead to altered antigen presentation and enhanced
CD4+ T cell activation(1). Secondly, activated CD4+ T cells often accumulate in
affected tissue(2). Lastly, CD4*CD25*CD127'°“FOXP3* regulatory T cells (Tregs),
capable of suppressing immune responses and fundamental to immune homeostasis,
also accumulate in the affected tissue(3,4).

Tissue resident T cells display an array of distinct trafficking and functional
markers compared to circulating T cells(5-10). Novel technologies such as mass
cytometry (CyTOF) allow for high resolution analysis of the cellular heterogeneity
within inflamed tissues to reveal potential pathogenic T cell populations. Moreover,
studies assessing the T cell receptor (TCR) repertoire have generated evidence for the
presence of clonally expanded T cells in specific tissues in autoimmune diseases(11—
15). These findings suggest that tissue-specific T cell responses are mounted by
specific local antigens that selectively induce activation, expansion and/or migration of
antigen-specific T cell clones.

Similar to conventional T cells, Tregs that leave the thymus typically express a
unique TCRs. While Tregs only represent a small fraction of the total CD4+ T cell pool,
the TCR repertoire of peripheral Tregs is as diverse as that of conventional CD4+ T

cells(16—18). Several studies previously showed that a restricted TCR repertoire of the
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Treg compartment can lead to the development of autoimmune disease(19-22).
However, Tregs with a single TCR specificity can also inhibit autoimmune responses,
thereby also providing some degree of protection against autoimmunity(23). In JIA,
hyper-expanded Treg TCRp clones can be found at the site of inflammation(24-26),
and in refractory JIA patients hyper-expanded Tregs can even be found in
circulation(27). This expansion is likely caused by a dominance of specific
(auto)antigens present at target tissues. However, the exact antigen specificity and
temporal and spatial dynamics of hyper-expanded effector T cells and Tregs in chronic
inflammation and their relation to disease relapses remains to be established. Defining
the specific CD4+ T cell subsets that are expanding in JIA patients is critical to decipher
disease pathogenesis, and hyper-expanded T cells may represent novel therapeutic
targets. Moreover, insight into the antigen specificity of local T cells may aid the
discovery of disease-associated autoantigens.

Here, we had the unique opportunity to study autoimmune inflammation: 1)
within different affected sites at one single time point (spatial dynamics), and 2) over
time (temporal dynamics), to get a detailed understanding of T cell dynamics during
human autoimmune inflammation. We profiled the T cell composition of inflammatory
exudate as well as peripheral blood obtained from JIA patients using CyTOF. In
addition, we performed TCRp repertoire sequencing of Tregs and conventional CD4+

T cells (non-Tregs) derived from inflamed sites of JIA patients over time and space.

RESULTS
Immune architecture of cellular infiltrates is similar between anatomically

distinct inflamed sites
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To study the peripheral and tissue specific immune cell composition in
autoimmune disease, we profiled peripheral blood mononuclear cells (PBMCs) and
synovial fluid mononuclear cells (SFMCs) from JIA patients with both knees affected
at the time of sampling using CyTOF (Supplementary Table 1). T-distributed stochastic
neighbor embedding (-SNE) and k-means clustering identified 22 immune cell
populations in the SF/PB compartments (Figure 1A, P<1e-21, Supplemental Figure
1A/B). These populations could be broadly segregated into Treg (CD25*/FoxP3*),
naive (CD45RA"), effector/memory (CD45RA"), and non-T cell populations (CD3/CD4"
/CD8"). Preliminary clustering of the median marker expression on T cells revealed a
clear demarcation of SFMCs and PBMCs (Figure 1B), and a strong association of
immune phenotypes between intra-individual paired knee SFMCs. Furthermore,
density maps of immune cell populations within the t-SNE indicate strong dichotomy in
the locations of SFMC and PBMC subsets (Figure 1C). Comparison of the node
fingerprints between SFMC and PBMC samples (Figure 1D) revealed that SMFCs
were enriched in CD4*CD25*FoxP3" Tregs (node 2), and CD4*CD45RA" memory T
cells (nodes 5, 9, 10), while PBMCs were enriched in CD45RA™ naive T cells (nodes
3,6,7,13, 15). Next to this, a strikingly similar cellular distribution profile was observed
in the left and right knee joints of each JIA individual (Figure 1C/D). The correlation
matrix of the entire spectrum of node frequencies demonstrated a strong positive
correlation between the SFMCs and their left and right joints, and a strong negative
correlation compared with the PBMC populations (Supplemental Figure 1C). These
results demonstrate that, while distinct differences in T cell signatures can be identified
between peripheral blood (PB) and synovial fluid (SF) compartments, the phenotypic
T cell architecture of distinct inflamed sites (left and right knees) are remarkably similar,

