

1 **Compartmentalization and persistence of dominant (regulatory) T cell clones**
2 **indicates antigen skewing in juvenile idiopathic arthritis**

3

4 Gerdien Mijnheer^{1*}, Nila H. Servaas^{1*}, Jing Yao Leong⁴, Arjan Boltjes¹, Eric
5 Spierings¹, Phyllis Chen⁴, Liyun Lai⁴, Alessandra Petrelli¹, Sebastiaan Vaster^{1,2}, Rob
6 J. de Boer³, Salvatore Albani⁴, Aridaman Pandit^{1,4}, Femke van Wijk^{1,4}

7

8 ¹ Center for Translational Immunology, University Medical Center Utrecht, Utrecht
9 University, Utrecht, the Netherlands

10 ² Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University
11 Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands

12 ³ Theoretical Biology, Utrecht University, Utrecht, the Netherlands

13 ⁴ Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical
14 Centre, the Academia, 20 college road, Discovery tower level 8, Singapore 169856

15 * These authors contributed equally

16 # These authors jointly supervised this work

17

18 **Corresponding author:** Prof. dr. Femke van Wijk, Center for Translational
19 Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht,
20 Lundlaan 6, 3584 EA Utrecht, The Netherlands. Tel +31 88 75 542 75. Email:
21 f.vanwijk@umcutrecht.nl

22

23

24

25

26 **ABSTRACT**

27 Autoimmune inflammation is characterized by tissue infiltration and expansion of
28 antigen-specific T cells. Although this inflammation is often limited to specific target
29 tissues, it remains yet to be explored whether distinct affected sites are infiltrated with
30 the same, persistent T cell clones. Here we performed CyTOF analysis and T cell
31 receptor (TCR) sequencing to study immune cell composition and (hyper-)expansion
32 of circulating and joint-derived Tregs and non-Tregs in Juvenile Idiopathic Arthritis
33 (JIA). We studied different joints affected at the same time, as well as over the course
34 of relapsing-remitting disease. We found that the composition and functional
35 characteristics of immune infiltrates are strikingly similar between joints within one
36 patient, and observed a strong overlap between dominant T cell clones, especially
37 Treg, of which some could also be detected in circulation and persisted over the course
38 of relapsing remitting disease. Moreover, these T cell clones were characterized by a
39 high degree of sequence similarity, indicating the presence of TCR clusters responding
40 to the same antigens. These data suggest that in localized autoimmune disease there
41 is auto-antigen driven expansion of both Teffector and Treg clones, that are highly
42 persistent and are (re)circulating. These dominant clones might represent interesting
43 therapeutic targets.

44

45

46

47

48

49

50

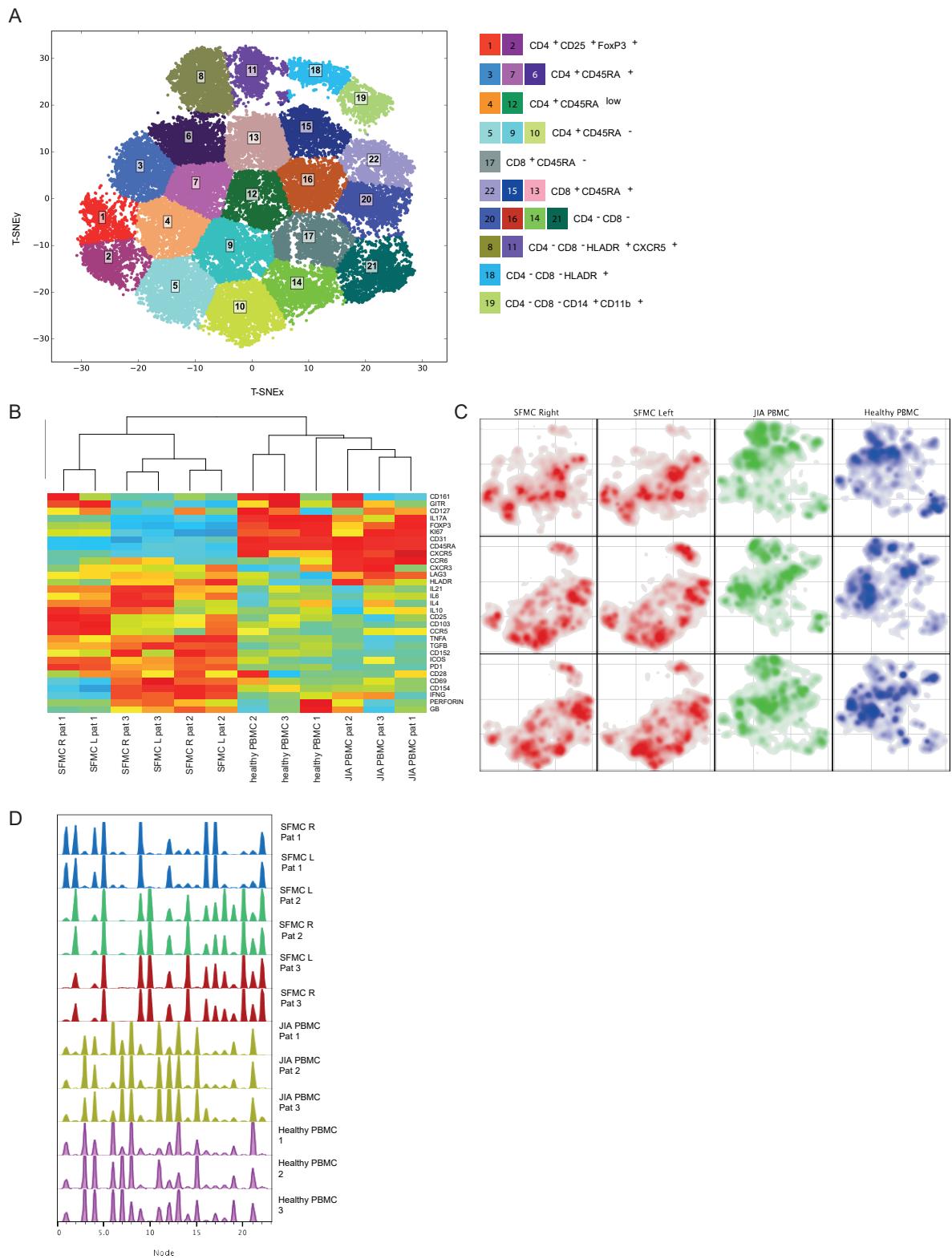
51 **INTRODUCTION**

52 Inflammation, often localized to specific target tissues, is a hallmark of
53 autoimmune diseases. In these diseases, multiple sites within specific tissues can be
54 inflamed in tandem. An example of this phenomenon includes the inflammation of
55 multiple joints in Juvenile Idiopathic Arthritis (JIA). Multiple lines of evidence implicate
56 T cells as key players of this tissue specific autoimmune inflammation. Firstly, many
57 autoimmune diseases are associated with the expression of specific MHC (HLA) class
58 II alleles, which is hypothesized to lead to altered antigen presentation and enhanced
59 CD4+ T cell activation(1). Secondly, activated CD4+ T cells often accumulate in
60 affected tissue(2). Lastly, CD4⁺CD25⁺CD127^{low}FOXP3⁺ regulatory T cells (Tregs),
61 capable of suppressing immune responses and fundamental to immune homeostasis,
62 also accumulate in the affected tissue(3,4).

63 Tissue resident T cells display an array of distinct trafficking and functional
64 markers compared to circulating T cells(5–10). Novel technologies such as mass
65 cytometry (CyTOF) allow for high resolution analysis of the cellular heterogeneity
66 within inflamed tissues to reveal potential pathogenic T cell populations. Moreover,
67 studies assessing the T cell receptor (TCR) repertoire have generated evidence for the
68 presence of clonally expanded T cells in specific tissues in autoimmune diseases(11–
69 15). These findings suggest that tissue-specific T cell responses are mounted by
70 specific local antigens that selectively induce activation, expansion and/or migration of
71 antigen-specific T cell clones.

