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 13 

ABSTRACT 14 

 15 

Protein classification is a cornerstone of biology that relies heavily on alignment-based comparison of 16 

primary sequences. However, the systematic classification of large protein superfamilies is impeded by 17 

unique challenges in aligning divergent sequence datasets. We developed an alignment-free approach 18 

for sequence analysis and classification using embedding vectors generated from pre-trained protein 19 

language models that capture underlying protein structural-functional properties from unsupervised 20 

training on millions of biologically-observed sequences. We constructed embedding-based trees (with 21 

branch support) which depict hierarchical clustering of protein sequences and infer fast/slow evolving 22 

sites through interpretable sequence projections. Applied towards diverse protein superfamilies, 23 

embedding tree infers Casein Kinase 1 (CK1) as the basal protein kinase clade, identifies convergent 24 

functional motifs shared between divergent phosphatase folds, and infers evolutionary relationships 25 

between diverse radical S-Adenosyl-L-Methionine (SAM) enzyme families. Overall results indicate that 26 

embedding trees effectively capture global data structures, functioning as a general unsupervised 27 

approach for visualizing high-dimensional manifolds. 28 

 29 
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MAIN 31 

 32 

Alignment-based biological sequence comparison is a foundational aspect of bioinformatics. High-33 

quality sequence alignments are critical for accurate protein classification1, function prediction2, 34 

structure prediction3, and evolutionary inference4. While alignments excel at comparing closely-related 35 

sequences, comparing divergent sequences, especially beyond the “twilight zone” (~25% sequence 36 

identity)5 requires sophisticated methods. Profile-based methods such as PSI-BLAST6, HMMER7, and 37 

MMseqs8 are capable of comparing sequences within the twilight zone; however, performance depends 38 

on alignment parameters such as substitution matrices and gap penalties, derived from prior 39 

assumptions about protein evolution. Alignment-free strategies based on word-frequency9 or 40 

information theory10 have been proposed; however, these methods suffer from high false positive rates 41 

and cannot capture co-evolutionary information in primary sequences11. 42 

 43 

Recent advances in representation learning offer a powerful alternative for alignment-free comparison 44 

of protein sequences. Using the Transformer neural network architecture12, protein language models 45 

(LM) such as ESM-1b13 and ProtBERT14 capture the underlying grammar of biological sequences by 46 

training on large, universal proteome databases such as UniProt15. These models are trained by 47 

masked language modeling in which a random subset of residues in each sequence is replaced with 48 

blanks and the model is trained to fill in these blanks using contextual information. During this process, 49 

the model translates protein sequences into embedding vectors, which serve as a numerical matrix 50 

representation of the original sequence. Sequence embeddings are typically used as input features for 51 

machine learning to facilitate supervised predictions of various structure-functional properties16–18. 52 

Although useful, these methods utilize pre-trained LMs as a black-box feature extractor, resulting in 53 

limited interpretability and biological insight. Furthermore, these methods require labeled data, 54 

demanding additional labor for curation as well as introducing a potential source of error and bias. 55 

Placing an emphasis on unsupervised methods, we developed a set of analytical methods which utilize 56 

sequence embeddings as a proxy for protein sequences. 57 

 58 

We present a generalized, unsupervised protocol for hierarchical clustering on protein sequence 59 

embedding vectors. Benchmark studies across diverse protein superfamilies reveal that sequence 60 

embeddings can quantify long-distance evolutionary relationships, beyond the twilight zone of 61 

sequence similarity. Visualization of sequence projection vectors reveals cluster-specific sequence 62 

motifs, which enable explainability and provide additional support for embedding-based classification. 63 

Evaluation of multiple language models reveals that ESM-1b best captures the complexities of protein 64 

sequence space. We conclude that embedding-based, alignment-free evolutionary analyses offer a 65 

unique set of strengths — well-suited as an orthogonal, complementary approach to traditional 66 

