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21

22 Abstract

23 Insecticide resistance is a significant challenge facing the successful control of mosquito

24 vectors globally. Bioassays are currently the only method for phenotyping resistance. They
25  require large numbers of mosquitoes for testing, the availability of a susceptible comparator
26  strain and often insectary facilities. This study aimed to trial the novel use of rapid

27  evaporative ionisation mass spectrometry (REIMS) for the identification of insecticide

28  resistance in mosquitoes. No sample preparation is required for REIMS and analysis can be
29  rapidly conducted within hours. Temephos resistant Aedes aegypti (Linnaeus) larvae from
30  Cucuta, Colombia and temephos susceptible larvae from two origins (Bello, Colombia, and
31  the lab reference strain New Orleans) were analysed using REIMS. We tested the ability of
32 REIMS to differentiate three relevant variants: population source, lab versus field origin and
33  response to insecticide. The classification of these data was undertaken using linear

34  discriminant analysis (LDA) and random forest. Classification models built using REIMS
35 data were able to differentiate between Ae. aegypti larvae from different populations with
36 82% (= 0.01) accuracy, between mosquitoes of field and lab origin with 89% (+ 0.01)

37  accuracy and between susceptible and resistant larvae with 85% (z 0.01) accuracy. LDA

38  classifiers had higher efficiency than random forest with this data set. The high accuracy

39  observed here identifies REIMS as a potential new tool for rapid identification of resistance
40  in mosquitoes. We argue that REIMS and similar modern phenotyping alternatives should

41 complement existing insecticide resistance management tools.

42 Keywords:

43 Insecticide resistance, rapid evaporative ionisation mass spectrometry, REIMS, Aedes

44  aegypti, larvae, Colombia
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45  |ntroduction

46 Insecticide resistance is one of the most significant challenges posed to mosquito control
47  programmes. The control of mosquito vectors, including Aedes aegypti (Linnaeus) the

48  principal vector for the dengue, Zika and chikungunya viruses, relies heavily on the use of
49  insecticides to reduce disease burden. There are only four insecticides classes which are

50 licensed for use in public health: organophosphates, organochlorines, pyrethroids and

51  carbamates. Resistance has now been reported in Ae. aegypti to all four of these chemical
52  classes (Ranson et al. 2010, Vontas et al. 2012, Moyes et al. 2017). Insecticide resistance in
53  Ae aegypti is also spread worldwide with reports in South America (Guedes et al. 2020),
54  North America (Marcombe et al. 2014), Asia (Amelia-Yap et al. 2018), Europe (Seixas et al.
55  2017), Africa (Weetman et al. 2018), and Oceania (Demok et al. 2019). This trend is

56  compromising effective vector control (Viana-Medeiros et al. 2007, Bisset et al. 2011,

57  Marcombe et al. 2011).

58 Insecticide resistance management (IRM) which aims to prevent, slow, or reverse the

59  emergence of resistance is therefore crucial for sustainable vector control. The first step in
60 IRM is to monitor local populations for the development of insecticide resistance whilst

61  establishing its impact on effective vector control (Dusfour et al. 2019). Current methods for
62  resistance monitoring include bioassays, biochemical assays, and molecular testing.

63  Biochemical assays and molecular testing are used to identify the specific mechanisms

64  responsible for insecticide resistance, allowing for appropriate IRM strategies to be

65 implemented (Hemingway et al. 2013). However, insecticide bioassays (e.g. WHO tube and
66  CDC bottle assays) are the only current method for identifying (phenotyping) resistance in
67  mosquitoes. Bioassays have low sensitivity, lengthy completion times (24 hours) and often
68  only detect high levels of resistance which maybe too late for alternative measures to be

69  deployed (Dusfour et al. 2019). Other limitations include the requirement of large numbers of
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70 individual mosquitoes, and the availability of a comparable susceptible strain (World Health
71 Organization (WHO) 2016). Alternative phenotyping methods that can surpass those

72 limitations are necessary.

