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Abstract 13 

Linguistic phrases are tracked in sentences even though there is no clear acoustic phrasal marker 14 

in the physical signal. This phenomenon suggests an automatic tracking of abstract linguistic 15 

structure that is endogenously generated by the brain. However, all studies investigating linguistic 16 

tracking compare conditions where either relevant information at linguistic timescales is available, 17 

or where this information is absent altogether (e.g., sentences versus word lists during passive 18 

listening). It is therefore unclear whether tracking at these phrasal timescales is related to the 19 

content of language, or rather, is a consequence of attending to the timescales that happen to match 20 

behaviourally-relevant information. To investigate this question, we presented participants with 21 

sentences and word lists while recording their brain activity with MEG. Participants performed 22 

passive, syllable, word, and word-combination tasks corresponding to attending to rates they 23 

would naturally attend to, syllable-rates, word-rates, and phrasal-rates, respectively. We replicated 24 

overall findings of stronger phrasal-rate tracking measured with mutual information (MI) for 25 

sentences compared to word lists across the classical language network. However, in the inferior 26 

frontal gyrus (IFG) we found a task-effect suggesting stronger phrasal-rate tracking during the 27 

word-combination task independent of the presence of linguistic structure, as well as stronger 28 

delta-band connectivity during this task. These results suggest that extracting linguistic 29 

information at phrasal-rates occurs automatically with or without the presence of an additional 30 

task, but also that that IFG might be important for temporal integration across various perceptual 31 

domains.  32 

 33 
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Introduction 35 

Understanding spoken language requires a multitude of processes [1-3]. Acoustic patterns have to 36 

be segmented and mapped onto internally stored phonetic and syllabic representations [3-5]. These 37 

phonemes have to be combined and mapped onto words which then have to be mapped to abstract 38 

linguistic phrasal structures [2, 6]. Proficient speakers of a language seem to do this so naturally 39 

that one might almost forget the complex parallel and hierarchical processing which occurs during 40 

natural speech and language comprehension. 41 

 It has been shown that it is essential to track the temporal dynamics of the speech signal in 42 

order to understand its meaning [7, 8]. In natural speech, syllables follow up on each other in the 43 

theta range (3-8 Hz; [9-11]), while higher-level linguistic features such as words and phrases occur 44 

at lower rates (0.5-3 Hz; [9, 12, 13]). Tracking of syllabic features is stronger when one 45 

understands a language [14-16] and tracking of phrasal rates is more prominent  when the signal 46 

contains phrasal information ([12, 13, 17]; e.g., word lists versus sentences). Importantly, phrasal 47 

tracking even occurs when there are no distinct acoustic modulations at the phrasal rate [12, 13, 48 

17]. These results seem to suggest that tracking of relevant temporal timescales is critical for 49 

speech understanding. 50 

 An observation one could make regarding these findings is that tracking occurs only at the 51 

rates that are meaningful and thereby behaviourally relevant [12, 17]. For example, in word lists, 52 

word-rate is the slowest rate that is meaningful during natural listening. Modulations at slower 53 

phrasal rates might not be tracked as they do not contain behaviourally relevant information. In 54 

contrast, in sentences phrasal rates contain linguistic information and therefore these slower rates 55 

are also tracked. Thus, when listening to speech one automatically tries to extract the meaning, 56 

which requires extracting information at the highest linguistic level [3, 5]. However, it is unsure if 57 

the tracking at these slower rates is a unique feature of language processing or rather dependent on 58 

the level of attention to relevant temporal timescales. 59 

As understanding language requires a multitude of processing, it is difficult to figure out 60 

what participants actually are doing when listening to natural speech. Moreover, designing a task 61 

in an experimental setting that does justice to this multitude of processing is difficult. This is 62 

probably why tasks in language studies vary vastly. Tasks include passively listening (e.g. [12], 63 

asking comprehension questions (e.g. [13], rating intelligibility (e.g. [14, 16], working memory 64 
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tasks (e.g. [18], or even syllable counting (e.g. [17]. It is unclear whether outcomes are dependent 65 

on the specifics of the task. There has so far not been a study that investigates if task instructions 66 

focusing on extracting information at different temporal rates or timescales have an influence on 67 

the tracking that occurs on these timescales. It is therefore not clear whether tracking phrasal 68 

timescales is unique for language stimuli which contain phrasal structures, or could also occur for 69 

other acoustic materials where participants are instructed to pay attention to information happening 70 

at these temporal rates or timescales. 71 

 To answer this question, we designed an experiment in which participants were instructed 72 

to pay attention to different temporal modulation rates while listening to the same stimuli. We 73 

presented participants with naturally spoken sentences and word lists and asked them to either 74 

passively listen, or perform a task on the temporal scales corresponding to syllables, words, or 75 

phrases. We recorded MEG while participants performed these tasks and investigated tracking as 76 

well as power and connectivity at three nodes that are part of the language network: the superior 77 

temporal gyrus (STG), the middle temporal gyrus (MTG), and the inferior frontal gyrus (IFG). We 78 

hypothesized that if tracking is purely based on behavioural relevance, it should mostly depend on 79 

the task instructions, rather than the nature of the stimuli. In contrast, if there is something 80 

automatic and specific about language information, tracking should depend on the level of 81 

linguistic information in the acoustic signal.   82 
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Methods 83 

Participants. In total twenty Dutch native speakers (16 females; age range: 18-59; mean age = 84 

39.5) participated in the study. All were right-handed, reported normal hearing, had normal or 85 

corrected-to-normal vision, and did not have any history of dyslexia or other language related 86 

disorders. Participants performed a screening for their eligibility in the MEG and MRI and gave 87 

written informed consent. The study was approved by the ethical Commission for human research 88 

Arnhem/Nijmegen (project number CMO2014/288). Participants were reimbursed for their 89 

participation. One participant was excluded from the analysis as they did not finish the full session. 90 