72 Similar to conventional T cells, Tregs that leave the thymus typically express a
73 unique TCRs. While Tregs only represent a small fraction of the total CD4+ T cell pool,
74 the TCR repertoire of peripheral Tregs is as diverse as that of conventional CD4+ T
75 cells(16–18). Several studies previously showed that a restricted TCR repertoire of the

76 Treg compartment can lead to the development of autoimmune disease(19–22).
77 However, Tregs with a single TCR specificity can also inhibit autoimmune responses,
78 thereby also providing some degree of protection against autoimmunity(23). In JIA,
79 hyper-expanded Treg TCR β clones can be found at the site of inflammation(24–26),
80 and in refractory JIA patients hyper-expanded Tregs can even be found in
81 circulation(27). This expansion is likely caused by a dominance of specific
82 (auto)antigens present at target tissues. However, the exact antigen specificity and
83 temporal and spatial dynamics of hyper-expanded effector T cells and Tregs in chronic
84 inflammation and their relation to disease relapses remains to be established. Defining
85 the specific CD4+ T cell subsets that are expanding in JIA patients is critical to decipher
86 disease pathogenesis, and hyper-expanded T cells may represent novel therapeutic
87 targets. Moreover, insight into the antigen specificity of local T cells may aid the
88 discovery of disease-associated autoantigens.


89 Here, we had the unique opportunity to study autoimmune inflammation: 1)
90 within different affected sites at one single time point (spatial dynamics), and 2) over
91 time (temporal dynamics), to get a detailed understanding of T cell dynamics during
92 human autoimmune inflammation. We profiled the T cell composition of inflammatory
93 exudate as well as peripheral blood obtained from JIA patients using CyTOF. In
94 addition, we performed TCR β repertoire sequencing of Tregs and conventional CD4+
95 T cells (non-Tregs) derived from inflamed sites of JIA patients over time and space.

96

97 **RESULTS**

98 **Immune architecture of cellular infiltrates is similar between anatomically
99 distinct inflamed sites**

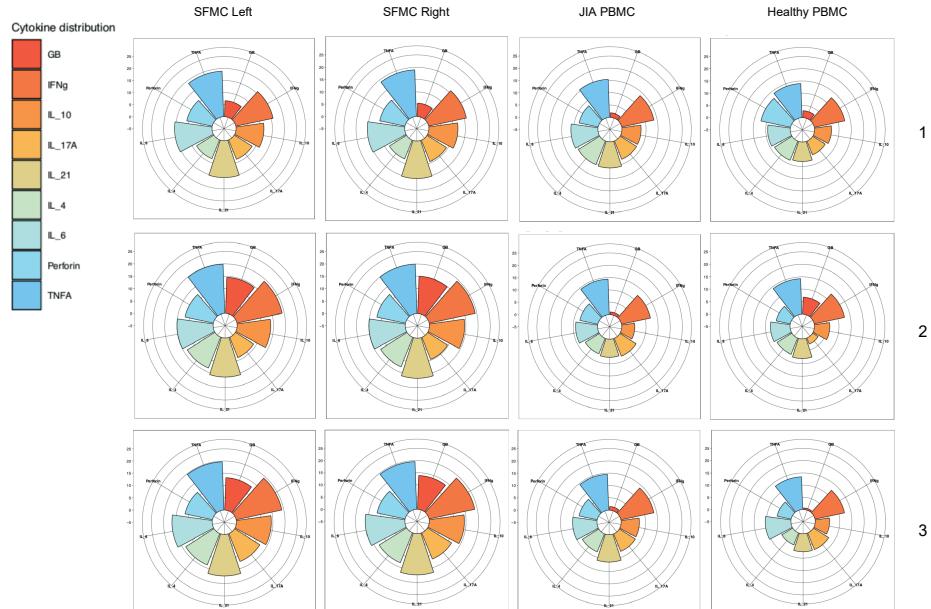
100 To study the peripheral and tissue specific immune cell composition in
101 autoimmune disease, we profiled peripheral blood mononuclear cells (PBMCs) and
102 synovial fluid mononuclear cells (SFMCs) from JIA patients with both knees affected
103 at the time of sampling using CyTOF (Supplementary Table 1). T-distributed stochastic
104 neighbor embedding (t-SNE) and k-means clustering identified 22 immune cell
105 populations in the SF/PB compartments (Figure 1A, $P<1e-21$, Supplemental Figure
106 1A/B). These populations could be broadly segregated into Treg (CD25 $^{+}$ /FoxP3 $^{+}$),
107 naïve (CD45RA $^{+}$), effector/memory (CD45RA $^{-}$), and non-T cell populations (CD3 $^{-}$ /CD4 $^{-}$
108 /CD8 $^{-}$). Preliminary clustering of the median marker expression on T cells revealed a
109 clear demarcation of SFMCs and PBMCs (Figure 1B), and a strong association of
110 immune phenotypes between intra-individual paired knee SFMCs. Furthermore,
111 density maps of immune cell populations within the t-SNE indicate strong dichotomy in
112 the locations of SFMC and PBMC subsets (Figure 1C). Comparison of the node
113 fingerprints between SFMC and PBMC samples (Figure 1D) revealed that SFMCs
114 were enriched in CD4 $^{+}$ CD25 $^{+}$ FoxP3 $^{+}$ Tregs (node 2), and CD4 $^{+}$ CD45RA $^{-}$ memory T
115 cells (nodes 5, 9, 10), while PBMCs were enriched in CD45RA $^{+}$ naïve T cells (nodes
116 3, 6, 7, 13, 15). Next to this, a strikingly similar cellular distribution profile was observed
117 in the left and right knee joints of each JIA individual (Figure 1C/D). The correlation
118 matrix of the entire spectrum of node frequencies demonstrated a strong positive
119 correlation between the SFMCs and their left and right joints, and a strong negative
120 correlation compared with the PBMC populations (Supplemental Figure 1C). These
121 results demonstrate that, while distinct differences in T cell signatures can be identified
122 between peripheral blood (PB) and synovial fluid (SF) compartments, the phenotypic
123 T cell architecture of distinct inflamed sites (left and right knees) are remarkably similar,
124 indicating commonality in underlying disease etiology.

125

126 **Figure 1. Overall immune architecture in left and right affected joint is very**
 127 **similar but distinct from peripheral blood. A. Density maps based on T-SNE**
 128 **dimensional reduction and k-means clustering analysis on SFMC and PBMC samples,**

129 resulting in 22 cellular nodes. **B.** Preliminary hierachal clustering on the median
130 expression of all markers, excluding lineage markers. **C.** Density maps of immune
131 cellular populations within the T-SNE maps. **D.** Node frequency fingerprints showing
132 the distribution across the nodes of SFMCs an PBMCs.

133

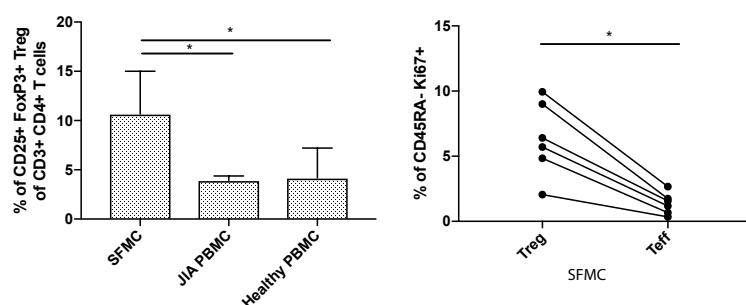

134 **Effector T cells and Tregs are phenotypically similar across distinct inflamed**
135 **sites**

136 Next, we functionally characterized SF specific T cells, and found that CD4⁺ and
137 CD8⁺ T cell subsets displayed an increased expression of pro-inflammatory cytokines
138 (TNF α , IFN γ and IL-6), indications of chronic TCR activation (PD1 and LAG3)(28) and
139 a memory phenotype (CD45RA $^{-}$), compared to their PBMC counterparts
140 (Supplemental Figure 2A and 2B, $P<0.05$). Remarkably, the cytokine diversity of CD4⁺
141 memory T cells revealed nearly identical profiles for the left and right knee joints for
142 each individual (Figure 2A), with minor inter-individual differences. This trend in
143 cytokine profile was also reflected in the CD8+CD45RA- compartment (data not
144 shown). The Treg (CD25⁺FOXP3⁺) population was significantly enriched in SF (Figure
145 2B, $P<0.05$, Supplemental Figure 2C/D) with enhanced expression of memory
146 (CD45RA $^{-}$) and activation markers (HLA-DR/ICOS). Additionally, SF memory Tregs
147 displayed a significantly higher proliferation (Ki67) as compared to SF effector memory
148 T cells (Figure 2B, $P<0.05$), which was further confirmed by flow cytometry
149 (Supplemental Figure 2E). This indicates that Tregs belong to the most proliferative T
150 cell subset in the inflamed environment. Moreover, memory Tregs showed very similar
151 CTLA4/HLA-DR/ICOS/PD1 expression profiles in the left and right knee joints for each
152 individual (Figure 2C). Altogether, these data demonstrate that within JIA patients,
153 there is an identical T cell phenotypic and functional profile present at separate

