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CD8 memory precursor cells generation is a continuous process 
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Abstract 
In this work, we studied the generation of memory precursor cells following an acute infection 
by analyzing single-cell RNA-seq data that contained CD8 T cells collected during the post-

infection expansion phase. We used different tools to reconstruct the developmental trajectory 

that CD8 T cells followed after activation. Cells that exhibited a memory precursor signature 

were identified and positioned on this trajectory. We found that memory precursors are 

generated continuously with increasing numbers being generated over time. Similarly, 

expression of genes associated with effector functions was also found to be raised in memory 

precursors at later time points. The ability of cells to enter quiescence to differentiate into 

memory cells was confirmed by BrdU pulse-chase experiment in vivo. Analysis of cell counts 

indicates that the vast majority of memory cells are generated at later time points from cells 

that have extensively divided.  
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Introduction  

The number of naive CD8 T cells that are specific for a given pathogen is relatively low, 

ranging from 100 to 1000 cells (Obar et al., 2008; Haluszczak et al., 2009). Upon infection, 

these pathogen specific CD8 T cells will be recruited and activated. This, under appropriate 

conditions, leads to their extensive proliferation and differentiation in a large (106-107 cells) 

population of effector CD8 T cells that display the capacity to eliminate infected cells. The 

majority of effector cells will die by apoptosis, except for a smaller subset of memory precursor 

(MP) cells that will further differentiate to give rise to a long-lived population of memory cells 

(105 to 106 cells) that will provide protection upon subsequent infection (Murali-Krishna et al., 

1998; Crauste et al., 2017). Although these cells are mainly quiescent, they retain the capacity, 

upon re-exposure to pathogens, to expand and rapidly display effector functions due to 

epigenetic modifications of genes involved in these processes (Fitzpatrick et al., 1999; Marcais 

et al., 2006). 
  

In order to better understand the properties of memory cells generated in different settings 

(Appay et al., 2002), many studies have focused on defining CD8 T cell subsets, relying on a 

restricted number of surface proteins (Sallusto et al., 1999; Hikono et al., 2007; Jameson and 

Masopust, 2009). These cell subsets include central and effector memory cells, exhausted 

memory cells or tissue resident memory cells. Over the years, the study of these subsets has 

brought a wealth of knowledge on the responsiveness (Wherry et al., 2007; Hikono et al., 

2007; Sallusto et al., 1999), homing (Masopust et al., 2001), and self-renewal capacities 

(Graef et al., 2014; Gattinoni et al., 2012) of memory cells. The molecular pathways sustaining 

their development have also been largely uncovered. Indeed, the involvement of numerous 

transcription factors (Intlekofer et al., 2005; Omilusik et al., 2015; Mann et al., 2019; Kaech 

and Cui, 2012)    and    epigenetic    reprogramming factors (Pace et al., 2018) in the 

differentiation of different classes of effector and/or memory cells has been described. 

  

The lineage relationship between the different subsets of CD8 T cells (Wherry et al., 2003) 

and the stage at which activated CD8 T cells diverge from the effector fate to commit to the 

memory lineage have been extensively studied, with many different experimental approaches 

leading to results supporting alternative models (Kaech and Cui, 2012). A linear pathway 

where memory cells are derived from effector cells is supported by early studies using genetic 

marking of memory cells (Jacob and Baltimore, 1999). A linear model where activated naive 

cells first differentiate into MP cells that give rise to effector cells has been suggested following 

in vivo fate mapping of single cells (Buchholz et al., 2013). These early MP cells could 
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correspond to the memory stem cells described in a restricted number of experimental 

systems (Gattinoni et al., 2012). Fate mapping experiments have highlighted the 

heterogeneity of effector cells in terms of their functional capacities and their differentiation 

potential into memory cells (Joshi et al., 2007; Wherry et al., 2007; Sarkar et al., 2008; Kalia 

et al., 2010). Hence, a new classification of effector cells based on the expression of KLRG1 

and CD127 has emerged with, on one side, short-lived effector cells doomed to die at the end 

of the primary response and, on the other side, MP effector cells that maintain the capacity to 

differentiate into memory cells (Joshi et al., 2007). In this model and in the first linear models, 

memory cells are derived from cells that express fully developed effector functions and that 

have maintained the potential to differentiate into memory cells (Pace et al., 2018; Youngblood 

et al., 2017). In contrast, a number of other studies have suggested a separation of MP cells 

at an earlier stage that precedes the differentiation into effector cells. Indeed, branching as 

early as following the first division has been proposed based on single cell transcriptome 

analysis (Arsenio et al., 2014; Kakaradov et al., 2017) and would potentially result from an 

asymmetric division of antigen-triggered cells (Chang et al., 2007). Although these models 

agree on the early commitment of activated naive CD8 T cells to the memory lineage, there 

remains some debate about the existence of an early branching (Flossdorf et al., 2015). 

More recently, Crauste et al. (2017), based on the modeling of the generation of memory CD8 

T cell counts, demonstrated that the total pool of memory CD8 T cells could mainly be 

generated by a linear pathway; the majority of quiescent memory cells are generated following 

the transition of naive cells through an early activation effector stage characterized by active 

cell cycling followed by a late quiescent effector stage (Crauste et al, 2017). In this model, an 

early branching of memory cells was permitted but it could not account for the generation of 

the full supply of memory cells. 
  

Overall, functional studies of memory differentiation routes by genetic ablation or cell fate 
mapping studies have led to the description of multiple possible pathways that lead to a 

diversity of effector/memory populations. They suggest that memory commitment could take 

place at several stages of the primary immune response. However, some of these pathways 

might represent routes followed by only a few cells that generate a minor fraction of the 

memory cell pool. 
  

