

1 **MraZ is a transcriptional inhibitor of cell division in *Bacillus subtilis***

2 Maria L. White, Abigail Hough-Neidig, Sebastian J. Khan and Prahathees J. Eswara*

3 Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida,

4 Tampa, FL 33620, USA

5

6 *To whom correspondence should be addressed. Email: eswara@usf.edu

7 Keywords: FtsZ, FtsL, pbpB, PBP2B, MraW, cytokinesis, YneA

8 **Abstract**

9 The bacterial division and cell wall (*dcw*) cluster is a highly conserved region of the
10 genome which encodes several essential cell division factors including the central
11 divisome protein FtsZ. Understanding the regulation of this region is key to our
12 overall understanding of the division process. *mraZ* is found at the 5' end of the *dcw*
13 cluster and previous studies have described MraZ as a sequence-specific DNA
14 binding protein. In this article, we investigate MraZ to elucidate its role in *Bacillus*
15 *subtilis*. Through our investigation, we demonstrate that increased levels of MraZ
16 result in lethal filamentation due to repression of its own operon (*mraZ-mraW-ftsL-*
17 *pbpB*). We observe rescue of filamentation upon decoupling *ftsL* expression, but not
18 other genes in the operon, from MraZ control. Furthermore, through timelapse
19 microscopy we were able to identify that overexpression of *mraZ*, results in de-
20 condensation of the FtsZ ring (Z-ring). This is likely due to depletion of FtsL, and
21 thus, we believe the precise role of FtsL is likely in Z-ring maturation and promotion
22 of subsequent treadmilling. Our data suggests that regulation of the *mra* operon may
23 be an alternative way for cells to quickly arrest cytokinesis potentially during entry
24 into stationary phase and in the event of DNA replication arrest.

25 **Introduction**

26 Bacterial cell division is a highly orchestrated process that typically results in the
27 creation of two identical daughter cells through binary fission (1-3). Many species of
28 bacteria encode a conserved gene neighbourhood known as the division cell wall
29 (*dcw*) cluster (4, 5). In general, the peptidoglycan biosynthesis genes are found
30 towards the 5' end and genes encoding important cell division factors, including *ftsZ*,
31 are found at the 3' end (5-7). Gram-positive bacteria have an additional conserved
32 region – the *ylm* operon, downstream of *ftsZ* which includes genes for additional cell
33 division factors such as *sepF* and *divIVA* (8, 9).

34 At the very 5' end of the *dcw* cluster is a gene encoding for a DNA binding protein
35 *MraZ* (previously known as *ylIB*), which is conserved in diverse lineages. In a range
36 of species, including *Escherichia coli* and many Firmicutes *mraZ* is found within a
37 short operon consisting of itself, *mraW* (*rsmH*; *ylIC*), *ftsL* (*ylID*) and *pbpB* (*pbp2B*)
38 (10). In genome-reduced Mycoplasma species, the *dcw* cluster consists of *mraZ* and
39 *mraW* followed by *ftsA* and *ftsZ* alone (11).

40 Previous work in *E. coli* and Mycoplasma showed that overexpression of *mraZ*
41 results in a change in transcriptional regulation of its own operon causing lethal
42 filamentation in *E. coli* and cell enlargement in Mycoplasma (11-13). In *E. coli*, this
43 phenotype could be resolved by co-expression of the gene immediately downstream
44 of *mraZ*, *mraW*, a putative 16S rRNA (and possibly DNA) methyltransferase (12, 14).
45 Work in *Burkholderia cenocepacia* has shown that *P_{mra}* is the sole transcription start
46 site of the *dcw* cluster and MraZ can bind to the promoter sequence and presumably
47 act as a transcriptional regulator (15). Recent investigation of Neisseriaceae family
48 organisms revealed that deletion of *mraZ* among others factors may have allowed for

49 the evolution of alternate growth modes (16). A recent report in *Staphylococcus*
50 *aureus* proposes a role for MraZ in virulence regulation (17).

51 In this report, we show that overexpression of *mraZ* is toxic in *B. subtilis* due to cell
52 division inhibition similar to what has been reported in other organisms thus far.

53 Through fluorescence microscopy, we show that MraZ is a DNA-associated protein.

54 Using transcriptional reporter assays and RNA-seq analysis, we elucidate that MraZ
55 functions as a transcriptional repressor of the *mra* operon. Additionally, we
56 demonstrate that MraZ-mediated lethal cell division inhibition is driven primarily by
57 the reduction in the levels of FtsL, a critical divisome component that is turned over
58 rapidly (18). Finally, we provide evidence that coalescence during maturation of FtsZ
59 ring assembly is impaired upon MraZ overproduction presumably due to insufficient
60 FtsL. Thus, our results together with studies conducted in other bacteria, favour the
61 notion that MraZ is a transcriptional inhibitor of cell division.

62 **Results**

63 Overproduction of MraZ is lethal to *B. subtilis* and is dependent on DNA binding.

64 To investigate the role of *mraZ* in *B. subtilis*, we constructed an IPTG-inducible copy
65 of *mraZ* at an ectopic locus. We grew cultures of wildtype *B. subtilis* (WT) and cells
66 containing inducible *mraZ* and plated serial dilutions on LB (lysogeny broth) agar
67 with and without 1 mM IPTG. We found that when grown on IPTG, cells containing
68 inducible *mraZ* (*mraZ*⁺) were unable to grow at any dilution in contrast to the WT
69 control (**Fig. 1A**). This is similar to what has previously been shown in *E. coli* (12).

70 Additionally, we investigated whether overexpression of *mraZ* resulted in a growth
71 defect in liquid medium. After 3 h of 1 mM IPTG addition, cells overproducing MraZ
72 display a drop in cell density at OD₆₀₀ indicating cell lysis (**Fig. 1B**). To study the

73 cause of lethality, we observed *mraZ*⁺ cells under the microscope. When grown in
74 the presence of 1 mM IPTG for 2 h, *mraZ*⁺ cells are extremely filamentous (14.6 μ m
75 \pm 6.9 μ m) in contrast to the WT control (3.4 μ m \pm 1 μ m) (**Figs. 1C and 1D**). This
76 phenotype is indicative of cell division arrest in rod-shaped organisms. Eventually,
77 the *mraZ* overexpressing cells go on to lyse explaining the lethal phenotype
78 observed on solid and liquid media.

79 We also noticed that MraZ overproducing cells exhibited severe impairment in the
80 number of copies of chromosomes per cell suggesting a possible arrest in DNA
81 replication. This is not due to filamentation by itself, as other conditions that elicit
82 filamentation in *B. subtilis* such as the overexpression of *S. aureus* *gpsB* leads to no
83 such DNA phenotype (19). This extreme nucleoid phenotype only occurs when MraZ
84 is present in excess in the cell. At a lower IPTG concentration range, overproduction
85 of MraZ slows the growth of the cells (**Fig. S1C**), produces filamentation, and some
86 condensation of the nucleoid is observed but phenotypically the DNA is much more
87 WT-like than at higher concentrations of IPTG (**Fig. S1B**).

88 MraZ belongs to the AbrB and SpoVT family of transcription factors and contains two
89 highly conserved DXXXR motifs (**Fig. S1A**) (20-22). Previous work by Eraso *et al.*
90 (12) had shown that a single point mutation of the first motif from arginine to alanine
91 (R15A) was sufficient to prevent lethality in *E. coli*. We sought to identify whether this
92 was the case for *B. subtilis* MraZ and generated point mutations in both DXXXR
93 motifs – R15A and R86A. As described earlier, we serially diluted and plated both
94 the R15A and R86A variants on LB agar with and without 1 mM IPTG. When grown
95 in the presence of IPTG both mutants showed no lethality and grew similarly to the
96 WT *B. subtilis* control (**Fig. 1A**). This was also seen in liquid culture (**Fig. 1B**). When
97 imaged under the microscope both the R15A and R86A mutants were observed to

98 be phenotypically WT-like in length ($3.3 \mu\text{m} \pm 1.28 \mu\text{m}$ and $3.5 \mu\text{m} \pm 0.9 \mu\text{m}$,
99 respectively) in contrast to the filamentation observed in the unmutated *mraZ*
100 overexpression strain (**Figs. 1C and 1D**). Furthermore, there was no nucleoid
101 phenotype when either of the two DXXXR mutants were overproduced. Thus, the
102 ability of MraZ to cause filamentation, and thereby induce lethality relies on the
103 presence of both of these motifs.

104

105 **MraZ associates with the chromosome through DXXXR motifs**

106 To monitor whether MraZ localises to the chromosome we constructed a C-terminal
107 fusion of MraZ to the green fluorescent protein (GFP). When overexpressed on solid
108 media *mraZ-gfp* results in the formation of translucent colonies (**Fig. 2A**), however
109 there is no significant growth defect in liquid media (**Fig. 2C**). This phenotype is in
110 contrast to the overproduction of untagged MraZ which is toxic on both solid and
111 liquid media. Overproduction of MraZ-GFP results in cells that are slightly shorter
112 ($10.4 \mu\text{m} \pm 6.7 \mu\text{m}$) than overproduction of untagged MraZ ($15.7 \mu\text{m} \pm 6.9 \mu\text{m}$) but
113 are nonetheless filamentous in comparison to the WT control ($3.7 \mu\text{m} \pm 1.1 \mu\text{m}$),
114 (**Figs. 2B and 2D**). However, in these cells the nucleoid appears WT-like in contrast
115 to overproduction of untagged MraZ at 1 mM IPTG (**Fig. 1C**). GFP signal can be
116 seen exclusively at the chromosome, similar to DNA-specific DAPI stain, indicating
117 that MraZ associates with the nucleoid (**Fig. 2B**) (as noted previously (23)). Thus, it
118 appears that MraZ has two functions, one that is responsible for filamentation and
119 another for DNA replication inhibition, and addition of GFP tag to the C-terminus
120 separates the two functions. The coating of entire nucleoid suggests that MraZ may

121 play a larger role in nucleoid organization and/or as a transcriptional factor with
122 control of many genes spread throughout the genome.

123 We tagged *mraZ*^{R15A} and *mraZ*^{R86A} to *gfp* to generate C-terminal GFP fusions to
124 identify whether mutation of the DXXXR binding motif prevents MraZ from co-
125 localising with the DNA, and in both cases GFP signal can be seen diffused in the
126 cytoplasm, the cells are WT-like in length (R15A: 3.4 μ m \pm 1.1 μ m, R86A: 3.4 μ m \pm
127 0.9 μ m) and the nucleoids appear normal (**Figs. 2B and 2D**). We confirmed the
128 stable production of tagged proteins via western blot (**Fig. 2E**). Indicating that diffuse
129 signal is a result of MraZ-GFP mislocalisation and MraZ binding to the chromosome
130 is dependent on the presence of both DXXXR DNA binding motifs.