73 Rapid evaporative ionisation mass spectrometry (REIMS) is a relatively new technology

74 which provides a rapid method of mass spectrometry without the need for any sample

75  preparation. Samples are burned by diathermy and the resultant aerosols are collected,

76  ionized, and analysed by mass spectrometry (Schafer et al. 2009, Balog et al. 2010, 2013,

77 2015). The spectra, collected in negative ion mode, largely reflect the lipid composition of

78  the sample, and is collected over a wide range of m/z values. The spectra are then are

79  discretised by binning, creating a data matrix that is further processed by dimension reduction
80 and classification (Balog et al. 2010). The potential applications of REIMS are vast with its
81  previous successful applications including distinguishing cancerous tissue from healthy tissue
82  (Alexander et al. 2017, St John et al. 2017, Phelps et al. 2018), authentication of food

83  products (Balog et al. 2016, Black et al. 2017, Verplanken et al. 2017, Guitton et al. 2018,

84  Rigano et al. 2019), microbial species identification (Strittmatter et al. 2013, 2014),

85  monitoring of bacterial growth and recombinant protein expression (Sarsby et al. 2021), and
86 the identification of rodent species and sex from faecal matter (Davidson et al. 2019). REIMS
87  has also been shown to be a highly effective method for species and sex determination in

88  Drosophila adults and larvae (Wagner et al. 2020).

89  Here we present a proof-of-concept for the novel use of REIMS as a rapid tool for the

90 identification of insecticide resistance in Ae. aegypti larvae. We analysed three Ae. aegypti
91  populations, previously profiled for susceptibility to the larvicide temephos (Morgan et al.
92  2021): a resistant population originating from field collected mosquitoes from Cucuta

93  (Colombia) and two susceptible populations, one field originating population from Bello

94  (Colombia) and a susceptible laboratory reference strain, New Orleans. The results
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95 demonstrate the potential of REIMS for phenotyping insecticide resistant mosquitoes with
96 relevant discriminatory power and faster and less labour-intensive methods which may be

97  used to complement existing IRM strategies.

98 Materials and methods

99 Mosquito samplesand rearing
100  Aedes aegypti larvae from three populations previously tested for susceptibility to temephos
101 (Morgan et al. 2021) were used in this study. Two field populations were used, one temephos
102 resistant (field resistant (FR) and one susceptible (field susceptible (FS)), the susceptible Ae.
103 aegypti laboratory strain New Orleans (lab susceptible (LS)) was also used (Fig.1). Ae.
104  aegypti were reared to fourth instar larvae following a standard rearing protocol and under
105  standard conditions within Edge Hill University Vector Research Group insectaries. Standard
106  conditions were 27°C and 70% relative humidity with an 11-hour day/night cycle with 60-
107  minute dawn/dusk simulation periods, using a lighting system of 4x Osram Dulux 26W 840
108 lights. Eggs were submerged in a hatching broth of 350 ml dH,0, 0.125 g nutrient broth
109  (Sigma-Aldrich, Dorset, UK) and 0.025 g brewer’s yeast (Holland & Barrett, Ormskirk, UK)
110  for 48 hours (Zheng et al. 2015). Once hatched, larvae were reared at a density of 0.5
111 larva/ml in dH,0 and fed ground fish food (AQUARIAN® advanced nutrition) at increasing
112 quantities per day (day 3 = 0.08 mg/larva, day 4 = 0.16 mg/larva, day 5 = 0.31 mg/larva, day
113 6 =0 mg/larva) (Carvalho et al. 2014). For each experimental group (FR, FS, LS) four
114  Dbiological replicates were conducted, using eggs from different females each submerged on
115  different days. Seven days after egg submission larvae were removed and stored at -20°C
116  until REIMS analysis. The storage period ranged from 32-36 weeks (Table 1). The number of
117  larvae analysed per biological replicate ranged from 8-15 with a total of 42-51 larvae per

118  experimental group (Table 1).
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119  Rapid evaporative ionisation mass spectrometry analysis

120  Rapid evaporative ionisation mass spectrometry analysis was conducted following the

121 detailed methods outlined by Wagner et al. (2020). Larvae were burned using a monopolar
122 electrosurgical pencil (Erbe Medical UK Ltd, Leeds); the electric current was provided to the
123 pencil by a VIO 50 C electrosurgical generator, a black conductive rubber mat acted as the
124  counter electrode to enable the flow of electricity through the sample. The entire biomass of
125  each larva was burned, and the aerosols produced were aspirated through tubing attached to
126  the pencil into the REIMS source using a nitrogen powered venturi valve. Leucine enkephalin
127  (Waters, UK) in propan-2-ol (CHROMASOLYV, Honeywell Riedel-de-Haén) was used as a
128  lock mass solution and continuously introduced via a whistle in the venturi tube at a flow rate
129  of 30 pl min—1. REIMS was conducted using a Synapt G2Si instrument ion mobility