Materials and design. Materials were identical to the stimuli used in Kaufeld et al., [12]. 91 

They consisted of naturally spoken sentences or word lists which consisted of 10 words (see Table 92 

1 for examples). The sentences contained two coordinate clauses with the following structure: [Adj 93 

N V N Conj Det Adj N V N]. All words were disyllabic except for the words “de” (the) and “en” 94 

(and). Word lists were word-scrambled versions of the original sentences which always followed 95 

the structure [V V Adj Adj Det Conj N N N N] or [N N N N Det Conj V V Adj Adj] to ensure that 96 

they were grammatically incorrect. In total sixty sentences were used. All sentences were presented 97 

at a comfortable sound level. 98 

Participants were asked to perform four different tasks on these stimuli: a passive task, a 99 

syllable task, a word task, and a word combination task. For the passive task, participants did not 100 

need to perform any task other than comprehension – they only needed to press a button to go to 101 

the next trial. For the syllable task, participants heard after every sentence two part-of-speech 102 

sounds, each consisting of one syllable. The sound fragments were a randomly determined syllable 103 

from the previously presented sentence and a random syllable from all other sentences. 104 

Participants’ task was to indicate via a button press which of the two sound fragments was part of 105 

the previous sentence. For the word task, two words were displayed  106 

Table 1. Stimuli and task examples 
sentence [bange helden] [plukken bloemen] en de [bruine vogels] [halen takken] 

[timid heroes] [pluck flowers] and the [brown birds] [gather branches] 
word list [helden bloemen] [vogels takken] de en [plukken halen] [bange bruine] 

[heroes flowers] [birds branches] and the [pluck gather] [timid brown] 
 sentence word list 
 correct incorrect correct incorrect 
syllable /bɑ/ /lɑ/ /bɑ/ /lɑ/ 
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on the screen after each trial (a random word from the just presented sentence and one random 107 

word from all other sentences excluding “de” and “en”), and participants needed to indicate which 108 

of the two words was part of the sentence before. For the word combination task, participants were 109 

presented with two word pairs on the screen. Each of the four words was part of the just presented 110 

sentence, but only one of the pairs was in the correct order. Participants needed to indicate which 111 

of the two pairs was presented in the sentence before. Presented options for the sentence condition 112 

were always a grammatically and semantically plausible combination of words. See Table 1 for an 113 

example of the tasks for each condition (sentences and word lists). The three active tasks required 114 

participants to focus on the syllabic (syllable task), word (word task), or phrasal (word combination 115 

task) timescales. 116 

Procedure. At the beginning of each trial, participants were instructed to look at a fixation 117 

cross presented at the middle of the screen on a grey background. Audio recordings were presented 118 

after a random interval between 1.5-3 seconds; 1 second after the end of the audio, the task was 119 

presented. For the word and word combination task, this was the presentation of visual stimuli. 120 

For the syllable task, this entailed presenting the sound fragments one after each other (with a 121 

delay of 0.5 seconds in between). For the passive task, this was the instruction to press a button to 122 

continue. In total there were eight blocks (two conditions * four tasks) each lasting about 8 minutes. 123 

The order of the blocks was pseudo-randomized by independently randomizing the order of the 124 

tasks and the conditions. We then always presented the same task twice in a row to avoid task-125 

switching costs. As a consequence, condition was always alternated (a possible order of blocks 126 

would be: passive-sentence, passive-word list, word-sentence, word-word list, syllable-sentence, 127 

syllable-word list, word combination-sentence, word combination-word list). After the main 128 

experiment, an auditory localizer was collected which consisted of listening to 200ms sinewave 129 

and broadband sounds (centred at 0.5, 1, and 2 kHz; for the broadband at a 10% frequency band) 130 

at approximately equal loudness. Each sound had a 50ms linear on and off ramp and was presented 131 

for 30 times (with random inter-stimulus interval between 1 and 2 seconds). 132 

word bloemen 
[flowers] 

vaders 
[fathers] 

bloemen 
[flowers] 

vaders 
[fathers] 

word combination bange helden 
[timid heroes] 

halen bloemen 
[gather flowers] 

helden bloemen 
[heroes flowers] 

vogels bloemen 
[birds flowers] 

For each condition (sentence and word list) one example stimulus (top) and corresponding tasks are shown 
(bottom).  
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At arrival, participants filled out a screening. Electrodes to monitor eye movements and 133 

heart beat were placed (left mastoid was used as ground electrode) at an impedance below 15 134 

kiloOhm. Participants wore metal free clothes and fitted earmolds on which two of the three head 135 

localizers were placed (together with a final head localizer placed at the nasion). They then 136 

performed the experiment in the MEG. MEG was recorded using a 75-channel axial gradiometer 137 

CTF MEG system at a sampling rate of 1.2 kHz. After every block participants had a break, during 138 

which head position was corrected [19]. After the session, the headshape was collected using 139 

Polhemus digitizer (using as fiducials the nasion and the entrance of the ear canals as positioned 140 

with the earmolds). For each participant, an MRI was collected with a 3 T Siemens Skyra system 141 

using the MPRAGE sequence (1mm isotropic). Also for the MRI acquisition participants wore the 142 

earmolds with vitamin pills to optimize the alignment. 143 

Behavioural analysis. We performed a linear mixed model analysis with fixed factors task 144 