indicating commonality in underlying disease etiology.
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126  Figure 1. Overall immune architecture in left and right affected joint is very
127  similar but distinct from peripheral blood. A. Density maps based on T-SNE

128  dimensional reduction and k-means clustering analysis on SFMC and PBMC samples,
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resulting in 22 cellular nodes. B. Preliminary hierarchal clustering on the median
expression of all markers, excluding lineage markers. C. Density maps of immune
cellular populations within the T-SNE maps. D. Node frequency fingerprints showing

the distribution across the nodes of SFMCs an PBMCs.

Effector T cells and Tregs are phenotypically similar across distinct inflamed
sites

Next, we functionally characterized SF specific T cells, and found that CD4* and
CD8* T cell subsets displayed an increased expression of pro-inflammatory cytokines
(TNFa, IFNy and IL-6), indications of chronic TCR activation (PD1 and LAG3)(28) and
a memory phenotype (CD45RA"), compared to their PBMC counterparts
(Supplemental Figure 2A and 2B, P<0.05). Remarkably, the cytokine diversity of CD4*
memory T cells revealed nearly identical profiles for the left and right knee joints for
each individual (Figure 2A), with minor inter-individual differences. This trend in
cytokine profile was also reflected in the CD8+CD45RA- compartment (data not
shown). The Treg (CD25*FOXP3*) population was significantly enriched in SF (Figure
2B, P<0.05, Supplemental Figure 2C/D) with enhanced expression of memory
(CD45RA") and activation markers (HLA-DR/ICOS). Additionally, SF memory Tregs
displayed a significantly higher proliferation (Ki67) as compared to SF effector memory
T cells (Figure 2B, P<0.05), which was further confirmed by flow cytometry
(Supplemental Figure 2E). This indicates that Tregs belong to the most proliferative T
cell subset in the inflamed environment. Moreover, memory Tregs showed very similar
CTLA4/HLA-DR/ICOS/PD1 expression profiles in the left and right knee joints for each
individual (Figure 2C). Altogether, these data demonstrate that within JIA patients,

there is an identical T cell phenotypic and functional profile present at separate
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Figure 2. T cells display similar phenotypical and functional profiles at distinct
inflamed locations. A. Cytokine production of CD4+CD45RA- memory T cells
depicted in radarplots. Axis indicate the proportion of positive cells for individual
cytokines (indicated by coloring) within the memory T cell fraction. SFMC = synovial
fluid mononuclear cells, PBMC = peripheral blood mononuclear cells. B. Percentage
CD25+FOXP3+ Treg of CD3+CD4+ cells in SFMC and PBMC of JIA patients and
healthy children, and percentage of Ki67+ cells within CD45RA- cells in Treg and non-
Treg in SFMC (non-parametric Mann-Whitney, * = p <0.05 ). C. Expression of

functional markers by CD25+ FOXP3+ CD45RA- cells.

Hyper-expanded T cell clones are shared between left and right joints

To study whether the same expanded T cell clones infiltrate multiple joints, we
performed TCR sequencing for similar numbers of CD3*CD4*CD25*CD127'"°% Tregs
and CD3*CD4*CD25CD127" non-Tregs sorted from affected joints of JIA patients,
derived from the same donors and time points as the ones used for CyTOF analysis
regarding the first two patients. Within the inflamed joints, clonally expanded cells were
detected, which was more pronounced for Tregs than non-Tregs (Figure 3A). In line
with the CyTOF analysis, the distribution of T cell clones was highly similar between
left and right joints, both for Tregs and non-Tregs. Hyper-expanded T cells were further
studied by sequential intersection of the most abundant TCRf clonotypes across
samples. We found a high degree of sharing between two affected joints, while a small
fraction of clones was shared between SF and PB (Figure 3B). Moreover, sharing of

