

- 1 • Conformational switch in the alpha-synuclein C-terminus domain directs its
- 2 fibril polymorphs
- 3 •
- 4 • Short title: The α Syn C-terminus domain modulates its fibril polymorphism.

5 Authors

6 Cesar Aguirre,¹ Yohei Miyanoiri,² Masatomo So,³ Hajime Tamaki,⁴ Takahiro Maruno,⁵
7 Junko Doi,¹ Nan Wang,¹ Keiichi Yamaguchi,⁶ Kichitaro Nakajima,⁶ Yu Yamamori,⁷ Hiroko
8 Inoura,⁷ Chi-Jing Choong,¹ Keita Kakuda,¹ Takahiro Ajiki,¹ Yasuyoshi Kimura,¹ Tatsuhiko
9 Ozono,¹ Kousuke Baba,¹ Seiichi Nagano,¹ Yoshitaka Nagai,⁸ Hirotugu Ogi,⁶ Susumu Uchiyama,⁵
10 Yoh Matsuki,^{4,9} Kentaro Tomii,⁷ Yuji Goto,⁶ Kensuke Ikenaka,^{1,*} and Hideki Mochizuki,¹

11 Affiliations

12 ¹ Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita,
13 Osaka 565-0871, Japan.

14 ² Laboratory for Ultra-High magnetic field NMR spectroscopy, Research Center for Next-
15 Generation Protein Sciences, Institute for Protein Research, Osaka University, Japan, 3-2
16 Yamadaoka, Suita, Osaka 565-0871, Japan.

17 ³ Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto
18 606-8502, Japan.

19 ⁴ Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Japan, 3-2
20 Yamadaoka, Suita, Osaka 565-0871, Japan.

21 ⁵ Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan, 2-1
22 Yamadaoka, Suita, Osaka 565-0871, Japan.

23 ⁶ Graduate School of Engineering, Osaka University, Japan, 2-1 Yamadaoka, Suita, Osaka 565-
24 0871, Japan.

25 ⁷ Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science
26 and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.

27 ⁸ Department of Neurology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan.

28 ⁹ Center for Quantum Information and Quantum Biology, Osaka University, Japan, 1-2 Machikane-
29 yama, Toyonaka, Osaka 560-0043, Japan.

30 *Correspondence to Dr. Kensuke Ikenaka, M.D, Ph.D.

31 Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka,
32 Osaka 565-0871, Japan. Phone: 81-6-6879-3571.

33 E-mail: ikenaka@neurol.med.osaka-u.ac.jp

41 **Abstract**

42

43 α -Synuclein (α Syn) inclusions are a pathological hallmark of several neurodegenerative
44 disorders. While cryo-electron microscopy studies have revealed distinct fibril polymorphs
45 across different synucleinopathies, the molecular switches controlling polymorphism
46 remained unveiled. In this study, we found that fibril morphology is associated with the
47 conformational state of monomeric α Syn. Through systematic manipulation of the ionic
48 strength and temperature, we pinpoint two distinct polymorphs: a twisted morphology at
49 low ionic strength and temperature, and a rod-like morphology at higher ionic strength and
50 temperature. Most strikingly, we found that a specific conformational change in the C-
51 terminal domain of the monomeric α Syn serves as the master switch for the formation of
52 polymorphs. Interestingly, this conformational change can be triggered by calcium binding
53 to the C-terminus, connecting environmental factors to specific fibril architectures. Our
54 results unmask the C-terminal domain as a key player for orchestrating α Syn fibril
55 morphology, providing significant insights into the fibrogenesis of α Syn.

56

57 **Significance Statement**

58

59

60 The α Syn C-terminus domain acts as the master switch programming its fibril
61 polymorphism.

62

63 **Keywords:** alpha synuclein, amyloid fibrils, fibril polymorphism, NMR

64

65

66

67

68

69

70

71 **MAIN TEXT**

72
73 **Introduction**
74

75 The accumulation of alpha-synuclein (α Syn) is a pathological hallmark of
76 Parkinson's disease (PD) and multiple system atrophy (MSA) (1–3). Although triggered by
77 the same protein, these synucleinopathies exhibit distinctive clinical features. Previously,
78 we have developed experimental strategies to study directly the structural characteristics of
79 inclusions in patient's brain employing Fourier-Transform Infrared microscopy (FTIR) and
80 Small-Angle X-Ray Scattering (SAXS), proving that Lewy Bodies (LBs) contain cross β -
81 sheet α Syn fibrils, while the amount of β -sheet structure in LBs and glial cell inclusions in
82 MSA patients is different (4–6). More recently, direct observation by cryo-electron
83 microscopy (Cryo-EM) of aggregates extracted from the brains of PD and MSA patients
84 has revealed that these distinct clinical features map directly to specific fibril morphologies
85 (7, 8). While various strains of α Syn fibrils can be generated in vitro by manipulating the
86 conditions of fibril formation (9–12), and some of them have been resolved by Cryo-EM
87 (13–16), the fundamental question has persisted.

88 Despite these high-resolution structural snapshots of both in vitro and brain-
89 extracted fibrils, the molecular mechanisms underlying the formation of polymorphs from
90 a single protein remained one of the field's most pressing mysteries. To address this central
91 question, we asked: how do environmental parameters such as ionic strength and
92 temperature reprogram the intrinsic structural properties of monomeric α Syn to generate
93 distinct fibril architectures? While α Syn is canonically viewed as an intrinsically disordered
94 protein (17–19), it can adopt partially folded conformations (20–23). Previous studies have
95 suggested that these conformations could represent fibrillation intermediates (22, 24, 25),
96 but their role in orchestrating the fibril polymorphism has remained elusive. Previous
97 studies also established that ionic strength can modulate fibril polymorphs (9–11), and
98 temperature influences the conformations of α Syn (23).

99 In this study, we describe a paradigm-shifting discovery: the C-terminal domain of
100 monomeric α Syn functions as a molecular switch controlling fibril polymorphism. Through
101 systematic manipulation of ionic strength and temperature, we generated and characterized
102 two distinct fibril polymorphs: twisted and rod-like fibrils. Our results demonstrate that
103 specific conformational changes in the monomeric α Syn C-terminus domain dictate the

104 fibril architecture, while this particular domain remains outside the fibril core in the mature
105 fibril (13, 14). This breakthrough establishes also a link between early conformational
106 events and the final fibril polymorphism. Although the fibril diversity studied in vitro is not
107 directly indicative of pathological changes in humans, it points to the unexplored
108 opportunities targeting the C-terminus domain to control polymorphism in the cellular
109 environment.