(syllable, word, and word combination) and condition (sentence and word list) as implemented by 145 

lmer in R4.1.0. The dependent variable was accuracy. First, any outliers were removed (values 146 

more extreme than median± 2.5 IQR). Then, we investigated what the best random model was, 147 

including a random intercept or a random slope for one or two of the factors. The models with 148 

varying random factors were compared with each other using an ANOVA. With no significant 149 

difference, the model with the lowest number of factors was included (with minimally a random 150 

intercept). Finally, lsmeans was used for follow-up tests using the kenward-roger method to 151 

calculate the degrees of freedom from the linear mixed model. For significant interactions, we 152 

investigated the effect of condition per task. For main effects, we investigated pairwise 153 

comparisons. We corrected for multiple comparisons using adjusted Bonferroni corrections. For 154 

all further reported statistical analyses for the MEG data, we followed the same procedure (except 155 

that there was one more level of task, i.e. the passive task). To avoid exploding the amount of 156 

comparisons, we a-priori decided for any task effects in the MEG analysis to only compare the 157 

individual tasks with the phrase task. 158 

MEG pre-processing. First source models from the MRI were made using a surface-based 159 

approach in which grid points were defined on the cortical sheet using the automatic segmentation 160 

of freesurfer6.0 [20] in combination with pre-processing tools from the HCP workbench1.3.2 [21] 161 

to down-sample the mesh to 4k vertices per hemisphere. The MRI was co-registered to the MEG 162 
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using the previously defined fiducials as well as an automatic alignment of the MRI to the 163 

Polhemus headshape using the Fieldtrip20211102 software [22].  164 

Pre-processing involved epoching the data between -3 and +7.9 seconds (+3 relative to the 165 

longest sentence of 4.9 sec) around sentence onset. We applied a dftfilter at 50, 100 and 150 Hz to 166 

remove line noise, a Butterworth bandpass filter between 0.6 and 100 Hz, and performed baseline 167 

correction (-0.2-0 sec baseline). Trials with excessive movements or squid jumps were removed 168 

via visual inspection (20.1±18.5 trials removed; mean±standard deviation). Then data was 169 

resampled to 300 Hz and we performed ICA decomposition to correct for eye blinks/movement 170 

and heart beat artefacts (4.7±0.99 components removed; mean±standard deviation). Trials with 171 

remaining artefacts were removed by visual inspection (11.3±12.4 trials removed; mean±standard 172 

deviation). Then we applied a lcmv filter to transform the data to have single-trial source space 173 

representations. A common filter across all trials was calculated using a fixed orientation and a 174 

lambda of 5%. We only extracted time courses for our regions of interest (superior temporal gyrus 175 

[1,29,32,33], medial temporal gyrus [6,8,14], and inferior frontal cortex [17,18,19]; numbers 176 

correspond to label-coding from the aparc parcellations implemented in Freesurfer). These time 177 

courses were baseline corrected (-0.2 to 0 seconds). To reduce computational load and to ensure 178 

that we used relevant data within the ROI, we extracted the top 20 PCA components per ROI for 179 

all following analyses based on a PCA using the time window of interest (0.5-3.7 seconds; 0.5 to 180 

ensure that all initial evoked responses were not included and 3.7 as it corresponds to the shortest 181 

trials). 182 

Mutual information analysis. First, we extracted the speech envelopes by following 183 

previous procedures [12, 13, 23]. The acoustic waveforms (third-order Butterworth filter) were 184 

filtered in eight frequency bands (100-8000 Hz) equidistant on the cochlear frequency map [24]. 185 

The absolute of the Hilbert transform was computed, we low-passed the data at 100 Hz (third order 186 

Butterworth) and then down-sampled to 300 Hz (matching the MEG sampling rate). Then, we 187 

averaged across all bands. 188 

Mutual information (MI) was calculated between the filtered speech envelopes and the 189 

filtered MEG data at three different frequency bands corresponding to information content at 190 

different linguistic hierarchical levels: phrase (0.8-1.1 Hz), word (1.9-2.8 Hz), and syllable (3.5-191 

5.0 Hz). Our main analysis focusses on the phrasal band, as that is where our previous study found 192 
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the strongest effects [12], but for completeness we also report on the other bands. Mutual 193 

information was estimated after the evoked response (0.5 sec) until the end of the stimulus at five 194 

different delays (60, 80, 100, 120, and 140 ms) and averaged across delays between the phase 195 

estimations of the envelopes and MEG data. A single MI value was generated per condition per 196 

ROI by concatenating all trials before calculating the MI (MEG and speech). Statistical analysis 197 

was performed per ROI per frequency band. 198 

Power analysis. Power analysis was performed to compare the MI results with absolute 199 

power changes, as any MI differences could be a consequence of signal-to-noise differences in the 200 

original data (which would be reflected in power effects). We first extracted the time-frequency 201 

representation for all conditions and ROIs separately. To do so, we performed a wavelet analysis 202 

with a width of 4, with a frequency of interest between 1 and 30 (step size of 1) and time of interest 203 

between -0.2 and 3.7 sec (step size of 0.05 sec). We extracted the logarithm of the power and 204 

baseline corrected the data in the frequency domain using a -0.3 and -0.1 sec window. For four 205 

different frequency bands (delta: 0.5-3.0 Hz; theta: 3.0-8.0 Hz; alpha: 8.0-15.0 Hz; beta: 15.0-25.0 206 

Hz) we extracted the mean power in the 0.5-3.7 sec time window per task, condition and ROI. 207 