clones between two joints was more evident for Tregs than non-Tregs (Figure 3B).
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Figure 3. Highly dominant T cell clones are shared in SF from left and right joint
and peripheral blood. A. Clonal proportions of the TCR[ clones as detected in Treg
and non-Treg sorted from PBMC, SFMC left joint, SFMC right joint of two different JIA
patients. B. Sequential intersection of abundant TCRf clonotypes (based on amino
acid sequence) across samples. Top clonotypes (ranging from 1-1000) are given on

the x-axis, with the percentage of sequences overlapping between two given samples
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on the y-axis. For patient 3, no PB sample was available. C. Frequency plots showing
the overlapping Treg and non-Treg clones between left joint derived SF (x-axis) and
right joint derived SF (y-axis), with color coding highlighting the clones that are shared
with none of the other samples (black circle), shared in two samples (purple) and all
three samples (PB, SF left, SF right; yellow). D. Correlation (linear regression, dashed
line) between frequency (x-axis) and generation probability (y-axis) of TCR clones
shared across SF two samples. E. Results of correlation between frequency and
generation probability across all samples. Pat. = patient, R = Spearman’s Rho, p = p-

value, SF = synovial fluid, PB = peripheral blood.

Detailed analysis further revealed that frequencies of hyper-expanded T cells
were highly conserved between distinct anatomical sites, with the most dominant
clones also detectable in PB (Figure 3C). To assess whether dominant clones were
shared as a result of high generation probability (Pgen, convergent recombination(29)),
or in response to antigen (convergent selection), we calculated the Pgens of shared and
non-shared clones and correlated these with their respective frequencies. Frequencies
of shared clones were not correlated with Pgen (Figure 3D), while frequencies of non-
shared clones showed a significant positive correlation with Pgen (Figure 3E). Notably,
this correlation was more pronounced for non-Tregs (Figure 3E), indicating either
bystander activation or non-antigen specific circulation of the non-shared TCR clones
in the non-Treg compartment. In summary, both non-Treg and Treg hyper-expanded
T cell clones are shared between inflamed joints. This overlap is most pronounced for
Treg, with the highly dominant Treg clones in SF also being detectable in circulation,

likely driven by responses to shared antigens.
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Dominant clones persist over time during relapsing remitting disease

Next, to study the temporal dynamics of T cells in JIA, we profiled the Treg and
non-Treg TCRP repertoire of SF and PB samples from five JIA patients over time
(Supplemental Figure 3). Repertoire overlap analysis showed that TCRBs of SF Tregs
were highly shared within patients over time (Figure 4A), which was also conserved
across different joints (Figure 4A/B, Supplemental Figure 4A). In contrast, TCRps from
PB did not cluster together over time, and showed much less overlap with their synovial
counterparts (Figure 4A). More detailed analysis showed that frequencies of shared
TCRBs were also consistent over time, with the most dominant T cell clones having
the highest degree of sharing (Figure 4C). Again, this phenomenon was more
pronounced in Tregs from SF compared to PB (Figure 4C), although the most dominant
clones from SF were also detectable in PB (Supplemental Figure 5). Moreover,
persistent TCRBs with high abundance were not driven by recombination bias (Figure
4D), similar to what was observed for T cell clones shared between two knees sampled

at the same time point (Figure 3D).
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Figure 4. Persistence of Treg clones over the course of relapse remitting disease.
A. Heatmap showing overlap (Jaccard index, light blue = limited overlap, darkblue =
high overlap) of Treg derived TCR sequences obtained from SF or PB from JIA patients
over time. L = left knee, R = right knee. B. Venn diagrams displaying the 100 most
abundant unique TCRp clones, defined by amino acid sequence, for longitudinal SF
samples from all patients. C. Frequency plots showing the overlapping Treg clones

between visits for SF and PB, with color coding and shapes highlighting the number of
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samples in which unique clones are found. R = right, L = left. D. Correlation (linear
regression, dashed line) between frequency (x-axis) and generation probability (y-axis)

of TCR clones shared across two visits for SF samples.