131

132 MraZ represses expression of the *mra* operon through the MraZ Binding Repeats
133 (MBRs)

134 The promoter of the *mra* operon contains multiple MraZ binding repeats (MBRs) in a
135 diverse range of species, including Mycoplasma, *E. coli* and *B. subtilis* (11). In *B.*
136 *subtilis*, this repeat consists of three GTGG[A/T]G motifs separated by a 4-nucleotide
137 spacer ((11); **Fig. 3A**). We were able to observe similar patterns in 7 other species
138 that belong to the Firmicutes phylum and generated a sequence logo of the
139 consensus sequence showing conservation of the GTGG repeat in the upstream
140 region of the *mra* operon (**Fig. S2A**). Following a BLAST search of the PY79
141 genome, only one double or triple repeat was found within the promoter region of
142 *mraZ*. In addition, we conducted a search of the PY79 genome through Pattern
143 Locator (24) and were only able to identify a triple repeat in the upstream region of
144 the *mra* operon confirming what was found through BLAST. Probing for only double

145 repeats in Pattern Locator resulted in 13 hits (**Table S3**). Besides MBRs upstream of
146 *mraZ*, only two hits landed in an intergenic region - one partially overlapping with the
147 open reading frames of genes *mraY* and *murD* (part of the *dcw* cluster) and the other
148 overlapping *yaaL* and the intergenic region upstream of *bofA*. A search using
149 GTGGAG or GTGGTG single repeat resulted in 464 and 332 hits respectively.
150 However, whether MraZ binds at these sites remains to be investigated.
151 To investigate the regulation of *mra* operon in *B. subtilis* we constructed a GFP-
152 based transcriptional reporter of the *mraZ* promoter that includes all three MBR
153 repeats ($P_{mra-gfp}$) (**Fig. 3A**). This construct was introduced in the WT and *mraZ*⁺
154 backgrounds and the cell lysates were western blotted and probed with anti-GFP
155 and anti-SigA antibodies (**Fig. 3B**). We observed a single band corresponding to the
156 size of GFP from cultures containing $P_{mra-gfp}$ indicating the native MraZ control of
157 the transcriptional reporter (**Fig. 3B**; lanes 1 and 2). In *mraZ*⁺ background we could
158 detect GFP in the minus inducer control, however in the plus inducer condition GFP
159 was below the detectable range (**Fig. 3B**; lanes 3 and 4). This indicates that
160 overproduction of MraZ leads to strong repression of the *mra* promoter. We next
161 tested whether the overproduction of either of the DXXXR mutants (R15A or R86A)
162 disrupted the ability to repress the promoter of *mraZ*. Our results indicate that neither
163 R15A nor R86A is able to repress $P_{mra-gfp}$ (**Fig. 3B**; lanes 5-8). Thus, MraZ-
164 mediated repression of the *mra* promoter is dependent on its ability to bind DNA
165 through both DXXXR motifs.
166 We were interested in determining whether the repression of MraZ on the *mra*
167 promoter was dependent or independent of the MBRs. To this end we constructed a
168 variation of the fusion in which the -35/-10 region of P_{mra} was switched with that of
169 *gpsB* – a constitutively expressed cell division gene that is not part of the *dcw* cluster

170 (Fig. 3A). We introduced each of these fusions into WT or *mraZ*⁺ strain
171 backgrounds. In these backgrounds we then overexpressed *mraZ* and western
172 blotted the resulting cultures. We found that overexpression of *mraZ* did not result in
173 repression of *P_{mra}* in the absence of MBRs (Fig. 3C). Therefore, these results
174 confirm that the MBRs are a requirement for MraZ mediated repression of the *mra*
175 operon.

176 While the triple repeat is only found within *P_{mra}*, GTGG[A/T]G is a common sequence
177 within the genome and we sought to identify whether MraZ transcriptionally regulates
178 any other genes in *B. subtilis* through RNA-Seq analysis. We were particularly
179 interested as MraZ-GFP appears to bind promiscuously throughout the chromosome
180 (Fig. 2B). RNA was extracted from *B. subtilis* cells overproducing MraZ, MraZ^{R15A}
181 and additionally from cells lacking *mraZ*. We identified 766 differentially regulated
182 genes when *mraZ* was overexpressed (Fig. 3F), through comparison of the dataset
183 obtained when the inactive MraZ^{R15A} was overproduced we were able to eliminate
184 some of these non-specific changes in gene expression (Fig. 3F). We then
185 compared the remaining 682 differentially regulated genes against those that were
186 up or down regulated in a $\Delta mraZ$ background. This resulted in a set of 38 genes,
187 however on further analysis 34 of those 38 genes are upregulated when *mraZ* is
188 overexpressed as well as when *mraZ* is deleted, making it unlikely that these genes
189 are part of the MraZ regulon (Table S1). Three of the remaining 4 differentially
190 regulated genes were part of the *mra* operon (*mraW*, *ftsL*, and *pbpB*) and are
191 downregulated when *mraZ* is overexpressed and upregulated when *mraZ* is deleted
192 (Figs. 3D and 3E). Additionally, we observed that *mraZ* overexpression results in a
193 decrease in the mRNA level of *pksJ*, which encodes for a polyketide synthetase, and
194 in $\Delta mraZ$ strain level of *pksJ* mRNA is increased (Supplemental File 1). However,

195 whether MraZ is directly regulating this gene and the physiological reasons for the
196 change in expression under these conditions is yet to be elucidated. Overall, based
197 on our analysis it appears that MraZ primarily acts as an autoregulatory
198 transcriptional repressor of the four-gene operon (*mraZ-mraW-ftsL-pbpB*). It is
199 possible that association at other sites may facilitate nucleoid organization.

200

201 Repression of *ftsL* by MraZ drives cell division arrest

202 Two of the 4 genes in the *mra* operon (*ftsL* and *pbpB*) are known to be essential in
203 *B. subtilis* (10, 25). As the operon includes two essential cell division genes, we
204 sought to identify which genes were responsible for the filamentation we observed
205 when MraZ was overproduced. To that end, we uncoupled the expression of *mraW*,
206 *ftsL*, and *pbpB* from MraZ control by placing each of these genes individually under
207 an inducible promoter. We then expressed *mraZ* with each one of the other genes in
208 the operon to determine if there was any resolution to the filamentation we previously
209 observed. We first confirmed that *mra* repression is occurring at all IPTG
210 concentrations tested to identify the lowest concentration that resulted in
211 filamentation (**Figs. S1B-S1E**). Based on our results, we chose 25 μ M IPTG for this
212 set of experiments.

213 When *mraW* is uncoupled from MraZ repression, cells are still filamentous (11.6 μ m
214 \pm 5.8 μ m) and a similar length to overexpression of *mraZ* alone (10.8 μ m \pm 6.0 μ m)
215 (**Figs. 4A and 4B**). This result is in contrast to what was previously observed in *E.*
216 *coli* where co-expression of *mraZ* and *mraW* results in a rescue of the lethal
217 phenotype (12). When *pbpB* is overexpressed with *mraZ* the cells are again
218 filamentous and similar in length to *mraZ* overexpression (12.0 μ m \pm 6.0 μ m). Thus,

219 suggesting that although *pbpB* is an essential gene, immediate cell division arrest
220 may not be due to repression of its expression, as PBP2B appears to be stable (26).
221 In contrast, when we uncoupled expression of *ftsL* from MraZ control, we observed
222 cells that were much shorter ($5.7 \mu\text{m} \pm 2.1 \mu\text{m}$) and closer to wildtype in length ($3.9 \mu\text{m} \pm 1.0 \mu\text{m}$). Thus, it appears that the repression of *ftsL* is the likely cause of
224 immediate cell division arrest in MraZ overproducing cells, as FtsL is rapidly turned
225 over (18, 26-29).

226 MraZ-mediated repression of *ftsL* results in de-condensation of the FtsZ ring
227 Knowing that decoupling of *ftsL* expression relieves filamentation when MraZ is
228 overproduced, we wanted to study the immediate effects of FtsL depletion on
229 divisome assembly. To investigate this, we utilised a strain containing *ftsZ-gfp* (30),
230 to track FtsZ dynamics when MraZ is in excess. Using timelapse microscopy we
231 monitored the localisation pattern of FtsZ-GFP at 15-min intervals in the *mraZ⁺* strain
232 in the absence and presence of IPTG. In the absence of IPTG, cells progress
233 through the division cycle normally (**Fig. 4C; Movie 1**). However, after the addition of
234 IPTG, cells can be observed dividing regularly with the Z-ring forming and
235 constricting initially. After 60 mins, Z-rings that have formed but have not constricted
236 begin to de-condense. By 75 mins after induction, multiple Z-rings can be seen
237 immediately adjacent to one another (**Fig. 4C; Movie 2**), suggesting a likely
238 impairment of the formation of functional Z-rings that are capable of undergoing
239 constriction. Given that decoupled expression of *ftsL* from MraZ control resolves
240 filamentation (**Figs. 4A and 4B**), we speculate that the main role of FtsL is in the
241 formation of constriction-capable Z-ring assembly.

242 Additionally, we investigated the effect of deleting *mraZ* on cell division, as in this
243 strain background expression of *ftsL* (and *pbpB*) is unregulated. Upon imaging cells
244 lacking *mraZ*, we observed that on average these cells are smaller than WT and
245 appear very similar to cells overproducing FtsL (**Figs. S2B and S2C**), indicating
246 hyperactivation of cytokinesis. We did not observe similar short-cell phenotype in
247 *pbpB⁺* strain (**Fig. 4AB**). These results further provide evidence that the principal role
248 of FtsL is in Z-ring maturation and constriction. This phenotype has previously been
249 observed following deletion of the RasP protease which is known to facilitate FtsL
250 turnover (28).

251 **Discussion**

252 Cell division is a highly orchestrated and complex process, the timing of which must
253 be tightly regulated. Numerous signals feed into the decision to divide including,
254 population density, nutrient availability and the status of the chromosome. Previous
255 reports have shown that MraZ is an important transcriptional regulator, indeed in
256 some species such as *E. coli*, MraZ regulates at least the first 9 genes in the *dcw*
257 cluster and may be responsible for controlling transcription as far downstream as
258 FtsZ (5, 31-33). Among the Gram-positive Actinobacteria phylum, work in
259 *Corynebacterium glutamicum* has shown that MraZ mRNA is degraded by RNase III
260 and that loss of *rnc* leads to accumulation of *mraZ* mRNA, and therefore increased
261 cellular levels of MraZ. This results in cell elongation through MraZ repression of
262 *ftsEX*, however whether MraZ in *C. glutamicum* is a transcriptional repressor of the
263 *mra* operon is yet to be elucidated (34). Upon search of *B. subtilis* MraZ binding
264 motifs in other organisms, we noted the high level of conservation in species within
265 and outside of the Firmicute phylum (**Fig. S2A and Table S5**).