Again, our main analysis focusses on the delta band as that is where the main previous results were 208 

found [12], but we also report on the other bands for completeness. For each ROI we performed 209 

the statistical analysis on power as described in the behavioural analysis.  210 

Connectivity analysis. For the coherence analysis we repeated all pre-processing as in the 211 

power analysis, but separately for the left and right hemisphere (as we did not expect connections 212 

for PCA across hemispheres), after which we averaged the connectivity measure (using the Fourier 213 

spectrum and not the power spectrum). We used the debiased weighted phase lag index (WPLI) 214 

for our connectivity measure, which ensures that no zero-lag phase differences are included in the 215 

estimation (avoiding effects due to volume conduction). All connections between the three ROIs 216 

were investigated for the mean WPLI for the four different frequency bands in the 0.5-3.7 sec time 217 

window. Also in this case, the same statistical analysis was applied. 218 

Power control analysis. The reliability of phase estimations is influenced by the signal-to-219 

noise ratio of the signal [25]. As a consequence, trials with generally high power have more reliable 220 

phase estimations compared to low power trials. This could influence any measure relying on this 221 

phase estimation, such as MI and connectivity [26, 27]. It is therefore possible that power 222 
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differences between conditions lead to differences between connectivity or MI. To ensure that our 223 

reported effects are not due to signal-to-noise effects, we controlled any significant power 224 

difference between conditions for the connectivity and MI analysis. To do this, we iteratively 225 

removed the highest and lowest power trials between the mean highest and mean lowest of the two 226 

relevant conditions (either collapsing trials across tasks/conditions or using individual conditions). 227 

We repeated this until the original condition with the highest power had lower power than the other 228 

condition. Then we repeated the analysis and statistics, investigating if the effect of interest was 229 

still significant. The control analysis is reported along the main MI and connectivity sections. 230 

  231 
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Results 232 

Behaviour. Overall task performance 233 

was above chance and participants 234 

complied with task instructions (Figure 235 

1). We found a significant interaction 236 

between condition and task (F(2, 72.0) = 237 

11.51, p < 0.001) as well as a main effect 238 

of task (F(2, 19.7) = 44.19, p < 0.001) and 239 

condition (F(2, 72.0) = 29.0, p < 0.001). 240 

We found that only for the word-241 

combination (phrasal-level) task, the 242 

sentence condition had a significantly 243 

higher accuracy than the word list 244 

condition (t(54.0) = 6.97, p < 0.001). For 245 

the other two tasks, no significant 246 

condition effect was found (syllable: 247 

t(54.0) = 0.62, p = 1.000; word list: 248 

t(54.0) = 1.74, p = 0.176). Investigating the main effect of task indicated a difference between all 249 

tasks (phrase-syllable: t(18.0) = 3.71, p = 0.003; phrase-word: t(22.4) = -6.34, p < 0.001; syllable-250 

word: t(19.2)=-8.67, p < 0.001). 251 

Mutual information. The overall time-frequency response in the three different regions of 252 

interest using the top-20 PCA components was as expected, with an initial evoked response 253 

followed by a more sustained response to the ongoing speech (Figure 2). From these regions-of-254 

interest, we extracted mutual information in three different frequency bands (phrasal, word, and 255 

syllable). Here, we focus on the phrasal band as this is the band that differentiates word lists from 256 

sentences and showed the strongest modulation for this contrast in our previous study [12]. Mutual 257 

Information results for all other bands are reported in the supplementary materials. 258 

Figure 1. Behavioral results. Accuracy for the three different 
tasks. Double asterisks indicate significance at the 0.01 level. 
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 For the phrasal timescale in STG, we found significantly higher MI in the sentence 259 

compared to the word list condition (F(3,126) = 67.39, p < 0.001; Figure 3). No other effects were 260 

significant (p > 0.1). This finding paralleled the effect found in Kaufeld et al., [12]. For the MTG, 261 

we saw a different picture: Besides the main effect of condition (F(3,126) = 50.24, p < 0.001), an 262 

interaction between task and condition was found (F(3,126) = 2.948, p = 0.035). We next 263 

investigated the effect of condition per task and found for all tasks except the passive task a 264 

significant effect of condition, with stronger MI for the sentence condition (passive: t(126) = 1.07, 265 

p = 0.865; syllable: t(126) = 4.06, p = 0.003; word: t(126) = 5.033, p < 0.001; phrase: t(126) = 266 

4.015, p = 0.003). For the IFG, we found a main effect of condition (F(3,108) = 21.89, p < 0.001) 267 

as well as a main effect of task (F(3,108) = 2.74, p = 0.047). The interaction was not significant 268 

Figure 3. Mutual information (MI) analysis at the phrasal band (0.8-1.1 Hz) for the three different ROIs. Single and 
double asterisks indicate significance at the 0.05 and 0.01 level. T indicates trend level significance (p < 0.1). Inset at 
the top left of the graph indicate whether a main effect of condition was present (with higher MI for sentences versus 
wordlists). 

 

Figure 2. Anatomical regions of interests (ROIs). A) ROIs displayed one exemplar participant surface. B) Time-
frequency response at each ROI. STG = superior temporal gyrus. MTG = medial temporal gyrus. IFG = inferior frontal 
gyrus. 
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(F(3,108) = 1.49, p = 0.220). Comparing the phrasal task with the other tasks indicated higher MI 269 

for the phrasal compared to the word task (t(111) = 2.50, p = 0.028). We also found a trend for the 270 

comparison between the phrasal and the syllable task (t(111) = 2.17, p = 0.064), as well as the 271 

phrasal and the passive task (t(111) = 2.25, p = 0.052).  272 

 For the word and syllable frequency bands no interactions were found (all p > 0.1; 273 

Supplementary Figure 1 and 2). For all six models there was a significant effect of condition, with 274 

stronger MI for word lists compared to sentences (all p < 0.001). The main effect of task was not 275 

significant in any of the models (p > 0.1; for the MTG syllable level there was a trend: F(3,126) = 276 

2.40, p = 0.071).  277 

 When running the power control analysis, we did not find that significant effects in power 278 

differences (see next section; mostly due to main effects of condition) influenced our tracking 279 

results for any of the bands investigated.  280 

Power. We repeated the linear mixed modelling using power instead of MI to investigate 281 

if power changes paralleled the MI effects. For the delta band, we found for the STG a main effect 282 

of condition (F(1,18) = 6.11, p = 0.024) and task (F(3,108) = 3.069, p = 0.031). For the interaction 283 

we found a trend (F(3,108) = 2.620, p = 0.054). Overall sentences had stronger delta power than 284 

word lists. We found lower power for the phrase compared to the passive task (t(111) = 2.31, p = 285 