110
111

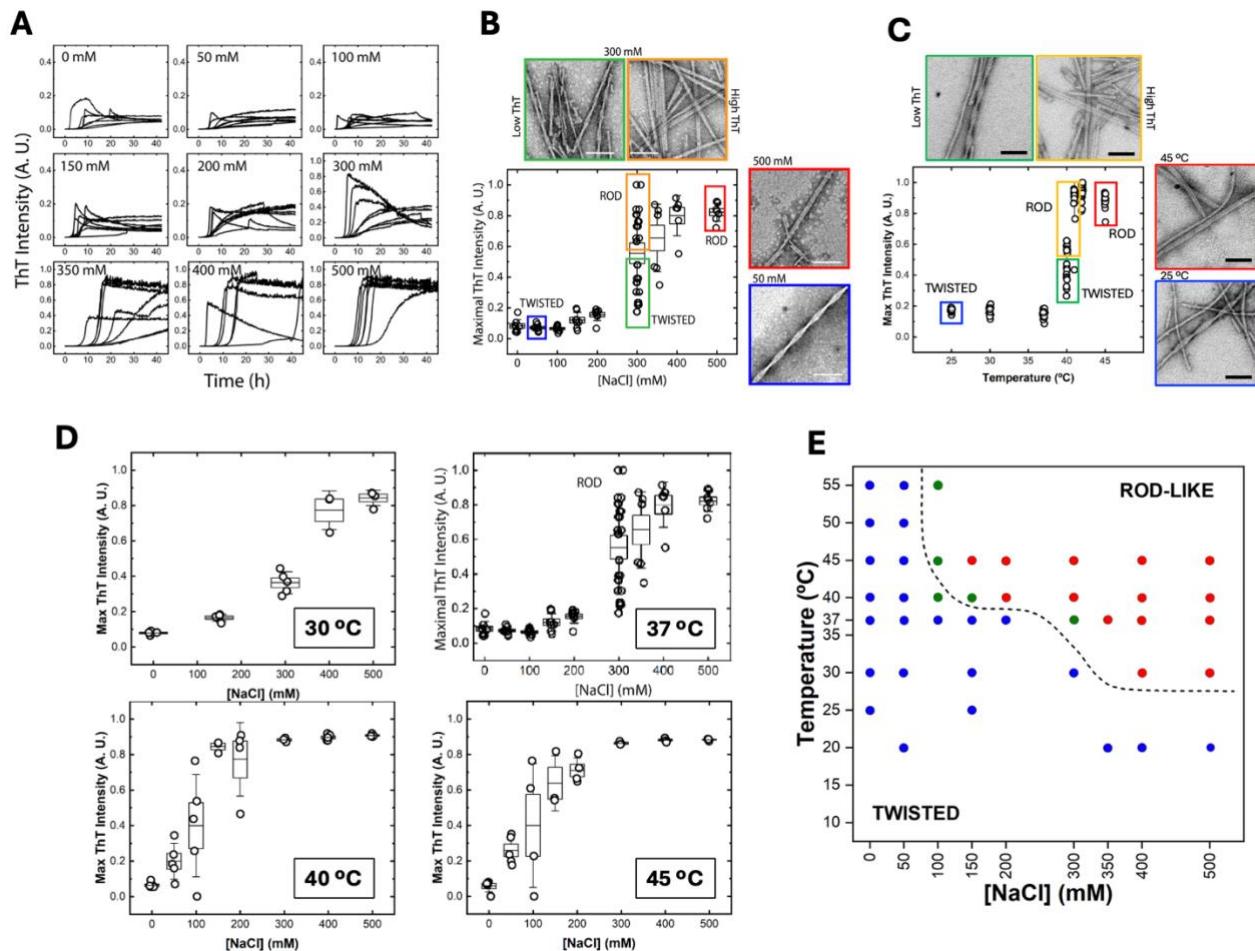
112 **Results**

113

114 **α Syn fibril morphologies can be controlled by fibrillation conditions**

115

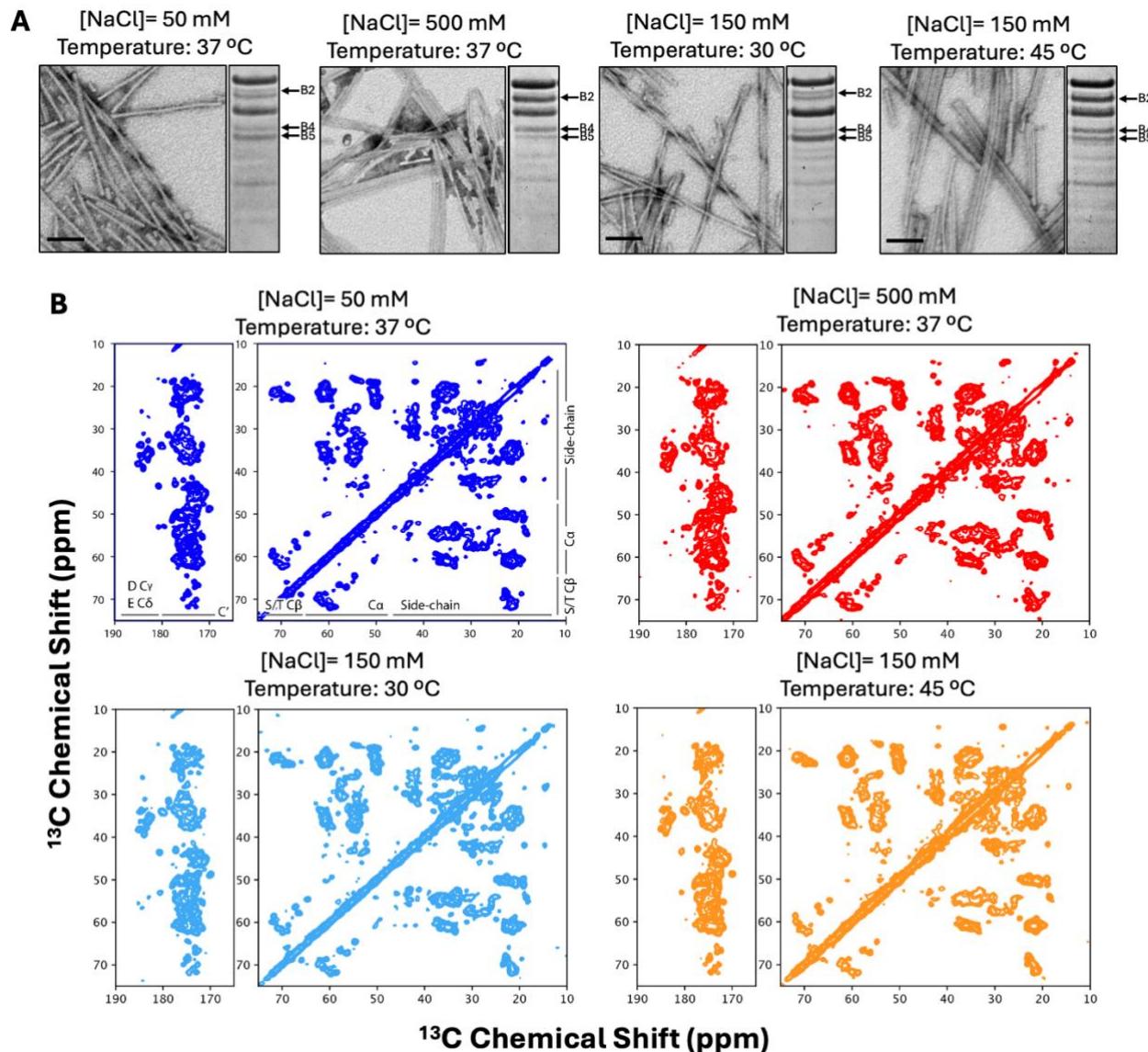
116 Previous studies hinted at ionic strength's influence on fibril morphologies (9–11), but its
117 molecular basis remained unclear. Thus, we launched a systematic investigation employing our
118 HANABI instrument (26–28) to monitor fibril formation in real-time through thioflavin T (ThT)
119 fluorescence. By precisely controlling conditions (50 mM TRIS pH 7.4, 0–500 mM NaCl and 37
120 °C), our result unveiled intriguing fibril growth patterns (**Figure 1.A**). Our analysis encompassing
121 the full range of NaCl concentration revealed three distinct regimes of ThT intensity profiles: (i)
122 consistently low maximal ThT intensities below 300 mM NaCl, (ii) a critical transition zone at 300
123 mM NaCl showing curves with both low and high maximal ThT, the inflection point, and (iii)
124 exclusively high ThT intensities above 400 mM NaCl. This clear bifurcation became strikingly
125 apparent when plotting the maximal ThT values as a function of NaCl concentration (**Figure 1.B**).
126 Transmission electron microscopy (TEM) visualized the structural aspect of this phenomenon
127 (**Figure 1.B**, upper and lower-right): low ThT signatures correspond to twisted fibrils, while high
128 ThT intensities mark rod-like morphologies. Crucially, SDS-PAGE analysis confirmed near-
129 complete fibrillation for both polymorphs (**Figure S1.A and B**), ruling out the possibility that yield
130 variation as the source of ThT intensity differences.


131 The role of temperature emerged as equally decisive. At the physiological ionic strength
132 (0.15, fixed with NaCl), α Syn underwent a sharp conformational transition as temperature increased
133 from 25 to 45 °C (**Figure 1.C**). Below 40 °C, fibrils exclusively exhibited low maximal ThT. At 40
134 °C we identified an inflection point, beyond which only the high ThT fibrils were observed. TEM
135 analysis corroborated this dichotomy: the low ThT intensity fibrils invariably exhibited twisted
136 morphology, while high ThT fibrils showed rod-like architectures, regardless of whether ionic
137 strength or temperature drove their formation (**Figure 1.C**, upper and lower-right). Using SDS-
138 PAGE, we also corroborated that, for both twisted and rod-like fibrils formed at different
139 temperatures (**Figure S1.A**), the extent of the fibrillation reaction was nearly 100 % (**Figure S1.B**).

140 To put this finding into perspective, we determined a comprehensive polymorphism phase
141 diagram mapping the interplay between the NaCl concentration and temperature, based on the
142 maximal ThT values diagrams (**Figure 1.D**). Remarkably, the inflection point for morphological
143 transition shifts systematically towards lower NaCl concentrations as temperature rises, revealing
144 a precisely controlled landscape of fibril polymorphism (**Figure 1.E**). The map exposes a clear
145 domain: twisted fibrils dominate at low temperature and low NaCl concentration (**Figure 1.E**, blue
146 circles), while rod-like fibrils emerge under elevated conditions (**Figure 1.E**, red circles). These

147 domains are separated by a sharp boundary, where both morphologies coexist (**Figure 1.E**, green
148 circles).

149 These precise mapping reveals unprecedented molecular threshold governing fibril
150 architecture. The existence of such clear phase boundaries suggests a specific molecular event,
151 rather than random factors, that determines the formation of rod-like v.s. twisted fibrils. This
152 discovery points to a fundamental mechanism controlling α Syn fibril polymorphism, demanding
153 deeper investigation into the molecular basis of this intriguing phenomenon.


154

169 **Twisted and rod-like fibrils share a conserved core structure at the atomic level despite**
170 **distinct overall architectures**

171 To explore beyond morphological differences visible by TEM, we first performed
172 proteinase K resistance (PKR) analysis as a molecular probe of fibril architecture (**Figure S1.C-D**).
173 Over 60-minutes of proteolysis time course, we uncovered distinctive digestion profiles in the five
174 highest molecular weight bands at the 30-min mark. Specifically, twisted fibrils, regardless of their
175 formation at low NaCl or low temperature, exhibited characteristically weaker intensities in the
176 second (B2) and fourth (B4) bands, together with a distinctly lower B4/B5 ratio compared to their
177 rod-like counterparts. These result reveals fundamental differences in solvent-exposed regions
178 between the two polymorphs.

180 For a deeper look at the molecular architecture of these fibrils, we turned to solid-state NMR
181 spectroscopy. First, we generated uniformly ¹³C,¹⁵N-isotopically labeled α Syn fibrils under four
182 critical conditions: i) twisted fibril at low NaCl concentration, ii) rod-like fibril at high NaCl
183 concentration iii) twisted fibril at low temperature, and iv) rod-like fibril at high temperature. Each
184 polymorph's identity was rigorously confirmed through both TEM visualization and PKR analysis
185 (**Figure 2.A**). Most remarkably, our comprehensive structural analysis reveals an unexpected
186 puzzle: while the fibril surfaces display distinct proteinase K accessibility patterns unique to each
187 polymorph, their core structures remain strikingly similar across all conditions, as evidenced by
188 their ssNMR signatures (**Figure 2.B**). This finding aligns with, yet substantially extends, previous
189 cryo-EM studies (13, 15) showing that both twisted and rod-like polymorphs comprise two
190 protofilaments sharing a highly conserved core. The key distinction between polymorphs appears
191 to arise not from fundamental differences in their core structure, but rather from specific variations
192 in protofilament interface interactions. This is together suggesting that while the basic building
193 block of α Syn fibrils remain constant, the final architecture is given by precise molecular
194 interactions that guide protofilament assembly. This insight raises a crucial question of what
195 molecular mechanisms control these assembly patterns at the earliest stages of fibril formation.