Next, we repeated our analysis on TCRP sequences of non-Tregs from the
same samples. Although non-Tregs also display sharing of TCR[3 sequences over time
(Figure 5A/B, Supplemental Figure 4B), the degree of sharing was less pronounced
compared to Tregs (Figure 4A). Frequencies of highly shared TCRBs in non-Tregs
were also consistent over time (Figure 5C), and not driven by recombination bias
(Figure 5D). Collectively, these data show that during relapsing-remitting disease,
persistent dominant T cell clones are taking part in the local immune response in JIA

patients, and this phenomenon is more pronounced for Tregs than non-Tregs.
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Figure 5. Persistence of non-Treg clones over the course of relapse remitting
disease. A. Heatmap showing overlap (Jaccard index, light blue = limited overlap,
darkblue = high overlap) of non-Treg derived TCR sequences obtained from SF or PB
from JIA patients over time. L = left knee, R = right knee. B. Venn diagrams displaying
the 100 most abundant unique TCRp clones, defined by amino acid sequence, for
longitudinal SF samples from all patients. C. Frequency plots showing the overlapping

non-Treg clones between visits for SF and PB, with color coding and shapes
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highlighting the number of samples in which unique clones are found. R = right, L =
left. D. Correlation (linear regression, dashed line) between frequency (x-axis) and

generation probability (y-axis) of TCR clones shared across two visits for SF samples.

Patterns in similar TCR sequences are shared between JIA patient knees

Recent studies have demonstrated that immune responses against a particular
antigen involve T cell clones with similar TCR sequences(30-32). To investigate
whether persistent T cell clones in JIA cluster together with other, similar T cell clones
involved in responses against the same antigens, we performed TCR similarity
analysis, focusing on SF samples obtained from two affected knees. We constructed
similarity networks for JIA patients and compared these to networks generated from
random repertoires with the same number of TCRB sequences (Figure 6A). TCR
networks from JIA patients were highly connected (more than expected by chance),
showing that patient repertoires exhibit a high degree of sequence similarity (Figure
6B). Moreover, in the random repertoires, clusters were less mixed (indicated by a high
cluster purity) than JIA networks (Figure 6C), highlighting that TCRs from JIA samples
display higher sequence similarity than expected by chance. Overall, these results

show that the SF Treg repertoire is highly skewed by antigenic selection.
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278  Figure 6. TCR similarly analysis of sequences found across distinct JIA patient

279  knees. A. TCR similarity networks based on amino acid k-mer sharing (k = 3) between
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TCR sequences. Every node represents one TCRf sequence, with sequences present
in one sample (SF from left or right knees) highlighted in blue and orange, and
sequences shared across two samples highlighted in green. Nodes are connected if
TCRs share at least 8 k-mers. Networks from JIA patient repertoires (right) are
compared to random repertoires (left), with the same repertoire size. B. Number of
TCR sequences (x-axis) and their connections (y-axis) to other TCR sequences of the
top five similarity clusters identified in A. Blue density maps depict clusters identified in
random repertoires (N=100), while black circles depict clusters identified in JIA
patients. C. Cluster purity (y-axis, %) for the top five clusters identified in random
repertoires (RC), and JIA patient TCR similarity networks. Numbers indicate p-value of

difference between RC and JIA (Mann-Whitney).

DISCUSSION

In this study, we provide the first CyTOF and TCRP sequencing analysis of
purified Tregs and non-Tregs, uncovering their spatial and temporal behavior in a
human autoimmune disease setting. Although the antigen(s) driving T cell activation
and expansion in JIA remain elusive, our data provide strong support for the presence
of ubiquitously expressed auto-antigens given the observed overlap in dominant
clones over time and in space. Given the tissue restrictive character of the JIA, it is
tempting to speculate that the potential antigen would be joint-specific, although it has
been shown that ubiquitously expressed auto-antigens can also induce joint-specific
autoimmune disease(33,34). We show that SF Tregs have high expression of Ki67
(marking proliferation and thus recent antigen encounter), suggesting that these cells
actively respond to synovial antigens. Moreover, we show that the expansion of

dominant TCR clones is not dependent on generation probabilities, further highlighting
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that antigen are driving T cell activation. Further support for the hypothesis that
persistent, hyper-expanded Tregs found in JIA SF are auto-reactive is provided by a
recent study performed in mice with type 1 diabetes, where Tregs with a high degree
of self-reactivity were found to be expanding locally in affected pancreatic islets and
displayed a specific profile with elevated levels of GITR, CTLA-4, ICOS and Ki67, very
similar to our observations(35).