0.045) and lower power for the phrase compared to the syllable task (t(111) = 2.43, p = 0.034). 286 

There was no significant difference between the phrase and word task (t(111) = 0.642, p = 1.00). 287 

The MTG delta power effect overall paralleled the STG effects with a significant condition 288 

(F(1,124.94) = 12.339, p < 0.001) and task effect (F(3,124.94) = 4.326, p = 0.006). The interaction 289 

was trend significant (F(3,124.94) = 2.58, p = 0.056). Pairwise comparisons of the task effect 290 

showed significantly stronger power for the phrase compared to the passive task (t(128) = 2.98, p 291 

= 0.007) and lower power for the phrase compared to the syllable task (t(128) = 3.10, p = 0.024). 292 

The passive-word comparison was not significant (t(128) = 2.577, p = 0.109). Finally, for the IFG 293 
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we only found a trend effect for condition (F(1,123.27) = 4.15, p = 0.057), with stronger delta 294 

power in the sentence condition. 295 

The results for all other bands can be found in the supplementary materials (Supplementary 296 

figure 3-5). In summary, no interaction effects were found for any of the models (all p > 0.1). In 297 

all bands, power was generally higher for sentences than for word lists. Any task effect generally 298 

showed stronger power for the lower hierarchical level (e.g. generally higher power for passive 299 

versus phrasal tasks).  300 

Connectivity. Overall connectivity patterns showed the strongest connectivity in the delta 301 

and alpha frequency band (Figure 5). In the delta band, we found a main effect of task for the STG-302 

IFG connectivity (F(3, 122.06) = 4.1078, p = 0.008). Follow-up analysis showed a significant 303 

Figure 4. Power effects for the different ROIs. Single and double asterisks indicate significance at the 0.05 and 0.01 
level. T indicates trend significance (p < 0.1) Inset at the left top of the graph indicate whether a main effect of condition 
was present (with higher activity for sentences versus wordlists). 

Figure 5. Connectivity pattern between anatomical regions of interests (ROIs). A) ROI connections displayed one 
exemplar participant surface. B) Time-frequency weighted phase-lagged index (WPLI) response at each ROI.  

Figure 6. WPLI effects for the different ROIs. Single and double asterisks indicate significance at the 0.05 and 0.01 
level after correcting for power differences between the two conditions (we plot the original data, not corrected for 
power, as we can only perform pairwise power and consequently data will be different for each control). 
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difference between the phrasal and passive task (t(125) = 3.254, p = 0.003). The other comparisons 304 

with the phrasal task were not significant. The effect of task remained significant even when 305 

correcting for power differences between the passive and phrasal task (F(1, 53.02) = 12.39, p < 306 

0.001; note the change in degrees of freedom as only the passive and phrasal task were included 307 

in this mixed model as any power correction is done on pairs). Initially, we also found main effects 308 

of condition for the delta and beta band for the MTG-IFG connectivity (stronger connectivity for 309 

the sentence compared to the word list condition), however after controlling for power, these 310 

effects did not remain significant.311 
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Discussion 312 

In the current study, we investigated the effects of ‘additional’ tasks on the neural tracking of 313 

sentences and word lists at temporal modulations that matched phrasal rates. Different nodes of 314 

the language network showed different tracking patterns. In STG, we found stronger tracking of 315 

phrase-timed dynamics in sentences compared to word lists, independent of task. However, in 316 

MTG we found this sentence-improved tracking only for active tasks. In IFG we also found an 317 

overall increase of tracking for sentences compared to word lists. Additionally, stronger phrasal 318 

tracking was found for the phrasal-level word-combination task compared to the other tasks 319 

(independent of stimulus type; note that for the syllable and passive comparison we found a trend), 320 

which was paralleled with increased IFG-STG connectivity in the delta band for the word 321 

combination task. This suggests that tracking at phrasal time-scales depends both on the linguistic 322 

information present in the signal, and on the specific task that is performed.  323 

 The findings reported in this study are in line with previous results, with overall stronger 324 

tracking of low frequency information in the sentences compared to the word list condition [12]. 325 

Crucially, for the stimuli used in our study it has been shown that the condition effects are not due 326 

to acoustic differences in the stimuli and also do not occur for reversed speech [12]. It is therefore 327 

most likely that our results reflect an automatic extraction of relevant phrase-level information in 328 

sentences, indicating the automatic processing of participants as they understand the meaning of 329 

the speech they hear using structural sentence information [2, 17, 28]. Overall, it did not seem that 330 

making participants pay attention to the temporal dynamics at the same hierarchical level through 331 

an additional task – instructing them to remember word combinations at the phrasal rate during 332 

word list presentation – could counter this main effect of condition. 333 

 Even though there was an overall main effect of condition, task did influence neural 334 

responses. Interestingly, the task effects differed for the three regions of interest. In the STG, we 335 

found no task effects, while in the MTG we found an interaction between task and condition. In 336 

the MTG increased phrasal-level tracking for sentences only occurred when participants were 337 

specifically instructed to perform an active task on the materials. It therefore seems that in MTG 338 

all levels of linguistic information are used to do an active language operation on the stimuli. This 339 

is in line with previous theoretical and empirical research suggesting a strong top-down 340 

modulatory response of speech processing in which predictions flow from the highest hierarchical 341 
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levels (e.g. syntax) down to lower levels (e.g. phonemes) to aid language understanding [5, 29, 342 