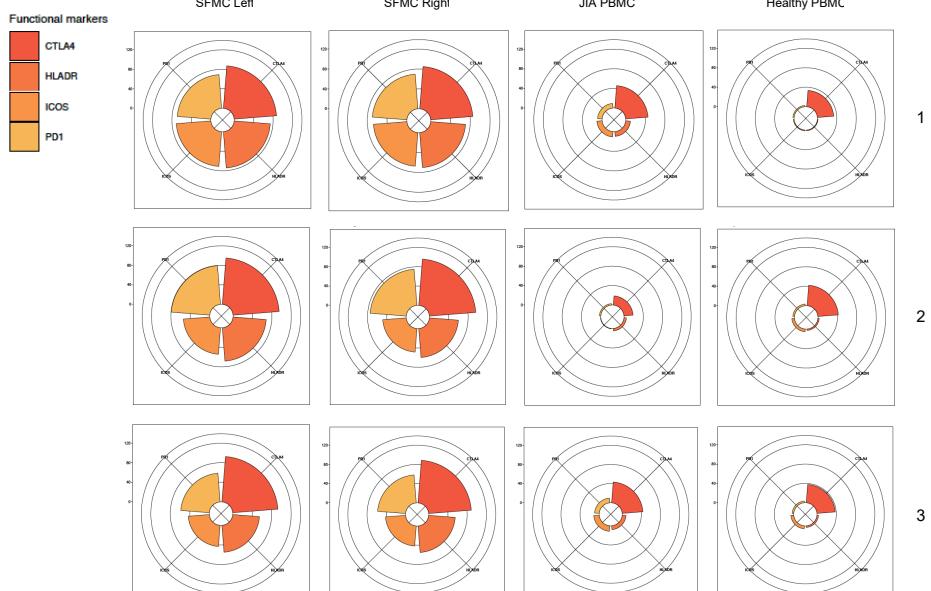
154 inflamed locations, with increased amounts of activated and proliferating Treg -
 155 populations.

156

A



1


2

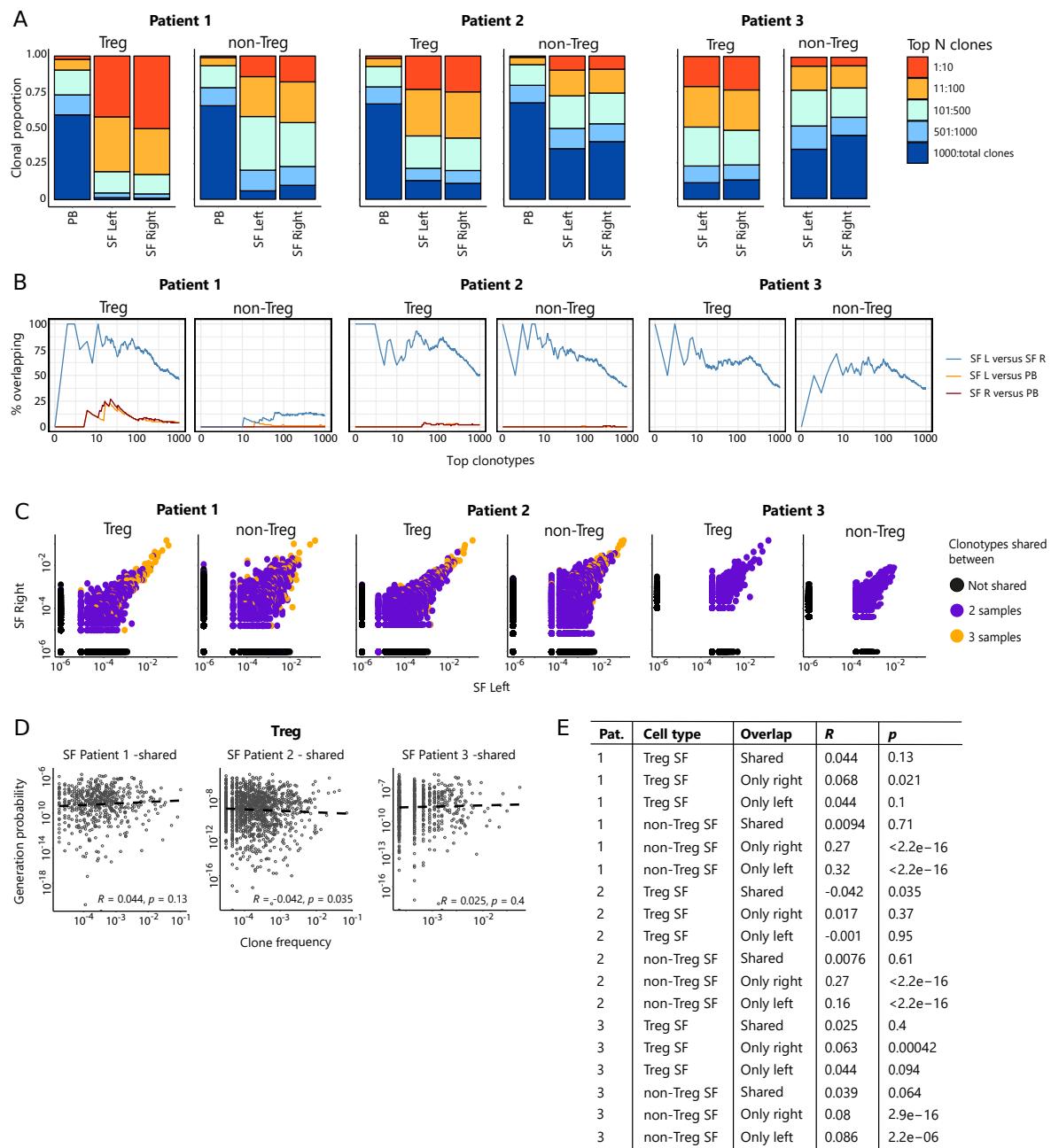
3

B

C

157

158 **Figure 2. T cells display similar phenotypical and functional profiles at distinct**
159 **inflamed locations. A.** Cytokine production of CD4+CD45RA- memory T cells
160 depicted in radarplots. Axis indicate the proportion of positive cells for individual
161 cytokines (indicated by coloring) within the memory T cell fraction. SFMC = synovial
162 fluid mononuclear cells, PBMC = peripheral blood mononuclear cells. **B.** Percentage
163 CD25+FOXP3+ Treg of CD3+CD4+ cells in SFMC and PBMC of JIA patients and
164 healthy children, and percentage of Ki67+ cells within CD45RA- cells in Treg and non-
165 Treg in SFMC (non-parametric Mann-Whitney, * = p <0.05). **C.** Expression of
166 functional markers by CD25+ FOXP3+ CD45RA- cells.


167

168 **Hyper-expanded T cell clones are shared between left and right joints**

169 To study whether the same expanded T cell clones infiltrate multiple joints, we
170 performed TCR sequencing for similar numbers of CD3+CD4+CD25+CD127^{low} Tregs
171 and CD3+CD4+CD25-CD127⁺ non-Tregs sorted from affected joints of JIA patients,
172 derived from the same donors and time points as the ones used for CyTOF analysis
173 regarding the first two patients. Within the inflamed joints, clonally expanded cells were
174 detected, which was more pronounced for Tregs than non-Tregs (Figure 3A). In line
175 with the CyTOF analysis, the distribution of T cell clones was highly similar between
176 left and right joints, both for Tregs and non-Tregs. Hyper-expanded T cells were further
177 studied by sequential intersection of the most abundant TCR β clonotypes across
178 samples. We found a high degree of sharing between two affected joints, while a small
179 fraction of clones was shared between SF and PB (Figure 3B). Moreover, sharing of
180 clones between two joints was more evident for Tregs than non-Tregs (Figure 3B).