Our data demonstrated that dominant T cell clones in SF can be traced back in
circulation. Together with observations that similar T cell clones are detected in multiple
affected joints and the obvious overlap in immune cell composition, this strongly
suggests that T cells migrate from the joint to peripheral blood and vice versa. This
could mean that Tregs are either recirculating, or actively being replenished from
circulating (precursor) T cells. These observations are in line with other recent studies
in arthritis showing that synovial CD4+ T cells and Treg clones can also be detected in
PB(25,36), where their presence correlates with disease activity and response to
therapy(25,37). Moreover, for refractory JIA patients who underwent autologous
hematopoietic stem cell transplantation (aHSCT), transplant outcome was shown to be
dependent upon the diversity of circulating Tregs(27,37). This knowledge, combined
with our findings that the same T cell clones dominate the immune response at different
sites of inflammation and the persistence of the same clones in the relapsing-remitting
course of disease, strengthen the possibility to use circulating disease-associated T
cell clones for disease monitoring or prognostic purposes. However, to accurately
monitor and predict which T cell clones from PB are implicated in active immune
processes in joints, more detailed phenotyping is needed to fully characterize the
functional profile and origins of dominant clones. Multi-omic single-cell profiling to link

TCR specificity with gene expression will help to bring this closer to the clinic.
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The existence of a temporal and spatially persistent clonal Treg TCR repertoire,
raises the question to what degree clonally expanded Tregs can modulate
inflammation over the course of an autoimmune response. Various studies have shown
that Tregs in JIA maintain their suppressive capacity, but local effector T cells are
resistant to this suppression(9,38). Thus, the clonotypic expansion in SF Treg cells
might reflect an insufficient attempt to control expanding effector T cells. The
importance of a diverse Treg repertoire is shown in several mouse models(19-22).
Fohse et al. showed that Tregs with a higher diversity are able to expand more
efficiently compared to Treg with a lower diversity in mice with TCR restricted
conventional T cells(20). It has been suggested that this is due to the TCR diverse
Tregs having access to more ligands and as a result being able to out-compete the
TCR-restricted Treg cells(16). However, this applies for circulating Treg, and whether
this would also be important for Treg in tissues is not known. The finding that tissue
Treg residing in healthy tissues also show a considerable oligoclonality regarding their
TCR repertoire may indicate that this is a normal feature(39,40). Additionally, it was
recently shown that a diverse Treg repertoire in mice is especially needed to control
Th1 responses, whereas Th2 and Th17 responses were still suppressed by single Treg
clones(23). This could be an explanation why the Th1 rich SF environment is poorly
controlled by the large amount of clonally expanded Tregs. Thus, hyper-expanded
Tregs alone might not be sufficient to prevent or inhibit autoimmune responses, and
future Treg centric therapies should take this into account.

In this study, we sequenced the B-chain of the TCR and not the a-chain. The
identified dominant TCR clones can pair with several a-chains, possibly leading to
less overlapping TCR repertoire and a different Ag specificity. Future sequencing of

both TCR chains will provide insight into the total TCR repertoire. Next to that, we are
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aware of a possible amplification bias because of a difference in efficiency of PCR
primers. However, in our analysis approach we attempted to control as much as
possible for such biases. An interesting next step would be to combine single cell RNA-
sequencing with identification of the TCR to directly link the expression profile of a
given cell to its TCR clonotype and facilitate the identification of the antigenic target
and its HLA class Il restriction.

