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 21 

Abstract 22 

Insecticide resistance is a significant challenge facing the successful control of mosquito 23 

vectors globally. Bioassays are currently the only method for phenotyping resistance. They 24 

require large numbers of mosquitoes for testing, the availability of a susceptible comparator 25 

strain and often insectary facilities. This study aimed to trial the novel use of rapid 26 

evaporative ionisation mass spectrometry (REIMS) for the identification of insecticide 27 

resistance in mosquitoes. No sample preparation is required for REIMS and analysis can be 28 

rapidly conducted within hours. Temephos resistant Aedes aegypti (Linnaeus) larvae from 29 

Cúcuta, Colombia and temephos susceptible larvae from two origins (Bello, Colombia, and 30 

the lab reference strain New Orleans) were analysed using REIMS. We tested the ability of 31 

REIMS to differentiate three relevant variants: population source, lab versus field origin and 32 

response to insecticide. The classification of these data was undertaken using linear 33 

discriminant analysis (LDA) and random forest. Classification models built using REIMS 34 

data were able to differentiate between Ae. aegypti larvae from different populations with 35 

82% (± 0.01) accuracy, between mosquitoes of field and lab origin with 89% (± 0.01) 36 

accuracy and between susceptible and resistant larvae with 85% (± 0.01) accuracy. LDA 37 

classifiers had higher efficiency than random forest with this data set. The high accuracy 38 

observed here identifies REIMS as a potential new tool for rapid identification of resistance 39 

in mosquitoes. We argue that REIMS and similar modern phenotyping alternatives should 40 

complement existing insecticide resistance management tools.  41 

Key words:  42 

Insecticide resistance, rapid evaporative ionisation mass spectrometry, REIMS, Aedes 43 

aegypti, larvae, Colombia 44 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.10.479854doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479854
http://creativecommons.org/licenses/by/4.0/


3 

 

Introduction 45 

Insecticide resistance is one of the most significant challenges posed to mosquito control 46 

programmes. The control of mosquito vectors, including Aedes aegypti (Linnaeus) the 47 

principal vector for the dengue, Zika and chikungunya viruses, relies heavily on the use of 48 

insecticides to reduce disease burden. There are only four insecticides classes which are 49 

licensed for use in public health: organophosphates, organochlorines, pyrethroids and 50 

carbamates. Resistance has now been reported in Ae. aegypti to all four of these chemical 51 

classes (Ranson et al. 2010, Vontas et al. 2012, Moyes et al. 2017). Insecticide resistance in 52 

Ae. aegypti is also spread worldwide with reports in South America (Guedes et al. 2020), 53 

North America (Marcombe et al. 2014), Asia (Amelia-Yap et al. 2018), Europe (Seixas et al. 54 

2017), Africa (Weetman et al. 2018), and Oceania (Demok et al. 2019). This trend is 55 

compromising effective vector control (Viana-Medeiros et al. 2007, Bisset et al. 2011, 56 

Marcombe et al. 2011). 57 

Insecticide resistance management (IRM) which aims to prevent, slow, or reverse the 58 

emergence of resistance is therefore crucial for sustainable vector control. The first step in 59 

IRM is to monitor local populations for the development of insecticide resistance whilst 60 

establishing its impact on effective vector control (Dusfour et al. 2019). Current methods for 61 

resistance monitoring include bioassays, biochemical assays, and molecular testing. 62 

Biochemical assays and molecular testing are used to identify the specific mechanisms 63 

responsible for insecticide resistance, allowing for appropriate IRM strategies to be 64 

implemented (Hemingway et al. 2013). However, insecticide bioassays (e.g. WHO tube and 65 

CDC bottle assays) are the only current method for identifying (phenotyping) resistance in 66 

mosquitoes. Bioassays have low sensitivity, lengthy completion times (24 hours) and often 67 

only detect high levels of resistance which maybe too late for alternative measures to be 68 

deployed (Dusfour et al. 2019). Other limitations include the requirement of large numbers of 69 
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individual mosquitoes, and the availability of a comparable susceptible strain (World Health 70 

Organization (WHO) 2016). Alternative phenotyping methods that can surpass those 71 

limitations are necessary. 72 

Rapid evaporative ionisation mass spectrometry (REIMS) is a relatively new technology 73 

which provides a rapid method of mass spectrometry without the need for any sample 74 

preparation. Samples are burned by diathermy and the resultant aerosols are collected, 75 

ionized, and analysed by mass spectrometry (Schäfer et al. 2009, Balog et al. 2010, 2013, 76 