In order to uncover the different trajectories followed by naive CD8 T cells to differentiate into 

memory cells, we have used new trajectory analysis tools that take into account the large 

amount of information that is delivered by single cell transcriptomics. Indeed, over the last 

decades, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool and 
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allowed a great advance in the exploration of the heterogeneity of the immune system 

(Papalexi and Satija, 2018). We analysed gene expression dynamics in CD8 T cells collected 

during the effector response to an acute infection with the Lymphocytic Choriomeningitis 

Armstrong virus (LCMV-Arm), generated by (Yao et al., 2019) and (Kurd et al., 2020). We 

applied trajectory inference on these datasets to identify trajectories leading to the generation 

of MP cells. Using cell-cycle classification and RNA velocity algorithms we show that the 

differentiation is driven by cell cycle and immune function genes.  To identify the molecular 

regulatory mechanisms supporting the process, we then performed a gene regulatory network 

(GRN) inference analysis which allowed us to identify a cluster enriched in cells harbouring 

transcription factors associated with MP cells. Using a MP gene signature, we confirmed that 

this cluster was enriched in MP cells, though cells expressing that signature were also found 

at multiple points along the trajectory. Finally, we used another pathogen infection and BrdU 

labelling to generalise and validate these results in vivo. Analysis of cell counts confirmed that 

although memory cells are generated continuously all along the trajectory, the majority of 

memory cells were derived from cells that had proliferated and acquired effector functions.  

 
Results 
Trajectory inference of the CD8 T cell response to an acute infection 
 
In order to gain insight into the differentiation dynamics of CD8 T cells in response to an acute 

infection (LCMV-Arm), we performed trajectory inference on a scRNAseq dataset generated 

by Yao et al (2019) using two recently published methods, Slingshot (Street et al., 2018) and 

TinGa (Todorov et al., 2020). This dataset consists of measurements on 20,295 splenic CD8 

T cells generated following LCMV-Arm acute infection and isolated at two different time points 

(4.5 and 7 days post infection (dpi)), in two separate replicates. We identified the 2,000 most 

highly variable genes in the dataset using variance modelling statistics from the Scran R 

package (Lun et al., 2016), on which we applied both trajectory inference methods. Slingshot 

was shown to be very efficient in a study that compared more than 40 methods on a large 

number of datasets (Saelens et al., 2019). TinGa is a new method for trajectory inference that 

showed comparable results on simple trajectories and better results on complex trajectories 

than Slingshot (Todorov et al., 2020). These two methods both share a first step in which the 

dimensions of the data are reduced, either by principal component analysis for Slingshot, or 

by multidimensional scaling (MDS) for TinGa. In the two resulting representations of the data, 

the cells form a continuum from cells taken 4.5 dpi to cells taken 7 dpi (Figure 1A and 

Supplementary figure 2A).  
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Slingshot first applies clustering to the data and then identifies transitions between these 

clusters. It identified a linear trajectory starting among cells from day 4.5 post-infection (pi), 

transitioning through a mix of cells from day 4.5 to 7 pi, and ending in a part of the data that 

was enriched in cells from day 7 pi (Supplementary figure 2B). The genes that varied the most 

along this trajectory are identified in Supplementary figure 2C. The linear Slingshot trajectory 

seemed to start in early activated cells, in which we identified an overexpression of Ybx1, 

Rps2, Rps8 genes involved in the initiation of transcription. The trajectory then transitioned 

through a state where the cells seemed to be undergoing divisions (Tubb4b, Tuba1b, Ccna2, 

Cks1B genes) and ended in cells that expressed genes associated with immune 

functions (such as Ccl5, Hcst, B2m, H2-D1). In comparison, the trajectory identified by TinGa 

started similarly to the Slingshot trajectory, but then split into two branches (Figure 1B). One 

small branch (identified by the number 3) corresponded to cells that seemed to be in a highly 

cycling state, whereas the other longer branch ended, after several transitional states, in the 

effector-memory-like state described in the Slingshot trajectory (Supplementary figure 1A). 

Eight transitional states were identified along the TinGa trajectory. For convenience, these 

eight transitional populations will be referred to as clusters from now on. 
  
Among the 40 genes that varied the most along the two trajectories defined by Slingshot and 

TinGa (Supplementary figure 1 and 2C), 33 were commonly found in both trajectories. This 

suggests that, even though TinGa identified an extra small branch that Slingshot included in a 

linear trajectory, the genes that are mainly driving cells along the two trajectories are similar. 

Interestingly, when we applied Slingshot and TinGa to a reduced set of 1,300 highly variable 

genes, both methods recovered a branching trajectory (Supplementary figure 1B and 

Supplementary figure 2D). This indicates that the main trajectory uncovered is robust and that 

the small-branch identified differs only marginally from the neighboring cluster.  
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Figure 1: TinGa trajectory inference 
(A-C) Visualization of the cells in a 2D space computed by multi-dimensional scaling (A) The cells were 

colored according to the two experimental time points 4.5 and 7 days post LCMV-Armstrong infection. 

(B) The TinGa algorithm identifies a branching trajectory in the data, that is represented by a black line. 

Milestones along the trajectory can be used to define subgroups of cells that are represented by different 
colors. They will be referred to as “clusters”. The number of cells in each cluster are indicated. (C) The 

cells were classified into one of the cycling phases (either G1, S, or G2/M) using the Seurat package 

and colored accordingly. (D-E) The number of cells in the G1, S and G2/M phases (D) and in the two 

experimental time points (E) are shown for each cluster.  

 

The inferred trajectories retrace an early-late-memory differentiation pathway 
 

To further characterize the CD8 differentiation trajectory supported by the single cell 

transcriptomics data, we used the trajectory obtained with TinGa as it identified more transition 

points along the route and hence might give a more refined definition of differentiation steps. 