130  equipped quadrupole time of flight mass spectrometer (Waters, UK). A heated impactor

131 (Kanthal metal coil at 900°C) within the REIMS source was used to decluster the ionized

132 particles. Mass spectra were acquired in negative ion mode at a rate of 1 scan per second over
133 a mass/charge range of m/z50-1200. All larvae were analysed in a single day in a random

134 order created by a random number generator within Microsoft excel.

135 Data analysis

136  The raw data files were imported into the Offline Model Builder software (OMB-1.1.28;

137  Waters Research Centre, Hungary). Each data file/sample contains the burn event of only one
138 larva, therefore the option to create one spectrum per sample was selected. The background
139  was subtracted, and the spectra corrected using the lock mass (leucine enkephalin, m/z

140  554.26). The normalised intensities were then binned into 0.1 m/z wide groups. The binned
141 mass spectra data were then imported into R (version 3.6.3) (R Core Team 2020) for further

142 analysis.
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143 Dimension reduction was carried out by principal components analysis (PCA) using the R
144  package factoextra (version 1.0.7) (Kassambara and Mundt 2020). Different numbers of

145  principal components were then extracted (10,20,40,60,80,100) and used for classification of
146  samples into categories: population, population type and resistance status. Classification was
147  conducted using two different model types; linear discriminant analysis (LDA) and random
148  forest (RF), with the data randomly split into 70% training data and 30% test data. Each

149  model was built using variable numbers of principal components (PCs) extracted using PCA
150  and the most accurate model selected and used for analysis. LDA models with varying

151  numbers of PCs were built using the R package MASS (version 7.3.53) (W. N. Venables and
152 B. D. Ripley 2002), model validation was conducted by plotting receiver operating

153  characteristic curves (ROC) and selecting the model with the highest area under ROC curve
154  (AUC) (Supp Fig.S2-11). Random forest models were validated using the R package caret
155  (version 6.0.88) (Kuhn 2021) to select the model with optimum PCs, number of variables

156  available for splitting at each tree node (mtry) and tree number. The random forest models
157  with the highest overall accuracy following building in caret were selected for use in the

158  analysis with models built using the R package randomForest (version 4.6.14) (Liaw and

159  Wiener 2002). Random under sampling in the caret package was used to balance classes prior
160  to RF analysis as this showed increase in overall model performance. Class imbalance did not
161  affect performance of LDA models, as no difference in classification accuracy was observed
162  between the different groups within the models, therefore no over or under sampling was

163  required. LDA and RF models with parameters as selected by model validation were each ran
164 20 times using a different random split of test (30%) and training (70%) data. The model

165  statistics: percentage accuracy, standard error of means (SEM) and range, were then averaged

166  across all 20 replicates. LDA following PCA was also used to visualise the separation of
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167  samples, plots were created using the R packages ggplot2 (version 3.3.2) (Wickham 2016)

168  and ggpubr (version 0.4.0) (Kassambara 2020).

169  The experimental design is outlined in Fig.1. A code for analysing REIMS data using LDA
170  and random forest classification models which can be applied to other similar datasets is
171 available in Supplementary File 1. All raw data files are available in the MetaboLights

172 database under the accession number MTBLS4129. The data matrix, created in OMB and

173 used for subsequent analysis in R is available in Supplementary table 1.