alignment-based techniques for protein sequence analysis. 67 

 68 
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RESULTS 70 

 71 

Sequence embeddings enable comparisons across long evolutionary distances 72 

 73 

 74 
Figure 1. Embedding vectors encode a nuanced description of protein sequence which facilitates comparative analyses 75 
between diverse proteins. (A) On the far left, we show a graphical representation of a Transformer-based protein Language 76 
Model (LM) consisting of an encoder and a decoder module. A zoomed inset depicts major components within the last 77 
attention block in the encoder stack. Pairwise contacts can be inferred as a function of the attention matrix19. Sequence 78 
projections, calculated as a function of the embedding vector, correspond to fast/slow evolving regions. The example was 79 
generated from the kinase domain sequence of PKAα (UniProt: P17612) using the ESM-1b model13. (B) Pairwise structural 80 
contacts are shown for the crystal structure of PKAα (PDB: 3POO) defined by C-alpha contacts <7.5 Å. Sequence 81 
conservation was calculated by the Jensen-Shannon divergence. (C) A graphical overview shows how to calculate embedding 82 
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distance which provides an embedding-based protocol for pairwise comparison. (D) Three scatter plots depict the relationship 83 
between sequence and structure (left), sequence and embedding (middle), and embedding and structure (right). Histograms 84 
show the distribution of sequence identities, embedding distances, and structural similarities along their respective axes. The 85 
twilight zone of sequence identity is marked by a dotted red line at 25% identity5. Each point denotes a pairwise comparison 86 
between two protein domains. This data was collected by randomly selecting 1,000 proteins from the SCOP (Structural 87 
Classification of Proteins) database20, provided they were 80-250 residues long with a resolution of 2.3 Å or better. 88 

 89 

We evaluate the ability of protein LMs to model distances between highly divergent protein sequences 90 

using the encoder of ESM-1b13. LM encoders contain a variable number of Attention blocks12 where the 91 

majority of interpretable information accumulates at the last Attention block of the encoder (Figure 1A). 92 

While previous work has shown that pairwise structural contacts can be inferred as a mathematical 93 

function of the attention matrix19, we gained additional explainability through sequence projections 94 

derived from the embedding vector, calculated downstream to the attention matrix. Sequence 95 

projections vectors assign normalized weights to each residue in a given protein sequence (Supp 96 

Method 3.1) which infers important catalytic motifs and fast/slow evolving sites. We later demonstrate 97 

this in three diverse protein superfamilies. 98 

 99 

Embedding vectors facilitate meaningful pairwise comparisons because they encode a nuanced 100 

description of protein sequence information. The distance between two embedding vectors can be 101 

measured by calculating cosine similarity using the [CLS] special token which is appended before each 102 

sequence to capture the sequence-level information during standard preprocessing (Figure 1C). We 103 

measured embedding distances between 1000 randomly selected protein domains against standard 104 

measures of sequence similarity (percent identity) and structural similarity (RMSD). 105 

 106 

As expected, scatterplots show a close relationship between protein sequence and structural similarity 107 

that abruptly fades in the twilight zone (Figure 1D, left) (sequences below 25% identity)5,21,22. Notably, 108 

embedding distance is also correlated with sequence identity, displaying a similar boundary at ~25% 109 

(Figure 1D, middle). In contrast, embedding distance and structural similarity (RMSD) display a 110 

positive correlation (Figure 1D, right), but instead of a twilight zone, larger variance in embedding 111 

distance is observed with increased structural divergence (larger RMSD). This is because sequence 112 

embeddings capture a wide range of protein properties beyond 3D structure. Together, these 113 

comparisons suggest that protein sequence embeddings can be used as a proxy for sequence and 114 

structural similarity metrices and are suitable for comparing sequences in the twilight zone, where 115 

traditional alignment-based approaches have proven difficult. 116 

  117 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.478871doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.478871
http://creativecommons.org/licenses/by-nd/4.0/


Unsupervised hierarchical clustering of the protein embedding manifold. 118 

 119 

 120 
Figure 2. A graphical overview of analysis workflows starting from unaligned protein sequences (label highlighted in red) can 121 
lead to four possible endpoints (each label highlighted in green). The top row describes the protocol for creating an embedding 122 
tree. Under the representations, the circular arrow denotes our variational autoencoder (VAE)-based strategy for resampling 123 
the representation vectors. Resampled representations are used to build replicate trees to calculate branch support, 124 
represented by the red number underneath each fork on the tree. Representations, generated from embedding vectors, can 125 
also be used to create sequence projections (middle-right) or clustered using manifold learning algorithms such as UMAP 126 
(bottom-right). The branching route in the bottom row depicts a more traditional protocol for creating trees using multiple 127 
sequence alignments. There are many diverse algorithms for inferring trees using sequence alignments4. There are also 128 
various methods for resampling data to build replicate trees (such as bootstrapping) which is required for branch support 129 
calculations23. 130 