As both the Slingshot and the TinGa trajectories were clearly driven by cell cycle associated 

genes (Supplementary figure 1A and Supplementary figure 2C), we used a classifier from the 

Seurat R package (Tirosh et al., 2016) to allocate cells to the G1, S or G2/M cell-cycle phases 

(Figure 1C). We identified clear cycling trends along the trajectory. Cells in clusters 2, 5 and 4 

were mainly classified in the S phase (Figure 1C-D) while clusters 7 and 3 were de facto 

classified in the G2/M phase (Figure 1C-D). Cluster 6 was clearly enriched in G1 cells, while 

cluster 8 contained almost exclusively cells in G1 (Figure 1C-D). Hence, these results showed 

that the Tinga trajectory consisted of a first cycling effector population that differentiated in a 
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quiescent effector population. Interestingly, TinGa identified three clusters enriched in cells 

positioned in the S phase (cluster 2, 5 and 4) and two clusters enriched in cells positioned in 

the G2/M phase (cluster 7 and 3). These clusters, however, differed in terms of sampling days 

and the two clusters (3 and 4) positioned at a later pseudotime by TinGa contained a larger 

fraction of cells sampled on day 7 compared to the earlier clusters with a similar cell cycle 

position. Thus, to unravel genes driving the trajectory, while overcoming cell cycle gene 

expression biases, we performed a differential expression analysis between cells from the 

same cycle phase present in each neighboring cluster along the trajectory (Supplementary 

Table 1 and Supplementary figure 3A). This highlighted the slow transition from early activation 

markers (Xcl1, Srm) to effector functions (Ccl5, Id2, Gzma/k) and quiescence (Btg1) 

(Supplementary figure 3A right panel). 

  
To further define the dynamics of cell differentiation, we applied the scVelo algorithm (Bergen 

et al., 2020) that defines RNA velocities. These were projected onto the TinGa embedding 

(Figure 2A). ScVelo retraced two RNA trajectory dynamics (Figure 2B). The first suggests a 

circular trajectory that would fit with cells going through the cell cycle. The second corresponds 

to a linear trajectory of differentiation leading from clusters 5 and 7 to 8. Interestingly, the cells 

of cluster 3 seemed to join those of cluster 8. Thus, the small branch identified by TinGa could 

correspond to a transient state composed of cells passing from a state of proliferation to a 

quiescent state.  
A similar dynamic was obtained using only the top 50 genes contributing to the scVelo’s 

dynamical model (Supplementary figure 3B, Supplementary Table 2) indicating that they were 

sufficient to recover the overall cell dynamics (Figure 2A). We then analyzed the molecular 

function associated with these 50 genes and found that they could be broadly classified into 

three categories (cell cycle, migration and immune function) (Supplementary Table 2). To 

compare the contribution of these genes to the dynamic, the RNA velocities associated with 

cell cycle/migration related genes or immune function genes were calculated and projected 

onto the TinGa embedding (Figure 2C-D). The cell cycle and migration genes clearly defined 

the first circular dynamics found at the start of the trajectory and also contributed to the 

differentiation process (Figure 2C) while the immune genes recapitulated a linear trajectory 

going from cluster 2 to 8 (Figure 2D). By looking at individual gene dynamics, we found that 

genes act on different parts of the cell differentiation trajectory. Genes such as Id2 have an 

early effect, with stronger contribution to the global velocities in clusters 4, 5 and 7, while genes 

such as IL18r1 and Gimap6 start to act at later pseudotime with stronger velocities in the final 

clusters of the trajectory (Supplementary figure 3C). 
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The trajectory inference based on single cell transcriptomic data seems to recapitulate the two 

effector compartments that we have previously described, i.e., a first set of early effector cells 

that are cycling followed by a set of late effector cells that are quiescent and express increased 

levels of genes encoding immune effector functions (Crauste et al., 2017). 

 

 
Figure 2: Gene expression dynamics along the differentiation trajectories  
RNA velocities are projected onto the TinGa embedding. The cells in the trajectory were colored 
according to their TinGa milestones. (A) Velocities were calculated using all genes. Numbers 

correspond to TinGa clusters. (B) The RNA velocities show two distinct dynamics. In clusters 2, 5 and 

7, cells are cycling (red arrow) but can commit to the differentiation dynamic (blue arrows) by leaving 

clusters 5 and 7 to reach cluster 8. (C-D) RNA velocities based only on cell cycle and migration (C) or 

immune function-related (D) genes.  
 

Gene regulatory interaction analysis 
 

To further characterize the transitional stages defined along the TinGa trajectory, we identified 

regulatory interactions between transcription regulators and their target genes in the dataset 

using the BRED tool (Cannoodt et al., 2019). We identified six main GRN-modules, that we 

defined as groups of target genes gathered around a regulator (Figure 3A). As expected, based 
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on previous results on the cell cycle, three of these modules (Pcna, Hmgb2, Cenpf) were 

strongly enriched in genes involved in cell cycle regulation. The Ybx1 GRN-module contained 

two groups of genes. One coding for proteins involved in RNA and protein synthesis 

metabolism that were up-regulated in the cells from the cluster 2-5-7 branch, the other for 

immune functions that were enriched in clusters 6 and 8 (Supplementary figure 4). Two GRN-

modules were composed essentially of genes associated with the immune response. The GRN 

module Spi1 was expressed in very few cells along the trajectory (Supplementary figure 5). In 

contrast, the Tcf7/Id2/Phb2 GRN-module contained genes coding for transcription factors and 

immune functions, associated with the differentiation of CD8 T cells in memory cells. These 

genes were expressed in different clusters along the trajectory (Supplementary figure 6). 

Interestingly, cluster 1 was enriched in cells that coexpressed genes from the Tcf7/Id2/Phb2 

modules which were associated with a MP cell phenotype as defined by a number of studies 

(Yao et al., 2019; Wu et al., 2016; Utzschneider et al., 2016; Chen et al., 2019). Indeed, they 

expressed Tcf7 and Id3, two transcription factors that were previously associated with a MP 

potential (Yao et al., 2019). Two target genes, Slamf6 and Tnfsf8, were found to be positively 

correlated with the presence of Tcf7 in the Tcf7/Id2/Phb2 module. In contrast, the Id2 

transcription factor, that has previously been associated with an effector fate (Omilusik et al., 

2018), was repressed in these cells, as was the effector associated gene Gzmb (Figure 3B and 

Supplementary figure 6).  

