

1 **Title Page**

2 **Title:**

3 Rapid evaporative ionisation mass spectrometry (REIMS): A potential and rapid tool for the
4 identification of insecticide resistance in mosquito larvae.

5 **Authors:**

6 Jasmine Morgan¹, J. Enrique Salcedo-Sora^{2*}, Iris Wagner³, Robert J Beynon³, Omar Triana-
7 Chavez⁴ and Clare Strode^{1*}

8 **Author affiliations:**

9 ¹Department of Biology, Edge Hill University, Ormskirk, Lancashire, L39 4QP, UK

10 ²GeneMill, Institute of Systems, Molecular and Integrative Biology, University of Liverpool,
11 Crown Street, Liverpool, L69 7TU, UK

12 ³Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology,
13 University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.

14 ⁴ Instituto de Biología, Facultad de Ciencias Exactas y Naturales (FCEN), University of
15 Antioquia, Medellín, Colombia

16 **Corresponding authors: ***

17 Clare Strode, BIO208, Biosciences building, Department of Biology, Edge Hill University,
18 Ormskirk, Lancashire, L39 4QP, 01695 657 373, strodecl@edgehill.ac.uk

19 J. Enrique Salcedo Sora, +44 (0)151 794 6455, J.Salcedo-Sora@liverpool.ac.uk
20

21

22 **Abstract**

23 Insecticide resistance is a significant challenge facing the successful control of mosquito
24 vectors globally. Bioassays are currently the only method for phenotyping resistance. They
25 require large numbers of mosquitoes for testing, the availability of a susceptible comparator
26 strain and often insectary facilities. This study aimed to trial the novel use of rapid
27 evaporative ionisation mass spectrometry (REIMS) for the identification of insecticide
28 resistance in mosquitoes. No sample preparation is required for REIMS and analysis can be
29 rapidly conducted within hours. Temephos resistant *Aedes aegypti* (Linnaeus) larvae from
30 Cúcuta, Colombia and temephos susceptible larvae from two origins (Bello, Colombia, and
31 the lab reference strain New Orleans) were analysed using REIMS. We tested the ability of
32 REIMS to differentiate three relevant variants: population source, lab versus field origin and
33 response to insecticide. The classification of these data was undertaken using linear
34 discriminant analysis (LDA) and random forest. Classification models built using REIMS
35 data were able to differentiate between *Ae. aegypti* larvae from different populations with
36 82% (± 0.01) accuracy, between mosquitoes of field and lab origin with 89% (± 0.01)
37 accuracy and between susceptible and resistant larvae with 85% (± 0.01) accuracy. LDA
38 classifiers had higher efficiency than random forest with this data set. The high accuracy
39 observed here identifies REIMS as a potential new tool for rapid identification of resistance
40 in mosquitoes. We argue that REIMS and similar modern phenotyping alternatives should
41 complement existing insecticide resistance management tools.

42 **Key words:**

43 Insecticide resistance, rapid evaporative ionisation mass spectrometry, REIMS, *Aedes*
44 *aegypti*, larvae, Colombia

45 **Introduction**

46 Insecticide resistance is one of the most significant challenges posed to mosquito control
47 programmes. The control of mosquito vectors, including *Aedes aegypti* (Linnaeus) the
48 principal vector for the dengue, Zika and chikungunya viruses, relies heavily on the use of
49 insecticides to reduce disease burden. There are only four insecticides classes which are
50 licensed for use in public health: organophosphates, organochlorines, pyrethroids and
51 carbamates. Resistance has now been reported in *Ae. aegypti* to all four of these chemical
52 classes (Ranson et al. 2010, Vontas et al. 2012, Moyes et al. 2017). Insecticide resistance in
53 *Ae. aegypti* is also spread worldwide with reports in South America (Guedes et al. 2020),
54 North America (Marcombe et al. 2014), Asia (Amelia-Yap et al. 2018), Europe (Seixas et al.
55 2017), Africa (Weetman et al. 2018), and Oceania (Demok et al. 2019). This trend is
56 compromising effective vector control (Viana-Medeiros et al. 2007, Bisset et al. 2011,
57 Marcombe et al. 2011).

58 Insecticide resistance management (IRM) which aims to prevent, slow, or reverse the
59 emergence of resistance is therefore crucial for sustainable vector control. The first step in
60 IRM is to monitor local populations for the development of insecticide resistance whilst
61 establishing its impact on effective vector control (Dusfour et al. 2019). Current methods for
62 resistance monitoring include bioassays, biochemical assays, and molecular testing.

63 Biochemical assays and molecular testing are used to identify the specific mechanisms
64 responsible for insecticide resistance, allowing for appropriate IRM strategies to be
65 implemented (Hemingway et al. 2013). However, insecticide bioassays (e.g. WHO tube and
66 CDC bottle assays) are the only current method for identifying (phenotyping) resistance in
67 mosquitoes. Bioassays have low sensitivity, lengthy completion times (24 hours) and often
68 only detect high levels of resistance which maybe too late for alternative measures to be
69 deployed (Dusfour et al. 2019). Other limitations include the requirement of large numbers of

70 individual mosquitoes, and the availability of a comparable susceptible strain (World Health
71 Organization (WHO) 2016). Alternative phenotyping methods that can surpass those
72 limitations are necessary.

73 Rapid evaporative ionisation mass spectrometry (REIMS) is a relatively new technology
74 which provides a rapid method of mass spectrometry without the need for any sample
75 preparation. Samples are burned by diathermy and the resultant aerosols are collected,
76 ionized, and analysed by mass spectrometry (Schäfer et al. 2009, Balog et al. 2010, 2013,
77 2015). The spectra, collected in negative ion mode, largely reflect the lipid composition of
78 the sample, and is collected over a wide range of m/z values. The spectra are then are
79 discretised by binning, creating a data matrix that is further processed by dimension reduction
80 and classification (Balog et al. 2010). The potential applications of REIMS are vast with its
81 previous successful applications including distinguishing cancerous tissue from healthy tissue
82 (Alexander et al. 2017, St John et al. 2017, Phelps et al. 2018), authentication of food
83 products (Balog et al. 2016, Black et al. 2017, Verplanken et al. 2017, Guitton et al. 2018,
84 Rigano et al. 2019), microbial species identification (Strittmatter et al. 2013, 2014),
85 monitoring of bacterial growth and recombinant protein expression (Sarsby et al. 2021), and
86 the identification of rodent species and sex from faecal matter (Davidson et al. 2019). REIMS
87 has also been shown to be a highly effective method for species and sex determination in
88 *Drosophila* adults and larvae (Wagner et al. 2020).

89 Here we present a proof-of-concept for the novel use of REIMS as a rapid tool for the
90 identification of insecticide resistance in *Ae. aegypti* larvae. We analysed three *Ae. aegypti*
91 populations, previously profiled for susceptibility to the larvicide temephos (Morgan et al.
92 2021): a resistant population originating from field collected mosquitoes from Cúcuta
93 (Colombia) and two susceptible populations, one field originating population from Bello
94 (Colombia) and a susceptible laboratory reference strain, New Orleans. The results

95 demonstrate the potential of REIMS for phenotyping insecticide resistant mosquitoes with
96 relevant discriminatory power and faster and less labour-intensive methods which may be
97 used to complement existing IRM strategies.

98 **Materials and methods**

99 **Mosquito samples and rearing**

100 *Aedes aegypti* larvae from three populations previously tested for susceptibility to temephos
101 (Morgan et al. 2021) were used in this study. Two field populations were used, one temephos
102 resistant (field resistant (FR) and one susceptible (field susceptible (FS)), the susceptible *Ae.*
103 *aegypti* laboratory strain New Orleans (lab susceptible (LS)) was also used (Fig.1). *Ae.*
104 *aegypti* were reared to fourth instar larvae following a standard rearing protocol and under
105 standard conditions within Edge Hill University Vector Research Group insectaries. Standard
106 conditions were 27°C and 70% relative humidity with an 11-hour day/night cycle with 60-
107 minute dawn/dusk simulation periods, using a lighting system of 4× Osram Dulux 26W 840
108 lights. Eggs were submerged in a hatching broth of 350 ml dH₂O, 0.125 g nutrient broth
109 (Sigma-Aldrich, Dorset, UK) and 0.025 g brewer's yeast (Holland & Barrett, Ormskirk, UK)
110 for 48 hours (Zheng et al. 2015). Once hatched, larvae were reared at a density of 0.5
111 larva/ml in dH₂O and fed ground fish food (AQUARIAN® advanced nutrition) at increasing
112 quantities per day (day 3 = 0.08 mg/larva, day 4 = 0.16 mg/larva, day 5 = 0.31 mg/larva, day
113 6 = 0 mg/larva) (Carvalho et al. 2014). For each experimental group (FR, FS, LS) four
114 biological replicates were conducted, using eggs from different females each submerged on
115 different days. Seven days after egg submission larvae were removed and stored at -20°C
116 until REIMS analysis. The storage period ranged from 32-36 weeks (Table 1). The number of
117 larvae analysed per biological replicate ranged from 8-15 with a total of 42-51 larvae per
118 experimental group (Table 1).

119 **Rapid evaporative ionisation mass spectrometry analysis**

120 Rapid evaporative ionisation mass spectrometry analysis was conducted following the
121 detailed methods outlined by Wagner *et al.* (2020). Larvae were burned using a monopolar
122 electrosurgical pencil (Erbe Medical UK Ltd, Leeds); the electric current was provided to the
123 pencil by a VIO 50 C electrosurgical generator, a black conductive rubber mat acted as the
124 counter electrode to enable the flow of electricity through the sample. The entire biomass of
125 each larva was burned, and the aerosols produced were aspirated through tubing attached to
126 the pencil into the REIMS source using a nitrogen powered venturi valve. Leucine enkephalin
127 (Waters, UK) in propan-2-ol (CHROMASOLV, Honeywell Riedel-de-Haën) was used as a
128 lock mass solution and continuously introduced via a whistle in the venturi tube at a flow rate
129 of 30 $\mu\text{l min}^{-1}$. REIMS was conducted using a Synapt G2Si instrument ion mobility
130 equipped quadrupole time of flight mass spectrometer (Waters, UK). A heated impactor
131 (Kanthal metal coil at 900°C) within the REIMS source was used to decluster the ionized
132 particles. Mass spectra were acquired in negative ion mode at a rate of 1 scan per second over
133 a mass/charge range of m/z 50–1200. All larvae were analysed in a single day in a random
134 order created by a random number generator within Microsoft excel.

135 **Data analysis**

136 The raw data files were imported into the Offline Model Builder software (OMB-1.1.28;
137 Waters Research Centre, Hungary). Each data file/sample contains the burn event of only one
138 larva, therefore the option to create one spectrum per sample was selected. The background
139 was subtracted, and the spectra corrected using the lock mass (leucine enkephalin, m/z
140 554.26). The normalised intensities were then binned into 0.1 m/z wide groups. The binned
141 mass spectra data were then imported into R (version 3.6.3) (R Core Team 2020) for further
142 analysis.