 131 

Harnessing the unique advantages of protein sequence embeddings, we developed orthogonal 132 

methods to facilitate alignment-free evolutionary analyses. We define a hierarchical clustering protocol 133 

for constructing embedding trees (Figure 2, top row) which provide meaningful organizations of protein 134 

sequence datasets and in some instances (see below) can also reflect evolutionary relationships. This 135 

protocol has three hyperparameters: the pre-trained LM, representation function, and distance metric 136 

(Supp Methods 2.1-2.3). 137 

 138 

We systematically assessed all hyperparameter combinations across diverse case studies using three 139 

enzyme superfamilies (Supp Table S1-S6), individually discussed over the next three sections. We 140 

used a variety of quantitative measures such as Sackin’s index24, treeness25, and silhouette 141 

coefficient26 to evaluate embedding trees (Supp Methods 3.3-3.7), which are also a general strategy 142 

for visualizing high-dimensional datasets — representing pairwise relationships using cophenetic 143 
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distance. To measure how well the tree preserves all pairwise distances observed in the original data, 144 

we quantify the Pearson’s correlation of the tree’s distance matrix versus the representation’s distance 145 

matrix. Using the same method, we also compared against manifold learning algorithms such as UMAP 146 

(Uniform Manifold Approximation and Projection)27,28. 147 

 148 

Across all sequence datasets, the ESM-1b model consistently produced trees that agree with 149 

previously established protein classifications schemes based on silhouette coefficient (Supp File S1-150 

S8), while also proposing new relationships. Although some LMs such as ProtBERT can be fine-tuned 151 

to gain better performance for specific tasks (Supp Methods 2.5), fine-tuned LMs did not yield 152 

significant improvements in embedding trees (Supp Table S7-8; Supp File S9-10). Given the overall 153 

performance of ESM-1b, all analyses throughout this study utilized this LM. Meaningfully compressing 154 

embedding vectors29 and defining a unified distance metric30 are both non-trivial problems. 155 

Consequently, the optimal representation function and distance metric varied across different protein 156 

datasets. 157 

 158 

Upon identifying an optimal tree, we quantify clustering confidence using a variational autoencoder 159 

(VAE)-based strategy. The confidence of each split is measured using VIBE (VAE-Implemented Branch 160 

support Estimation) (Figure 2, top-middle) — conceptually similar to bootstrap support, used in 161 

alignment-based phylogenies. As a generative model, the VAE learns the latent distribution of a given 162 

set of representations31, then resamples the distribution to generate replicate trees. We assign a value 163 

to each branch of the original tree, indicating the percentage of replicate trees which also exhibited the 164 

same corresponding bipartition. This is a particularly stringent metric which does not consider similar 165 

bipartitions if an exact match is not present. 166 

 167 
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Embedding trees infer the earliest diverging protein kinase group. 169 

 170 

 171 
Figure 3. Embedding-based analysis of the human protein kinases. (A) An embedding tree of the human protein kinase 172 
domains in a circular layout with major groups labeled. This tree was generated using the sum_spec representation function 173 
and TS-SS (triangle similarity sector similarity) distance32. To the left of the tree, we plot a UMAP projection using the same 174 
dataset. At the bottom of each graph, we provide the correlation coefficient which quantifies how well the all-vs-all pairwise 175 
distances denoted by each visualization reflects the pairwise distances from the original dataset. The full tree is provided in 176 
Supp File S1 and full technical details are provided in Supp Table S1. (B) Stylized trees showing the major kinase groups 177 
with VIBEs indicated by the red percentage values. The top topology was inferred by pruning unclassified kinases (“Others” 178 
group); full tree is provided in Supp File S3. The bottom topology was inferred by excluding the unclassified from the 179 
sequence set; full tree is provided in Supp File S4 and full technical details are provided in Supp Table S3. (C) Six major 180 
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protein kinase motifs are shown within zoomed insets of a sequence logo, generated from an alignment of 95,591 kinase 181 
sequences. Above the logo plot, we show secondary structure elements across the kinase domain with α-helices (red), β-182 
sheets (blue), and loops (black). (D) Sequence projections for three diverse protein kinase sequences: PKAα, HIPK2, 183 
VEGFR1, and CK1α-like. Positive peaks are shown in bright red and negative peaks are shown in icy blue. Sequence regions 184 
corresponding to the six major protein kinase motifs are designated by boxes. We note that CK1 kinases lack the APE motif 185 
and instead conserve a CK1-specific SIN motif at the equivalent position. Based on the optimal tree parameters, sequence 186 
projections were calculated using the sum_spec representation function. 187 