 

In summary, cluster 1 seemed to contain an interesting set of cells in which effector functions 
were down-regulated, while genes associated with a memory precursor signature were over-

expressed. We thus decided to further characterize the cells in cluster 1. 
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Figure 3: Gene regulatory interactions 
(A) Gene regulatory network identified with BRED. In this GRN, regulatory processes are symbolized 

by arrows that are directed from transcription factors to their target genes, or to other transcription 

factors. The top 100 interactions per TinGa cluster are represented, and are colored according to the 
cluster in which they are occurring. The shape of the arrow indicated whether the interaction was an 

activation (->) or an inhibition (-|). (B) Zoom on the Id2/Tcf7/Id3 module identified by BRED. Only the 

interactions occurring in cluster 1 in the TinGa trajectory are represented. 
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TinGa identifies distinct clusters associated with a memory-precursor phenotype 
 

Cluster 1 was mainly composed of cells from day 4.5 pi, a large fraction of which (40%) was 
classified as being in the G1 phase of the cell cycle (Figure 1D-E, Supplementary figure 7A). 

This contrasted with other clusters enriched in cells from day 4.5 pi, such as clusters 2 and 5, 

that contained very few cells classified as being in G1 (Figure 1D-E). 

To ascertain that cells in cluster 1 had been activated, we compared their transcriptome with 

the genes expressed in cluster 2 positioned at the beginning of the trajectory. Results in 

Supplementary figure 7B showed that the cells in cluster 1 expressed an increased amount of 

genes coding for effector functions such as Ccl5 and Gzma compared to cluster 2, indicating 

that these cells had been activated as they had started to acquire effector functions. Cells in 

cluster 1 also expressed interferon-induced genes such as Ifl27ia, Ifl203, Ifl47 (colored in red 

in Supplementary Fig 7B), indicating that these cells had responded to the pathogen-induced 

innate response. We thus concluded that cluster 1 contained cells from day 4.5 pi that had 

been activated but already displayed traits of quiescence. 

Cluster 1 cells expressed increased amounts of Tcf7, Id3 and Ltb as compared to all other cells 

in the trajectory, while Klrg1, a gene associated with terminal differentiation, was down-

regulated in these cells (Supplementary figure 7C). This was in agreement with the activation 

of the Tcf7/Id2/Phb2 module, containing genes associated with a MP potential in these cells.  

To confirm the MP genetic program of cells in cluster 1 and to identify all MP cells along the 

trajectory, we performed a gene set enrichment analysis (GSEA) using the MP gene signature 

recently defined in (Yao et al., 2019) (Supplementary Table 3 and Figure 4A). We identified 

833 MP cells that were mainly localized in clusters 1 and 8 (Figure 4A-B). Unsurprisingly, 

cluster 1 was the most enriched in the MP signature with 15% of the cells presenting the 

signature. Cluster 8 also contained a significant fraction (9%) of MP cells. However, the majority 

of MP cells were associated with cluster 8 that contained 3 times more MP cells than cluster 1 

(Figure 4B-C). The majority of MP in cluster 1 and 8 were associated with the G1 phase of the 

cell cycle compared to those in the other clusters that were mainly in S and G2/M phase (Figure 

4C). 

  
To determine the number of MP cells that had effectively been found on each sampling day, 

we recalculated the number of MP cells present in the spleen of animals at the two experimental 

time points (see Methods section). Based on the number of LCMV-Arm specific CD8 T cells 

present in the spleen on day 4.5 and 7 pi, we could estimate the number of cells with a MP 

gene signature on these two days to be 3,850 and 643,000. This indicated that the number of 

MP cells generated 4.5 days after infection is more than 150 times lower than the number of 
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MP cells generated 7 days after infection, in agreement with values estimated in (Crauste et 

al., 2017). 

 
Figure 4: Memory precursor cell identification and characterization. (A) Memory precursor signature 

enrichment in each cluster along TinGa’s trajectory. The cells above the threshold represented as a 

dotted line are considered as memory precursors. The percentage of cells with a memory precursor 

signature in each cluster is indicated. AUC: area under the curve (B) The cells with a memory precursor 

signature were represented on the TinGa map and colored according to the cluster they came from. The 

number of cells with a memory precursor signature in each cluster is indicated. (C) Distribution in the 
G1, S and G2/M cell cycle phases of cells with a memory precursor signature from clusters 1, 8 or all 

others. (D) Triwise plot of the log fold-change expression of genes that were differentially expressed 

between the memory precursor cells found in cluster 1, 8, and all other memory precursors. Only the 

genes that were differentially expressed with a p-value < 0.05 are represented. The internal hexagon 

corresponds to a log fold-change of 1, the external hexagon corresponds to a log fold-change of 2.  
 
To investigate differences between MP cells generated at day 4.5 and at day 7 pi, we compared 

the gene expression profiles of cluster 1 to cluster 8 MP cells respectively, and to the profiles 

of MP from all the other clusters (Figure 4D). Both clusters 1 and 8 MP cells showed a 

decreased expression of genes driving the cell cycle compared to the other MP, in agreement 

with their position in G1 phase (Figure 4C-D). Cluster 8 MP cells have an increased expression 

of genes coding for proteins involved in effector functions (Gzmb, Ctla2, Ccl5) or cytokine 

response (Il7r, Il18r1, Ifngr1) compared to cluster 1 MP cells, indicating that, although they 
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display a MP gene signature, they have also acquired effector cell properties. This was in 

agreement with the data showing that effector cells could dedifferentiate into quiescent memory 

cells (Youngblood2017). Interestingly, cycling MP (i.e., MP from clusters other than 1 and 8) 

expressed genes coding for transcription factors (Zbtb32, Id3) or histone modifier 

(Ezh2) involved in the regulation of the developmental switch between effector and MP cells, 

suggesting that cycling MP are still oscillating between these two fates (Kakaradov et al., 2017; 

Shin et al., 2017; Yang et al., 2011).  
To confirm the continuous generation of MP cells, we analyzed a second transcriptomic dataset 

generated by Kurd et al. that contained cells sampled at multiple time points during the primary 

response (day 4, 5, 6, 7 and 10 post-LCMV infection). Highly variable genes expressed by the 

9,614 cells were selected and TinGa was applied (Supplementary figure 8A). The trajectory 

obtained is similar to the Yao et al.’s data (Yao et al., 2019) with the first part of the trajectory 

being enriched in cycling cells (cluster 1, 3, 8, 6 and 4) which were sampled on day 4, 5, 6 and 

7 pi. The second part contained quiescent cells sampled on day 6, 7 and 10 pi (Supplementary 

figure 8A-B-C). Similarly, 574 MP cells were found by GSEA all along the TinGa trajectory 

(Supplementary figure 8D-E).  