2015). The spectra, collected in negative ion mode, largely reflect the lipid composition of 77 

the sample, and is collected over a wide range of m/z values. The spectra are then are 78 

discretised by binning, creating a data matrix that is further processed by dimension reduction 79 

and classification (Balog et al. 2010). The potential applications of REIMS are vast with its 80 

previous successful applications including distinguishing cancerous tissue from healthy tissue 81 

(Alexander et al. 2017, St John et al. 2017, Phelps et al. 2018), authentication of food 82 

products (Balog et al. 2016, Black et al. 2017, Verplanken et al. 2017, Guitton et al. 2018, 83 

Rigano et al. 2019), microbial species identification (Strittmatter et al. 2013, 2014), 84 

monitoring of bacterial growth and recombinant protein expression (Sarsby et al. 2021), and 85 

the identification of rodent species and sex from faecal matter (Davidson et al. 2019). REIMS 86 

has also been shown to be a highly effective method for species and sex determination in 87 

Drosophila adults and larvae (Wagner et al. 2020).  88 

Here we present a proof-of-concept for the novel use of REIMS as a rapid tool for the 89 

identification of insecticide resistance in Ae. aegypti larvae. We analysed three Ae. aegypti 90 

populations, previously profiled for susceptibility to the larvicide temephos (Morgan et al. 91 

2021): a resistant population originating from field collected mosquitoes from Cúcuta 92 

(Colombia) and two susceptible populations, one field originating population from Bello 93 

(Colombia) and a susceptible laboratory reference strain, New Orleans. The results 94 
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demonstrate the potential of REIMS for phenotyping insecticide resistant mosquitoes with 95 

relevant discriminatory power and faster and less labour-intensive methods which may be 96 

used to complement existing IRM strategies.  97 

Materials and methods 98 

Mosquito samples and rearing 99 

Aedes aegypti larvae from three populations previously tested for susceptibility to temephos 100 

(Morgan et al. 2021) were used in this study. Two field populations were used, one temephos 101 

resistant (field resistant (FR) and one susceptible (field susceptible (FS)), the susceptible Ae. 102 

aegypti laboratory strain New Orleans (lab susceptible (LS)) was also used (Fig.1). Ae. 103 

aegypti were reared to fourth instar larvae following a standard rearing protocol and under 104 

standard conditions within Edge Hill University Vector Research Group insectaries. Standard 105 

conditions were 27oC and 70% relative humidity with an 11-hour day/night cycle with 60-106 

minute dawn/dusk simulation periods, using a lighting system of 4× Osram Dulux 26W 840 107 

lights. Eggs were submerged in a hatching broth of 350 ml dH2O, 0.125 g nutrient broth 108 

(Sigma-Aldrich, Dorset, UK) and 0.025 g brewer’s yeast (Holland & Barrett, Ormskirk, UK) 109 

for 48 hours (Zheng et al. 2015). Once hatched, larvae were reared at a density of 0.5 110 

larva/ml in dH2O and fed ground fish food (AQUARIAN® advanced nutrition) at increasing 111 

quantities per day (day 3 = 0.08 mg/larva, day 4 = 0.16 mg/larva, day 5 = 0.31 mg/larva, day 112 

6 = 0 mg/larva) (Carvalho et al. 2014). For each experimental group (FR, FS, LS) four 113 

biological replicates were conducted, using eggs from different females each submerged on 114 

different days. Seven days after egg submission larvae were removed and stored at -20oC 115 

until REIMS analysis. The storage period ranged from 32-36 weeks (Table 1). The number of 116 

larvae analysed per biological replicate ranged from 8-15 with a total of 42-51 larvae per 117 

experimental group (Table 1). 118 
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Rapid evaporative ionisation mass spectrometry analysis 119 

Rapid evaporative ionisation mass spectrometry analysis was conducted following the 120 

detailed methods outlined by Wagner et al. (2020). Larvae were burned using a monopolar 121 

electrosurgical pencil (Erbe Medical UK Ltd, Leeds); the electric current was provided to the 122 

pencil by a VIO 50 C electrosurgical generator, a black conductive rubber mat acted as the 123 

counter electrode to enable the flow of electricity through the sample. The entire biomass of 124 

each larva was burned, and the aerosols produced were aspirated through tubing attached to 125 

the pencil into the REIMS source using a nitrogen powered venturi valve. Leucine enkephalin 126 