196
197 **Figure 2. Solid-state NMR analysis of twisted and rod-like fibrils.** A. Twisted and rod-like fibrils were generated at the NaCl
198 concentration and temperature conditions indicated in the upper part of the panels. The morphological properties of the fibrils were
199 confirmed by TEM visualization (scale bar: 100 nm) and PKR after 30 min of digestion (arrows: distinctive bands of each
200 polymorph). B. 2D ^{13}C - ^{13}C DARR spectra of twisted and rod-like fibrils produced under the specified conditions. Aliphatic-carbonyl
201 and aliphatic-aliphatic ^{13}C correlations are shown in the left and right panels, respectively, for each sample. Intra-residue
202 correlations spanning 1-3 bond were observed with a short ^{13}C - ^{13}C DARR mixing time of 20 ms. No apparent differences among all
203 spectra.

196
197
198
199
200
201
202
203

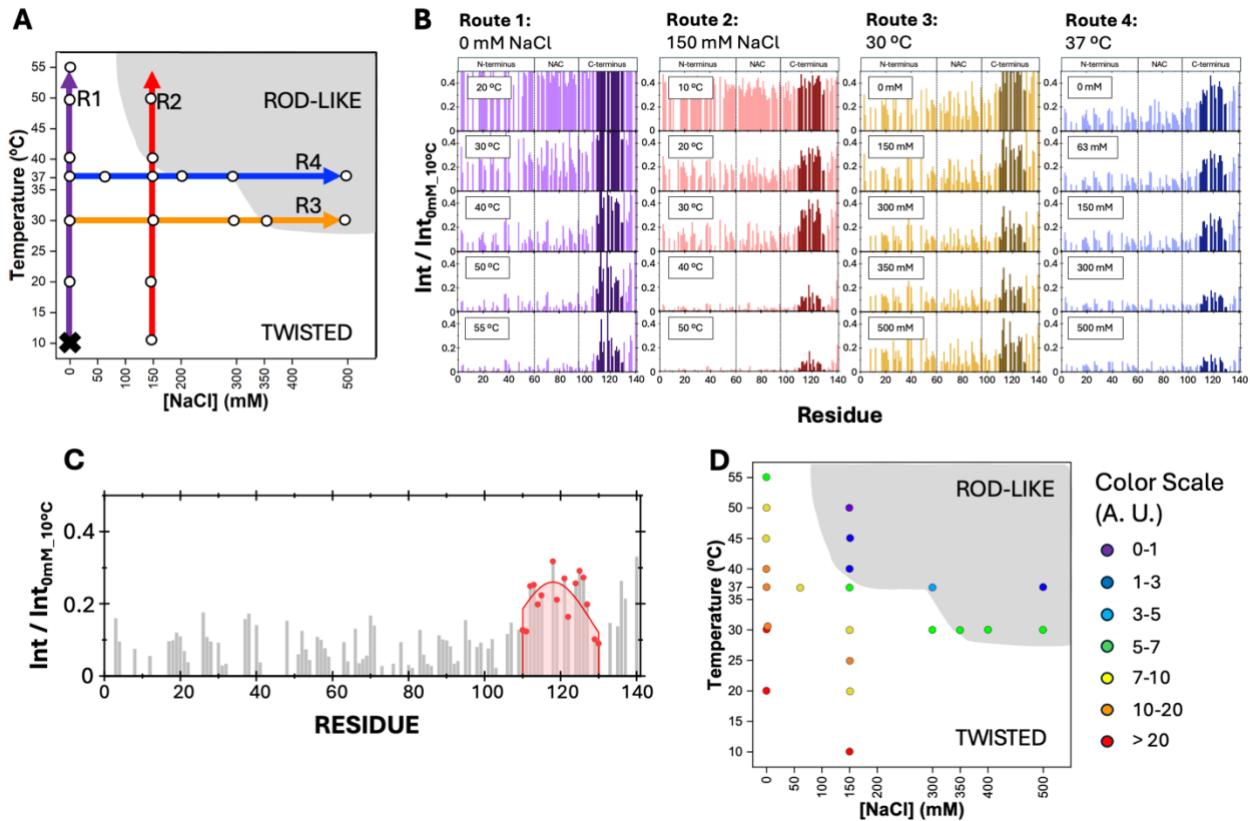
204

205 **The C-terminus domain master switch correlates with fibril polymorphism**
206

207 To answer this question, we turned to a radical hypothesis: could fibril polymorphism be
208 predetermined at the monomer state? Our first clue came from size exclusion chromatography
209 (SEC) analysis of monomeric α Syn (**Figure S2.A**, upper). The full-length α Syn monomer (14.6
210 kDa) was observed not as a sharp peak, but as an asymmetric distribution spanning apparent
211 molecular weights of 15-60 kDa (for hypothetical spherical-shaped globular proteins), with its
212 center around 50 kDa. Crucially, Western Blot analysis confirmed that every fraction contained
213 exclusively full-length monomers (**Figure S2.A**, lower), revealing this broad distribution as a
214 signature of distinct conformation states rather than oligomerization.

215 This conformational landscape proved exquisitely sensitive to ionic strength. As NaCl
216 concentrations increased from 0 to 500 mM, we observed a continuous increase in the retention
217 volume, reaching a plateau above 300 mM NaCl (**Figures S2.B**). Analytical ultracentrifugation
218 (AUC) reinforced this finding, corroborating the monomeric state of α Syn in solution and revealing
219 a decrease in the sedimentation coefficient (s_w) with increasing NaCl concentration (**Figure S2.C-**
220 **D and Table S1**). Together, these results indicate that conformations yielding low retention
221 volumes and high s_w values, characteristic of low ionic strength, generate twisted fibrils, whereas
222 those at the retention volume plateau region with low s_w values invariably produce rod-like fibrils.

223 Temperature's influence proved equally dramatic, though technically more challenging to
224 map. While SEC analysis revealed a linear correlation between retention volume and temperature
225 (**Error! Reference source not found.**), the convolution of the effect of temperature on both α Syn
226 conformations and the SEC column properties precluded detailed analysis on temperature-
227 dependent conformational effects through this technique alone.


228 To unmask the precise nature of these polymorphism-determining conformations, we
229 deployed ^1H - ^{15}N HSQC NMR spectroscopy across our phase diagram, following four strategic
230 routes indicated in **Figure 3.A**. Using the spectrum obtained at 0 mM NaCl and 10 °C as the
231 reference point (**Figure 3.A**, marked with a cross), we revealed dramatic changes in the peak
232 intensities across all routes (**Figure 3.B**), while not in the chemical shifts (**Error! Reference source**
233 **not found..B**). Most strikingly, we identified a critical region spanning residues 110-130 in the C-
234 terminal domain that displayed unique behavior. This region showed distinctive pattern in peak
235 intensity changes across each route (highlighted in dark purple, red, dark yellow and blue for routes
236 R1-R4, respectively). While the N-terminus domain and NAC region showed general intensity
237 reductions with increasing temperature or NaCl, this C-terminal region exhibited route-specific
238 responses that correlated with fibril morphology: in route R1, a slow intensity decrease with

239 temperature increase; in route R2, a more rapid decrease, resulting in very small intensities (< 10%
240 of the reference) at above 40 °C; in route R3, a more gradual reduction that leveled off at around
241 300 mM NaCl; finally, in route R4, rapid decrease resulting in <10 % intensity above 300 mM
242 NaCl.

243 Integration of the peak intensity ratio (**Figure 3.C**) allowed us to map these conformational
244 changes directly onto our morphology phase diagram (**Figure 3.D**). The results revealed an
245 unprecedented molecular switch: when the peak intensity ratio for residues 110-130 fall below 3
246 arbitrary units, a rod-like polymorph emerges; above 7 units, twisted fibrils dominate. This sharp
247 threshold represents a specific conformational transition in the C-terminus domain that determines
248 fibrils morphology. Crucially, we ruled out oligomerization effects through immediate post-NMR
249 SEC analysis (**Figure S5.A**) and confirmed the persistence of disordered structure through far-UV
250 CD spectroscopy (**Figure S5.B**). These results indicate that the conformational switch occurs within
251 a still-disordered ensemble, consistent with previously reported partially folded conformations (23),
252 but now related to polymorphism control.