143 Dimension reduction was carried out by principal components analysis (PCA) using the R
144 package factoextra (version 1.0.7) (Kassambara and Mundt 2020). Different numbers of
145 principal components were then extracted (10,20,40,60,80,100) and used for classification of
146 samples into categories: population, population type and resistance status. Classification was
147 conducted using two different model types; linear discriminant analysis (LDA) and random
148 forest (RF), with the data randomly split into 70% training data and 30% test data. Each
149 model was built using variable numbers of principal components (PCs) extracted using PCA
150 and the most accurate model selected and used for analysis. LDA models with varying
151 numbers of PCs were built using the R package MASS (version 7.3.53) (W. N. Venables and
152 B. D. Ripley 2002), model validation was conducted by plotting receiver operating
153 characteristic curves (ROC) and selecting the model with the highest area under ROC curve
154 (AUC) (Supp Fig.S2-11). Random forest models were validated using the R package caret
155 (version 6.0.88) (Kuhn 2021) to select the model with optimum PCs, number of variables
156 available for splitting at each tree node (mtry) and tree number. The random forest models
157 with the highest overall accuracy following building in caret were selected for use in the
158 analysis with models built using the R package randomForest (version 4.6.14) (Liaw and
159 Wiener 2002). Random under sampling in the caret package was used to balance classes prior
160 to RF analysis as this showed increase in overall model performance. Class imbalance did not
161 affect performance of LDA models, as no difference in classification accuracy was observed
162 between the different groups within the models, therefore no over or under sampling was
163 required. LDA and RF models with parameters as selected by model validation were each ran
164 20 times using a different random split of test (30%) and training (70%) data. The model
165 statistics: percentage accuracy, standard error of means (SEM) and range, were then averaged
166 across all 20 replicates. LDA following PCA was also used to visualise the separation of

167 samples, plots were created using the R packages `ggplot2` (version 3.3.2) (Wickham 2016)
168 and `ggpubr` (version 0.4.0) (Kassambara 2020).

169 The experimental design is outlined in Fig.1. A code for analysing REIMS data using LDA
170 and random forest classification models which can be applied to other similar datasets is
171 available in Supplementary File 1. All raw data files are available in the MetaboLights
172 database under the accession number MTBLS4129. The data matrix, created in OMB and
173 used for subsequent analysis in R is available in Supplementary table 1.

174 **Results**

175 **Population source**

176 Visualisation of the data, following PCA-LDA analysis showed a clear discrimination
177 between *Ae. aegypti* larvae from different geographical origins (Fig.2A). All three
178 populations; field susceptible, field resistant and lab susceptible were separated in linear
179 discriminant one whilst the field resistant population separated from the two susceptible
180 populations in linear discriminant 2, thus demonstrating that LD1 is representative of
181 population and LD2 of resistance to insecticide. A PCA-LDA conducted on the data with
182 randomly assigned classifications showed no separation (Supp Fig.S1) demonstrating that the
183 observed separation of classifications is due to variations between populations and not due to
184 chance. The LDA model built using the REIMS data was able to correctly classify 82% (\pm
185 0.01) of *Ae. aegypti* larvae into the correct population (Fig.2B). The lab susceptible
186 population had the highest accuracy (90% \pm 2.0) and had the largest sample number whilst
187 the population with the lowest sample number, field resistant, had the lowest accuracy (77%
188 \pm 2.2). When classification was conducted using a random forest model accuracy was lower,
189 but the model was still able to correctly assign 76% of individual *Ae. aegypti* larvae to the
190 correct population (Fig.2C).

191 **Population type (lab and field)**

192 A clear separation is observed when *Ae. aegypti* larvae from field origin are compared to
193 larvae from a standard laboratory reference strain using PCA-LDA (Fig.3A & B). The
194 classification models had high accuracy with 89% (± 0.01) of individual larvae classified to
195 the correct population type with the PCA-LDA model (Fig.3C) and 83% (± 0.01) correctly
196 classified by random forest (Fig.3D). Larvae from field origin had higher classification
197 accuracy ($86\% \pm 1.8$) than those of lab origin ($80\% \pm 2.4$) when the RF model was used.
198 When the LDA model was used the accuracy was similar for both groups (Field = $90\% \pm 0.8$,
199 Lab = 89 ± 2.0).

200 **Insecticide sensitivity profile**

201 Analysis of the REIMS data was also conducted to investigate the potential for determination
202 between insecticide resistant and susceptible *Ae. aegypti* larvae (Fig.4). PCA-LDA
203 classification models show 85% (± 0.01) accuracy in assigning larvae to the correct resistance
204 status, with 75% (± 2.8) of temephos resistant larvae being correctly assigned (Fig.4c). The
205 classification accuracy was higher for susceptible individuals ($89\% \pm 1.1$), this is likely due
206 to the larger sample size of susceptible individuals available for training the model (Fig.4C).
207 Whilst the random forest classification model was less accurate it still had a correct
208 classification rate of 78% (± 0.02) correctly classifying 73% (± 3.3) of resistant individuals
209 and 79% of susceptible individuals (Fig.4D).

210 A similar classification accuracy is achieved when field resistant larvae are compared only to
211 susceptible larvae from a laboratory strain (Fig.5) as when field resistance larvae are
212 compared to susceptible larvae from field origin (Fig.6). When only a field susceptible
213 comparator strain is used the classification accuracy was 88% (± 0.01) using LDA (Fig.6C)
214 and 84% (± 0.02) using RF (Fig.6D). When only a lab susceptible comparator strain is used
215 the classification accuracy was similar with accuracies of 87% with LDA (Fig.5C) and 82%

216 with RF (Fig.5D). The similarity in classification accuracy observed here demonstrates that a
217 field equivalent susceptible strain may not be necessary for identification of insecticide
218 resistance in field *Ae. aegypti* larvae using this method, which is beneficial with the
219 decreasing availability of field relevant susceptible populations.

220 **Discussion**

221 Early detection of resistance in mosquito populations is key to effective IRM and in reducing
222 its effect on transmission of disease (Dusfour et al. 2019). The current principal methods for
223 monitoring resistance are bioassays, biochemical assays, and molecular testing. Biochemical
224 assays and molecular testing can be used to identify resistance in mosquitoes and are also
225 important for the identification of mechanisms conferring resistance which can be useful
226 when deciding on the most effective control method and in the development of novel control
227 strategies (Brogdon 1989, World Health Organization (WHO) 1998, Corbel and N'Guessan
228 2013, Hemingway et al. 2013, Faucon et al. 2017, Dusfour et al. 2019). Current
229 understanding of resistance has been developed through molecular and biochemical studies
230 which have identified common resistance mechanisms including target site insensitivity and
231 metabolic detoxification (Hemingway et al. 2004). Identification of these resistance
232 mechanisms has been vital to increasing understanding of resistance.

233 Biochemical and molecular assays are important for increasing understanding of resistance
234 mechanisms however there is an operational need for scalable rapid identification tools which
235 are less labour intensive thereby yielding faster results which therefore have the potential to
236 have more direct impact on decision making in the field. Insecticide bioassays are currently
237 the only method for phenotyping resistance in mosquitoes (World Health Organization 2013,
238 World Health Organization (WHO) 2016). They are limited to detecting high levels of
239 resistance only which is often too late for alternative control methods to be deployed and high
240 level of variation between experiments is often observed (Owusu et al. 2017). Bioassays also

241 require large numbers of mosquitoes, the availability of a comparable susceptible strain and
242 insectary facilities (World Health Organization 2013, World Health Organization (WHO)
243 2016).

244 This study presents proof of concept for the use of rapid evaporative ionisation mass
245 spectrometry (REIMS) as a faster tool for monitoring of insecticide resistance which has the
246 potential to directly inform vector control decision making. The data obtained by REIMS
247 analysis was able to categorise resistance with 85% (± 0.01) accuracy. This method also
248 benefits from requiring no sample preparation, and rapid data acquisition. For this study
249 relatively small sample numbers were used, but high accuracy was still obtained. Accuracy of
250 classification models has potential to increase as the size of the training data set is increased,
251 therefore subsequent testing with higher sample numbers may yield an even greater accuracy,
252 however higher variability of samples (diet, ages, environmental factors etc.) would need to
253 be included in order to produce a robust model capable of dealing with fully wild samples
254 (Dobbin et al. 2008, Figueroa et al. 2012, Hanberry et al. 2012, Beleites et al. 2013, Luan et
255 al. 2020). The tool was also able to differentiate between different mosquito populations with
256 82% (± 0.01) accuracy, suggesting other applications for the tool aside from resistance
257 monitoring.

258 We also compared two different classification model types, linear discriminant analysis
259 (LDA) and random forest (RF) both of which are commonly applied to classification of
260 samples using REIMS data (Cameron et al. 2016, St John et al. 2017, Davidson et al. 2019,
261 Gredell et al. 2019, Wagner et al. 2020, Sarsby et al. 2021). LDA is often the classification
262 method of choice for spectrometry-based phenotyping, including REIMS (Bonetti 2018,
263 D’Hue et al. 2018, Gredell et al. 2019, Kenar et al. 2019, Liu et al. 2021, Wang et al. 2021).
264 The results of this study showed that LDA classification models were able to achieve
265 comparable accuracy to the more complex random forest models and in the case of our data

266 performed better. Use of a simpler but equally accurate model is important in enabling the
267 data analysis to be accessible to a variety of personnel working within vector control. The
268 PCA-LDA method has previously been shown to be effective at classifying groups which
269 show large differences in biochemical profile, however for groups with more subtle
270 differences machine learning methods may have higher accuracy than LDA (Gromski et al.
271 2015, Gredell et al. 2019). The higher accuracy of the LDA model used in this study
272 comparatively to the RF model suggests that the differences in molecular profile between the
273 groups studied; geographical origin, population type and resistance status may be distinct.
274 This provides further promise for the use of REIMS in insecticide resistance monitoring as
275 larger differences in lipid signatures are easier to detect than subtle differences. The use of
276 multiple classification models to accurately classify REIMS data has previously been shown
277 to be important due to the high complexity of REIMS data. Dimension reduction, as
278 conducted in this study, has also been shown to be a critical step in REIMS data analysis
279 (Gredell et al. 2019).

280 Whilst the REIMS method is a fast and effective method it does have some disadvantages
281 when compared with alternative methods. The technique is destructive, meaning that the
282 sample cannot be used for further analysis. However, application of the technique to adult
283 mosquitoes provides the opportunity for partial dissection (e.g. leg removal) prior to REIMS
284 which will allow for further genetic or biochemical testing. The mass spectroscopy
285 equipment involved in REIMS is estimated to cost around \$500,000 USD (Logrono 2020),
286 whilst costs of the initial set up of REIMS facilities are high, once equipment is available the
287 cost per sample is low due to rapid sampling turnover. Costs are also saved elsewhere without
288 the need for high staffing costs and insectary facilities. The speed at which samples can be
289 analysed allows for high sample turnover which therefore reduces cost, 100 mosquito larvae
290 could be analysed, and an answer generated in as little as 2-3 hours. In other applications

291 including cancer diagnostic REIMS has been identified to be a more cost-effective method
292 than other molecular techniques with costs around £1.60 per sample (Paraskevaidi et al.
293 2020). The REIMS method identifies differences in the lipid/metabolite profile of samples
294 however specific molecule detection is not the objective of this method, which is designed
295 instead to detect unique patterns in mass spectrum that enable classification (Wagner et al.
296 2020). Whilst we propose the use of REIMS as a potential rapid resistance identification tool
297 with direct operational impact the technique is not intended to be used for identification of
298 the mechanisms conferring the detected resistance.