 

Overall, these results suggested that MP cells with different functional and differentiation 

statuses, from activated cycling cells to quiescent effector cells, were present at different points 

along the trajectory. 

 

In vivo validation of memory cell generation at different time points following 
activation of CD8 T cells 
 

Our in-silico analyses strongly suggest that CD8 T cells become quiescent and differentiate 
into memory cells at different stages following activation in response to acute viral infection. To 

validate this result in vivo, we used BrdU pulse-chase experiments. Indeed, these allow tracking 

cells that proliferate during the pulse time and stop soon thereafter, thus maintaining their BrdU 

labelling in the memory phase. This way we can identify MP cells present at the time of pulse. 

We also wanted to extend the data to other experimental systems so we used vaccinia virus 

(VV) that induces a local acute infection in the lung when inoculated intranasally. Thus, mice 

were infected intranasally with a VV harboring the NP68 epitope and we followed the activation 

of TCR transgenic F5 cells (Crauste et al., 2017). Mice were given one injection of BrdU on 

days 4, 7 and 11 pi and BrdU labelling was analyzed after 24 hours in the spleen and the lymph 

nodes draining the lung and nasal cavity (Supplementary figure 9A). 
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Following VV infection, TCR transgenic F5 CD8 T cells increased in proportion and numbers 
over time in both spleen and draining lymph nodes (dLN), with a peak 8 dpi (Figure 5A-B). The 

percentage of BrdU labelled cells, representative of proliferating CD8 T cells, was maximal 5 

dpi in the dLN and 8 dpi in the spleen, reflecting the local initiation of the CD8 T cells immune 

response following intranasal infection (Figure 5C-D). The number of BrdU labelled cells was 

maximal both in spleen and dLN 8 dpi and started to decrease thereafter with a limited number 

of cycling cells detected 12 dpi.   

Using data from three independent experiments we next estimated (see Methods section) the 

proliferation and differentiation rates of cycling effector cells (Crauste et al., 2017) on days 4, 

5, 7 and 11 pi. In agreement with the BrdU labelling profile of total CD8 T cells we found that 

the proliferation rate of effector cells peaks on days 4-5 before quickly decreasing both in dLN 

and spleen (Figure 5E). This is in agreement with previous results (Crauste et al., 2017) 

obtained on blood samples. In contrast, their differentiation rates to quiescent effector cells are 

very low on days 4-5 pi, increasing on day 7 pi with the highest rate being observed on day 11 

pi, once proliferation has drastically vanished, in both spleen and dLN (Fig 5F).  

We then measured the fraction and number of BrdU-labelled CD8 T cells in the memory phase 

(39 dpi) in order to evaluate the MP cells present on day 4, 7 or 11 pi of the response (Figure 

5G-H). As predicted by the single cell transcriptomic data, we found that memory cells could 

derive from activated/effector cells at all investigated times. However, the largest fraction of 

memory cells was derived from cells labelled on day 7 or later (Figure 5I). Importantly the few 

cells that were labelled with BrdU between days 11 and 12 gave rise to a significant fraction of 

the memory cell pool in agreement with their increased differentiation rates (Figure 5F).  
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Figure 5: In vivo identification of memory precursors using BrdU labelling. (A-D) The percentages (A, 
C) and numbers (B, D) of total F5 CD44+ (A, B) and BrdU+ F5 CD44+ (C, D) CD8 T cells were 

determined 24h after BrdU injection (pulse) in the indicated organs. (E) Proliferation rates of Early 

Effector (EE) cells in the indicated organs from day 4 to day 11 post-infection. (F) Differentiation rates 

of EE cells into Late Effector (LE) cells in the indicated organs from day 4 to day 11 post-infection. (G-
H) The percentages (G) and numbers (H) of BrdU+ F5 CD8 memory T cells originating from cells 

labelled on days 4, 7 or 11 pi was determined 39 days after BrdU injection (chase) in the indicated 

organs. (I) Proportion of memory cells originating from MP labelled at days 4, 7 or 11 pi normalized to 

the total number of recovered BrdU+ F5 CD8 memory T cells. Data are representative of 3 independent 

experiments. 
 
Finally, we compared protein expression of memory cells generated on day 4.5 or day 7 pi. 

We thus performed a BrdU chase experiment (Supplementary figure 9B) and measured the 

expression of proteins encoded by genes that were differentially expressed in the single cell 

transcriptomic dataset (Figure 4D and Supplementary Table 4). We found that CCL5, which 

was the most differentially expressed gene in late d7 MP cluster 8 (Figure 4D), was also 

expressed at a higher protein level by F5 memory cells generated at 7 dpi (Figure 6A). The 

expression of CCL5 was also measured on endogenous antigen-induced BrdU positive 
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memory cells, identified based on their CD49d expression (Grau et al., 2018) (Supplementary 

figure 9C). Similarly, we found a significant increase of CCL5 expression on BrdU+ 

endogenous memory cells generated at 7 dpi in the dLN and spleen (Figure 6B-C).  

 

Overall, these results show that although memory cells are generated continuously after 
activation, the majority of memory cells are generated late during the effector phase (Figure 7). 