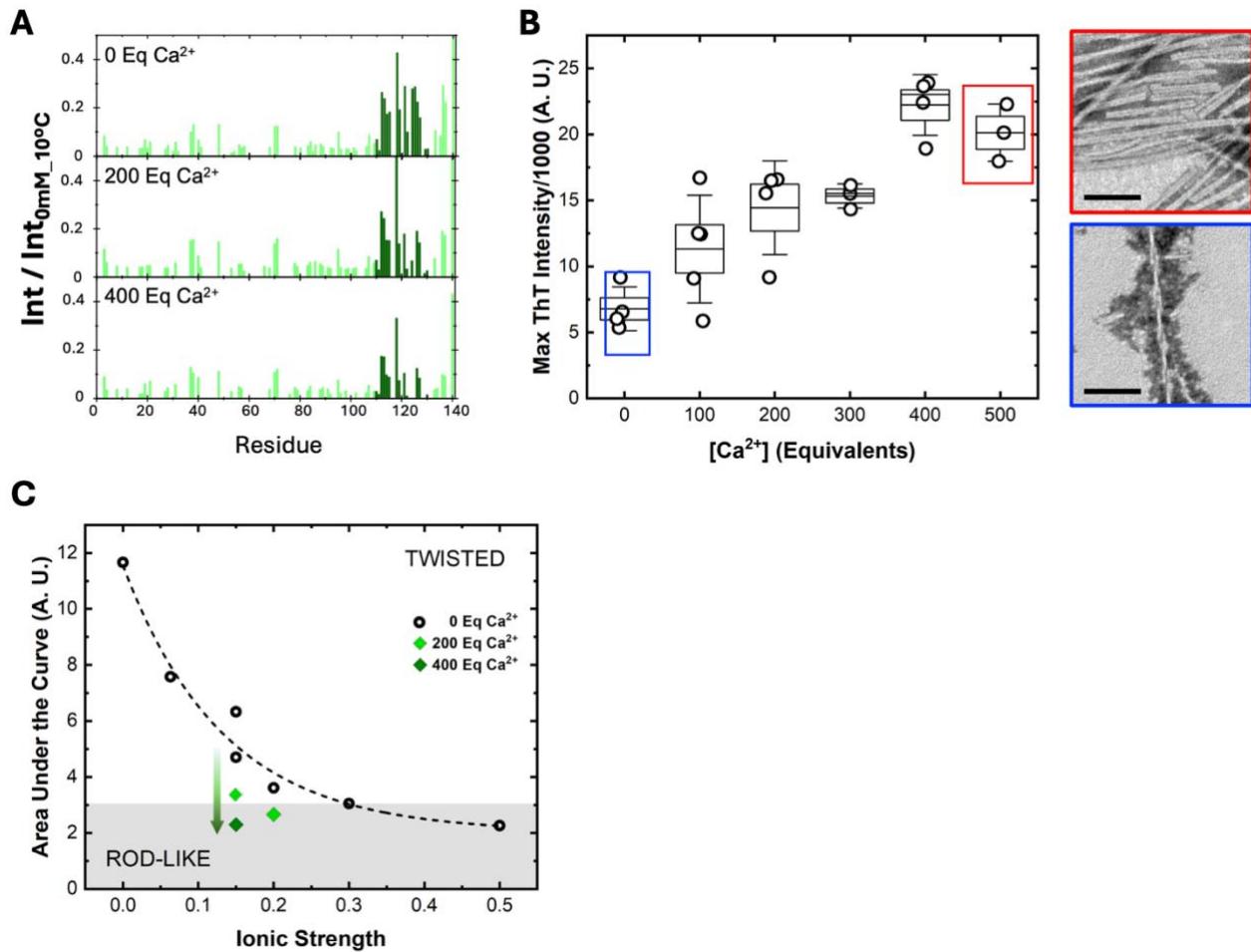
253

FIGURE 3. STRUCTURAL EVALUATION OF α SYN IN THE MONOMERIC STATE BY SOLUTION NMR

254

255 **Figure 3. Solution NMR analysis of α Syn monomer conformational states.** A. Schematic representation of four experimental
256 routes examining the monomeric α Syn conformational changes, using ^1H - ^{15}N HSQC measurements under polymorph-inducing
257 conditions. The reference spectrum was taken at 10 °C without NaCl (black cross). R1: Temperature variation (10 °C to 55 °C) at 0
258 mM NaCl; R2: Temperature variation (10 °C to 55 °C) at 150 mM NaCl; R3: NaCl concentration variation (0 to 500 mM) at 30 °C;
259 and R4: NaCl variation (0 to 500 mM) at 37 °C. White circles represent the tested conditions. B. Peak intensity ratio observed in
260 the ^1H - ^{15}N HSQC spectra at selected points along routes R1 to R4, normalized to the reference spectrum (no NaCl at 10 °C). Peaks
261 corresponding to the C-terminus residues (residues 110-130) are highlighted across all routes. C. Quantification of the overall peak
262 intensity for residues 110-130 through Gaussian curve fitting and area integration. D. Integrated peak intensities (colored circles)
263 from panel C mapped onto the fibril morphology phase diagram.

264


265 **Ca²⁺ binding to the C-terminal domain induces rod-like fibrils formation**

266
267 We also discovered calcium binding to the C-terminal domain specifically drives the
268 formation of the rod-like fibril. While previous studies showed that calcium binds α Syn and
269 accelerates fibrillation (29, 30), our findings reveal unprecedented role of calcium in determining
270 fibril morphology under physiological conditions. ¹H-¹⁵N HSQC spectra recorded at physiological
271 ionic strength (0.15, 37 °C, with and without Ca²⁺, **Error! Reference source not found..A**) (see
272 Materials and methods) unveiled a clear calcium-induced conformational change. Most notably,
273 residues 110-130 in the C-terminal domain showed a dramatic decrease in peak intensities upon
274 calcium binding (**Figure 4.A**), while chemical shift patterns remained largely unchanged (**Error!**
275 **Reference source not found..B**).

276 This conformational change translated into a profound effect on fibril morphology. By
277 systematically varying Ca²⁺ concentration at physiological ionic strength (0.15), we observed a
278 clear transformation in fibril architecture. TEM analysis revealed an exclusive population of twisted
279 fibrils in calcium free condition, while addition of calcium (500 Eq.) triggered formation of rod-
280 like fibrils (**Figure 4.B**, right). This morphological switch was accompanied by a systematic
281 increase in ThT fluorescence, reaching saturation above 400 Eq. Ca²⁺ (**Figure 4.B**, left). SDS-
282 PAGE analysis confirmed near-complete fibrillation under both conditions (**Error! Reference**
283 **source not found..B**).

284 The Ca²⁺-induced rod-like fibrils exhibited a unique structural signature in PKR digestion
285 assays (**Error! Reference source not found..C**). While Ca²⁺-free conditions generated the
286 characteristic twisted fibrils digestion pattern, calcium-containing samples showed a unique profile
287 distinct with persistently faint B2 and B4 bands. These results indicate that calcium binding induces
288 rod-like fibrils with a novel arrangement of solvent-exposed regions, distinct from those formed
289 under high NaCl or high temperature conditions.

290 Quantitative analysis of the residues 110-130, in terms of the area under the curve for the
291 peak intensities, revealed that calcium binding reduces the peak intensity ratios to levels matching
292 those observed under high ionic strength conditions generating rod-like fibrils (**Figure 4.C**,
293 comparing green diamonds with black open circles). This comparison demonstrates that, at
294 physiological ionic strength, where twisted fibril is the predominant polymorph, calcium binding
295 reconfigures the C-terminal domain to mirror conformational states achieved by high NaCl
296 conditions, thereby directing the formation of rod-like fibrils.

298

299 **Figure 4. Calcium-induced formation of rod-like fibrils under modest ionic strength conditions.** A. Peak intensity ratio from the
300 $^1\text{H}-^{15}\text{N}$ HSQC spectra at varying Ca^{2+} concentrations but constant physiological ionic strength (0.15), normalized to the reference
301 spectrum taken without no NaCl nor Ca^{2+} at 10 °C. C-terminus residues (110-130) showed a characteristic local peak pattern seen
302 in Figure 3.B. B. Box-and-whisker plot showing maximal ThT intensities from fibrillation reactions, at constant ionic strength of
303 0.15 across different Ca^{2+} concentrations. Boxes indicate standard error of the mean; whiskers represent standard deviation. TEM
304 images demonstrate the morphology difference: low maximal ThT intensity condition produced twisted fibrils (blue square), while
305 high maximal ThT intensity conditions yielded rod-like fibrils (red square). Black scale bar: 100 nm. C. Integrated peak intensities
306 for residues 110-130 mapped onto the morphology phase diagram for calcium-containing samples (green diamonds) at ionic
307 strength of 0.15 or 0.20, and calcium-free samples at different ionic strength (black open circles, same values as those shown in
308 Figure 3.D), at 37 °C. Calcium addition induces a conformational shift favoring rod-like over twisted fibril formation.

309

310 **Discussion**

311 Our systematic investigation of α Syn fibril polymorphism in vitro has uncovered a
312 fundamental principle that the conformational state of monomeric α Syn, specifically its C-terminal
313 domain, switches the final fibril architecture. By precisely controlling NaCl concentration and
314 temperature in fibrillation reactions, we constructed a comprehensive phase diagram that revealed
315 two predominant fibril polymorphs: twisted fibrils that forms under low NaCl concentration /
316 temperature conditions and rod-like fibrils emerging at higher values. This phase diagram proved
317 instrumental in unveiling the molecular mechanisms underlying polymorphism.

318 While twisted and rod-like fibrils exhibit distinct morphological features and unique
319 proteinase K digestion patterns, our ssNMR experiments revealed a surprising conservation of their
320 core kernel structure. This finding aligns with previous cryo-EM studies (13, 15), showing that both
321 polymorphs share similar protofilaments cores, with morphological differences arising from
322 distinct protofilament interfaces, affected probably by the C-terminus conformational state.
323 However, our study goes beyond morphological characterization to reveal the molecular origins of
324 these differences.

325 A key breakthrough emerged from our analysis of monomeric α Syn conformations in
326 solution. Although α Syn is traditionally viewed as an intrinsically disordered protein, our SEC
327 experiments revealed that its conformational ensemble is not random but responds systematically
328 to environmental conditions. The conformational transitions observed through changes in retention
329 volume reached a critical plateau at 300 mM NaCl, precisely matching the inflection point in the
330 maximal ThT intensity where fibril morphology switched from twisted to rod-like. This remarkable
331 correlation provided the first evidence that specific monomeric conformations are related with the
332 final fibril architecture.