181

182

183

184 **Figure 3. Highly dominant T cell clones are shared in SF from left and right joint**

185 **and peripheral blood.** **A.** Clonal proportions of the TCR β clones as detected in Treg
 186 and non-Treg sorted from PBMC, SFMC left joint, SFMC right joint of two different JIA
 187 patients. **B.** Sequential intersection of abundant TCR β clonotypes (based on amino
 188 acid sequence) across samples. Top clonotypes (ranging from 1-1000) are given on
 189 the x-axis, with the percentage of sequences overlapping between two given samples

190 on the y-axis. For patient 3, no PB sample was available. **C.** Frequency plots showing
191 the overlapping Treg and non-Treg clones between left joint derived SF (x-axis) and
192 right joint derived SF (y-axis), with color coding highlighting the clones that are shared
193 with none of the other samples (black circle), shared in two samples (purple) and all
194 three samples (PB, SF left, SF right; yellow). **D.** Correlation (linear regression, dashed
195 line) between frequency (x-axis) and generation probability (y-axis) of TCR clones
196 shared across SF two samples. **E.** Results of correlation between frequency and
197 generation probability across all samples. Pat. = patient, R = Spearman's Rho, p = p-
198 value, SF = synovial fluid, PB = peripheral blood.

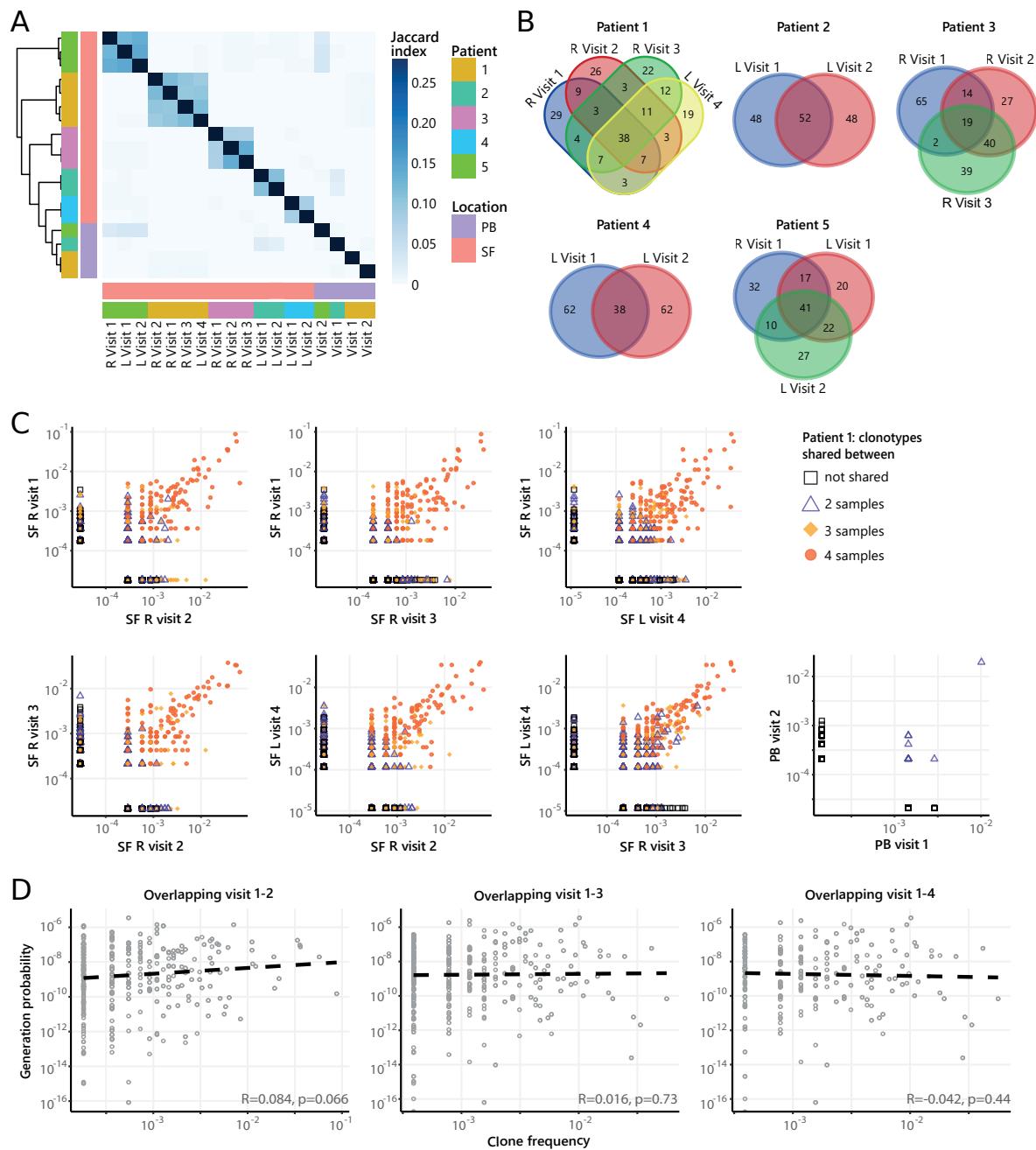
199

200 Detailed analysis further revealed that frequencies of hyper-expanded T cells
201 were highly conserved between distinct anatomical sites, with the most dominant
202 clones also detectable in PB (Figure 3C). To assess whether dominant clones were
203 shared as a result of high generation probability (P_{gen} , convergent recombination(29)),
204 or in response to antigen (convergent selection), we calculated the P_{gens} of shared and
205 non-shared clones and correlated these with their respective frequencies. Frequencies
206 of shared clones were not correlated with P_{gen} (Figure 3D), while frequencies of non-
207 shared clones showed a significant positive correlation with P_{gen} (Figure 3E). Notably,
208 this correlation was more pronounced for non-Tregs (Figure 3E), indicating either
209 bystander activation or non-antigen specific circulation of the non-shared TCR clones
210 in the non-Treg compartment. In summary, both non-Treg and Treg hyper-expanded
211 T cell clones are shared between inflamed joints. This overlap is most pronounced for
212 Treg, with the highly dominant Treg clones in SF also being detectable in circulation,
213 likely driven by responses to shared antigens.

214

215 **Dominant clones persist over time during relapsing remitting disease**

216 Next, to study the temporal dynamics of T cells in JIA, we profiled the Treg and
217 non-Treg TCR β repertoire of SF and PB samples from five JIA patients over time
218 (Supplemental Figure 3). Repertoire overlap analysis showed that TCR β s of SF Tregs
219 were highly shared within patients over time (Figure 4A), which was also conserved
220 across different joints (Figure 4A/B, Supplemental Figure 4A). In contrast, TCR β s from
221 PB did not cluster together over time, and showed much less overlap with their synovial
222 counterparts (Figure 4A). More detailed analysis showed that frequencies of shared
223 TCR β s were also consistent over time, with the most dominant T cell clones having
224 the highest degree of sharing (Figure 4C). Again, this phenomenon was more
225 pronounced in Tregs from SF compared to PB (Figure 4C), although the most dominant
226 clones from SF were also detectable in PB (Supplemental Figure 5). Moreover,
227 persistent TCR β s with high abundance were not driven by recombination bias (Figure
228 4D), similar to what was observed for T cell clones shared between two knees sampled
229 at the same time point (Figure 3D).