299 Near-infrared spectroscopy (NIRS) is another rapid technique that has been utilised for
300 examining invertebrates which is non-destructive and cost-effective (Johnson 2020). The
301 high sensitivity spectrometers required for NIRS analysis cost an estimated \$45,000 -
302 \$60,000 USD (Ferguson et al. 2009, Fernandes et al. 2018, Maia et al. 2019). The technique
303 has been used successfully to differentiate mosquito species and age (Ferguson et al. 2009,
304 Sikulu et al. 2010, 2011, Dowell et al. 2015, González Jiménez et al. 2019) and can also
305 identify mosquitoes which are infected with arboviruses, *Plasmodium* and *Wolbachia*
306 (Sikulu-Lord et al. 2016, Fernandes et al. 2018, Maia et al. 2019). The ability of NIRS to
307 estimate age of mosquitoes has also been applied to the detection of insecticide resistance
308 (Sikulu et al. 2014, Lambert et al. 2018), as insecticide resistance has been shown to decrease
309 with age (Lines and Nassor 1991, Rajatileka et al. 2011, Jones et al. 2012). However there
310 has been no studies which investigate the use of NIRS to directly measure insecticide
311 resistance. The accuracy of NIRS for mosquito species determination is reported to be 78 –
312 90% (Ferguson et al. 2009, Sikulu et al. 2010, 2011, González Jiménez et al. 2019), lower
313 than the 91 – 100% REIMS accuracy for species differentiation in *Drosophila* (Wagner et al.
314 2020). As NIRS has not been used to directly monitor insecticide resistance, comparisons
315 between REIMS and NIRS accuracy for this purpose cannot be made.

316 This study focussed on identifying resistance to temephos however resistance to one
317 insecticide rarely occurs in isolation. *Ae. aegypti* from both Cúcuta and Bello have previously
318 been reported to have resistance to the pyrethroid permethrin and Cúcuta also to lambda-
319 cyhalothrin (Granada et al. 2021). Whilst the current study provides proof of concept for the
320 potential use of REIMS in identifying resistance, further study is needed to establish whether
321 the tool can be used to differentiate between resistance to different insecticides, an
322 application which could be beneficial to vector control programmes. Knock down resistance
323 (*kdr*), mutations in the sodium channel gene frequently associated with pyrethroid resistance,
324 has also been reported in *Ae. aegypti* from Bello and Cúcuta. The varying frequencies of *kdr*
325 alleles demonstrates that these populations are not genetically homogenous (Granada et al.
326 2021). Whilst gaining an understanding of the genetic basis of resistance is important (e.g. in
327 tracking resistance and development of new interventions) it has little direct impact on the
328 rapid decision making needed in the field (Vontas and Mavridis 2019). This study aims to
329 provide a method which fulfils the need for more rapid resistance phenotyping tools to
330 contribute to existing strategies without delving into the mechanisms contributing to this
331 however there is also a further potential application of REIMS in investigating the genetic
332 basis of resistance.

333 To reduce the confounding effects of phenotypic differences between populations unrelated
334 to resistance, this study used two different susceptible populations of *Ae. aegypti*, one of field
335 origin and a lab strain. Whilst this experimental design does reduce these confounding
336 effects, as shown when comparing gene expression (Morgan et al. 2021), it cannot mitigate
337 them completely and therefore other phenotypic differences between populations may be
338 contributing to the high REIMS accuracy. This cannot be fully avoided when using field
339 collected populations of mosquitoes.

340 Further testing is required to establish sensitivity of REIMS to more granular levels of
341 resistance, resistance in other medically important mosquito species, resistance to a variety of
342 insecticides as well as resistance in adult mosquitoes. Determining whether the preservation
343 method of mosquito samples (e.g., desiccation, storage temperatures, fixation) affects results
344 also has implications for field application. The results presented here identified REIMS as a
345 promising alternative tool for the identification of insecticide resistance in mosquitoes.
346 REIMS and similar modern phenotyping methods should be standardised and incorporated
347 into existing insecticide resistance management strategies.

348 **Supplementary Material**

349 **Supplementary File 1: R Code for analysing REIMS data.** R coding for analysing REIMS
350 data matrices, following data binning in OMB, using LDA and random forest classification
351 models.

352 **Supplementary Table 1: The REIMS data matrices.** REIMS data following binning in
353 OMB. Data organised by population type, population, and resistance status. Mass spectra
354 displayed in 0.1 *m/z* wide bins from 50 – 1200 *m/z*.

355 **Supplementary Figures S1 – S11: Supplementary figures and figure legends.** Separation
356 of data with random group assignment (Fig S1). LDA and RF validation plots (Fig S2-S11).

357 **Acknowledgments**

358 The authors thank The University of Liverpool for the support to JES-S, IW and RJB, Edge
359 Hill University for support to JM and CS and University of Antioquia for support to OT-C.
360 The REIMS instrumentation was supported by a grant from the Biological and
361 Biotechnological Sciences Research Council (BB/L014793/1) to RJB.

362 **Author Contributions**

363 JM: data curation; formal analysis; investigation; methodology; resources; visualization;
364 writing – original draft, writing – review & editing. JES-S: conceptualization; supervision;
365 writing – review and editing. IW: methodology, investigation, writing – review and editing.
366 RJB: methodology; resources; writing – review and editing. OT-C: resources; writing –
367 review and editing. CS: conceptualization; supervision; writing – review and editing.

368 **References Cited**

369 **Alexander, J., L. Gildea, J. Balog, A. Speller, J. McKenzie, L. Muirhead, A. Scott, C.**
370 **Kontovounisios, S. Rasheed, J. Teare, J. Hoare, K. Veselkov, R. Goldin, P. Tekkis,**
371 **A. Darzi, J. Nicholson, J. Kinross, and Z. Takats. 2017.** A novel methodology for in
372 vivo endoscopic phenotyping of colorectal cancer based on real-time analysis of the
373 mucosal lipidome: a prospective observational study of the iKnife. *Surg. Endosc.* 31:
374 1361–1370.

375 **Amelia-Yap, Z. H., C. D. Chen, M. Sofian-Azirun, and V. L. Low. 2018.** Pyrethroid
376 resistance in the dengue vector *Aedes aegypti* in Southeast Asia: Present situation and
377 prospects for management. *Parasites and Vectors.* 11: 332.

378 **Balog, J., S. Kumar, J. Alexander, O. Golf, J. Huang, T. Wiggins, N. Abbassi-Ghadi, A.**
379 **Enyedi, S. Kacska, J. Kinross, G. B. Hanna, J. K. Nicholson, and Z. Takats. 2015.**
380 **In Vivo Endoscopic Tissue Identification by Rapid Evaporative Ionization Mass**
381 **Spectrometry (REIMS).** *Angew. Chemie.* 127: 11211–11214.

382 **Balog, J., D. Perenyi, C. Guallar-Hoyas, A. Egri, S. D. Pringle, S. Stead, O. P.**
383 **Chevallier, C. T. Elliott, and Z. Takats. 2016.** Identification of the Species of Origin
384 for Meat Products by Rapid Evaporative Ionization Mass Spectrometry. *J. Agric. Food*
385 *Chem.* 64: 4793–4800.

386 **Balog, J., L. Sasi-Szabó, J. Kinross, M. R. Lewis, L. J. Muirhead, K. Veselkov, R.**
387 **Mirnezami, B. Dezső, L. Damjanovich, A. Darzi, J. K. Nicholson, and Z. Takáts.**
388 **2013.** Intraoperative Tissue Identification Using Rapid Evaporative Ionization Mass
389 Spectrometry. *Sci. Transl. Med.* 5: 194ra93-194ra93.

390 **Balog, J., T. Szaniszlo, K.-C. Schaefer, J. Denes, A. Lopata, L. Godorhazy, D. Szalay, L.**
391 **Balogh, L. Sasi-Szabo, M. Toth, and Z. Takats. 2010.** Identification of Biological
392 Tissues by Rapid Evaporative Ionization Mass Spectrometry. *Anal. Chem.* 82: 7343–
393 7350.

394 **Beleites, C., U. Neugebauer, T. Bocklitz, C. Krafft, and J. Popp. 2013.** Sample size
395 planning for classification models. *Anal. Chim. Acta.* 760: 25–33.

396 **Bisset, J. A., M. M. Rodríguez, Y. Ricardo, H. Ranson, O. Pérez, M. Moya, and A.**
397 **Vázquez. 2011.** Temephos resistance and esterase activity in the mosquito *Aedes*
398 aegypti in Havana, Cuba increased dramatically between 2006 and 2008. *Med. Vet.*
399 *Entomol.* 25: 233–239.

400 **Black, C., O. P. Chevallier, S. A. Haughey, J. Balog, S. Stead, S. D. Pringle, M. V. Riina, F. Martucci, P. L. Acutis, M. Morris, D. S. Nikolopoulos, Z. Takats, and C. T. Elliott. 2017.** A real time metabolomic profiling approach to detecting fish fraud using rapid evaporative ionisation mass spectrometry. *Metabolomics*. 13: 153.

404 **Bonetti, J. 2018.** Mass spectral differentiation of positional isomers using multivariate statistics. *Forensic Chem*. 9: 50–61.

406 **Brogdon, W. G. 1989.** Biochemical resistance detection: An alternative to bioassay. *Parasitol. Today*. 5: 56–60.

408 **Cameron, S. J. S., F. Bolt, A. Perdones-Montero, T. Rickards, K. Hardiman, A. Abdolrasouli, A. Burke, Z. Bodai, T. Karancsi, D. Simon, R. Schaffer, M. Rebec, J. Balog, and Z. Takáts. 2016.** Rapid Evaporative Ionisation Mass Spectrometry (REIMS) Provides Accurate Direct from Culture Species Identification within the Genus *Candida*. *Sci. Rep.* 6: 36788.

413 **Carvalho, D. O., D. Nimmo, N. Naish, A. R. McKemey, P. Gray, A. B. B. Wilke, M. T. Marrelli, J. F. Virginio, L. Alphey, and M. L. Capurro. 2014.** Mass production of genetically modified *Aedes aegypti* for field releases in Brazil. *J. Vis. Exp.* e3579.

416 **Corbel, V., and R. N'Guessan. 2013.** Distribution, Mechanisms, Impact and Management of Insecticide Resistance in Malaria Vectors: A Pragmatic Review. *In Anopheles Mosquitoes - New Insights into Malar. Vectors*. InTech.

419 **D'Hue, C., M. Moore, D.-J. Summerlin, A. Jarmusch, C. Alfaro, A. Mantravadi, A. Bewley, D. Gregory Farwell, and R. G. Cooks. 2018.** Feasibility of desorption electrospray ionization mass spectrometry for diagnosis of oral tongue squamous cell carcinoma. *Rapid Commun. Mass Spectrom.* 32: 133–141.

423 **Davidson, N. B., N. I. Koch, J. Sarsby, E. Jones, J. L. Hurst, and R. J. Beynon. 2019.** Rapid identification of species, sex and maturity by mass spectrometric analysis of animal faeces. *BMC Biol.* 17: 66.

426 **Demok, S., N. Endersby-Harshman, R. Vinit, L. Timinao, L. J. Robinson, M. Susapu, L. Makita, M. Laman, A. Hoffmann, and S. Karl. 2019.** Insecticide resistance status of *Aedes aegypti* and *Aedes albopictus* mosquitoes in Papua New Guinea. *Parasit. Vectors*. 12: 333.

430 **Dobbin, K. K., Y. Zhao, and R. M. Simon. 2008.** How Large a Training Set is Needed to Develop a Classifier for Microarray Data? *Clin. Cancer Res.* 14: 108–114.

432 **Dowell, F., A. Lenhart, L. Vizcaino, I. Swamidoss, K. Liebman, and R. Wirtz. 2015.** The Influence of Diet on the Use of Near-Infrared Spectroscopy to Determine the Age of Female *Aedes aegypti* Mosquitoes. *Am. J. Trop. Med. Hyg.* 92: 1070–1075.