30]. As in the word list condition no linguistic information is present at the phrasal-rate, this 343 

information cannot be used to provide useful feedback for processing lower-level linguistic 344 

information. Instead, it could have been expected that the same type of increased tracking should 345 

have happened at the word-rate rather than the phrasal-rate for word lists (i.e., stronger word-rate 346 

tracking for word lists for the active tasks versus passive task). This effect was not found; this 347 

could either be attributed to different computational operations occurring at different hierarchical 348 

levels or to signal-to-noise/signal detection issues.  349 

It is interesting that MTG, but not STG, showed an interaction effect. Both MTG and STG 350 

are strong hubs for language processing and have been involved in many studies which contrasted 351 

pseudo-words and words [31-33]. It is likely that STG does the lower-level processing of the two 352 

regions, as it is earlier in the cortical hierarchy, thereby being more involved in initial segmentation 353 

and initial phonetic abstraction rather than a lexical interface [31]. This could also explain why 354 

STG does not show task specific tracking effects; STG could be earlier in a workload bottleneck, 355 

receiving feedback independent of task, while MTG-feedback is recruited only when active 356 

linguistic operations are required. Alternatively, it is possible that either small differences in the 357 

acoustics are detected by STG (even though this effect was not previously found with the same 358 

stimuli [12]), or that our blocked designed put participants in a sentence or word list “mode” which 359 

could have influenced the state of these early hierarchical regions. 360 

 The IFG was the only region that showed an increase in phrasal-rate tracking specifically 361 

for the word-combination task. Note, however, that this was a weak effect, as the comparison 362 

between the phrase task and the syllable and passive task only reached a trend towards significance. 363 

Nonetheless, this effect is interesting for understanding the role of IFG in language. Traditionally, 364 

IFG has been viewed as a hub for articulatory processing [31], but its role during speech 365 

comprehension, specifically in syntactic processing, has also been acknowledged [1, 29, 34-36]. 366 

Integrating information across time and relative timing is essential for syntactic processing [2, 35, 367 

37], and IFG feedback has been shown to occur in temporal dynamics at lower (delta) rates during 368 

sentence processing [38, 39]. However, it has also been shown that syntactic-independent verbal 369 

working memory chunking tasks recruit the IFG [35, 40-42]. This is in line with our findings that 370 

show that IFG is involved when we need to integrate across temporal domains either in a language-371 
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specific domain (sentences versus word lists) or for language-unspecific tasks (word combination 372 

versus other tasks). We also show increased delta-connectivity with STG for the only temporal-373 

integration tasks in our study (i.e., the word combination task), independent of the linguistic 374 

features in the signal. Our results therefore support a role of the IFG as a combinatorial hub 375 

integrating information across time [43-45]. 376 

 In the current study we investigated power as a neural readout during language 377 

comprehension from speech. This was both to ensure that any tracking effects we found were not 378 

due to overall signal-to-noise (SNR) differences, as well as to investigate task-and-condition 379 

dependent computations. SNR is better for conditions with higher power, which therefore leads to 380 

more reliable phase estimations, critical for computing MI as well as connectivity [25]. We will 381 

therefore discuss the power differences as well as their consequences for the interpretation of the 382 

MI and connectivity results. Generally, it seemed that there was stronger power in the sentence 383 

compared to the word list condition in the delta band. However, the pattern was very different than 384 

the MI pattern. For the power, the word list-sentence difference was the biggest in the passive 385 

condition. In contrast, for the MI there was either no task difference (in STG) or even a stronger 386 

effect for the active tasks (MTG; note that the power interaction was trend significant STG and 387 

MTG). We therefore think it unlikely that our MI effects were purely driven by SNR differences, 388 

and our power control analysis is consistent with this interpretation. Instead, power seems to reflect 389 

a different computation than the tracking, where more complex tasks generally lead to lower power 390 

across almost all tested frequency bands. As most of our frequency bands are on the low side of 391 

the spectrum (up to beta), it is expected that more complex tasks reduce the low-frequency power 392 

[46, 47]. It is interesting to observe that this did not reduce the connectivity for the delta band 393 

between IFG and STG, but rather increased it. It has been suggested that low power can potentially 394 

increase the available computational space, as it increases the entropy in the signal [48, 49]. 395 

Finally, in the power comparisons for the theta, alpha, and beta band we found stronger power for 396 

the sentence compared to the word list condition, which could reflect that listening to a natural 397 

sentence is generally less effortful than listening to a word list.  398 

 In the current manuscript we describe tracking of ongoing temporal dynamics. However, 399 

the neural origin of this tracking is unknown. While we can be sure that modulations in the phrasal-400 

rate follow changes in the phrasal-rate of the acoustic input, it is unclear what the mechanism 401 
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behind this modulation is. It is possible that there is stronger alignment of neural oscillations with 402 

the acoustic input at the phrasal rate [50, 51]. However, it could as well be that there is a phrasal 403 

time-scale or slower operation happening while processing the incoming input (which de facto is 404 

at the same time-scale as the phrasal structure occurring in the input). This operation, in response 405 

to stimulus input, could just as well induce the patterns we observe [52, 53]. Finally, it is possible 406 

that there are specific responses as a consequence of the syntactic structure, task, or statistical 407 

regularities occurring as specific events at phrasal time-scales [51, 54, 55].  408 

It is difficult to decide on the most natural task in an experimental setting, that best reflects 409 

how we use language in a natural setting. This is probably why such a vast number of different 410 

tasks have been used in the literature. Our study (and many before us) indicates that during passive 411 

listening, we naturally attend to all levels of linguistic hierarchy. This is consistent with the widely 412 

accepted notion that the meaning of a natural sentence requires understanding the compositionality 413 

of words in a grammatical structure. For most research questions in language, it therefore is 414 

understandable to use a task that mimics this automatic natural understanding of a sentence. Here, 415 

we show that automatic understanding of linguistic information, and all the processing that this 416 

entails, cannot be countered to substantially change the consequences for neural readout, even 417 

when explicitly instructing participants to pay attention to particular time-scales.  418 
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Supplementary figures 419 