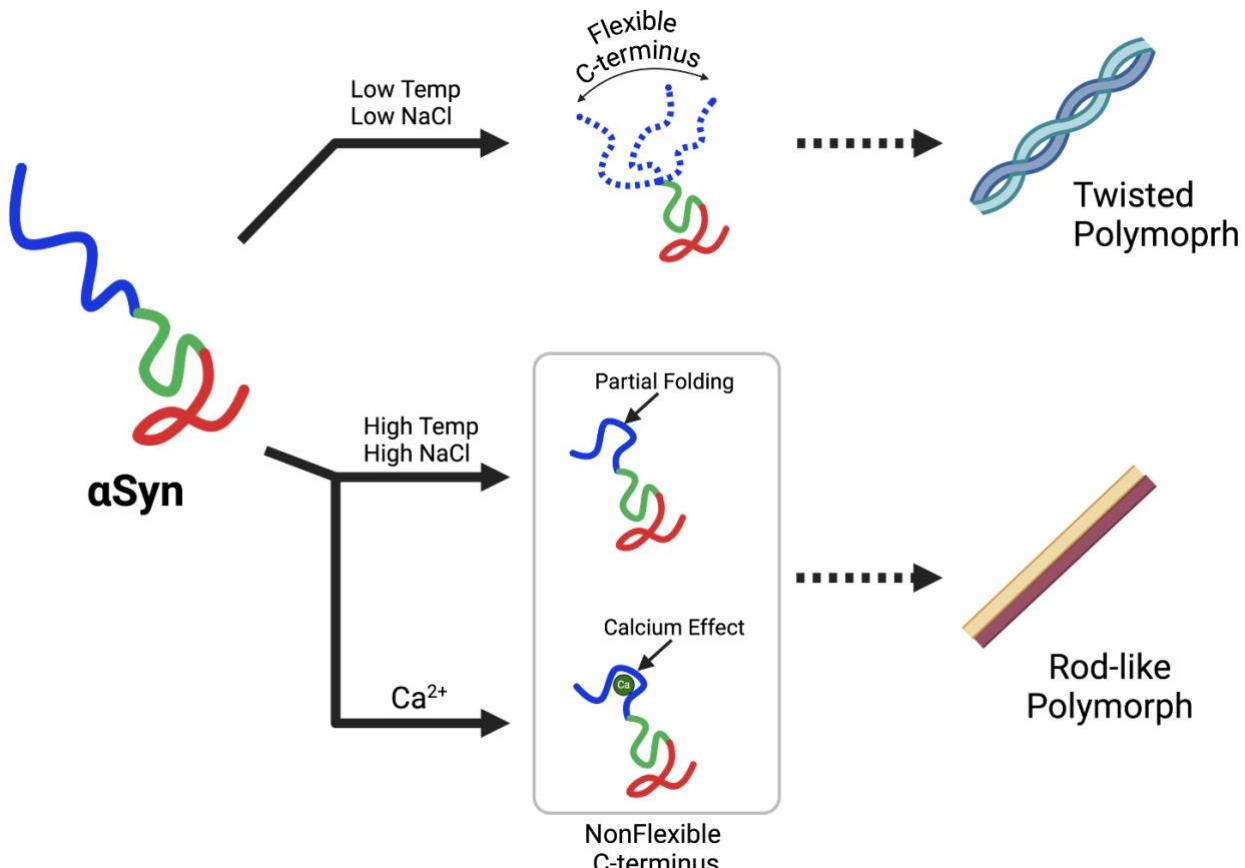
333 Solution ^1H - ^{15}N HSQC measurements provided insights about the molecular mechanism
334 behind this phenomenon, revealing a previously unrecognized regulatory role of the C-terminus
335 domain. We identified a critical region spanning residues 110-130 that acts as a molecular switch
336 for fibril polymorphism. While both the N-terminus domain and the NAC region showed general
337 responses to changing conditions, only the C-terminus exhibited behavior that precisely correlated
338 with fibril morphology. This finding rules out N-terminal and NAC regions as determinants of
339 polymorphism, focusing attention on the C-terminus as the master regulator of the fibril
340 architecture.

341 The importance of this discovery became evident when we quantified the C-terminal
342 conformational state using area-under-curve analysis of peak intensities. We identified a critical
343 threshold value of ~ 3 A. U. that marks the transition from twisted to rod-like fibril formation. This

345 empirical value possibly represents a specific conformational state of the C-terminus domain that
346 enables rod-like polymorph formation. Previous studies have noted that C-terminal modifications
347 can affect fibrillation kinetics through various mechanisms, including calcium binding (30) and
348 proline isomerization (31, 32). Uversky *et al* (23) reported temperature-induced partial folding of
349 α Syn, but the link between these conformational changes and fibril polymorphism remained
350 undiscovered until now.

351 Our calcium-binding experiments provided compelling validation of this mechanism.
352 Calcium ions induced identical changes in the C-terminal region as high ionic strength and
353 temperature, driving rod-like fibril formation even under otherwise twisted-favoring conditions.
354 This demonstrates that C-terminus conformation, rather than bulk solution properties, seems to
355 control fibril architecture. Although we cannot exclude the possibility that other divalent ions that
356 bind the C-terminus domain (33) have a similar effect than calcium, our findings establish calcium,
357 whose dysregulation has been proven to be associated to the development of neurodegenerative
358 diseases (34), as a master regulator of α Syn fibril polymorphism through its specific interaction
359 with the C-terminal domain, providing a crucial link between cellular homeostasis and pathological
360 α Syn aggregation patterns. Future studies should further characterize conformational states of the
361 C-terminus domain in function of the environmental factors based on, for example, solvent
362 protection properties measured by the H-D exchange NMR experiments.

363 Based on these findings, we propose a model for understanding α Syn aggregation as
364 illustrated in **Figure 5**. The C-terminal domain serves as a conformational switch: when residues
365 110-130 adopt a partially folded state, whether induced by salt, temperature, or calcium, rod-like
366 fibrils form. In contrast, when this region remains flexible, twisted fibrils emerge. While a specific
367 mechanism of how the C-terminus conformation guides the fibrillation process to generate specific
368 polymorphs is to be answered, we propose that, since the protofilament core structure remains
369 conserved, as shown by our ssNMR data, the C-terminus conformation influences the crucial
370 protofilament interfaces that determine final fibril architecture. Experiments that identify
371 interaction sites between the C-terminal domain and the fibril core during the fibril formation using,
372 for example, paramagnetic relaxation enhancement (PRE) ssNMR measurements could further
373 clarify this mechanism.


374 This model has profound implications for understanding pathological α Syn aggregation.
375 While we focused on ionic strength and temperature as experimental tools, our findings suggest
376 that any cellular factor affecting C-terminal conformation, like binding partners, such as lipids (12,
377 35, 36), or local chemical environments, could influence fibril polymorphism to generate the
378 polymorphs observed in fibrils extracted from the brain of patients (7, 8). Indeed, this notion

379 establishes a link between recently observed differential lysosomal damages and fibril
380 morphologies, that results in distinct pathologies (37). Identifying the C-terminus domain as a key
381 factor is particularly remarkable as the C-terminal domain undergoes in the complex environment
382 of the brain, where it is target of numerous physiological modifications, such as phosphorylation,
383 ubiquitination, truncation, metal coordination, etcetera (38), each potentially directing specific fibril
384 morphologies through a mechanism similar to the model that we propose. In the future, this insight
385 might enhance our understanding of the complex cellular events that trigger pathological
386 aggregation and opens new possibilities: modulating C-terminal conformation could prevent
387 formation of pathological polymorphs at their source.

388 Moreover, our discovery that domains outside the fibril core can regulate aggregation may
389 represent a general principle in protein aggregation diseases. The C-terminus domain's role in
390 directing fibril architecture demonstrates how regions excluded from the final fibril structure can
391 nevertheless determine its fate. This paradigm shift suggests new approaches to understanding and
392 treating synucleinopathies by focusing on the conformational state of monomeric protein rather
393 than mature fibrils.

394

395

396

397

398

399

Figure 5. Relationship between αSyn C-terminus dynamics and fibril morphology. The conformational state of the C-terminal domain determines the fibril polymorphism: high C-terminus flexibility promotes twisted fibrils, while partial C-terminal folding drives the assembly of rod-like fibrils. Created with BioRender.com

400

401 **Materials and Methods**

402 All chemicals and reactants were obtained from Sigma-Aldrich or Nacalai Tesque (Kyoto,
403 Japan). All reagents were used without further purification. Water was purified to a resistivity of
404 18 MΩ cm⁻¹ using a Millipore Gradient deionizing system.

405 **Protein purification**

406 Human WT αSyn was purified from *Escherichia coli* as described previously (39). Briefly,
407 a plasmid containing WT human αSyn was expressed in *E. coli* BL21 (DE3) cells (Novagen, Merck,
408 San Diego, CA, USA). The cells were suspended in purification buffer (50 mM TRIS-HCl pH7.4,
409 1 mM EDTA, 0.1 mM DTT and 0.1 mM PMSF), disrupted by sonication, and centrifuged.
410 Streptomycin sulfate (final 2.5% w/w) was added to the supernatant, and centrifugation was
411 repeated. The supernatant was heated to 85 °C in a water bath and centrifuged. The supernatant was
412 precipitated by the addition of solid ammonium sulfate to 70% saturation, centrifuged, dialyzed
413 overnight, applied to a Resource-Q column (GE Healthcare, Little Chalfont, UK) coupled to an
414 AKTA Explorer HPLC Instrument (Amersham Biosciences), and eluted with a linear gradient of
415 0–1 M NaCl. αSyn-enriched fractions (as determined by sodium dodecyl sulfate-polyacrylamide
416 gel electrophoresis SDS-PAGE/Coomassie blue staining) were pooled and further purified by size
417 exclusion chromatography (SEC) using a Superdex 200 26/600 PG column (GE Healthcare, Little
418 Chalfont, UK) equilibrated with 50 mM TRIS-HCl pH 7.4 supplemented with 150 mM NaCl. The
419 fractions containing αSyn (as determined by SDS-PAGE/Coomasie blue staining) were joint,
420 dialyzed versus deionized water, acidified with 10 mM HCl and loaded onto a Reverse Phase
421 Cosmosil Protein R x 250 mm Preparative Column (Nacalai-Tesque, Kyoto, Japan) coupled to a
422 Gilson HPLC Unipoint System Instrument (Gilson, USA), and eluted with a linear gradient of 30
423 % - 90 % acetonitrile. The pure fractions were combined and flash-frozen in liquid nitrogen,
424 lyophilized and stored at -80 °C until use. The protein purity was confirmed to be greater than 95%
425 by SDS-PAGE and matrix-assisted laser desorption/ionization mass spectrometry. The protein
426 concentration was determined by UV absorption at 280 nm using an extinction coefficient $\epsilon_{1\%}$ of
427 3.54 (40).