 188 

We applied our methods towards the protein kinase superfamily — an important gene family which 189 

plays diverse roles in cellular signaling and disease. Most protein kinases are classified into nine major 190 

groups based on sequence similarity33. Outside the protein kinase superfamily, lipid and small molecule 191 

kinases are distant relatives which conserve a similar bilobal structure34. Although structure-functional 192 

similarities strongly imply evolutionary relationships between all kinase-fold enzymes, further 193 

characterization has eluded traditional phylogenetic methods. 194 

 195 

We built an embedding tree of ~550 human kinase-fold enzymes using unaligned protein sequences, 196 

trimmed to the conserved catalytic domain. The optimal tree organizes sequences into nine major 197 

groups (Figure 3A) where the inferred between-group relationships are largely consistent with the 198 

widely-accepted alignment-based phylogeny33. In comparison, untrimmed sequences yield a trivial 199 

topology (Supp File S2; Supp Table S2), as meaningful evolutionary analyses require a common 200 

frame of reference. To further evaluate confidence, we generated 500 replicates for the kinase domain 201 

tree. Sequences from the “Others” category (not belonging to the major protein kinase groups) showed 202 

unstable placement across replicates. These rogue taxa are known to decrease branch support35, thus 203 

we used two common strategies to resolve this issue. The first strategy was to prune rogues from all 204 

trees prior to calculating VIBEs, while the second was to rebuild the tree excluding rogue sequences 205 

from the dataset (Figure 3B). For both trees, at least 60% of replicates place RGC, TKL, and TK into a 206 

monophyletic clade, also placing CAMK and AGC as sister clades — consistent with the existing 207 

phylogeny33. Extending beyond the existing model, we included an evolutionary outgroup of lipid and 208 

small molecule kinases. The placement of CK1 kinases in both topologies infer that CK1 is the earliest 209 

diverging protein kinase group, which is further supported by CK1-specific divergence in the substrate 210 

binding lobe36 and its apparent substrate promiscuity and constitutive activity37. 211 

 212 

Relationships between sequence embeddings can also be visualized by manifold learning algorithms 213 

such as UMAP27. We compare against our tree-based method by creating a UMAP projection from the 214 

same dataset. The tree-based layout is superior at preserving pairwise distance information, facilitating 215 

a more accurate depiction of the underlying manifold. In the kinase domain dataset, all-vs-all pairwise 216 

distances from the UMAP projection are weakly correlated to the original data, quantified by a 217 

Pearson’s correlation coefficient of 0.366, compared to 0.926 for the tree (Figure 3A). While pairwise 218 

distances in UMAP scatterplots are represented by Euclidean distance, pairwise distances in circular 219 

trees are represented by cophenetic distance, the sum of branch lengths along the shortest path 220 

between two points. Branch length is solely represented by distance across the radial axis, while the 221 

circular axis and number of edges do not matter38. 222 

 223 

Sequence projections provide further explainability for embedding-based analyses. The sequence 224 

projection quantifies how strongly a given representation vector weights each residue of a protein 225 
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sequence. Weights are correlated to fast/slow evolving sites. Most kinases share a common set of 226 

sequence motifs such as the nucleotide-binding G-loop motif and catalytic motifs (Figure 3C)39. A 227 

projection of archetypical kinase PKA-α reveals positive peaks for kinase-conserved motifs (Figure 228 

3D). We observe similar peaks for HIPK2 which has a CMGC-specific insertion region towards the C-229 

terminal of the kinase domain40 and VEGFR1 which has the longDE insertion towards the center of the 230 

kinase domain41. These fast-evolving insertion regions correspond to negative peaks. A sequence 231 

projection of CK1α-like kinase also highlights protein kinase motifs, albeit with its own unique 232 

variations. While determining fast/slow evolving sites typically require a sequence alignment, protein 233 