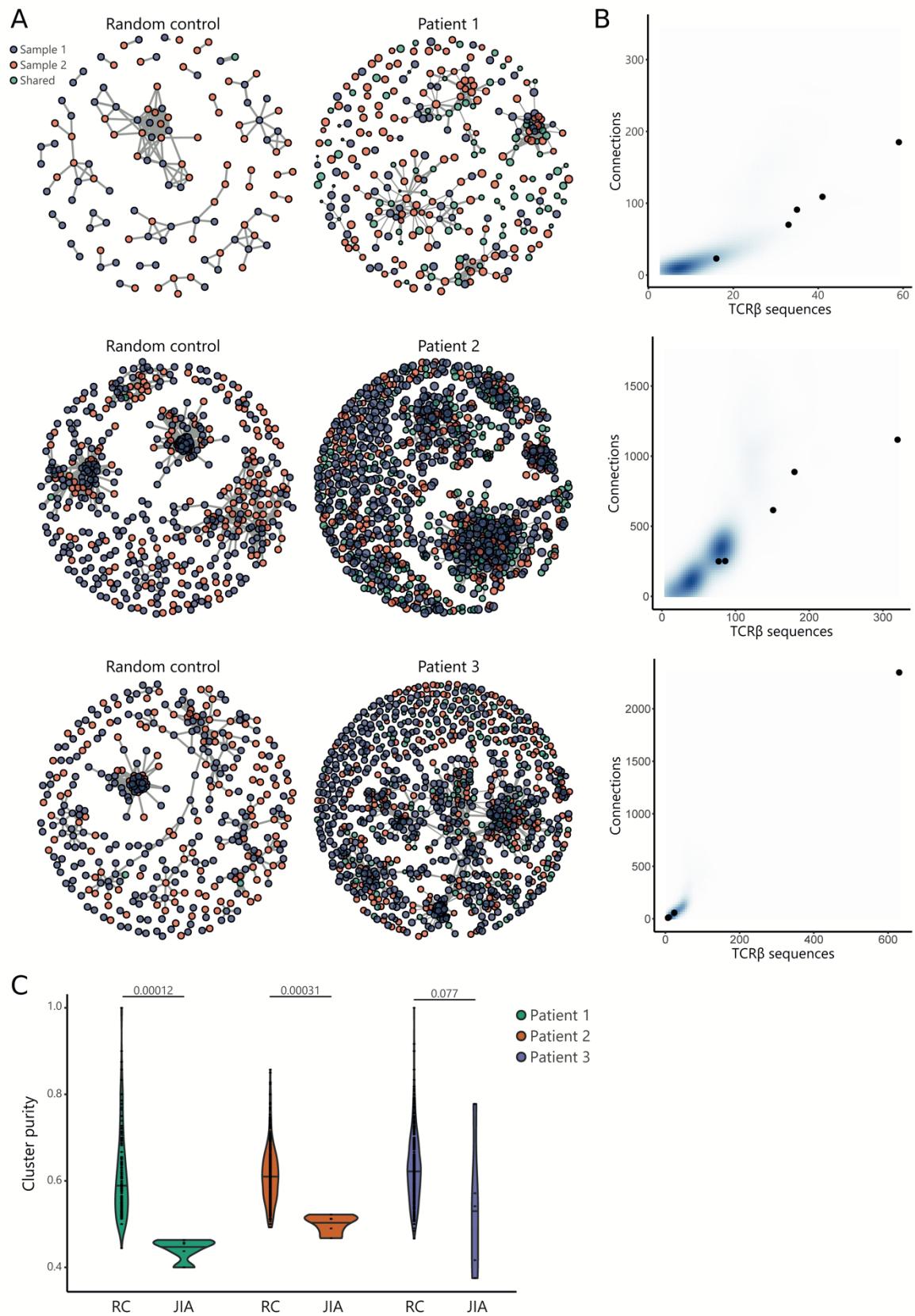

230

239 samples in which unique clones are found. R = right, L = left. **D.** Correlation (linear
240 regression, dashed line) between frequency (x-axis) and generation probability (y-axis)
241 of TCR clones shared across two visits for SF samples.

242

243 Next, we repeated our analysis on TCR β sequences of non-Tregs from the
244 same samples. Although non-Tregs also display sharing of TCR β sequences over time
245 (Figure 5A/B, Supplemental Figure 4B), the degree of sharing was less pronounced
246 compared to Tregs (Figure 4A). Frequencies of highly shared TCR β s in non-Tregs
247 were also consistent over time (Figure 5C), and not driven by recombination bias
248 (Figure 5D). Collectively, these data show that during relapsing-remitting disease,
249 persistent dominant T cell clones are taking part in the local immune response in JIA
250 patients, and this phenomenon is more pronounced for Tregs than non-Tregs.

251


252 **Figure 5. Persistence of non-Treg clones over the course of relapse remitting**
 253 **disease. A.** Heatmap showing overlap (Jaccard index, light blue = limited overlap,
 254 darkblue = high overlap) of non-Treg derived TCR sequences obtained from SF or PB
 255 from JIA patients over time. L = left knee, R = right knee. **B.** Venn diagrams displaying
 256 the 100 most abundant unique TCR β clones, defined by amino acid sequence, for
 257 longitudinal SF samples from all patients. **C.** Frequency plots showing the overlapping
 258 non-Treg clones between visits for SF and PB, with color coding and shapes

259 highlighting the number of samples in which unique clones are found. R = right, L =
260 left. **D.** Correlation (linear regression, dashed line) between frequency (x-axis) and
261 generation probability (y-axis) of TCR clones shared across two visits for SF samples.

262

263 **Patterns in similar TCR sequences are shared between JIA patient knees**

264 Recent studies have demonstrated that immune responses against a particular
265 antigen involve T cell clones with similar TCR sequences(30–32). To investigate
266 whether persistent T cell clones in JIA cluster together with other, similar T cell clones
267 involved in responses against the same antigens, we performed TCR similarity
268 analysis, focusing on SF samples obtained from two affected knees. We constructed
269 similarity networks for JIA patients and compared these to networks generated from
270 random repertoires with the same number of TCR β sequences (Figure 6A). TCR
271 networks from JIA patients were highly connected (more than expected by chance),
272 showing that patient repertoires exhibit a high degree of sequence similarity (Figure
273 6B). Moreover, in the random repertoires, clusters were less mixed (indicated by a high
274 cluster purity) than JIA networks (Figure 6C), highlighting that TCRs from JIA samples
275 display higher sequence similarity than expected by chance. Overall, these results
276 show that the SF Treg repertoire is highly skewed by antigenic selection.

277

278 **Figure 6. TCR similarity analysis of sequences found across distinct JIA patient**
 279 **knees. A.** TCR similarity networks based on amino acid k-mer sharing ($k = 3$) between

280 TCR sequences. Every node represents one TCR β sequence, with sequences present
281 in one sample (SF from left or right knees) highlighted in blue and orange, and
282 sequences shared across two samples highlighted in green. Nodes are connected if
283 TCRs share at least 8 k-mers. Networks from JIA patient repertoires (right) are
284 compared to random repertoires (left), with the same repertoire size. **B.** Number of
285 TCR sequences (x-axis) and their connections (y-axis) to other TCR sequences of the
286 top five similarity clusters identified in A. Blue density maps depict clusters identified in
287 random repertoires (N=100), while black circles depict clusters identified in JIA
288 patients. **C.** Cluster purity (y-axis, %) for the top five clusters identified in random
289 repertoires (RC), and JIA patient TCR similarity networks. Numbers indicate p-value of
290 difference between RC and JIA (Mann-Whitney).

291

292 **DISCUSSION**

293 In this study, we provide the first CyTOF and TCR β sequencing analysis of
294 purified Tregs and non-Tregs, uncovering their spatial and temporal behavior in a
295 human autoimmune disease setting. Although the antigen(s) driving T cell activation
296 and expansion in JIA remain elusive, our data provide strong support for the presence
297 of ubiquitously expressed auto-antigens given the observed overlap in dominant
298 clones over time and in space. Given the tissue restrictive character of the JIA, it is
299 tempting to speculate that the potential antigen would be joint-specific, although it has
300 been shown that ubiquitously expressed auto-antigens can also induce joint-specific
301 autoimmune disease(33,34). We show that SF Tregs have high expression of Ki67
302 (marking proliferation and thus recent antigen encounter), suggesting that these cells
303 actively respond to synovial antigens. Moreover, we show that the expansion of
304 dominant TCR clones is not dependent on generation probabilities, further highlighting

305 that antigen are driving T cell activation. Further support for the hypothesis that
306 persistent, hyper-expanded Tregs found in JIA SF are auto-reactive is provided by a
307 recent study performed in mice with type 1 diabetes, where Tregs with a high degree
308 of self-reactivity were found to be expanding locally in affected pancreatic islets and
309 displayed a specific profile with elevated levels of GITR, CTLA-4, ICOS and Ki67, very
310 similar to our observations(35).