435 **Dusfour, I., J. Vontas, J. P. David, D. Weetman, D. M. Fonseca, V. Corbel, K. Raghavendra, M. B. Coulibaly, A. J. Martins, S. Kasai, and F. Chandre. 2019.** Management of insecticide resistance in the major *Aedes* vectors of arboviruses: Advances and challenges. *PLoS Negl. Trop. Dis.*

439 **Faucon, F., T. Gaude, I. Dusfour, V. Navratil, V. Corbel, W. Juntarajumnong, R. Girod, R. Poupardin, F. Boyer, S. Reynaud, and J. P. David. 2017.** In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito *Aedes aegypti*: An integrated next-generation sequencing approach. *PLoS Negl. Trop. Dis.* 11:

443 e0005526.

444 **Ferguson, H. M., G. F. Killeen, K. Michel, R. A. Wirtz, M. Q. Benedict, F. E. Dowell,**
445 **and V. S. Mayagaya. 2009.** Non-destructive Determination of Age and Species of
446 *Anopheles gambiae* s.l. Using Near-infrared Spectroscopy. *Am. J. Trop. Med. Hyg.* 81:
447 622–630.

448 **Fernandes, J. N., L. M. B. dos Santos, T. Chouin-Carneiro, M. G. Pavan, G. A. Garcia,**
449 **M. R. David, J. C. Beier, F. E. Dowell, R. Maciel-de-Freitas, and M. T. Sikulu-**
450 **Lord. 2018.** Rapid, noninvasive detection of Zika virus in *Aedes aegypti* mosquitoes by
451 near-infrared spectroscopy. *Sci. Adv.* 4: eaat0496.

452 **Figueroa, R. L., Q. Zeng-Treitler, S. Kandula, and L. H. Ngo. 2012.** Predicting sample
453 size required for classification performance. *BMC Med. Inform. Decis. Mak.* 12: 8.

454 **González Jiménez, M., S. A. Babayan, P. Khazaeli, M. Doyle, F. Walton, E. Reedy, T.**
455 **Glew, M. Viana, L. Ranford-Cartwright, A. Niang, D. J. Siria, F. O. Okumu, A.**
456 **Diabaté, H. M. Ferguson, F. Baldini, and K. Wynne. 2019.** Prediction of mosquito
457 species and population age structure using mid-infrared spectroscopy and supervised
458 machine learning. *Wellcome Open Res.* 4: 76.

459 **Granada, Y., A. M. Mejía-Jaramillo, S. Zuluaga, and O. Triana-Chávez. 2021.**
460 Molecular surveillance of resistance to pyrethroids insecticides in Colombian *Aedes*
461 *aegypti* populations. *PLoS Negl. Trop. Dis.* 15: e0010001.

462 **Gredell, D. A., A. R. Schroeder, K. E. Belk, C. D. Broeckling, A. L. Heuberger, S.-Y.**
463 **Kim, D. A. King, S. D. Shackelford, J. L. Sharp, T. L. Wheeler, D. R. Woerner, and**
464 **J. E. Prenni. 2019.** Comparison of Machine Learning Algorithms for Predictive
465 Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry
466 (REIMS) Data. *Sci. Rep.* 9: 5721.

467 **Gromski, P. S., H. Muhamadali, D. I. Ellis, Y. Xu, E. Correa, M. L. Turner, and R.**
468 **Goodacre. 2015.** A tutorial review: Metabolomics and partial least squares-discriminant
469 analysis – a marriage of convenience or a shotgun wedding. *Anal. Chim. Acta.* 879: 10–
470 23.

471 **Guedes, R. N. C., K. Beins, D. Navarro Costa, G. E. Coelho, and H. S. da S. Bezerra.**
472 **2020.** Patterns of insecticide resistance in *Aedes aegypti*: meta-analyses of surveys in
473 Latin America and the Caribbean. *Pest Manag. Sci.* 76: 2144–2157.

474 **Guitton, Y., G. Derville-Pinel, R. Jandova, S. Stead, Z. Takats, and B. Le Bizec. 2018.**
475 Rapid evaporative ionisation mass spectrometry and chemometrics for high-throughput
476 screening of growth promoters in meat producing animals. *Food Addit. Contam. Part A.*
477 35: 900–910.

478 **Hanberry, B. B., H. S. He, and D. C. Dey. 2012.** Sample sizes and model comparison
479 metrics for species distribution models. *Ecol. Modell.* 227: 29–33.

480 **Hemingway, J., N. J. Hawkes, L. McCarroll, and H. Ranson. 2004.** The molecular basis
481 of insecticide resistance in mosquitoes. *Insect Biochem. Mol. Biol.* 34: 653–665.

482 **Hemingway, J., J. Vontas, R. Poupardin, J. Raman, J. Lines, C. Schwabe, A. Matias,**
483 **and I. Kleinschmidt. 2013.** Country-level operational implementation of the Global
484 Plan for Insecticide Resistance Management. *Proc. Natl. Acad. Sci. U. S. A.* 110: 9397–
485 9402.

486 **Johnson, J. 2020.** Near-infrared spectroscopy (NIRS) for taxonomic entomology: A brief
487 review. *J. Appl. Entomol.* 144: 241–250.

488 **Jones, C. M., A. Sanou, W. M. Guelbeogo, N. Sagnon, P. C. Johnson, and H. Ranson.**
489 2012. Aging partially restores the efficacy of malaria vector control in insecticide-
490 resistant populations of *Anopheles gambiae* s.l. from Burkina Faso. *Malar. J.* 11: 24.

491 **Kassambara, A. 2020.** ggpubr: “ggplot2” Based Publication Ready Plots.

492 **Kassambara, A., and F. Mundt. 2020.** factoextra: Extract and Visualize the Results of
493 Multivariate Data Analyses Title.

494 **Kenar, A., B. Çiçek, F. N. Arslan, G. Akin, S. N. K. Elmas, and I. Yilmaz. 2019.** Electron
495 Impact–Mass Spectrometry Fingerprinting and Chemometrics for Rapid Assessment of
496 Authenticity of Edible Oils Based on Fatty Acid Profiling. *Food Anal. Methods.* 12:
497 1369–1381.

498 **Kuhn, M. 2021.** caret: Classification and Regression Training.

499 **Lambert, B., M. T. Sikulu-Lord, V. S. Mayagaya, G. Devine, F. Dowell, and T. S.**
500 **Churcher. 2018.** Monitoring the Age of Mosquito Populations Using Near-Infrared
501 Spectroscopy. *Sci. Rep.* 8: 5274.

502 **Liaw, A., and M. Wiener. 2002.** Classification and Regression by randomForest. *R News.* 2:
503 18–22.

504 **Lines, J. D., and N. S. Nassor. 1991.** DDT resistance in *Anopheles gambiae* declines with
505 mosquito age. *Med. Vet. Entomol.* 5: 261–265.

506 **Liu, H., Q. Meng, X. Zhao, Y. Ye, and H. Tong. 2021.** Inductively coupled plasma mass
507 spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometer
508 (ICP-OES)-based discrimination for the authentication of tea. *Food Control.* 123:
509 107735.

510 **Logrono, J. B. 2020.** Thesis Assessment Of Methods To Screen For Carotenoids IN Yellow-
511 Fleshed Potato Germplasm.

512 **Luan, J., C. Zhang, B. Xu, Y. Xue, and Y. Ren. 2020.** The predictive performances of
513 random forest models with limited sample size and different species traits. *Fish. Res.*
514 227: 105534.

515 **Maia, M. F., M. Kapulu, M. Muthui, M. G. Wagah, H. M. Ferguson, F. E. Dowell, F.**
516 **Baldini, and L. Ranford-Cartwright. 2019.** Detection of *Plasmodium falciparum*
517 infected *Anopheles gambiae* using near-infrared spectroscopy. *Malar. J.* 18: 85.

518 **Marcombe, S., F. Darriet, M. Tolosa, P. Agnew, S. Duchon, M. Etienne, M. M. Y. Tcha,**
519 **F. Chandre, V. Corbel, and A. Yébakima. 2011.** Pyrethroid resistance reduces the
520 efficacy of space sprays for Dengue control on the island of Martinique (Caribbean).
521 *PLoS Negl. Trop. Dis.* 5: e1202.

522 **Marcombe, S., A. Farajollahi, S. P. Healy, G. G. Clark, and D. M. Fonseca. 2014.**
523 Insecticide resistance status of United States populations of *Aedes albopictus* and
524 mechanisms involved. *PLoS One.* 9: e101992.

525 **Morgan, J., J. E. Salcedo-Sora, O. Triana-Chavez, and C. Strode. 2021.** Expansive and
526 Diverse Phenotypic Landscape of Field *Aedes aegypti* (Diptera: Culicidae) Larvae with

527 Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. *J. Med.*
528 *Entomol.*

529 **Moyes, C. L., J. Vontas, A. J. Martins, L. C. Ng, S. Y. Koou, I. Dusfour, K.**
530 **Raghavendra, J. Pinto, V. Corbel, J. P. David, and D. Weetman. 2017.**
531 Contemporary status of insecticide resistance in the major *Aedes* vectors of arboviruses
532 infecting humans. *PLoS Negl. Trop. Dis.* 11: e0005625.

533 **Owusu, H. F., N. Chitnis, and P. Müller. 2017.** Insecticide susceptibility of *Anopheles*
534 mosquitoes changes in response to variations in the larval environment. *Sci. Rep.* 7: 3667.

536 **Paraskevaidi, M., S. J. S. Cameron, E. Whelan, S. Bowden, M. Tzafetas, A. Mitra, A.**
537 **Semertzidou, A. Athanasiou, P. R. Bennett, D. A. MacIntyre, Z. Takats, and M.**
538 **Kyrgiou. 2020.** Laser-assisted rapid evaporative ionisation mass spectrometry (LA-
539 REIMS) as a metabolomics platform in cervical cancer screening. *EBioMedicine.* 60:
540 103017.

541 **Phelps, D. L., J. Balog, L. F. Gildea, Z. Bodai, A. Savage, M. A. El-Bahrawy, A. V.**
542 **Speller, F. Rosini, H. Kudo, J. S. McKenzie, R. Brown, Z. Takáts, and S. Ghaem-**
543 **Maghami. 2018.** The surgical intelligent knife distinguishes normal, borderline and
544 malignant gynaecological tissues using rapid evaporative ionisation mass spectrometry
545 (REIMS). *Br. J. Cancer.* 118: 1349–1358.

546 **R Core Team. 2020.** R: A Language and Environment for Statistical Computing. R
547 Foundation for Statistical Computing, Vienna, Austria.

548 **Rajatileka, S., J. Burhani, and H. Ranson. 2011.** Mosquito age and susceptibility to
549 insecticides. *Trans. R. Soc. Trop. Med. Hyg.* 105: 247–253.

550 **Ranson, H., J. Burhani, N. Lumjuan, and W. C. Black IV. 2010.** Insecticide resistance in
551 dengue vectors. *TropIKA.* 1.

552 **Rigano, F., S. Stead, D. Mangaviti, R. Jandova, D. Petit, N. Marino, and L. Mondello.**
553 **2019.** Use of an “Intelligent Knife” (iknife), Based on the Rapid Evaporative Ionization
554 Mass Spectrometry Technology, for Authenticity Assessment of Pistachio Samples.
555 *Food Anal. Methods.* 12: 558–568.

556 **Sarsby, J., L. McLean, V. M. Harman, and R. J. Beynon. 2021.** Monitoring recombinant
557 protein expression in bacteria by rapid evaporative ionisation mass spectrometry. *Rapid*
558 *Commun. Mass Spectrom.* 35: e8670.