266 Whilst the structure and function of MraZ and its multimeric crystal structure are fairly
267 well characterised at least in certain species (12, 35, 36), the role of its syntenous
268 partner, MraW, remains unclear. MraW is predicted to be a 16S rRNA
269 methyltransferase (N^4 cytosine C1402). It has been reported that chloroplast MraW
270 and 16S rRNA methylation may play a role in ribosome levels (37). Work in *E. coli*
271 suggests that MraW may be able to regulate codon utilization (38), and possibly act
272 as a transcriptional regulator through methylation of DNA (14). Additionally results in
273 *S. aureus* suggests that MraW may play a role in virulence (39). However, whilst *E.*
274 *coli* MraZ and MraW appear to be regulated by each other we were unable to identify
275 a similar relationship in *B. subtilis* (12). Curiously, through our RNA-Seq analysis we
276 were able to identify an upregulation of genes encoding ribosomal proteins when
277 *mraZ* is deleted - conditions under which levels of MraW are likely increased (**Table**
278 **S4**). However, the biological relevance of this change remains to be elucidated.

279

280 In this report, we show that similar to previous studies conducted in other organisms,
281 MraZ is a transcriptional regulator in *B. subtilis* (11-13, 16). Specifically, it is
282 important in repressing the expression of two essential cell division genes *pbpB* and
283 *ftsL*, in addition to the non-essential *mraW* gene described above, which does not
284 appear to have a direct role in cell division (10) (**Fig. 5A**). Although the essential
285 nature of FtsL has been well characterized, the precise role of FtsL in the divisome
286 complex remains unclear in *B. subtilis*. Studies in *E. coli* have elucidated that FtsL is
287 involved in initiating membrane invagination and septal peptidoglycan synthesis that
288 accompanies Z-ring treadmilling under the direction of FtsN (40-43). However, FtsN
289 is absent in *B. subtilis* (44). As shown in **Fig. 5B**, in *B. subtilis*, FtsL forms a complex
290 with PBP2B (class B PBP; *E. coli* PBP3/FtsI homolog) and DivIC (FtsL paralog; *E.*

291 *coli* FtsB homolog), and it is known that PBP2B also interacts with DivIB (*E. coli* FtsQ
292 homolog) and FtsW (shape, elongation, division and sporulation (SEDS) family
293 glycosyltransferase) (45-51). It is noteworthy that although PBP2B is essential, its
294 catalytic function is not (52). Thus, the essentiality of PBP2B comes from its
295 scaffolding role. Based on our studies, we reveal that the FtsL level is integral for
296 constriction-efficient FtsZ ring assembly (**Fig. 5C**). Upon MraZ overproduction (in the
297 absence of enough FtsL), we show that the Z-rings that have coalesced are unable
298 to retain the structure and disassemble into multiple Z-rings. This is reminiscent of
299 what was noted when FtsZ associated proteins (ZAPs) were absent (53). Similarly,
300 defective Z-ring assembly has been noted when FtsW/PBP1 (homolog of *B. subtilis*
301 PBP2B) levels are synthetically lowered in *S. aureus* (54). Perhaps the role of FtsL is
302 to stabilize the FtsW/PBP2B complex and is conserved across multiple species.
303 Absence of EzrA (one of the FtsZ anchors) in a *B. subtilis* strain producing less FtsL
304 is lethal, and overexpression of *ftsL* restores delayed FtsZ ring constriction in cells
305 lacking *ezrA* (55). Thus, FtsL complex may communicate with ZAPs and transduce
306 that signal to kickstart the constriction/FtsZ treadmilling process, similar to what has
307 been reported in *E. coli* (40-42, 56). However, how the activation of FtsZ treadmilling
308 is triggered by optimal level of FtsL in the absence of FtsN-like proteins remains to
309 be investigated.
310 Among the divisome components, FtsL has emerged as a key factor to regulate cell
311 division in a rapid manner (27, 28). FtsL is a transmembrane protein that is an
312 essential part of the divisome, loss of which causes extreme filamentation in both *E.*
313 *coli* and *B. subtilis* (29, 57). Previous studies have shown that FtsL is intrinsically
314 unstable (58) and is rapidly turned over by the membrane protease RasP (18, 27,
315 28, 59). At elevated growth temperature, DivIB has been shown to protect FtsL from

316 rapid degradation (18); and a strong complex between DivIC and FtsL has also been
317 alluded to aid in the stabilization of FtsL (27, 45, 46). It was previously suggested
318 that accumulation of FtsL at the divisome may be a rate determining step (28). The
319 results we report here, further validates the previous findings that the level of FtsL is
320 critical for cell division. This unstable nature of FtsL, combined with its essentiality
321 makes it an attractive control point to arrest cell division. In fact, during DNA-damage
322 response the known cell division inhibitor, YneA, appears to halt division by
323 interacting with late arriving divisomal proteins including FtsL and Pbp2B in *B.*
324 *subtilis* (60). Interestingly, YneA mediated cell division inhibition could be rescued by
325 *ftsL* overexpression (55). Similarly, another study discovered that during phage SP01
326 infection, a phage protein gp56 inhibits *B. subtilis* cell division by possibly directly
327 interacting with FtsL (61). In this report, we show how in addition to post-translational
328 regulation of FtsL to regulate cell division, transcriptional regulation of *mra* operon by
329 MraZ could also be an efficient way to halt cell division due to the intrinsic instability
330 of FtsL. Indeed, it has been proposed that the *mra* operon may be directly regulated
331 by DNA replication initiation protein, DnaA, upon inhibition of DNA replication (62). In
332 further support of this notion of transcriptional inhibition of cell division, it appears
333 that during entry into stationary phase the transcriptional activity of *mraZ* significantly
334 increases and that of the genes in rest of the operon *mraW*, *ftsL*, and *pbpB* drops,
335 presumably to eventually halt division (10) (**Fig. S2D**).

336

337 **Materials and methods**

338 Strain Construction and General Methods

339 All *B. subtilis* strains utilised in this study are derivatives of PY79 (63) and were
340 constructed via double recombination of circular plasmids into the chromosome.
341 Information regarding the strains used can be found in **Table S1**. All plasmids were
342 constructed using standard cloning protocols (PCR amplification, restriction digest-
343 ligation). Plasmids were transformed into the parental strain directly and integration
344 confirmed via screening of the *amyE* locus for pDR111 (D. Rudner) based plasmids
345 or the *thrC* locus for pDG1664 based plasmids. For generation of strains that require
346 two separate genes of interest to be integrated into the *amyE* locus, a background
347 containing a second synthetic *amyE* locus was used (AHB286:
348 *bkdB::TB917::amyE::catR*; A. Camp).

349 ***mraZ⁺*** - *mraZ* was amplified from the PY79 chromosome using primer pair
350 oMW114/oMW115 (See **Table S2** for oligonucleotide details), the resulting fragment
351 was then digested with HindIII and NheI and ligated into pDR111; an IPTG inducible
352 vector for integration at the *amyE* locus in *B. subtilis*. The resulting plasmid pMW35
353 was then transformed into *B. subtilis* producing MW189.

354 ***mraZ^{R15A}/mraZ^{R86A}*** - *mraZ* was amplified with oMW114/oMW115 from a geneblock
355 (Integrated DNA Technologies) that contained either the R15A (gMW4) or R86A
356 (gMW5) mutation, before being digested and ligated into pDR111 as for MW189.
357 See **Table S2** for the geneblock sequence. The plasmids pMW49 (R15A) and
358 pMW65 (R86A) were then transformed into PY79 *B. subtilis* producing strains
359 MW256 and MW350 respectively.

360 ***mraZ-gfp*** - *mraZ* was amplified with oMW114/oMW172, the resulting product was
361 then digested with HindIII and BamHI, additionally *linker-gfp* was amplified from
362 geneblock gP1 with primers oMW173/oMW121, the fragment was then digested with

363 BamHI and NheI before being ligated into pDR111. This generated plasmid pMW59
364 which was transformed into *B. subtilis* generating strain MW295. Tagged point
365 mutants (*mraZ*^{R15A}-*gfp* and *mraZ*^{R86A}-*gfp*) were constructed as above with *mraZ*
366 amplified from gMW4 or gMW5. The resulting plasmids pMW58 (R15A) and pMW66
367 (R86A) were then used to transform *B. subtilis* generating strains MW296 and
368 MW351 respectively.

369 ***P_{mraZ}-gfp*** - Promoter fusions of *mraZ* were constructed in the *thrC* integration
370 plasmid pDG1664 (64). The promoter region of *mraZ* (500 bp upstream of the *mraZ*
371 start codon) was amplified with oMW177/oMW178 from chromosomal DNA and *gfp*
372 with oMW184/oMW185. The resulting fragments were digested with BamHI/Xhol and
373 Xhol/EcoRI respectively and then ligated into pDG1664, producing plasmid pMW68.
374 Another fusion that lacked the MraZ binding repeats was made by amplifying the
375 region containing the sequence upstream of the MBRs with oMW177/oMW252, this
376 was then digested with BamHI/Xhol and ligated with *gfp* that was amplified with two
377 rounds of PCR with oMW253 (oMW254-R2)/oMW185 to add on the -35/-10 region
378 from *gpsB* and digested with Xhol/EcoRI, which was then ligated into pDG1664
379 producing plasmid pMW81. Both plasmids were transformed into PY79 generating
380 MW368 and MW452 respectively, pMW35 was then used to transform these strains
381 generating MW385 and MW478. Additionally, pMW49 and pMW65 were used to
382 transform MW368 resulting in MW389 and MW429 respectively.

383 ***ftsL*⁺/*mraW*⁺/*pbpB*⁺** - Inducible *ftsL*, *mraW* and *pbpB* were constructed by amplifying
384 the respective genes from PY79 chromosomal DNA with primer pairs,
385 oMW127/oMW128, oMW122/oMW123 and oMW275/oMW276, the resulting
386 fragments were digested with Sall and NheI before being ligated into pDR111. This
387 created plasmids pMW39 (*ftsL*⁺), pMW38 (*mraW*⁺) and pAH1(*pbpB*⁺), which were

388 then used to transform AHB286, which contains a second synthetic *amyE* locus,
389 producing strains MW330, MW379 and BAH1 respectively. To construct strains that
390 additionally have inducible *mraZ*, MW189 was transformed with pDAG32 (65) to
391 switch the resistance cassette to *catR* generating strain MW289. The chromosomal
392 DNA from this strain was then used to transform MW330, MW379 and BAH1,
393 resulting in strains MW387, MW333 and BAH4 respectively. pMW39 was additionally
394 used to transform PY79 to produce MW207.