 

 
Figure 6: CCL5 expression of early and late generated memory cells by flow cytometry. (A) Flow-

cytometry plots and quantification of BrdU+ F5 memory cells expressing CCL5 labelled on day 4.5 and 
7 with BrdU was assessed. (B, C) Flow-cytometry plots and quantification of CD44+ CD49d+ BrdU+ 

endogenous memory cells expressing CCL5 labelled on day 4.5 and 7 with BrdU was assessed in the 

draining lymph node (B) and in the spleen (C).  

*p < 0.05 (Mann-Whitney test). Data are representative of 2 independent experiments. 
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Figure 7: Using in silico analysis of single cell transcriptomics and in vivo tracing of memory precursors 

coupled to mathematical modeling, we demonstrate that MP are generated continuously during the 

primary response with the largest fraction being generated at the peak of the expansion phase. BPC: 

bipotent precursor cells; MP: memory precursors; M: memory 
 

Discussion 
 

In this study, we have used trajectory inference tools to analyze the generation of memory 

precursor CD8 T cells during a primary response against an acute viral infection. A single cell 

transcriptomic dataset (Yao et al., 2019) generated at two timepoints during the primary 

response, was analyzed using two recently developed trajectory inference algorithms 

(Slingshot (Street et al., 2018) and TinGa (Todorov et al., 2020)). These tools allow modeling 

gradual transitions between cell states, as they tend to preserve the local similarities between 

cells, thus predicting the likely differentiation path followed by cells activated in vivo by the 

virus (Saelens et al., 2019). Trajectory inference tools have become essential as they allow to 
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predict the fate of cells that have to be lysed to analyze their cellular content and/or 

transcriptome. Although different dimensionality reduction and trajectory computation 

approaches were used, the trajectories identified by both algorithms were driven by similar 

sets of genes and displayed a consistent trajectory starting among cells from day 4.5 post-

infection that were mainly cycling and ending among cells from day 7 post-infection that were 

mainly quiescent. Importantly, there was a significant overlap between cells collected on each 

day as clusters in the middle of the trajectory contained cells from both time points. This 

indicates that the differentiation process although continuous is heterogeneous in its duration 

as for example some cells exit the cell cycle at early time points or acquire effector functions 

more rapidly. This is in agreement with experiments tracking the fate of single T cells in mice 

that have shown that the clonal size of memory cells generated from a naïve CD8+ T cell is 

heterogeneous (Buchholz et al., 2013; Gerlach et al., 2013). The trajectory identified by TinGa 

was more refined as it identified 8 transitional stages, one of which (cluster 1) was strongly 

enriched in MP cells identified using a gene signature derived from Yao et al. (2019). 
We also applied scVelo (Bergen et al., 2020), a method that uses the splicing state of 

transcripts to calculate RNA velocities. The projection of RNA velocities on the TinGa-

generated map evidenced two cellular behaviors with early cycling cells that remain on a 

circular trajectory and later cells that follow a linear path. These two behaviors were associated 

with cell cycle and immune function genes, respectively. Importantly, the linear trajectory 

driven by the immune effector genes started in early (d4.5) cells underpinning cycling and 

quiescent cells, thus reflecting the progressive expression of effector functions by activated 

CD8 T cells. These results are in agreement with the two effector compartments previously 

described, namely the early cycling effector cells and late quiescent effector cells expressing 

genes encoding immune effector functions, through which most MP cells have to go to 

generate the full pool of memory CD8 T cells (Crauste et al., 2017).  
We herein found that MP are present at all pseudo-times, with an enrichment in clusters 1 and 

8.  The majority of MP cells in clusters 1 and 8 were in the G1 phase of the cell cycle suggesting 

that they were on their way to become quiescent memory cells. We confirmed the continuous 

generation of MP cells on another dataset from Kurd, et al. (2020). Importantly, we estimate 

that the number of MP cells generated on day 7 pi is around 100-fold higher than the number 

generated on day 4.5 pi. In vivo pulse-chase BrdU experiment confirmed that CD8 T cells 

became quiescent memory cells at different stages of an acute infection and that the 

differentiation rate of early effector cells increased over time. Overall, our data support a model 

where MP cells are generated continuously over the duration of the expansion phase and 

beyond, with the majority generated at the peak of the response. Memory precursors identified 

on day 7 (cluster 8) differ from MP cells generated earlier in the response, mainly by their 

expression of genes coding for CD8 effector functions (Gzmb, Ccl5) and we confirm that CCL5 
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is expressed at higher protein level by memory cells generated at 7 dpi compared to cells 

generated at 4.5 dpi. This is in agreement with the gradual acquisition of epigenetic 

modifications that lead to a poised transcriptional state of the effector molecule loci in memory 

CD8 T cells (Dogra et al., 2016; Henning et al., 2018). Based on differential gene expression, 

we searched for surface markers that could distinguish memory precursor CD8 T cells 

generated early or late in the response. Unfortunately, we have been unable to identify such 

markers which would have allowed us to compare the functions and self-renewal capacities of 

these cells.    
  
The continuous generation of MP over the duration of the effector phase could be explained 

by the sustained proliferation of MP generated early in the response. These cells would 

maintain self-renewing capacity while opening the chromatin at effector function gene loci. This 

would fit with the increased expression of mRNA coding for effector functions in MP identified 

on day 7. We estimate that cycling MP cells represent only about 15% of all MP cells. 

Interestingly, these cells differ from quiescent memory precursors by the expression of the 

transcription factors Zbtb32 and Ezh2, which encodes a catalytic subunit of the polycomb 

repressive complex 2 (PRC2) (Gray et al., 2017). Zbtb32, which is transiently expressed during 

the effector phase has recently been shown to control the magnitude of effector cells and the 

generation of memory cells (Shin et al., 2017). Epigenetic modification by Ezh2 controls the 

survival and cytokine production of effector cells. Also, it would be involved in the 

developmental switch between terminal effector cells and memory cells by depositing 

H3K27me3 in T effector cells (Gray et al., 2017; Kakaradov et al., 2017). Thus, proliferating 

MP cells could represent bipotential cells that oscillate between two fates: the terminally 

differentiated effector fate that is associated with the repression of the self-renewing capacity 

and the activation of effector function loci and the memory precursor fate that maintains the 

self-renewing capacity while acquiring bivalent chromatin modification marks on gene 

encoding effector functions. This hypothesis would be in line with a recent study by Pace et al. 