559 **Schäfer, K.-C., J. Dénes, K. Albrecht, T. Szaniszló, J. Balog, R. Skoumal, M. Katona, M.**
560 **Tóth, L. Balogh, and Z. Takáts. 2009.** In Vivo, In Situ Tissue Analysis Using Rapid
561 Evaporative Ionization Mass Spectrometry. *Angew. Chemie Int. Ed.* 48: 8240–8242.

562 **Seixas, G., L. Grigoraki, D. Weetman, J. L. Vicente, A. C. Silva, J. Pinto, J. Vontas, and**
563 **C. A. Sousa. 2017.** Insecticide resistance is mediated by multiple mechanisms in
564 recently introduced *Aedes aegypti* from Madeira Island (Portugal). *PLoS Negl. Trop.*
565 *Dis.* 11: e0005799.

566 **Sikulu-Lord, M. T., M. P. Milali, M. Henry, R. A. Wirtz, L. E. Hugo, F. E. Dowell, and**
567 **G. J. Devine. 2016.** Near-Infrared Spectroscopy, a Rapid Method for Predicting the Age
568 of Male and Female Wild-Type and Wolbachia Infected *Aedes aegypti*. *PLoS Negl.*
569 *Trop. Dis.* 10: e0005040.

570 **Sikulu, M., K. M. Dowell, L. E. Hugo, R. A. Wirtz, K. Michel, K. H. Peiris, S. Moore, G.**
571 **F. Killeen, and F. E. Dowell. 2011.** Evaluating RNAlater® as a preservative for using
572 near-infrared spectroscopy to predict *Anopheles gambiae* age and species. *Malar. J.* 10: 186.

573

574 **Sikulu, M., G. F. Killeen, L. E. Hugo, P. A. Ryan, K. M. Dowell, R. A. Wirtz, S. J.**
575 **Moore, and F. E. Dowell. 2010.** Near-infrared spectroscopy as a complementary age
576 grading and species identification tool for African malaria vectors. *Parasit. Vectors.* 3: 49.

577

578 **Sikulu, M. T., S. Majambere, B. O. Khatib, A. S. Ali, L. E. Hugo, and F. E. Dowell.**
579 **2014.** Using a Near-Infrared Spectrometer to Estimate the Age of *Anopheles* Mosquitoes
580 Exposed to Pyrethroids. *PLoS One.* 9: e90657.

581 **St John, E. R., J. Balog, J. S. McKenzie, M. Rossi, A. Covington, L. Muirhead, Z. Bodai,**
582 **F. Rosini, A. V. M. Speller, S. Shousha, R. Ramakrishnan, A. Darzi, Z. Takats, and**
583 **D. R. Leff. 2017.** Rapid evaporative ionisation mass spectrometry of electrosurgical
584 vapours for the identification of breast pathology: towards an intelligent knife for breast
585 cancer surgery. *Breast Cancer Res.* 19: 59.

586 **Strittmatter, N., E. A. Jones, K. A. Veselkov, M. Rebec, J. G. Bundy, and Z. Takats.**
587 **2013.** Analysis of intact bacteria using rapid evaporative ionisation mass spectrometry.
588 *Chem. Commun.* 49: 6188.

589 **Strittmatter, N., M. Rebec, E. A. Jones, O. Golf, A. Abdolrasouli, J. Balog, V. Behrends,**
590 **K. A. Veselkov, and Z. Takats. 2014.** Characterization and Identification of Clinically
591 Relevant Microorganisms Using Rapid Evaporative Ionization Mass Spectrometry.
592 *Anal. Chem.* 86: 6555–6562.

593 **Verplanken, K., S. Stead, R. Jandova, C. Van Poucke, J. Claereboudt, J. Vanden**
594 **Bussche, S. De Saeger, Z. Takats, J. Wauters, and L. Vanhaecke. 2017.** Rapid
595 evaporative ionization mass spectrometry for high-throughput screening in food
596 analysis: The case of boar taint. *Talanta.* 169: 30–36.

597 **Viana-Medeiros, P. F., A. J. Martins, I. A. Braga, J. B. P. Lima, D. Valle, and I. R.**
598 **Montella. 2007.** Insecticide Resistance Mechanisms of Brazilian *Aedes aegypti*
599 Populations from 2001 to 2004. *Am. J. Trop. Med. Hyg.* 77: 467–477.

600 **Vontas, J., E. Kioulos, N. Pavlidi, E. Morou, A. Della Torre, and H. Ranson. 2012.**
601 Insecticide resistance in the major dengue vectors *Aedes albopictus* and *Aedes aegypti*.

602 **Vontas, J., and K. Mavridis. 2019.** Vector population monitoring tools for insecticide
603 resistance management: Myth or fact? *Pestic. Biochem. Physiol.* 161: 54–60.

604 **W. N. Venables and B. D. Ripley. 2002.** Modern Applied Statistics with S.

605 **Wagner, I., N. I. Koch, J. Sarsby, N. White, T. A. R. Price, S. Jones, J. L. Hurst, and R.**
606 **J. Beynon. 2020.** The application of rapid evaporative ionization mass spectrometry in
607 the analysis of *Drosophila* species—a potential new tool in entomology. *Open Biol.* 10: 200196.

608

609 **Wang, Y., T. He, J. Wang, L. Wang, X. Ren, S. He, X. Liu, Y. Dong, J. Ma, R. Song, J.**
610 **Wei, A. Yu, Q. Fan, X. Wang, and G. She. 2021.** High performance liquid
611 chromatography fingerprint and headspace gas chromatography-mass spectrometry
612 combined with chemometrics for the species authentication of *Curcumae Rhizoma*. *J.*

613 Pharm. Biomed. Anal. 202: 114144.

614 **Weetman, D., B. Kamgang, A. Badolo, C. Moyes, F. Shearer, M. Coulibaly, J. Pinto, L.**
615 **Lambrechts, and P. McCall. 2018.** Aedes Mosquitoes and Aedes-Borne Arboviruses in
616 Africa: Current and Future Threats. Int. J. Environ. Res. Public Health. 15: 220.

617 **Wickham, H. 2016.** ggplot2: Elegant Graphics for Data Analysis.

618 **World Health Organization. 2013.** Test procedures for insecticide resistance monitoring in
619 malaria vector mosquitoes. World Heal. Organ. Tech. Rep. Ser. 22.

620 **World Health Organization (WHO). 1998.** Techniques to detect insecticide resistance
621 mechanisms (field and laboratory manual).

622 **World Health Organization (WHO). 2016.** Monitoring and Managing Insecticide
623 Resistance in Aedes mosquito Populations, Who.

624 **Zheng, M.-L., D.-J. Zhang, D. D. Damiens, H. Yamada, and J. R. L. Gilles. 2015.**
625 Standard operating procedures for standardized mass rearing of the dengue and
626 chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae) - I - egg
627 quantification. Parasit. Vectors. 8: 1–7.

628

629 **Fig. legends**

630 **Fig. 1: Block diagram of the experimental approach.** This study utilised insecticide
631 resistant and susceptible larvae of the mosquito *Ae. aegypti*. The resistant larvae originated
632 from Cúcuta, Colombia and the susceptible larvae had dual origin, field samples from Bello,
633 Colombia (Field Susceptible) and the New Orleans lab strain (Lab Susceptible). Individual
634 larvae from each experimental group were analysed using REIMS to acquire individual mass
635 spectra for each sample. The data acquired through REIMS was background and lock mass
636 corrected and binned into 0.1 m/z groups. Dimension reduction was conducted using PCA
637 before LDA and random forest classification model building and testing.

638 **Fig. 2: REIMS discrimination of *Ae. aegypti* samples by population.** Combined PCA-
639 LDA separation of the three *Ae. aegypti* populations using REIMS mass spectra (A).
640 Dimension reduction was conducted using principal components analysis (PCA), 40 principal
641 components were selected for linear discriminant analysis (LDA). The number of PCs was
642 determined by selecting the model with the lowest area under the ROC curve (AUC) (Supp

643 Fig.S2). Separation is shown in both linear discriminant one and linear discriminant 2. All
644 populations separated in linear discriminant 1 whilst field resistant separated from the two
645 susceptible populations in LD2. Classification of samples into population using PCA-LDA
646 (B) and random forest models (C), showing percentage of samples classified to each group,
647 standard error of the mean (SEM) and the percentage range across all replicates. Models were
648 built and tested 20 times each with a different set of training (70%) and test (30%) data.
649 Accuracy percentages, SEM and range were averaged across all 20 replicates. The PCA-LDA
650 classification model had a higher accuracy ($82\% \pm 0.01$) than the random forest model (76%
651 ± 0.02), correctly assigning 82% of individuals to their respective population. Random forest
652 models were built using 20 PCs to obtain the highest accuracy of models tested (Supp
653 Fig.S3).

654 **Fig. 3: REIMS discrimination of *Ae. aegypti* by population type (lab and field).**
655 Combined PCA-LDA separation of lab and field *Ae. aegypti* populations using REIMS mass
656 spectra (A & B). Dimension reduction was conducted using principal components analysis
657 (PCA), 40 principal components were selected for linear discriminant analysis (LDA). The
658 number of PCs was determined by selecting the model with the lowest area under the ROC
659 curve (AUC) (Supp Fig.S4). Classification of samples into resistance status using PCA-LDA
660 (C) and random forest models (D), showing percentage of samples classified to each group,
661 standard error of the mean (SEM) and the percentage range across all replicates. Models were
662 built and tested 20 times each with a different set of training (70%) and test (30%) data.
663 Accuracy percentages, SEM and range were averaged across all 20 replicates. The LDA-PCA
664 classification model had a higher accuracy ($89\% \pm 0.01$) than the random forest model (83%
665 ± 0.02), correctly assigning 89% of individuals to their respective resistance status. Random
666 forest models were built using 20 PCs to obtain the highest accuracy of models tested (Supp
667 Fig.S5).

668 **Fig. 4: REIMS discrimination of resistant and susceptible *Ae. aegypti*.** Combined PCA-
669 LDA separation of resistant and susceptible *Ae. aegypti* populations using REIMS mass
670 spectra (A & B). Dimension reduction was conducted using principal components analysis
671 (PCA), 40 principal components were selected for linear discriminant analysis (LDA). The
672 number of PCs was determined by selecting the model with the lowest area under the ROC
673 curve (AUC) (Supp Fig.S6). Classification of samples into resistance status using PCA-LDA
674 (C) and random forest models (D), showing percentage of samples classified to each group,
675 standard error of the mean (SEM) and the percentage range across all replicates. Models were
676 built and tested 20 times each with a different set of training (70%) and test (30%) data.
677 Accuracy percentages, SEM and range were averaged across all 20 replicates. The LDA-PCA
678 classification model had a higher accuracy ($85\% \pm 0.01$) than the random forest model (78%
679 ± 0.02), correctly assigning 85% of individuals to their respective resistance status. Random
680 forest models were built using 20 PCs to obtain the highest accuracy of models tested (Supp
681 Fig.S7).