LMs delineate this information without an alignment, functioning as unsupervised learners for fast/slow 234 

evolving sites. 235 

  236 
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Embedding trees capture similarities between protein folds in protein phosphatases. 237 

 238 

 239 
 240 
Figure 4. Embedding-based analysis of the human phosphatases. (A) An embedding tree of the human phosphatases in 241 
circular layout, generated from all human phosphatases enzymes spanning ten structural folds. This tree was generated using 242 
the avg_seq representation function and cosine distance. To the left of the tree, we plot a UMAP projection using the same 243 
dataset. The full tree is provided in Supp File S5 and full technical details are provided in Supp Table S4. (B) A stylized tree 244 
showing the phosphatase folds with VIBEs indicated by the red percentage values. This topology was inferred by excluding 245 
two rogue taxa, O60729 and Q9NRX4, from the sequence set. The full tree is provided in Supp File S6. (C) Sequence 246 
projections for a representative CC1, CC2, and CC3-fold phosphatase. The conserved CxxxxxR motif corresponds to a 247 
positive peak in all three enzymes, despite adopting different protein folds. Crystal structures of each enzyme are shown with 248 
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the CxxxxxR motif circled and highlighted red. Based on the optimal tree parameters, sequence projections were calculated 249 
using the avg_seq representation function. (D) An embedding tree and UMAP projection of the human CC1-fold 250 
phosphatases. This tree was generated using the [CLF] representation function and TS-SS distance. The full tree is provided 251 
in Supp File S7 and full technical details are provided in Supp Table S5. (E) A stylized tree showing the CC1 phosphatase 252 
families with VIBEs indicated by the red percentage values. 253 

 254 

To further demonstrate the applicability of embedding trees, we generated trees for phosphatase 255 

enzymes, which, unlike kinases, adopt distinct structural folds42. Out of ~200 human phosphatases, 256 

roughly half adopt the CC1 fold, while only one adopts the RTR1 or PHP fold. The salient heterogeneity 257 

of structural folds suggests that phosphatases emerged independently multiple times throughout 258 

evolution.  259 

 260 

We constructed an embedding tree spanning all ten structural folds using the catalytic domain 261 

sequences (Figure 4A). VIBEs were calculated using a filtered dataset which excludes two rogue taxa 262 

(Figure 4B). The grouping of the three cysteine-based phosphatase folds (CC1, CC2, and CC3) was 263 

supported by 95% of replicates. Within all three structural folds, sequence projections revealed a 264 

positive peak at the shared CxxxxxR catalytic motif (Figure 4C). Catalytic similarities between CC1, 265 

CC2, and CC3 phosphatases likely arose via convergent evolution — CC2 is more structurally related 266 

to bacterial arsenate reductases, while CC3 emerged from bacterial rhodanese-like enzymes43. At the 267 

opposite end of the tree, PPPL, PPM, and AP were placed into a distinct cluster supported by 66% of 268 

replicates. PPPL and PPM phosphatases are phosphoserine/threonine-specific44, while AP 269 

phosphatases act on phosphotyrosine45 with possible phosphoserine/threonine activity based on 270 

substrate binding specificities46. While these enzymes share similar substrates, the embedding-based 271 

similarities between these three folds are not immediately obvious. 272 

 273 

We also constructed another embedding tree from a reduced dataset only containing CC1-fold 274 

phosphatases which adopt a conserved structural fold, implying a common evolutionary origin. 275 

Consistent with an alignment-based phylogeny42, the embedding tree identified five major clades 276 

across the six families. Notably, DSP is a paraphyletic group and shares a clade with PTEN (Figure 277 

4D). VIBEs of the five major clades ranged from 39-100% (Figure 4E). While the CC1-fold tree showed 278 

evolutionary relationships, embedding trees for highly divergent sequence sets should be interpreted 279 

with caution as similarities can arise from alternative sources such as convergent evolution. Even if 280 

evolutionary inferences cannot be made, results can still be interpreted as hierarchical clustering. 281 

 282 
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An initial characterization of the radical SAM enzyme superfamily 284 