(2018) suggesting that cycling cells may represent bipotent differentiation intermediates 

expressing both effector and stem/memory potential. A similar differentiation pattern has 

recently been found in a hematopoietic stem cell differentiation model (Moussy et al., 2017). 

Importantly in that model and similarly to our data, the number of divisions performed by 

bipotent cells before arresting and stabilizing in one or the other fate is heterogenous.   
Such a continuous bivalent model could reconcile a number of previously proposed conflicting 

models that positioned memory precursor cells at either early or late stages following activation 

(Arsenio al., 2014; Buchholz al., 2013; Flossdorf al., 2015; Jacob and Baltimore, 1999; 

Kakaradov al., 2017) (Figure 7). Importantly, it could account for the diverse sizes of clones 

derived from a single cell, observed in fate mapping experiments (Buchholz et al., 2013; 
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Gerlach et al., 2013) while being in agreement with the dynamical modelling of memory CD8 

T cells generation (Crauste et al., 2017). Finally, it would allow the deposition of epigenetic 

fingerprints on genes that encode effector functions and are poised for rapid expression in 

memory cells.  
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Methods 
 

• Experimental procedures 

 

Mice: C57BL/6J mice were purchased from the Charles River Laboratories. F5 TCR [B6/J-

Tg(CD2-TcraF5,CD2-TcrbF5) 1Kio/Jmar] transgenic mice were provided by Prof. D. Kioussis 

(National Institute of Medical Research, London, U.K.) and backcrossed on CD45.1 C57BL/6 

background (Jubin et al., 2012). Mice were bred or housed under specific pathogen free 

conditions in our animal facility (AniRA-PBES, Lyon, France). All experiments were approved 

by our local ethics committee (CECCAPP, Lyon, France) and accreditations have been 

obtained from governmental agencies. 
BrdU labelling: Mice received 2.10^5 naive CD45.1 F5-Tg CD8 T cells by intravenous (i.v.) 

injection one day prior intranasal (i.n.) infection with VV-NP68 (2.10^5 pfu under 20 \muL). 

Mice then received one intraperitoneal (i.p.) BrdU injection (2 mg, Sigma). BrdU labelling was 

analyzed 24h after BrdU administration or 25 and 39 days post infection (dpi). 
Cell analyses: Mice were sacrificed by cervical dislocation and spleen and draining lymph 

nodes (cervical and mediastinal) were collected. Flow cytometry staining was performed on 

single-cell suspensions from each organ. Briefly, cells were first incubated with efluor780-

coupled Fixable Viability Dye (Thermo Scientific) for 20 minutes at 4°C to label dead cells. 

Surface staining was then performed for 45 minutes at 4°C in PBS (TFS) supplemented with 

1\% FBS (BioWest) and 0.09\% NaN3 (Sigma-Aldrich). Cells were then fixed and 

permeabilized in 96 wells plates using 200 uL of BrdU staining solution from the BrdU Staining 

Kit for Flow Cytometry APC (ThermoScientific) according to manufacturer instructions. The 

following mAbs(clones) were used: CD8(53.6.7), CD45.1 (A20) from BD Biosciences, 

CD44(IM7.8.1), Bcl2 (BCL/10C4) and CCL5 (2E9) from Biolegend and Ki67 (SolA15) and 

CD49d (R1-2) from Thermofischer Scientific. Samples were acquired on a FACS LSR Fortessa 

(BD biosciences) and analyzed with FlowJo software (TreeStar). 

 
• Estimation of proliferation and differentiation rates of early effector CD8+ T cells 

 
Neglecting CD8+ CD44+ effector cells death over the 24 hours period between BrdU injection 

and sample collection, we consider that early effector (CD44+ Bcl2- Ki67+, Crauste et al., 

2017) CD8 T cells can either proliferate or differentiate. Upon BrdU injection, proliferating cells 

incorporate BrdU, therefore early effector cell proliferation rate can be approximated by the 

ratio:  #CD44+ BrdU+ cells/ #CD44+ Bcl2- Ki67+ cells (which is equivalent to assuming a linear 

proliferation rate and that all proliferating cells are BrdU+).  
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The number of BrdU+ late effector (CD44+ Bcl2- Ki67-, Crauste eta l., 2017) cells one day after 

BrdU injection corresponds to the fraction of BrdU+ early effector cells that have differentiated 

following BrdU injection. Hence, the differentiation rate of early effector cells into late effector 

cells is approximated by the ratio: #CD44+ Bcl2- Ki67- BrdU+ cells/ #CD44+ Bcl2- BrdU+ cells. 

 
• In vivo memory precursor cell number calculation 

 
The number of MP present in the spleen of animals at each time point was estimated for each 

cluster by multiplying the number of cells recovered at this time point (given by the number of 

cells collected in Yao et al. (2019) by the percentage of cells in the given cluster (given by the 

TinGa analysis) and the percentage of MP cells among these (given by the GSEA analysis). 

Then the number of MP was summed for all 8 clusters to yield the number of MP present in 

the spleen at a given time point. 
  

• Data preprocessing 

 

o Single-cell RNAseq data preprocessing  

Existing single cell data from Yao et al. (2019) were used (GEO, accession no. GSE119943). 