682 **Fig. 5: REIMS discrimination of field resistant and lab susceptible *Ae. aegypti* larvae.**
683 Combined PCA-LDA separation of the resistant and lab susceptible populations using
684 REIMS mass spectra (A & B). Dimension reduction was conducted using principal
685 components analysis (PCA), 20 principal components were selected for linear discriminant
686 analysis (LDA). The number of PCs was determined by selecting the model with the lowest
687 area under the ROC curve (AUC) (Supp Fig.S8). Classification of samples into population
688 using PCA-LDA (C) and random forest models (D), showing percentage of samples
689 classified to each group, standard error of the mean (SEM) and the percentage range across
690 all replicates. Models were built and tested 20 times each with a different set of training
691 (70%) and test (30%) data. Accuracy percentages, SEM and range were averaged across all
692 20 replicates. The LDA-PCA classification model had a higher accuracy ($87\% \pm 0.02$) than

693 the random forest model ($82\% \pm 0.02$), correctly assigning 87% of individuals to their
694 respective resistance status. Random forest models were built using 10 PCs to obtain the
695 highest accuracy of models tested (Supp Fig.S9).

696 **Fig. 6: REIMS discrimination of field resistant and field susceptible *Ae. aegypti* larvae.**

697 Combined PCA-LDA separation of the resistant and field susceptible populations using
698 REIMS mass spectra (A & B). Dimension reduction was conducted using principal
699 components analysis (PCA), 20 principal components were selected for linear discriminant
700 analysis (LDA). The number of PCs was determined by selecting the model with the lowest
701 area under the ROC curve (AUC) (Supp Fig.S10). Classification of samples into population
702 using PCA-LDA (C) and random forest models (D), showing percentage of samples
703 classified to each group, standard error of the mean (SEM) and the percentage range across
704 all replicates. Models were built and tested 20 times each with a different set of training
705 (70%) and test (30%) data. Accuracy percentages, SEM and range were averaged across all
706 20 replicates. The LDA-PCA classification model had a higher accuracy ($88\% \pm 0.01$) than
707 the random forest model ($84\% \pm 0.02$), correctly assigning 88% of individuals to their
708 respective resistance status. Random forest models were built using 20 PCs to obtain the
709 highest accuracy of models tested (Supp Fig.S11).

710 **Tables**

711 **Table 1: Summary data of the *Ae. aegypti* samples analysed via REIMS.** Time larvae

712 stored at -20°C in weeks for each replicate and the number of larvae analysed in each

713 replicate and the total number for each experimental group (*n*).

Population	Replicate	Storage Weeks	<i>n</i>
Lab Susceptible	1	36	8
	2	36	15
	3	36	13
	4	32	15
	Total	32-36	51
Field Susceptible	1	32	12
	2	34	13
	3	33	13
	4	32	13
	Total	32-34	51
Field Resistant	1	36	9
	2	32	14
	3	36	10
	4	36	9
	Total	32-36	42

714

Rapid evaporative ionisation mass spectrometry (REIMS): A potential rapid tool for the identification of insecticide resistance in mosquito larvae

Background and rationale

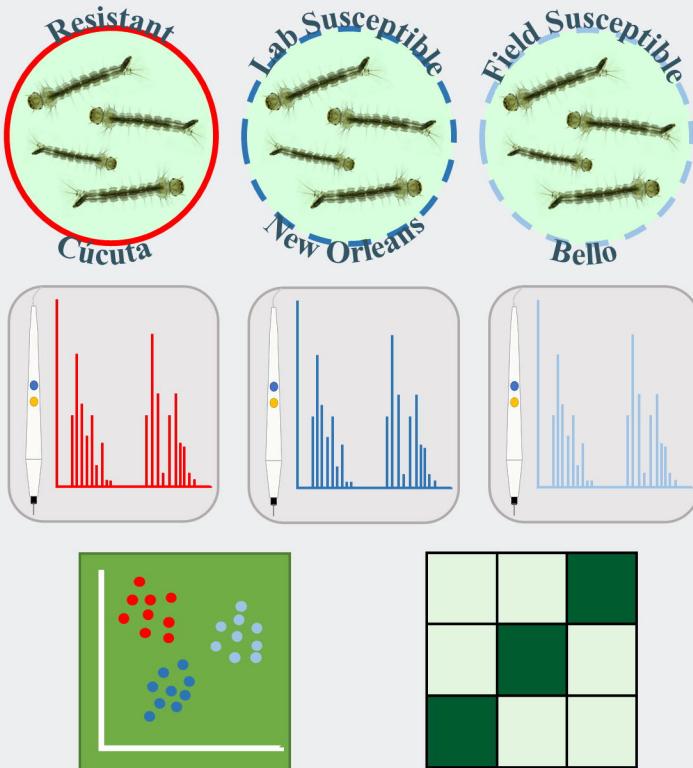
- *Aedes aegypti* is the principle vector for dengue, Zika and chikungunya.
- Control of *Ae. aegypti* and other vector mosquitoes is threatened by widespread insecticide resistance.
- Operational need for rapid tools for identifying and monitoring insecticide resistance.