(Waters, UK) in propan-2-ol (CHROMASOLV, Honeywell Riedel-de-Haën) was used as a 127 

lock mass solution and continuously introduced via a whistle in the venturi tube at a flow rate 128 

of 30 µl min−1. REIMS was conducted using a Synapt G2Si instrument ion mobility 129 

equipped quadrupole time of flight mass spectrometer (Waters, UK). A heated impactor 130 

(Kanthal metal coil at 900°C) within the REIMS source was used to decluster the ionized 131 

particles. Mass spectra were acquired in negative ion mode at a rate of 1 scan per second over 132 

a mass/charge range of m/z 50–1200. All larvae were analysed in a single day in a random 133 

order created by a random number generator within Microsoft excel.  134 

Data analysis 135 

The raw data files were imported into the Offline Model Builder software (OMB-1.1.28; 136 

Waters Research Centre, Hungary). Each data file/sample contains the burn event of only one 137 

larva, therefore the option to create one spectrum per sample was selected. The background 138 

was subtracted, and the spectra corrected using the lock mass (leucine enkephalin, m/z 139 

554.26). The normalised intensities were then binned into 0.1 m/z wide groups. The binned 140 

mass spectra data were then imported into R (version 3.6.3) (R Core Team 2020) for further 141 

analysis.  142 
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Dimension reduction was carried out by principal components analysis (PCA) using the R 143 

package factoextra (version 1.0.7) (Kassambara and Mundt 2020). Different numbers of 144 

principal components were then extracted (10,20,40,60,80,100) and used for classification of 145 

samples into categories: population, population type and resistance status. Classification was 146 

conducted using two different model types; linear discriminant analysis (LDA) and random 147 

forest (RF), with the data randomly split into 70% training data and 30% test data. Each 148 

model was built using variable numbers of principal components (PCs) extracted using PCA 149 

and the most accurate model selected and used for analysis. LDA models with varying 150 

numbers of PCs were built using the R package MASS (version 7.3.53) (W. N. Venables and 151 

B. D. Ripley 2002), model validation was conducted by plotting receiver operating 152 

characteristic curves (ROC) and selecting the model with the highest area under ROC curve 153 

(AUC) (Supp Fig.S2-11). Random forest models were validated using the R package caret 154 

(version 6.0.88) (Kuhn 2021) to select the model with optimum PCs, number of variables 155 

available for splitting at each tree node (mtry) and tree number. The random forest models 156 

with the highest overall accuracy following building in caret were selected for use in the 157 

analysis with models built using the R package randomForest (version 4.6.14) (Liaw and 158 

Wiener 2002). Random under sampling in the caret package was used to balance classes prior 159 

to RF analysis as this showed increase in overall model performance. Class imbalance did not 160 

affect performance of LDA models, as no difference in classification accuracy was observed 161 

between the different groups within the models, therefore no over or under sampling was 162 

required. LDA and RF models with parameters as selected by model validation were each ran 163 

20 times using a different random split of test (30%) and training (70%) data. The model 164 

statistics: percentage accuracy, standard error of means (SEM) and range, were then averaged 165 

across all 20 replicates. LDA following PCA was also used to visualise the separation of 166 
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samples, plots were created using the R packages ggplot2 (version 3.3.2) (Wickham 2016) 167 

and ggpubr (version 0.4.0) (Kassambara 2020).  168 

The experimental design is outlined in Fig.1. A code for analysing REIMS data using LDA 169 

and random forest classification models which can be applied to other similar datasets is 170 

available in Supplementary File 1. All raw data files are available in the MetaboLights 171 

database under the accession number MTBLS4129. The data matrix, created in OMB and 172 

used for subsequent analysis in R is available in Supplementary table 1.  173 

Results 174 

Population source 175 

Visualisation of the data, following PCA-LDA analysis showed a clear discrimination 176 

between Ae. aegypti larvae from different geographical origins (Fig.2A). All three 177 

populations; field susceptible, field resistant and lab susceptible were separated in linear 178 

discriminant one whilst the field resistant population separated from the two susceptible 179 

populations in linear discriminant 2, thus demonstrating that LD1 is representative of 180 

population and LD2 of resistance to insecticide. A PCA-LDA conducted on the data with 181 

randomly assigned classifications showed no separation (Supp Fig.S1) demonstrating that the 182 

observed separation of classifications is due to variations between populations and not due to 183 

chance. The LDA model built using the REIMS data was able to correctly classify 82% (± 184 