A feature-barcode matrix by replicate was generated using the Cell Ranger v.3.1 software (10X 

genomics) and only effector CD8 T cells in acute infection sampled at day 4.5 and day 7 post 

infection were kept for the analysis. The two replicates were pooled since no batch effect was 

observed. The cell filtering was made with the scater package (McCarthy et al., 2016). Briefly, 

cells with a log-library size and a log-transformed number of expressed genes that were more 

than 3 median absolute deviations below the median value were excluded. The cells with less 

than 5 % of mitochondrial counts were kept. These criteria were applied separately on the cells 

from day 4.5 and day 7 leading to 20,295 cells that were kept in total. The data was then 

normalized using the sctransform function in Seurat (Hafemeister et al., 2019) and variable 

genes were selected based on variance modelling statistics from the modelGeneVar function 

in Scran (Lun et al., 2016). The log-normalized expression values of the 2,000 highly variable 

genes were used for downstream analysis.   
To validate our results, a second dataset from Kurd, et al. were used (GEO, accession no. 

GSE131847). Pre-processed count matrices of cells sampled at day 4, 5, 6, 7 and 10 (replicate 

1 only) were pooled (9,614 total cells) and genes detected in less than 1% of the total cells 

were removed. The data was then normalized using sctransform function and 1,573 highly 

variable genes were selected by setting the variable.features.rv.th parameter to 1.3 (default 

value).  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.09.479673doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.09.479673
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

 

o Cell type classification 

The cells were automatically annotated and the cell type to which they best corresponded was 

defined using the SingleR R package (Aran et al., 2019). The labelled normalized expression 

values of 830 microarray samples of pure mouse immune cells, generated by the Immunologic 

Genome Project (ImmGen), were used as reference. Cells that were clearly identified as non-

T cells (7 B cells, 2 dendritic cells, 3 fibroblasts, 25 macrophages and 62 monocytes) were 

removed before further analyses were applied. 

 
• Advanced analyses 

 

o Cell cycle assignement 

The Seurat R package was used to classify cells into G1, S or G2/M phases. The classifier 

relies on a list of genes from Tirosh et al. (2016), that contains markers of the G2/M and S 

phase. It attributes a class to each cell with a certain probability, with the possibility to attribute 

the G1 class to cells for which the G2/M or S scores were low.  

 
o Trajectory inference 

Two recently published trajectory inference tools, Slingshot and TinGa, were used to identify 

a trajectory in the data. The normalized data was first wrapped into a dataset object with the 

dynwrap R package. The slingshot implementation in dynwrap, as found on the 

github/dynverse/dynwrap github page, was applied to the data using the default parameters. 

The TinGa implementation as found on the github/Helena-todd/TInGa repository was applied 

to the data using the default parameters. The dynplot R package was then used for an easy 

visualization of the resulting trajectories.  

 

o Generating heatmaps of gene expression along trajectories 

We used the plot\_heatmap() function from the dynplot package to visualize the expression of 

specific genes along the Slingshot and TinGa trajectories. We either used the function as a 

discovery tool to identify the top n genes that varied the most along the trajectories, or we 

provided lists of genes associated with a certain signature to see in which parts of the 

trajectories these genes were the most expressed. 

 
o Differential expression analysis 

The transitional populations that were identified along the TinGa trajectory were used as 

clusters defining similar cells. Differential expression analysis was performed between these 
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clusters using the Seurat R package. Wilcoxon rank sum tests were applied and genes were 

selected as differentially expressed if the difference in the fraction of detection of the gene 

between the two compared groups of cells was higher than 0.25, and if the log fold-change 

difference between the two groups was higher than 0.3. The differentially expressed genes 

were then visualized using the triwise R package (VanLaar et al., 2016) and in a volcano plot 

that was generated manually in R with the ggplot2 R package.  

 
o Gene Set Enrichment Analysis 

Gene rankings were computed in cells using the AUCell R package. This allowed to identify 

cells that showed specific gene signatures. Of the 122 genes described as associated with a 

memory-precursor signature by (Yao et al., 2019), only 42 genes were present in the 2,000 

HVGs that we selected. We thus decided to use all genes available instead of restricting 

ourselves to the 2,000 HVGs for this analysis. 833 cells out of the 20,196 studied acute 

responding CD8 T cells were assigned to a memory precursor signature. 

 

o Inferring the number of memory precursors in the spleen 

The number of memory precursors in the spleen was calculated based on the percentage of 

memory precursors identified by gene set enrichment among total day 4.5 or day 7 cells and 

the average number of CD8 T cells found in the spleen of mice on those same days (Number 

of MP on day x = \% of MP among single cell from day X * average total number of CD8 T cells 

in spleen on day X). 

 
o RNA velocity 

Counts of spliced and unspliced abundances were obtained using the Kallisto and Bustools 

workflow (Melsted et al., 2021). Raw fastq files were pseudo-aligned on Ensembl’s Mus 

musculus reference transcriptome using release 97. Only cells which passed previously 

described preprocessing steps were kept. To infer RNA velocities and predict cell-specific 

trajectories, scVelo version 0.2.3 (Bergen et al., 2020) was used. As described in Bergen et al. 

(2020), velocities were estimated using the dynamical model and the neighborhood graph was 

computed on the PCA representation using 50 components. The velocity graph was computed 

with parameter n_neighbors set to 20. Other parameters were set to default values. Per-cell 

MDS coordinates obtained in TinGa were imported into scVelo to project RNA velocities in the 

same reduced embedding. The 50 genes best fitting scVelo’s model were selected and divided 

into Cell-Cycle, Migration and Immune Functions categories according to their function. Finally, 

figures were obtained by applying the velocity_embedding_stream function. 
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o Gene regulatory network inference 

The BRED R package was used to identify regulatory interactions between a list of 

transcription factors (that was identified among the 2,000 HVGs using the database in the 

org.Mm.eg.db R package, and manually curated), and the 2000 target genes. The scaled 

importances corresponding to these interactions were filtered, and the top 100 interactions 

corresponding to the 8 populations identified in the TinGa trajectory were selected, resulting in 

a gene regulatory network containing 800 interactions. A layout of these interactions was then 

generated using Cytoscape. In the resulting gene regulatory network, we define modules as 

groups of target genes linked to one central transcription factor. 
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