 420 

  421 

Supplementary Figure 1. Mutual information (MI) analysis at the syllable (3.5-5.0 Hz) and word rate (1.9-2.8 Hz) 
for the three different ROIs. Double asterisks indicate significance at the 0.01 level. Inset at the top left of the graph 
indicate whether a main effect of condition was present (with higher MI for wordlists versus sentences). 
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 422 

Supplementary figure 2. Power effects for the different ROIs and different bands. Single and double asterisks indicate 
significance at the 0.05 and 0.01 level. T indicates trend significance (p < 0.1) Inset at the top left of the graph indicate 
whether a main effect of condition was present (with higher activity for sentences versus wordlists). 
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  423 
Supplementary figure 3. WPLI effects for the different ROIs and different bands. Connectivity is displayed before 
correcting for power differences. None of the effects survived correcting for power differences. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479571
http://creativecommons.org/licenses/by/4.0/


 
 

23 
 

Acknowledgments 424 
AEM was supported by the Netherlands Organization for Scientific Research (NWO; grant 425 
016.Vidi.188.029), and a Max Planck Research Group and a Lise Meitner Research Group “Language and 426 
Computation in Neural Systems” from the Max Planck Society.  427 
 428 

References 429 

1. Friederici AD. The brain basis of language processing: from structure to function. Physiol Rev. 430 
2011;91(4):1357-92. 431 
2. Martin AE. A compositional neural architecture for language. J Cognit Neurosci. 2020:1-20. 432 
3. Halle M, Stevens K. Speech recognition: A model and a program for research. IRE transactions on 433 
information theory. 1962;8(2):155-9. 434 
4. Marslen-Wilson WD, Welsh A. Processing interactions and lexical access during word recognition 435 
in continuous speech. Cognitive psychology. 1978;10(1):29-63. 436 
5. Martin AE. Language processing as cue integration: Grounding the psychology of language in 437 
perception and neurophysiology. Frontiers in psychology. 2016;7:120. 438 
6. Pinker S, Jackendoff R. The faculty of language: what's special about it? Cognition. 2005;95(2):201-439 
36. 440 
7. Giraud AL, Poeppel D. Cortical oscillations and speech processing: emerging computational 441 
principles and operations. Nat Neurosci. 2012;15(4):511-7. 442 
8. Peelle JE, Davis MH. Neural oscillations carry speech rhythm through to comprehension. Frontiers 443 
in Psychology. 2012;3. 444 
9. Rosen S. Temporal information in speech: acoustic, auditory and linguistic aspects. Philosophical 445 
Transactions of the Royal Society of London Series B: Biological Sciences. 1992;336(1278):367-73. 446 
10. Ding N, Patel AD, Chen L, Butler H, Luo C, Poeppel D. Temporal modulations in speech and music. 447 
Neurosci Biobehav Rev. 2017;81:181-7. 448 
11. Pellegrino F, Coupé C, Marsico E. A cross-language perspective on speech information rate. 449 
Language. 2011:539-58. 450 
12. Kaufeld G, Bosker HR, Ten Oever S, Alday PM, Meyer AS, Martin AE. Linguistic structure and 451 
meaning organize neural oscillations into a content-specific hierarchy. J Neurosci. 2020;40(49):9467-75. 452 
13. Keitel A, Gross J, Kayser C. Perceptually relevant speech tracking in auditory and motor cortex 453 
reflects distinct linguistic features. PLoS Biol. 2018;16(3):e2004473. 454 
14. Luo H, Poeppel D. Phase patterns of neuronal responses reliably discriminate speech in human 455 
auditory cortex. Neuron. 2007;54(6):1001-10. 456 
15. Zoefel B, Archer-Boyd A, Davis MH. Phase entrainment of brain oscillations causally modulates 457 
neural responses to intelligible speech. Curr Biol. 2018;28(3):401-8. e5. 458 
16. Doelling KB, Arnal LH, Ghitza O, Poeppel D. Acoustic landmarks drive delta–theta oscillations to 459 
enable speech comprehension by facilitating perceptual parsing. NeuroImage. 2014;85:761-8. 460 
17. Ding N, Melloni L, Zhang H, Tian X, Poeppel D. Cortical tracking of hierarchical linguistic structures 461 
in connected speech. Nat Neurosci. 2016;19(1):158-64. 462 
18. Kayser SJ, Ince RA, Gross J, Kayser C. Irregular speech rate dissociates auditory cortical 463 
entrainment, evoked responses, and frontal alpha. J Neurosci. 2015;35(44):14691-701. 464 
19. Stolk A, Todorovic A, Schoffelen J-M, Oostenveld R. Online and offline tools for head movement 465 
compensation in MEG. NeuroImage. 2013;68:39-48. 466 
20. Fischl B. FreeSurfer. NeuroImage. 2012;62(2):774-81. 467 
21. Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, et al. The minimal 468 
preprocessing pipelines for the Human Connectome Project. NeuroImage. 2013;80:105-24. 469 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479571
http://creativecommons.org/licenses/by/4.0/


 
 