0.01) of Ae. aegypti larvae into the correct population (Fig.2B). The lab susceptible 185 

population had the highest accuracy (90% ± 2.0) and had the largest sample number whilst 186 

the population with the lowest sample number, field resistant, had the lowest accuracy (77% 187 

± 2.2). When classification was conducted using a random forest model accuracy was lower, 188 

but the model was still able to correctly assign 76% of individual Ae. aegypti larvae to the 189 

correct population (Fig.2C).  190 
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Population type (lab and field) 191 

A clear separation is observed when Ae. aegypti larvae from field origin are compared to 192 

larvae from a standard laboratory reference strain using PCA-LDA (Fig.3A & B). The 193 

classification models had high accuracy with 89% (± 0.01) of individual larvae classified to 194 

the correct population type with the PCA-LDA model (Fig.3C) and 83% (± 0.01) correctly 195 

classified by random forest (Fig.3D). Larvae from field origin had higher classification 196 

accuracy (86% ± 1.8) than those of lab origin (80% ± 2.4) when the RF model was used. 197 

When the LDA model was used the accuracy was similar for both groups (Field = 90% ± 0.8, 198 

Lab = 89 ± 2.0).  199 

Insecticide sensitivity profile 200 

Analysis of the REIMS data was also conducted to investigate the potential for determination 201 

between insecticide resistant and susceptible Ae. aegypti larvae (Fig.4). PCA-LDA 202 

classification models show 85% (± 0.01) accuracy in assigning larvae to the correct resistance 203 

status, with 75% (± 2.8) of temephos resistant larvae being correctly assigned (Fig.4c). The 204 

classification accuracy was higher for susceptible individuals (89% ± 1.1), this is likely due 205 

to the larger sample size of susceptible individuals available for training the model (Fig.4C). 206 

Whilst the random forest classification model was less accurate it still had a correct 207 

classification rate of 78% (± 0.02) correctly classifying 73% (± 3.3) of resistant individuals 208 

and 79% of susceptible individuals (Fig.4D).  209 

A similar classification accuracy is achieved when field resistant larvae are compared only to 210 

susceptible larvae from a laboratory strain (Fig.5) as when field resistance larvae are 211 

compared to susceptible larvae from field origin (Fig.6). When only a field susceptible 212 

comparator strain is used the classification accuracy was 88% (± 0.01) using LDA (Fig.6C) 213 

and 84% (± 0.02) using RF (Fig.6D). When only a lab susceptible comparator strain is used 214 

the classification accuracy was similar with accuracies of 87% with LDA (Fig.5C) and 82% 215 
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with RF (Fig.5D). The similarity in classification accuracy observed here demonstrates that a 216 

field equivalent susceptible strain may not be necessary for identification of insecticide 217 

resistance in field Ae. aegypti larvae using this method, which is beneficial with the 218 

decreasing availability of field relevant susceptible populations. 219 

Discussion 220 

Early detection of resistance in mosquito populations is key to effective IRM and in reducing 221 

its effect on transmission of disease (Dusfour et al. 2019). The current principal methods for 222 

monitoring resistance are bioassays, biochemical assays, and molecular testing. Biochemical 223 

assays and molecular testing can be used to identify resistance in mosquitoes and are also 224 

important for the identification of mechanisms conferring resistance which can be useful 225 

when deciding on the most effective control method and in the development of novel control 226 

strategies (Brogdon 1989, World Health Organization (WHO) 1998, Corbel and N’Guessan 227 

2013, Hemingway et al. 2013, Faucon et al. 2017, Dusfour et al. 2019). Current 228 

understanding of resistance has been developed through molecular and biochemical studies 229 

which have identified common resistance mechanisms including target site insensitivity and 230 

metabolic detoxification (Hemingway et al. 2004). Identification of these resistance 231 

mechanisms has been vital to increasing understanding of resistance.  232 

Biochemical and molecular assays are important for increasing understanding of resistance 233 

mechanisms however there is an operational need for scalable rapid identification tools which 234 

are less labour intensive thereby yielding faster results which therefore have the potential to 235 

have more direct impact on decision making in the field. Insecticide bioassays are currently 236 

the only method for phenotyping resistance in mosquitoes (World Health Organization 2013, 237 