311 Our data demonstrated that dominant T cell clones in SF can be traced back in
312 circulation. Together with observations that similar T cell clones are detected in multiple
313 affected joints and the obvious overlap in immune cell composition, this strongly
314 suggests that T cells migrate from the joint to peripheral blood and vice versa. This
315 could mean that Tregs are either recirculating, or actively being replenished from
316 circulating (precursor) T cells. These observations are in line with other recent studies
317 in arthritis showing that synovial CD4+ T cells and Treg clones can also be detected in
318 PB(25,36), where their presence correlates with disease activity and response to
319 therapy(25,37). Moreover, for refractory JIA patients who underwent autologous
320 hematopoietic stem cell transplantation (aHSCT), transplant outcome was shown to be
321 dependent upon the diversity of circulating Tregs(27,37). This knowledge, combined
322 with our findings that the same T cell clones dominate the immune response at different
323 sites of inflammation and the persistence of the same clones in the relapsing-remitting
324 course of disease, strengthen the possibility to use circulating disease-associated T
325 cell clones for disease monitoring or prognostic purposes. However, to accurately
326 monitor and predict which T cell clones from PB are implicated in active immune
327 processes in joints, more detailed phenotyping is needed to fully characterize the
328 functional profile and origins of dominant clones. Multi-omic single-cell profiling to link
329 TCR specificity with gene expression will help to bring this closer to the clinic.

330 The existence of a temporal and spatially persistent clonal Treg TCR repertoire,
331 raises the question to what degree clonally expanded Tregs can modulate
332 inflammation over the course of an autoimmune response. Various studies have shown
333 that Tregs in JIA maintain their suppressive capacity, but local effector T cells are
334 resistant to this suppression(9,38). Thus, the clonotypic expansion in SF Treg cells
335 might reflect an insufficient attempt to control expanding effector T cells. The
336 importance of a diverse Treg repertoire is shown in several mouse models(19–22).
337 Föhse *et al.* showed that Tregs with a higher diversity are able to expand more
338 efficiently compared to Treg with a lower diversity in mice with TCR restricted
339 conventional T cells(20). It has been suggested that this is due to the TCR diverse
340 Tregs having access to more ligands and as a result being able to out-compete the
341 TCR-restricted Treg cells(16). However, this applies for circulating Treg, and whether
342 this would also be important for Treg in tissues is not known. The finding that tissue
343 Treg residing in healthy tissues also show a considerable oligoclonality regarding their
344 TCR repertoire may indicate that this is a normal feature(39,40). Additionally, it was
345 recently shown that a diverse Treg repertoire in mice is especially needed to control
346 Th1 responses, whereas Th2 and Th17 responses were still suppressed by single Treg
347 clones(23). This could be an explanation why the Th1 rich SF environment is poorly
348 controlled by the large amount of clonally expanded Tregs. Thus, hyper-expanded
349 Tregs alone might not be sufficient to prevent or inhibit autoimmune responses, and
350 future Treg centric therapies should take this into account.

351 In this study, we sequenced the β -chain of the TCR and not the α -chain. The
352 identified dominant TCR β clones can pair with several α -chains, possibly leading to
353 less overlapping TCR repertoire and a different Ag specificity. Future sequencing of
354 both TCR chains will provide insight into the total TCR repertoire. Next to that, we are

355 aware of a possible amplification bias because of a difference in efficiency of PCR
356 primers. However, in our analysis approach we attempted to control as much as
357 possible for such biases. An interesting next step would be to combine single cell RNA-
358 sequencing with identification of the TCR to directly link the expression profile of a
359 given cell to its TCR clonotype and facilitate the identification of the antigenic target
360 and its HLA class II restriction.

361 In conclusion, we show that in SF the immune cell architecture is marked by
362 inflammatory responses of activated effector T cells as well as activated and highly
363 expanding Tregs. The remarkable overlap in immune cell composition as well as the
364 dominant clones over time and in space provide indications for a powerful driving force
365 that shapes the local T cell response during joint inflammation. The presence of these
366 inflammation-associated clones in the circulation provide promising perspectives for
367 use in disease monitoring. Moreover, the high degree of sequence similarity observed
368 between Treg clones obtained from distinct inflamed joints indicates that antigen
369 selection significantly reshapes the local Treg repertoire. Further research is needed
370 to pinpoint these driving antigens and to create opportunities to target disease-specific
371 T cells.

372

373 **MATERIALS AND METHODS**

374 **Collection of SF and PB Samples**

375 Patients with JIA were enrolled at the University Medical Center of Utrecht (The
376 Netherlands). A total of 9 JIA patients were included in this study. Of these, n=2 were
377 diagnosed with extended oligo JIA, n=2 with rheumatoid factor negative poly-articular
378 JIA, and n=5 with oligo JIA, according to the revised criteria for JIA(41). The average

379 age at the time of inclusion was 13,1 years (range 3,2 – 18,1 years) with a disease
380 duration of 7,3 years (range 0.4 – 14.2 years).

381 Peripheral blood (PB) of JIA patients was obtained via veni-puncture or
382 intravenous drip, while synovial fluid (SF) was obtained by therapeutic joint aspiration
383 of affected joints. Informed consent was obtained from all patients either directly or
384 from parents/guardians when the patients were younger than 12 years of age. The
385 study was conducted in accordance with the Institutional Review Board of the
386 University Medical Center Utrecht (approval no. 11-499/C), in compliance with the
387 Declaration of Helsinki. PB from n=3 healthy children (average age 15,1 years with
388 range 14,7 - 15,4 years) was obtained from a cohort of control subjects for a case-
389 control clinical study.

390

391 **Cell isolation**

392 For cell isolation, SF was incubated with hyaluronidase (Sigma-Aldrich, St.
393 Louis, Missouri, United States) for 30 min at 37°C to break down hyaluronic acid.
394 SFMCs and PBMCs were isolated using Ficoll Isopaque density gradient centrifugation
395 (GE Healthcare Bio-Sciences AB, Uppsala Sweden), and were used after freezing in
396 Fetal Calf Serum (FCS) (Invitrogen, Waltham, Massachusetts, United States)
397 containing 10% DMSO (Sigma-Aldrich).

398

399 **Flow cytometry and cell sorting**

400 For TCR sequencing purposes, CD3⁺CD4⁺CD25^{high}CD127^{low} Tregs and
401 CD3⁺CD4⁺CD25^{low/int}CD127^{int/high} non-Tregs were isolated from frozen PBMC and
402 SFMC, using the FACS Aria III (BD, Franklin Lakes, New Jersey, United States).
403 Antibodies used for sorting were: anti human CD3-BV510 (Biolegend, San Diego,

404 California, United States), CD4-FITC (eBioscience, Frankfurt am Main, Germany),
405 CD25-PE/Cy7 (BD), CD127-AF647 (Biolegend). To check for FOXP3 expression of
406 the sorted populations anti human FOXP3-eF450 (eBioscience) was used.

407

408 **CyTOF and CyTOF data analysis**

409 Frozen PBMCs and SFMCs were thawed and stained with a T cell focused
410 panel of 37 heavy metal-conjugated antibodies (Supplemental Table 1), as previously
411 described(42), and analyzed by CyTOF-Helios (Fluidigm, San Francisco, California,
412 United States). Briefly, PBMCs were stimulated with or without phorbol 12-myristate
413 13-acetate (150 ng/ml, Sigma-Aldrich) and ionomycin (750 ng/ml, Sigma-Aldrich) for 4
414 hours, and blocked with secretory inhibitors, brefeldin A (1:1000, eBioscience) and
415 monensin (1:1000, Biolegend) for the last 2 hours. The cells were then washed and
416 stained with cell viability dye cisplatin (200 µM, Sigma-Aldrich). Each individual sample
417 was barcoded with a unique combination of anti-CD45 conjugated with either heavy
418 metal 89, 115, 141 or 167, as previously described(43). Barcoded cells were washed
419 and stained with the surface antibody cocktail for 30 min on ice, and subsequently
420 washed and re-suspended in fixation/permeabilization buffer (permeabilization buffer,
421 eBioscience) for 45 min on ice. Permeabilized cells were subsequently stained with an
422 intra-cellular antibody cocktail for 45 min on ice, followed by staining with a DNA
423 intercalator Ir-191/193 (1:2000 in 1.6% w/v paraformaldehyde, Fluidigm) overnight at
424 4°C or for 20 min on ice. Finally, the cells were washed and re-suspended with EQ™
425 Four Element Calibration beads (1:10, Fluidigm) at a concentration of 1x10⁶ cells/ml.
426 The cell mixture was then loaded and acquired on a Helios mass cytometer (Fluidigm)
427 calibrated with CyTOF Tunning solution (Fluidigm). The output FCS files were

428 randomized and normalized with the EQ™ Four Element Calibration beads (Fluidigm)
429 against the entire run, according to the manufacturer's recommendations.