24 
 

22. Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: open source software for advanced 470 
analysis of MEG, EEG, and invasive electrophysiological data. Computational intelligence and 471 
neuroscience. 2011;2011:1. 472 
23. Gross J, Hoogenboom N, Thut G, Schyns P, Panzeri S, Belin P, et al. Speech rhythms and 473 
multiplexed oscillatory sensory coding in the human brain. PLoS Biol. 2013;11(12):e1001752. 474 
24. Smith ZM, Delgutte B, Oxenham AJ. Chimaeric sounds reveal dichotomies in auditory perception. 475 
Nature. 2002;416(6876):87-90. 476 
25. Zar JH. Biostatistical Analysis. 4 ed. Englewood Cliffs, New Jersey: Prentice Hall; 1998. 477 
26. Bastos AM, Schoffelen J-M. A tutorial review of functional connectivity analysis methods and their 478 
interpretational pitfalls. Frontiers in systems neuroscience. 2016;9:175. 479 
27. Ince RA, Giordano BL, Kayser C, Rousselet GA, Gross J, Schyns PG. A statistical framework for 480 
neuroimaging data analysis based on mutual information estimated via a gaussian copula. Hum Brain 481 
Mapp. 2017;38(3):1541-73. 482 
28. Yahav PH-s, Golumbic EZ. Linguistic processing of task-irrelevant speech at a Cocktail Party. Elife. 483 
2021;10:e65096. 484 
29. Hagoort P. The core and beyond in the language-ready brain. Neurosci Biobehav Rev. 485 
2017;81:194-204. 486 
30. Federmeier KD. Thinking ahead: The role and roots of prediction in language comprehension. 487 
Psychophysiology. 2007;44(4):491-505. 488 
31. Hickok G, Poeppel D. The cortical organization of speech processing. Nature Reviews 489 
Neuroscience. 2007;8(5):393-402. 490 
32. Dronkers NF. The neural architecture of the language comprehension network: converging 491 
evidence from lesion and connectivity analyses. Frontiers in systems neuroscience. 2011;5:1. 492 
33. Vouloumanos A, Kiehl KA, Werker JF, Liddle PF. Detection of sounds in the auditory stream: event-493 
related fMRI evidence for differential activation to speech and nonspeech. J Cognit Neurosci. 494 
2001;13(7):994-1005. 495 
34. Nelson MJ, El Karoui I, Giber K, Yang X, Cohen L, Koopman H, et al. Neurophysiological dynamics 496 
of phrase-structure building during sentence processing. Proc Natl Acad Sci. 2017;114(18):E3669-E78. 497 
35. Dehaene S, Meyniel F, Wacongne C, Wang L, Pallier C. The neural representation of sequences: 498 
from transition probabilities to algebraic patterns and linguistic trees. Neuron. 2015;88(1):2-19. 499 
36. Zaccarella E, Meyer L, Makuuchi M, Friederici AD. Building by syntax: the neural basis of minimal 500 
linguistic structures. Cereb Cortex. 2017;27(1):411-21. 501 
37. Martin AE, Doumas LA. Predicate learning in neural systems: using oscillations to discover latent 502 
structure. Current Opinion in Behavioral Sciences. 2019;29:77-83. 503 
38. Park H, Ince RA, Schyns PG, Thut G, Gross J. Frontal top-down signals increase coupling of auditory 504 
low-frequency oscillations to continuous speech in human listeners. Curr Biol. 2015;25(12):1649-53. 505 
39. Keitel A, Gross J. Individual human brain areas can be identified from their characteristic spectral 506 
activation fingerprints. PLoS Biol. 2016;14(6):e1002498. 507 
40. Osaka N, Osaka M, Kondo H, Morishita M, Fukuyama H, Shibasaki H. The neural basis of executive 508 
function in working memory: an fMRI study based on individual differences. NeuroImage. 2004;21(2):623-509 
31. 510 
41. Fegen D, Buchsbaum BR, D'Esposito M. The effect of rehearsal rate and memory load on verbal 511 
working memory. NeuroImage. 2015;105:120-31. 512 
42. Koelsch S, Schulze K, Sammler D, Fritz T, Müller K, Gruber O. Functional architecture of verbal and 513 
tonal working memory: an FMRI study. Hum Brain Mapp. 2009;30(3):859-73. 514 
43. Gelfand JR, Bookheimer SY. Dissociating neural mechanisms of temporal sequencing and 515 
processing phonemes. Neuron. 2003;38(5):831-42. 516 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479571
http://creativecommons.org/licenses/by/4.0/


 
 

25 
 

44. Schapiro AC, Rogers TT, Cordova NI, Turk-Browne NB, Botvinick MM. Neural representations of 517 
events arise from temporal community structure. Nat Neurosci. 2013;16(4):486-92. 518 
45. Skipper JI. The NOLB model: A model of the natural organization of language and the brain. 2015. 519 
46. Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by 520 
inhibition. Front Hum Neurosci. 2010;4. 521 
47. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review 522 
and analysis. Brain Res Rev. 1999;29(2):169-95. 523 
48. Hanslmayr S, Staudigl T, Fellner M-C. Oscillatory power decreases and long-term memory: the 524 
information via desynchronization hypothesis. Front Hum Neurosci. 2012;6:74. 525 
49. Ten Oever S, Sack AT. Oscillatory phase shapes syllable perception. Proc Natl Acad Sci. 526 
2015;112(52):15833-7. 527 
50. Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE. Entrainment of neuronal oscillations as a 528 
mechanism of attentional selection. science. 2008;320(5872):110-3. 529 
51. Obleser J, Kayser C. Neural entrainment and attentional selection in the listening brain. Trends 530 
Cogn Sci. 2019;23(11):913-26. 531 
52. Meyer L, Sun Y, Martin AE. Synchronous, but not entrained: Exogenous and endogenous cortical 532 
rhythms of speech and language processing. Language, Cognition and Neuroscience. 2019:1-11. 533 
53. Zoefel B, Ten Oever S, Sack AT. The involvement of endogenous neural oscillations in the 534 
processing of rhythmic input: More than a regular repetition of evoked neural responses. Front Neurosci. 535 
2018;12:95. 536 
54. Ten Oever S, Martin AE. An oscillating computational model can track pseudo-rhythmic speech by 537 
using linguistic predictions. Elife. 2021;10:e68066. 538 
55. Frank SL, Yang J. Lexical representation explains cortical entrainment during speech 539 
comprehension. PloS one. 2018;13(5):e0197304. 540 

 541 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479571
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479571
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479571
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479571
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479571
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479571
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479571
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479571
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479571
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479571
http://creativecommons.org/licenses/by/4.0/