World Health Organization (WHO) 2016). They are limited to detecting high levels of 238 

resistance only which is often too late for alternative control methods to be deployed and high 239 

level of variation between experiments is often observed (Owusu et al. 2017). Bioassays also 240 
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require large numbers of mosquitoes, the availability of a comparable susceptible strain and 241 

insectary facilities (World Health Organization 2013, World Health Organization (WHO) 242 

2016).  243 

This study presents proof of concept for the use of rapid evaporative ionisation mass 244 

spectrometry (REIMS) as a faster tool for monitoring of insecticide resistance which has the 245 

potential to directly inform vector control decision making. The data obtained by REIMS 246 

analysis was able to categorise resistance with 85% (± 0.01) accuracy. This method also 247 

benefits from requiring no sample preparation, and rapid data acquisition. For this study 248 

relatively small sample numbers were used, but high accuracy was still obtained. Accuracy of 249 

classification models has potential to increase as the size of the training data set is increased, 250 

therefore subsequent testing with higher sample numbers may yield an even greater accuracy, 251 

however higher variability of samples (diet, ages, environmental factors etc.) would need to 252 

be included in order to produce a robust model capable of dealing with fully wild samples  253 

(Dobbin et al. 2008, Figueroa et al. 2012, Hanberry et al. 2012, Beleites et al. 2013, Luan et 254 

al. 2020). The tool was also able to differentiate between different mosquito populations with 255 

82% (± 0.01) accuracy, suggesting other applications for the tool aside from resistance 256 

monitoring.  257 

We also compared two different classification model types, linear discriminant analysis 258 

(LDA) and random forest (RF) both of which are commonly applied to classification of 259 

samples using REIMS data (Cameron et al. 2016, St John et al. 2017, Davidson et al. 2019, 260 

Gredell et al. 2019, Wagner et al. 2020, Sarsby et al. 2021). LDA is often the classification 261 

method of choice for spectrometry-based phenotyping, including REIMS (Bonetti 2018, 262 

D’Hue et al. 2018, Gredell et al. 2019, Kenar et al. 2019, Liu et al. 2021, Wang et al. 2021). 263 

The results of this study showed that LDA classification models were able to achieve 264 

comparable accuracy to the more complex random forest models and in the case of our data 265 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.10.479854doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479854
http://creativecommons.org/licenses/by/4.0/


12 

 

performed better. Use of a simpler but equally accurate model is important in enabling the 266 

data analysis to be accessible to a variety of personnel working within vector control. The 267 

PCA-LDA method has previously been shown to be effective at classifying groups which 268 

show large differences in biochemical profile, however for groups with more subtle 269 

differences machine learning methods may have higher accuracy than LDA (Gromski et al. 270 

2015, Gredell et al. 2019). The higher accuracy of the LDA model used in this study 271 

comparatively to the RF model suggests that the differences in molecular profile between the 272 

groups studied; geographical origin, population type and resistance status may be distinct. 273 

This provides further promise for the use of REIMS in insecticide resistance monitoring as 274 

larger differences in lipid signatures are easier to detect than subtle differences. The use of 275 

multiple classification models to accurately classify REIMS data has previously been shown 276 

to be important due to the high complexity of REIMS data. Dimension reduction, as 277 

conducted in this study, has also been shown to be a critical step in REIMS data analysis 278 

(Gredell et al. 2019).  279 

Whilst the REIMS method is a fast and effective method it does have some disadvantages 280 

when compared with alternative methods. The technique is destructive, meaning that the 281 

sample cannot be used for further analysis. However, application of the technique to adult 282 

mosquitoes provides the opportunity for partial dissection (e.g. leg removal) prior to REIMS 283 

which will allow for further genetic or biochemical testing. The mass spectroscopy 284 

equipment involved in REIMS is estimated to cost around $500,000 USD (Logrono 2020), 285 

whilst costs of the initial set up of REIMS facilities are high, once equipment is available the 286 

cost per sample is low due to rapid sampling turnover. Costs are also saved elsewhere without 287 

the need for high staffing costs and insectary facilities. The speed at which samples can be 288 

analysed allows for high sample turnover which therefore reduces cost, 100 mosquito larvae 289 

could be analysed, and an answer generated in as little as 2-3 hours. In other applications 290 
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including cancer diagnostic REIMS has been identified to be a more cost-effective method 291 

than other molecular techniques with costs around £1.60 per sample (Paraskevaidi et al. 292 