174  Results

175  Population source

176  Visualisation of the data, following PCA-LDA analysis showed a clear discrimination

177  between Ae. aegypti larvae from different geographical origins (Fig.2A). All three

178  populations; field susceptible, field resistant and lab susceptible were separated in linear

179  discriminant one whilst the field resistant population separated from the two susceptible

180  populations in linear discriminant 2, thus demonstrating that LD1 is representative of

181  population and LD2 of resistance to insecticide. A PCA-LDA conducted on the data with
182  randomly assigned classifications showed no separation (Supp Fig.S1) demonstrating that the
183  observed separation of classifications is due to variations between populations and not due to
184  chance. The LDA model built using the REIMS data was able to correctly classify 82% (+
185  0.01) of Ae. aegypti larvae into the correct population (Fig.2B). The lab susceptible

186  population had the highest accuracy (90% + 2.0) and had the largest sample number whilst
187  the population with the lowest sample number, field resistant, had the lowest accuracy (77%
188  + 2.2). When classification was conducted using a random forest model accuracy was lower,
189  but the model was still able to correctly assign 76% of individual Ae. aegypti larvae to the

190  correct population (Fig.2C).
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191  Population type (lab and field)

192 A clear separation is observed when Ae. aegypti larvae from field origin are compared to

193  larvae from a standard laboratory reference strain using PCA-LDA (Fig.3A & B). The

194  classification models had high accuracy with 89% (+ 0.01) of individual larvae classified to
195  the correct population type with the PCA-LDA model (Fig.3C) and 83% (% 0.01) correctly
196  classified by random forest (Fig.3D). Larvae from field origin had higher classification

197  accuracy (86% = 1.8) than those of lab origin (80% + 2.4) when the RF model was used.

198  When the LDA model was used the accuracy was similar for both groups (Field = 90% £ 0.8,

199  Lab=89+2.0).

200 Insecticide sensitivity profile

201 Analysis of the REIMS data was also conducted to investigate the potential for determination
202 between insecticide resistant and susceptible Ae. aegypti larvae (Fig.4). PCA-LDA

203  classification models show 85% (+ 0.01) accuracy in assigning larvae to the correct resistance
204  status, with 75% (z 2.8) of temephos resistant larvae being correctly assigned (Fig.4c). The
205  classification accuracy was higher for susceptible individuals (89% + 1.1), this is likely due
206  to the larger sample size of susceptible individuals available for training the model (Fig.4C).
207  Whilst the random forest classification model was less accurate it still had a correct

208  classification rate of 78% (x 0.02) correctly classifying 73% (x 3.3) of resistant individuals

209  and 79% of susceptible individuals (Fig.4D).

210  Asimilar classification accuracy is achieved when field resistant larvae are compared only to
211 susceptible larvae from a laboratory strain (Fig.5) as when field resistance larvae are

212 compared to susceptible larvae from field origin (Fig.6). When only a field susceptible

213 comparator strain is used the classification accuracy was 88% (+ 0.01) using LDA (Fig.6C)
214 and 84% (£ 0.02) using RF (Fig.6D). When only a lab susceptible comparator strain is used

215  the classification accuracy was similar with accuracies of 87% with LDA (Fig.5C) and 82%
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216  with RF (Fig.5D). The similarity in classification accuracy observed here demonstrates that a
217  field equivalent susceptible strain may not be necessary for identification of insecticide
218  resistance in field Ae. aegypti larvae using this method, which is beneficial with the

219  decreasing availability of field relevant susceptible populations.

220 Discussion

221  Early detection of resistance in mosquito populations is key to effective IRM and in reducing
222 its effect on transmission of disease (Dusfour et al. 2019). The current principal methods for
223 monitoring resistance are bioassays, biochemical assays, and molecular testing. Biochemical
224  assays and molecular testing can be used to identify resistance in mosquitoes and are also
225  important for the identification of mechanisms conferring resistance which can be useful
226 when deciding on the most effective control method and in the development of novel control
227  strategies (Brogdon 1989, World Health Organization (WHO) 1998, Corbel and N’Guessan
228 2013, Hemingway et al. 2013, Faucon et al. 2017, Dusfour et al. 2019). Current

229  understanding of resistance has been developed through molecular and biochemical studies
230  which have identified common resistance mechanisms including target site insensitivity and
231 metabolic detoxification (Hemingway et al. 2004). Identification of these resistance

232 mechanisms has been vital to increasing understanding of resistance.