395 ***ΔmraZ*** - Chromosomal DNA from the Bacillus Genetic Stock centre (BGSC) strain
396 BKK15130 (66) was used to transform PY79 to generate MW192 (*mraZ::kanR*).

397 ***mraZ⁺ ftsZ-gfp*** - AD3007 (30), a strain which has an additional copy of *ftsZ-gfp* at
398 the native locus was transformed with pMW35 resulting in strain MW205.

399 Media and Culture Conditions

400 Unless otherwise stated, overnight cultures of *B. subtilis* strains were grown at 22 °C
401 in lysogeny broth (LB) and diluted 1:10 in fresh LB before being grown at 37 °C to
402 mid-log phase (OD_{600nm}= 0.5-0.8) cultures were then standardised to OD_{600nm}= 0.1 in
403 fresh LB. Where induction of genes under IPTG required, unless otherwise stated, a
404 final concentration of 1 mM IPTG was added when cultures were standardised, and
405 the cultures were then grown for 2 h at 37 °C.

406 Spot Assays

407 All spot assays were carried out similarly to previously described (67). Briefly strains
408 were grown in liquid culture at 37 °C whilst shaking until mid-log phase (OD_{600nm} =
409 0.5-0.8) before being standardised to OD_{600nm}=0.1. Standardised cultures were then
410 serially diluted before 1 µl of each serial dilution was spotted onto either lysogeny
411 agar (LA) or LA supplemented with 1 mM IPTG when required to induce expression

412 of genes under IPTG control. Plates were incubated for approximately 14 h at 37 °C
413 before being observed for any growth defects.

414 **Growth Curves**

415 Strains to be analysed by growth curve were grown to mid-log phase ($OD_{600nm} = 0.5$ –
416 0.8) in liquid culture at 37 °C with agitation and were then standardised to $OD_{600nm} =$
417 0.1 in LB. IPTG was added to a final concentration of 1 mM where required. An
418 aliquot of 250 μ l of each standardised culture was added in triplicate to a 96 well
419 plate, which was then incubated at 37 °C with agitation for 12 h in a Synergy H1
420 Plate Reader Gen. 5 (BioTek). OD_{600nm} readings were taken every hour and growth
421 curves were plotted using GraphPad Prism 9.

422 **Microscopy**

423 Microscopy was carried out as previously described (68). Briefly, 1 ml aliquots of *B.*
424 *subtilis* cultures were pelleted and then washed with 1x phosphate buffer saline
425 (PBS) via centrifugation. Pellets were then resuspended in 100 μ l of PBS and were
426 stained with Synapto Red to stain the membrane at a final concentration of 1 μ g/ml
427 and DAPI to stain the DNA – final concentration 1 μ g/ml, 5 μ l of the stained cells
428 were spotted onto the base of a glass bottomed dish (MatTek) and 1% agarose pad
429 made with PBS was placed gently on top. Imaging was carried out at room
430 temperature using a DeltaVision Elite deconvolution fluorescence microscope with
431 photos taken using a Photometrics CoolSnap HQ2 camera. All images were
432 acquired by taking 17 z-stacks at 200-nm intervals. Images were deconvolved
433 though the SoftWorx imaging software provided by the microscope manufacturer.
434 Analysis of cell lengths was done through ImageJ with statistical analysis carried out
435 using GraphPad Prism 9.

436 Timelapse Microscopy

437 As described previously, strain MW205 was grown to mid-log phase (OD 0.5-0.8)
438 before 5 μ l was aliquoted onto a MatTek dish and covered with 1% agarose pad
439 made with LB (68). Samples were allowed to adjust to the microscope chamber at 30
440 °C for a period of 30 min before 10 μ l of 10 mM IPTG was added to the agarose pad
441 for the plus inducer conditions. Timelapse imaging was immediately begun, and
442 images were taken every 15 min for 2 h with 5 Z-stacks at 200 nm intervals. Image
443 processing was carried out as described above.

444 Immunoblots

445 Cultures were grown as previously described and 1 ml aliquots standardised to an
446 OD_{600nm} of 1 were taken. Cells were pelleted and resuspended in 500 μ l of protoplast
447 buffer containing 0.5 M sucrose, 20 mM MgCl₂, 10 mM KH₂PO₄ and 0.1 mg/ml
448 lysozyme. Samples were then incubated for 30 min at 37 °C and prepared for SDS-
449 PAGE. For analysis of *P_{mra}* activity across different growth phases, a 20 ml culture
450 was standardised to OD_{600nm} of 0.1 and samples were taken every hour for 4 h, each
451 sample was standardised to an OD_{600nm} of 1 in 1 ml and then prepared as previously
452 described. Following electrophoresis samples were transferred to nitrocellulose
453 membrane using the iBlot 2 transfer system (ThermoFisher) and probed with
454 antibodies against GFP and *B. subtilis* SigA.

455 Bioinformatics

456 Using the consensus sequence blastn was used to find MBRs in *B. subtilis* by
457 utilizing the PY79 whole genome sequence (CP006881.1) as the query, and the
458 search string: GTGGWGNNNNGTGGWGNNNNGTGGWG. Using algorithm
459 parameters optimized for short nucleotide repeats with spaces (expect threshold

460 100000, word size 7, match/mismatch cost 1,-1, gap cost existence 0, extension 2,
461 no filters or masks). To generate a sequence logo (<https://weblogo.berkeley.edu/>;
462 (69)), sequence upstream of *mraZ* from the following species were used: *B. subtilis*,
463 *Bacillus cereus*, *Staphylococcus aureus*, *Staphylococcus epidermidis*, *Streptococcus*
464 *pneumoniae*, *Enterococcus faecium*, *Lactococcus lactis*, and *Listeria*
465 *monocytogenes*. Visual examination of the sequences using the previously identified
466 consensus sequence for *B. subtilis* *mraZ* binding site GTGG revealed the existence
467 of ordered repeats containing the motif GTGGNNNNNAGTGGNGNNNNGTGG (11).
468 The sequences can be found in **Table S5** and the multiple sequence alignment
469 generated with the help of Clustal Omega (70) is shown in **Fig. S2A**. In addition,
470 using the probe GTGGNNNNNNGTGG Pattern Locator (24) was used to search the
471 PY79 genome for potential MraZ binding repeats (**Table S3**).

472 **RNA-Seq**

473 Cultures were grown as previously described and treated with RNAProtect Bacteria
474 (Qiagen) before RNA was extracted utilising the RNeasy Mini Kit (Qiagen). Samples
475 were sent to Microbial Genome Sequence Centre (MiGS) for sequencing and
476 analysis. GraphPad Prism 9 was used to generate a volcano plot.

477

478

479 **Acknowledgements**

480 We thank our lab members for comments on the manuscript. This work was funded
481 by the National Institutes of Health grant (R35GM133617) to PE.

482

483 **Author contributions**

484 The conception and design of the study (MW, PE), data acquisition (MW, AH, SK,
485 PE), analysis and/or interpretation of the data (MW, AH, SK, PE), and writing of the
486 manuscript (MW, PE).

487

488 **Figure Legends**

489 **Figure 1 - Overproduction of MraZ is lethal to *B. subtilis* and is dependent on**
490 **DNA binding.** **(A)** Spot assay of WT (PY79) *B. subtilis* and cultures containing
491 inducible *mraZ*⁺ (MW189), *mraZ*^{R15A} (MW256) or *mraZ*^{R86A} (MW350), serially diluted
492 and spotted onto agar in the absence and presence of 1 mM IPTG. Cartoon on the
493 right depict the control of *mraZ*/mutants (*mraZ*^{*}) under native promoter or IPTG-
494 inducible promoter. **(B)** Growth curve of WT *mraZ*⁺, *mraZ*^{R15A} and *mraZ*^{R86A} in the
495 presence of 1 mM IPTG. Readings taken every hour at OD_{600nm}. **(C)** Fluorescence
496 micrographs of WT *B. subtilis* (i-ii), *mraZ*⁺ (iii-iv), *mraZ*^{R15A} (v-vi) and *mraZ*^{R86A} (vii-viii)
497 in the presence and absence of 1 mM IPTG. Cell membrane stained with Synapto
498 Red (FM4-64) and DNA stained with DAPI. Scale bar is 1 μ m. **(D)** Quantification of
499 cell length from microscopy in panel C. n = 100 cells; **** P < 0.0001.

500 **Figure 2 - MraZ associates with the chromosome through DXXXR motifs.** **(A)**
501 Spot assay of cultures containing WT (PY79) *B. subtilis*, *mraZ*⁺ (MW189), *mraZ*-*gfp*
502 (MW295), *mraZ*^{R15A}-*gfp* (MW296) and *mraZ*^{R86A}-*gfp* (MW351) serially diluted and
503 spotted onto plates with and without 1 mM IPTG. **(B)** Micrographs of cells containing
504 *mraZ*-*gfp* (i-ii), *mraZ*^{R15A}-*gfp* (iii-iv) and *mraZ*^{R86A}-*gfp* (v-vi) in the presence and
505 absence of IPTG. Membrane is visualised with Synapto Red and DNA is stained with
506 DAPI. Scale bar is 1 μ m. **(C)** Growth curve of WT, *mraZ*⁺, *mraZ*-*gfp*, *mraZ*^{R15A}-*gfp* and

507 *mraZ*^{R86A}-*gfp* cultures following the addition of 1 mM IPTG, readings taken every
508 hour at OD_{600nm}. (D) Quantification of cell length in panel B. n = 100 cells, **** P <
509 0.0001. (E) Stability of MraZ-GFP and its mutants were confirmed through
510 immunoblotting. Cell lysates from induced and uninduced cultures were probed with
511 anti-GFP and anti-Sigma A (loading control) antibodies.