2020). The REIMS method identifies differences in the lipid/metabolite profile of samples 293 

however specific molecule detection is not the objective of this method, which is designed 294 

instead to detect unique patterns in mass spectrum that enable classification (Wagner et al. 295 

2020). Whilst we propose the use of REIMS as a potential rapid resistance identification tool 296 

with direct operational impact the technique is not intended to be used for identification of 297 

the mechanisms conferring the detected resistance. 298 

Near-infrared spectroscopy (NIRS) is another rapid technique that has been utilised for 299 

examining invertebrates which is non-destructive and cost-effective (Johnson 2020). The 300 

high sensitivity spectrometers required for NIRS analysis cost an estimated $45,000 - 301 

$60,000 USD (Ferguson et al. 2009, Fernandes et al. 2018, Maia et al. 2019). The technique 302 

has been used successfully to differentiate mosquito species and age (Ferguson et al. 2009, 303 

Sikulu et al. 2010, 2011, Dowell et al. 2015, González Jiménez et al. 2019) and can also 304 

identify mosquitoes which are infected with arboviruses, Plasmodium and Wolbachia 305 

(Sikulu-Lord et al. 2016, Fernandes et al. 2018, Maia et al. 2019). The ability of NIRS to 306 

estimate age of mosquitoes has also been applied to the detection of insecticide resistance 307 

(Sikulu et al. 2014, Lambert et al. 2018), as insecticide resistance has been shown to decrease 308 

with age (Lines and Nassor 1991, Rajatileka et al. 2011, Jones et al. 2012). However there 309 

has been no studies which investigate the use of NIRS to directly measure insecticide 310 

resistance. The accuracy of NIRS for mosquito species determination is reported to be 78 – 311 

90% (Ferguson et al. 2009, Sikulu et al. 2010, 2011, González Jiménez et al. 2019), lower 312 

than the 91 – 100% REIMS accuracy for species differentiation in Drosophila (Wagner et al. 313 

2020). As NIRS has not been used to directly monitor insecticide resistance, comparisons 314 

between REIMS and NIRS accuracy for this purpose cannot be made. 315 
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This study focussed on identifying resistance to temephos however resistance to one 316 

insecticide rarely occurs in isolation. Ae. aegypti from both Cúcuta and Bello have previously 317 

been reported to have resistance to the pyrethroid permethrin and Cúcuta also to lambda-318 

cyhalothrin (Granada et al. 2021). Whilst the current study provides proof of concept for the 319 

potential use of REIMS in identifying resistance, further study is needed to establish whether 320 

the tool can be used to differentiate between resistance to different insecticides, an 321 

application which could be beneficial to vector control programmes. Knock down resistance 322 

(kdr), mutations in the sodium channel gene frequently associated with pyrethroid resistance, 323 

has also been reported in Ae. aegypti from Bello and Cúcuta. The varying frequencies of kdr 324 

alleles demonstrates that these populations are not genetically homogenous (Granada et al. 325 

2021). Whilst gaining an understanding of the genetic basis of resistance is important (e.g. in 326 

tracking resistance and development of new interventions) it has little direct impact on the 327 

rapid decision making needed in the field (Vontas and Mavridis 2019). This study aims to 328 

provide a method which fulfils the need for more rapid resistance phenotyping tools to 329 

contribute to existing strategies without delving into the mechanisms contributing to this 330 

however there is also a further potential application of REIMS in investigating the genetic 331 

basis of resistance.   332 

To reduce the confounding effects of phenotypic differences between populations unrelated 333 

to resistance, this study used two different susceptible populations of Ae. aegypti, one of field 334 

origin and a lab strain. Whilst this experimental design does reduce these confounding 335 

effects, as shown when comparing gene expression (Morgan et al. 2021), it cannot mitigate 336 

them completely and therefore other phenotypic differences between populations may be 337 

contributing to the high REIMS accuracy. This cannot be fully avoided when using field 338 

collected populations of mosquitoes.    339 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.10.479854doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479854
http://creativecommons.org/licenses/by/4.0/