430 Normalized CyTOF output FCS files were de-barcoded manually into individual
431 samples in FlowJo (v.10.2), and down-sampled to equal cell events (5000 cells) for
432 each sample. Batch run effects were assessed using an internal biological control
433 (PBMC aliquots from the same healthy donor for every run). Normalized cells were
434 then clustered with MarVis(44), using Barnes Hut Stochastic Neighbor Embedding
435 (SNE) nonlinear dimensionality reduction algorithm and k-means clustering algorithm,
436 as previously described(42). The default clustering parameters were set at perplexity
437 of 30, and p<1e-21. The cells were then mapped on a 2-dimensional t-distributed SNE
438 scale based on the similarity score of their respective combination of markers, and
439 categorized into nodes (k-means). To ensure that the significant nodes obtained from
440 clustering were relevant, we performed back-gating of the clustered CSV files and
441 supervised gating of the original FCS files with FlowJo as validation. Visualizations
442 (density maps, node frequency fingerprint, node phenotype, radar plots) were
443 performed through R scripts and/or Flow Jo (v.10.2). Correlation matrix and node
444 heatmaps were generated using MarVis(44) and PRISM (v 7.0).

445
446 **TCR sequencing and analysis**

447 Tregs and non-Tregs were lysed in RLT buffer (Qiagen, Hilden, Germany) and
448 frozen at -80°C. Between 0.15x10⁶ and 1x10⁶ Tregs, and between 0.46x10⁶ and 1x10⁶
449 non-Tregs were obtained for TCR sequencing. Total RNA was isolated using the
450 RNeasy Mini Kit (Qiagen) for cell fractions $\geq 0.2 \times 10^6$ cells and the RNeasy Micro Kit
451 (Qiagen) for fractions $\leq 0.2 \times 10^6$ cells, following the manufacturer's instructions. cDNA
452 was synthesized using the SMARTer RACE cDNA Amplification kit (Clontech, Palo
453 Alto, California, United States). Amplification of the TCR β VDJ region was performed

454 using previously described primers and amplification protocols(45). PCR product
455 fragment size was analyzed using the QIAxcel Advanced System (Qiagen). End repair
456 and barcode adapter ligation were performed with the NGSgo®-LibrX and NGSgo®-
457 IndX (GenDx, Utrecht, The Netherlands) according to the manufacturer's instructions.
458 Cleanup of the samples was performed after each step using HighPrep PCR beads
459 and following the manufacturer's instructions (GC Biotech, Waddinxveen, The
460 Netherlands). Paired-end next-generation sequencing was performed on the Illumina
461 MiSeq system 500 (2 x250 bp) (Illumina, San Diego, California, United States). TCR
462 sequencing analysis was performed using RTCR as previously described(46).

463

464 **TCR network analysis**

465 For sequence similarity analysis, we counted the presence of overlapping 3-mer
466 amino acid segments (defined as k-mers) in the TCR β (CDR3) sequences. TCR
467 sequences were considered similar when they shared at least 8 k-mers, independent
468 of the total sequence length. Random repertoires were generated using the generative
469 model of V(D)J recombination implemented in OLGA(29). For equal comparison to
470 biological samples, random repertoires were down sampled to equal the number of
471 TCR sequences. Cluster purity was calculated as the ratio of number of TCR
472 sequences from the most abundant sequence within the cluster and the total number
473 of TCR sequences in the cluster.

474

475 **Statistical analyses**

476 Nonparametric Mann Whitney (two-tailed) statistical test was performed in the
477 manual gating of cellular subsets in FlowJo; p-values <0.05 were considered
478 statistically significant. The correlation matrix for the node frequency was calculated

479 using Spearman's rank-order correlation. Generation probabilities (P_{gens}) of TCR β
480 amino acid sequences were computed using OLGA(29). Figures were produced using
481 the R package ggplot2(47). Venn diagrams were made on:
482 <http://bioinformatics.psb.ugent.be/webtools/Venn/>.

483

484 **COMPETING INTERESTS**

485 None declared.

486

487 **FUNDING**

488 F. van Wijk is supported by a VIDI grant from ZonMw (91714332). A.P. is supported
489 by Netherlands Organisation for Scientific Research (NWO) (Grant number
490 016.Veni.178.027).

491

492 **ETHICS APPROVAL**

493 The study was approved by the board of the Local Medical Ethical Committee (METC).

494

495 **DATA AVAILABILITY STATEMENT**

496 TCR-sequencing data presented in this study have been deposited in NCBI's Gene
497 Expression Omnibus (GEO) database under GSE196301. Both raw data and
498 processed data are available.

499

500

501 **REFERENCES**

502 1. David T, Ling SF, Barton A. Genetics of immune-mediated inflammatory
503 diseases. *Clin Exp Immunol*. 2018;193(1):3–12.

504 2. Black APB, Bhayani H, Ryder CAJ, et al. T-cell activation without proliferation
505 in juvenile idiopathic arthritis. *Arthritis Res Ther.* 2002;4(3):177.

506 3. Wehrens EJ, Prakken BJ, van Wijk F. T cells out of control—impaired immune
507 regulation in the inflamed joint. *Nat Rev Rheumatol.* 2013;9(1):34–42.

508 4. Long SA, Buckner JH. CD4 + FOXP3 + T Regulatory Cells in Human
509 Autoimmunity: More Than a Numbers Game. *J Immunol.* 2011;187(5):2061–6.

510 5. Kumar BV., Ma W, Miron M, et al. Human Tissue-Resident Memory T Cells Are
511 Defined by Core Transcriptional and Functional Signatures in Lymphoid and
512 Mucosal Sites. *Cell Rep.* 2017;20(12):2921–34.

513 6. Nistala K, Adams S, Cambrook H, et al. Th17 plasticity in human autoimmune
514 arthritis is driven by the inflammatory environment. *Proc Natl Acad Sci.*
515 2010;107(33):14751–6.

516 7. Cosmi L, Cimaz R, Maggi L, et al. Evidence of the transient nature of the Th17
517 phenotype of CD4+CD161+ T cells in the synovial fluid of patients with juvenile
518 idiopathic arthritis. *Arthritis Rheum.* 2011;63(8):2504–15.

519 8. Ohl K, Nickel H, Moncrieffe H, et al. The transcription factor CREM drives an
520 inflammatory phenotype of T cells in oligoarticular juvenile idiopathic arthritis.
521 *Pediatr Rheumatol.* 2018;16(1):39.

522 9. Wehrens EJ, Mijnheer G, Duurland CL, et al. Functional human regulatory T
523 cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation
524 in effector cells. *Blood.* 2011;118(13):3538–48.

525 10. Duurland CL, Brown CC, O'Shaughnessy RFL, et al. CD161+ Tconv and
526 CD161+ Treg Share a Transcriptional and Functional Phenotype despite
527 Limited Overlap in TCR β Repertoire. *Front Immunol.* 2017;8.

528 11. Muraro PA, Cassiani-Ingoni R, Chung K, et al. Clonotypic analysis of

529 cerebrospinal fluid T cells during disease exacerbation and remission in a
530 patient with multiple sclerosis. *J Neuroimmunol.* 2006;171(1–2):177–83.

531 12. Chapman CG, Yamaguchi R, Tamura K, et al. Characterization of T-cell
532 Receptor Repertoire in Inflamed Tissues of Patients with Crohn's Disease
533 Through Deep Sequencing. *Inflamm Bowel Dis.* 2016;22(6):1275–85.