512 **Figure 3 - MraZ represses expression of the *mra* operon through the MraZ
513 Binding Repeats (MBRs).** (A) Cartoon representation of the *mra* promoter region
514 and operon showing the binding repeats in yellow and the nucleotide sequence of
515 the region below. Graphical representation of the transcriptional fusion of *P_{mra}* to *gfp*
516 (MW368) and of the mutant *mra* promoter which has the MBRs removed and
517 switched with the -35/-10 region of *gpsB* (MW478). (B) Immunoblot of cultures
518 containing a transcriptional fusion of *P_{mra}* to *gfp* (MW368 – Lanes 1-2) with either
519 *mraZ*⁺ (MW385 – Lanes 3-4), *mraZ*^{R15A} (MW389 – Lanes 5-6) or *mraZ*^{R86A} (MW429 –
520 Lanes 7-8) in the presence and absence of 1 mM IPTG. Whole cell lysates were
521 probed with anti-GFP and anti-Sigma A (loading control) antibodies. (C) Immunoblot
522 of cultures containing either the wildtype *mra* promoter (MW385 – Lanes 1-2) or a
523 mutant promoter lacking the MBRs (MW478 – Lanes 3-4) fused to GFP, with and
524 without *mraZ* overproduction. Whole cell lysates were probed with anti-GFP and anti-
525 Sigma A antibodies. (D) Volcano plot of RNA-Seq analysis from overexpression of
526 *mraZ* (MW189). Points in red are genes within the *mra* operon. (E) Table showing
527 the log fold change of RNA levels for the *mra* operon genes in *mraZ*⁺ (MW189),
528 *mraZ*^{R15A+} (MW256) and Δ *mraZ* (MW192) compared to WT (PY79) control. (F) Venn
529 diagram showing genes differentially regulated as identified through RNA-Seq when
530 *mraZ* (MW189), *mraZ*^{R15A} (MW256) were overexpressed or *mraZ* was deleted

531 (MW192) relative to WT (PY79). Total number of differentially regulated genes is
532 indicated within the parenthesis.

533 **Figure 4 - Repression of *ftsL* by MraZ drives cell division arrest. (A)**
534 Fluorescence micrographs of WT (PY79) *B. subtilis* (i) and cells expressing *mraZ*⁺
535 (MW289) (ii), *mraW*⁺ (MW379) (iii), *ftsL*⁺ (MW330) (v), or *pbpB*⁺ (BAH1) (vii); and of
536 cells co-expressing *mraZ*⁺/*mraW*⁺ (MW387) (iv), *mraZ*⁺/*ftsL*⁺ (MW333) (vi) and
537 *mraZ*⁺/*pbpB*⁺ (BAH4) (viii) in the presence of 25 μM IPTG. Membrane is visualised
538 with Synapto Red, scale bar is 1 μm. (B) Quantification of cell length from
539 microscopy in panel B. n=100; **** P < 0.0001, ** P = 0.06, * P = 0.0264 (C)
540 Timelapse microscopy of cultures containing *mraZ*⁺ harboring *ftsZ-gfp* (MW205) in
541 the absence and presence of 1 mM IPTG. Images were taken every 15 minutes for 2
542 hours. Yellow arrows indicate constriction-efficient FtsZ rings and white arrows follow
543 newly assembled FtsZ rings. Scale bar is 1 μm.

544 **Figure 5 - Cell division inhibition by MraZ is mediated primarily through FtsL.**
545 (A) Genes of the *mra* operon and the respective functions of their protein products.
546 (B) FtsL is an intrinsically unstable protein that serves as a linchpin for the
547 constriction-efficient divisome assembly. To achieve this FtsL directly interacts with
548 PBP2B (of the FtsW/PBP2B - SEDS/class B PBP complex), DivIC, DivIB, and
549 perhaps also some FtsZ-associated proteins (ZAPs) either directly or indirectly. (C)
550 Lethal phenotype of *mraZ* overexpression stems (at least initially) from the depletion
551 of FtsL, which results in the lack of mature constriction-capable FtsZ (shown in
552 green) ring formation. Additional supply of *ftsL* results in restoration of cell length that
553 is similar to that of WT.

554

555 References

- 556 1. Westfall CS, Levin PA. 2017. Bacterial Cell Size: Multifactorial and Multifaceted. Annual Review of Microbiology 71:499-517.
- 557 2. Eswara PJ, Ramamurthi KS. 2017. Bacterial Cell Division: Nonmodels Poised to Take the Spotlight. Annual Review of Microbiology 71:393-411.
- 558 3. den Blaauwen T, Hamoen LW, Levin PA. 2017. The divisome at 25: the road ahead. Current Opinion in Microbiology 36:85-94.
- 559 4. Yura T, Mori H, Nagai H, Nagata T, Ishihama A, Fujita N, Isono K, Mizobuchi K, Nakata A. 1992. Systematic sequencing of the *Escherichia coli* genome: Analysis of the 0 - 2.4 min region. Nucleic Acids Research 20:3305-3308.
- 560 5. Vicente M, Gomez MJ, Ayala JA. 1998. Regulation of transcription of cell division genes in the *Escherichia coli* *dcw* cluster. Cell Mol Life Sci 54:317-24.
- 561 6. Pucci MJ, Thanassi JA, Discotto LF, Kessler RE, Dougherty TJ. 1997. Identification and characterization of cell wall-cell division gene clusters in pathogenic gram-positive cocci. Journal of Bacteriology 179:5632-5635.
- 562 7. Francis F, Ramirez-Arcos S, Salimnia H, Victor C, Dillon JAR. 2000. Organization and transcription of the division cell wall (*dcw*) cluster in *Neisseria gonorrhoeae*. Gene 251:141-151.
- 563 8. White ML, Eswara PJ. 2021. *ylm* Has More than a (Z Anchor) Ring to It! J Bacteriol 203.
- 564 9. Hammond LR, White ML, Eswara PJ. 2019. ¡vIVA la DivIVA! J Bacteriol 201:JB.00245-19.
- 565 10. Daniel RA, Williams AM, Errington J. 1996. A complex four-gene operon containing essential cell division gene *pbbB* in *Bacillus subtilis*. Journal of Bacteriology 178:2343-2350.
- 566 11. Fisunov GY, Evsyutina DV, Semashko TA, Arzamasov AA, Manuvera VA, Letarov AV, Govorun VM. 2016. Binding site of MraZ transcription factor in Mollicutes. Biochimie 125:59-65.
- 567 12. Eraso JM, Markillie LM, Mitchell HD, Taylor RC, Orr G, Margolin W. 2014. The highly conserved MraZ protein is a transcriptional regulator in *Escherichia coli*. Journal of Bacteriology 196:2053-2066.
- 568 13. Martinez-Torro C, Torres-Puig S, Marcos-Silva M, Huguet-Ramon M, Munoz-Navarro C, Lluch-Senar M, Serrano L, Querol E, Pinol J, Pich OQ. 2021. Functional Characterization of the Cell Division Gene Cluster of the Wall-less Bacterium *Mycoplasma genitalium*. Front Microbiol 12:695572.
- 569 14. Xu X, Zhang H, Huang Y, Zhang Y, Wu C, Gao P, Teng Z, Luo X, Peng X, Wang X, Wang D, Pu J, Zhao H, Lu X, Lu S, Ye C, Dong Y, Lan R, Xu J. 2019. Beyond a Ribosomal RNA Methyltransferase, the Wider Role of MraW in DNA Methylation, Motility and Colonization in *Escherichia coli* O157:H7. Frontiers in Microbiology 10:2520.
- 570 15. Trespidi G, Scuffone VC, Barbieri G, Riccardi G, De Rossi E, Buroni S. 2020. Molecular Characterization of the *Burkholderia cenocepacia* *dcw* Operon and *FtsZ* Interactors as New Targets for Novel Antimicrobial Design. Antibiotics 9:841.
- 571 16. Nyongesa S, Weber P, Bernet E, Pullido F, Nieckarz M, Delaby M, Nieves C, Viehboeck T, Krause N, Rivera-Millot A, Nakamura A, Vischer N, Vannieuwenhze M, Brun Y, Cava F, Bulgheresi S, Veyrier F. 2022. Evolution of multicellular longitudinally dividing oral cavity symbionts (Neisseriaceae) doi:10.21203/rs.3.rs-1200288/v1. Research Square Platform LLC.
- 572 17. Wang B, Duan J, Jin Y, Zhan Q, Xu Y, Zhao H, Wang X, Rao L, Guo Y, Yu F. 2021. Functional Insights of MraZ on the Pathogenicity of *Staphylococcus aureus*. Infection and Drug Resistance Volume 14:4539-4551.

606 18. Daniel RA, Errington J. 2000. Intrinsic instability of the essential cell division protein
607 FtsL of *Bacillus subtilis* and a role for DivIB protein in FtsL turnover. *Molecular*
608 *Microbiology* 36:278-289.

609 19. Eswara PJ, Brzozowski RS, Viola MG, Graham G, Spanoudis C, Trebino C, Jha J,
610 Aubee JI, Thompson KM, Camberg JL, Ramamurthi KS. 2018. An essential
611 *Staphylococcus aureus* cell division protein directly regulates FtsZ dynamics. *eLife* 7.

612 20. Vaughn JL, Feher VA, Bracken C, Cavanagh J. 2001. The DNA-binding domain in
613 the *Bacillus subtilis* transition-state regulator AbrB employs significant motion for
614 promiscuous DNA recognition. *Journal of Molecular Biology* 305:429-439.

615 21. Dong TC, Cutting SM, Lewis RJ. 2004. DNA-binding studies on the *Bacillus subtilis*
616 transcriptional regulator and AbrB homologue, SpoVT. *FEMS Microbiology Letters*
617 233:247-256.

618 22. Bobay BG, Andreeva A, Mueller GA, Cavanagh J, Murzin AG. 2005. Revised
619 structure of the AbrB N-terminal domain unifies a diverse superfamily of putative
620 DNA-binding proteins. *FEBS Letters* 579:5669-5674.

621 23. Meile JC, Wu LJ, Ehrlich SD, Errington J, Noirot P. 2006. Systematic localisation of
622 proteins fused to the green fluorescent protein in *Bacillus subtilis*: Identification of
623 new proteins at the DNA replication factory. *Proteomics* 6:2135-2146.

624 24. Mrazek J, Xie S. 2006. Pattern locator: a new tool for finding local sequence patterns
625 in genomic DNA sequences. *Bioinformatics* 22:3099-3100.

626 25. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K,
627 Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K,
628 Chapuis J, Christiansen LC, Danchin A, Debarbouille M, Dervyn E, Deuerling E,
629 Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Foster SJ, Fujita Y, Galizzi
630 A, Gardan R, Eschevins C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya
631 D, Hullo MF, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K, Koski P,
632 Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le Coq D, Masson A, Mauel
633 C, et al. 2003. Essential *Bacillus subtilis* genes. *Proc Natl Acad Sci U S A* 100:4678-
634 83.

635 26. Daniel RA, Harry EJ, Errington J. 2000. Role of penicillin-binding protein PBP 2B in
636 assembly and functioning of the division machinery of *Bacillus subtilis*. *Molecular*
637 *Microbiology* 35:299-311.

638 27. Wadenpohl I, Bramkamp M. 2010. DivIC Stabilizes FtsL against RasP Cleavage.
639 *Journal of Bacteriology* 192:5260-5263.

640 28. Bramkamp M, Weston L, Daniel RA, Errington J. 2006. Regulated intramembrane
641 proteolysis of FtsL protein and the control of cell division in *Bacillus subtilis*.
642 *Molecular Microbiology* 62:580-591.