428 **Kinetics of fibril formation followed by thioflavin T (ThT)**

429 The formation of αSyn amyloid fibrils was studied by preparing solutions of αSyn (0.5 mg
430 mL⁻¹) in fibrillation buffer (50 mM TRIS-HCl pH 7.4), containing 10 μM ThT in a total volume of
431 200 μL, which were placed in each well of a 96-well microplate, and run under the conditions of
432 ionic strength and temperature indicated in the text. The ThT fluorescence intensity was monitored

434 using a HANdai Amyloid Burst Inducer (HANABI-2000) equipment, developed by our group in
435 collaboration with CORONA ELECTRIC, Ibaraki, Japan, consisting of a transducer driving
436 system, an acoustic-intensity measurement system, and a fluorescence measure system, in which
437 a microplate reader was combined with a multichannel ultrasonication system that
438 applies ultrasonic irradiation independently to each individual well of the microplate via a
439 miniaturized ultrasonic resonator attached to each well. Ultrasonication was applied to accelerate
440 amyloid formation at an optimized frequency of 30 kHz (26–28), in cycles of 300 ms of irradiation
441 and 500 ms of quiescence. The kinetic parameters of fibril formation were determined by fitting the
442 experimental data to empirical equations (41).

443 Transmission electron microscopy (TEM)

444 TEM imaging was achieved on a Hitachi H-7650 transmission electron microscope
445 (Hitachi, Tokyo) operated at 80 kV. Samples were diluted 1:1 with deionized water, and 10 μ L of
446 this solution was placed onto copper grids (400-mesh) covered with carbon-coated collodion film
447 (Nissin EM, Tokyo) and incubated for 1 min at room temperature. The samples were negatively
448 stained with 10 μ L of a 1% (w/v) solution of phosphotungstic acid (PTA), incubated for 1 min, and
449 finally washed again with 10 μ L of deionized water. The magnification working interval ranged
450 from 5 000 \times to 20 000 \times .

451 Proteinase K resistance (PKR) assay

452 α Syn fibrils (0.5 mg mL $^{-1}$) in fibrillation buffer were digested using proteinase K (1 μ g mL $^{-1}$,
453 Roche) at 37 °C and 400 rpm for different time intervals. To stop the reaction, the samples were
454 incubated for 5 min at 95 °C, mixed with loading buffer (50 mM TRIS-HCl, pH 6.8, 4% SDS, 2%
455 β -mercaptoethanol, 12% glycerol and 0.01% bromophenol blue) and incubated at 95 °C for
456 additional 10 min. The digestion patterns were analyzed by SDS-PAGE followed by Coomassie
457 Brilliant Blue staining. The first five products of digestion, namely B1 to B5, were employed for
458 the analysis.

459 Analytical size-exclusion chromatography (SEC)

460 Solutions of α Syn at a concentration of 1 mg mL $^{-1}$ were filtered through a 0.22 μ m size-
461 pore membrane and loaded onto a 75 Increase 10/300 GL SEC column (GE Healthcare). The flow
462 rate was set to 0.5 mL min $^{-1}$. The protein absorption at 220, 250 and 280 nm was monitored.

463 Analytical Ultracentrifugation (AUC)

464 Sedimentation velocity (SV) experiments were performed at 20 °C using an Optima AUC analytical
465 ultracentrifuge (Beckman Coulter) equipped with an An-60Ti rotor using 12-mm double-sector
466 aluminum centerpiece with sapphire windows. α Syn was dissolved in the buffer (50 mM TRIS-HCl
467 pH 7.4; 50 mM NaCl, 50 mM TRIS-HCl pH 7.4, 150 mM NaCl; and 50 mM TRIS-HCl pH 7.4,
468 500 mM NaCl). The protein concentrations were adjusted to absorbance values of 0.8 at 230 nm in
469 the working buffer at 1-cm path length. 390 μ L of prepared sample solution and 400 μ L of buffer
470 were loaded to the appropriate sector of centerpiece. Sedimentation data were collected every 2 min
471 at 60,000 rpm with a radial increment of 0.001 cm using absorbance optics. The detection
472 wavelength was set at 230 nm.

473 The distribution of the sedimentation coefficient was determined using the continuous $c(s)$
474 distribution model in the program SEDFIT (42). The range of the sedimentation coefficients for
475 fitting was 0-15 S, with a resolution of 300. The buffer density, and the buffer viscosity were
476 calculated by the program SEDNTERP (43), respectively. Figures of the sedimentation profile, $c(s)$
477 distribution, and fitting results were generated using program GUSSI (44).

478 Solid-state Multidimensional NMR

479 ^{13}C - ^{13}C DARR solid-state NMR experiments were performed by using ^{13}C - and ^{15}N -
480 labelled α Syn fibrils prepared under the conditions of ionic strength and temperature indicated in
481 the text. The ^{13}C - and ^{15}N -labelled α Syn was expressed in M9 minimal media containing $^{13}\text{C}_6\text{-D}$ -
482 glucose and $^{15}\text{NH}_4\text{Cl}$ and purified as described for the unlabeled protein. The fibril samples were
483 packed into 3.2 mm Varian-style solid-state NMR sample rotors (Phoenix NMR) using a home-
484 made rotor packing tool (45) via ultra-centrifugation (92,000 \times g for two hours).

485 NMR spectra were acquired on a JEOL ECA-II 600 MHz NMR spectrometer equipped with
486 a 3.2 mm Varian T3-HXY probe at a MAS rate of 12.5 kHz. A cooling gas was used to maintain
487 the sample temperature to >20 °C, estimated using the temperature-dependent longitudinal
488 relaxation time of K^{79}Br (46). The 90° pulse lengths of ^1H and ^{13}C were 3.2 μ s. ^1H to ^{13}C cross-
489 polarization (CP) was performed under a Hartman-Hahn matching condition of ~50 kHz for ^1H and
490 ~37.5 kHz for ^{13}C (47), with a linear-ramp gradient applied to the ^{13}C channel. ^{13}C - ^{13}C mixing was
491 achieved by 20 ms of DARR (48). During indirect and direct detection periods, ^1H spins were
492 decoupled by 70 kHz of SPINAL64 field (49). The acquisition time for both direct and indirect
493 dimension was 10.24 ms with 10 μ s of dwell time. The ^{13}C chemical shift was referenced to sodium
494 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) using the adamantane CH_2 peak at 40.48 ppm (50).

495 All NMR data were processed with NMRPipe (51). The Lorentz-to-Gauss window function
496 was applied to the data prior to the zero filling and Fourier transformation. The processed data were
497 visualized by Python with the nmrglue (46) and Matplotlib (52) packages.

498 **Solution Multidimensional NMR**

499 The uniformly ^{15}N ($[\text{U}-^{15}\text{N}]$) and ^{13}C , ^{15}N ($[\text{U}-^{13}\text{C}, ^{15}\text{N}]$) labeled α Syn was overexpressed in *E. coli*
500 in M9 minimal medium containing $^{15}\text{NH}_4\text{Cl}$ and ^{12}C -glucose or ^{13}C -glucose as the solo nitrogen
501 and carbon sources, respectively, and purified as described for the unlabeled protein. The NMR
502 measurements were performed using an Avance III HD 800 spectrometer equipped with a TXI
503 cryogenic probe and Avance III HD 600 spectrometer equipped with a QCI-P cryogenic probe
504 (Bruker Biospin).

505 The following NMR experiments were performed at 37 °C for backbone signal assignment of
506 α Syn; 3D HNCACB, HNCOCACB, HNCA, HNCOCA, HNCO, HNCACO, HNCANNH, and 2D
507 ^1H - ^{15}N HSQC. Additionally, chemical shift information for α Syn registered in the Biological
508 Magnetic Resonance Data Bank was referenced (BMRB Entry 27074). The $[\text{U}-^{13}\text{C}, ^{15}\text{N}]$ labeled
509 α Syn were dissolved in NMR buffer containing 50 mM TRIS-HCl buffer [pH 7.4], 150 mM NaCl,
510 2% (v/v) D_2O . The concentrations of the α Syn were 100 μM .

511 ^1H - ^{15}N heterogenous single-quantum coherence (HSQC) experiments were performed using 100
512 μM $[\text{U}-^{15}\text{N}]$ labeled α Syn dissolved in fibrillation buffer prepared in $\text{H}_2\text{O}/\text{D}_2\text{O}$ (98:2, v/v), under
513 the ionic strength and temperature conditions specified in the text.

514 All NMR spectra were processed with Topspin (Bruker Biospin), NMRPipe (51) and POKY Suite
515 (53).

516 **Circular dichroism (CD) spectroscopy**

517 CD measurements were performed using a Jasco J820 spectrophotometer at 37 °C. Quartz cuvettes
518 of 0.1 cm were utilized. The employed protein concentration was 0.25 mg mL $^{-1}$ in fibrillation buffer.
519 Spectra were recorded in 250-200 nm (far-UV CD) ranges and reported as the mean residue
520 ellipticity ($[\theta]_{\text{MRW}}$, deg cm 2 dmol $^{-1}$) after subtracting the baseline.

521 **Ionic strength calculation**

522 Ionic strength (IS) was calculated using the equation:

$$523 IS = \frac{1}{2} \sum c_i z_i^2$$

524 where c_i is the molar concentration of each individual ion, and z_i is the charge of each ion (54). In
525 fibril formation and NMR experiments using Ca^{2+} , where we fixed the ionic strength to 0.15 to
526 mimic physiological environments, the ionic strength was set considering the necessary
527 concentration of Ca^{2+} for each experiment and adjusted to 0.15 by adding the required amount of
528 NaCl.