Experimental Design

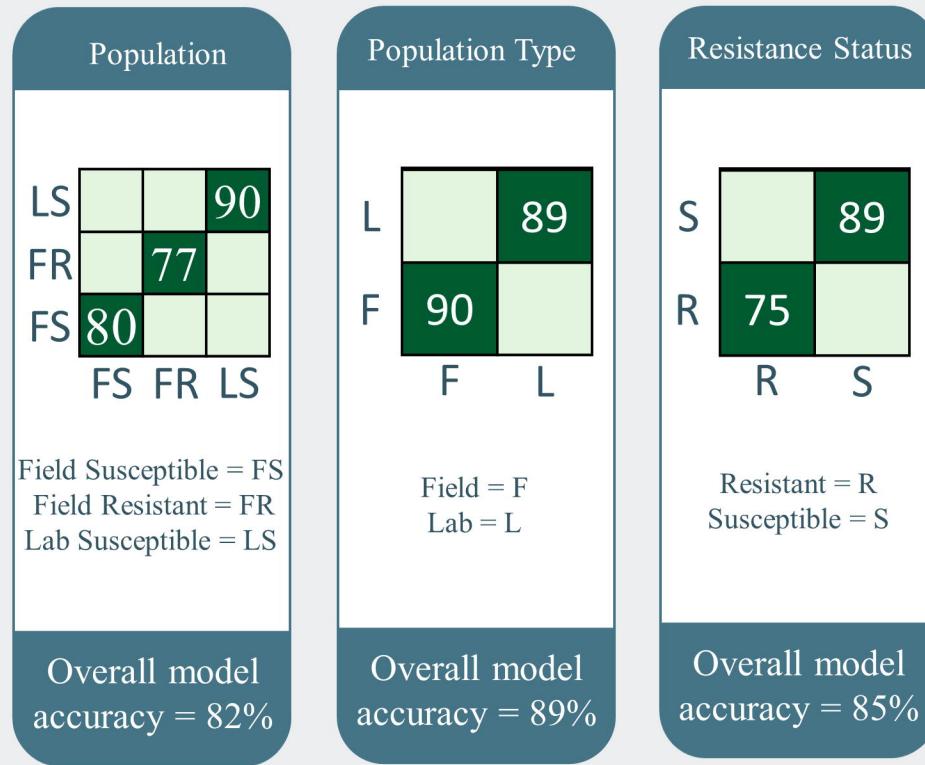
Background and rationale

REIMS Analysis

Classification Modelling

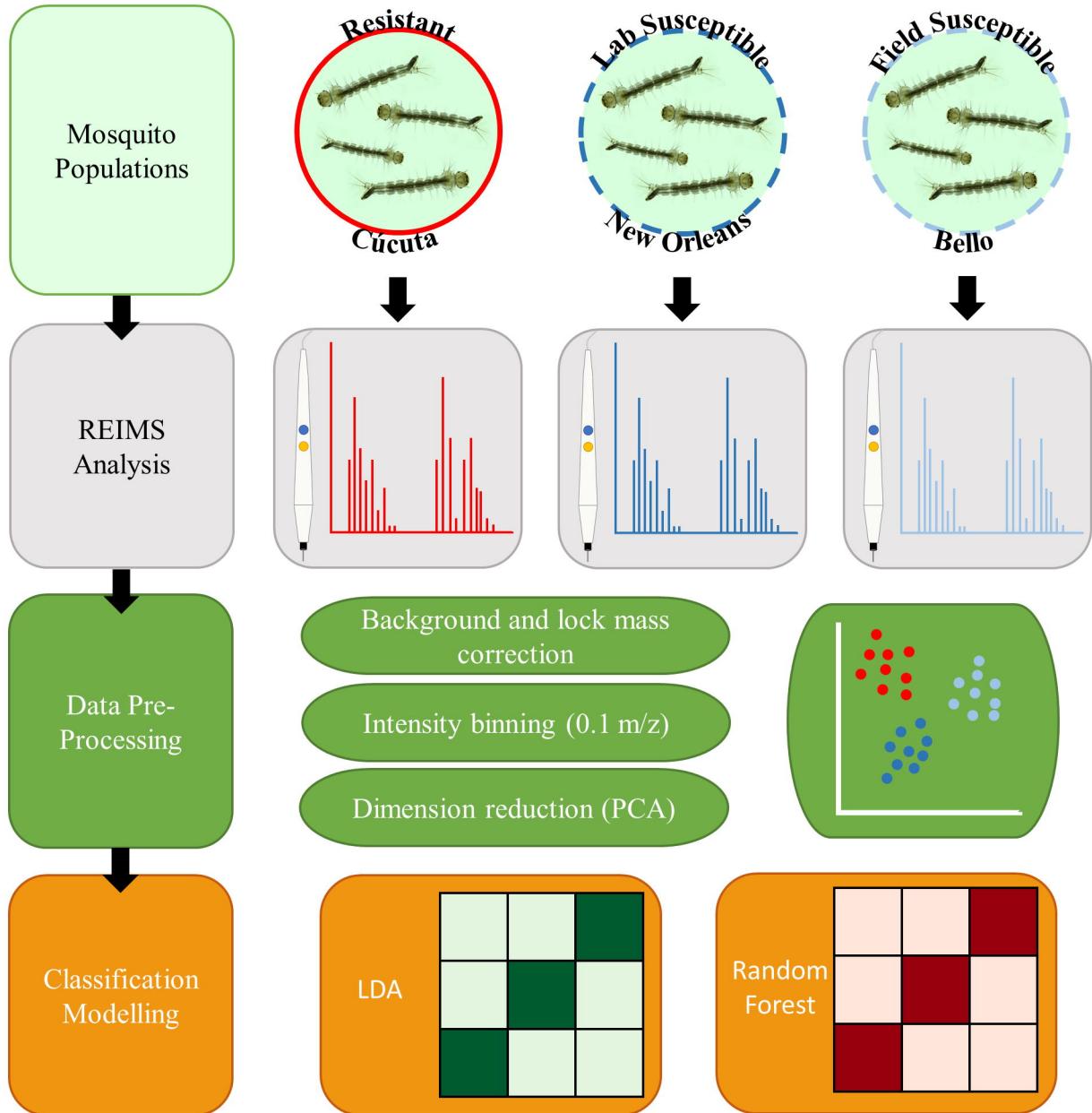


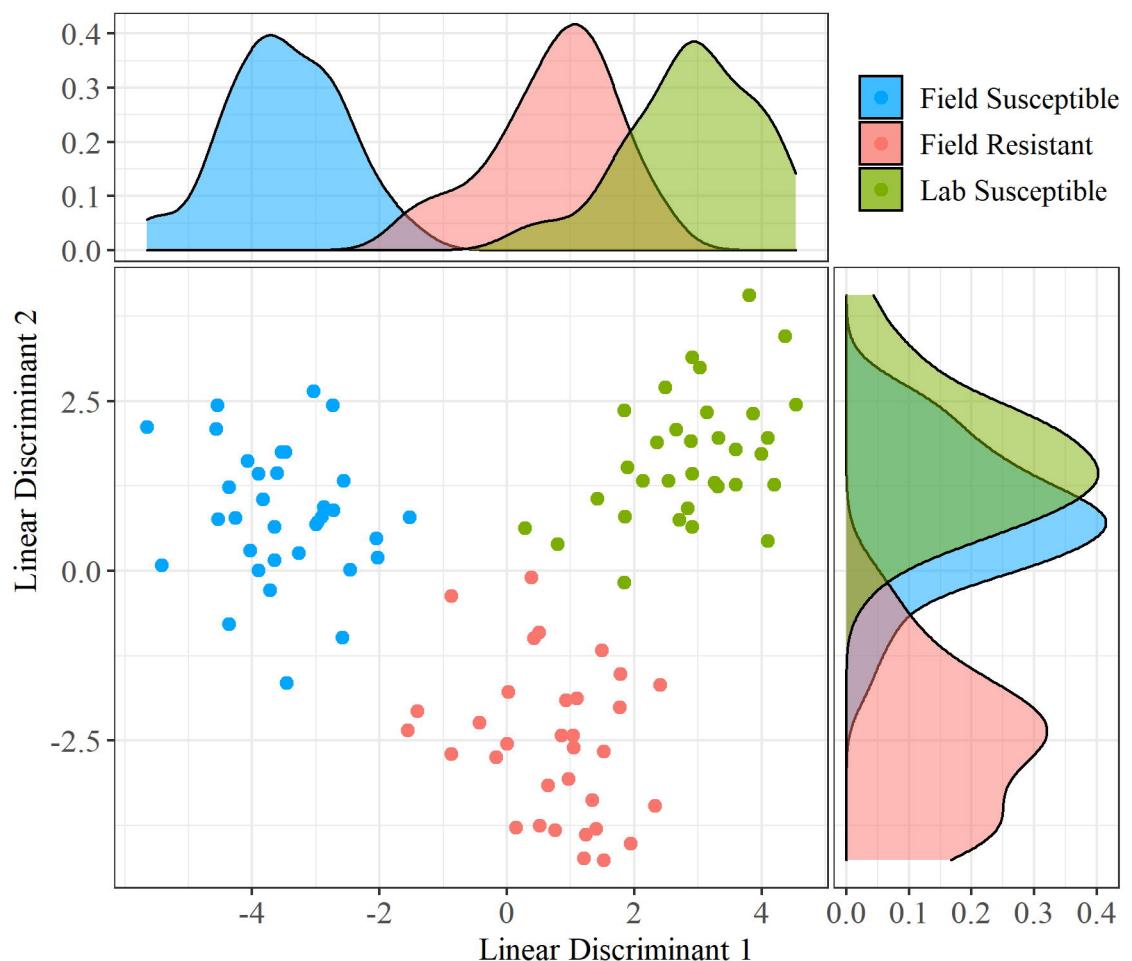
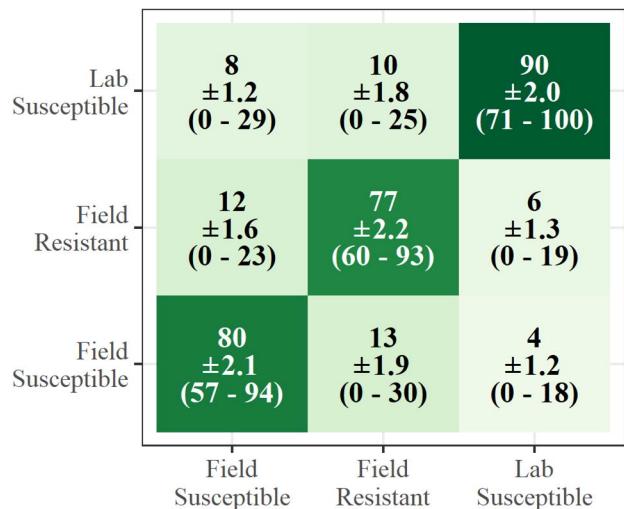
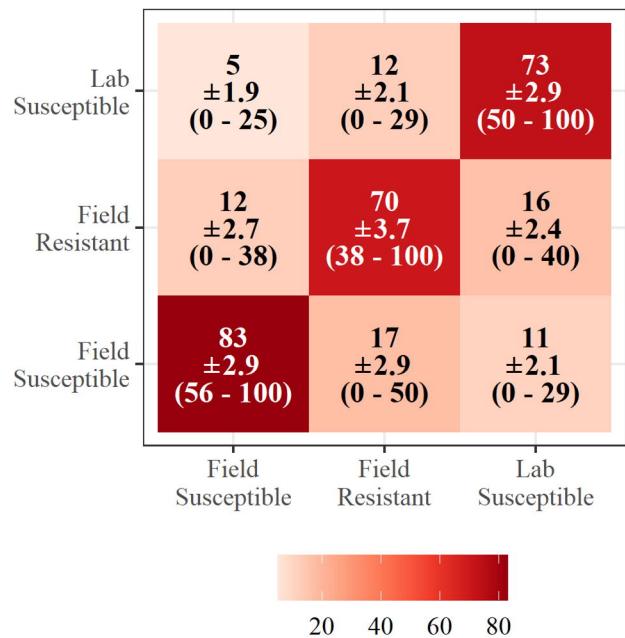
Results

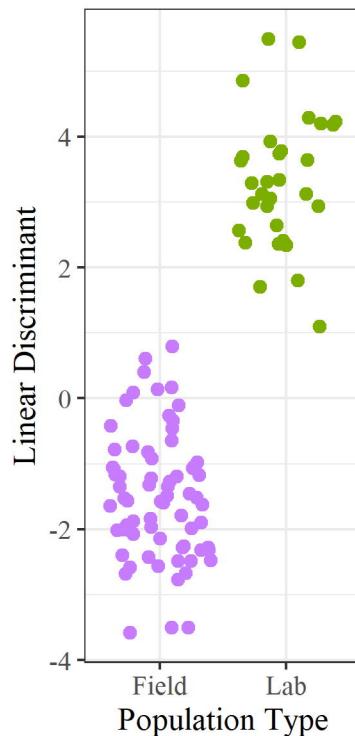
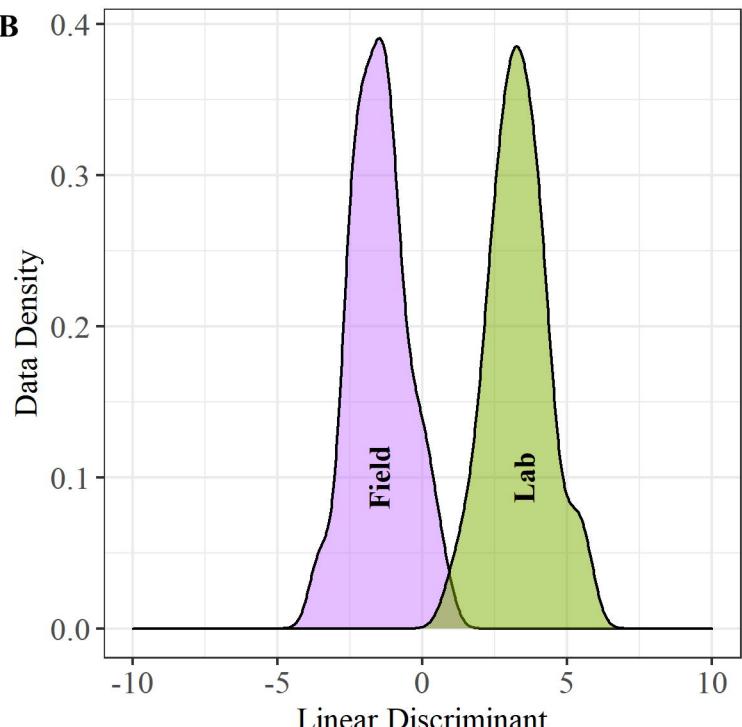
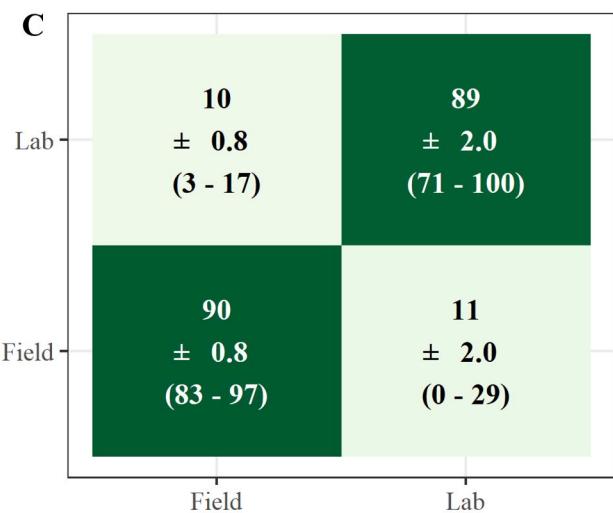
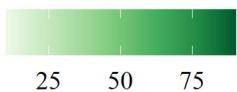


Conclusions

- REIMS identified as a potential novel tool for rapid identification of insecticide resistance with 85% accuracy.
- High accuracy in geographical origin (82%) and population type (89%) is also reported suggesting other potential applications of REIMS in vector surveillance.



A**B****C**Overall Model Accuracy: 82% \pm 0.01Overall Model Accuracy: 76% \pm 0.02