643 29. Daniel RA, Harry EJ, Katis VL, Wake RG, Errington J. 1998. Characterization of the
644 essential cell division gene *ftsL(yliD)* of *Bacillus subtilis* and its role in the assembly
645 of the division apparatus. *Molecular Microbiology* 29:593-604.

646 30. Gregory JA, Becker EC, Pogliano K. 2008. *Bacillus subtilis* MinC destabilizes FtsZ-
647 rings at new cell poles and contributes to the timing of cell division. *Genes and*
648 *Development* 22:3475-3488.

649 31. Hara H, Yasuda S, Horiuchi K, Park JT. 1997. A promoter for the first nine genes of
650 the *Escherichia coli* *mra* cluster of cell division and cell envelope biosynthesis genes,
651 including *ftsI* and *ftsW*. *Journal of Bacteriology* 179:5802-5811.

652 32. Dai K, Lutkenhaus J. 1991. *ftsZ* is an essential cell division gene in *Escherichia coli*.
653 *Journal of Bacteriology* 173:3500-3506.

654 33. Mengin-Lecreulx D, Ayala J, Bouhss A, Van Heijenoort J, Parquet C, Hara H. 1998.
655 Contribution of the *Pmra* Promoter to Expression of Genes in the *Escherichia coli*
656 *mra* Cluster of Cell Envelope Biosynthesis and Cell Division Genes. *Journal of*
657 *Bacteriology* 180:4406-4412.

658 34. Maeda T, Tanaka Y, Takemoto N, Hamamoto N, Inui M. 2016. RNase III mediated
659 cleavage of the coding region of *mraZ* mRNA is required for efficient cell division in
660 *Corynebacterium glutamicum*. *Molecular Microbiology* 99:1149-1166.

661 35. Chen S, Jancrick J, Yokota H, Kim R, Kim S-H. 2004. Crystal structure of a protein
662 associated with cell division from *Mycoplasma pneumoniae* (GI: 13508053): A novel
663 fold with a conserved sequence motif. Proteins: Structure, Function, and
664 Bioinformatics 55:785-791.

665 36. Adams MA, Udell CM, Pal GP, Jia Z. 2005. MraZ from *Escherichia coli*: cloning,
666 purification, crystallization and preliminary X-ray analysis. Acta Crystallographica
667 Section F Structural Biology and Crystallization Communications 61:378-380.

668 37. Zou M, Mu Y, Chai X, Ouyang M, Yu L-J, Zhang L, Meurer J, Chi W. 2020. The
669 critical function of the plastid rRNA methyltransferase, CMAL, in ribosome biogenesis
670 and plant development. Nucleic Acids Research 48:3195-3210.

671 38. Kimura S, Suzuki T. 2010. Fine-tuning of the ribosomal decoding center by
672 conserved methyl-modifications in the *Escherichia coli* 16S rRNA. Nucleic Acids
673 Research 38:1341-1352.

674 39. Kyuma T, Kimura S, Hanada Y, Suzuki T, Sekimizu K, Kaito C. 2015. Ribosomal
675 RNA methyltransferases contribute to *Staphylococcus aureus* virulence. FEBS
676 Journal 282:2570-2584.

677 40. Tsang M-J, Bernhardt TG. 2015. A role for the FtsQLB complex in cytokinetic ring
678 activation revealed by an *ftsL* allele that accelerates division. Molecular Microbiology
679 95:925-944.

680 41. Park KT, Du S, Lutkenhaus J. 2020. Essential Role for FtsL in Activation of Septal
681 Peptidoglycan Synthesis. *mBio* 11.

682 42. Liu B, Persons L, Lee L, De Boer PAJ. 2015. Roles for both FtsA and the FtsBLQ
683 subcomplex in FtsN-stimulated cell constriction in *Escherichia coli*. Molecular
684 Microbiology 95:945-970.

685 43. Marmont LS, Bernhardt TG. 2020. A conserved subcomplex within the bacterial
686 cytokinetic ring activates cell wall synthesis by the FtsW-FtsI synthase. Proc Natl
687 Acad Sci U S A 117:23879-23885.

688 44. Katis VL, Wake RG, Harry EJ. 2000. Septal Localization of the Membrane-Bound
689 Division Proteins of *Bacillus subtilis* DivIB and DivIC Is Codependent Only at High
690 Temperatures and Requires FtsZ. Journal of Bacteriology 182:3607-3611.

691 45. Daniel RA, Noirot-Gros M-FO, Noirot P, Errington J. 2006. Multiple Interactions
692 between the Transmembrane Division Proteins of *Bacillus subtilis* and the Role of
693 FtsL Instability in Divisome Assembly. Journal of Bacteriology 188:7396-7404.

694 46. Errington J, Wu LJ. 2017. Cell Cycle Machinery in *Bacillus subtilis*, p 67-101,
695 Prokaryotic Cytoskeletons doi:10.1007/978-3-319-53047-5_3. Springer International
696 Publishing.

697 47. Morales Angeles D, Macia-Valero A, Bohorquez LC, Scheffers D-J. 2020. The
698 PASTA domains of *Bacillus subtilis* PBP2B strengthen the interaction of PBP2B with
699 DivIB. *Microbiology* 166:826-836.

700 48. Sjödt M, Rohs PDA, Gilman MSA, Erlandson SC, Zheng S, Green AG, Brock KP,
701 Taguchi A, Kahne D, Walker S, Marks DS, Rudner DZ, Bernhardt TG, Kruse AC.
702 2020. Structural coordination of polymerization and crosslinking by a SEDS-bPBP
703 peptidoglycan synthase complex. *Nat Microbiol* 5:813-820.

704 49. Meeske AJ, Riley EP, Robins WP, Uehara T, Mekalanos JJ, Kahne D, Walker S,
705 Kruse AC, Bernhardt TG, Rudner DZ. 2016. SEDS proteins are a widespread family
706 of bacterial cell wall polymerases. *Nature* 537:634-638.

707 50. Noirclerc-Savoye M, Le Gouellec A, Morlot C, Dideberg O, Vernet T, Zapun A. 2005.
708 In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their
709 transient co-localization at the division site in *Streptococcus pneumoniae*. *Mol
710 Microbiol* 55:413-24.

711 51. Masson S, Kern T, Le Gouellec A, Giustini C, Simorre JP, Callow P, Vernet T, Gabel
712 F, Zapun A. 2009. Central domain of DivIB caps the C-terminal regions of the
713 FtsL/DivIC coiled-coil rod. *J Biol Chem* 284:27687-700.

714 52. Sassine J, Xu M, Sidiq KR, Emmins R, Errington J, Daniel RA. 2017. Functional
715 redundancy of division specific penicillin-binding proteins in *Bacillus subtilis*.
716 Molecular Microbiology 106:304-318.

717 53. Squyres GR, Holmes MJ, Barger SR, Pennycook BR, Ryan J, Yan VT, Garner EC.
718 2021. Single-molecule imaging reveals that Z-ring condensation is essential for cell
719 division in *Bacillus subtilis*. Nature Microbiology 6:553-562.

720 54. Reichmann NT, Tavares AC, Saraiva BM, Jousset A, Reed P, Pereira AR, Monteiro
721 JM, Sobral RG, VanNieuwenhze MS, Fernandes F, Pinho MG. 2019. SEDS-bPBP
722 pairs direct lateral and septal peptidoglycan synthesis in *Staphylococcus aureus*.
723 Nature microbiology 4:1368-1377.

724 55. Kawai Y, Ogasawara N. 2006. *Bacillus subtilis* EzrA and FtsL synergistically regulate
725 FtsZ ring dynamics during cell division. Microbiology 152:1129-1141.

726 56. Park KT, Pichoff S, Du S, Lutkenhaus J. 2021. FtsA acts through FtsW to promote
727 cell wall synthesis during cell division in *Escherichia coli*. Proc Natl Acad Sci U S A
728 118.

729 57. Guzman LM, Barondess JJ, Beckwith J. 1992. FtsL, an essential cytoplasmic
730 membrane protein involved in cell division in *Escherichia coli*. J Bacteriol 174:7716-
731 28.

732 58. Robson SA, Michie KA, Mackay JP, Harry E, King GF. 2002. The *Bacillus subtilis* cell
733 division proteins FtsL and DivIC are intrinsically unstable and do not interact with one
734 another in the absence of other septosomal components. Molecular Microbiology
735 44:663-674.

736 59. Parrell D, Zhang Y, Olenic S, Kroos L. 2017. *Bacillus subtilis* Intramembrane
737 Protease RasP Activity in *Escherichia coli* and In Vitro. Journal of Bacteriology
738 199:e00381-17.

739 60. Masser EA, Burby PE, Hawkins WD, Gustafson BR, Lenhart JS, Simmons LA. 2021.
740 DNA damage checkpoint activation affects peptidoglycan synthesis and late divisome
741 components in *Bacillus subtilis*. Molecular Microbiology 116:707-722.

742 61. Bhamhani A, Iadicicco I, Lee J, Ahmed S, Belfatto M, Held D, Marconi A, Parks A,
743 Stewart CR, Margolin W, Levin PA, Haeusser DP. 2020. Bacteriophage SP01 Gene
744 Product 56 Inhibits *Bacillus subtilis* Cell Division by Interacting with FtsL and
745 Disrupting Pbp2B and FtsW Recruitment. Journal of Bacteriology 203:e00463-20.

746 62. Goranov AI, Katz L, Breier AM, Burge CB, Grossman AD. 2005. A transcriptional
747 response to replication status mediated by the conserved bacterial replication protein
748 DnaA. Proceedings of the National Academy of Sciences 102:12932-12937.

749 63. Youngman P, Perkins JB, Losick R. 1984. Construction of a cloning site near one
750 end of Tn917 into which foreign DNA may be inserted without affecting transposition
751 in *Bacillus subtilis* or expression of the transposon-borne erm gene. Plasmid 12:1-9.

752 64. Guérout-Fleury A-M, Frandsen N, Stragier P. 1996. Plasmids for ectopic integration
753 in *Bacillus subtilis*. Gene 180:57-61.

754 65. Steinmetz M, Richter R. 1994. Plasmids designed to alter the antibiotic resistance
755 expressed by insertion mutations in *Bacillus subtilis*, through in vivo recombination.
756 Gene 142:79-83.

757 66. Koo BM, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M,
758 Cabal A, Peters JM, Hachmann AB, Rudner DZ, Allen KN, Typas A, Gross CA. 2017.
759 Construction and Analysis of Two Genome-Scale Deletion Libraries for *Bacillus*
760 *subtilis*. Cell Systems 4:291-305.e7.