233 Biochemical and molecular assays are important for increasing understanding of resistance
234  mechanisms however there is an operational need for scalable rapid identification tools which
235  are less labour intensive thereby yielding faster results which therefore have the potential to
236 have more direct impact on decision making in the field. Insecticide bioassays are currently
237  the only method for phenotyping resistance in mosquitoes (World Health Organization 2013,
238 World Health Organization (WHO) 2016). They are limited to detecting high levels of

239  resistance only which is often too late for alternative control methods to be deployed and high

240 level of variation between experiments is often observed (Owusu et al. 2017). Bioassays also

10
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241  require large numbers of mosquitoes, the availability of a comparable susceptible strain and
242 insectary facilities (World Health Organization 2013, World Health Organization (WHO)

243 2016).

244  This study presents proof of concept for the use of rapid evaporative ionisation mass

245  spectrometry (REIMS) as a faster tool for monitoring of insecticide resistance which has the
246  potential to directly inform vector control decision making. The data obtained by REIMS

247  analysis was able to categorise resistance with 85% (+ 0.01) accuracy. This method also

248  benefits from requiring no sample preparation, and rapid data acquisition. For this study

249  relatively small sample numbers were used, but high accuracy was still obtained. Accuracy of
250 classification models has potential to increase as the size of the training data set is increased,
251 therefore subsequent testing with higher sample numbers may yield an even greater accuracy,
252 however higher variability of samples (diet, ages, environmental factors etc.) would need to
253  beincluded in order to produce a robust model capable of dealing with fully wild samples
254  (Dobbin et al. 2008, Figueroa et al. 2012, Hanberry et al. 2012, Beleites et al. 2013, Luan et
255 al. 2020). The tool was also able to differentiate between different mosquito populations with
256 82% (+ 0.01) accuracy, suggesting other applications for the tool aside from resistance

257  monitoring.

258  We also compared two different classification model types, linear discriminant analysis

259  (LDA) and random forest (RF) both of which are commonly applied to classification of
260  samples using REIMS data (Cameron et al. 2016, St John et al. 2017, Davidson et al. 2019,
261  Gredell et al. 2019, Wagner et al. 2020, Sarsby et al. 2021). LDA is often the classification
262 method of choice for spectrometry-based phenotyping, including REIMS (Bonetti 2018,
263  D’Hue et al. 2018, Gredell et al. 2019, Kenar et al. 2019, Liu et al. 2021, Wang et al. 2021).
264  The results of this study showed that LDA classification models were able to achieve

265  comparable accuracy to the more complex random forest models and in the case of our data

11
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266  performed better. Use of a simpler but equally accurate model is important in enabling the
267  data analysis to be accessible to a variety of personnel working within vector control. The
268  PCA-LDA method has previously been shown to be effective at classifying groups which
269  show large differences in biochemical profile, however for groups with more subtle

270  differences machine learning methods may have higher accuracy than LDA (Gromski et al.
271 2015, Gredell et al. 2019). The higher accuracy of the LDA model used in this study

272 comparatively to the RF model suggests that the differences in molecular profile between the
273 groups studied; geographical origin, population type and resistance status may be distinct.
274  This provides further promise for the use of REIMS in insecticide resistance monitoring as
275  larger differences in lipid signatures are easier to detect than subtle differences. The use of
276 multiple classification models to accurately classify REIMS data has previously been shown
277  to be important due to the high complexity of REIMS data. Dimension reduction, as

278  conducted in this study, has also been shown to be a critical step in REIMS data analysis

279  (Gredell et al. 2019).

280  Whilst the REIMS method is a fast and effective method it does have some disadvantages

281  when compared with alternative methods. The technique is destructive, meaning that the

282 sample cannot be used for further analysis. However, application of the technique to adult
283  mosquitoes provides the opportunity for partial dissection (e.g. leg removal) prior to REIMS
284  which will allow for further genetic or biochemical testing. The mass spectroscopy

285  equipment involved in REIMS is estimated to cost around $500,000 USD (Logrono 2020),
286  whilst costs of the initial set up of REIMS facilities are high, once equipment is available the
287  cost per sample is low due to rapid sampling turnover. Costs are also saved elsewhere without
288  the need for high staffing costs and insectary facilities. The speed at which samples can be
289  analysed allows for high sample turnover which therefore reduces cost, 100 mosquito larvae

290  could be analysed, and an answer generated in as little as 2-3 hours. In other applications

12
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291 including cancer diagnostic REIMS has been identified to be a more cost-effective method
292  than other molecular techniques with costs around £1.60 per sample (Paraskevaidi et al.