In conclusion, we show that in SF the immune cell architecture is marked by
inflammatory responses of activated effector T cells as well as activated and highly
expanding Tregs. The remarkable overlap in immune cell composition as well as the
dominant clones over time and in space provide indications for a powerful driving force
that shapes the local T cell response during joint inflammation. The presence of these
inflammation-associated clones in the circulation provide promising perspectives for
use in disease monitoring. Moreover, the high degree of sequence similarity observed
between Treg clones obtained from distinct inflamed joints indicates that antigen
selection significantly reshapes the local Treg repertoire. Further research is needed
to pinpoint these driving antigens and to create opportunities to target disease-specific

T cells.

MATERIALS AND METHODS
Collection of SF and PB Samples

Patients with JIA were enrolled at the University Medical Center of Utrecht (The
Netherlands). A total of 9 JIA patients were included in this study. Of these, n=2 were
diagnosed with extended oligo JIA, n=2 with rheumatoid factor negative poly-articular

JIA, and n=5 with oligo JIA, according to the revised criteria for JIA(41). The average
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age at the time of inclusion was 13,1 years (range 3,2 — 18,1 years) with a disease
duration of 7,3 years (range 0.4 — 14.2 years).

Peripheral blood (PB) of JIA patients was obtained via veni-puncture or
intravenous drip, while synovial fluid (SF) was obtained by therapeutic joint aspiration
of affected joints. Informed consent was obtained from all patients either directly or
from parents/guardians when the patients were younger than 12 years of age. The
study was conducted in accordance with the Institutional Review Board of the
University Medical Center Utrecht (approval no. 11-499/C), in compliance with the
Declaration of Helsinki. PB from n=3 healthy children (average age 15,1 years with
range 14,7 - 15,4 years) was obtained from a cohort of control subjects for a case-

control clinical study.

Cell isolation

For cell isolation, SF was incubated with hyaluronidase (Sigma-Aldrich, St.
Louis, Missouri, United States) for 30 min at 37°C to break down hyaluronic acid.
SFMCs and PBMCs were isolated using Ficoll Isopaque density gradient centrifugation
(GE Healthcare Bio-Sciences AB, Uppsala Sweden), and were used after freezing in
Fetal Calf Serum (FCS) (Invitrogen, Waltham, Massachusetts, United States)

containing 10% DMSO (Sigma-Aldrich).

Flow cytometry and cell sorting

For TCR sequencing purposes, CD3*CD4*CD25"s"CD127"°% Tregs and
CD3*CD4+CD25VintCp127nthigh non-Tregs were isolated from frozen PBMC and
SFMC, using the FACS Aria lll (BD, Franklin Lakes, New Jersey, United States).

Antibodies used for sorting were: anti human CD3-BV510 (Biolegend, San Diego,
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California, United States), CD4-FITC (eBioscience, Frankfurt am Main, Germany),
CD25-PE/Cy7 (BD), CD127-AF647 (Biolegend). To check for FOXP3 expression of

the sorted populations anti human FOXP3-eF450 (eBioscience) was used.

CyTOF and CyTOF data analysis

Frozen PBMCs and SFMCs were thawed and stained with a T cell focused
panel of 37 heavy metal-conjugated antibodies (Supplemental Table 1), as previously
described(42), and analyzed by CyTOF-Helios (Fluidigm, San Francisco, California,
United States). Briefly, PBMCs were stimulated with or without phorbol 12-myristate
13-acetate (150 ng/ml, Sigma-Aldrich) and ionomycin (750 ng/ml, Sigma-Aldrich) for 4
hours, and blocked with secretory inhibitors, brefeldin A (1:1000, eBioscience) and
monensin (1:1000, Biolegend) for the last 2 hours. The cells were then washed and
stained with cell viability dye cisplatin (200 uM, Sigma-Aldrich). Each individual sample
was barcoded with a unique combination of anti-CD45 conjugated with either heavy
metal 89, 115, 141 or 167, as previously described(43). Barcoded cells were washed
and stained with the surface antibody cocktail for 30 min on ice, and subsequently
washed and re-suspended in fixation/permeabilization buffer (permeabilization buffer,
eBioscience) for 45 min on ice. Permeabilized cells were subsequently stained with an
intra-cellular antibody cocktail for 45 min on ice, followed by staining with a DNA
intercalator 1r-191/193 (1:2000 in 1.6% w/v paraformaldehyde, Fluidigm) overnight at
4°C or for 20 min on ice. Finally, the cells were washed and re-suspended with EQ™
Four Element Calibration beads (1:10, Fluidigm) at a concentration of 1x10° cells/ml.
The cell mixture was then loaded and acquired on a Helios mass cytometer (Fluidigm)

calibrated with CyTOF Tunning solution (Fluidigm). The output FCS files were
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randomized and normalized with the EQ™ Four Element Calibration beads (Fluidigm)
against the entire run, according to the manufacturer’s recommendations.