761 67. Brzozowski RS, Tomlinson BR, Sacco MD, Chen JJ, Ali AN, Chen Y, Shaw LN,
762 Eswara PJ. 2020. Interdependent YpsA- and YfhS-Mediated Cell Division and Cell
763 Size Phenotypes in *Bacillus subtilis*. mSphere 5.

764 68. Brzozowski RS, White ML, Eswara PJ. 2019. Live-Cell Fluorescence Microscopy to
765 Investigate Subcellular Protein Localization and Cell Morphology Changes in
766 Bacteria. Journal of Visualized Experiments 153.

767 69. Crooks GE, Hon G, Chandonia J-M, Brenner SE. 2004. WebLogo: A Sequence Logo
768 Generator. Genome Research 14:1188-1190.

769 70. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, Mcwilliam H,
770 Remmert M, Söding J, Thompson JD, Higgins DG. 2011. Fast, scalable generation of
771 high-quality protein multiple sequence alignments using Clustal Omega. Molecular
772 Systems Biology 7:539.

773

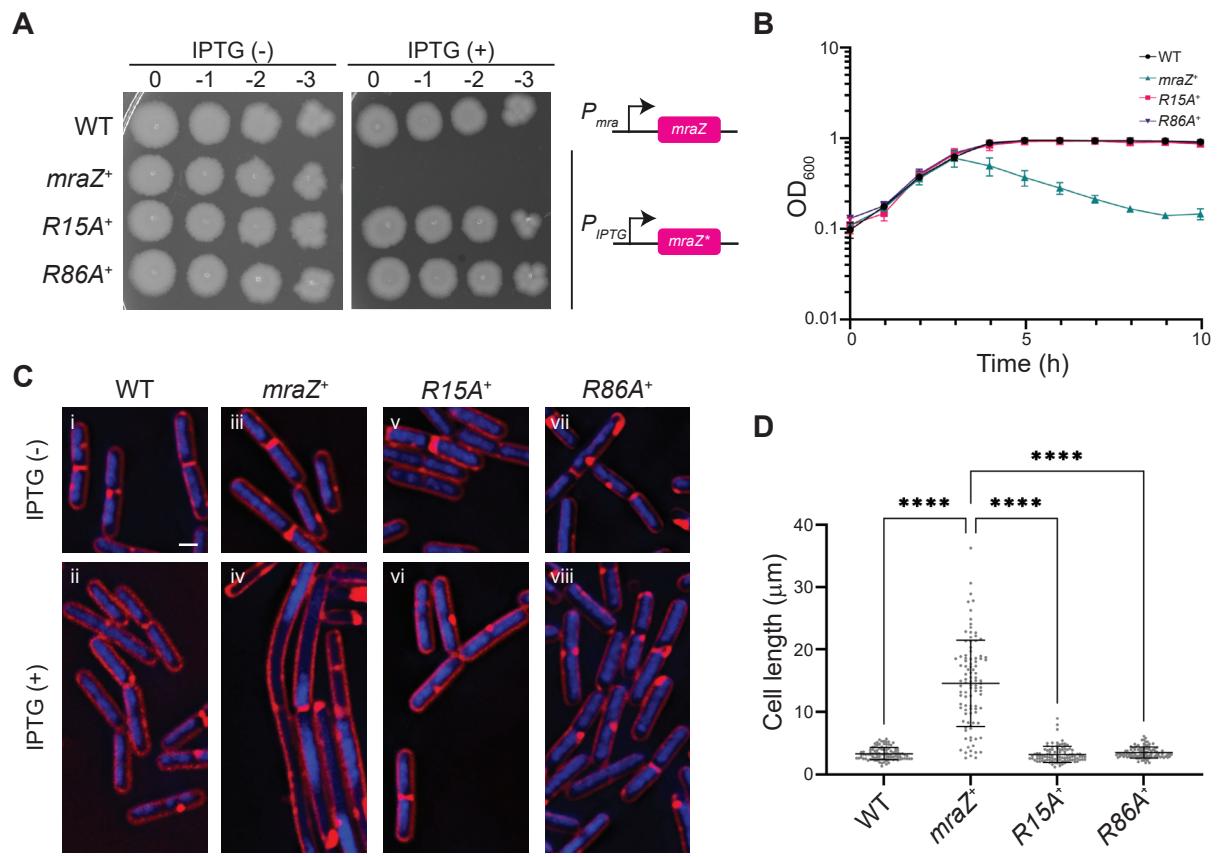
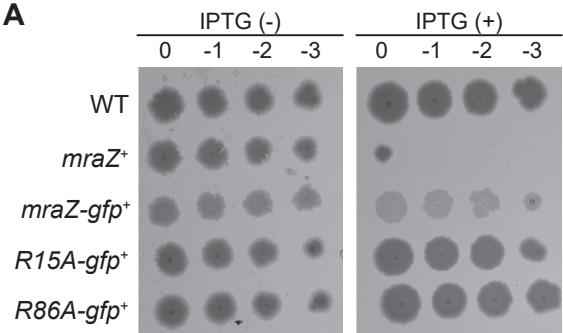
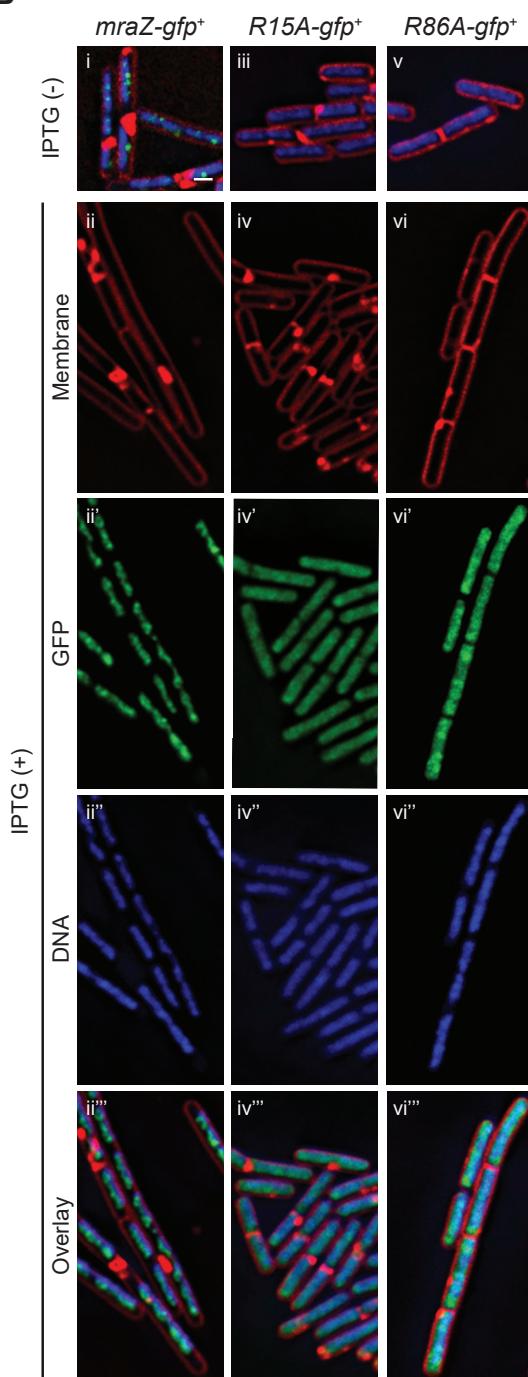
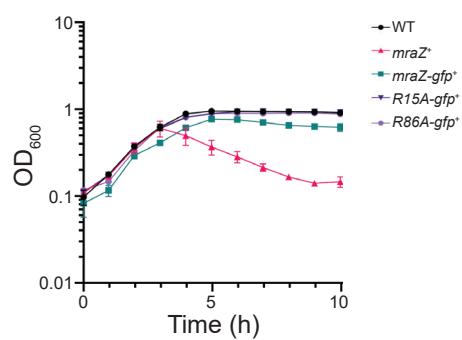
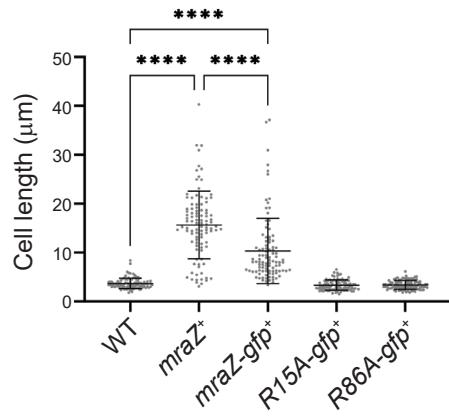
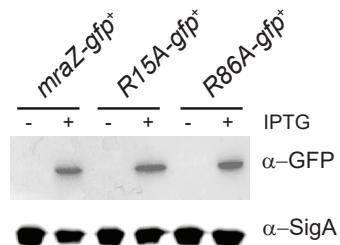