293  2020). The REIMS method identifies differences in the lipid/metabolite profile of samples
294  however specific molecule detection is not the objective of this method, which is designed
295 instead to detect unique patterns in mass spectrum that enable classification (Wagner et al.
296  2020). Whilst we propose the use of REIMS as a potential rapid resistance identification tool
297  with direct operational impact the technique is not intended to be used for identification of

298  the mechanisms conferring the detected resistance.

299  Near-infrared spectroscopy (NIRS) is another rapid technique that has been utilised for

300 examining invertebrates which is non-destructive and cost-effective (Johnson 2020). The
301 high sensitivity spectrometers required for NIRS analysis cost an estimated $45,000 -

302  $60,000 USD (Ferguson et al. 2009, Fernandes et al. 2018, Maia et al. 2019). The technique
303  has been used successfully to differentiate mosquito species and age (Ferguson et al. 2009,
304  Sikulu et al. 2010, 2011, Dowell et al. 2015, Gonzélez Jiménez et al. 2019) and can also

305 identify mosquitoes which are infected with arboviruses, Plasmodiumand Wolbachia

306 (Sikulu-Lord et al. 2016, Fernandes et al. 2018, Maia et al. 2019). The ability of NIRS to
307  estimate age of mosquitoes has also been applied to the detection of insecticide resistance
308  (Sikulu et al. 2014, Lambert et al. 2018), as insecticide resistance has been shown to decrease
309  with age (Lines and Nassor 1991, Rajatileka et al. 2011, Jones et al. 2012). However there
310  has been no studies which investigate the use of NIRS to directly measure insecticide

311  resistance. The accuracy of NIRS for mosquito species determination is reported to be 78 —
312 90% (Ferguson et al. 2009, Sikulu et al. 2010, 2011, Gonzalez Jiménez et al. 2019), lower
313  than the 91 — 100% REIMS accuracy for species differentiation in Drosophila (Wagner et al.
314  2020). As NIRS has not been used to directly monitor insecticide resistance, comparisons

315  between REIMS and NIRS accuracy for this purpose cannot be made.

13


https://doi.org/10.1101/2022.02.10.479854
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.10.479854; this version posted February 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

316  This study focussed on identifying resistance to temephos however resistance to one

317 insecticide rarely occurs in isolation. Ae. aegypti from both Cucuta and Bello have previously
318  been reported to have resistance to the pyrethroid permethrin and Cdcuta also to lambda-
319  cyhalothrin (Granada et al. 2021). Whilst the current study provides proof of concept for the
320 potential use of REIMS in identifying resistance, further study is needed to establish whether
321  the tool can be used to differentiate between resistance to different insecticides, an

322 application which could be beneficial to vector control programmes. Knock down resistance
323 (kdr), mutations in the sodium channel gene frequently associated with pyrethroid resistance,
324  has also been reported in Ae. aegypti from Bello and Cucuta. The varying frequencies of kdr
325  alleles demonstrates that these populations are not genetically homogenous (Granada et al.
326 2021). Whilst gaining an understanding of the genetic basis of resistance is important (e.g. in
327  tracking resistance and development of new interventions) it has little direct impact on the
328  rapid decision making needed in the field (Vontas and Mavridis 2019). This study aims to
329  provide a method which fulfils the need for more rapid resistance phenotyping tools to

330 contribute to existing strategies without delving into the mechanisms contributing to this

331  however there is also a further potential application of REIMS in investigating the genetic

332 hasis of resistance.

333  To reduce the confounding effects of phenotypic differences between populations unrelated
334  to resistance, this study used two different susceptible populations of Ae. aegypti, one of field
335 origin and a lab strain. Whilst this experimental design does reduce these confounding

336  effects, as shown when comparing gene expression (Morgan et al. 2021), it cannot mitigate
337  them completely and therefore other phenotypic differences between populations may be

338  contributing to the high REIMS accuracy. This cannot be fully avoided when using field

339  collected populations of mosquitoes.
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340  Further testing is required to establish sensitivity of REIMS to more granular levels of

341  resistance, resistance in other medically important mosquito species, resistance to a variety of
342  insecticides as well as resistance in adult mosquitoes. Determining whether the preservation
343  method of mosquito samples (e.g., desiccation, storage temperatures, fixation) affects results
344  also has implications for field application. The results presented here identified REIMS as a
345  promising alternative tool for the identification of insecticide resistance in mosquitoes.