529

530

531

532

533

534 **References**

535

- 536 1. M. G. Spillantini, R. A. Crowther, R. Jakes, M. Hasegawa, M. Goedert, “Synuclein in filamentous inclusions
537 of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies (ubiquitinsarkosyl-insoluble
538 filamentsimmunolectron microscopy)” (1998); www.pnas.org.
- 539 2. M. G. Spillantini, M. L. Schmidt, V. M.-Y. Lee, J. Q. Trojanowski, R. Jakes, M. Goedert, α -Synuclein in
540 Lewy bodies. *Nature* **388**, 839–840 (1997).
- 541 3. W. P. Gai, J. H. T. Power, P. C. Blumbergs, W. W. Blessing, Multiple-system atrophy: a new alpha-synuclein
542 disease? *The Lancet* **352**, 547–548 (1998).
- 543 4. K. Araki, N. Yagi, Y. Ikemoto, H. Yagi, C. J. Choong, H. Hayakawa, G. Beck, H. Sumi, H. Fujimura, T.
544 Moriwaki, Y. Nagai, Y. Goto, H. Mochizuki, Synchrotron FTIR micro-spectroscopy for structural analysis of
545 Lewy bodies in the brain of Parkinson’s disease patients. *Sci Rep* **5** (2015).
- 546 5. K. Araki, N. Yagi, K. Aoyama, C. J. Choong, H. Hayakawa, H. Fujimura, Y. Nagai, Y. Goto, H. Mochizuki,
547 Parkinson’s disease is a type of amyloidosis featuring accumulation of amyloid fibrils of α -synuclein. *Proc
548 Natl Acad Sci U S A* **116**, 17963–17969 (2019).
- 549 6. K. Araki, N. Yagi, Y. Ikemoto, H. Hayakawa, H. Fujimura, T. Moriwaki, Y. Nagai, S. Murayama, H.
550 Mochizuki, The secondary structural difference between Lewy body and glial cytoplasmic inclusion in
551 autopsy brain with synchrotron FTIR micro-spectroscopy. *Sci Rep* **10** (2020).
- 552 7. M. Schweighauser, Y. Shi, A. Tarutani, F. Kametani, A. G. Murzin, B. Ghetti, T. Matsubara, T. Tomita, T.
553 Ando, K. Hasegawa, S. Murayama, M. Yoshida, M. Hasegawa, S. H. W. Scheres, M. Goedert, Structures of
554 α -synuclein filaments from multiple system atrophy. *Nature* **585**, 464–469 (2020).
- 555 8. Y. Yang, Y. Shi, M. Schweighauser, X. Zhang, A. Kotecha, A. G. Murzin, H. J. Garringer, P. W. Cullinane,
556 Y. Saito, T. Foroud, T. T. Warner, K. Hasegawa, R. Vidal, S. Murayama, T. Revesz, B. Ghetti, M. Hasegawa,
557 T. Lashley, S. H. W. Scheres, M. Goedert, Structures of α -synuclein filaments from human brains with Lewy
558 pathology. *Nature* **610**, 791–795 (2022).
- 559 9. W. Peelaerts, L. Bousset, V. Baekelandt, R. Melki, α -Synuclein strains and seeding in Parkinson’s disease,
560 incidental Lewy body disease, dementia with Lewy bodies and multiple system atrophy: similarities and
561 differences. Springer Verlag [Preprint] (2018). <https://doi.org/10.1007/s00441-018-2839-5>.
- 562 10. L. Bousset, L. Pieri, G. Ruiz-Arlandis, J. Gath, P. H. Jensen, B. Habenstein, K. Madiona, V. Olieric, A.
563 Böckmann, B. H. Meier, R. Melki, Structural and functional characterization of two alpha-synuclein strains.
564 *Nat Commun* **4**, 2575 (2013).
- 565 11. W. Peelaerts, L. Bousset, A. Van Der Perren, A. Moskalyuk, R. Pulizzi, M. Giugliano, C. Van Den Haute, R.
566 Melki, V. Baekelandt, α -Synuclein strains cause distinct synucleinopathies after local and systemic
567 administration. *Nature* **522**, 340–344 (2015).
- 568 12. C. J. Choong, C. Aguirre, K. Kakuda, G. Beck, H. Nakanishi, Y. Kimura, S. Shimma, K. Nabekura, M.
569 Hideshima, J. Doi, K. Yamaguchi, K. Nakajima, T. Wadayama, H. Hayakawa, K. Baba, K. Ogawa, T.
570 Takeuchi, S. M. M. Badawy, S. Murayama, S. Nagano, Y. Goto, Y. Miyanoiri, Y. Nagai, H. Mochizuki, K.
571 Ikenaka, Phosphatidylinositol-3,4,5-trisphosphate interacts with alpha-synuclein and initiates its aggregation
572 and formation of Parkinson’s disease-related fibril polymorphism. *Acta Neuropathol* **145**, 573–595 (2023).
- 573 13. B. Li, P. Ge, K. A. Murray, P. Sheth, M. Zhang, G. Nair, M. R. Sawaya, W. S. Shin, D. R. Boyer, S. Ye, D.
574 S. Eisenberg, Z. H. Zhou, L. Jiang, Cryo-EM of full-length α -synuclein reveals fibril polymorphs with a
575 common structural kernel. *Nat Commun* **9** (2018).
- 576 14. R. Guerrero-Ferreira, N. Mi Taylor, D. Mona, P. Ringler, M. E. Lauer, R. Riek, M. Britschgi, H. Stahlberg,
577 Cryo-EM structure of alpha-synuclein fibrils. doi: 10.7554/eLife.36402.001 (2018).
- 578 15. R. Guerrero-Ferreira, N. M. I. Taylor, A. A. Arteni, P. Kumari, D. Mona, P. Ringler, M. Britschgi, M. E.
579 Lauer, A. Makky, J. Verasdock, R. Riek, R. Melki, B. H. Meier, A. Böckmann, L. Bousset, H. Stahlberg,
580 Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron
581 microscopy. *Elife* **8** (2019).
- 582 16. C. Aguirre, K. Ikenaka, H. Mochizuki, Two New Polymorphs in H50Q Determined by CryoEM Suggest a
583 Mechanism That Explains Its Faster Kinetics In Vitro. John Wiley and Sons Inc. [Preprint] (2020).
584 <https://doi.org/10.1002/mds.28100>.
- 585 17. C. W. Bertoncini, Y.-S. Jung, C. O. Fernandez, W. Hoyer, C. Griesinger, T. M. Jovin, M. Zweckstetter,
586 “Release of long-range tertiary interactions potentiates aggregation of natively unstructured-synuclein”
587 (2005); www.pnas.org/cgi/doi/10.1073/pnas.0407146102.
- 588 18. J. C. Kessler, J. C. Rochet, P. T. Lansbury, The N-terminal repeat domain of α -synuclein inhibits β -sheet and
589 amyloid fibril formation. *Biochemistry* **42**, 672–678 (2003).
- 590 19. W. Zhou, C. Long, S. H. Reaney, D. A. Di Monte, A. L. Fink, V. N. Uversky, Methionine oxidation stabilizes
591 non-toxic oligomers of α -synuclein through strengthening the auto-inhibitory intra-molecular long-range
592 interactions. *Biochim Biophys Acta Mol Basis Dis* **1802**, 322–330 (2010).

593 20. P. Ranjan, A. Kumar, Perturbation in Long-Range Contacts Modulates the Kinetics of Amyloid Formation in
594 α -Synuclein Familial Mutants. *ACS Chem Neurosci* **8**, 2235–2246 (2017).

595 21. K. Furukawa, C. Aguirre, M. So, K. Sasahara, Y. Miyanoiri, K. Sakurai, K. Yamaguchi, K. Ikenaka, H.
596 Mochizuki, J. Kardos, Y. Kawata, Y. Goto, Isoelectric point-amyloid formation of α -synuclein extends the
597 generality of the solubility and supersaturation-limited mechanism. *Curr Res Struct Biol* **2**, 35–44 (2020).

598 22. J. Bai, K. Cheng, M. Liu, C. Li, Impact of the α -Synuclein Initial Ensemble Structure on Fibrillation
599 Pathways and Kinetics. *Journal of Physical Chemistry B* **120**, 3140–3147 (2016).

600 23. V. N. Uversky, J. Li, A. L. Fink, Evidence for a Partially Folded Intermediate in α -Synuclein Fibril
601 Formation. *Journal of Biological Chemistry* **276**, 10737–10744 (2001).

602 24. A. S. Morar, A. Olteanu, G. B. Young, G. J. Pielak, Solvent-induced collapse of-synuclein and acid-
603 denatured cytochrome c. doi: 10.1101/ps.24301 (2001).

604 25. N. P. Ulrich, C. H. Barry, A. L. Fink, Impact of Tyr to Ala mutations on α -synuclein fibrillation and structural
605 properties. *Biochim Biophys Acta Mol Basis Dis* **1782**, 581–585 (2008).

606 26. K. Nakajima, K. Noi, K. Yamaguchi, M. So, K. Ikenaka, H. Mochizuki, H. Ogi, Y. Goto, Optimized
607 sonoreactor for accelerative amyloid-fibril assays through enhancement of primary nucleation and
608 fragmentation. *Ultrason Sonochem* **73** (2021).

609 27. Y. Goto, K. Nakajima, K. Yamaguchi, M. So, K. Ikenaka, H. Mochizuki, H. Ogi, Development of HANABI,
610 an ultrasonication-forced amyloid fibril inducer. *Neurochem Int* **153** (2022).

611 28. K. Kakuda, K. Ikenaka, K. Araki, M. So, C. Aguirre, Y. Kajiyama, K. Konaka, K. Noi, K. Baba, H. Tsuda, S.
612 Nagano, T. Ohmichi, Y. Nagai, T. Tokuda, O. M. A. El-Agnaf, H. Ogi, Y. Goto, H. Mochizuki,
613 Ultrasonication-based rapid amplification of α -synuclein aggregates in cerebrospinal fluid. *Sci Rep* **9** (2019).