Figure 1

A**B****C****D****E****Figure 2**

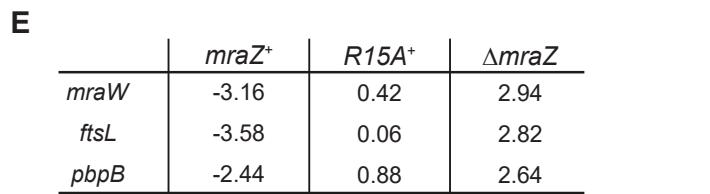
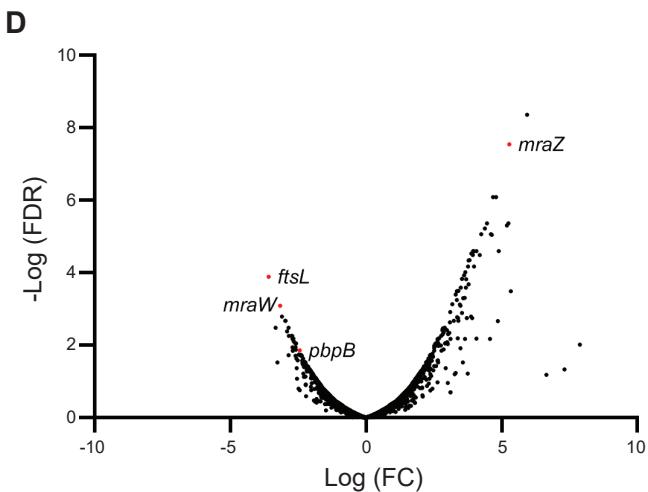
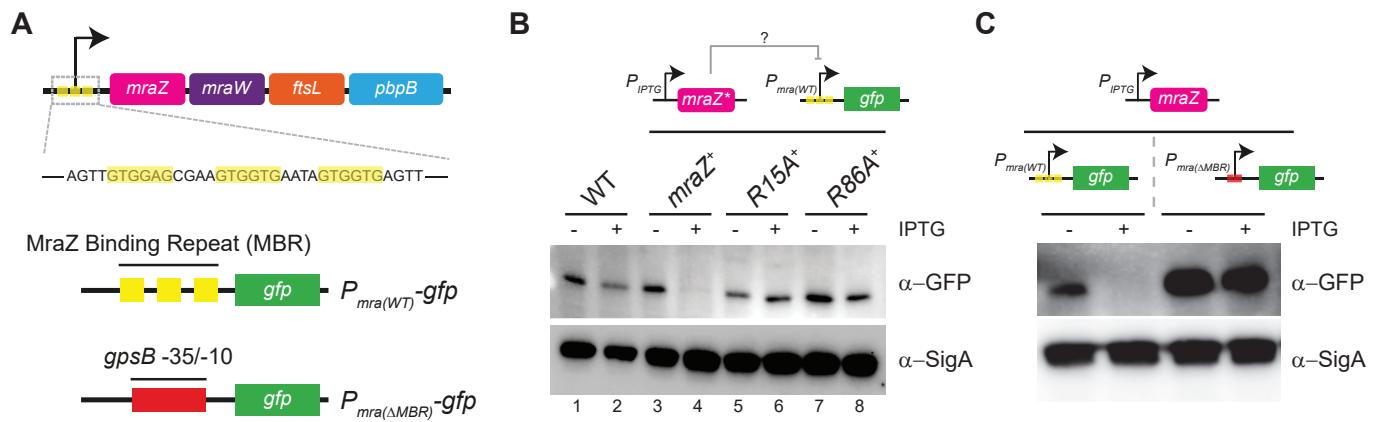
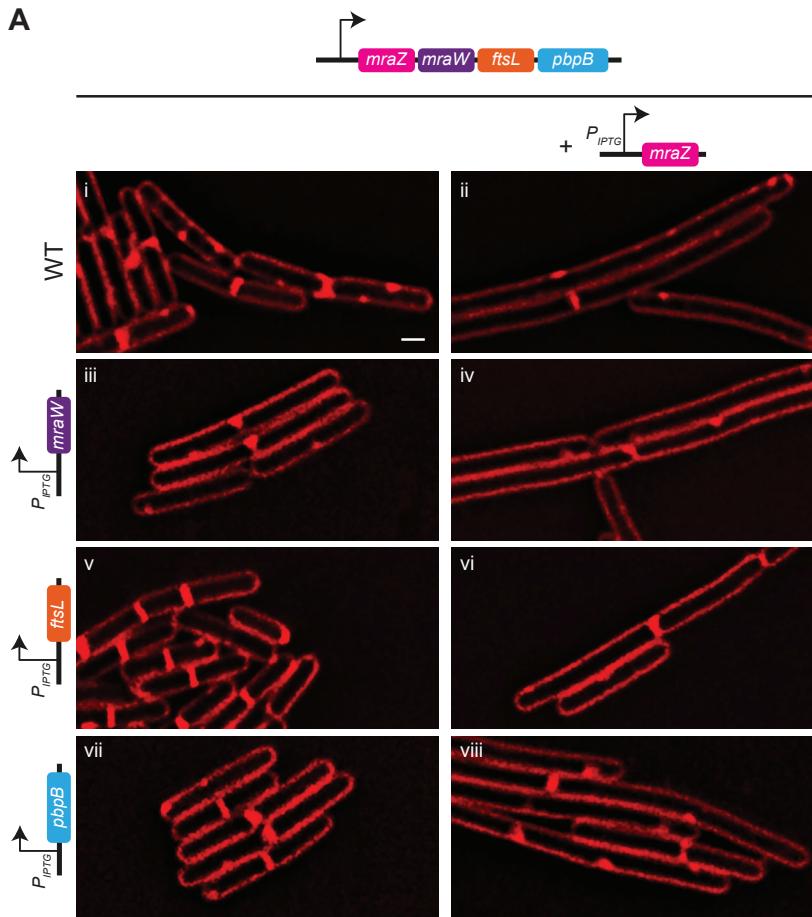
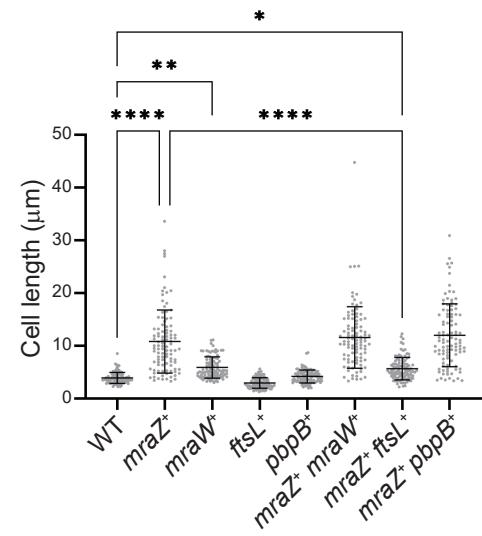
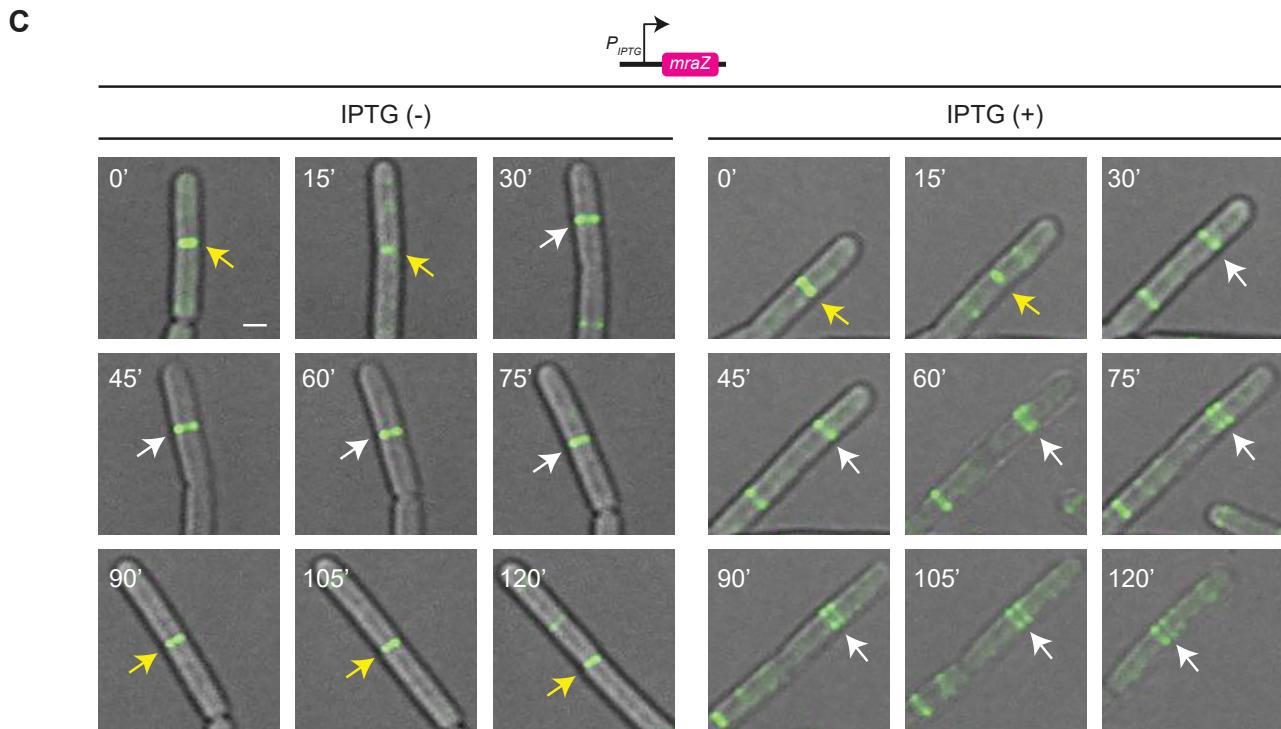







Figure 3

A**B****C****Figure 4**

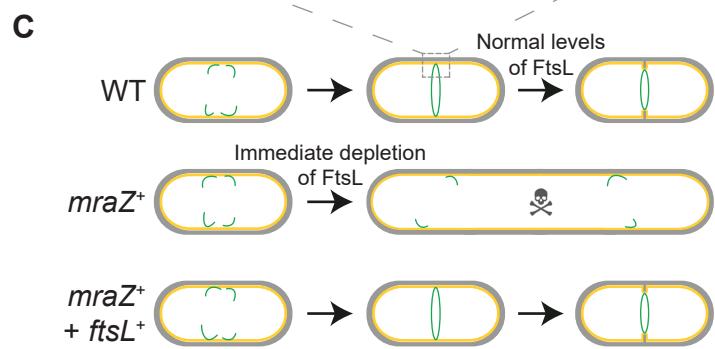
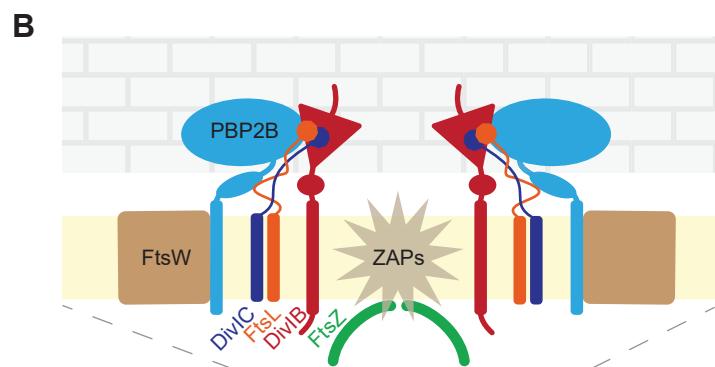
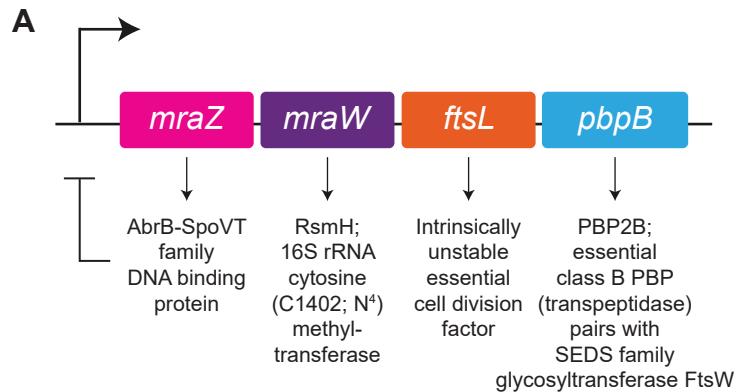




Figure 5