346  REIMS and similar modern phenotyping methods should be standardised and incorporated

347 into existing insecticide resistance management strategies.

348 Supplementary Material

349  Supplementary File 1: R Codefor analysing REIM S data. R coding for analysing REIMS
350 data matrices, following data binning in OMB, using LDA and random forest classification

351  models.

352 Supplementary Table1: The REIM S data matrices. REIMS data following binning in
353 OMB. Data organised by population type, population, and resistance status. Mass spectra

354  displayed in 0.1 m/z wide bins from 50 — 1200 m/z

355  Supplementary Figures S1 — S11: Supplementary figures and figure legends. Separation

356  of data with random group assignment (Fig S1). LDA and RF validation plots (Fig S2-S11).
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629  Fig. legends

630 Fig. 1: Block diagram of the experimental appr oach. This study utilised insecticide

631  resistant and susceptible larvae of the mosquito Ae. aegypti. The resistant larvae originated
632  from Cdcuta, Colombia and the susceptible larvae had dual origin, field samples from Bello,
633  Colombia (Field Susceptible) and the New Orleans lab strain (Lab Susceptible). Individual
634 larvae from each experimental group were analysed using REIMS to acquire individual mass
635  spectra for each sample. The data acquired through REIMS was background and lock mass
636  corrected and binned into 0.1 m/z groups. Dimension reduction was conducted using PCA

637  before LDA and random forest classification model building and testing.

638 Fig. 2: REIM Sdiscrimination of Ae. aegypti samples by population. Combined PCA-

639  LDA separation of the three Ae. aegypti populations using REIMS mass spectra (A).

640  Dimension reduction was conducted using principal components analysis (PCA), 40 principal
641  components were selected for linear discriminant analysis (LDA). The number of PCs was

642  determined by selecting the model with the lowest area under the ROC curve (AUC) (Supp
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643  Fig.S2). Separation is shown in both linear discriminant one and linear discriminant 2. All
644  populations separated in linear discriminant 1 whilst field resistant separated from the two
645  susceptible populations in LD2. Classification of samples into population using PCA-LDA
646  (B) and random forest models (C), showing percentage of samples classified to each group,
647  standard error of the mean (SEM) and the percentage range across all replicates. Models were
648  built and tested 20 times each with a different set of training (70%) and test (30%) data.

649  Accuracy percentages, SEM and range were averaged across all 20 replicates. The PCA-LDA
650 classification model had a higher accuracy (82% = 0.01) than the random forest model (76%
651 £ 0.02), correctly assigning 82% of individuals to their respective population. Random forest
652  models were built using 20 PCs to obtain the highest accuracy of models tested (Supp

653  Fig.S3).

654  Fig. 3: REIM Sdiscrimination of Ae. aegypti by population type (lab and field).

655  Combined PCA-LDA separation of lab and field Ae. aegypti populations using REIMS mass
656  spectra (A & B). Dimension reduction was conducted using principal components analysis
657 (PCA), 40 principal components were selected for linear discriminant analysis (LDA). The
658 number of PCs was determined by selecting the model with the lowest area under the ROC
659  curve (AUC) (Supp Fig.S4). Classification of samples into resistance status using PCA-LDA
660 (C) and random forest models (D), showing percentage of samples classified to each group,
661  standard error of the mean (SEM) and the percentage range across all replicates. Models were
662  built and tested 20 times each with a different set of training (70%) and test (30%) data.

663  Accuracy percentages, SEM and range were averaged across all 20 replicates. The LDA-PCA
664  classification model had a higher accuracy (89% = 0.01) than the random forest model (83%
665 = 0.02), correctly assigning 89% of individuals to their respective resistance status. Random
666  forest models were built using 20 PCs to obtain the highest accuracy of models tested (Supp

667  Fig.S5).
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668 Fig. 4: REIM Sdiscrimination of resistant and susceptible Ae. aegypti. Combined PCA-
669  LDA separation of resistant and susceptible Ae. aegypti populations using REIMS mass

670  spectra (A & B). Dimension reduction was conducted using principal components analysis
671  (PCA), 40 principal components were selected for linear discriminant analysis (LDA). The
672  number of PCs was determined by selecting the model with the lowest area under the ROC
673  curve (AUC) (Supp Fig.S6). Classification of samples into resistance status using PCA-LDA
674  (C) and random forest models (D), showing percentage of samples classified to each group,
675  standard error of the mean (SEM) and the percentage range across all replicates. Models were
676  built and tested 20 times each with a different set of training (70%) and test (30%) data.