 285 

286 
 287 
Figure 5. Embedding-based analysis of the diverse radical SAM enzymes. (A) An embedding tree of radical SAM enzymes in 288 
a circular layout with major groups labeled. This tree was generated using the [CLF] representation function and cosine 289 
distance. To the left of the tree, we plot a UMAP projection using the same dataset. At the bottom of each graph, we provide 290 
the correlation coefficient which quantifies how well the all-vs-all pairwise distances denoted by each visualization reflect the 291 
pairwise distances from the underlying dataset. The full tree is provided in Supp File S8 and full technical details are provided 292 
in Supp Table S6. (B) A condensed tree showing various families of radical SAM enzymes. VIBEs are indicated by the red 293 
percentage values. Select structure-functional annotations are shown in green. (C) A sequence projection for a representative 294 
radical SAM enzyme. The conserved iron-sulfur cluster binding motif, CxxxCxΦC, corresponds to a positive peak, designated 295 
by the zoomed inset. A crystal structure of mouse Viperin is shown with the CxxxCxΦC motif circled and highlighted red. 296 
Based on the optimal tree parameters, sequence projections were calculated using the [CLF] representation function. (D) We 297 
plot histograms of sequence projection values across our dataset of diverse radical SAM enzymes, stratified by the secondary 298 
structure at each residue. 299 

 300 

We apply embedding-based methods towards an initial evolutionary characterization of the radical S-301 

Adenosyl-L-Methionine (SAM) enzyme superfamily. SAM enzymes are present in all domains of life, 302 

catalyzing radical chemistry towards a wide variety of essential biological functions47. The catalytic core 303 

domain of radical SAM enzymes adopts a TIM barrel (α/β barrel) fold with varying numbers of α/β pairs, 304 

and a conserved iron-sulfur cluster binding motif, CxxxCxΦC, where Φ denotes an aromatic residue48. 305 

Family-specific insertions and deletions add additional structural variance, making a superfamily-scale 306 
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alignment difficult. We curated a dataset of diverse radical SAM enzymes using available protein 307 

structures and the AlphaFold2 database49. To establish a common frame of reference, we trimmed 308 

each sequence to the core catalytic domain, removing any domain extensions or accessory domains. 309 

 310 

Despite only utilizing the core domain, an embedding tree of the radical SAM superfamily organized 311 

enzymes into structure-functionally similar groups (Figure 5A) with good VIBEs (Figure 5B). For 312 

instance, families which specialize in methyl or sulfur transfer (B12-binding, MTaseA, LipA, and 313 

MTTase families)48 were placed in a single clade. Placed in the neighboring clade, some HemN 314 

enzymes also catalyze methyl transfer50,51. The HemN and Elp families have reported sequence 315 

similarity52, while Elp and BAT families both conserve extended TIM barrel folds. Additionally, many Elp 316 

and BATS enzymes contain alterations to the canonical CxxxCxΦC motif53. Viperin and SPASM 317 

families both conserve a C-terminal extension which facilitates family-specific functionalities54. Viperin is 318 

placed closest to the MoaA subfamily (within the SPASM family); both of which act on nucleotide 319 

substrates55. Activating enzyme and QueE family members sometimes adopt a “Tiny TIM'' minimal core 320 

fold56. QueE and TYW1 families are also closely grouped together; both families are involved in tRNA 321 

biosynthesis and hypermodification57. 322 

 323 

Sequence projections across diverse radical SAM enzymes place a positive peak at the conserved 324 

CxxxCxΦC motif (Figure 5C). Positive peaks also tend to fall on β-sheets (Figure 5D) extending onto 325 

each proceeding loop. These regions correspond to previously identified SAM binding sites found in all 326 

radical SAM enzymes, as well as family-specific motifs which facilitate unique family-specific 327 

chemistry58,59. This trend suggests that the usage of β-sheets in substrate binding and catalysis may be 328 

a shared feature across the radical SAM superfamily. Although β-sheets are more conserved than 329 

loops and helices60,61, sequence projections on other globular protein superfamilies show comparatively 330 

weaker association with β-sheets (Supp File S11). 331 

 332 
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DISCUSSION 334 

 335 

 alignment-based methods embedding-based methods 

sequence comparison sequence alignment62 embedding distance (Supp Method 2.3) 