15 

 

Further testing is required to establish sensitivity of REIMS to more granular levels of 340 

resistance, resistance in other medically important mosquito species, resistance to a variety of 341 

insecticides as well as resistance in adult mosquitoes. Determining whether the preservation 342 

method of mosquito samples (e.g., desiccation, storage temperatures, fixation) affects results 343 

also has implications for field application. The results presented here identified REIMS as a 344 

promising alternative tool for the identification of insecticide resistance in mosquitoes. 345 

REIMS and similar modern phenotyping methods should be standardised and incorporated 346 

into existing insecticide resistance management strategies.  347 

Supplementary Material 348 

Supplementary File 1: R Code for analysing REIMS data. R coding for analysing REIMS 349 

data matrices, following data binning in OMB, using LDA and random forest classification 350 

models. 351 

Supplementary Table 1: The REIMS data matrices. REIMS data following binning in 352 

OMB. Data organised by population type, population, and resistance status. Mass spectra 353 

displayed in 0.1 m/z wide bins from 50 – 1200 m/z. 354 

Supplementary Figures S1 – S11: Supplementary figures and figure legends. Separation 355 

of data with random group assignment (Fig S1). LDA and RF validation plots (Fig S2-S11).  356 
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 628 

Fig. legends 629 

Fig. 1: Block diagram of the experimental approach. This study utilised insecticide 630 

resistant and susceptible larvae of the mosquito Ae. aegypti. The resistant larvae originated 631 

from Cúcuta, Colombia and the susceptible larvae had dual origin, field samples from Bello, 632 

Colombia (Field Susceptible) and the New Orleans lab strain (Lab Susceptible). Individual 633 

larvae from each experimental group were analysed using REIMS to acquire individual mass 634 

spectra for each sample. The data acquired through REIMS was background and lock mass 635 

corrected and binned into 0.1 m/z groups. Dimension reduction was conducted using PCA 636 

before LDA and random forest classification model building and testing.  637 

Fig. 2: REIMS discrimination of Ae. aegypti samples by population. Combined PCA-638 

LDA separation of the three Ae. aegypti populations using REIMS mass spectra (A). 639 

Dimension reduction was conducted using principal components analysis (PCA), 40 principal 640 

components were selected for linear discriminant analysis (LDA). The number of PCs was 641 

determined by selecting the model with the lowest area under the ROC curve (AUC) (Supp 642 
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Fig.S2). Separation is shown in both linear discriminant one and linear discriminant 2. All 643 

populations separated in linear discriminant 1 whilst field resistant separated from the two 644 

susceptible populations in LD2. Classification of samples into population using PCA-LDA 645 

(B) and random forest models (C), showing percentage of samples classified to each group, 646 

standard error of the mean (SEM) and the percentage range across all replicates. Models were 647 

built and tested 20 times each with a different set of training (70%) and test (30%) data. 648 

Accuracy percentages, SEM and range were averaged across all 20 replicates. The PCA-LDA 649 

classification model had a higher accuracy (82% ± 0.01) than the random forest model (76% 650 

± 0.02), correctly assigning 82% of individuals to their respective population. Random forest 651 

models were built using 20 PCs to obtain the highest accuracy of models tested (Supp 652 

Fig.S3).  653 

Fig. 3: REIMS discrimination of Ae. aegypti by population type (lab and field). 654 

Combined PCA-LDA separation of lab and field Ae. aegypti populations using REIMS mass 655 

spectra (A & B). Dimension reduction was conducted using principal components analysis 656 

(PCA), 40 principal components were selected for linear discriminant analysis (LDA). The 657 

number of PCs was determined by selecting the model with the lowest area under the ROC 658 

curve (AUC) (Supp Fig.S4). Classification of samples into resistance status using PCA-LDA 659 

(C) and random forest models (D), showing percentage of samples classified to each group, 660 

standard error of the mean (SEM) and the percentage range across all replicates. Models were 661 

built and tested 20 times each with a different set of training (70%) and test (30%) data. 662 

Accuracy percentages, SEM and range were averaged across all 20 replicates. The LDA-PCA 663 

classification model had a higher accuracy (89% ± 0.01) than the random forest model (83% 664 