677  Accuracy percentages, SEM and range were averaged across all 20 replicates. The LDA-PCA
678  classification model had a higher accuracy (85% = 0.01) than the random forest model (78%
679  £0.02), correctly assigning 85% of individuals to their respective resistance status. Random
680  forest models were built using 20 PCs to obtain the highest accuracy of models tested (Supp

681  Fig.S7).

682  Fig. 5: REIM Sdiscrimination of field resistant and lab susceptible Ae. aegypti larvae.
683  Combined PCA-LDA separation of the resistant and lab susceptible populations using

684  REIMS mass spectra (A & B). Dimension reduction was conducted using principal

685  components analysis (PCA), 20 principal components were selected for linear discriminant
686  analysis (LDA). The number of PCs was determined by selecting the model with the lowest
687  area under the ROC curve (AUC) (Supp Fig.S8). Classification of samples into population
688  using PCA-LDA (C) and random forest models (D), showing percentage of samples

689  classified to each group, standard error of the mean (SEM) and the percentage range across
690 all replicates. Models were built and tested 20 times each with a different set of training
691  (70%) and test (30%) data. Accuracy percentages, SEM and range were averaged across all

692 20 replicates. The LDA-PCA classification model had a higher accuracy (87% = 0.02) than
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693  the random forest model (82% + 0.02), correctly assigning 87% of individuals to their
694  respective resistance status. Random forest models were built using 10 PCs to obtain the

695  highest accuracy of models tested (Supp Fig.S9).

696 Fig. 6: REIM Sdiscrimination of field resistant and field susceptible Ae. aegypti larvae.
697 Combined PCA-LDA separation of the resistant and field susceptible populations using

698 REIMS mass spectra (A & B). Dimension reduction was conducted using principal

699  components analysis (PCA), 20 principal components were selected for linear discriminant
700  analysis (LDA). The number of PCs was determined by selecting the model with the lowest
701 area under the ROC curve (AUC) (Supp Fig.S10). Classification of samples into population
702 using PCA-LDA (C) and random forest models (D), showing percentage of samples

703  classified to each group, standard error of the mean (SEM) and the percentage range across
704  all replicates. Models were built and tested 20 times each with a different set of training
705  (70%) and test (30%) data. Accuracy percentages, SEM and range were averaged across all
706 20 replicates. The LDA-PCA classification model had a higher accuracy (88% = 0.01) than
707  the random forest model (84% + 0.02), correctly assigning 88% of individuals to their

708  respective resistance status. Random forest models were built using 20 PCs to obtain the

709  highest accuracy of models tested (Supp Fig.S11).
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710 Tables
711  Tablel: Summary data of the Ae. aegypti samples analysed via REIMS. Time larvae
712 stored at -20°C in weeks for each replicate and the number of larvae analysed in each

713  replicate and the total number for each experimental group (n).

Population Replicate StorageWeeks n

1 36 8

2 36 15

Susl_ea;?[ible 3 36 13

4 32 15

Total 32-36 51

1 32 12

. 2 34 13
Field

. 3 33 13

Susceptible 4 32 13

Total 32-34 51

1 36 9

. 2 32 14

4 36 9

Total 32-36 42

714
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Rapid evaporative ionisation mass spectrometry (REIMS): A potential rapid tool for the

Background
and rationale

1dentification of insecticide resistance in mosquito larvae

* Aedes aegypti is the principle vector for dengue, Zika and chikungunya.
* Control of Ae. aegypti and other vector mosquitoes is threatened by widespread insecticide resistance.
* Operational need for rapid tools for identifying and monitoring insecticide resistance.
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* REIMS identified as a potential novel tool for rapid identification of insecticide resistance with 85% accuracy.
* High accuracy in geographical origin (82%) and population type (89%) is also reported suggesting other
potential applications of REIMS in vector surveillance.
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