A**B****C**

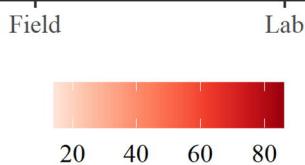
Overall Model Accuracy: 89% \pm 0.01

Lab

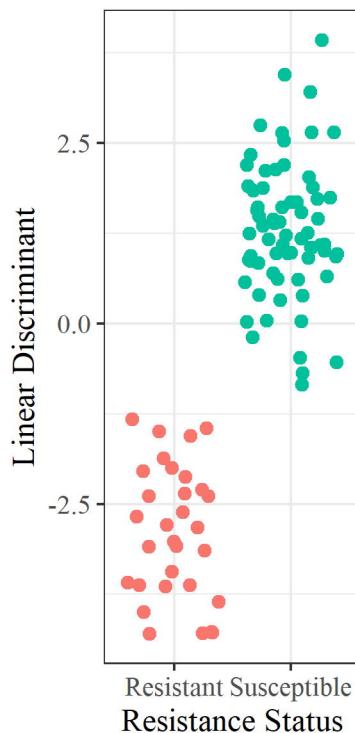
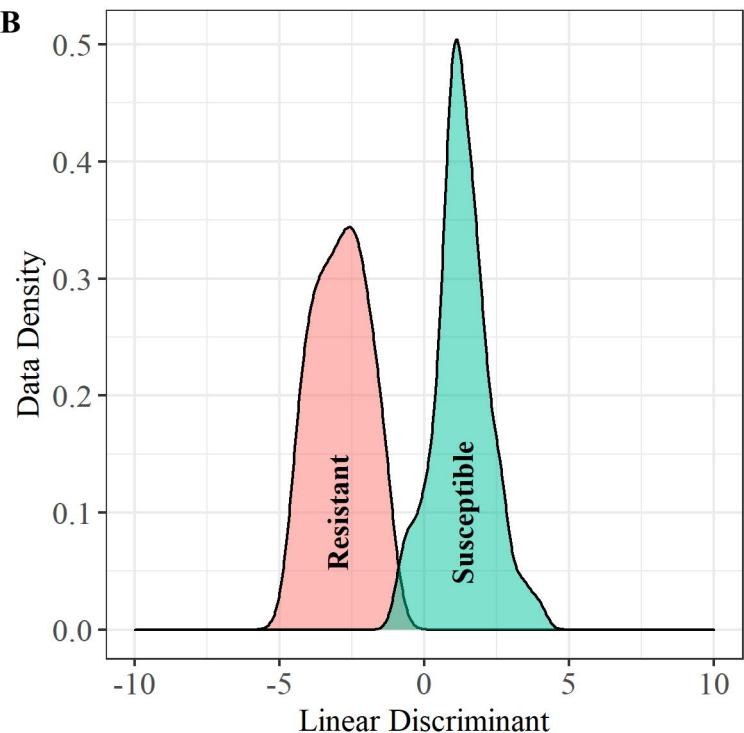
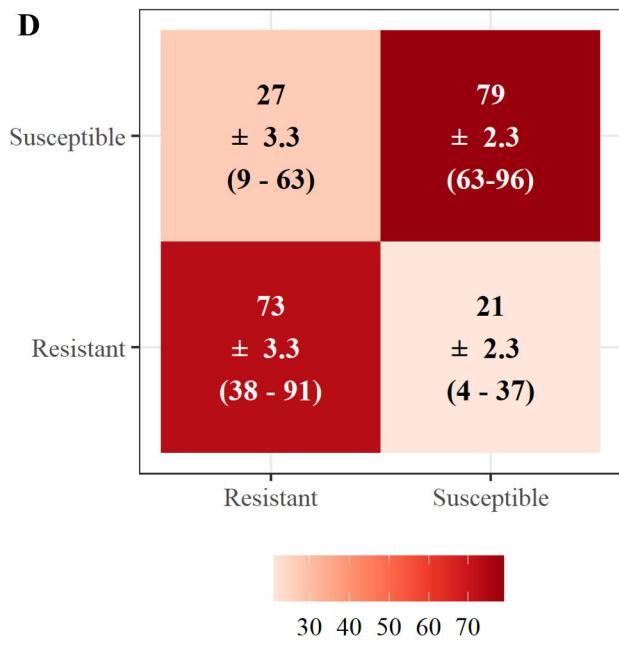
Field

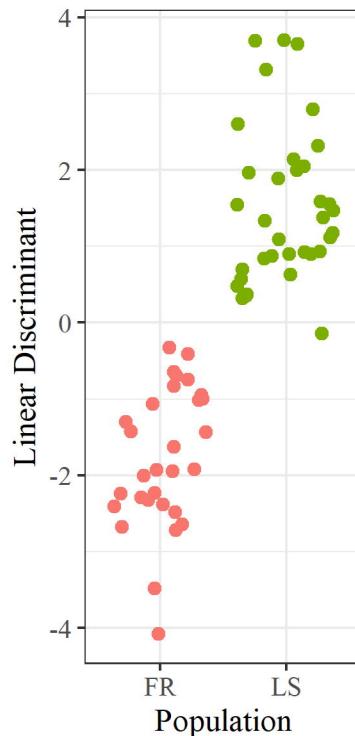
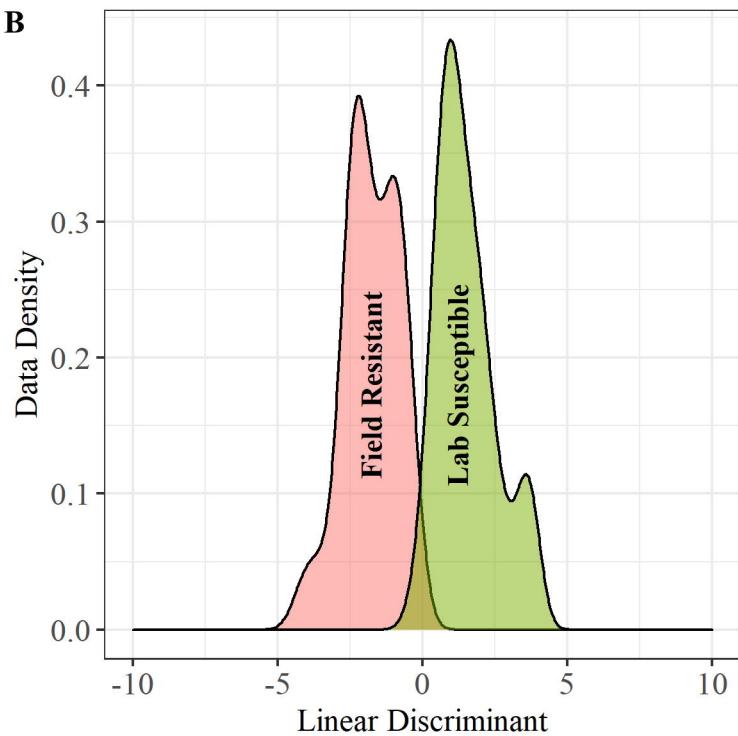
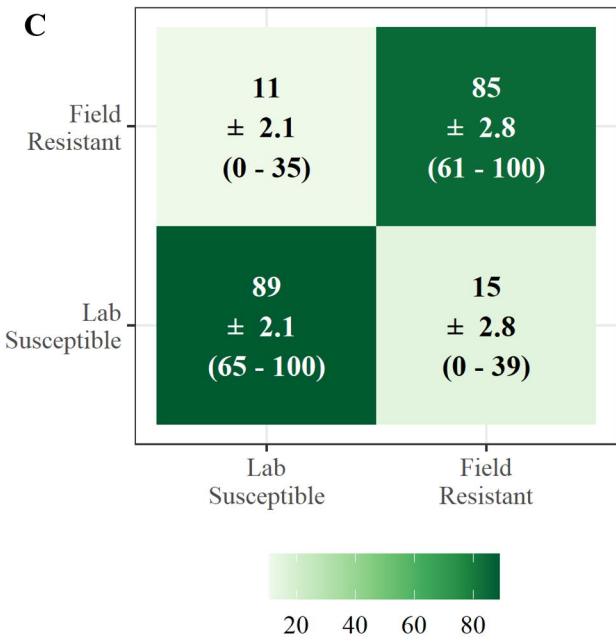
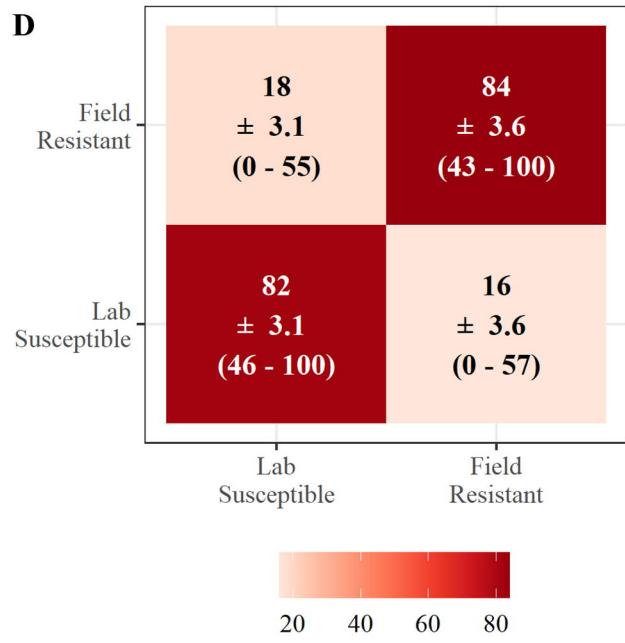
Lab

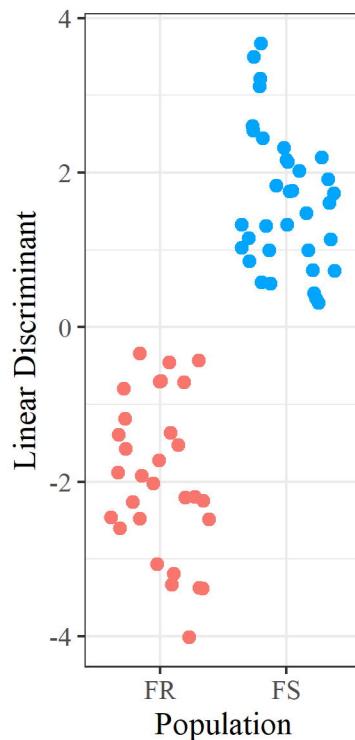
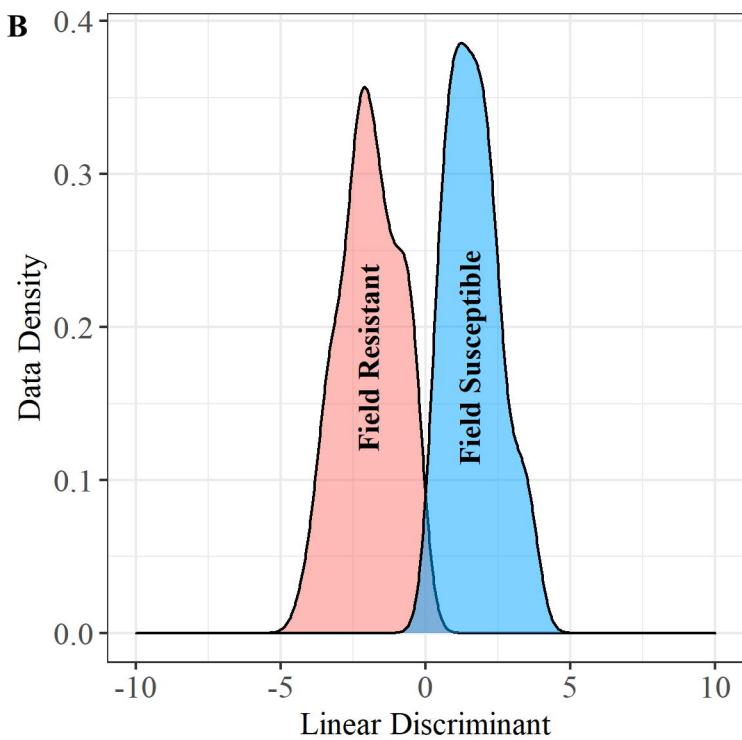
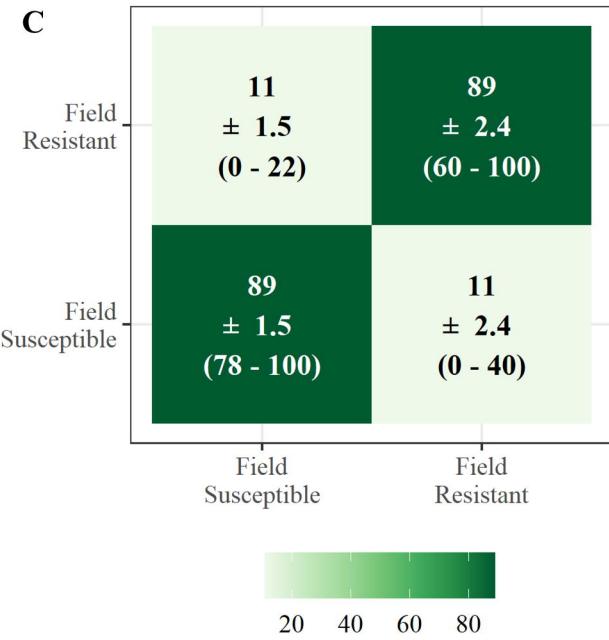
Field



Overall Model Accuracy: 83% \pm 0.01

A**B****C****D**

A**B****C****D**Overall Model Accuracy: 87% \pm 0.02Overall Model Accuracy: 82% \pm 0.02

A**B****C****D**