534 13. Doorenspleet ME, Westera L, Peters CP, et al. Profoundly Expanded T-cell
535 Clones in the Inflamed and Uninflamed Intestine of Patients With Crohn's
536 Disease. *J Crohn's Colitis.* 2017;11(7):831–9.

537 14. Günaltay S, Repsilber D, Helenius G, et al. Oligoclonal T-cell Receptor
538 Repertoire in Colonic Biopsies of Patients with Microscopic Colitis and
539 Ulcerative Colitis. *Inflamm Bowel Dis.* 2017;23(6):932–45.

540 15. Musters A, Klarenbeek PL, Doorenspleet ME, et al. In Rheumatoid Arthritis,
541 Synovitis at Different Inflammatory Sites Is Dominated by Shared but Patient-
542 Specific T Cell Clones. *J Immunol.* 2018;201(2):417–22.

543 16. Wing JB, Sakaguchi S. TCR diversity and Treg cells, sometimes more is more.
544 *Eur J Immunol.* 2011;41(11):3097–100.

545 17. Leung MWL, Shen S, Lafaille JJ. TCR-dependent differentiation of thymic
546 Foxp3+ cells is limited to small clonal sizes. *J Exp Med.* 2009;206:2121–30.

547 18. Wang C, Sanders CM, Yang Q, et al. High throughput sequencing reveals a
548 complex pattern of dynamic interrelationships among human T cell subsets.
549 *Proc Natl Acad Sci.* 2010;107(4):1518–23.

550 19. Adeegbe D, Matsutani T, Yang J, et al. CD4 + CD25 + Foxp3 + T Regulatory
551 Cells with Limited TCR Diversity in Control of Autoimmunity. *J Immunol.*
552 2010;184(1):56–66.

553 20. Föhse L, Suffner J, Suhre K, et al. High TCR diversity ensures optimal function

554 andhomeostasis of Foxp3 + regulatory Tcells. Eur J Immunol.
555 2011;41(11):3101–13.

556 21. Yu A, Dee MJ, Adeegbe D, et al. The Lower Limit of Regulatory CD4 + Foxp3 +
557 TCR β Repertoire Diversity Required To Control Autoimmunity. J Immunol.
558 2017;198(8):3127–35.

559 22. Nishio J, Baba M, Atarashi K, et al. Requirement of full TCR repertoire for
560 regulatory T cells to maintain intestinal homeostasis. Proc Natl Acad Sci.
561 2015;112(41):12770–5.

562 23. Levine AG, Hemmers S, Baptista AP, et al. Suppression of lethal autoimmunity
563 by regulatory T cells with a single TCR specificity. J Exp Med.
564 2017;214(3):609–22.

565 24. Bending D, Giannakopoulou E, Lom H, et al. Synovial Regulatory T Cells
566 Occupy a Discrete TCR Niche in Human Arthritis and Require Local Signals To
567 Stabilize FOXP3 Protein Expression. J Immunol. 2015;195(12):5616–24.

568 25. Rossetti M, Spreafico R, Consolaro A, et al. TCR repertoire sequencing
569 identifies synovial Treg cell clonotypes in the bloodstream during active
570 inflammation in human arthritis. Ann Rheum Dis. 2017;76(2):435–41.

571 26. Henderson LA, Volpi S, Frugoni F, et al. Next-Generation Sequencing Reveals
572 Restriction and Clonotypic Expansion of Treg Cells in Juvenile Idiopathic
573 Arthritis. Arthritis Rheumatol. 2016;68(7):1758–68.

574 27. Delemarre EM, van den Broek T, Mijnheer G, et al. Autologous stem cell
575 transplantation aids autoimmune patients by functional renewal and TCR
576 diversification of regulatory T cells. Blood. 2016;127(1):91–101.

577 28. Petrelli A, Mijnheer G, Hoytema Van Konijnenburg DP, et al. PD-1+CD8+ T
578 cells are clonally expanding effectors in human chronic inflammation. J Clin

579 Invest. 2018; 128(10):4669–4681.

580 29. Sethna Z, Elhanati Y, Callan CG, et al. OLGA: fast computation of generation
581 probabilities of B- and T-cell receptor amino acid sequences and motifs.
582 Bioinformatics. 2019;35(17):2974–81.

583 30. Dash P, Fiore-Gartland AJ, Hertz T, et al. Quantifiable predictive features
584 define epitope-specific T cell receptor repertoires. Nature. 2017;547(7661):89–
585 93.

586 31. Glanville J, Huang H, Nau A, et al. Identifying specificity groups in the T cell
587 receptor repertoire. Nature. 2017;547(7661):94–8.

588 32. Pogorelyy M V., Minervina AA, Shugay M, et al. Detecting T cell receptors
589 involved in immune responses from single repertoire snapshots. PLOS Biol.
590 2019;17(6):e3000314.

591 33. Ito Y, Hashimoto M, Hirota K, et al. Detection of T cell responses to a
592 ubiquitous cellular protein in autoimmune disease. Science.
593 2014;346(6207):363–8.

594 34. Mandik-Nayak L, Wipke BT, Shih FF, et al. Despite ubiquitous autoantigen
595 expression, arthritogenic autoantibody response initiates in the local lymph
596 node. Proc Natl Acad Sci. 2002;99(22):14368–73.

597 35. Sprouse ML, Scavuzzo MA, Blum S, et al. High self-reactivity drives T-bet and
598 potentiates Treg function in tissue-specific autoimmunity. JCI Insight.
599 2018;3(2):e97322.

600 36. Spreafico R, Rossetti M, van Loosdregt J, et al. A circulating reservoir of
601 pathogenic-like CD4 + T cells shares a genetic and phenotypic signature with
602 the inflamed synovial micro-environment. Ann Rheum Dis. 2016;75(2):459–65.

603 37. Lutter L, Spierings J, van Rhijn-Brouwer FCC, et al. Resetting the T Cell

604 Compartment in Autoimmune Diseases With Autologous Hematopoietic Stem
605 Cell Transplantation: An Update. *Front Immunol.* 2018 Apr 20;9:767.

606 38. Haufe S, Haug M, Schepp C, et al. Impaired suppression of synovial fluid
607 CD4+CD25- T cells from patients with juvenile idiopathic arthritis by
608 CD4+CD25+ Treg cells. *Arthritis Rheum.* 2011;63(10):3153–62.

609 39. Burzyn D, Kuswanto W, Kolodin D, et al. A Special Population of Regulatory T
610 Cells Potentiates Muscle Repair. *Cell.* 2013;155(6):1282–95.

611 40. Sanchez Rodriguez R, Pauli ML, Neuhaus IM, et al. Memory regulatory T cells
612 reside in human skin. *J Clin Invest.* 2014;124(3):1027–36.

613 41. Petty RE, Southwood TR, Baum J, Bhettay E, Glass DN, Manners P, et al.
614 Revision of the proposed classification criteria for juvenile idiopathic arthritis:
615 Durban, 1997. In: *Journal of Rheumatology.* 1998.

616 42. Chew V, Lee YH, Pan L, et al. Immune activation underlies a sustained clinical
617 response to Yttrium-90 radioembolisation in hepatocellular carcinoma. *Gut.*
618 2019;68(2):335–46.

619 43. Lai L, Ong R, Li J, et al. CD45-based barcoding approach to multiplex mass-
620 cytometry (CyTOF). *Cytom Part A.* 2015;87(4):369–74.

621 44. Kaever A, Lingner T, Feussner K, et al. MarVis: a tool for clustering and
622 visualization of metabolic biomarkers. *BMC Bioinformatics.* 2009;10(1):92.

623 45. Zhou D, Srivastava R, Grummel V, et al. High throughput analysis of TCR- β
624 rearrangement and gene expression in single T cells. *Lab Investig.*
625 2006;86(3):314–21.

626 46. Gerritsen B, Pandit A, Andeweg AC, De Boer RJ. RTCR: A pipeline for
627 complete and accurate recovery of T cell repertoires from high throughput
628 sequencing data. *Bioinformatics.* 2016 Oct 15;32(20):3098–106.

629 47. Wickham H. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New
630 York; 2016.
631