residue conservation 

statistical entropy (e.g. Shannon entropy, Kullback-
Leibler divergence, Jensen-Shannon divergence)2 
 
sequence logo63 

sequence projections (Supp Method 3.1) 

sequence clustering sequence similarity networks64 

embedding trees (Supp Method 2.4) 
 
manifold learning (e.g. t-SNE65, UMAP27,28) (Supp
Method 3.2) 

tree inference 

probabilistic methods (e.g. maximum likelihood66, 
Bayesian inference67) 
 
distance matrix methods (e.g. neighbor-joining68) 

embedding trees (assuming sufficient orthogonal 
evidence) (Supp Method 2.0) 

branch support bootstrapping69 VIBEs (Supp Method 3.7) 
 336 
Table 1. Comparison of equivalent methods for protein sequence analysis. For a diverse range of sequence alignment-based 337 
methods, we define an analogous embedding-based approach. 338 

 339 

We present an arsenal of orthogonal techniques, listed in Table 1, for alignment-free protein sequence 340 

analysis by utilizing sequence embeddings as a proxy for actual amino acid sequences. Throughout 341 

diverse case studies, embedding vectors appear most suited for modeling long-distance evolutionary 342 

relationships (Figure 1D), allowing us to infer a single tree containing all human kinase-fold enzymes 343 

(Figure 3A), identify similarities between divergent phosphatases structural folds which likely arise by 344 

convergent evolution (Figure 4A-C), and infer the initial tree of the radical SAM enzyme superfamily 345 

(Figure 5A-B). Across all case studies, closely-related proteins had a tendency towards unbalanced, 346 

ladder-like topologies with zero branch length tips, suggesting that embedding trees do not have the 347 

capacity to resolve closely-related proteins within the same family. While our analyses only utilized 348 

shared catalytic domains, a focused analysis on closely-related sequences may benefit from 349 

embeddings that include shared regions beyond the catalytic domain. In comparison, while sequence 350 

alignments-based approaches are not well suited for long-range evolutionary inference, they work well 351 

on closely related sequences. A combination of alignment and alignment-free embedding approaches 352 

are expected to advance the frontiers of sequence analysis. 353 

 354 

Embedding trees indicate that the protein LM provides a reasonable model of the theoretical 355 

evolutionary landscape. Although it is technically possible to build embedding trees from any sequence 356 

dataset, evolutionary inference should only be invoked if common ancestry can be supported by 357 

orthogonal evidence. Common ancestry between kinase fold enzymes is supported by a highly 358 

conserved structural fold and sequence motifs34. Although phosphatase enzymes share a common 359 

catalytic function, different folds utilize different mechanisms which indicate that these enzymes 360 

independently emerged multiple times throughout evolution42. Consequently, the phosphatase fold tree 361 

only should be interpreted as clustering. Despite methodological differences, many established 362 

principles in phylogenetic analyses remain relevant such as generating replicate trees and being 363 

vigilant towards confounds such as long-branch attraction70. 364 
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 365 

Beyond biological applications, our study provides useful methods for explainable machine learning. 366 

Tree-based visualizations more accurately capture the global data structure of high-dimensional data 367 

compared to manifold learning algorithms such as UMAP. Citing a major difference, our tree-based 368 

method does not frame manifold visualization as a dimensionality reduction problem; trees are 369 

inherently capable of depicting high dimensional relationships without assuming an underlying 370 

geometry. Sequence projections can also be used as explainability vectors. Not requiring backward 371 

gradient calculations, our method demonstrates superior computational efficiency and simplicity. By 372 

showcasing these new applications, we hope to promote the development of better LMs. Recent results 373 

have proposed mechanisms for generating fixed-sized embeddings from variable-size inputs71,72 which 374 

would potentially exclude the need for representation functions. Further advances in the field of 375 

representation learning are expected to improve the unsupervised classification of large protein 376 

families. 377 

 378 
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METHODS 380 

 381 

Data collection and preprocessing 382 

 383 

The sequence dataset of 558 human kinase-fold enzymes73 and 204 human phosphatase sequences42 384 

were derived from previously published studies. Our dataset of 179 taxonomically diverse radical SAM 385 

enzymes was manually curated based on a previous sequence clustering study47. Core domain 386 

segments were manually identified and trimmed based on all available crystal structures and 387 