± 0.02), correctly assigning 89% of individuals to their respective resistance status. Random 665 

forest models were built using 20 PCs to obtain the highest accuracy of models tested (Supp 666 

Fig.S5).  667 
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Fig. 4: REIMS discrimination of resistant and susceptible Ae. aegypti. Combined PCA-668 

LDA separation of resistant and susceptible Ae. aegypti populations using REIMS mass 669 

spectra (A & B). Dimension reduction was conducted using principal components analysis 670 

(PCA), 40 principal components were selected for linear discriminant analysis (LDA). The 671 

number of PCs was determined by selecting the model with the lowest area under the ROC 672 

curve (AUC) (Supp Fig.S6). Classification of samples into resistance status using PCA-LDA 673 

(C) and random forest models (D), showing percentage of samples classified to each group, 674 

standard error of the mean (SEM) and the percentage range across all replicates. Models were 675 

built and tested 20 times each with a different set of training (70%) and test (30%) data. 676 

Accuracy percentages, SEM and range were averaged across all 20 replicates. The LDA-PCA 677 

classification model had a higher accuracy (85% ± 0.01) than the random forest model (78% 678 

± 0.02), correctly assigning 85% of individuals to their respective resistance status. Random 679 

forest models were built using 20 PCs to obtain the highest accuracy of models tested (Supp 680 

Fig.S7).   681 

Fig. 5: REIMS discrimination of field resistant and lab susceptible Ae. aegypti larvae. 682 

Combined PCA-LDA separation of the resistant and lab susceptible populations using 683 

REIMS mass spectra (A & B). Dimension reduction was conducted using principal 684 

components analysis (PCA), 20 principal components were selected for linear discriminant 685 

analysis (LDA). The number of PCs was determined by selecting the model with the lowest 686 

area under the ROC curve (AUC) (Supp Fig.S8). Classification of samples into population 687 

using PCA-LDA (C) and random forest models (D), showing percentage of samples 688 

classified to each group, standard error of the mean (SEM) and the percentage range across 689 

all replicates. Models were built and tested 20 times each with a different set of training 690 

(70%) and test (30%) data. Accuracy percentages, SEM and range were averaged across all 691 

20 replicates. The LDA-PCA classification model had a higher accuracy (87% ± 0.02) than 692 
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the random forest model (82% ± 0.02), correctly assigning 87% of individuals to their 693 

respective resistance status. Random forest models were built using 10 PCs to obtain the 694 

highest accuracy of models tested (Supp Fig.S9).  695 

Fig. 6: REIMS discrimination of field resistant and field susceptible Ae. aegypti larvae. 696 

Combined PCA-LDA separation of the resistant and field susceptible populations using 697 

REIMS mass spectra (A & B). Dimension reduction was conducted using principal 698 

components analysis (PCA), 20 principal components were selected for linear discriminant 699 

analysis (LDA). The number of PCs was determined by selecting the model with the lowest 700 

area under the ROC curve (AUC) (Supp Fig.S10). Classification of samples into population 701 

using PCA-LDA (C) and random forest models (D), showing percentage of samples 702 

classified to each group, standard error of the mean (SEM) and the percentage range across 703 

all replicates. Models were built and tested 20 times each with a different set of training 704 

(70%) and test (30%) data. Accuracy percentages, SEM and range were averaged across all 705 

20 replicates. The LDA-PCA classification model had a higher accuracy (88% ± 0.01) than 706 

the random forest model (84% ± 0.02), correctly assigning 88% of individuals to their 707 

respective resistance status. Random forest models were built using 20 PCs to obtain the 708 

highest accuracy of models tested (Supp Fig.S11).  709 
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Tables 710 

Table 1: Summary data of the Ae. aegypti samples analysed via REIMS. Time larvae 711 

stored at -20oC in weeks for each replicate and the number of larvae analysed in each 712 

replicate and the total number for each experimental group (n).  713 

Population Replicate Storage Weeks n 

Lab 
Susceptible 

1 36 8 
2 36 15 
3 36 13 
4 32 15 

Total 32-36 51 

Field 
Susceptible 

1 32 12 
2 34 13 
3 33 13 
4 32 13 

Total 32-34 51 

Field 
Resistant 

1 36 9 
2 32 14 
3 36 10 
4 36 9 

Total 32-36 42 
 714 
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