Normalized CyTOF output FCS files were de-barcoded manually into individual
samples in FlowdJo (v.10.2), and down-sampled to equal cell events (5000 cells) for
each sample. Batch run effects were assessed using an internal biological control
(PBMC aliquots from the same healthy donor for every run). Normalized cells were
then clustered with MarVis(44), using Barnes Hut Stochastic Neighbor Embedding
(SNE) nonlinear dimensionality reduction algorithm and k-means clustering algorithm,
as previously described(42). The default clustering parameters were set at perplexity
of 30, and p<1e-21. The cells were then mapped on a 2-dimensional t-distributed SNE
scale based on the similarity score of their respective combination of markers, and
categorized into nodes (k-means). To ensure that the significant nodes obtained from
clustering were relevant, we performed back-gating of the clustered CSV files and
supervised gating of the original FCS files with FlowJo as validation. Visualizations
(density maps, node frequency fingerprint, node phenotype, radar plots) were
performed through R scripts and/or Flow Jo (v.10.2). Correlation matrix and node

heatmaps were generated using MarVis(44) and PRISM (v 7.0).

TCR sequencing and analysis

Tregs and non-Tregs were lysed in RLT buffer (Qiagen, Hilden, Germany) and
frozen at -80°C. Between 0.15x108 and 1x10° Tregs, and between 0.46x10° and 1x10°
non-Tregs were obtained for TCR sequencing. Total RNA was isolated using the
RNeasy Mini Kit (Qiagen) for cell fractions 20.2x108 cells and the RNeasy Micro Kit
(Qiagen) for fractions <0.2x108 cells, following the manufacturer’s instructions. cDNA
was synthesized using the SMARTer RACE cDNA Amplification kit (Clontech, Palo

Alto, California, United States). Amplification of the TCRB VDJ region was performed
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using previously described primers and amplification protocols(45). PCR product
fragment size was analyzed using the QlAxcel Advanced System (Qiagen). End repair
and barcode adapter ligation were performed with the NGSgo®-LibrX and NGSgo®-
IndX (GenDx, Utrecht, The Netherlands) according to the manufacturer’s instructions.
Cleanup of the samples was performed after each step using HighPrep PCR beads
and following the manufacturer's instructions (GC Biotech, Waddinxveen, The
Netherlands). Paired-end next-generation sequencing was performed on the lllumina
MiSeq system 500 (2 x250 bp) (lllumina, San Diego, California, United States). TCR

sequencing analysis was performed using RTCR as previously described(46).

TCR network analysis

For sequence similarity analysis, we counted the presence of overlapping 3-mer
amino acid segments (defined as k-mers) in the TCRB (CDR3) sequences. TCR
sequences were considered similar when they shared at least 8 k-mers, independent
of the total sequence length. Random repertoires were generated using the generative
model of V(D)J recombination implemented in OLGA(29). For equal comparison to
biological samples, random repertoires were down sampled to equal the number of
TCR sequences. Cluster purity was calculated as the ratio of number of TCR
sequences from the most abundant sequence within the cluster and the total number

of TCR sequences in the cluster.

Statistical analyses
Nonparametric Mann Whitney (two-tailed) statistical test was performed in the
manual gating of cellular subsets in FlowdJo; p-values <0.05 were considered

statistically significant. The correlation matrix for the node frequency was calculated
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using Spearman's rank-order correlation. Generation probabilities (Pgens) of TCRf
amino acid sequences were computed using OLGA(29). Figures were produced using
the R package ggplot2(47). Venn diagrams were made on:

http://bioinformatics.psb.ugent.be/webtools/Venn/.
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