AlphaFold249 models. Secondary structure annotations were assigned based on AlphaFold2 models 388 

using the DSSP algorithm74. Further details about data curation are listed in Supp Methods 1.0-1.4. 389 

 390 

Calculating embedding trees 391 

 392 

Following sequence dataset curation, the sequences were converted into embedding vectors using a 393 

Transformer-based protein LM (Supp Methods 2.1). Specifically, the embedding vector is the final 394 

hidden state generated from the last layer of the encoder module. 395 

 396 

Embeddings=Transformer(ProteinSequences)  397 

 398 

Each embedding is a two-dimensional matrix. The token dimension encodes one token for each 399 

residue of the original sequence plus additional special tokens which are appended during 400 

preprocessing, while the embedding dimension encodes information about each token. The number of 401 

special tokens and the size of the embedding dimension will vary depending on the specific LM used. 402 

To enable direct comparisons between embeddings, we derive representation functions to summarize 403 

the information encoded within the variably-sized embedding vectors into fixed-sized representation 404 

vectors. This is conceptually similar to pooling operations, typically used to condense information within 405 

convolutional architectures. Each representation function is applied along the token dimension of the 406 

embedding, defined as a function of the special tokens or sequence tokens (Supp Methods 2.2). We 407 

explored 8 pretrained protein LMs and 9 different representation functions. After sampling all 408 

compatible pairs of protein LM and representation function, we generated 56 unique sets of 409 

representation vectors for each sequence dataset. 410 

 411 

Representations=RepresentationFunction(Embeddings) 412 

 413 

We explored a variety of distance metrics to calculate an all-vs-all distance matrix from the 414 

representation vectors: Euclidean distance, cosine distance, Manhattan distance, geodesic distance, 415 

and TS-SS32. Details pertaining to each distance metric are provided in (Supp Methods 2.3). We 416 

sampled each unique combination of representation vectors and distance metrics to generate 280 417 

unique distance matrices for each sequence dataset. 418 

 419 

DistanceMatrix=DistanceMetric(Representations) 420 

 421 

Trees were generated from distance matrices using the neighbor-joining algorithm68. 422 

 423 
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EmbeddingTree=NeighborJoining(DistanceMatrix) 424 

 425 

Evaluating branch support 426 

 427 

The statistical confidence of a given bipartition of a tree can be evaluated using a VAE. We trained a 428 

VAE on a fixed set of representation vectors to resample replicate representation vectors. By learning a 429 

smooth latent state representation from the input data, the VAE becomes capable of regenerating the 430 

input data using the reparameterization trick which allows backpropagation through a random node. 431 

This unique property of VAE enabled us to resample the original input with any desired number of 432 

replicates. To accurately model the underlying space of the protein representations, the VAE is trained 433 

on optimizing a combination of Mean Square Error (MSE), Kullback-Leibler divergence (KLD), and TS-434 

SS Error (TSE). We applied the cosine annealing75 to control for the weight of the KLD loss term. The 435 

detailed model structure can be found in (Supp Methods 3.7). 436 

 437 

Loss=�⋅MSE+�⋅KLD+�⋅TSE, where �=Cosine(mod(Iteration−1, MaxIteration)/ MaxIteration) 438 

 439 

We trained a separate VAE for each unique dataset of representations. VAEs were trained for 20,000 440 

epochs with early stopping patience of 1000 epochs. Resampled representation vectors generated from 441 

the final model were used to build 500 replicate trees. Branch support values were assigned to the 442 

original tree using the replicate trees. We refer to this procedure and confidence metric as VAE 443 

Implemented Branch Support Estimation (VIBE). 444 

 445 

Calculating sequence projections 446 

 447 

To understand how a representation vector (generated from a given representation function) encodes 448 

an embedding, we calculated the cosine distance between the representation vector and each 449 

sequence token of the embedding (Supp Methods 3.1). The resulting sequence projection vector has 450 

the same size as the protein sequence corresponding to the embedding. Sequence projections were 451 

further standardized to facilitate comparisons between sequences. 452 

 453 

SequenceProjection=Standardization(CosineDistance(Representation, Embedding)) 454 

 455 

 456 

 457 

  458 
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