614 29. J. Lautenschläger, A. D. Stephens, G. Fusco, F. Strohl, N. Curry, M. Zacharopoulou, C. H. Michel, R. Laine,
615 N. Nesporitaya, M. Fantham, D. Pinotsi, W. Zago, P. Fraser, A. Tandon, P. St George-Hyslop, E. Rees, J. J.
616 Phillips, A. De Simone, C. F. Kaminski, G. S. K. Schierle, C-terminal calcium binding of α -synuclein
617 modulates synaptic vesicle interaction. *Nat Commun* **9** (2018).

618 30. A. D. Stephens, M. Zacharopoulou, R. Moons, G. Fusco, N. Seetaloo, A. Chiki, P. J. Woodhams, I. Mela, H.
619 A. Lashuel, J. J. Phillips, A. De Simone, F. Sobott, G. S. K. Schierle, Extent of N-terminus exposure of
620 monomeric alpha-synuclein determines its aggregation propensity. *Nat Commun* **11** (2020).

621 31. J. Meuvis, M. Gerard, L. Desender, V. Baekelandt, Y. Engelborghs, The conformation and the aggregation
622 kinetics of α -synuclein depend on the proline residues in its C-terminal region. *Biochemistry* **49**, 9345–9352
623 (2010).

624 32. F. Favretto, D. Flores, J. D. Baker, T. Strohäker, L. B. Andreas, L. J. Blair, S. Becker, M. Zweckstetter,
625 Catalysis of proline isomerization and molecular chaperone activity in a tug-of-war. *Nat Commun* **11** (2020).

626 33. R. Moons, A. Konijnenberg, C. Mensch, R. Van Elzen, C. Johannessen, S. Maudsley, A. M. Lambeir, F.
627 Sobott, Metal ions shape α -synuclein. *Sci Rep* **10** (2020).

628 34. G. S. Virdi, M. L. Choi, J. R. Evans, Z. Yao, D. Athauda, S. Strohbecker, R. S. Nirujogi, A. I. Wernick, N.
629 Pelegrina-Hidalgo, C. Leighton, R. S. Saleeb, O. Kopach, H. Alrashidi, D. Melandri, J. Perez-Lloret, P. R.
630 Angelova, S. Sylantyev, S. Eaton, S. Heales, D. A. Rusakov, D. R. Alessi, T. Kunath, M. H. Horrocks, A. Y.
631 Abramov, R. Patani, S. Gandhi, Protein aggregation and calcium dysregulation are hallmarks of familial
632 Parkinson's disease in midbrain dopaminergic neurons. *NPJ Parkinsons Dis* **8** (2022).

633 35. K. Ikenaka, M. Suzuki, H. Mochizuki, Y. Nagai, Lipids as trans-acting effectors for α -synuclein in the
634 pathogenesis of Parkinson's disease. Frontiers Media S.A. [Preprint] (2019).
635 https://doi.org/10.3389/fnins.2019.00693.

636 36. S. Kamano, D. Ozawa, K. Ikenaka, Y. Nagai, Role of Lipids in the Pathogenesis of Parkinson's Disease.
637 Multidisciplinary Digital Publishing Institute (MDPI) [Preprint] (2024).
638 https://doi.org/10.3390/ijms25168935.

639 37. K. Kakuda, K. Ikenaka, A. Kuma, J. Doi, C. Aguirre, N. Wang, T. Ajiki, C. J. Choong, Y. Kimura, S. M. M.
640 Badawy, T. Shima, S. Nakamura, K. Baba, S. Nagano, Y. Nagai, T. Yoshimori, H. Mochizuki, Lysophagy
641 protects against propagation of α -synuclein aggregation through ruptured lysosomal vesicles. *Proc Natl Acad
642 Sci U S A* **121** (2024).

643 38. A. Oueslati, Implication of Alpha-Synuclein Phosphorylation at S129 in Synucleinopathies: What Have We
644 Learned in the Last Decade? IOS Press [Preprint] (2016). https://doi.org/10.3233/JPD-160779.

645 39. H. Yagi, E. Kusaka, K. Hongo, T. Mizobata, Y. Kawata, Amyloid fibril formation of α -synuclein is
646 accelerated by preformed amyloid seeds of other proteins: Implications for the mechanism of transmissible
647 conformational diseases. *Journal of Biological Chemistry* **280**, 38609–38616 (2005).

648 40. E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel, A. Bairoch, ExPASy: The proteomics server
649 for in-depth protein knowledge and analysis. *Nucleic Acids Res* **31**, 3784–3788 (2003).

650 41. P. Arosio, T. P. J. Knowles, S. Linse, On the lag phase in amyloid fibril formation. *Physical Chemistry
651 Chemical Physics* **17**, 7606–7618 (2015).

652 42. P. Schuck, Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and
653 Lamm equation modeling. *Biophys J* **78**, 1606–1619 (2000).

654 43. T. M. Laue, B. Shah, T. M. Ridgeway, S. L. Pelletier, “Computer-aided interpretation of analytical
655 sedimentation data for proteins” in *Analytical Ultracentrifugation in Biochemistry and Polymer Science*
656 (Royal Society of Chemistry, Cambridge, 1992), pp. 90–125.

657 44. C. A. Brautigam, “Calculations and Publication-Quality Illustrations for Analytical Ultracentrifugation Data”
658 in *Methods in Enzymology* (Academic Press Inc., 2015) vol. 562, pp. 109–133.

659 45. A. Böckmann, C. Gardiennet, R. Verel, A. Hunkeler, A. Loquet, G. Pintacuda, L. Emsley, B. H. Meier, A.
660 Lesage, Characterization of different water pools in solid-state NMR protein samples. *J Biomol NMR* **45**,
661 319–327 (2009).

662 46. K. R. Thurber, R. Tycko, Measurement of sample temperatures under magic-angle spinning from the
663 chemical shift and spin-lattice relaxation rate of ^{79}Br in KBr powder. *Journal of Magnetic Resonance* **196**,
664 84–87 (2009).

665 47. R. A. Wind, S. F. Dec, H. Lock, G. E. Maciel, “NOTES ^{13}C CP/ MAS and High-Speed Magic-Angle
666 Spinning” (1988).

667 48. K. Takegoshi, S. Nakamura, T. Terao, “C \pm 1 H dipolar-assisted rotational resonance in magic-angle spinning
668 NMR;” www.elsevier.com/locate/cplett.

669 49. B. M. Fung, A. K. Khitrin, K. Ermolaev, “An Improved Broadband Decoupling Sequence for Liquid Crystals
670 and Solids” (2000); <http://www.idealibrary.com>.

671 50. C. R. Morcombe, K. W. Zilm, Chemical shift referencing in MAS solid state NMR. *Journal of Magnetic
672 Resonance* **162**, 479–486 (2003).

673 51. F. Delaglio ~, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, A. Bax, “NMRPipe: A multidimensional
674 spectral processing system based on UNIX pipes*” (1995).

675 52. J. D. Hunter, Matplotlib_A_2D_Graphics_Environment. *Comput Sci Eng* **9**, 90–95 (2007).

676 53. W. Lee, M. Rahimi, Y. Lee, A. Chiu, POKY: a software suite for multidimensional NMR and 3D structure
677 calculation of biomolecules. *Bioinformatics* **37**, 3041–3042 (2021).

678 54. S. M. Truscott, “Chapter 6 - Laboratory calculations” in *Contemporary Practice in Clinical Chemistry*
679 (Fourth Edition), W. Clarke, M. A. Marzinke, Eds. (Academic Press, Fourth Edition., 2020;
680 <https://www.sciencedirect.com/science/article/pii/B9780128154991000065>), pp. 97–117.

685 **Acknowledgments**

686 We would like to thank Shizuka Sonoda and Miki Yoshida for protein expression and purification
687 and the excellent technical support received. CA thanks JSPS (postdoctoral fellowship P16388) for
688 the financial support.

689
690 **Funding:** This work was supported by
691 JSPS KAKENHI Grant JP24H00045,
692 JSPS KAKENHI Grant JP22K07516
693 JSPS KAKENHI Grant JP22H02951
694 JSPS KAKENHI Grant JP22K15643
695 JSPS KAKENHI Grant JP23K24212
696 JSPS KAKENHI Grant JP23K18255
697 JSPS Core-to-Core Program A Advance Research Networks JPJSCCA20180007
698 JST FOREST Program JPMJFR231L
699 Japan Agency for Medical Research and Development (AMED) JP22gm1410014
700 Japan Agency for Medical Research and Development (AMED)JP24gm1910008
701 Japan Agency for Medical Research and Development (AMED)JP24ek0109771h
702

703 **Author contributions:** Each author's contribution(s) to the paper should be listed (we
704 suggest following the CRediT model with each CRediT role given its own line. No
705 punctuation in the initials.

706 Examples:

707 Conceptualization: CA, YM, MS, KK, YK, TO, KB, SN, YN, HO, SU, YM, KT,
708 YG, KI and HM

709 Methodology: CA, YM, MS, HT, TM, JD, KY, KN, YY, HO, SU, YM, KT, YG,
710 KI and HM

711 Investigation: CA, YM, MS, HT, TM, JD, NW, KY, KN, YY, HI, CJC, TA, YM,
712 and KI

713 Supervision: YM, KK, YK, TO, KB, SN, YN, HO, SU, YM, KT, YG, KI and HM

714 Writing—original draft: CA and KI

715 Writing—review & editing: YM, KK, YK, TO, KB, SN, YN, HO, SU, YM, KT,
716 YG, KI and HM

717
718 **Competing interests:** Authors declare no conflicts of interest.

719
720 **Data and materials availability:** All data is available in the main text or the supplementary
721 materials.